
5

Social Networks and Archival Context OpenRefine Plugin

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Grace Wu
Spring 2020.

Technical Project Team Members
Charles Chang
Sandra Gould
Mark Jeong
John Perez
Victor Shen
Peter Tran
Jessica Xu

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date __________
 Grace Wu

Approved __ Date __________
 Dr. Ahmed Ibrahim, Department of Computer Science

6

Table of Contents

Abstract 7

List of Figures 8

1. Introduction 9

1.1 Problem Statement 10

1.2 Contributions 11

2. Related Work 12

3. System Design 13

3.1 System Requirements 14

3.2 Wireframes 15

3.3 Sample Code 16

3.4 Sample Tests 20

3.5 Code Coverage 21

3.6 Installation Instructions 23

4. Results 26

6. Future Work 28

7. References 29

7

Abstract

 Social Networks and Archival Context (SNAC) is an archival institution that works with

a variety of other institutions to build an archival collection, but each of these institutions has a

different structure for storing records. Relationships between different entities, labels for certain

types of data, and the hierarchy of the data itself are inconsistent from each outside institution.

SNAC needs to reconcile the differences between the outside data and its own data storage

structure before importing the data into its database. It is extremely impractical and time

consuming to clean up the data manually. The goal of the technical project was to develop a

simple and fault-proof interface for reconciling that would be easy for users to learn and use.

The technical project consisted of the development of a standalone plugin for SNAC

using OpenRefine, an existing open source project. The plugin has enabled participants to upload

and consolidate large amounts of data on historical artifacts. With the extension, hundreds and

thousands of entries can now be processed and pushed to SNAC in a couple minutes. The

extension is able to import external data and match it to existing data within the SNAC server.

Given that SNAC is an archival institution, it was very important that the information being

uploaded would update the right fields for any given entry. The plugin effectively solved the

problem of data mismatch when uploading information to the SNAC site. The project achieves

simplicity without excessive functionality, and it creates a more efficient and streamlined process

to import and update thousands of data entries. The plugin ensures that the reconciliation of data

imported is both quick and accurate, which is crucial to an organization like SNAC where

efficient and accurate querying are key.

8

List of Figures

Figure Page

Figure 1 SNAC Plugin Model 11

Figure 3.1.1 Schema Wireframe 15

Figure 3.1.2 Issues Wireframe 15

Figure 3.1.3 Preview Wireframe 15

Figure 3.3.1 detectLanguage 16

Figure 3.3.2 setUp 17

Figure 3.3.3 rowsToResources 17

Figure 3.3.4 Front-end example 18

Figure 3.3.5 doPost example 19

Figure 3.4.1 Tests for the converting functionality 20

Figure 3.4.2 Tests for the upload functionality 21

Figure 3.4.3 Tests for the export functionality 21

Figure 3.5.1 Excluded Files 22

9

1. Introduction

 In the current day and age, data is abundant yet sometimes excessive, which can lead to

information mismatch. How can this data be managed and archived so that related information

regarding specific topics can be consolidated in an efficient manner? Our capstone group seeked

to solve this through data wrangling, or the mapping of raw data into another format, by

developing a plugin for our project, Social Networks and Archival Context (SNAC).

SNAC, a website similar to Wikipedia, is a free, online resource that helps users discover

biographical and historical information about people, families, and organizations that are created

and are documented in historical resources (primary source documents) and their connections to

one another (Social Networks and Archival Context [SNAC], n.d.). SNAC is used to locate

archived collections as well as related resources held around the world. As an international

cooperative, SNAC works to “build a corpus of reliable descriptions of people and artifacts that

link to and “provide contextual understanding” of historical records (SNAC, n.d., para. 1). In

order to create these contextual connections, SNAC sources its information from many different

libraries and archival institutions. SNAC cooperates with over 4,000 institutions to gather and

reconcile data (SNAC, n.d.)

The SNAC user base is extremely active: as of October 28, 2019, there have been almost

700 edits per week. There are currently 136 active users that contribute to the SNAC database

and over 33,000 visitors per month on average. In total, there are over two million resources that

have been created and edited since the creation of SNAC (Jeong, 2019). Our team’s interest in

maintaining and improving such a widely used resource is what originally drew us to pursue this

project.

10

1.1 Problem Statement

While SNAC seeks to serve a variety of institutions and build an archival collection, each

institution has a different structure for storing records. Relationships between different entities,

labels for certain types of data, and the hierarchy of the data itself are inconsistent from each

outside institution. SNAC needs to reconcile the differences between the outside data and its own

data storage structure before importing the data into its database. It is extremely impractical to

clean up the data manually or with simple tools (Ham, 2013). The reconciliation of this data is

vital to the functionality of an archival organization such as SNAC because it is crucial for

efficient and accurate querying (Park, 2008).

 The technical project seeks to develop a standalone plugin for Social Networks and

Archival Context (SNAC) using OpenRefine. OpenRefine is an open source software that is

community-maintained and designed specifically for data normalization, transformation, and

cleaning (Hill, 2016). It allows users to import and normalize data with a series of pre-existing

default user interfaces after connecting to a target resource. OpenRefine provides a “powerful yet

user-friendly interface” for experimenting with and querying data (Hill, 2016, p. 228).

With over 700 edits occurring to its data schema in a week, Social Networks and Archival

Context (SNAC) is no small data archive (SNAC, n.d.). The current workflow for refining and

updating data in SNAC is quite difficult and inaccessible to inexperienced users. It involves

users hitting SNAC’s APIs for refining data on their server from the user’s local machine. The

technical project aims to greatly simplify this process by creating a streamlined plugin that will

have all the functionalities needed to refine and upload data in one location. The logical flow and

components needed for the project are illustrated in Figure 1. The plugin will serve as a

connection between the user’s local data and SNAC’s server. It will allow users to import

11

external data in the form of comma-separated values (CSV) files and make use of APIs provided

by SNAC to reconcile and refine that data with SNAC’s unique JavaScript Object Notation

(JSON) data structure. The plugin will have two main user groups: privileged and unprivileged

users. Both types of users will be able to use the plugin to format any data ported in using

SNAC’s organizational schema. Only privileged users will be able to then push the formatted

data into SNAC’s own database utilizing the APIs provided by SNAC. The technical project will

provide an easy way to reconcile outside data with SNAC’s existing data in addition with an

improved user interface for an enhanced user experience.

1.2 Contributions

 Over the course of

eight months, the team

was able to create a plugin

extension using

OpenRefine to import

external data and match it

to existing data within the

SNAC server. With SNAC

being a data archive, it

was very important that the

information being uploaded

updated the right fields for any given entry. The plugin effectively solved the problem of data

mismatch when uploading information to the SNAC site. The plugin achieves simplicity without

excessive functionality, and it creates a more efficient and streamlined process. SNAC is easily

Figure 1: SNAC Plugin Model: An overview of the design of the
plugin, depicting the different processes and functions that will be
made available by the plugin (Xu, 2019).

12

able to import and update thousands of data entries. The features contributed to the final product

and functionality offered by the plugin are expounded in the following sections of this thesis.

In the remaining of this thesis, Section 2 presents related work. Section 3 elucidates the

system design and required functionality of the plugin. Section 4 discusses the results of the

technical project as it relates to the initial problem. Finally, Section 6 provides a conclusion to

the work done in the past year, while Section 7 gives way to future work on the project.

2. Related Work

According to their website, SNAC serves as an "online resource that helps users discover

biographical and historical information about persons, families, and organizations that created or

are documented in historical resources (primary documents) and their connections to one

another" based on the idea of openly editable content (About SNAC, n.d.). Only members of the

cooperative like select museums, universities, and libraries, and archives can edit data. This

model is identical to that of Wikipedia. The problem with Wikipedia is that anyone on the

Internet can edit any entry in their online encyclopedia. Inaccurate information, whether inserted

accidentally or maliciously can persist on the site anywhere from a few hours to nearly two years

(Criticism of Wikipedia, 2020). SNAC avoids this problem by allowing any user to browse the

entries but only approved users can edit the information within the database. Though this

essentially guarantees trustworthy information, the cost of this solution is that information will

be entered into SNAC at a slower rate compared to Wikipedia.

A key component to SNAC is the OpenRefine (previously, a private endeavor called

Google Refine) plugin. According to their homepage, OpenRefine is a great tool for "working

with messy data; cleaning it; transforming it from one format into another; and extending it with

web services and external data" (OpenRefine, 2010). After Google discontinued support of the

13

project, it became open source and is now the primary interface that approved users interact with

when editing data in SNAC. OpenRefine has a web user interface but is not hosted on the web.

Rather, it must be downloaded and run locally. The myriad of editing tools available makes

OpenRefine a very powerful tool, especially compared to the system that Wikipedia uses. Edits

to Wikipedia include simply changing the text on a webpage. Any other instances of that same

data on other webpages will not be changed in parallel. Seemingly the opposite of Wikipedia,

SNAC is designed to be editable by reliable entities, always contain accurate information, and

give editors powerful tools for working with large and varied datasets.

3. System Design

 The goal of our project is to provide an interface for users to clean and manipulate

historical data that will be then uploaded to the SNAC database. Our plugin was intended for

members of cooperatives (such as that of institutions, universities, and libraries that are a part of

the SNAC Cooperative) so that they could more easily upload data. While the average user (i.e.

users who are not a part of the SNAC Cooperative) has access to the tool, as it is open source and

available on GitHub, they will not be able to upload data without the proper credentials.

Therefore, most users who intend to use SNAC will most likely use the website to look for

information.

The backend was mainly implemented in Java while the frontend user interface was

implemented in HTML/Javascript/CSS. There was not a choice of which programming

languages to use because most of the plugin was already built out with these languages, and our

project was mainly to add onto this existing project. Our code is licensed under the BSD3-

Clause, a license allowing freedom in letting individuals use code without needing to disclose the

14

source code or libraries as long as users address the copyright notice (The 3-Clause BSD

License).

3.1 System Requirements

 It is important to have system requirements so that the customer and the development

team can have a clear understanding of what the project’s long-term goals and timeline are.

While there is potential for system requirements to change, having the system requirements set in

the beginning will allow for the development team to have more productive sprints and

accomplish what was set out more effectively.

 Therefore, our system requirements (minimum and desired) are as follows:

Minimum requirements:

● Allowing users to import CSV data into the plugin

● Connect the data fields with different SNAC IDs

● Search for constellations in SNAC and match them to the imported data

● Allow a human editor to choose from several options to match for when the plugin is

unsure

● Reconcile the imported changes based on the connection and matches

● Download the data that is now reconciled with SNAC's structure

● Users with privileges will be able to publish the data to SNAC

Desired requirements:

● Users will be able to reconcile more complex data items like relationships and

geolocations

● Users will be able to edit already existing resources and constellations

15

So far, no optional requirements have been specified by the client.

3.2 Wireframes

Wireframes are an important tool for communication during development. It allowed the

team to effectively understand and visualize the requirements requested by the client. Below are

the initial wireframes for the project.

Figure 3.1.2 - Issues Wireframe Figure 3.1.1 - Schema Wireframe

Figure 3.1.3 - Preview Wireframe

16

3.3 Sample Code

Figure 3.3.1 - detectLanguage

A function used as a validator for languages associated with a given resource object. It
takes a given ISO code from the resource and runs it through SNAC’s database to make
sure such ISO code is supported before inserting it into SNAC. If it exists, return the result
string (which contains language description, name, and id) and store them into an array for
later purposes, such as displaying them in the preview tab. If it does NOT exist, then
proceed onto the next resource object.

17

Figure 3.3.2 – setUp. Essentially the brain of the whole resource building operation. There
are four components to each operation; 1. setProject: gives the backend a reference to the
“project” object which contains all the data from the imported csv. 2.
updateColumnMatches: Transfers the column headers that were aligned by the user to the
backend to help with locating cell values within the “project” object. 3. rowsToResources:
Converts row objects within project into resource objects. 4. exportResourcesJSON:
Converts our resources into a json format that can later be exported by our users.

Figure 3.3.3 – rowsToResources. Extracts rows from the given “project” and
converts them into resource objects based on the cell values within those rows.
Specifically, one resource can span more than one row if they have multiple
values for a given column. OpenRefine calls these “records”. For a given record,
we know the starting and ending row index thus allowing us to group all the rows
associated with an entity and return a list of rows used to build out one resource
object.

18

Figure 3.3.4 - Front-end example. This is an example function you’ll find on the
Javascript (front-end) portion of our project within SNACSchemaAlignmentDialog.js.
Everything found on this Javascript file is what users see when using our plugin. For
this specific preview function, it calls onto the backend using “get” to obtain one or
two resources/constellations as a string that will be displayed on the preview tab for
users to see before pushing all objects onto the SNAC database

19

Figure 3.3.5 - doPost example. A key function in allowing the plugin to transfer
information from the frontend to the backend. Anytime the front end uses the function
post, doPost will activate. This specific doPost is used for uploading resources into
SNAC. When the user clicks on “Upload to SNAC” in the plugin, the frontend will call
post which tells the backend to take all the resources it generated and upload them onto
SNAC.

20

3.4 Sample Tests

While implementing unit tests may seem redundant at first, eventually these tests will

prove to be extremely impactful while developing new features. Testing allows developers to

know if the product fails due to a new feature or an edit on an existing feature. As more tests are

being developed, the easier it becomes to hone in on the portion of the code that may have

caused a build failure thus effectively improves debugging without the need to manually test

every functionality.

Figure 3.4.1: Tests for the converting functionality. Records from the imported csv into SNAC Resource
objects that are to be uploaded to the SNAC Database. Specifically, it checks for values that are and
aren’t in a created Resource object.

21

3.5 Code Coverage

Our chosen code coverage tool, Coveralls.io, is a web service that allows developers to

track code coverage over time and ensures that all new developed code is fully covered. We

chose Coveralls.io because the original OpenRefine repository also used Coveralls.io as their

code coverage tool, allowing for easy integration between the code coverage tool and the code

base.

Setting up Coveralls.io was relatively simple. Since Coveralls.io is a web-based tool, we

simply had to connect the Github repository to Coveralls.io. Coveralls.io was configured such

Figure 3.4.2: Tests for the upload functionality. Checks our plugin to see if we are able to connect to the
SNAC’s server through SNAC API.

Figure 3.4.3: Tests for the export functionality. Export the Resources that users generate.
Specifically, this test checks whether the given exported json is correctly formatted.

22

that code coverage runs whenever branch “capstone-master” (our main branch) was updated and

allowed for each developer to independently do work on their own branch before merging into

“capstone-master”. In addition, we also configured the main pom.xml (/pom.xml) such that

Coveralls.io was recognized as a package by the repository. In order to ensure that code coverage

would be 100%, we had to exclude certain files within the SNAC extension via

/extensions/pom.xml. Since these files cannot be tested, we excluded them from code coverage.

Our total code coverage value can be found directly on our GitHub repository

(https://github.com/snac-cooperative/OpenRefine/tree/capstone-master) in the README.md as a

badge titled “coverage”. More information can be displayed once clicking on the badge or going

to https://coveralls.io/github/snac-cooperative/OpenRefine?branch=capstone-master. Note that

the total coverage is around 45%. This is because there are other extensions within the

OpenRefine repository such as database, gdata, jython, etc. that were developed prior to our team

starting development on the SNAC extension. Since we are not working on the other extensions,

we are not responsible for the code coverage of those extensions. The code coverage within the

SNAC extension, therefore, is much higher than the total coverage. By viewing the source files

on Coveralls.io, it is possible to view the code coverage of each individual file and even the lines

that are covered within each file.

Figure 3.5.1: Excluded files. Screenshot of files that were excluded from code coverage in
/extensions/pom.xml.

23

3.6 Installation Instructions

For Mac OS/Linux users:

1. Before proceeding, take note of the required packages/tools you’ll need to run the

program. (See general troubleshooting for required packages/tools).

2. Navigate to https://github.com/snac-cooperative/OpenRefine/tree/capstone-master.

3. Click on the “Clone or download” button and then copy the URL under “Clone with

HTTPS” then run git clone https://github.com/snac-cooperative/OpenRefine.git (the link

that you copied from “Clone with HTTPS”).

4. Navigate into the root directory of the repository you cloned.

5. Switch to the capstone-master branch: git checkout capstone-master

6. Run git pull origin capstone-master

7. Run ./refine build in the terminal.

8. Run ./refine in the terminal.

9. A local build should open in your web browser that you should be able to access.

For Windows users:

1. Before proceeding, take note of the required packages/tools you’ll need to run the

program. (See general troubleshooting for required packages/tools).

2. Navigate to https://github.com/snac-cooperative/OpenRefine/tree/capstone-master.

3. Click on the “Clone or download” button and then copy the URL under “Clone with

HTTPS”, then run git clone https://github.com/snac-cooperative/OpenRefine.git (the link

that you copied from “Clone with HTTPS”).

4. Navigate into the root directory of the repository you cloned.

5. Switch to the capstone-master branch: git checkout capstone-master

6. Run git pull origin capstone-master

7. Run ./refine build in Git Bash or any Linux-based terminal. This should build

dependencies for the project (it may take a while).

8. Run ./refine.bat to open a localhost version of the project.

9. A local build should open in your web browser that you should be able to access.

General troubleshooting:

24

● The application should still run fine despite warnings from the tool about having too new

of a Java version.

● You should have JDK 8 and Apache Maven (primarily used for testing of the project)

installed.

○ Failing ./refine test for reasons other than failed test cases may be caused by not

having Maven properly installed. Please have a Maven version of at least 3.6.3

and set the location of the unzipped package (ex. ../apache-maven-3.6.3) to an

environment variable called MVN_HOME.

○ If you run ./refine test and it gives you the error of “No such file or folder”, it may

be because there’s a space in your file path, i.e.

“Desktop/My Files/Openrefine”. The workaround solution right now is to change

your file path so that it doesn’t have spaces either by moving the project around or

changing the name of the directory with a space in it. i.e.

“Desktop/My_Files/Openrefine”.

● Sometimes, running mvn clean install rebuilds a clean version of the dependencies and

can resolve “weird” issues.

Troubleshooting for Windows users:

● If an error similar to “not able to find Google.Refine.refine” appears, attempt to run

./refine build followed by ./refine.bat in terminal. Another option is to click the

“refine.bat” file in the directory itself, which runs the script to open the localhost.

● If there is an error that complains about your JAVA_HOME environment not being

configured correctly, check to see that echo %JAVA_HOME% works within the terminal

to see if the correct Java file path appears.

○ If you need to change your environment variables, go to System Properties →

Environment Variables. Under “System variables”, there should be a variable

called “JAVA_HOME” with a value of something like “C:\Program

Files\Java\jdk1.8.0_131” or wherever you have your jdk located on your local

computer. If you do not have this configured, you should set it up.

25

Troubleshooting for Mac users:

● If an error similar to “not able to find Google.Refine.refine” appears, attempt to run

./refine build followed by ./refine.bat in terminal. Another option is to click the

“refine.bat” file in the directory itself, which runs the script to open the localhost.

● If there is an error that complains about your JAVA_HOME environment not being

configured correctly, check to see that echo $JAVA_HOME works within the terminal to

see if the correct Java file path appears.

○ If it does not show a Java version, then you will need a Java version past 8 and set

the JAVA_HOME environment variable for MacOS. See Aggarwal (2018) or

“How to set JAVA_HOME environment variable on Mac OS X 10.9?” (2014) for

help with this.

Other Resources:

● Installation Instructions (OpenRefine, 2019)

● OpenRefine Installing Java (OpenRefine, 2019)

26

4. Results

The plugin has enabled participating institutions and individuals to upload and

consolidate certain large tracts of data on historical artifacts. As originally intended, the project

produced a stable product in the form of an extension to an existing open source project that

solves most of the problems presented by the client. The client is pleased with the progress that

had been made with the intention of the project being assigned to future developers for a later

date for continued development. The client in particular is also a developer in the same

associated space. The developers work on the API and web-server side that our tool

communicates with.

This tool helps guide the development on their side to be more compatible with our work

so that it may be readable and passes on without trouble. As for the actual customer base this will

eventually be shuttled to, the customer can use this tool by downloading and installing

dependencies as stated in the installation instructions. Once done, they can upload their data

through the tool, consolidate changes, and push them onto the official SNAC database. Usually,

inserting records into the database via the website interface takes a few minutes every entry,

which leads hundreds of entries, which takes hours in a day. With the tool, hundreds of entries

can now be processed and pushed to SNAC in a couple minutes. With 34 participating

institutions around the world and counting, 2 million resources and counting, and 33,000 SNAC

users on average, the OpenRefine Capstone team is hoping to streamline working with SNAC

(About SNAC, n.d.).

27

5. Conclusion

In the end, we were able to successfully build a stable plugin that allows participating

organizations and individuals to streamline bulk data insertion to SNAC. Compared to the

website interface, this significantly decreases the amount of time spent trying to insert resources

from hours to mere minutes. This will ultimately allow the institutions already using SNAC to

easily pursue the goals of creating accessible information while enticing others to follow suit.

Academic institutions and universities, more than ever, are seeking ways to efficiently access

and organize data online. Our work contributes to an open source code base that will be used by

many in the future. This shows the impact and importance of creating tools that seek to increase

the efficiency of working and manipulating large amounts of data.

28

6. Future Work

A remedial action to take is to think of ways to make this plugin as user-friendly as

possible for non-technical people. It is safe to assume that archivists, the ones that will be using

this plugin, are non-technical in terms of figuring out how to use the tool initially. One way to

take action to make the interface as user-friendly as possible is to provide tips for users. This can

be done by having pop-ups that guide you through the tool the first time you use it that explains

what the possible functionalities are and how to use them. That way, archivists will become well-

versed with the tool and know its capabilities and functionalities when testing and pushing their

own data.

Directions for future investigations can go towards optimizing the performance of the

plugin through a couple ways. One way could be to possibly implement a machine learning

algorithm that could potentially be trained for column name detection so there would be no need

for drop downs. Users can then validate the column names after they have been assigned headers

if needed. Another way could be to have the ability to upload multiple resources through the API

calls to help reduce the network latency or possibly the processing time needed to upload each

resource individually. Cloud is something viable for this plugin. This would enable more

possibilities such as automatic updates so users would always have the most updated version and

not have to download a new version every time. It would also be less maintenance for the users

and less resources to manage on their local machines.

29

7. References

About SNAC. (n.d.). Retrieved from https://portal.snaccooperative.org/about

Aggarwal, H. (2018, January 28). Setting up Environment Variables in MacOS Sierra. Retrieved

April 25, 2020, from https://medium.com/@himanshuagarwal1395/setting-up-

environment-variables-in-macos-sierra-f5978369b255

Criticism of Wikipedia. (2020, March 20). Retrieved from

https://en.wikipedia.org/wiki/Criticism_of_Wikipedia#Accuracy_of_information

Ham, K. (2013). Free, Open-source Tool for Cleaning and Transforming Data. Journal of the

Medical Library Association. Retrieved from https://www.ncbi.nlm.nih.gov/

Hill, K. M. (2016). In Search of Useful Collection Metadata: Using OpenRefine to Create

Accurate, Complete, and Clean Title-Level Collection Information. Serials Review,

42(3), 222-228. Retrieved from https://www.sciencedirect.com/journal/serials-review

How to set JAVA_HOME environment variable on Mac OS X 10.9? (2014). Retrieved April 25,

2020, from https://stackoverflow.com/questions/22842743/how-to-set-java-home-

environment-variable-on-mac-os-x-10-9

Jeong, M (2019, October 28). Personal Interview with J Glass.

OpenRefine. (2010). Introduction to OpenRefine. Retrieved from http://openrefine.org/

OpenRefine. (2019). Installation Instructions. Retrieved April 25, 2020, from

https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions

OpenRefine. (2019). OpenRefine Installing Java. Retrieved April 25, 2020, from

https://github.com/OpenRefine/OpenRefine/wiki/Setup-JAVA

30

Park, J-R. (2008). Metadata Quality in Repositories: a Survey of the Current State of the Art.

Cataloging & Classification Quarterly, 47(3), 213-228.

doi:10.1080/01639370902737240

The 3-Clause BSD License. (n.d.). Retrieved April 25, 2020, from

https://opensource.org/licenses/BSD-3-Clause

