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Abstract 

Since the last glacial maximum (LGM) ~21 kya, when colder climates and ice 

sheets restricted most European taxa to southern regions, the warming climate has 

allowed certain species to colonize previously unsuitable regions. This phenomenon of 

post-glacial expansion from glacial refugia has been documented in studies of numerous 

plant and animal taxa. During contemporary biological invasions, species also experience 

dramatic range expansions but by very different mechanisms. For example, human 

mediated dispersal may allow species to expand into suitable, but previously unoccupied, 

sites. Weeds of cultivation may have spread globally following the expansion of 

agriculture and/or ruderal habitats associated with human-mediated disturbance. In this 

thesis, I tested whether the range expansion of Silene vulgaris across Europe fit the 

classical model of post-glacial expansion from southern refugia, or followed known 

routes of the expansion of human agricultural practices. I used Species Distribution 

Modeling (SDM) to predict patterns of post-glacial expansion and contrasted these with 

the patterns of human agricultural expansion. A population genetic analysis using 

microsatellite loci was then used to test which scenario was better supported by spatial 

patterns of genetic diversity and structure. Genetic diversity was highest in Southern 

Europe and declined with increasing latitude, and locations of ancestral demes from 

genetic cluster analysis were consistent with areas of predicted refugia. These results 

support post-glacial colonization while refuting the East to West agricultural spread as 

the main mode of expansion for S. vulgaris. We know that Silene vulgaris has recently 

colonized many regions (including North America and other continents) via human-

mediated dispersal, but there is no evidence for a direct link between the Neolithic 

expansion of agriculture and current patterns of genetic diversity in Europe.  Therefore, S. 

vulgaris likely participated in a long history of post-glacial expansion since the Last 

Glacial Maximum, but has since spread around the globe by other means. 
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Introduction 

Evolutionary biologists have long been interested in how and why species ranges 

change over time. Large-scale climate change is known to be important for determining 

species distribution shifts (Davis & Shaw, 2001; McCarty, 2001; Walther et al., 2002). 

Historical climatic cycles associated with glacial ice ages caused the cyclical expansion 

and contraction of many species ranges. Evidence for the ‘expansion-contraction’ model 

(Provan & Bennett, 2008) has come from terrestrial flora and fauna in Europe and North 

America (reviewed in Hewitt, 2004; Schmitt, 2007). However, multiple environmental 

factors may structure phylogeographic patterns of genetic diversity. For example, plastic 

species that can survive in a wide range of climates may be better able to endure 

environmental changes in situ, and thus not adhere to the typical ‘expansion-contraction’ 

model.  

Weeds of cultivation, or those widely dispersed unintentionally by human 

agriculture into disturbed areas, are a common example of a species that can inhabit a 

broad range of climates and whose expansion may not be linked to the expansion-

contraction model. For a weed of cultivation, the human-mediated dispersal through 

agricultural expansion may be the dominant process shaping the spatial pattern of its 

diversity rather than the effects of post-glacial expansion since the last glacial maximum 

(LGM) 20,000 years ago (Balfourier et al., 2000). Previous phylogeographic studies of 

post-glacial expansion have mainly focused on animal and tree species. The few 

phylogeographic studies of widespread, weedy plant species tend to find different 

patterns of diversity than expected from models of post-glacial expansion most likely due 

to recent human-mediated dispersal (e.g. Tyler, 2002; Jiménez-Mejías et al., 2012). A 

recent study of two weeds of cultivation, Lolium perenne and L. rigidum, in Europe 

found genetic clusters correlated with historical agricultural routes (Balfourier et al., 

2000), while another study found clear evidence for post-glacial expansion with multiple 

demes structured between different putative glacial refugia in Arabidopsis thaliana (Beck 

et al., 2008). Testing these alternative hypotheses for the expansion of the species would 

benefit from the use of species distribution modeling (SDM) to refine predictions about 

habitat-diversity relationships. In this study I use the combination of phylogeographic 
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analysis and SDM to examine whether Silene vulgaris, a weed of cultivation, has become 

widespread due to the common post-glacial expansion route or through recent 

agricultural expansion. 

Recently, phylogeographic approaches have been used in concert with SDM to 

reconstruct past species range dynamics, especially for taxa where fossil records are not 

available. Both methods have their own assumptions and limitations, but when used 

together, are powerful for testing phylogeographic hypotheses (Waltari et al., 2007; 

Schorr et al., 2012, 2013; Waltari & Hickerson, 2012). Population genetic analyses allow 

the identification of glacial refugia areas with high genetic diversity where populations 

are hypothesized to be able to survive through the LGM (Hewitt, 2000; Petit et al., 2003). 

This signature of high genetic diversity in older, refugial populations with low diversity 

on the outskirts of the range would support the ‘leading edge’ model of range expansion 

in which only a subset of individuals (e.g., founders) at the expansion front establish new 

populations (Hewitt, 1996).  

In Europe, post-glacial expansion primarily occurred by species spreading 

northward from southern glacial refugia on Europe’s Mediterranean peninsulas (Hewitt, 

2000). In contrast, the more recent agricultural spread by humans originated in the 

Middle East and spread westward into Europe (Ammerman & Cavalli-Sforza, 1971; 

Pinhasi et al., 2005). Therefore, the competing hypotheses for expansion can be tested by 

comparing estimated clines in genetic diversity with either latitude or longitude. A 

significant negative correlation between diversity and latitude would support northward 

post-glacial expansion from Southern refugia, while a longitudinal cline in diversity 

decreasing from East to West would support a model of expansion associated with the 

spread of agriculture. 

Genetic structure analyses can also contribute to the identification of putative 

glacial refugia by locating ancestral source populations. Populations descended from the 

same glacial refugia tend to show common ancestry in genetic clustering analyses, with 

up to three demes in Europe whose descendents are spread latitudinally from refugia in 

the three southern peninsulas of Iberia, Italy, and the Balkans (Taberlet et al., 1998; 

Hewitt, 2004; Provan & Bennett, 2008). Similarly, demes can be identified for weeds of 
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cultivation that cluster based on the route of westward agricultural spread (Balfourier et 

al., 2000). Population genetic methods can be quite useful in determining past range 

dynamics, but historical processes can be difficult to disentangle from more recent events, 

especially in the case of contemporary admixture (Petit et al., 2003).  

Species distribution models (SDMs) can also be used to hypothesize about the 

location of glacial refugia, augmenting findings based on population genetic data. SDMs 

use current species locations and environmental variables to build habitat suitability 

models. Built from current climate variables, these models can be projected onto climate 

data in different regions or at different time periods to infer species distributions in those 

alternative scenarios. For past range dynamics, current climate suitability models can be 

projected onto the reconstructed climate data for the LGM to determine putative locations 

of glacial refugia (Kozak et al., 2008). SDMs have many assumptions and limitations (e.g. 

see Araújo & New, 2007; Diniz-Filho et al., 2009) as well as high uncertainty when 

projecting in space and time (e.g. see Elith & Leathwick, 2009; Nogués-Bravo, 2009). 

However, combining SDMs with population genetic data can enable more robust 

assessments of historical range dynamics (Waltari et al., 2007; Schorr et al., 2012, 2013; 

Waltari & Hickerson, 2012).  

SDMs based on current environmental variables in addition to climate can also be 

used to test the competing hypotheses of agricultural spread or post-glacial expansion. 

For a weed of cultivation that colonizes disturbed areas in various climates, land use and 

soil type may show higher importance than climate in an SDM. This result would suggest 

that the primary mode of expansion of the species was agricultural rather than post-

glacial. Alternatively, if climate is more important in the SDM, it is more likely that the 

species tracked suitable climates. This result would also bolster confidence in predictions 

about past species distributions based on the reconstruction of past climates.  Although 

genetic and SDM methods are both susceptible to limitations, using them together allows 

us to test the competing hypotheses for a weed of cultivation in multiple ways, allowing a 

more complete understanding of past range dynamics.  

In this study I used the combined application of phylogeographic analysis and 

SDM to examine whether the weedy plant Silene vulgaris (Caryophyllaceae, “bladder 
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campion”) has become widespread during an historical post-glacial expansion or through 

more recent agricultural expansion. Past genetic studies of S. vulgaris have found weak 

phylogeographic signatures of post-glacial expansion, with members of ancestral demes 

dispersed throughout Europe, making it difficult to make predictions of past range 

dynamics (Taylor & Keller, 2007; Keller & Taylor, 2010; Keller et al., 2014). Here I add 

to the data from Keller et al. (2014) by analyzing microsatellite data for additional 

samples with a greater representation of eastern European populations. This more robust 

sampling of populations across the European range allowed me to test whether the range 

expansion in S. vulgaris tended to follow post-glacial expansion northward from southern 

refugia since the LGM or followed the spread of agriculture, westward from the Middle 

East as humans created disturbed land and transported seeds.  

Methods 

Population samples and genotyping 

I sampled 167 individuals from 73 populations across the native range of S. 

vulgaris in Europe, with one to ten individuals sampled per population. Samples were 

collected as seeds from maternal families or as leaf tissue dried on silica gel (Keller & 

Taylor, 2010). Genomic DNA was extracted from leaf tissue using Qiagen DNeasy plant 

mini kits. I genotyped ten of the 15 markers used in Keller et al. (2014) and derived from 

S. latiolia as described by Moccia et al., (2009) (Table 1). Microsatellite amplification 

and fragment analysis were performed as described in Keller et al. (2014). Genotyping 

and binning of the 167 new samples as well as 79 samples from Keller et al. (2014) were 

executed using GeneMarker 2.6.2 (Softgenetics). One marker, SL_eSSR17, was removed 

from the analysis due to peaks of varying sizes inconsistent with the known number of 

repeats. For all genetic analyses, the dataset was reduced to individuals with scores for at 

least six of the nine microsatellite loci to avoid issues with missing data, giving a total of 

191 individuals in 76 populations (Fig. 1, Appendix S1). 
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Table 1: Microsatellite markers and associated genetic diversity metrics. 

Locus 
Indiv. 

scored 

No. 

alleles 

Eff. 

alleles 
HO HS Ht H't Gis 

SL_eSSR01  123 5 1.387 0.274 0.579 0.558 0.557 0.526 

SL_eSSR03  137 12 1.42 0.323 0.584 0.816 0.819 0.447 

SL_eSSR04  182 7 1.233 0.269 0.28 0.49 0.493 0.038 

SL_eSSR05 172 7 1.414 0.414 0.421 0.567 0.569 0.017 

SL_eSSR012 168 17 1.859 0.613 0.744 0.903 0.906 0.176 

SL_eSSR016 184 9 1.455 0.408 0.478 0.632 0.634 0.145 

SL_eSSR20 160 5 1.232 0.166 0.38 0.52 0.522 0.562 

SL_eSSR22 174 6 1.118 0.106 0.203 0.226 0.227 0.48 

SL_eSSR28 154 9 1.39 0.381 0.468 0.622 0.624 0.187 

Overall   8.556 1.39 0.328 0.46 0.593 0.595 0.286 

Observed heterozygosity (HO); heterozygosity within populations (HS); total 

heterozygosity (Ht); corrected total heterozygosity (H't); inbreeding coefficient (Gis) 

 

Genetic diversity  

Due to many populations with small sample sizes, genetic diversity estimates 

were obtained at the individual level and compared to diversity estimates for populations 

of n>1. Multilocus heterozygosity was calculated for each individual using the 

standardized heterozygosity metric within the Rhh package (Alho et al., 2010), which is 

calculated as the proportion of heterozygous typed loci/mean heterozygosity of typed loci 

(Coltman et al., 1999). Observed (Ho) heterozygosity estimates for the 45 populations of 

n>1 were calculated in GenoDive (Meirmans & Van Tienderen, 2004). To assess the 

spatial distribution of genetic diversity, the two metrics were interpolated across the study 

area using the inverse distance weighting method through the SPATIAL ANALYST 

extension in ArcGIS 10.1 (ESRI, Redlands, CA, USA).  

Phylogeographic structure 

To assess patterns of population structure, I used Bayesian clustering to assign 

multilocus genotypes into clusters using the program STRUCTURE version 2.3 

(Pritchard et al., 2000). I performed ten independent runs for each K (1-10) with the 

default program settings and 1,000,000 MCMC iterations after a burn-in period of 



 

 

6 

500,000 iterations. The optimal number of clusters (K) was determined based on the 

Evanno et al. (2005) method provided by STRUCTURE HARVESTER (Earl & vonHoldt, 

2012). I used CLUMPP (Jakobsson & Rosenberg, 2007) to align the ancestry coefficients 

(Q-values) of the ten replicates. Results were visualized using distruct (Rosenberg, 2004) 

and pie charts of population-averaged ancestry coefficients were mapped using ArcGIS 

10.1.  

Species distribution modeling  

To spatially assess putative refugia, I used SDM to predict where S. vulgaris 

occurred during the last glacial maximum based on its current environmental niche. 

Because the only environmental data available for the LGM is climatic, I first assessed 

whether the current niche of S. vulgaris depends more on climate than other factors that 

may influence its distribution. I created one SDM including climate as well as present-

day environmental variables that are not available for the LGM. I created a second SDM 

including only climate data to project onto the LGM climate data.  

Occurrence data 

For both the current and LGM models, I trained the model based on D. R. 

Taylor’s seed collection database and records from the Global Biodiversity Information 

Facility (GBIF) database. My initial dataset included 219 sampling locations and 14,238 

post-1950 records available from GBIF with a spatial resolution of 10 km or less. 

However, inspection of the GBIF dataset revealed that reported occurrences in the United 

Kingdom were likely inaccurate because they covered nearly the entire region. I therefore 

excluded the GBIF occurrences in that region and supplemented with updated records 

obtained directly from the main source of GBIF data in that region, the Botanical Society 

of Britain and Ireland (BSBI). Overall, GBIF occurrence locations were severely biased 

towards Western Europe, with many points covering Western Europe and extremely few 

in Eastern Europe, where S. vulgaris is also widespread based on the Atlas Florae 

Europeae (Jalas & Suominen, 1986). To reduce spatial bias, I reduced the dataset to one 

point per 10 km grid cell using ArcGIS 10.1, thus matching the resolution of the 

environmental data as well as the resolution reported for the majority of GBIF records. 
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The resulting occurrence dataset for model training included 3,173 points. I further 

accounted for the clear spatial bias in the dataset using a bias grid (see below).  

Present day SDM environmental data 

For the present-day and LGM SDM, I obtained data for 19 bioclimatic variables 

from the WorldClim database (Hijmans et al., 2005). These variables are all derivatives 

of temperature and precipitation patterns known to be important in determining species 

distributions. I downloaded the dataset with a resolution of 2.5 arc minutes and resampled 

to 10-km resolution in ArcGIS 10.1. To account for the collinearity among the 19 

bioclimatic variables for the present day SDM, I ran a principal components analysis 

(PROC PRINCOMP; SAS version 9.4, SAS Institute, 2012). The first two principal 

components accounted for 74.3% of the variation in the 19 bioclimatic variables 

(Appendix S2). For the present day model I also included available data on soil type, land 

use, and human influence, as these variables could be important for describing the niche 

of a widespread weed of cultivation. For soil type, I used multiple datasets from the 

European Soil Database (ESDB) version 2 at 10 km resolution: full soil code of the soil 

typological unit (STU) from the World Reference Base (WRB) for Soil Resources 

(WRB-FULL), dominant parent material of the STU (PAR-MAT-DOM), full soil code of 

the STU from the 1974 (modified CEC 1985) FAO-UNESCO Soil Legend (FAO85-

FULL), and dominant land use (USE-DOM). I also included a more detailed land use 

dataset from the European Environment Agency, the Corine Land Cover 2006 database, 

version 16, downloaded at 250-meter resolution (Copyright © European Environment 

Agency). For another measure of human disturbance, I used the Last of the Wild version 

2 Human Influence Index dataset at 1-km resolution (Wildlife Conservation Society - 

WCS & Center for International Earth Science Information Network - CIESIN - 

Columbia University, 2005). The Human Influence Index was created from data layers 

including population density, land use and infrastructure, and human access (coastlines, 

roads, railroads, rivers). All datasets were resampled to 10-km resolution. Because some 

datasets did not cover the entire study area, I extracted all data to the smallest extent of 

the input grids. I performed a second principal component analysis for these data to 

account for the inherent collinearity among the soil, land use, and human influence 
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datasets, (PROC PRINQUAL; SAS version 9.4, SAS Institute, 2012). The first two 

principal components explain 92.8% of the variation in the datasets (Appendix S3). The 

two bioclimatic and two land-type principal components were used as environmental 

variables for the SDM (Table 2). 

LGM SDM environmental data 

The 19 bioclimatic variables for current conditions were used to train the LGM 

MaxEnt model. To address collinearity issues, I ran a correlation analysis in ENMTools 

(Warren et al., 2010) and reduced the dataset to 7 bioclimatic variables (Table 2) with 

correlation coefficients of less than 0.7. From each pair of variables with R>0.7, I chose 

one variable to keep in the model based on variable importance and degree of 

extrapolation in the LGM in initial model runs. The degree of extrapolation was 

determined by viewing the most dissimilar variable (MoD) output maps provided by 

MaxEnt (see Elith et al., 2010). Climatic data for the LGM were obtained from the 

WorldClim database (Hijmans et al., 2005) at 2.5 arc minute-resolution for both the 

available datasets based on CCSM and MIROC general circulation models (GCMs) and 

resampled to 10-km resolution. Independent models projecting S. vulgaris distributions in 

the LGM were performed using both LGM climate datasets based on different GCMs for 

comparison, as neither GCM is known to be more accurate. 

Table 2: Environmental variables used in the current and LGM SDMs. 

Current SDM LGM (CCSM and MIROC) SDMs 

Bioclim PC1 Max. temp. warmest month 

Bioclim PC2 Temp. annual range 

Landcover C1 Mean temp. wettest  quarter 

Landcover C2 Mean temp. coldest quarter 

 
Precip. driest month 

 
Precip. seasonality 

  Precip. coldest quarter 
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SDM procedure 

I utilized a machine learning method based on maximum entropy implemented in 

the program MaxEnt 3.3.3k (Phillips et al., 2006) to assess the current environmental 

niche of S. vulgaris and predict its distribution during the LGM. I chose MaxEnt because 

it was designed for niche modeling and provides options for handling spatial bias and 

overfitting. To further address sample bias, in addition to rarefying out points, I created a 

sample bias grid using SDMToolbox version 1.0b (Brown, 2014) using the Gaussian 

kernel density of sampling localities. The sampling bias distance to create the grid was 

chosen to minimize the influence of very high sampling density in parts of Western 

Europe and give a projected current distribution that corresponds well with observations 

from the Atlas Florae Europeae and S. R. Keller & D. R. Taylor (personal observations). 

An optimal sampling bias distance of 20 km was chosen for the Gaussian kernel density 

grid. Each model was averaged for 10 replicates using default MaxEnt settings and the 

addition of the bias grid. For the LGM models, multivariate environmental similarity 

surface (MESS) and MoD maps (Elith et al., 2010) were evaluated to assess the accuracy 

of LGM models based on the extent of extrapolation of climate variables. The plausibility 

of LGM models was also assessed using knowledge of the landscape at the time. From 

climate reconstructions, we know that the LGM ice sheet extended south down to about 

52° N and permafrost covered most areas south to 47° N (Hewitt, 2004). The MIROC 

model predicted substantial suitable habitat up to 50° N, and therefore was removed from 

the analysis (Appendix S4). The CCSM model was used for analysis because the 

predictions were plausible based on the knowledge of the landscape. 

Correlation between genetic diversity and spatial data 

I performed a correlation analysis between standardized heterozygosity and four 

variables: latitude, longitude, and LGM climate suitability values using JMP 9 (SAS 

Institute, 2012) to understand spatial patterns of genetic diversity in light of the two 

competing hypotheses. Standardized heterozygosity values for individuals were used 

rather than population-level estimates due to a majority of populations with n < 2. Under 

the assumptions described above, a significant correlation between diversity and 

longitude would point toward agricultural expansion being an important determinant of 
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current genetic diversity. Similarly, a significant correlation between diversity and 

latitude or LGM suitability would support the post-glacial expansion hypothesis.  

Results 

Genetic diversity 

The spatial distributions of individual standardized heterozygosity (Fig. 1) and 

population observed heterozygosity were similar. I therefore used the standardized 

heterozygosity of individuals for subsequent analyses. No single clear latitudinal or 

longitudinal pattern in the genetic diversity of S. vulgaris across Europe was apparent. In 

Western Europe, heterozygosity was highest in Spain and decreased northeastward to low 

levels from Italy to the UK and Ireland. In Eastern Europe, diversity was highest in 

Greece and Belarus, and decreased to the east of these countries (Fig. 1). These patterns 

manifested in four latitudinal groups based on similar diversity levels: 1) high diversity in 

Spain, 2) low diversity from Italy to Ireland, 3) high diversity from Greece to Estonia and 

northwestern Russia, and 4) low diversity from Lebanon and Turkey to southwestern 

Russia. 
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Figure 1 Standardized heterozygosity calculated for individuals and interpolated using the inverse distance 

weighting method (IDW) in ArcGIS 10.1. Warmer colors show higher genetic diversity, while cooler 

colors show lower genetic diversity. Dark blue dots show populations used in the analysis. 

 

To assess the spatial distribution of genetic diversity, a Spearman’s rank 

correlation was implemented because of the non-normality of the variables. Latitude was 

the only variable significantly correlated with heterozygosity (Table 3). Latitude had a 

significant negative correlation with heterozygosity, where individuals at higher 

(northern) latitudes have lower heterozygosity. There was no evidence of increased 

genetic diversity at the origins of agricultural expansion in the east, so the data are more 

consistent with post-glacial expansion from Southern refugia. These results persist when 

admixed individuals (when K=2) were removed from the analysis. In addition, when 

admixture is removed there was a significant (p=0.034) positive relationship between 

LGM suitability and heterozygosity.  
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Table 3: Correlation to assess the relationship between genetic diversity (standardized heterozygosity) and 

four variables: geographic location (latitude, longitude), and LGM climate suitability based on the CCSM 

general circulation model. Bold indicates significant P-values after Bonferroni correction. 

 

Variable Variable Spearman's ρ Prob>|ρ| 

Latitude Heterozygosity -0.3478 <.0001 

Longitude Heterozygosity -0.0919 0.2061 

Suitability (CCSM) Heterozygosity 0.0791 0.277 

Suitability (CCSM) Latitude -0.4692 <.0001 

    

Genetic structure 

Bayesian clustering through the program STRUCTURE described an optimal 

model of K = 2 clusters based on the ΔK method (Evanno et al., 2005) (Appendix S5). In 

Western Europe, the two clusters corresponded with two geographic groups – one 

including only the Iberian Peninsula, and the other spanning from Italy to the UK and 

Ireland (Fig. 2a). In Eastern Europe, many populations were of mixed ancestry. A 

majority of the populations in the farthest eastern region clustered with the Iberian 

Peninsula populations. There was also moderate support for K = 3 clusters (Appendix S5). 

Many populations in eastern EU showed high posterior probability for this cluster, but it 

was also present in many western populations (Fig. 2b). Overall, the analysis roughly 

distinguishes the southwest (Iberia, green), the northwest (blue), and the eastern (yellow) 

populations (Fig. 2b). 
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Figure 2 Ancestry assignment from STRUCTURE models. (a) Map showing pie charts of population-

averaged ancestry assignment for K=2. Size of circles indicates sample size of each population. (b) Same as 

(a) for K=3. 
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SDM for current conditions 

The final MaxEnt model was an adequate fit based on test AUC (0.705) and the 

known current distribution of the species. The AUC value metric ranges from 0 to 1 

while a value of 0.5 indicates that the model is not performing better than random, and an 

AUC above 0.7 indicates ‘fair’ model performance (Swets, 1988; Araújo et al., 2005). 

However, the maximum achievable AUC is lower for a widespread species (Phillips et al., 

2006), and widespread species typically have higher commission error. Using a bias grid 

of Gaussian kernel density at 20 km resulted in a prediction of current distribution 

consistent with field observations and the Atlas Florae Europeae (Jalas & Suominen, 

1986) (Appendix S6). All variable importance metrics showed both climatic principal 

components having an overwhelmingly large effect when compared to the land-usage 

variables on the distribution of S. vulgaris (Table 4). A similar result was found using a 

model with all of the original variables before principal components analyses (data not 

shown). 

Table 4 Percent contribution and permutation importance values for each environmental variable used in 

the MaxEnt model for the prediction of current distribution. Each environmental variable is a principal 

component axis summarizing multiple datasets. Bioclim PC1 and PC2 are the first two principal 

components of the 19 bioclimatic variables. Landcover C1 and C2 are the two components representing 

soil type, land cover, and human influence metrics.   

Variable Percent contribution Permutation importance 

Bioclim PC2 70.2 60.5 

Bioclim PC1 27.5 32.1 

Landcover C1 1.4 6 

Landcover C2 1 1.4 
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Predicting LGM distribution 

The MaxEnt model based on only climatic variables also showed an adequate fit 

based on test AUC (0.772). The prediction of current distribution (Appendix S7) is also 

consistent with field observations and the Atlas Florae Europeae. In fact, the fit was 

better for this model than the model that included both climate and land-use variables. 

That climate variables are of such importance makes it reasonable to predict distributions 

during the LGM, for which only climate data are reconstructed. The LGM prediction 

from the CCSM model shows moderately suitable habitat in most of the regions of 

Europe not covered by Eurasian ice sheets (Fig. 3) with higher suitability in southern 

Europe along the coasts. The model predicts high values for suitable habitat on all three 

European peninsulas.  

A common concern with the SDM approach is the extent that findings can be 

affected by extrapolating variables outside the species range. Variable extrapolation was 

not a concern for this model because variables were only extrapolated for northern 

regions that were known to be uninhabitable during the LGM. Specifically, The MESS 

map (Appendix S8) showed that the variables in the model were only extrapolated from 

their training range in northern Europe, predominantly in the location of the Eurasian ice 

sheet, above 52° N. Even with the extrapolation, the MaxEnt models correctly predict 

very low suitability in this area, except farther north near Finland and Russia where there 

was the largest degree of extrapolation.  
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Figure 3 Predicted habitat suitability in the LGM from MaxEnt model for the CCSM climate prediction. 

The hashed blue area shows a generalized extent of the ice sheets during the LGM (Svendsen et al., 2004). 

 

Discussion 

I used population genetic analysis of microsatellite diversity and occurrence data 

for S. vulgaris throughout Europe in order to reconstruct past range dynamics and test 

two competing hypotheses for range expansion: post-glacial expansion from the South 

versus agricultural expansion from the East. The results support the post-glacial 

expansion from southern refugia hypothesis and are not consistent with predictions of 

agricultural spread from the East. These findings are in contrast with the only other study 

that has contrasted the same hypotheses for two weeds of cultivation, Lolium perenne and 

L. rigidum (Balfourier et al., 2000). Their finding was based on detecting genetic 

structure among populations along longitudinal trade routes; however this study did not 

estimate clines in genetic diversity that would point to centers of origin and range 

expansion. My findings are similar to those found in a recent study of A. thaliana, (Beck 

et al., 2008). Evidence of post-glacial expansion is still apparent in the genomes of both A. 
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thaliana and S. vulgaris even though admixture caused by human-mediated dispersal is 

expected to obscure phylogeographic patterns (Petit et al., 2003). 

Genetic diversity trends support post-glacial expansion 

Genetic diversity of S. vulgaris was higher in southern regions than northern 

regions. High genetic diversity in Spain and Greece supports the existence of glacial 

refugia in those areas, consistent with typical refugia on the southern peninsulas. The 

Italian peninsula also commonly served as a refugium (Taberlet et al., 1998; Hewitt, 

1999). Although the spatial patterns of genetic diversity data suggest the existence of 

refugia on only two of the three southern peninsulas, my sampling on the Italian 

peninsula was sparse, including only one individual from one population in southern Italy. 

Further sampling could capture individuals with higher genetic diversity in this area. 

Another unexpected result was high genetic diversity in northeast Europe, originating in 

Belarus, though sampling in this region was also sparse. Further sampling to obtain more 

individuals per population and more populations in regions with low sampling could help 

decipher patterns in genetic diversity. Based on the current dataset, the overall trend of 

higher genetic diversity in southern regions is more consistent with post-glacial than 

agricultural expansion. 

The significant negative correlation between heterozygosity and latitude (i.e. 

lower diversity at northern latitudes) is consistent with the typical post-glacial expansion. 

Suitability in the LGM model was also significantly negatively correlated with latitude. 

Taken together, the reconstruction of the climate during the LGM and current patterns of 

genetic diversity are consistent with expectations of a post-glacial expansion from 

southern European refugia. Further, when admixed individuals were removed from the 

analysis, there was a significant positive correlation between LGM suitability and 

heterozygosity. By contrast, there was not a significant correlation between 

heterozygosity and longitude, contrary to predictions of S. vulgaris migrating westward 

during agricultural expansion. In fact, the direction of the non-significant relationship 

between these variables was negative. There was also low habitat suitability in the 

Middle East in the current and LGM models, further supporting that the center of origin 

was not located in this area. These findings exemplify the benefit of combining genetic, 
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spatial, and suitability data to understand range dynamics and discriminate between 

competing hypotheses for the historical spread of weedy plants. 

Genetic structure supports post-glacial expansion 

In western Europe, west of Germany and Italy, the genetic clusters identified by 

STRUCTURE form two demes structured between two putative refugia – the Iberian and 

Italian peninsulas, consistent with expectations for groups of descendants from different 

southern glacial refugia based on previous studies (Taberlet et al., 1998; Hewitt, 2004; 

Provan & Bennett, 2008). My results suggest one refugia on the Iberian Peninsula with 

the Pyrenees mountains acting as a barrier to dispersal, a pattern seen in in other species 

as well (Taberlet et al., 1998; Hewitt, 2000; Schmitt, 2007). The origin of the western 

European deme is unclear. The LGM reconstructions suggest a possible refugium in 

coastal France or Italy, however, there was no clear area of higher genetic diversity 

within this second cluster of populations to aid in identifying a refugial location within 

this deme. 

The population genetics of S. vulgaris in Eastern Europe are not straightforward. 

Many individuals in Eastern Europe, especially those in Lebanon, were genetically 

similar to individuals on the opposite edge of the species range on the Iberian Peninsula, 

and a second cluster originating in France/Italy separates these two regions. This pattern 

could have resulted from recent human-mediated dispersal, perhaps via trade routes along 

the North African coast (see Balfourier et al., 2000). However, a similar genetic 

clustering pattern was observed in a recent study of the European wild boar (Vilaça et al., 

2014), which would not likely follow these trade routes. Vilaça et al. (2014) propose a 

scenario during the last interglacial period, where Iberian and eastern European 

populations could have traveled northward and become panmictic, with populations in 

France and Italy remaining isolated. This seems unlikely for S. vulgaris because the 

Pyrenees seem to be a barrier to dispersal that would have remained as such during past 

interglacial periods. However, Iberian and Lebanon populations may have originated 

from panmictic populations in northern Africa.  
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Another possible explanation for the unexpected similarity between eastern and 

western populations is that there are three refugial groups originating in the three 

southern peninsulas, but STRUCTURE was unable to separate a third cluster based on 

the data. The STRUCTURE analysis showed moderate support for K=3, which supports 

the differentiation between Iberia and eastern populations, except for those in Lebanon. 

With more data from eastern Europe, a third cluster could become more clear with 

eastern populations representing a third eastern refugial group. The difficulty in 

separating the third cluster could be due to recent admixture between populations 

descended from different refugial groups (Petit et al., 2003). Admixture is likely as S. 

vulgaris continues to travel great distances aided by human dispersal, becoming invasive 

in the United States and other countries. There was widespread occurrence of admixed 

individuals (0.25<Q<0.75) in this study, but the results did not differ when removing 

these individuals from the analysis. 

SDMs support post-glacial expansion and identify potential refugia 

The CCSM model predicted suitable habitat on the entire coastline of the Iberian 

Peninsula, western coast of France, Italy and surrounding islands, southern Greece, north 

of Greece around Serbia, coastal areas around the Black Sea, and the northern coast of 

Africa. These areas could all have potentially served as glacial refugia for S. vulgaris, 

making it possible for refugia to exist on all three southern peninsulas as seen in many 

other species (Taberlet et al., 1998; Hewitt, 2004; Schmitt, 2007). While there are 

multiple potential refugial areas within the central and eastern Europe regions based on 

SDMs, the genetic data do not allow a determination the specific number and locations of 

which of these refugia were likely to be occupied. However, the data show locations 

where S. vulgaris could exist based on SDM habitat suitability within the broad regions 

predicted by the genetic data. Further genetic sampling using more markers could clarify 

the results and make it possible to match predicted refugia locations with areas of suitable 

habitat. 

The initial model of current S. vulgaris distribution showed that climate was by 

far the primary explanatory factor while other land-based attributes contributed little 

predictive value. Therefore it is likely that S. vulgaris tracked suitable climates since the 
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LGM, supporting the post-glacial expansion hypothesis. Moreover, S. vulgaris’ high 

dependence on climate strengthens the findings of the LGM suitability models. These 

models can only use climate variables, but this is not a limitation in this study because 

climate is the most important factor in determining S. vulgaris distribution when 

compared with other expected important abiotic environmental variables. Many studies 

using paleoclimate modeling do not include estimates of how important climate is for 

understanding species distributions in comparison to other environmental variables 

potentially important for the species. It is important to check the importance of climate 

before projecting LGM distributions, as the LGM prediction would most likely be 

incorrect if climate is not important in determining the species’ distribution.
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Conclusion 

Post-glacial expansion from glacial refugia since the LGM has been supported for 

a variety of taxa on many different parts of the planet. Many of these studies use genetic 

analyses and are beginning to use SDM as a powerful complement. However, one type of 

species that may not adhere to typical climate-tracking trends is a widespread weed 

capable of growing in a variety of climates. Weeds of cultivation may have spread 

primarily by agriculture rather than by post-glacial expansion, as was recently found for 

two Lolium species (Balfourier et al., 2000) but not for Arabidopsis thaliana (Beck et al., 

2008). My results for the widespread weed S. vulgaris support the hypothesis of post-

glacial expansion from southern refugia in Europe. This finding was stronger than those 

of past studies on S. vulgaris due to a larger sample size, addition of SDM analyses, and 

direct testing of two competing hypotheses. As with past phylogeographic studies of 

weedy plants, my results did not show the exact expected pattern of post-glacial 

expansion seen in other species, but still adequately support many aspects of this route, 

especially when compared with the alternative agriculture expansion. My results did not 

allow for strong predictions of exact refugial locations due to the low resolution of spatial 

trends in genetic diversity and structure, the inference of which would benefit from 

further sampling in Italy and Eastern Europe. Future studies using partial genome 

sequencing would be useful if additional analyses with the current microsatellites remain 

unclear. Finally, I found that including data from environmental variables other than 

climate and the known distribution of ice sheets and permafrost can significantly enhance 

one’s confidence in the distribution of species during the LGM, and should be considered 

in future SDM studies. 
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Appendix S1: Information on populations used for genetic analysis 

Population 

code 

No. 

indiv. 
Country Latitude Longitude Collector 

ALC 1 Spain 38.869 -1.098 Remedios Alarc—n 

ALN1 4 France 48.414 0.089 S. Keller and J. Keller 

ALN4 4 France 48.397 0.093 S. Keller and J. Keller 

ALR 2 Spain 42.660 -4.312 T. Giraud 

ANK 1 Turkey 40.080 33.462 Mecit Vural 

BAD2 1 Germany 50.952 14.247 C. Barr, S. Keller, D. Sowell 

BIS 5 Spain 41.954 2.992 T. Giraud 

BKNP 3 UK 51.928 -1.971 
D. Taylor, B. Penna, M. 

Neiman, D. Sowell  

BOL 3 France 44.275 4.774 C. Barr and D. Sowell 

BRV 1 Spain 42.501 -3.280 T. Giraud 

BUV 5 Spain 42.659 -4.385 T. Giraud 

CAL 2 Spain 41.647 1.522 T. Giraud 

CAN 1 Spain 37.796 -2.284 Remedios Alarc—n 

CAT1 3 UK 54.381 -1.639 S. Keller and J. Keller 

CAT2 2 UK 54.381 -1.630 S. Keller and J. Keller 

CON 5 Switzerland 46.847 6.713 
A. Berardi, P. Fields, D. 

Taylor, M. Neiman 

CRE1 1 France 44.834 -0.282 C. Barr and D. Sowell 

CRE2 1 France 44.830 -0.287 C. Barr and D. Sowell 

CRE3 2 France 44.848 -0.287 C. Barr and D. Sowell 

CRE4 2 France 44.857 -0.281 C. Barr and D. Sowell 

CRE5 2 France 44.821 -0.284 C. Barr and D. Sowell 

CRO 6 UK 52.934 1.290 S. Keller and J. Keller 

DEUX 9 France 50.885 1.704 D. Taylor 

DK3 1 Denmark 54.996 12.447 D. Taylor 

DPI 1 Greece 38.470 22.503 S. Ribstein 

EGR 1 Hungary 47.895 20.383 D. Taylor 

EJEA 1 Spain 42.126 -1.137 T. Giraud 

ELB 1 Lebanon 33.700 35.700 Dave West 

EPI 2 France 48.147 6.582 D. Taylor 

FAN 1 Ireland 53.116 -9.285 S. Keller and J. Keller 

GAS 6 Switzerland 46.758 8.135 S. Keller and J. Keller 

GUA1 3 Switzerland 46.778 10.154 Andrea Berardi 

JOZ 1 Spain 39.419 -7.075 Javier Tard’o 

KDS 3 Lebanon 34.233 35.983 Dave West 

KRA 5 Russia 43.632 40.288 
 J. Andreeva via Helena 

Storchova. 

LAR1 1 Spain 42.799 -5.690 C. Barr and D. Sowell 

LBL 2 Spain 42.600 -5.571 Carmen Acedo 

LTR 1 Spain 37.886 -4.777 D. Taylor 

MET 2 Greece 39.848 21.175 H. Frierson 

MIN 1 Belarus 53.219 26.683 M. Dzhus 

MOL 1 Spain 40.495 -1.595 
Remedios Alarc—n, Javier 

Tard’o 

MTOP1 2 Greece 40.073 22.462 H. Frierson 

MTOP2 7 Greece 40.083 22.373 H. Frierson 

MTOP3 1 Greece 0.000 0.000 H. Frierson 

MTOP4 1 Greece 40.018 22.316 H. Frierson 
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MVRM 1 Greece 40.635 22.031 H. Frierson 

NBS 4 Lebanon 33.933 35.867 Dave West 

OSE1 2 Spain 43.129 -5.027 C. Barr and D. Sowell 

OSL 1 Norway 59.914 10.739 D. Taylor 

PAG 1 Croatia 44.441 15.053 Mirjana Vrbek 

PAM 2 Greece 39.496 23.041 H. Frierson 

PCO1 6 Spain 42.622 -0.194 C. Barr and D. Sowell 

PIE 6 Slovakia 48.589 17.834 Lorne Wolfe 

PIS 1 France 45.831 6.022 D. Taylor 

POT 1 Spain 39.789 -4.168 Remedios Alarc—n 

PRG4 7 Czech Rep. 50.186 14.252 
C. Barr, S. Keller, and D. 

Sowell 

PUM 1 Spain 39.477 -0.377 
Remedios Alarc—n, Pilar 

Garcia 

PZN 2 Croatia 44.615 14.965 Mirjana Vrbek 

REC 3 Spain 41.563 -3.077 T. Giraud 

RG 4 Italy 44.508 9.952 A. Berardi and P. Fields 

RUP 4 Spain 42.021 2.993 T. Giraud 

SAA 1 Estonia 58.429 22.406 Vilma Kuusk 

SCN1 4 Switzerland 46.516 7.054 
C. Barr, S. Keller, J. Keller, D. 

Sowell 

SCT 1 Italy 40.353 18.174 Silvano Marchiori 

SEE5 3 Austria 47.330 11.182 
C. Barr, S. Keller, and D. 

Sowell 

STH1 1 UK 51.179 -1.831 
D. Taylor, B. Penna, M. 

Neiman, D. Sowell  

STK1 2 UK 54.937 -1.918 Stephen Keller 

TAB 4 Spain 41.836 -5.888 T. Giraud 

TRU 2 France 47.280 0.839 
D. Taylor (1999); S. Keller 

(2004) 

UZE 2 France 44.011 4.419 T. Giraud 

VAL 3 France 46.023 6.918 C. Barr and D. Sowell 

VDM3 2 Portugal 41.633 -8.169 C. Barr and D. Sowell 

VEZ1 3 France 47.464 3.740 S. Keller and J. Keller 

VIL 4 Spain 41.848 -5.615 T. Giraud 

WLW 1 UK 54.679 -1.781 S. Keller and J. Keller 

YER 1 Armenia 40.160 44.509 Anush Nersesyan 
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Appendix S2: Principal component loadings for the 19 Bioclim variables. 

Bioclim variable name Var. code Prin1 Prin2 

Annual mean temperature BIO1 0.295651 0.183803 

Mean diurnal range BIO2 0.264726 -0.079484 

Isothermality BIO3 0.226693 0.221137 

Temperature seasonality BIO4 -0.030241 -0.343061 

Max temp warmest month BIO5 0.327054 0.017918 

Min temp coldest month BIO6 0.218027 0.286745 

Temperature annual range BIO7 0.076682 -0.321912 

Mean temp wettest quarter BIO8 0.002915 -0.156092 

Mean temp driest quarter BIO9 0.282637 0.193623 

Mean temp warmest quarter BIO10 0.319052 0.061528 

Mean temp coldest quarter BIO11 0.249632 0.263219 

Annual precipitation BIO12 -0.208449 0.302098 

Precipitation wettest month BIO13 -0.128839 0.293623 

Precipitation driest month BIO14 -0.276173 0.186871 

Precipitation seasonality BIO15 0.243416 -0.01037 

Precipitation wettest quarter BIO16 -0.138235 0.29895 

Precipitation driest quarter BIO17 -0.267248 0.209454 

Precipitation warmest quarter BIO18 -0.314683 0.049543 

Precipitation coldest quarter BIO19 -0.026353 0.352148 
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Appendix S3: Principal component loadings for land-based variables. 

Variable name Prin1 Prin2 

Human influence index 0.03927 -0.552748 

Full soil code from WRB 0.434563 0.024799 

Dominant land use 0.454067 0.026748 

Dominant parent material -0.454068 -0.026778 

Land use -0.04486 0.551791 

Full soil code (1974 FAO-UNESCO) 0.43436 0.026196 
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Appendix S4: LGM species distribution model for the MIROC climate scenario. Extent 

of the Eurasian ice sheet is sketched based on Svendsen et al., 2004.  
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Appendix S5: Delta K likelihood for the STRUCTURE analysis. 
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Appendix S6: Current climate suitability based on MaxEnt model using land and climate 

variables. Points shown and used in the model are a combination of edited data from 

GBIF, BSBI, and lab collections. 
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Appendix S7: Current suitability from the MaxEnt model based on only climate 

variables. Points shown and used in the model are a combination of edited data from 

GBIF, BSBI, and lab collections.  

 

 



 

 

34 

Appendix S8: MESS maps for LGM Maxent models based on only climate variables. 

CCSM model shown above; MIROC below. Red areas represent those where one or more 

environmental variables are outside of their training range.  

 

 


