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ABSTRACT 

Continuous variates are used everywhere (almost) in stochastic modeling. This thesis addresses 

numerical issues arising in the process of estimating a continuous parametric distribution 

function. It aims to provide a guide to analysts on how to overcome some problems we have 

encountered. In detail, it (1) applies the uniform method for estimating a one- or two-parameter 

distribution function from a complete sample; (2) derives the Conditional Empirical Distribution 

method for estimating distribution function from a censored sample (of any type); (3) illustrates 

the superiority of the Conditional Empirical Distribution method over the Maximum Likelihood 

Estimation method; (4) determines the reason for difficulties (unbounded solutions) in 

optimization of Pareto distribution parameters; (5) demonstrates the fallacy of applying the 

goodness-of-fit tests meant for discrete distributions, such as the chi-square test, to continuous 

distributions. 
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CHAPTER 1 : INTRODUCTION 

1.1   Discrete versus Continuous Distribution 

People tend to quantify their perceptions of interesting objects into mathematical expressions. 

This quantification facilitates measuring, controlling and forecasting the numeric values of the 

objects. In mathematics, we call the interesting object a variable. We call the variable a random 

variable, or variate, if its observed value is determined by chance (Milton & Arnold, 2004). If a 

random variable has a countable number of possible realizations, it is called a discrete random 

variable. If the number of possible realizations of a random variable is uncountable, it is called a 

continuous random variable. 

    Suppose we are measuring the temperature in Charlottesville, Virginia, at sunset. If we repeat 

the experiment every day for a week, we will get seven realizations of the temperature variable. 

In January, the temperature can take any value between 18 and 54, in degrees of Fahrenheit. 

Thus temperature is a continuous variate. The distribution of a continuous variate is called a 

continuous distribution.  Suppose we are conducting another experiment, in which we are 

counting the number of emails received in one morning. A variable is used to record the number 

of emails received. If we repeat the experiment several times, we will get several realizations of 

the variable, each of which is a non-negative integer. Thus this variable is a discrete variate. The 

distribution of a discrete variate is called a discrete distribution. 

In reality, we will meet many continuous variables. This thesis deals with numerical issues 

arising in modeling and estimation of parametric distributions of continuous random variables. 
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1.2   Motivation 

    The National Weather Service (NWS) is concerned with rapid changes of the weather, 

producing hazardous events such as flood, tornado, and heavy rainfall. To predict the rapid 

changes, they want to quantify some relevant aspects and construct a model.  A predictand is a 

random variable whose value is to be predicted. For the flood, the predictand is the maximum 

river stage within some time interval. If the river stage is above the safe level for a certain time, 

there might be a flood coming. Our motivation is to assist them to quantify the uncertainty and to 

build a predictive model. More precisely, our job is to model the predictand in terms of a 

continuous parametric distribution. Then an inference or decision can be made based on the 

distribution model. For example, the NWS could issue watches and warnings based on this 

continuous distribution.  

    However, the procedures of modeling continuous variables are complex. The procedures 

involve sample acquisition and model fitting. This thesis is dedicated to solving some of the 

numerical problems encountered during modeling a continuous predictand.  

1.3   Overview 

1.3.1 Censored Samples 

    Collecting samples is not always a smooth process. Under ideal circumstances, we get all the 

data points. However, in life testing and natural disaster recording, we tend to finish the 

experiments with only part of the points acquired. For example, suppose we are trying to collect 

the lifetimes of the patients after taking certain medicine.  The variable recording lifetime enjoys 

a continuous distribution. However, if the experiment only lasts for ten years, then there is a high 

probability that some patients in this test are still alive. Thus, we are unable to acquire some 
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realizations of the variable during the experiment, but only know that they are greater than 10 

years. Here, the sample is not complete; it is called a censored sample. The number “10” with the 

unit “year” is called the censoring threshold. Chapter 3 describes the Maximum Likelihood 

Estimation method and our new method to construct a distribution function based on a censored 

sample. Chapter 4 reports the experiments comparing these methods. 

1.3.2 Optimization with Pareto Distribution 

     Pareto is a continuous distribution with two parameters from the catalog of distributions to be 

used in probabilistic forecasting. The reason we are curious about it is that the optimization 

process usually iterates much beyond a satisfactory solution point. This long search wastes the 

valuable computing time without making any significant improvement in the fit. We want to stop 

the search early and achieve a balance between an acceptable computing time and a reasonable 

goodness-of-fit.  The optimization process is introduced in Chapter 2 and the Pareto distribution 

problem is investigated in Chapter 5. The task is to discover whether it is the peculiarity of the 

Pareto distribution, or it is a shortcoming of the optimization method that leads to a long search 

in the optimization process. The reason is explained theoretically and demonstrated 

experimentally. 

1.3.3 Fallacies Related to Testing Continuous Distributions 

    For simplicity of calculation and representation, under many circumstances we transform a 

task associated with a continuous variable into a discrete form. This is also one situation people 

may encounter in testing the goodness-of-fit of a hypothesized continuous distribution function. 

In Chapter 6, we will introduce two goodness-of-fit tests: the Chi-square test and the 

Kolmogorov-Smirnov test. Those tests aim at testing the null hypothesis that a given set of 
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observations is drawn from, or “fits,” a specified probability distribution.  The Chi-square test is 

only suitable for discrete variate and K-S test is only suitable for continuous variate. However, 

people sometimes mistakenly perform the Chi-square test on a continuous variate; this may 

produce   conflicting test results either within Chi-square test itself, or between Chi-square test 

and K-S test.  
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CHAPTER 2 : CONCEPTS 

   This chapter introduces the mathematical techniques and concepts which will be used later. 

Those concepts include: density function, distribution function, and distribution types. As most 

of the experiments in Chapters 3 and 4 are based on the distribution fitter software, I also explain 

the algorithm and methodology of the software. 

2.1   Density Function and Distribution Function 

   A distribution function   of a continuous variate   specifies at every point   the probability of 

  taking on a value less than or equal to  ; that is  ( )   (   ), which is also called the 

nonexceedance probability. Distribution function serves as the first description of a continuous 

variate. In later chapters, we construct experiments in estimating distribution functions with 

different methods, and from different types of samples. 

   A density function   is the derivative of its corresponding distribution function. However, a 

point’s density function value  ( ) does not have a practical meaning. 

2.2   Empirical Distribution Function 

   Suppose we have a sample { ( )          } of a continuous random variable  . When the 

realizations are arranged in ascending order, we denote them as  

 ( )   ( )     ( )  

and they constitute the ordered sample { ( )          }. 

   Our objective is to construct a distribution function  ( )   (   ) of the variate X. The 

estimator of this unknown distribution function is constructed from a given sample, without 
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making any assumptions about the form of  . Such an estimator is called the empirical 

distribution function (E.D.F.) of X, denoted by  ̌ . Let us first define N nonexceedance 

probabilities   , also called the plotting positions, as  

    (   ( ))         .                                      (2.1) 

Then the E.D.F. is specified by the points  

{( ( )   )        }                                           (2.2) 

There are multiple ways to specify the plotting positions: standard, Weibull , Meta-Gaussian, etc. 

This thesis is based on the meta-Gaussian plotting positions (Krzysztofowicz, 1992, 2012), 

where 

   [(
     

 
)

  
  ]

  

.                                             (2.3) 

The value of    varies with the sample size  , and is specified as 

                          ;                              (2.4a) 

                          ;                              (2.4b) 

                             ;                          (2.4c) 

                               ;                   (2.4d) 

             .                                                             (2.4e) 
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2.3 Parametric Distribution Function 

   Empirical distribution function is a quantized version of the distribution function of a 

continuous variate. However, to obtain the probability  (   ) at any point  , we need to 

acquire a completely continuous estimate of the distribution function  . 

  There are many parametric models for distribution functions. In this thesis, we use a catelog of 

28 parametric distribution functions (Krzysztofowicz, 2011a). Each of the functions has two 

parameters: the scale parameter and the shape parameter. We may also need to determine one or 

two bounds on the sample space for the purpose of fitting. To estimate the parameters of the 

distribution function, we go through two stages described in Section 2.4.  

   To measure the goodness of fit of the distribution function, we define the maximum absolute 

difference (MAD) as the criterion: 

                  ( ( ))                                    (2.5) 

2.4   Distribution Fitter’s Algorithm 

   The distribution fitter (Krzysztofowicz, 2011a) is FORTRAN based software estimating 

parametric distributions of continuous variates. The input to the software is a sample of the 

variate, with the number of realizations ranging from 2 to 20,000. The output from the software 

is a distribution fitted for the variate based on the input sample. The software itself contains four 

groups of distributions defined on four types of sample spaces: the unbounded interval, the 

bounded-below interval, the bounded-above interval, and the bounded open interval. There are 

several parametric distributions in each group. For example, we have exponential distribution, 

Weibull distribution, log-Weibull distribution for bounded-below interval sample space. The 
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distribution parameters are estimated in two stages: first, the estimates are obtained using a least 

squares method; second, the parameters are optimized using a non-linear method. The algorithm 

used in the distribution fitter is as follows (Krzysztofowicz, 2011a).  

   Step 1. Initialize the inputs. For this step, we need a sample of size 2 – 20000 of a continuous 

variate. If the sample space has a bound, we also ask for the bound value. Typically, the input 

needs to specify the type of the sample space.  

   Step 2. Sort the sample from the smallest value to the largest one. Ask the user to specify 

whether it is a censored sample or a complete sample. If it is a censored sample, we assess a 

censoring probability according to the methodology in Chapter 3. Then we calculate 

unconditional plotting positions for the sample using the meta-Gaussian method. 

   Step 3. Prune the duplicate realizations in the sample. If a sample has more than two 

realizations which have the same value, it should go through the pruning process. If the number 

of the same realizations is odd, only the middle one is kept after pruning. If the number of the 

same realizations is even, only the middle two realizations are kept after pruning. In this pruning 

process (i) input is the sample and its plotting positions, and (ii) output is the pruned sample and 

its corresponding plotting position. It has nothing to do with the distribution type.  

    Step 4. Initialize the distribution function parameters. Each distribution in the catalog has two 

parameters   and   to be estimated. The exception is exponential distribution which only has 

one parameter. The distribution fitter uses the least squares method for the initialization of the 

distribution parameters. With this method, the parametric distribution function is linearized, and 

so is the E.D.F. The details are as follows. 
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   A given distribution function is transformed into its inverse function, i.e. the quantile function, 

denoted by      ( ). The quantile function is linearized and takes the form 

       ,                                                                    (2.6) 

where        and   are functions of       and  . Each distribution has different equations for 

       and  . An example is shown in Section 2.5.1, which includes the linearized quantile 

function of the Weibull distribution function. 

   The linear regression is performed using the least squares method. The estimators are 

 ̂  
∑     

 
      ̅ ̅

∑   
  

      ̅ ,                                                                (2.7a) 

 ̂   ̅   ̂ ̅,                                                                     (2.7b) 

where  ̅ and  ̅ are sample means. 

   The least squares estimates ( ̂  ̂) are transformed back to the original coordinates to get the 

initial parameter value ( ̂  ̂) which are input to Step 5. 

    Step 5. Perform optimization of the parameters by using the downhill simplex method (Nelder 

and Mead, 1965) or the gradient method (Luenberger, 1984; Peressini et al., 1993) with the 

Brent’s method (Brent, 1973) for the line search. Calculate the MAD after optimization. 

Step 6. Perform Steps 4 and 5 for all the distributions that the user wants to try. Compare their 

MADs. The distribution with the smallest MAD is the distribution fitting best. Perform the 

Kolmogorov-Smirnov test (Chapter 6) to evaluate the goodness-of-fit. 
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2.5   Catalog of Distributions 

2.5.1 The Weibull Distribution 

Density function 

 ( )  
 

 
(

   

 
)

   

     (
   

 
)

 

                                              (2.8) 

Distribution function 

 ( )         (
   

 
)

 

                                              (2.9) 

Quantile function 

   ( )       (   ) 
 

                                                (2.10) 

Linearized quantile function        

     (   )                                                        (2.11) 

          (   )                                               (2.12) 

                                                                     (2.13) 

      ( )                                                           (2.14) 

Moments 

 ( )    (  
 

 
)                                                     (2.15) 

   ( )      (  
 

 
)    (  

 

 
)                                      (2.16) 
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2.5.2 The Pareto Distribution 

Density function 

 ( )  
 

 
(

 

     
)

   

                                             (2.17) 

Distribution function 

 ( )    (
 

     
)

 

                                             (2.18) 

Quantile function 

   ( )    (   )
 

 

                                        (2.19) 

Linearized quantile function       

     (   )                                                        (2.20) 

      (   )
 

 

                                                  (2.21) 

      ( )                                                           (2.22) 

Moments 

 ( )  
 

   
                                                                   (2.23) 

   ( )  
   

(   )(   ) 
                                                   (2.24) 
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CHAPTER 3 : CENSORED SAMPLE METHODS 

3.1   Problem Definition 

     Collecting samples is not always a smooth process. In life testing, not every experiment 

produces a result. Suppose we are trying to collect the lifetimes of the patients who are taking 

certain medicine.  If the experiment only lasts ten years, we are unable to acquire the lifetime of 

patients who live longer than ten years. This sample is called a censored sample of the variate 

lifetime. Since we know every realization is less than “10 years”, the number “10” with the unit 

“year” is called the censoring threshold. 

     Censored sample is also quite common in data analysis outside the industrial and medical 

areas.  For example, when we apply a thermometer to measure an unknown set of temperatures, 

we can only get measurements within its range. Temperatures beyond that range will result in an 

inaccurate measurement or damage to the thermometer. Thus a censored sample is known to be 

incomplete as some values beyond the range are missing. However, it is still of great value to 

analyze the censored sample, provided an appropriate method of analysis is used. We are 

interested in estimation of a continuous distribution function based on a censored sample. An 

existing method is the Maximum Likelihood Estimation (MLE) method (e.g., Aitkin & Clayton, 

1980; Balakrishnan & Kateri, 2008; Bar-Lev, 2004; Chen & Lio, 2010; Cohen, 1975; Engelhardt 

& Bain, 1973; Jang et al., 2011; Klakattawi et al., 2011; Thomas & Wilson, 1972). A new 

method is the conditional empirical distribution (CED) method. It is general in that it is 

applicable to any distribution type. This chapter describes the two methods; chapter 4 compares 

their performance experimentally. 
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3.2   Existing Method 

3.2.1 Preliminaries 

     Cohen (1965) describes the Maximum Likelihood Estimation method for estimating 

parameters of the Weibull distribution from both complete and censored samples. The Weibull 

distribution is defined in Section 2.5.  

According to Cohen, the Weibull density function is 

 ( )  (
 

 
)        ( 

  

 
)                 (3.1) 

Compared to (2.8), equation (3.1) assigns the shift parameter      The other two parameters 

of equation (3.1) show a relationship with parameters of equation (2.8) as: 

      √ 
 

       (3.2) 

To simplify comparisons, we will just use the parameter symbols in (2.8) to illustrate maximum 

likelihood estimation (MLE) method. 

3.2.2 Singly Censored Sample  

     Cohen (1965) defined singly censored sample by using a life test example. Suppose N 

specimens are placed under observation. The time of each failure is recorded. At some pre-

determined fixed time    or after acquiring a pre-determined fixed number of realizations, the 

test is terminated. Let   denote the number of specimens, and   denote the number of 

realizations acquired. In both of these cases, we have the sample         and the information 

that     specimens survived beyond time    or   . If the experiment stops at a fixed time   , 
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we get a type I censoring sample. All the realizations of the sample are smaller than or equal to 

  . If the experiment stops after acquiring a pre-determined number   of realizations, we get a 

type II censoring sample. All the realizations of the sample are smaller than or equal to the last  

recorded failure time   .  

3.2.3 MLE for Complete Sample 

     This derivation of MLE for complete sample follows Cohen (1965). 

     Consider a complete sample of size   . Suppose this sample is drawn from a Weibull 

distribution, thus the likelihood function of the Weibull distribution parameters is 

 (           )  ∏ (
 

  )  
       ( 

      
    )    (3.3)  

By taking logarithms of (3.3), differentiating with respect to   and    , we obtain 

{

    

  
 

 

 
 ∑     

 
    

 

  
∑   

 
    

 
      

    

     
 

   
 

   
∑   

  
      

                                    (3.4) 

After substitute one equation into another, we eliminate   and obtain 

∑   
     

 
 

∑   
  

 
 

 

 
 

 

 
∑     

 
      (3.5a) 

This is the equation for parameter  , which can be solved using an iteration method. The 

solution for   depends on the solution for   , which is 

  (
 

 
∑   

  
 )

   

      (3.5b) 

Equations (3.5a) and (3.5b) constitute the MLE method for a Weibull distribution.  
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3.2.4 MLE for Upper Tail Censored Sample 

     When Cohen (1965) talked about the solution for a singly censored sample, he meant an 

upper tail censored sample. The definition of upper tail censored sample is stated in Section 3.3. 

The solution is acquired through a procedure similar to that for a complete sample, but is 

preceded by one step: the collected censored sample of   realizations {          }  is 

extended to a sample of size    by inserting artificial realizations           for the     

survivors whose values are set as follows. In type I censoring, with    fixed, the censoring 

threshold is      , and  

                 

In type II censoring, the censoring threshold is        and we set 

                 

Then the likelihood function of the Weibull distribution parameters is 

 (           )  
  

(   ) 
∏ (

 

  )  
       ( 

      
    )    (  )      (3.6)  

where  

 ( )       ( 
  

  )              (3.7) 

By taking logarithms of (3.6), differentiating with respect to   and    , we obtain 

{

    

  
 

 

 
 ∑     

 
    

 

  
∑   

 
    

 
      

    

     
 

   
 

   
∑   

  
      

                                    (3.8) 
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After substituting one equation into another, we obtain 

∑   
     

 
 

∑   
  

 
 

 

 
 

 

 
∑     

 
      (3.9a) 

This is the equation for parameter  , which can be solved using an iteration method. The 

solution for   depends on the solution for   , which is 

  (
 

 
∑   

  
 )

   

      (3.9b) 

3.2.5 MLE for Lower Tail Censored Sample 

     Cohen (1965) only derived the MLE method given an upper tail censored sample. However, 

in many cases, we need to estimate a distribution function given a lower tail censored sample. 

Our new method (described in Section 3.3) can deal with both the upper tail and the lower tail 

censored samples. To complete the maximum likelihood estimation method and to better 

compare it with our new method, I derive the MLE method for a lower tail censored sample in 

parallel to the Cohen’s method. 

     Suppose we are given a lower tail censored sample of   realizations {          }. A 

censoring threshold    equals either    or   , as in Type I or Type II censoring, and is such that 

      for        . 

     Thus the likelihood function of the Weibull distribution parameters becomes 

 (           )  
  

(   ) 
∏ (

 

  )  
       ( 

      
    )  (  ) 

     (3.10)  

where  
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 ( )       ( 
  

  )              (3.11) 

By taking logarithm of (3.10), differentiating with respect to   and   , we obtain 

    

  
 

 

 
 ∑     

 
    

 

  
∑   

 
    

 
    (   )

 

  
 

   
 

   
  

 
    

   
   

 
   

  ,          (3.12) 

and 

    

     
 

   
 

   
∑   

  
    (   )

 

   
 

   
 

   
  

 

   
   

 
   

                        (3.13) 

The task now is to solve the two simultaneous equations (3.12) – (3.13) for   and  . For this 

purpose, we transform equation (3.13), and get expression 

      
 
   

 
(   )  

 

∑  
 
  

    (   )  
 
    

                                     (3.14a) 

We can also transform equation (3.13) with   on the left side, and get expression 

  

  (     (  
(   )  

 

∑  
 
  

    (   )  
 

    
))

    
                                        (3.14b) 

We insert (3.14a) into (3.12) and derive an expression of     

   
∑   

 
(         ) 

   
 

 
 ∑ (         ) 

   

                                              (3.15a) 

We get the solution for   as 

  √
∑  

 
 
(         ) 

   
 

 
 ∑ (         ) 

   

 

                                              (3.15 b) 
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     Finally we use (3.14b) and (3.15b) to solve for   and  .  We insert (3.15b) into (3.14b), to get 

an equation only with   only. This equation can be solved for   using an iteration method. We 

employed a graphical method as follows. If we plot the left hand side and right hand side of 

(3.14b) with various   values, we can find the intersection point as the solution. Figure 3.1 is a 

plot of left and right hand sides of (3.14b), given sample A2 with one lower realization censored. 

There is an intersection point at       , and it is the maximum likelihood estimate of the 

Weibull distribution parameter. Finally, we insert the estimate of   into (3.15b) to obtain the 

maximum likelihood estimate of  . 

     From an inspection of equation (3.5a), (3.9a) and (3.14a), we draw a conclusion that the MLE 

solution for a complete sample is convergent. If we keep the expression of     on the left side of 

equation (3.5a), and move the remaining expression to the right side, we can see the left part is 

strictly decreasing on positive axis and the right part is increasing. The intersection of these two 

curves guarantees that the solution exists.  However, the MLE solution for a censored sample 

does not necessarily exist. The left hand side and right hand side of the MLE censored method 

may not intersect. In other words, the optimization problem is not concave. 

3.2.6 MLE for Two Tail Censored Sample 

     As the two tail censored sample case is much more complex, we do not derive the MLE 

method for it. However, our new method can deal with the two tail censored case, which is 

explained in Section 3.3. 
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Figure 3.1. Graphical procedure for finding the maximum likelihood estimate of   . The X 

axis is the left hand side of equation (3.14b), while the Y axis is the right hand side of (3.14b).  

The data is artificial sample A2 with one lower realization censored. 

3.3   New Method 

3.3.1 Preliminaries 

     The CED method (Krzysztofowicz, 2011b) is general in that it can be applied to estimate 

parameters of any distribution type without the need to perform any derivations as required by 

any MLE method. Moreover, it is applicable to all three types of censored samples. Whereas the 

MLE method requires challenging derivations, even for distribution types as simple as Weibull 

distribution. 
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     In the new method, the censored samples are classified into one of the three types according 

to the positions of the censored realizations in the whole distribution: (i) lower tail realizations 

are censored, (ii) upper tail realizations are censored, and (iii) lower and upper tail realizations 

are censored.  

3.3.2 Lower Tail Realizations are Censored 

     We consider a random sample consisting of   realizations. If the points below certain 

threshold are missing, the sample is said to have lower tail censored. The threshold is called 

lower censoring threshold, and is denoted by     . The censored sample is defined as 

                                                          { ( )      ( )        }.                                   (3.16) 

     Our purpose is to obtain the plotting positions of a complete sample, from which the censored 

sample is assumed to be drawn. First, we construct the empirical distribution of X, given the 

censored sample and the meta Gaussian plotting positions in Section 2.2.  

     To complete the calculation, lower censoring probability is assessed. Let     denote the lower 

censoring probability.  The larger the number of points censored, the larger the lower censoring 

probability    is. In some situations,    and    can be exchanged.  

     Given the lower censoring threshold    , we can define    as the conditional distribution 

function of X, given that X is greater than the lower censoring threshold   .  That is, 

  ( )    (        ).                                      (3.17) 

     In contrast to the conditional distribution function   , the unconditional distribution function 

of   is denoted by  . The relationship between    and   is  
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                   ( )    (        )                                      

                      (        ) 

                                              
 (         )

 (    )
 

                              
 (   )

 (    )
 

                               
   ( )

   (  )
      (3.18) 

    According to the definition, the lower censoring probability    is 

    (    )   (  ) .                                          (3.19) 

    Applying Equation (3.19) to Equation (3.18), we get 

  ( )    
   ( )

    
 

 ( )   

    
.                                      (3.20) 

    Finally, the unconditional distribution function of X is derived: 

 ( )  (    )  ( )    .                                    (3.21) 

     When analyzing a censored sample, we use    to denote the conditional plotting positions and 

   to denote the unconditional plotting positions. The relationship between them, based on 

Equation (3.21), can be written as 

   (    )                   .                                       (3.22) 
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Figure 3.2.  The conditional and unconditional empirical distribution functions constructed from 

a sample with lower tail censored. The sample used is A2 (Appendix A), with lower two 

realizations censored (out of 20), so that       , and          . The censoring probability 

   is determined according to Section 3.4.3.  
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Figure 3.2 presents the conditional empirical distribution function {( ( )   )         } and 

the corresponding empirical unconditional distribution function {( ( )   )         } given 

a lower tail censored sample of size     . 

3.3.3 Upper Tail Realizations are Censored 

     Here is another random sample consisting of   realizations. If the points above certain 

threshold are missing, the sample is said to have its upper tail censored. The threshold is called 

upper censoring threshold, and is denoted by     . The censored sample is therefore defined as 

{ ( )      ( )        }.                                       (3.23) 

 

     For upper tail censored sample, the conditional plotting position    enjoys the same definition 

as in Section 3.2.1.  Let    denote the upper censoring probability.  Similarly, in some situations, 

   and     can be switched.     

     The conditional distribution function of X, given that X is less than   , is denoted by   . 

That is, 

  ( )    (        ).                                       (3.24) 

The relationship between    and   is  

     ( )    (        )                                     

                                              
 (         )

 (    )
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 (   )

 (    )
 

                       
 ( )

 (  )
                                                      (3.25) 

.                                        

    According to the definition, the upper censoring probability    is  

    (    )   (  ) .                                          (3.26) 

    Applying Equation (3.26) to Equation (3.25), we get 

     ( )  
 ( )

  
.                                                   (3.27) 

    Finally, the unconditional distribution function of   is derived: 

 ( )      ( ).                                                (3.28) 

     When analyzing a censored sample, we use    to denote the conditional empirical distribution 

and    to denote the unconditional empirical distribution. The relationship between them, based 

on Equation (3.28), can be written as 

                        .                                        (3.29) 

Figure 3.3 presents the conditional empirical distribution function and the corresponding 

unconditional distribution function, given an upper tail censored sample of size      . 
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Figure 3.3.  The conditional and unconditional empirical distribution functions constructed 

from a sample with upper tail censored. The sample used is A2 (Appendix A), with upper two 

realizations censored (out of 20), so that        , and          . The censoring probability 

   is determined in Section 3.4.3. 
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3.3.4 Lower and Upper Tail Realizations are Censored 

   Consider another random sample consisting of   realizations. If the points below certain 

threshold and above certain threshold are missing, the sample is called two tail censored sample. 

All the variables and notation are the same as Section 3.3.2 & 3.3.3, except the censored sample 

{ ( )      ( )             },                              (3.30) 

and the conditional distribution function of X, given that X is less than    and great than   : 

   ( )    (             ).                    (3.31) 

 

The relationship between    and   is  

                       ( )    (             ) 

                                        
 (              )

 (         )
 

                      
 (        )

 (  )   (  )
 

                                         
 (        ) (    )

 (  )   (  )
 

                                   
    (        )  (    )

 (  )   (  )
 

                
   

 (   )

 (    )
  (    )

 (  )   (  )
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 ( )   (  )

 (  )   (  )
 

                
 ( )   

     
                                                                    (3.32) 

Finally, when analyzing a censored sample, the relationship between the conditional and 

unconditional plotting positions can be written as  

      (     )  .                                               (3.33)  

Figure 3.4 presents the conditional distribution function and the corresponding unconditional 

distribution function, given a lower and upper tail censored sample of size     . 

3.4 Numerical Experiments with New Method 

3.4.1   Motivation 

    In Section 3.3, we describe our method to deal with the three types of censored sample. To test 

the performance of the algorithm, we design several numerical experiments. The experiments are 

designed to answer two questions: (i) How to assess the lower/upper censoring probability, given 

a threshold? (ii) What is the tolerance of the new method to the percentage of missing 

realizations? 

3.4.2   How to Assess the Lower/Upper Censoring Probability? 

     The three basic components for the simplest input-output system are input, output, and the 

function transforming input to output. Our experiment is such an input-output system.  
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Figure 3.4.  The conditional and unconditional empirical distribution functions constructed from 

a sample with lower and upper tail censored. The sample used is A2 (Appendix A), with the two 

smallest and the two largest realizations censored (out of 20), so that       ,    

      ,         , and          .The censoring probability    and    are determined in 

Section 3.4.3. 
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     The input to the experiment includes 2 samples, A2, A4 (Appendix A) and a small positive 

constant . The output of the experiment is a list of MAD (Maximum Absolute Difference) 

between the estimated parametric distribution function and the unconditional empirical 

distribution function, given different choice of lower or upper censoring probability.  

     Step 1. Sort the sample. Manually have the sample A2 and A4 censored: lower tail r 

realizations censored, and upper tail r realizations censored, where “r” is a constant chosen from 

the set {0, 1, 2, 3, 4, 5}. 

    Step 2. Set three values of     or     for each manually censored sample. The choices of lower 

censoring probability include:    +  (       ) ,      -  (       ) ,    (       )  . The 

choices for upper censoring probability include:      +  (           ) ,        - 

 (           ), ,    (           ), where N is the uncensored sample size, 20 in A2 and 

A4 cases, and constant   (     ) is chosen arbitrarily as      .  

    Step 3. Use the values from Step 2 to go through calculations described in Sections 3.3.2 and 

3.3.3, getting the unconditional plotting positions    . 

    Step 4. Prune the sample according to step 3 of Section 2.4. Use the unconditional plotting 

positions as the input to step 4 of Section 2.4. By using the least square estimation method, we 

initialize the distribution function parameters. Perform optimization according to step 5 of 

Section 2.4. Through this step, we get our final estimates of distribution parameters. Calculate 

MAD.  

    Step 5. Compare the MAD of each choice for lower or upper censoring probability, and 

choose the censoring probability giving smallest and steadiest MADs. 
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3.4.3 What is the Tolerance of the Method to the Percentage of Missing Realizations? 

    The input to the experiment is five samples N1, N2, N3, N4, N5 (Appendix A) and lower and 

upper censoring probabilities    or    . The output from the experiment is a list of MAD 

between the estimated parametric distribution function and the unconditional empirical 

distribution function, given samples with various percentages of the missing realizations. 

    Step 1. Sort the sample. Manually have the sample N1, N2, N3, N4, and N5 censored: lower 

tail r realizations censored, and upper tail r realizations censored, where “r” is a constant chosen 

from the set {0,1,2,3,4,5,6,7,8,9,10}. 

    Step 2. According to the experimental result of Section 3.4.2, which is in Section 3.4.4, I 

choose       -  (       ) as the lower censoring probability threshold,      +  (       

    ) as the upper censoring threshold for any    . 

    Step 3. Go through calculations of Section 3.3.2 or 3.3.3, getting the unconditional plotting 

positions   . 

    Step 4. Prune the sample according to step 3 of Section 2.4. Use the unconditional plotting 

positions as the input to step 4 of Section 2.4. By using the least square estimation method, we 

initialize the distribution function parameters. Perform optimization according to step 5 of 

Section 2.4. Through this step, we get our final estimates of distribution parameters. Calculate 

MAD.  

Step 5. Relate the MAD of censored sample to the number of missing points. Observe from 

which point the goodness of fit starts to deteriorate according to MAD. 
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3.4.4   Experimental Results 

Experiment 1. Assessment of the Censoring Probability  

    We conduct two parallel tests on samples A2 and A4 using the distribution fitter. Table 3.1 

and Table 3.2 state the results for lower censoring probability assessment; and Table 3.3 and 

Table 3.4 show the results for upper censoring probability assessment.  

Table 3.1. Experimental results for sample A2 with lower tail censored. Different lower 

censoring probabilities and number of missing points are applied; the MAD is calculated as the 

difference between the Weibull distribution function and the unconditional empirical distribution 

function. 

Number of 
Points Missing 

 

   MAD  MAD 

Preferred Method 

 
    ( 

   

  
 
) 

   (  

     ) 

      ( 
   

  
 
) 

0 
 

0 0.0494 0    

1 
 

    ( 
 
  

 
)  0.0592 0.0098    

1 
 

(     )   0.0575 0.0081     

1 
 

    ( 
 
  

 
)  0.0692 0.0198    

2 
 

    ( 
 
  

 
)  0.0660 0.0166    

2 
 

(     )   0.0575 0.0081    

2 
 

    ( 
 
  

 
)  0.0532 0.0038     

3 
 

    ( 
 
  

 
)  0.0674 0.0180    

3 
 

(     )   0.0570 0.0076     

3 
 

    ( 
 
  

 
)  0.0590 0.0096    

4 
 

    ( 
 
  

 
)  0.0682 0.0188    

4 
 

(     )   0.0578 0.0084    

4 
 

    ( 
 
  

 
)  0.0572 0.0078     

5 
 

    ( 
 
  

 
)  0.0703 0.0209    

5 
 

(     )   0.0599 0.0105    

5 
 

    ( 
 
  

 
)  0.0596 0.0102     

Average      ( 
   

  
 
)  0.0662 0.0168 Winning  

times 

  

Average  (       )   0.0579 0.0085   

Average        ( 
   

  
 
)  0.0596 0.0102 0 2 3 
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Table 3.2. Experimental results for sample A4 with lower tail censored. Different lower 

censoring probabilities and number of missing points are applied; the MAD is calculated as the 

difference between the Weibull distribution function and the unconditional empirical distribution 

function. 

Number of 

Points 

Missing 

 

   MAD  MAD 

Preferred Method 

 
    ( 

   

  
 
) 

   (  

     ) 

      ( 
   

  
 
) 

0 
 

0 0.0610 0    

1 
 

    ( 
 
  

 
)  0.0694 0.0084    

1 
 

(     )   0.0627 0.0017     

1 
 

    ( 
 
  

 
)  0.0696 0.0086    

2 
 

    ( 
 
  

 
)  0.0777 0.0167    

2 
 

(     )   0.0709 0.0099    

2 
 

    ( 
 
  

 
)  0.0638 0.0028     

3 
 

    ( 
 
  

 
)  0.0883 0.0273    

3 
 

(     )   0.0791 0.0181    

3 
 

    ( 
 
  

 
)  0.0696 0.0086     

4 
 

    ( 
 
  

 
)  0.0958 0.0348    

4 
 

(     )   0.0846 0.0236    

4 
 

    ( 
 
  

 
)  0.0736 0.0126     

5 
 

    ( 
 
  

 
)  0.0999 0.0389    

5 
 

(     )   0.0878 0.0268    

5 
 

    ( 
 
  

 
)  0.0749 0.0139     

Average      ( 
   

  
 
)  0.0862 0.0252 Winning  

times 

  

Average  (       )   0.0770 0.0160   

Average        ( 
   

  
 
)  0.0703 0.0093 0 1 4 
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Table 3.3. Experimental results for sample A2 with upper tail censored. Different lower 

censoring probabilities and number of missing points are applied; the MAD is calculated as the 

difference between the Weibull distribution function and the unconditional empirical distribution 

function. 

 

Number of 

Points 

Missing 

 

   MAD  MAD 

Preferred Method 

 

      

  ( 
     

  
   

) 

(    

       )
   

    

  ( 
     

  
   

) 

0 
 

0 0.0494 0    

1 
 

     ( 
  

  
  

) 0.0569 0.0075    

1 
 

(       )   0.0519 0.0025     

1 
 

     ( 
  

  
  

) 0.0693 0.0199    

2 
 

     ( 
  

  
  

) 0.0634 0.0140    

2 
 

(       )   0.0557 0.0063    

2 
 

     ( 
  

  
  

) 0.0544 0.0050     

3 
 

     ( 
  

  
  

) 0.0634 0.0140    

3 
 

(       )   0.0609 0.0115    

3 
 

     ( 
  

  
  

) 0.0595 0.0101     

4 
 

     ( 
  

  
  

) 0.0775 0.0281    

4 
 

(       )   0.0674 0.0180    

4 
 

     ( 
  

  
  

) 0.0569 0.0075     

5 
 

     ( 
  

  
  

) 0.0811 0.0317    

5 
 

(       )   0.0704 0.0210    

5 
 

     ( 
  

  
  

) 0.0593 0.0099     

Average 
 

        ( 
     

  
   

) 
0.0685 0.0191 Winning 

times 

  

Average  (           )   0.0613 0.0119   

Average 
 

      ( 
     

  
   

) 
0.0599 0.0105 0 1 4 
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Table 3.4. Experimental results for sample A4 with upper tail censored. Different lower 

censoring probabilities and number of missing points are applied; the MAD is calculated as the 

difference between the Weibull distribution function and the unconditional empirical distribution 

function. 

Number of 
Points 

Missing 

 

   MAD  MAD 

Preferred Method 

 

      

  ( 
     

  
   

) 

(    

       )
   

    

  ( 
     

  
   

) 

0 
 

0 0.0610 0    

1 
 

     ( 
  

  
  

) 0.0709 0.0099    

1 
 

(       )   0.0665 0.0055    

1 
 

     ( 
  

  
  

) 0.0615 0.0004     

2 
 

     ( 
  

  
  

) 0.0837 0.0227    

2 
 

(       )   0.0777 0.0167    

2 
 

     ( 
  

  
  

) 0.0699 0.0089     

3 
 

     ( 
  

  
  

) 0.0946 0.0336    

3 
 

(       )   0.0859 0.0248    

3 
 

     ( 
  

  
  

) 0.0770 0.0159     

4 
 

     ( 
  

  
  

) 0.1036 0.0426    

4 
 

(       )   0.0935 0.0325    

4 
 

     ( 
  

  
  

) 0.0819 0.0208     

5 
 

     ( 
  

  
  

) 0.1087 0.0477    

5 
 

(       )   0.0957 0.0347    

5 
 

     ( 
  

  
  

) 0.0836 0.0225     

Average 
 

        ( 
     

  
   

) 0.0923 0.0313 Winning  

times 

  

Average  (           )   0.0838 0.0228   

Average 
 

      ( 
     

  
   

) 0.0748 0.0137 
0 0 5 
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    According to the MADs listed in Tables 3.1-3.4, we prefer the       ( 
   

  
 
) for lower 

tail censoring, and       ( 
     

  
   

)  for upper tail censoring as the lower/upper 

censoring probability, for the following three reasons. Let’s define the choice above as the first 

choice, and the middle point as the second choice. First of all, the mean of MAD or  MAD of 

first choice wins three experiments, and it only loses one experiment, ranking in the middle. 

Second, the difference of means between the first choice and the second choice is obvious for 

three experiments, usually around 0.01. Finally, for each experiment we run five censored 

samples. The winning times show an overwhelming vote the first choice. 

Experiment 2.  The Tolerance of the Estimation Method to the Percentage of Missing 

Realizations 

    We conduct five parallel tests on samples N1, N2, N3, N4, and N5 using the distribution fitter. 

Table 4.16 to Table 4.20 show the experimental results based on each sample. 

    Ideally, we would see a “jump” of MAD at certain point in each of the experiments. However, 

the experimental result shows that the jump is not obvious, and sometimes the jump is erratic and 

we cannot decide from which point the distribution does not fit. The reason for this problem is 

probably the nature of the method itself, or the nature of the sample. 

     However, if we define the initial MAD to be the MAD when 0 point is missing, we can 

calculate an increment of MAD as the number of points missing rises. When we set the tolerance 

of increment to 0.005 approximately, we get Table 3.5 with the points where the distribution fit 

turns “bad”.  In short, we call the point when the increment of MAD compared to the initial 

MAD exceeds approximately 0.005 a turning point. 
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The result shows that on average the turning occurs at about 7.2/62, i.e., where about 11.6% of 

realizations are censored. The results are analyzed based on Tables 4.16 – 4.20 with the rows 

called “CED Method”. As the MAD is not strictly increasing with the number of point missing, 

there is not an absolute turning point for a specific sample. For example, the upper censored 

sample experiment of N2 has a large MAD when number of missing points is 2. Though the 

MAD of this experiment decreases after number of missing points is 2, we choose the turning 

point at 2. 

Table 3.5. Summary of increment of MAD for experiment 3.4.3. 

Sample 

Name 

Initial 

MAD Type of Censoring Turning Point 

Turning 

Point MAD 

N1 0.0566 Lower Tail Censored 2 point missing 0.0666 

N1 0.0566 Upper Tail Censored 10 points missing 0.0610 

N2 0.0569 Lower Tail Censored 10 points missing 0.0577 

N2 0.0569 Upper Tail Censored 2 points missing 0.0642 

N3 0.0798 Lower Tail Censored 8 points missing 0.0844 

N3 0.0798 Upper Tail Censored 6 points missing 0.0839 

N4 0.0647 Lower Tail Censored 8 points missing 0.0761 

N4 0.0647 Upper Tail Censored 6 points missing 0.0734 

N5 0.0388 Lower Tail Censored 10 point missing 0.0423 

N5 0.0388 Upper Tail Censored 10 points missing 0.0397 

  Average 7.2 points missing  

 

3.5   Summary 

     This chapter introduces the MLE method and the CED method for constructing a distribution 

function from a censored sample. We define three types of censoring. For the MLE method, we 

rewrite Cohen (1965) method for the upper censoring case, and derive the method for the lower 

censoring case. For the CED method, we derive the process and explain with plots on how to 

apply it to each of  the three censoring cases.   
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CHAPTER 4 : COMPARISON OF METHODS 

4.1   Objective 

     In this chapter, we compare the two methods, MLE and CED, experimentally. We will apply 

the two methods simultaneously to 20 groups of samples. These samples are of different sizes, 

from different sources, and from different sample spaces. The experiments are intended to 

produce distribution functions fitted to the samples using each of the two methods. To test the 

goodness-of-fit, the experiments apply the K-S test and calculate the MAD. We want to draw a 

conclusion about which method performs better.  

4.2   Design of Experiments 

     To verify the solution from MLE and to compare MLE with CED, we use four groups of 

samples: Artificial Samples A1, A2, A3, and A4; Random Samples R1, R2, R3, R4 and R5; 

River Stage Samples S1, S2, S3, S4, S5 and S6; National Weather Service Samples N1, N2, N3, 

N4, and N5 (Appendix).  Each sample is used as an input for estimating the parameters of a 

Weibull distribution. Take A2 as an example. We apply each of the two methods six times. First 

time, we use A2 as a complete sample. Second time, we eliminate A2’s largest realization to 

create a censored sample. Sixth time, we eliminate A2’s five largest realizations. Table 4.2 

displays the experimental results for A2.  

     The results of the experiment with 20 groups of samples, Tables 4.1 – 4.20, show in total 208 

paired comparisons between MLE and CED. The column MAD is calculated as the difference 

between the estimated Weibull distribution and the unconditional empirical distribution function 

constructed from the complete sample.  

     In designing the experiment, according to Section 3.2.2, we assume type II censoring for the 

MLE, and thus use    to extend the censored sample from size   to size  .  
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     The random samples R1 to R5 are drawn randomly from five Weibull distribution functions 

with quite different shapes. They correspond to these values of parameters:          ;   

     ;        ;        ; and        . Tables 4.1 – 4.4 show the experimental 

comparisons of MLE and CED using artificial sample group. Tables 4.5 – 4.9 show the 

experimental comparisons of MLE and CED using random sample group. Tables 4.10 – 4.15 

show the results for the river stage sample group. Tables 4.16 – 4.20 show the results for the 

National Weather Service sample group. The summary of Tables 4.1 – 4.20 is shown in Table 

4.21. 

4.3   Experimental Results 

     From all the tables below, we can draw the following conclusions: (i) Both methods have a 

trend that MAD increases with the number of points missing. (ii) The MLE method performs 

better when it is applied to upper tail censored sample than when it is applied to lower tail 

censored sample. (iii) The K-S test statistic orders the estimated distributions consistently with 

MAD. Where MAD is larger, K-S statistic is larger. (iv) MLE method for both tail censored 

sample is too complex. CED method deals with this problem in a simpler manner. (v) In total, 

CED performs better on both MAD and K-S statistics. In addition, the MLE method can only be 

applied to positive realizations as it requires a ln( ) computation of each realization. However, 

CED method is not restricted in that way. 

4.4   Summary 

     This chapter compares the MLE method and the CED method experimentally. It answers the 

question as to which method performs better. It also explains the restrictions of the MLE method. 

 



39 
 

 

 

Table 4.1. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample A1 (complete sample size N=5). 

Number 

of Points Missing 

Type of 

Censoring 

CED Method K-S 

stat 
Significance 

level     MAD 

0 Lower Tail 7.8533 2.3230 0.0474 0.1916 0.2 

1 Lower Tail 7.8131 2.1021 0.0586 0.1624 0.2 

2 Lower Tail 7.7440 3.0897 0.1136 0.2598 0.2 

  Average 0.0732 0.2046  

0 Upper Tail 7.8533 2.3230 0.0474 0.1916 0.2 

1 Upper Tail 8.0918 2.0423 0.0836 0.1695 0.2 

2 Upper Tail 9.3852 1.5436 0.2081 0.2837 0.2 

  Average 0.1130 0.2149  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 7.3099 2.1155 0.1095 0.2095 0.2 

1 Lower Tail 5.8317 1.1012 0.2480 0.3112 0.2 

2 Lower Tail 7.6215 1.5730 0.0972 0.1912 0.2 

  Average 0.1516 0.2373  

0 Upper Tail 7.3099 2.1155 0.1095 0.2095 0.2 

1 Upper Tail 7.3383 1.9932 0.1079 0.2079 0.2 

2 Upper Tail 7.7025 1.7854 0.0803 0.1788 0.2 

  Average 0.0992 0.1987  
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Table 4.2. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample A2 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 7.3886 2.9857 0.0494 0.0950 0.2 

1 Lower Tail 7.4876 2.6157 0.0778 0.0820 0.2 

2 Lower Tail 7.3859 2.9008 0.0572 0.0897 0.2 

3 Lower Tail 7.3854 2.8437 0.0626 0.0860 0.2 

4 Lower Tail 7.4070 2.8467 0.0607 0.0841 0.2 

5 Lower Tail 7.4136 2.8246 0.0624 0.0820 0.2 

  Average 0.0617 0.0865  

0 Upper Tail 7.3886 2.9857 0.0494 0.0950 0.2 

1 Upper Tail 7.4675 2.9203 0.0567 0.0831 0.2 

2 Upper Tail 7.4305 2.9011 0.0539 0.0855 0.2 

3 Upper Tail 7.4341 2.8465 0.0588 0.0815 0.2 

4 Upper Tail 7.3363 2.9552 0.0559 0.0980 0.2 

5 Upper Tail 7.3150 2.9745 0.0558 0.1012 0.2 

  Average 0.0551 0.0907  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 7.5471 2.3572 0.1016 0.1059 0.2 

1 Lower Tail 7.7158 2.3625 0.0898 0.0940 0.2 

2 Lower Tail 7.9892 2.5739 0.1207 0.1275 0.2 

3 Lower Tail 8.1689 2.5747 0.1414 0.1482 0.2 

4 Lower Tail 8.3366 2.4901 0.1569 0.1637 0.2 

5 Lower Tail 8.5421 2.4303 0.1756 0.1824 0.2 

  Average 0.1310 0.1370  

0 Upper Tail 7.5471 2.3572 0.1016 0.1059 0.2 

1 Upper Tail 7.4397 2.4999 0.0934 0.0977 0.2 

2 Upper Tail 7.4210 2.5096 0.0937 0.0980 0.2 

3 Upper Tail 7.4981 2.4213 0.0979 0.1021 0.2 

4 Upper Tail 7.4218 2.4816 0.0967 0.1009 0.2 

5 Upper Tail 7.4121 2.4817 0.0974 0.1016 0.2 

  Average 0.0967 0.1010  
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Table 4.3. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample A3 (complete sample size N=5). 

Number 

of Points Missing 

Type of 

Censoring 

CED Method K-S 

stat 
Significance 

level     MAD 

0 Lower Tail 5.0008 1.1311 0.0600 0.2042 0.2 

1 Lower Tail 5.0937 0.9731 0.0739 0.1674 0.2 

2 Lower Tail 4.8614 1.4108 0.1097 0.2559 0.2 

  Average 0.0812 0.2092  

0 Upper Tail 5.0008 1.1311 0.0600 0.2042 0.2 

1 Upper Tail 5.3158 0.9962 0.0885 0.1820 0.2 

2 Upper Tail 7.6231 0.7107 0.1896 0.2620 0.2 

  Average 0.1127 0.2161  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 4.4946 0.9541 0.1083 0.2083 0.2 

1 Lower Tail 5.8317 1.1012 0.1233 0.2257 0.2 

2 Lower Tail 7.6215 1.5730 0.2771 0.3400 0.2 

  Average 0.1696 0.2580  

0 Upper Tail 4.4946 0.9541 0.1083 0.2083 0.2 

1 Upper Tail 4.2645 0.9572 0.1268 0.2268 0.2 

2 Upper Tail 4.9869 0.8285 0.0799 0.1799 0.2 

  Average 0.1050 0.2050  
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Table 4.4. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample A4 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 4.6794 1.0914 0.0610 0.0948 0.2 

1 Lower Tail 4.7381 1.0277 0.0746 0.0870 0.2 

2 Lower Tail 4.8079 1.0480 0.0670 0.0936 0.2 

3 Lower Tail 4.8585 1.0616 0.0659 0.0997 0.2 

4 Lower Tail 4.8981 1.0681 0.0698 0.1036 0.2 

5 Lower Tail 4.9240 1.0618 0.0699 0.1037 0.2 

  Average 0.0680 0.0971  

0 Upper Tail 4.6794 1.0914 0.0610 0.0948 0.2 

1 Upper Tail 4.7151 1.0951 0.0642 0.0979 0.2 

2 Upper Tail 4.6141 1.1007 0.0661 0.0981 0.2 

3 Upper Tail 4.5297 1.1090 0.0733 0.1058 0.2 

4 Upper Tail 4.4839 1.1094 0.0775 0.1099 0.2 

5 Upper Tail 4.4639 1.1075 0.0793 0.1117 0.2 

  Average 0.0702 0.1030  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 4.6955 1.1125 0.0666 0.1004 0.2 

1 Lower Tail 4.8891 1.0934 0.0748 0.1086 0.2 

2 Lower Tail 5.1369 1.0934 0.0894 0.1232 0.2 

3 Lower Tail 5.4603 1.1358 0.1166 0.1504 0.2 

4 Lower Tail 5.7120 1.0830 0.1197 0.1506 0.2 

5 Lower Tail 6.0473 1.0558 0.1429 0.1590 0.2 

  Average 0.1017 0.1320  

0 Upper Tail 4.6955 1.1125 0.0666 0.1004 0.2 

1 Upper Tail 4.6937 1.1038 0.0646 0.0984 0.2 

2 Upper Tail 4.6680 1.1077 0.0637 0.0975 0.2 

3 Upper Tail 4.7310 1.0836 0.0627 0.0965 0.2 

4 Upper Tail 4.4960 1.1489 0.0760 0.1097 0.2 

5 Upper Tail 4.5139 1.1400 0.0741 0.1079 0.2 

  Average 0.0680 0.1017  
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Table 4.5. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample R1 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 1.2803 0.5876 0.0526 0.0983 0.2 

1 Lower Tail 1.2822 0.5747 0.0574 0.0939 0.2 

2 Lower Tail 1.3129 0.5856 0.0552 0.0942 0.2 

3 Lower Tail 1.3390 0.5922 0.0609 0.0999 0.2 

4 Lower Tail 1.3592 0.5922 0.0632 0.1022 0.2 

5 Lower Tail 1.3718 0.5866 0.0621 0.1011 0.2 

  Average 0.0586 0.0983  

0 Upper Tail 1.2803 0.5876 0.0526 0.0983 0.2 

1 Upper Tail 1.3286 0.5793 0.0542 0.0932 0.2 

2 Upper Tail 1.3049 0.5776 0.0551 0.0924 0.2 

3 Upper Tail 1.3344 0.5669 0.0580 0.0883 0.2 

4 Upper Tail 1.1375 0.6043 0.0733 0.1190 0.2 

5 Upper Tail 1.1187 0.6064 0.0759 0.1217 0.2 

  Average 0.0615 0.1022  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 1.5351 0.5509 0.0874 0.1008 0.2 

1 Lower Tail 1.6940 0.5550 0.1065 0.1160 0.2 

2 Lower Tail 1.8403 0.5421 0.1242 0.1272 0.2 

3 Lower Tail 2.0065 0.5217 0.1423 0.1453 0.2 

4 Lower Tail 2.2591 0.5251 0.1651 0.1680 0.2 

5 Lower Tail 2.5815 0.5463 0.1918 0.1948 0.2 

  Average 0.1362 0.1420  

0 Upper Tail 1.5351 0.5509 0.0874 0.1008 0.2 

1 Upper Tail 1.4483 0.5822 0.0710 0.1069 0.2 

2 Upper Tail 1.4343 0.5839 0.0687 0.1063 0.2 

3 Upper Tail 1.5128 0.5598 0.0832 0.1029 0.2 

4 Upper Tail 1.2022 0.6519 0.0805 0.1263 0.2 

5 Upper Tail 1.3012 0.6185 0.0679 0.1069 0.2 

  Average 0.0765 0.1084  
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Table 4.6. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample R2 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 1.9013 1.7665 0.0831 0.1288 0.2 

1 Lower Tail 1.8983 1.7656 0.0841 0.1292 0.2 

2 Lower Tail 1.9126 1.7869 0.0866 0.1289 0.2 

3 Lower Tail 1.9221 1.7980 0.0897 0.1284 0.2 

4 Lower Tail 1.9276 1.8006 0.0916 0.1277 0.2 

5 Lower Tail 1.9307 1.7689 0.0930 0.1238 0.2 

  Average 0.0880 0.1278  

0 Upper Tail 1.9013 1.7665 0.0831 0.1288 0.2 

1 Upper Tail 1.9153 1.7139 0.0886 0.1207 0.2 

2 Upper Tail 1.9028 1.7010 0.0891 0.1215 0.2 

3 Upper Tail 1.9003 1.6372 0.0962 0.1148 0.2 

4 Upper Tail 1.8721 1.8231 0.0937 0.1394 0.2 

5 Upper Tail 1.8846 1.7775 0.0871 0.1328 0.2 

  Average 0.0896 0.1263  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 1.9518 1.4696 0.1024 0.1109 0.2 

1 Lower Tail 2.0062 1.4268 0.1172 0.1211 0.2 

2 Lower Tail 2.0821 1.4216 0.1366 0.1405 0.2 

3 Lower Tail 2.1902 1.5076 0.1659 0.1698 0.2 

4 Lower Tail 2.2706 1.4633 0.1835 0.1875 0.2 

5 Lower Tail 2.3712 1.4512 0.2056 0.2095 0.2 

  Average 0.1519 0.1566  

0 Upper Tail 1.9518 1.4696 0.1024 0.1109 0.2 

1 Upper Tail 1.9691 1.4266 0.1074 0.1114 0.2 

2 Upper Tail 1.9693 1.4193 0.1075 0.1122 0.2 

3 Upper Tail 1.9910 1.3864 0.1132 0.1172 0.2 

4 Upper Tail 1.8353 1.5877 0.1198 0.1308 0.2 

5 Upper Tail 1.7436 1.7215 0.1378 0.1498 0.2 

  Average 0.1147 0.1221  
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Table 4.7. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample R3 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 3.8627 2.3390 0.0632 0.1076 0.2 

1 Lower Tail 3.8491 2.2789 0.0711 0.1050 0.2 

2 Lower Tail 3.8628 2.2466 0.0736 0.1002 0.2 

3 Lower Tail 3.8650 2.1594 0.0839 0.0951 0.2 

4 Lower Tail 3.8797 2.1575 0.0827 0.0945 0.2 

5 Lower Tail 3.8924 2.1642 0.0807 0.0932 0.2 

  Average 0.0759 0.0993  

0 Upper Tail 3.8627 2.3390 0.0632 0.1076 0.2 

1 Upper Tail 3.8777 2.3276 0.0655 0.1042 0.2 

2 Upper Tail 3.8489 2.3316 0.0652 0.1093 0.2 

3 Upper Tail 3.8439 2.3100 0.0681 0.1084 0.2 

4 Upper Tail 3.8604 2.2624 0.0720 0.1018 0.2 

5 Upper Tail 3.7191 2.4320 0.0915 0.1386 0.2 

  Average 0.0709 0.1117  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 4.0305 2.3143 0.0974 0.1233 0.2 

1 Lower Tail 4.0994 2.2440 0.1083 0.1242 0.2 

2 Lower Tail 4.2069 2.2722 0.1302 0.1412 0.2 

3 Lower Tail 4.2949 2.1868 0.1415 0.1525 0.2 

4 Lower Tail 4.4186 2.2040 0.1639 0.1749 0.2 

5 Lower Tail 4.5407 2.1232 0.1779 0.1889 0.2 

  Average 0.1365 0.1508  

0 Upper Tail 4.0305 2.3143 0.0974 0.1233 0.2 

1 Upper Tail 4.0352 2.2865 0.0973 0.1207 0.2 

2 Upper Tail 4.0508 2.2486 0.0989 0.1184 0.2 

3 Upper Tail 4.0304 2.2723 0.0958 0.1184 0.2 

4 Upper Tail 4.0353 2.2580 0.0962 0.1174 0.2 

5 Upper Tail 3.8373 2.5398 0.0808 0.1274 0.2 

  Average 0.0944 0.1209  
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Table 4.8. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample R4 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 6.4523 3.4669 0.0477 0.0937 0.2 

1 Lower Tail 6.4456 3.4373 0.0505 0.0907 0.2 

2 Lower Tail 6.4699 3.4817 0.0505 0.0965 0.2 

3 Lower Tail 6.4904 3.4774 0.0544 0.0982 0.2 

4 Lower Tail 6.5030 3.4296 0.0582 0.0957 0.2 

5 Lower Tail 6.5055 3.3046 0.0624 0.0859 0.2 

  Average 0.0540 0.0935  

0 Upper Tail 6.4523 3.4669 0.0477 0.0937 0.2 

1 Upper Tail 6.4756 3.4001 0.0541 0.0907 0.2 

2 Upper Tail 6.4561 3.3609 0.0532 0.0857 0.2 

3 Upper Tail 6.4556 3.2431 0.0602 0.0777 0.2 

4 Upper Tail 6.4513 3.3127 0.0568 0.0824 0.2 

5 Upper Tail 6.4949 3.1986 0.0638 0.0761 0.2 

  Average 0.0560 0.0844  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 6.4871 3.3401 0.0580 0.0870 0.2 

1 Lower Tail 6.5734 3.2755 0.0753 0.0900 0.2 

2 Lower Tail 6.6827 3.2750 0.0947 0.0998 0.2 

3 Lower Tail 6.8207 3.4050 0.1172 0.1217 0.2 

4 Lower Tail 6.9279 3.2789 0.1377 0.1406 0.2 

5 Lower Tail 7.0612 3.2219 0.1607 0.1636 0.2 

  Average 0.1073 0.1171  

0 Upper Tail 6.4871 3.3401 0.0580 0.0870 0.2 

1 Upper Tail 6.5067 3.2583 0.0640 0.0822 0.2 

2 Upper Tail 6.5276 3.1945 0.0696 0.0789 0.2 

3 Upper Tail 6.5487 3.1408 0.0747 0.0777 0.2 

4 Upper Tail 6.3237 3.5708 0.0670 0.1127 0.2 

5 Upper Tail 6.3292 3.5477 0.0651 0.1108 0.2 

  Average 0.0664 0.0916  
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Table 4.9. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample R5 (complete sample size N=20). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 7.7031 4.8667 0.0461 0.0840 0.2 

1 Lower Tail 7.6949 4.8034 0.0503 0.0794 0.2 

2 Lower Tail 7.7167 4.8243 0.0489 0.0840 0.2 

3 Lower Tail 7.7316 4.8586 0.0526 0.0882 0.2 

4 Lower Tail 7.7463 4.8781 0.0561 0.0916 0.2 

5 Lower Tail 7.7620 4.7999 0.0589 0.0900 0.2 

  Average 0.0522 0.0862  

0 Upper Tail 7.7031 4.8667 0.0461 0.0840 0.2 

1 Upper Tail 7.7566 4.6080 0.0557 0.0789 0.2 

2 Upper Tail 7.6089 5.0930 0.0541 0.0901 0.2 

3 Upper Tail 7.6089 5.0260 0.0530 0.0887 0.2 

4 Upper Tail 7.5924 5.0259 0.0547 0.0925 0.2 

5 Upper Tail 7.6013 4.9571 0.0550 0.0890 0.2 

  Average 0.0531 0.0872  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 7.6838 4.0654 0.0958 0.0988 0.2 

1 Lower Tail 7.8571 4.5785 0.0768 0.0926 0.2 

2 Lower Tail 7.9511 4.5836 0.0965 0.1075 0.2 

3 Lower Tail 8.0599 4.6683 0.1206 0.1316 0.2 

4 Lower Tail 8.1679 4.7002 0.1432 0.1542 0.2 

5 Lower Tail 8.2712 4.5410 0.1583 0.1693 0.2 

  Average 0.1152 0.1257  

0 Upper Tail 7.6838 4.0654 0.0958 0.0988 0.2 

1 Upper Tail 7.7405 3.8419 0.1031 0.1060 0.2 

2 Upper Tail 7.6321 4.1528 0.0973 0.1002 0.2 

3 Upper Tail 7.6746 4.0227 0.0998 0.1027 0.2 

4 Upper Tail 7.6818 3.9913 0.1008 0.1038 0.2 

5 Upper Tail 7.6467 4.0502 0.1017 0.1047 0.2 

  Average 0.0998 0.1027  
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Table 4.10. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample S1 (complete sample size N=50). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 2.3094 1.1830 0.1190 0.1373 0.2 

2 Lower Tail 2.3006 1.1759 0.1206 0.1348 0.2 

4 Lower Tail 2.3149 1.1894 0.1207 0.1393 0.2 

6 Lower Tail 2.3244 1.1974 0.1235 0.1421 0.2 

8 Lower Tail 2.3328 1.2064 0.1263 0.1449 0.2 

10 Lower Tail 2.3373 1.2316 0.1323 0.1509 0.2 

  Average 0.1237 0.1416  

0 Upper Tail 2.3094 1.1830 0.1190 0.1373 0.2 

2 Upper Tail 2.3287 1.1731 0.1232 0.1370 0.2 

4 Upper Tail 2.3153 1.1653 0.1213 0.1339 0.2 

6 Upper Tail 2.3108 1.1527 0.1215 0.1305 0.2 

8 Upper Tail 2.3185 1.1313 0.1244 0.1268 0.2 

10 Upper Tail 2.3417 1.0984 0.1308 0.1291 0.2 

  Average 0.1233 0.1324  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 1.9829 1.3648 0.1845 0.1914 0.05 

2 Lower Tail 2.0292 1.3284 0.1733 0.1801 0.05 

4 Lower Tail 2.0825 1.2917 0.1613 0.1682 0.1 

6 Lower Tail 2.1509 1.2769 0.1464 0.1533 0.15 

8 Lower Tail 2.2260 1.2581 0.1312 0.1453 0.2 

10 Lower Tail 2.3341 1.3598 0.1584 0.1771 0.05 

  Average 0.1592 0.1692  

0 Upper Tail 1.9829 1.3648 0.1845 0.1914 0.05 

2 Upper Tail 1.9889 1.3458 0.1830 0.1899 0.05 

4 Upper Tail 2.0012 1.3252 0.1801 0.1869 0.05 

6 Upper Tail 2.0163 1.3033 0.1765 0.1834 0.05 

8 Upper Tail 2.0097 1.3077 0.1781 0.1850 0.05 

10 Upper Tail 2.0326 1.2854 0.1728 0.1797 0.05 

  Average 0.1792 0.1861  
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Table 4.11. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample S2 (complete sample size N=46). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 1.8217 1.7357 0.1213 0.1442 0.2 

2 Lower Tail 1.8165 1.7303 0.1231 0.1443 0.2 

4 Lower Tail 1.8216 1.7437 0.1219 0.1449 0.2 

6 Lower Tail 1.8290 1.7478 0.1231 0.1444 0.2 

8 Lower Tail 1.8316 1.7514 0.1240 0.1444 0.2 

10 Lower Tail 1.8315 1.7441 0.1240 0.1439 0.2 

  Average 0.1229 0.1444  

0 Upper Tail 1.8217 1.7357 0.1213 0.1442 0.2 

2 Upper Tail 1.8377 1.6824 0.1284 0.1383 0.2 

4 Upper Tail 1.8291 1.6844 0.1255 0.1394 0.2 

6 Upper Tail 1.8279 1.6559 0.1270 0.1371 0.2 

8 Upper Tail 1.7773 2.0244 0.1405 0.1634 0.15 

10 Upper Tail 1.7840 1.9935 0.1390 0.1619 0.15 

  Average 0.1303 0.1474  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 2.1820 1.2216 0.2237 0.2220 0.01 

2 Lower Tail 2.2468 1.1972 0.2360 0.2343 0.01 

4 Lower Tail 2.3146 1.1619 0.2474 0.2457 <0.01 

6 Lower Tail 2.4033 1.1421 0.2622 0.2604 <0.01 

8 Lower Tail 2.5158 1.1467 0.2813 0.2796 <0.01 

10 Lower Tail 2.6801 1.2525 0.3171 0.3154 <0.01 

  Average 0.2613 0.2596  

0 Upper Tail 2.1820 1.2216 0.2237 0.2220 0.01 

2 Upper Tail 2.2039 1.1889 0.2273 0.2256 0.01 

4 Upper Tail 2.1589 1.2406 0.2193 0.2176 0.01 

6 Upper Tail 2.0624 1.3533 0.1987 0.1970 0.05 

8 Upper Tail 1.6804 2.0869 0.1463 0.1693 0.1 

10 Upper Tail 1.6915 2.0505 0.1451 0.1681 0.1 

  Average 0.1934 0.1999  
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Table 4.12. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample S3 (complete sample size N=44). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 3.2192 1.0889 0.0526 0.0687 0.2 

2 Lower Tail 3.2928 1.0357 0.0592 0.0749 0.2 

4 Lower Tail 3.3200 1.0483 0.0564 0.0721 0.2 

6 Lower Tail 3.3289 1.0634 0.0568 0.0735 0.2 

8 Lower Tail 3.3494 1.0649 0.0590 0.0757 0.2 

10 Lower Tail 3.3619 1.0643 0.0600 0.0767 0.2 

  Average 0.0573 0.0736  

0 Upper Tail 3.2192 1.0889 0.0526 0.0687 0.2 

2 Upper Tail 3.2328 1.0885 0.0532 0.0699 0.2 

4 Upper Tail 3.1942 1.0900 0.0554 0.0680 0.2 

6 Upper Tail 3.1600 1.0932 0.0590 0.0683 0.2 

8 Upper Tail 3.1306 1.0924 0.0627 0.0702 0.2 

10 Upper Tail 3.1102 1.0998 0.0643 0.0718 0.2 

  Average 0.0579 0.0695  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 3.2803 1.1243 0.0653 0.0820 0.2 

2 Lower Tail 3.3878 1.0949 0.0690 0.0857 0.2 

4 Lower Tail 3.5108 1.0620 0.0724 0.0891 0.2 

6 Lower Tail 3.6763 1.0522 0.0865 0.1001 0.2 

8 Lower Tail 3.8734 1.0569 0.1064 0.1158 0.2 

10 Lower Tail 4.1047 1.0871 0.1285 0.1387 0.2 

  Average 0.0880 0.1019  

0 Upper Tail 3.2803 1.1243 0.0653 0.0820 0.2 

2 Upper Tail 3.2995 1.1025 0.0625 0.0792 0.2 

4 Upper Tail 3.2407 1.1377 0.0642 0.0810 0.2 

6 Upper Tail 3.2054 1.1576 0.0648 0.0815 0.2 

8 Upper Tail 3.1809 1.1675 0.0643 0.0810 0.2 

10 Upper Tail 3.1311 1.1885 0.0633 0.0800 0.2 

  Average 0.0641 0.0808  
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Table 4.13. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample S4 (complete sample size N=46). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 2.7175 1.4452 0.0667 0.0863 0.2 

2 Lower Tail 2.7256 1.4128 0.0719 0.0814 0.2 

4 Lower Tail 2.7557 1.4077 0.0700 0.0841 0.2 

6 Lower Tail 2.8009 1.3765 0.0720 0.0837 0.2 

8 Lower Tail 2.8887 1.2950 0.0808 0.0805 0.2 

10 Lower Tail 2.9311 1.2572 0.0853 0.0850 0.2 

  Average 0.0745 0.0835  

0 Upper Tail 2.7175 1.4452 0.0667 0.0863 0.2 

2 Upper Tail 2.7207 1.4484 0.0677 0.0873 0.2 

4 Upper Tail 2.6948 1.4547 0.0697 0.0851 0.2 

6 Upper Tail 2.6714 1.4613 0.0741 0.0857 0.2 

8 Upper Tail 2.6585 1.4634 0.0767 0.0883 0.2 

10 Upper Tail 2.6411 1.6496 0.0916 0.1112 0.2 

  Average 0.0744 0.0907  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 2.9975 1.2626 0.0788 0.0827 0.2 

2 Lower Tail 3.1062 1.2642 0.0780 0.0937 0.2 

4 Lower Tail 3.2124 1.2498 0.0940 0.1004 0.2 

6 Lower Tail 3.3832 1.3164 0.1158 0.1289 0.2 

8 Lower Tail 3.5041 1.2928 0.1331 0.1335 0.2 

10 Lower Tail 3.6387 1.2603 0.1510 0.1491 0.2 

  Average 0.1085 0.1147  

0 Upper Tail 2.9975 1.2626 0.0788 0.0827 0.2 

2 Upper Tail 2.9528 1.3141 0.0716 0.0885 0.2 

4 Upper Tail 2.9156 1.3485 0.0717 0.0913 0.2 

6 Upper Tail 2.8792 1.3824 0.0743 0.0939 0.2 

8 Upper Tail 2.8869 1.3725 0.0732 0.0928 0.2 

10 Upper Tail 2.7944 1.4409 0.0754 0.0950 0.2 

  Average 0.0742 0.0907  
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Table 4.14. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample S5 (complete sample size N=40). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 4.8955 2.2137 0.0614 0.0861 0.2 

2 Lower Tail 4.8827 2.2040 0.0640 0.0867 0.2 

4 Lower Tail 4.9079 2.2188 0.0633 0.0851 0.2 

6 Lower Tail 4.9253 2.2158 0.0655 0.0829 0.2 

8 Lower Tail 4.9407 2.1938 0.0658 0.0793 0.2 

10 Lower Tail 4.9483 2.1443 0.0635 0.0759 0.2 

  Average 0.0639 0.0827  

0 Upper Tail 4.8955 2.2137 0.0614 0.0861 0.2 

2 Upper Tail 4.9224 2.1891 0.0628 0.0809 0.2 

4 Upper Tail 4.8986 2.1839 0.0645 0.0831 0.2 

6 Upper Tail 4.8952 2.1630 0.0673 0.0817 0.2 

8 Upper Tail 4.8447 2.2040 0.0685 0.0909 0.2 

10 Upper Tail 4.8358 2.2007 0.0699 0.0916 0.2 

  Average 0.0657 0.0857  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 5.1347 2.0003 0.0732 0.0867 0.2 

2 Lower Tail 5.2452 1.9565 0.0819 0.0953 0.2 

4 Lower Tail 5.4137 2.0029 0.1058 0.1192 0.2 

6 Lower Tail 5.5671 1.9947 0.1212 0.1346 0.2 

8 Lower Tail 5.7326 1.9749 0.1355 0.1489 0.2 

10 Lower Tail 5.9308 2.0077 0.1580 0.1714 0.15 

  Average 0.1126 0.1260  

0 Upper Tail 5.1347 2.0003 0.0732 0.0867 0.2 

2 Upper Tail 5.0344 2.1563 0.0753 0.0887 0.2 

4 Upper Tail 5.0771 2.0931 0.0750 0.0884 0.2 

6 Upper Tail 5.0970 2.0674 0.0751 0.0885 0.2 

8 Upper Tail 5.0249 2.1319 0.0717 0.0852 0.2 

10 Upper Tail 5.0114 2.1410 0.0708 0.0842 0.2 

  Average 0.0735 0.0870  
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Table 4.15. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample S6 (complete sample size N=34). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 3.6179 2.1340 0.0914 0.1216 0.2 

2 Lower Tail 3.6129 2.0246 0.1037 0.1163 0.2 

4 Lower Tail 3.6350 1.9627 0.1098 0.1224 0.2 

6 Lower Tail 3.6307 1.8117 0.1306 0.1433 0.2 

8 Lower Tail 3.6295 1.7435 0.1408 0.1535 0.2 

10 Lower Tail 3.6220 1.6476 0.1564 0.1691 0.2 

  Average 0.1221 0.1377  

0 Upper Tail 3.6179 2.1340 0.0914 0.1216 0.2 

2 Upper Tail 3.6324 2.1110 0.0921 0.1172 0.2 

4 Upper Tail 3.6068 2.1194 0.0929 0.1221 0.2 

6 Upper Tail 3.6214 2.0755 0.0969 0.1159 0.2 

8 Upper Tail 3.6237 2.0656 0.0979 0.1146 0.2 

10 Upper Tail 3.3469 2.5482 0.1671 0.1973 0.1 

  Average 0.1064 0.1315  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 3.7870 2.1625 0.1253 0.1363 0.2 

2 Lower Tail 3.8861 2.1364 0.1403 0.1514 0.2 

4 Lower Tail 3.9835 2.0584 0.1487 0.1598 0.2 

6 Lower Tail 4.1083 2.0077 0.1656 0.1735 0.2 

8 Lower Tail 4.2582 1.9751 0.1870 0.1915 0.15 

10 Lower Tail 4.4325 1.9376 0.2093 0.2138 0.05 

  Average 0.1627 0.1711  

0 Upper Tail 3.7870 2.1625 0.1253 0.1363 0.2 

2 Upper Tail 3.8203 2.0847 0.1242 0.1353 0.2 

4 Upper Tail 3.8343 2.0541 0.1238 0.1349 0.2 

6 Upper Tail 3.8956 1.9721 0.1268 0.1373 0.2 

8 Upper Tail 3.8612 2.0085 0.1241 0.1351 0.2 

10 Upper Tail 3.4529 2.5404 0.1511 0.1813 0.2 

  Average 0.1292 0.1434  
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Table 4.16. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample N1 (complete sample size N=62). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 5.3255 5.8195 0.0566 0.0747 0.2 

2 Lower Tail 5.3238 5.5101 0.0666 0.0785 0.2 

4 Lower Tail 5.3305 5.4816 0.0671 0.0790 0.2 

6 Lower Tail 5.3273 5.2093 0.0773 0.0892 0.2 

8 Lower Tail 5.3315 5.2310 0.0761 0.0880 0.2 

10 Lower Tail 5.3349 5.2590 0.0748 0.0866 0.2 

  Average 0.0698 0.0826  

0 Upper Tail 5.3255 5.8195 0.0566 0.0747 0.2 

2 Upper Tail 5.3349 5.7895 0.0582 0.0709 0.2 

4 Upper Tail 5.3284 5.7917 0.0572 0.0729 0.2 

6 Upper Tail 5.3263 5.7791 0.0577 0.0732 0.2 

8 Upper Tail 5.3209 5.7872 0.0579 0.0751 0.2 

10 Upper Tail 5.3150 5.7018 0.0610 0.0742 0.2 

  Average 0.0581 0.0735  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 5.4147 5.3951 0.0701 0.0771 0.2 

2 Lower Tail 5.4402 5.3029 0.0792 0.0799 0.2 

4 Lower Tail 5.4706 5.2423 0.0897 0.0891 0.2 

6 Lower Tail 5.4996 5.1282 0.0990 0.0984 0.2 

8 Lower Tail 5.5342 5.0519 0.1101 0.1094 0.2 

10 Lower Tail 5.5737 5.0140 0.1227 0.1221 0.2 

  Average 0.0951 0.0960  

0 Upper Tail 5.4147 5.3951 0.0701 0.0771 0.2 

2 Upper Tail 5.4193 5.3278 0.0717 0.0776 0.2 

4 Upper Tail 5.4220 5.2907 0.0726 0.0787 0.2 

6 Upper Tail 5.4036 5.4492 0.0661 0.0764 0.2 

8 Upper Tail 5.3466 5.9221 0.0672 0.0799 0.2 

10 Upper Tail 5.3646 5.7754 0.0665 0.0792 0.2 

  Average 0.0690 0.0782  
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Table 4.17. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample N2 (complete sample size N=62). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 5.2844 6.7304 0.0569 0.0722 0.2 

2 Lower Tail 5.2770 6.6795 0.0608 0.0723 0.2 

4 Lower Tail 5.2820 6.7082 0.0583 0.0721 0.2 

6 Lower Tail 5.2837 6.7139 0.0577 0.0719 0.2 

8 Lower Tail 5.2850 6.7107 0.0575 0.0716 0.2 

10 Lower Tail 5.2871 6.7498 0.0577 0.0722 0.2 

  Average 0.0582 0.0721  

0 Upper Tail 5.2844 6.7304 0.0569 0.0722 0.2 

2 Upper Tail 5.2975 6.6347 0.0642 0.0677 0.2 

4 Upper Tail 5.2927 6.6056 0.0626 0.0679 0.2 

6 Upper Tail 5.2907 6.5603 0.0625 0.0671 0.2 

8 Upper Tail 5.2824 6.6384 0.0610 0.0704 0.2 

10 Upper Tail 5.2828 6.6420 0.0608 0.0704 0.2 

  Average 0.0613 0.0693  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 5.4037 5.3607 0.1236 0.1212 0.2 

2 Lower Tail 5.4385 5.3807 0.1360 0.1336 0.2 

4 Lower Tail 5.4767 5.4306 0.1495 0.1471 0.1 

6 Lower Tail 5.5089 5.3827 0.1613 0.1589 0.05 

8 Lower Tail 5.5460 5.3791 0.1746 0.1722 0.05 

10 Lower Tail 5.5845 5.3692 0.1883 0.1859 0.01 

  Average 0.1556 0.1532  

0 Upper Tail 5.4037 5.3607 0.1236 0.1212 0.2 

2 Upper Tail 5.3990 5.3993 0.1215 0.1191 0.2 

4 Upper Tail 5.3571 5.8617 0.1003 0.0979 0.2 

6 Upper Tail 5.3459 5.9719 0.0944 0.0920 0.2 

8 Upper Tail 5.3263 6.1635 0.0838 0.0814 0.2 

10 Upper Tail 5.3206 6.2174 0.0806 0.0782 0.2 

  Average 0.1007 0.0983  
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Table 4.18. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample N3 (complete sample size N=62). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 5.4705 6.2108 0.0798 0.0962 0.2 

2 Lower Tail 5.4661 6.1685 0.0818 0.0940 0.2 

4 Lower Tail 5.4715 6.2067 0.0799 0.0962 0.2 

6 Lower Tail 5.4759 6.2591 0.0827 0.0995 0.2 

8 Lower Tail 5.4787 6.2849 0.0844 0.1012 0.2 

10 Lower Tail 5.4815 6.2955 0.0855 0.1023 0.2 

  Average 0.0824 0.0982  

0 Upper Tail 5.4705 6.2108 0.0798 0.0962 0.2 

2 Upper Tail 5.4804 6.1527 0.0845 0.0958 0.2 

4 Upper Tail 5.4753 6.1270 0.0833 0.0936 0.2 

6 Upper Tail 5.4732 6.0778 0.0839 0.0909 0.2 

8 Upper Tail 5.4879 5.8405 0.0951 0.0947 0.2 

10 Upper Tail 5.5010 5.6458 0.1044 0.1041 0.2 

  Average 0.0885 0.0959  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 5.3953 6.3163 0.1114 0.1251 0.2 

2 Lower Tail 5.4165 6.1697 0.1024 0.1141 0.2 

4 Lower Tail 5.4424 6.0772 0.0918 0.1024 0.2 

6 Lower Tail 5.4729 6.0487 0.0845 0.0899 0.2 

8 Lower Tail 5.5151 6.3298 0.0943 0.1111 0.2 

10 Lower Tail 5.5554 6.5938 0.1137 0.1305 0.2 

  Average 0.0997 0.1122  

0 Upper Tail 5.3953 6.3163 0.1114 0.1251 0.2 

2 Upper Tail 5.4068 6.1215 0.1065 0.1173 0.2 

4 Upper Tail 5.4011 6.1842 0.1089 0.1206 0.2 

6 Upper Tail 5.4091 6.0906 0.1055 0.1159 0.2 

8 Upper Tail 5.4175 6.0152 0.1021 0.1115 0.2 

10 Upper Tail 5.4350 5.8748 0.0953 0.1046 0.2 

  Average 0.1050 0.1158  
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Table 4.19. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample N4 (complete sample size N=62). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 5.2567 6.3276 0.0647 0.0874 0.2 

2 Lower Tail 5.2563 6.2143 0.0694 0.0844 0.2 

4 Lower Tail 5.2613 6.2253 0.0679 0.0837 0.2 

6 Lower Tail 5.2672 6.1897 0.0683 0.0814 0.2 

8 Lower Tail 5.2772 5.9666 0.0761 0.0774 0.2 

10 Lower Tail 5.2844 5.8582 0.0796 0.0809 0.2 

  Average 0.0710 0.0825  

0 Upper Tail 5.2567 6.3276 0.0647 0.0874 0.2 

2 Upper Tail 5.2690 6.2586 0.0670 0.0830 0.2 

4 Upper Tail 5.2795 6.1518 0.0676 0.0778 0.2 

6 Upper Tail 5.2818 6.3113 0.0734 0.0827 0.2 

8 Upper Tail 5.2769 6.1067 0.0700 0.0770 0.2 

10 Upper Tail 5.2492 6.2862 0.0677 0.0878 0.2 

  Average 0.0684 0.0826  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 5.4088 5.4381 0.0846 0.0939 0.2 

2 Lower Tail 5.4422 5.4469 0.0949 0.1043 0.2 

4 Lower Tail 5.4784 5.4778 0.1068 0.1162 0.2 

6 Lower Tail 5.5119 5.4521 0.1153 0.1247 0.2 

8 Lower Tail 5.5482 5.4428 0.1250 0.1344 0.2 

10 Lower Tail 5.5797 5.3073 0.1276 0.1369 0.15 

  Average 0.1090 0.1184  

0 Upper Tail 5.4088 5.4381 0.0846 0.0939 0.2 

2 Upper Tail 5.4112 5.3982 0.0837 0.0931 0.2 

4 Upper Tail 5.3928 5.5822 0.0852 0.0946 0.2 

6 Upper Tail 5.3584 5.8877 0.0855 0.0949 0.2 

8 Upper Tail 5.3840 5.6635 0.0855 0.0949 0.2 

10 Upper Tail 5.3384 6.0253 0.0837 0.0931 0.2 

  Average 0.0847 0.0941  
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Table 4.20. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method applied to censored sample N5 (complete sample size N=62). 

Number 

of Points Missing 

Type of 

Censoring 

CED method K-S 

stat 

Significance 

level     MAD 

0 Lower Tail 5.3795 5.5032 0.0388 0.0576 0.2 

2 Lower Tail 5.4008 5.2781 0.0440 0.0559 0.2 

4 Lower Tail 5.4107 5.2912 0.0431 0.0550 0.2 

6 Lower Tail 5.4106 5.3261 0.0421 0.0540 0.2 

8 Lower Tail 5.4171 5.3142 0.0421 0.0540 0.2 

10 Lower Tail 5.4181 5.3045 0.0423 0.0542 0.2 

  Average 0.0421 0.0551  

0 Upper Tail 5.3795 5.5032 0.0388 0.0576 0.2 

2 Upper Tail 5.3922 5.4873 0.0399 0.0584 0.2 

4 Upper Tail 5.3815 5.5021 0.0388 0.0573 0.2 

6 Upper Tail 5.3754 5.5090 0.0398 0.0590 0.2 

8 Upper Tail 5.3733 5.5048 0.0404 0.0596 0.2 

10 Upper Tail 5.3917 5.4453 0.0397 0.0563 0.2 

  Average 0.0395 0.0580  

Number 

of Points Missing 

Type of 

Censoring 

MLE method K-S 
stat 

Significance 
level     MAD 

0 Lower Tail 5.4073 5.7943 0.0566 0.0751 0.2 

2 Lower Tail 5.4315 5.6924 0.0560 0.0744 0.2 

4 Lower Tail 5.4583 5.5962 0.0558 0.0743 0.2 

6 Lower Tail 5.4892 5.5311 0.0575 0.0762 0.2 

8 Lower Tail 5.5306 5.6429 0.0693 0.0926 0.2 

10 Lower Tail 5.5662 5.6048 0.0740 0.1052 0.2 

  Average 0.0615 0.0830  

0 Upper Tail 5.4073 5.7943 0.0566 0.0751 0.2 

2 Upper Tail 5.4090 5.7453 0.0547 0.0732 0.2 

4 Upper Tail 5.4095 5.7294 0.0541 0.0726 0.2 

6 Upper Tail 5.4190 5.6427 0.0517 0.0701 0.2 

8 Upper Tail 5.4259 5.5877 0.0502 0.0687 0.2 

10 Upper Tail 5.4568 5.3704 0.0448 0.0633 0.2 

  Average 0.0520 0.0705  
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Table 4.21. Conditional Empirical Distribution (CED) method and Maximum Likelihood 

Estimation (MLE) method comparison summary. 

Type  

of 

 Censoring 

Number 

of 

Samples 

Method 

Number 

of times 

better 

Average 

MAD 

Average 

K-S stat 

None 20 

CED 20 0.0660 0.1065 

MLE 0 0.1012 0.1219 

Difference 20 -0.0352 -0.0154 

Lower Tail 94 

CED 93 0.0768 0.1018 

MLE 1 0.1351 0.1473 

Difference 92 -0.0583 -0.0455 

Upper Tail 94 

CED 81 0.0781 0.1023 

MLE 13 0.0961 0.1142 

Difference 68 -0.0181 -0.0119 

Sum of Lower and Upper 

Tail 
188 

CED 174 0.0774 0.1020 

MLE 14 0.1156 0.1307 

Difference 160 -0.0382 -0.0287 
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CHAPTER 5 : THE PARETO DISTRIBUTION 

5.1   Introduction 

      Pareto is a distribution with two parameters from the catalog of distributions to be used in 

probabilistic forecasting. The reason we are curious about it is that when we want to fit the 

Pareto distribution to a sample using distribution fitter software, the optimization process 

sometimes iterates much beyond a satisfactory solution point. The scale parameter can increase 

from the initial value of 10 to the final optimized value of 7,000, with the MAD improvement 

less than 0.01. This optimization process is described in Section 2.4. 

     Figure 5.1 shows a 3 -dimensional graph of the MAD surface for the Pareto distributions. It 

shows the surface of MAD with scale parameter varying from 3,000 to 3,600, and shape 

parameter varying from 500 to 800. There is a valley on the surface which represents the 

direction MAD descends fastest. However, the slope of the valley is almost 0 in the region of the 

figure, which means the decrease of MAD is subtle as the values of the parameters increase. In 

this chapter, we discuss more specific properties of this distribution, and give a feasible 

explanation for the long optimization process of parameters. 

5.2   Pareto Distribution Function 

     Pareto distribution is abbreviated as PA(     ). We optimize the scale parameter    and the 

shape parameter   to achieve a smaller MAD. The shift parameter   is specified as one input. 

Parameters should satisfy the following constraints:                . Below we 

recall from Section 2.5.2 the equations we will use in this chapter. 

 



61 
 

Distribution function 

 ( )    (
 

     
)

 

                                             (5.1) 

Moments 

 ( )  
 

   
                                                                   (5.2) 

   ( )  
   

(   )(   ) 
                                                                 (5.3) 

 

 

Figure 5.1. The MAD surface for the Pareto distributions with the scale parameter in the interval 

(3000,3600) and the shape parameter in the interval (500,800).  
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5.3   Optimization with Pareto Distribution 

     Section 2.4 describes our method of estimating the parameters of a distribution function. Two 

stages produce the initial estimates using the Least Squares Method, and the optimized estimates 

using the Uniform Distance Method. When optimizing the parameters of Pareto distribution, we 

observe a long search by the optimization algorithm, without too much improvement in the 

goodness-of-fit. In this section, we use samples A3 and A4 to illustrate this problem. Figures 5.2 

and 5.3 show the Pareto distribution functions fitted to samples A3 and A4. We list the Least 

Squares estimates and the Uniform Distance estimates of parameters in both of the figures. 

Comparing the two estimates, we observe a huge increase between the input and the output of 

the optimization process.  

     To know what happens in the process of the parameters increasing from a scale of ten to a 

scale of thousand, we conduct the following experiments based on samples A3 and A4.  

     For sample A3, we choose its Pareto scale parameter in a set bounded by 1 and 7791, with 

step size 10. For each value of the scale parameter, we search for the best shape parameter which 

gives the minimum MAD. The searching for the shape parameter also ranges from 1 to 7791, 

with a smaller step size 1. The output of the experiment is 
      

  
       pairs of Pareto 

distribution function’s parameters and their corresponding MAD. Figure 5.4 shows the 2D plot 

of the MAD versus scale parameter, and Figure 5.5 shows the MAD versus shape parameter.  

We perform a similar experiment on sample A4, with Pareto scale parameter ranging from 1 to 

3396 in step size 5, and Pareto shape parameter ranging from 1 to 3396 in step size 1. Figure 5.6 

and Figure 5.7 are the 2D plots of the MAD versus a parameter. 
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Figure 5.2. The Pareto distribution function fitted to Sample A3, with the initial fit from Least 

Squares Method and the optimized fit from the Uniform Distance Method. The left set of 

parameters is the result from Least Squares Method. The right set of parameters is the result from 

the Uniform Distance Method. 
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Figure 5.3. The Pareto distribution function fitted to Sample A4, with the initial fit from Least 

Squares Method and the optimized fit from the Uniform Distance Method. The left set of 

parameters is the result from Least Squares Method. The right set of parameters is the result from 

the Uniform Distance Method. 
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Figure 5.4. The MAD from the best-fit Pareto distribution’s shape parameter versus the scale 

parameter, based on sample A3. 
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Figure 5.5. The MAD from the best-fit Pareto distribution’s scale parameter versus the shape 

parameter, based on sample A3. 
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Figure 5.6. The MAD from the best-fit Pareto distribution’s shape parameter versus the scale 

parameter, based on sample A4. 
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Figure 5.7. The MAD from the best-fit Pareto distribution’s scale parameter versus the shape 

parameter, based on sample A4. 
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     From Figures 5.4 – 5.7 we draw a conclusion that though the MAD keeps decreasing as   and 

  increase, the major improvement in MAD occurs before   reaches 100. This means the 

continued search beyond       should be cut off so that we can save time without much 

sacrifice of the goodness-of-fit. We explain the cause from an aspect of moments in next section. 

5.4   Insight from the Moments 

     The mean and the variance of a Pareto variate are given by expressions (5.2) and (5.3). If we 

use   to denote the mean, and    to denote the variance, then 

   ( )  
 

   
                   

and 

       ( )  
   

(   )(   ) 
 

 

   
 (   )                  

Thus 

(
 

   
)

 

 
 

   
                                                      (5.4) 

If we denote the coefficient of variation by  , then 

   (
 

   
)

 

 
 

   
                                                    (5.5) 

If    , we can apply the method of moments to estimate the parameters: 

  
   

    
                                                         (5.6) 

     (   )(   )                                                 (5.7) 
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     According to (5.5), when             ; when              ; when         

      . As   increases,   decreases. However, no matter how large   is,    remains greater than 

1. Sample A3’s mean is       , variance is         , and its coefficient of variation is 

        . When we are given an initial estimate of   (   ) from Least Squares Method, 

the optimization process will continue increasing   to achieve smaller  , though    will never go 

below 1. The cause of the continued searching is that the algorithm wants to reach a “ ” which 

can never be reached. 

     When      , the mean and variance are infinite. According to the definition, the 

coefficient of variation can not be calculated. When      , the variance is infinite. Thus the 

coefficient of variation is infinite. When    , both the mean and variance are defined. Thus 

the coefficient of variation can be calculated and is greater than 1. Thus we postulate that Pareto 

distribution is only suitable for those samples whose coefficient of variation is larger than 1. To 

demonstrate this postulate, we do the following experiments. 

     We replace sample A3’s largest realization by a number ranging from 8.5 to 25, increasing it 

by 0.1 each time. This change increases the sample coefficient of variation from 0.68 to 1.99. 

Simultaneously, the least squares estimates of   increases from 0 to 5. To get a wider range of  , 

we also replace the largest realization with some larger value, 200 and 2000. Figures 5.8, 5.9 and 

5.10 show fits for three of those samples. According to our postulate, the optimization process 

should work as long as    . From this test, we do not get this turning point at    . However, 

we demonstrate the existence of this point when the largest realization is increased to 22 and 

      . When       , the optimization process never searches too far away. When    

    ,  the  optimization  searches  until  the  value  of    is in thousands, with only one exception       
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Figure 5.8. Pareto distribution fitted to sample {                    }. The sample coefficient of 

variation is         . The coefficient of variation under the Pareto distribution with   

         is         .  
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Figure 5.9. Pareto distribution fitted to sample {                    }. The sample coefficient of 

variation is         . The coefficient of variation under the Pareto distribution with   

      does not exist.  
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Figure 5.10. Pareto distribution fitted to sample {                     }. The sample coefficient 

of variation is         . The coefficient of variation under the Pareto distribution with 

        is         .  
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when the largest realization is replaced by 8.8. This difference between theoretic value and 

experimental value is probably due to the algorithm of the optimization and the variability in the 

sample estimate of  . From a theoretic perspective, our postulate that Pareto distribution is only 

suitable for sample whose     works. 

 5.5   Conclusion 

     This chapter introduces the specifications of the Pareto distribution. It talks about the 

problems we have encountered with this distribution during the optimization of its parameters, 

and gives a possible explanation of the cause of the problem. At last, we design an experiment to 

demonstrate our postulate. 
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CHAPTER 6 : FALLACIES RELATED TO  

CONTINUOUS DISTRIBUTIONS 

6.1   Chi- Square Test 

     Chi-square test aims at testing the null hypothesis that a given sample of realizations is drawn 

from, or “fits,” a specified probability distribution of a discrete variate   representing   classes 

or categories (Milton & Arnold, 2004).  Let (          ) be a multinomial random vector with 

parameters n,             For large  , the random variable  

   ∑
(      )

 

   

 
                                                          (6.1) 

follows approximately chi-square distribution with     degrees of freedom.  

     When applying to real samples, the chi-square statistic can be expressed as 

   ∑
 (                  ) (                  )  

                  

 
                            (6.2) 

If this statistic is large enough, we reject the null hypothesis that a given sample is drawn from a 

specified distribution. 

6.2   Kolmogorov-Smirnov Test 

     Kolmogorov-Smirnov test, in short, K-S test, is a goodness of fit test for continuous variates 

(Lindgren, 1976). If the K-S statistic is large enough, the null hypothesis that variate   has the 

distribution function   is rejected. We are given a sample of size   with sample space (     ). 

The test employs an empirical distribution function constructed as 
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 ̌( )  
 

 
       for      ( )     (   )                                            (6.3) 

where  ( )    , and  (   )      

     The Kolmogorov-Smirnov statistic is thus defined as 

         ̌( )   ( ) .                                    (6.4) 

As  ̌( ) is a stepwise function and  ( ) is a continuous function,    can be calculated as 

      {        |
   

 
  ( ( ))|          |

 

 
  ( ( ))|}                         (6.5) 

     The hypothesized function   is accepted if    is smaller than a constant c.   

6.3   Comparisons of the Tests 

     The K-S test has an advantage over the chi-square test for its stability: for the same input 

sample and the hypothesized distribution function, the result of K-S test is always the same (e.g., 

when each of several statisticians applies the test). For the chi-square test, the sample space is 

divided into several class intervals. However, different starting points and length of class 

intervals may lead to significantly different chi-square test results (Benjamin and Cornell, 1970). 

The chi-square test also fails to recognize the order of realizations within each class interval, 

while the K-S test really cares about the order (Lindgren, 1976). We want to conclude in this 

chapter that K-S test is suitable for continuous variate, while the chi-square test is suitable only 

for discrete variate. 

     To illustrate the above conclusion, I created the following example.  Suppose we are applying 

the chi-square test to a continuous variate  ; we first need to partition the sample space of   into  
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class intervals. We are given a sample of   as 

{                                            }  

If we partition this sample space in two different manners, the histograms of the variate   could 

have two different shapes as shown in Figure 6.1. The upper histogram has an interval width 10, 

and the lower histogram has an interval width 5. They both start from 0. If the upper histogram is 

used, the probability of    falling within the interval (      is  
 

     
    .  The three class 

intervals are (0,10], (10,20], and (20,30].  If the lower histogram is used, the probability of   

falling within the interval (5, 10] is 0, given the class interval width 5. This information is not 

included in the upper histogram, which even misleads us to believe the probability of   falling 

within (5, 10] is not 0. We call it information distortion generated from the rough discretization 

of continuous sample space. However, the problem is not solved if we narrow the class interval. 

Also, the intervals could be translated to generate different histograms. Thus chi-square test may 

result in conflicting conclusions with the same input because of the different discretizations of 

the continuous sample space.   

     To explain more clearly, we input the above sample of   to the distribution fitter, outputting 

the hypothesized kappa distribution function  

 ( )  [  (
   

 
)

  

]
    

                                                (6.6) 

with                 and    .  
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Figure 6.1. Two histograms of variate   constructed from the same sample of size 15, with the 

class intervals of width 10 (upper) and 5 (lower). 
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     Figure 6.2 shows two density histograms and the kappa density function corresponding to the 

above distribution function. The density of each class interval is the frequency of that interval 

divided by the product of the sample size and the interval width. The two plots of Figure 6.2 

have the same density functions, but different density histograms. The upper histogram is 

misleading about the density of   at intervals (      (         and (      . We can draw a 

conclusion from this figure that it is not proper to apply chi-square test to continuous 

distribution. 

     According to equation (6.2), I list the expected frequency and observed frequency in Table 

6.1. From it, we can tell that the left class intervals and the right class intervals generate quite 

different chi-square statistics. According to the table of cumulative chi-square distribution,     

from the right class intervals has a p value smaller than 0.005, while     from left class intervals 

has a p value 0.1. The K-S test statistic is        , which means for the sample of size 15, we 

do not reject the model at a significant level 0.2. Figure 6.3 shows the estimated kappa 

distribution function and the K-S test statistic. 

 

Table 6.1. Comparison of the chi-square test results with two different discretizations, and the 

comparison of the chi-square test with the K-S test. 

Class 

Interval 

Expected 

frequency 

Observed 

frequency 
Density 

Class 

Interval 

Expected 

frequency 

Observed 

frequency 
Density 

(0,10] 0.45 0.4 0.040 (0,5] 0.23 0.4 0.080 

(10,20] 0.31 0.27 0.027 (5,10] 0.22 0 0 

(20,30] 0.14 0.33 0.033 (10,15] 0.19 0.27 0.54 

    (15,20] 0.12 0 0 

    (20,25] 0.09 0.33 0.066 

    (25,30] 0.05 0 0 
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Figure 6.2. Two density histograms of variate   constructed from sample of size 15, and the 

kappa density function. 



81 
 

 

 

Figure 6.3. Applying K-S test to the estimated kappa distribution function. 
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     The above experiment means this: if we conduct the chi-square test and discretize the sample 

space of   using the right class intervals in Table 6.1, we reject the hypothesized distribution 

function   at the significance level of 0.05 as the p value is so small. If we discretize the sample 

space of   using the left class intervals in Table 6.1, we accept the hypothesized function   at 

the significance level of 0.05. This is a contradiction within the chi-square test. There is also a 

contradiction between the chi-square test and the K-S test. This experiment supports our 

conclusion. 

5.4   Conclusion 

     This chapter compares two goodness-of-fit tests: the chi-square test and the Kolmogorov-

Smirnov test. We demonstrate that the chi-square test should only be applied to a discrete 

distribution, or it may generate conflicting results when applied to the continuous distribution. 
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APPENDIX : DATA SAMPLES 

     We use 20 samples which are of four categories in this thesis. They are 4 artificial samples, 5 

random samples, 6 river stage samples, and 5 National Weather Service samples.  

A.1   Artificial Samples 

     Artificial samples were created by me mainly for the purpose of comparing the behaviors of 

the least square estimation method and the uniform distance estimation method. These artificial 

samples come from bounded sample space(    ). Samples A1 and A3 are of size 5. Samples A2 

and A4 are of size 20. 

 

Table A.1. Artificial samples A1 – A4. 

A1 A2 A3 A4 

3.7 3.2 2.2 2.2 

6.2 3.9 3.3 2.3 

9.1 5.9 6.2 3 

10.5 6.5 7.7 3.2 

12.9 6.6 13.5 3.2 

 
6.8 

 
3.3 

 
7.2 

 
3.8 

 
7.8 

 
4.1 

 
7.9 

 
4.2 

 
8.2 

 
4.9 

 
8.4 

 
6.2 

 
8.8 

 
6.8 

 
9.2 

 
7.2 

 
9.5 

 
7.5 

 
10.4 

 
7.7 

 
10.9 

 
8.4 

 
11.7 

 
10.4 

 
12 

 
11.3 

 
13 

 
13.5 

 
16.1 

 
17.1 
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A.2   Random Samples 

     Random samples were generated randomly from five Weibull distribution functions of quite 

different shapes. The lower bound of the sample space is 0. The sample size is 20. The Weibull 

distribution functions are specified by scale parameter and shape parameter:             

                                      .  For example, sample R1 is 

randomly drawn from the Weibull distribution function with          . And R5 is drawn 

randomly from the Weibull distribution function with        . 

 

Table A.2. Random samples R1 – R5. 

R1 R2 R3 R4 R5 

0.0041 0.2363 1.3299 2.4327 1.5198 

0.0377 0.2662 1.3685 2.7857 4.4243 

0.0507 0.3679 1.8907 3.2523 4.9683 

0.0532 0.6563 1.8994 3.9967 5.5580 

0.0952 0.6980 2.2077 4.0476 5.9556 

0.2166 0.7942 2.2600 4.2287 6.0343 

0.2286 0.9721 2.3139 4.6919 6.1255 

0.2349 1.4065 2.4765 5.3593 6.3134 

0.4741 1.4349 2.8007 5.4015 6.9399 

0.7236 1.5273 3.2848 5.8610 7.0722 

0.9838 1.6295 3.4657 6.0626 7.1214 

1.1689 1.7237 3.5989 6.2545 7.4106 

1.3494 1.8431 3.6202 6.3861 7.5359 

1.5990 1.8547 4.3005 6.7732 8.0675 

2.1579 1.9938 4.3955 6.8212 8.1082 

2.2578 2.4327 5.1380 7.0865 8.4912 

5.2286 3.2955 5.4351 8.1170 8.8028 

5.7036 3.5405 5.9169 8.4314 9.0083 

8.3783 4.0487 6.3086 8.8126 10.1863 

23.2001 4.5556 7.0824 9.3795 10.2475 
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A.3   River Stage Samples 

     River stage samples are composed of the river stage [ft] daily records at Eldred, PA, from 

year 1992 to year 1996. Sample S1 records the river stage at Eldred in the period September 1 – 

10 from 1992 to 1996; sample S2 is the record in the period September 11 – 20 from 1992 to 

1996; sample S3 is the record in the period September 21 – 30; sample S4 is the record in the 

period November 1 – 10; sample S5 is the record in the period November 11 – 20; sample S6 is 

the record in the period November 21 – 30. Theoretically, each sample should be of size 10 

(days/year)   5 (years) = 50. However, as some records are missing, the sample size is smaller 

than or equal to 50. As September represents a warm season, the water flow is low. Thus the 

lower bound of sample space of S1, S2 and S3 is 1.25 [ft].  As November represents a cool 

season, the water flow is high. Thus the lower bound of sample space of S4, S5 and S6 is 3.45 

[ft].  

 

Table A.3. River stage samples S1 – S6. 

S1 S2 S3 S4 S5 S6 

1.46 1.52 1.53 3.57 4.4 4.3 

1.46 1.57 1.56 3.64 4.5 4.9 

1.47 1.58 1.56 3.8 4.7 5 

1.48 1.58 1.58 3.8 4.9 5.1 

1.49 1.6 1.59 3.9 5.4 5.1 

1.51 1.64 1.64 4.1 5.7 5.3 

1.54 1.65 1.7 4.4 5.8 5.3 

1.56 1.65 1.84 4.42 6.1 5.34 

1.58 1.78 1.87 4.5 6.1 5.5 

1.65 1.96 2.2 4.55 6.3 5.54 

1.8 2.2 2.3 4.57 6.58 5.68 

1.81 2.3 2.4 4.6 6.6 5.7 

1.85 2.4 2.5 4.7 6.6 5.7 

1.85 2.4 2.5 4.7 6.68 5.9 
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1.87 2.5 2.5 4.71 6.7 5.9 

1.89 2.6 2.6 4.72 6.71 6.05 

1.93 2.65 2.6 4.72 6.8 6.18 

1.97 2.7 2.7 5.21 7.16 6.3 

2.2 2.7 2.8 5.3 7.2 6.32 

2.9 2.7 3.5 5.4 7.2 6.62 

2.93 2.8 3.6 5.4 7.5 6.7 

3.1 2.8 3.62 5.6 7.8 6.76 

3.23 2.8 3.8 5.7 7.97 7 

3.3 2.8 3.9 5.9 8 7.3 

3.3 2.9 4.06 5.9 8.3 8.1 

3.4 2.9 4.1 6.1 8.44 8.39 

3.4 3 4.32 6.1 8.6 8.5 

3.4 3 4.7 6.2 8.7 8.9 

3.4 3 4.77 6.2 9.3 9.03 

3.4 3 5 6.3 9.37 9.1 

3.4 3 5.09 6.5 9.58 9.5 

3.4 3 5.29 6.5 9.8 9.6 

3.5 3 5.4 6.7 10.4 9.9 

3.6 3.04 5.5 6.9 10.5 10.2 

3.6 3.1 5.94 7 10.7 
 

3.61 3.2 6.2 7.1 11 
 

3.7 3.3 6.6 7.5 11.3 
 

3.8 3.3 7 7.8 11.4 
 

3.8 5.01 7.1 8.2 13.4 
 

3.9 5.23 8.32 8.2 15.3 
 

4 5.61 9.31 8.2 
  

4.1 6.54 10.8 9.2 
  

4.3 6.83 12.5 9.9 
  

4.5 8.23 12.7 10.7 
  

4.8 8.53 
 

12.1 
  

4.8 9.24 
 

15.3 
  

5 
     

5.3 
     

5.8 
     

6.5 
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A.4   National Weather Service Samples 

     National Weather Service samples are the records of heights of the 500 hPa isobar.  National 

Weather Service divides the globe into              grid points evenly. Imagine our 

globe is a two dimensional field. The longitude is divided into 144 segments, and each segment 

is                wide. The latitude is divided into 72 segments, and each segment is 

      (    )       high. The variate is the height of the 500 hPa isobar obtained at a grid 

point [ft] through analysis using a numerical weather prediction model and representing an 

estimate of the “true” value. Each sample of the variate contains 62 realizations measured daily 

from July 1 to August 31 in 2009. We have 10512 samples in total for each of the 10512 grid 

points.  In addition, each sample is standardized. Samples N1 – N5 are five of them with the 

lower bound -5. 

Table A.4.  National Weather Service samples N1 – N5. 

N1 N2 N3 N4 N5 

0.5156 2.0846 -1.7737 -1.4936 -0.3025 

1.0259 0.2964 -0.6574 -0.9403 -0.1915 

1.4418 1.0749 -0.3784 0.512 0.3634 

1.9049 1.3912 -0.6749 1.2036 0.3634 

1.4985 0.4667 -1.9307 -0.2487 0.2524 

0.8653 0.2235 -2.0528 -0.6637 0.0304 

0.2131 -0.1171 -2.0005 -0.8712 -0.9683 

0.3832 -0.3118 -2.0353 -1.217 -0.7464 

0.232 -0.5794 -1.8609 -0.8712 -1.0793 

-0.8738 -0.6645 -1.0237 -0.0413 1.1402 

-0.6564 -0.2509 -0.6923 -0.3871 -0.3025 

-0.2216 0.5154 -0.6574 -0.5254 0.1414 

-0.9683 1.7805 -0.8667 -0.0413 1.1402 

0.0997 2.3886 -1.0586 -1.0786 1.2512 

0.0808 2.4616 -1.3551 0.3045 1.917 

0.9503 1.4885 -2.0353 2.0335 1.4731 

0.6006 0.114 -0.797 1.9643 0.8073 

-0.0515 0.2235 0.0751 1.5494 0.5853 

0.1375 0.4059 0.7205 0.9269 1.2512 
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0.9787 1.2817 1.1391 -0.5254 0.2524 

1.8671 0.9655 1.5053 -2.3235 1.1402 

2.2546 1.1358 1.453 -2.3927 0.5853 

1.9994 0.4424 0.9298 -0.4562 0.0304 

1.7348 -0.1415 0.4937 0.9269 0.0304 

0.9409 -0.0198 0.267 0.8578 0.1414 

0.3265 -0.8105 0.6507 0.7886 -0.8574 

0.1186 -0.2631 0.703 1.2036 -1.5232 

-0.1649 -0.5064 0.7205 1.0653 -1.0793 

0.3927 -0.555 0.1449 0.4428 -0.0805 

1.0259 0.0532 0.6507 0.2354 -0.0805 

1.1582 0.9533 0.6681 1.2036 -0.4135 

0.9881 -0.1293 1.2263 1.6877 0.3634 

0.6857 -0.3361 0.9298 0.7886 -1.1903 

0.6101 -0.3847 0.8774 0.4428 -1.6342 

0.1091 0.5519 0.6856 0.5812 -0.3025 

-0.7037 0.5032 0.5286 -0.0413 -0.0805 

-0.4012 0.0897 -0.1691 -0.5254 0.3634 

-0.3918 0.3329 -0.0121 -0.3871 1.1402 

-0.1271 0.2721 -0.8319 0.512 1.5841 

0.336 0.2843 -1.4772 2.3793 0.9182 

0.336 -0.3604 -0.7098 1.5494 0.5853 

-0.0988 0.2843 -0.6051 0.5812 0.9182 

-0.4107 0.6127 -0.3086 0.3737 1.0292 

-0.8171 -0.1779 0.3367 -0.0413 1.806 

-1.2613 -0.3969 0.7902 0.097 1.3621 

-1.3086 -0.2266 0.1274 -0.7329 0.8073 

-1.6205 -0.6645 0.4239 -1.7702 -0.5244 

-1.3275 -1.1754 0.7379 -0.8712 -1.6342 

-1.1762 -1.2484 0.8949 -0.2487 -1.1903 

-1.2235 -0.9686 0.703 -1.2861 -1.3013 

-1.4976 -0.9564 0.546 -0.5254 -1.7452 

-1.318 -0.1293 0.7379 0.1662 -1.8561 

-0.7415 -1.8809 1.5751 -0.3179 -1.6342 

-0.7037 -0.2388 1.0344 -0.802 0.0304 

-0.5714 -0.6037 1.1216 -0.5945 -1.0793 

-1.1006 -1.8809 0.86 -0.6637 -0.7464 

-1.0345 -3.0365 0.3193 -0.5254 -0.4135 

-0.5146 -1.3335 -0.2388 -0.6637 0.3634 

-0.5052 0.1991 -0.047 -0.3179 0.6963 

-0.9021 -1.0538 0.4065 -0.5945 0.9182 

-1.4976 -1.5768 0.4414 0.1662 -0.9683 

-1.6205 0.1018 0.8251 0.4428 -1.8561 
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