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Abstract
Machine learning is an emerging technology with few principled engineering frame-
works to guide its application. In particular, theoretical frameworks for understand-
ing the interrelationships between systems and their learning processes are underde-
veloped. The presented research addresses this gap by using Mesarovician abstract
systems theory as a mathematical superstructure for learning theory, using the syn-
thesized theory to characterize transfer learning systems, and operationalizing the
resulting findings towards an empirical methodology for system design and opera-
tion. In particular, transfer distance, the abstract distance knowledge must traverse
to be transferred from one system to another, is used as a metric for generalization
difficulty, and thereby as a mechanism for relating the generalization of component
learning systems to overall system design and operation. In sum, the presented
research develops a systems theoretic framework for transfer learning and shows
how it can be used to develop and organize best practices and tradecraft in systems
engineering for artificial intelligence.
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Notation
Let X denote a set and x ∈ X denote its elements. For notational convenience
random variables are not distinguished—probability measures on X are denoted
P (X). The Cartesian product is denoted×, and for any object Vi = Vi1× . . .×Vin,
Vi shall denote the family of component sets of Vi, Vi = {Vi1, . . . , Vin}. The
cardinality of X is denoted |X|. The powerset is denoted P . Herein it has two
uses. Frequently, in order to express input-output conditions for a learning system
we will only use its input-output representation S : D × X → Y . In contexts
where S ⊂ ×{A,D,Θ, H,X, Y }, we use (d, x, y) ∈ P(S) to make reference to
the input-output representation. Also, the subset of the powerset of a powerset
K ⊂ P(P(D ∪ Θ)) is used to denote that K can be ⊂ D, ⊂ Θ, or ⊂ D × Θ, etc.,
i.e., to make reference to ordered pairs. Often, we make reference to d ∈ D to say a
particular set of data d from the larger setD. Additionally, for a system S ⊂ X×Y ,
when we discuss x ∈ X or y ∈ Y it is assumed that (x, y) ∈ S unless stated
otherwise. This is to save the reader from the pedantry of Mesarovician abstract
systems theory.
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1 Introduction
Machine learning has moved beyond being a research field to being a workable
approach for building autonomous functions into systems, however, a principled
discipline for the systems engineering of systems with learning algorithms has yet to
emerge. Although learning algorithms offer statistical improvements in performance
and allow for novel functionality, their interactions with the systems within which
they are embedded raise concerns.

Frameworks for studying these relationships are underdeveloped. Although
research in cybernetics and general systems theory has explored these issues for
decades [24], the bulk of its findings rely on metaphorical abstractions that often
abstract the frameworks away from the specific nature of the underlying learning
processes. Conversely, machine learning and learning theoretic approaches focus on
the learning processes and learning algorithms in isolation [58,87], thereby lacking
the broader systems context and neglecting the broader systems view.

From this observation, it appears desirable to find a middle ground. By sacri-
ficing some of the generality of general systems theory and some of the specificity
of learning theory, a Mesarovician abstract systems theory (AST) of learning is
able to closely knit systems and learning theory together. AST is a mathematical
framework for studying the nature of general systems [56]. By using systems theory
as a superstructure for learning, learning algorithms can be formally studied in the
context of the systems within which they operate.

Formal systems theory is often seen as a conceptual tool and an unnecessary
cost, if not a hindrance, in detailed modeling and analysis. However, since learning
theory and machine learning are largely mathematical constructs, mathematical
systems theory offers an appropriate meta theory, and, further, since AST and
learning theory are similarly general in their pursuits of general understandings,
their respective understandings ought to be readily expressible in each others’ terms.
This observation bears out mathematically. Systems theory is largely a theory of
sets. Learning theory is largely a theory of probability, or, in other words, a theory
of measures on those sets. Because of this closeness, significant general systems
elaboration on learning can be afforded without a loss of parsimony, and general
systems results can be translated into the terms of learning theory or those of
particular solutions methods of interest.

Here, the focus centers on transfer learning. Transfer learning describes the
ability of a system to use knowledge learned in previous tasks to help learn novel
tasks. Instead of studying transfer learning as a learning algorithm, as in machine
learning, or as a learning process, as in learning theory, we formalize it as a sys-
tem. By elaborating on this formalization, we arrive at formal, general systems
notions of transferrability, transfer roughness, and transfer distance. Transfer dis-
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tance describes the abstract distance knowledge must traverse to be transferred from
one system to another. Informed by our characterization of transfer learning as a
system, we demonstrate transfer distance’s use as a metric for systems engineering,
particularly for system design and operation.

Systems theory can serve as a foundation for a principled discipline of systems
engineering for artificial intelligence (AI) by providing a framework for developing
and organizing best practices and tradecraft. In transfer learning, such a systems
theoretic framework, as presented herein, stands in stark contrast to existingmachine
learning frameworks with respect to the breadth of its formalism and its overall per-
spective. By taking a top-down, systems approach to formalizing transfer learning,
we arrive at a characterization of transfer learning as a general, mathematical con-
struct without explicit reference to solution methods. Moreover, the framework can
integrate those aspects of learning theory andmachine learning pertinent to a system
of interest without restructuring the framework. As such, the framework can be used
both to make general considerations about best practices in transfer learning systems
and also to arrive at discipline-specific tradecraft for realizing those systems.

The structure of this dissertation is as follows. First, background on systems
theory and transfer learning is given in Section 2. The body of the dissertation
is divided into two parts. Section 3 presents the systems theoretical framework
for transfer learning systems, Section 4 demonstrates its use in developing and
organizing best practices and tradecraft for system design and operation, and together
they show that systems theory can be used as a foundation for a principled discipline
of systems engineering for AI. Section 5 concludes the dissertation. Supplementary
material can be found in the succeeding Appendix.
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2 Background
In the followingwe review general systems theory and introduce pertinentMesarovi-
cian abstract systems theory. Then we review transfer learning and make explicit
the principal differences between existing frameworks and ours. These preliminar-
ies support the dissertation at large. Specific background applying to Section 4 is
given therein. A supplemental glossary of Mesarovician terms can be found in the
Appendix.

2.1 General Systems Theory
Set-theoretic systems theory draws from two principal schools of thought: Ludwig
von Bertalanffy’s general systems theory [8,9,90] and Norbert Weiner’s cybernetics
[50,71,94]. Many scientists and researchers have contributed to the schools, notably
Anatol Rapoport [68, 69] and Kenneth Boulding [11] to von Bertalanffy’s and
Ross Ashby [4] and Herbert Simon [78, 79] to Weiner’s. The schools experienced
extensive co-development and it is difficult to dichotomize contributing authors.

Ludwig von Bertalanffy expresses his vision for general systems theory articu-
lately using an observation [90]:

“. . . there exist models, principals, and laws that apply to generalized
systems or their subclasses, irrespective of their particular kind, the
nature of their component elements, and the relationships or “forces”
between them. It seems legitimate to ask for a theory, not of systems
of a more or less special kind, but of universal principles applying to
systems in general.”

Despite his intentions, his work and those closely following his school of thought
fell short of developing a rigorous theory. Their work can be characterized as
a descriptive approach to general systems theory that makes a heavy reliance on
metaphors instead of axioms.

Cybernetics was more mathematically grounded than von Bertalanffy’s general
systems theory at its conception [50,71,94]. In the field’s seminal text [94], Weiner
defines cybernetics as:

“the scientific study of control and communication in the animal and
the machine.”

Importantly, his work and that of others in the field showed that interdisciplinary
problems can be treated mathematically, and that control processes can be found
everywhere in nature.
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Drawing from the success of formalism in cybernetics and the vision of general
systems theory, subsequent work by Jay Forrester [28], George Klir [38], A. Wayne
Wymore [98], and M.D. Mesarovic [53, 55], among others, laid the foundations for
formal general systems theories. Wymore andMesarovic, in contrast tomany of their
contemporaries, tried to directly formulate a mathematical general systems theory.
Both Wymore and Mesarovic took set-theoretic approaches, however, whereas the
formalism of Wymore’s mathematical structure was heavier and biased towards
engineering applications [96,97], Mesarovic’s was light-weight and highly abstract.

Mesarovician systems theory, referred to by its originator first as general systems
theory [55], and later by the more distinguishing title abstract systems theory [56], is
a set-theoretic mathematical framework that seeks to realize von Bertalanffy’s vision
in a way that is “simple, elegant, general, and precise” [55]. Concepts are introduced
axiomatically, and mathematical structures needed to do so are introduced such that
the formalisms are precise without losing their generality. In arguing for such a
mathematical approach, Mesarovic states that [55]:

“...the investigation of the logical consequences of systems having given
properties should be of central concern for any general systems theory
which cannot be limited solely to a descriptive classification of systems.”

Mesarovic develops his theory using a process he refers to as formalization.
The process involves giving a verbal description a precise mathematical definition
using as few axioms as possible. Mathematical structure is added as needed to
specify systems properties of interest. Thus, the formalization approach to general
systems theory naturally identifies how fundamental particular systems properties
are relative to others. Mesarovician systems theorists use the formalization approach
to specify properties and arrive at specific classes of systems. The relationships
between classes of systems can then be formally studied using a category theory of
systems [56]. What results is a mathematically explicit understanding of how very
general classes of systems relate to each other.

Mesarovic’s systems theory was extended throughout the 20th century, notably
by Yasuhiko Takahara and DonaldMacko [49,56,57]. Mesarovic and others applied
his framework to biological systems [52, 54], however, most results strictly follow-
ing his initial theory were purely mathematical. The work presented herein extends
Mesarovic’s framework for studying general systems to study general learning pro-
cesses in general systems, thereby helping to fill the gap in formal frameworks for
characterizing learning in a systems context. Specifically, we first formalize learning
systems, then formalize transfer learning as a relation on learning systems, and fi-
nally connect the formalism to practice by using it to inform empirical methodology
for system design and operation.
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Figure 1: AST is a minimally formal framework. In modeling learning, learning
theory brings formalism to AST, and machine learning specifies the detailed model.

2.2 Mesarovician Abstract Systems Theory
Mesarovician abstract systems theory is a general systems theory that adopts the
formal minimalist world-view [24, 56]. AST is developed top-down, with the goal
of giving a verbal description a parsimonious yet precise mathematical definition.
Mathematical structure is added as needed to specify systems properties of interest.
This facilitates working at multiple levels of abstraction within the same framework,
where mathematical specifications can be added without restructuring the frame-
work. In modeling, it is used as an intermediate step between informal reasoning
and detailed mathematics by formalizing block-diagrams with little to no loss of
generality, see Figure 1. Apparently this generality limits its deductive powers, but,
in return, it helps uncover fundamental mathematical structure related to the general
characterization and categorization of phenomena.

We will now review the AST definitions of a system, input-output system,
and goal-seeking system, and the related notions of system structure and behavior.
Additional details can be found in the Appendix.

In AST, a system is defined as a relation on component sets. When those sets can
be partitioned, the system is called an input-output system. Systems and input-output
systems are defined as follows.

Definition 1. System.
A (general) system is a relation on non-empty (abstract) sets,

S ⊂ ×{Vi : i ∈ I}

where × denotes the Cartesian product and I is the index set. A component set Vi
is referred to as a system object.

Definition 2. Input-Output Systems.
Consider a system S, where S ⊂ ×{Vi : i ∈ I}. Let Ix ⊂ I and Iy ⊂ I be a
partition of I , i.e., Ix ∩ Iy = ∅, Ix ∪ Iy = I . The set X = ×{Vi : i ∈ Ix} is termed
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the input object and Y = ×{Vi : i ∈ Iy} is termed the output object. The system is
then

S ⊂ X × Y

and is referred to as an input-output system. If S is a function S : X → Y , it is
referred to as a function-type system.

AST is developed by adding structure to the component sets and the relation
among them. Input-output systemswith an internal feedbackmechanism are referred
to as goal-seeking (or cybernetic) systems. The internal feedback of goal-seeking
systems is specified by a pair of consistency relations G and E which formalize
the notions of goal and seeking, respectively. Figure 2 depicts input-output and
goal-seeking systems. Goal-seeking systems are defined as follows.

Definition 3. Goal-Seeking Systems.
A system S : X → Y has a goal-seeking representation if there exists a pair of
maps

SG : X × Y → Θ

SF : Θ×X → Y

and another pair

G : Θ×X × Y → V

E : X × Y × V → Θ

such that

(x, y) ∈ S ↔ (∃θ)[(θ, x, y) ∈ SF ∧ (x, y, θ) ∈ SG]

(x, y,G(θ, x, y), θ) ∈ E ↔ (x, y, θ) ∈ SG

where
x ∈ X, y ∈ Y, θ ∈ Θ.

SG is termed the goal-seeking system and SF the functional system. G and E are
termed the goal and seeking relations, and V the value.

System structure and behavior are focal in Mesarovician characterizations of
systems. System structure refers to the mathematical structure of a system’s com-
ponent sets and the relations among them. For example, there may be algebraic
structure related to the specification of the relation, e.g. the linearity of a relation-
ship between two component sets. System behaviors, in contrast, are properties
or descriptions paired with systems. For example, consider a system S : X → Y
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Figure 2: Input-output systems (left) and goal-seeking systems (right).

and a map S → {stable, neutral, unstable}. A linear increasing function and an
increasing power function may both be considered behaviorally unstable, but clearly
their structures are different [56].

Similarity of systems is a fundamental notion, and it can be expressed well in
structural and behavioral terms. Structural similarity describes the homomorphism
between two systems’ structures. Herein, in accord with category theory, a map
from one system to another is termed a morphism, and homomorphism specifies the
morphism to be onto. Homomorphism is formally defined as follows.

Definition 4. Homomorphism.
An input-output system S ⊂ X × Y is homomorphic to S ′ ⊂ ×X ′ × Y ′ if there
exists a pair of maps,

% : X → X ′, ϑ : Y → Y ′

such that for all x ∈ X , x′ ∈ X ′, and y ∈ Y , y′ ∈ Y ′, %(x) = x′ and ϑ(y) = y′.

Behavioral similarity, in contrast, describes the proximity or distance between two
systems’ behavior. As in AST generally, we use structure and behavior as the
primary apparatus for elaborating on our formulation of transfer learning systems.
Refer to the Appendix for additional details on structure, behavior, and similarity.

2.3 Transfer Learning
DARPA describes transfer learning as “the ability of a system to recognize and apply
knowledge and skills learned in previous tasks to novel tasks” in Broad Agency
Announcement (BAA) 05-29. The previous tasks are referred to as source tasks
and the novel task is referred to as the target task. Thus, transfer learning seeks to
transfer knowledge from some source learning systems to a target learning system.

Transfer learning is widely studied by computer scientists [19,65,73,83,93,101].
The generality of the transfer learning framework makes it a super-structure for
many learning problems. It is closely related to other generalization mechanisms
such as multi-task learning [105], domain adaptation [6, 66], and concept drift
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Figure 3: Existing frameworks interpret the informal definition of transfer learning
given by DARPA in terms of domain D and task T . In contrast, we use structure
and behavior, which provide a more formal basis for elaboration.

[23, 29, 36, 92, 106, 107], which focus on sharing data, features, and parameters
to improve learning, and loosely related to meta-learning and learning to learn
[43,44,81,88,89], which focus on using meta-data about the learning process itself
to improve learning.

Transfer learning enables learning in environments where data is limited. Per-
haps more importantly, it allows learning systems to propagate their knowledge for-
ward through distributional changes, such as the degradation and wear of physical
components, changes in use cases and functionality, and policy changes regarding
the use of particular features X and labels Y [16]. The classical approaches to
transfer learning involve selecting or weighing samples from the source, projecting
the source and target features into a latent space, or bounding the parameters of the
target model within a range of the source model’s parameters [64].

Identifying whether or not transfer learning is an appropriate solution for a
particular learning problem is crucial [72]. Failure to do so can result in negative
transfer, wherein dissimilarity between the source and target systems results in
transfer learning under-performing traditional machine learning approaches. While
the extent of negative transfer is algorithm-dependent, the existence of negative
transfer is tied to the distributions underlying the learning problem [91]. Thus,
closeness between the source and target distributions is a pre-condition for transfer
learning success.

Existing frameworks for transfer learning focus on a dichotomy between domain
D and task T . The domain D consists of the input space X and its marginal
distribution P (X). The task T consists of the output space Y and its posterior
distribution P (Y |X). The seminal transfer learning survey frames transfer learning
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in terms of an inequality of domains D and tasks T [64]. Therein, Pan and Yang
define transfer learning as follows.

Definition 5. Transfer learning.
Given a source domainDS and task TS and a target domainDT and task TT , transfer
learning aims to improve the learning of P (YT |XT ) in the target using knowledge
in DS and TS , where DS 6= DT or TS 6= TT .

Pan andYang continue by defining inductive transfer as the casewhere the source
and target tasks are not equal, TS 6= TT , and transductive transfer as the case where
the source and target domains are not equal but their tasks are,DS 6= DT ∧TS = TT .
They use these two notions, and their sub-classes, to categorize the transfer learning
literature and its affinity for related fields of study. Alternative frameworks use
notions of homogeneous and heterogeneous transfer, which correspond to the cases
where the sample spaces of the source and target domainsX and tasks Y are or are
not equal, respectively [93].

While these formalisms describe the literature well, they are not rich enough to
maintain formalism in the elaboration of their respective frameworks. For example,
Pan and Yang address what, how, and when to transfer in a largely informal manner,
making reference to inductive and transductive transfer as guideposts, but ultimately
resorting to verbal descriptions [64]. In contrast, instead of starting with domain
D and task T as the fundamental notions of transfer learning, we use structure
and behavior—two concepts with deep general systems meaning, define transfer
learning as a relation on systems, and carry formalism through into subsequent
elaboration. The principal difference between existing frameworks and ours is
depicted in Figure 3. Importantly, despite our formalism, we maintain a general
systems level of abstraction, in contrast to purely learning theoretical frameworks
for transfer learning [40]. As such, we compare our general framework with those
of Pan and Yang [64] and Weiss et. al [93]. The presented work greatly expands on
previous, initial efforts in this direction [15, 16].

An important and under-studied related notion in transfer learning is transfer
distance. Transfer distance is an informal term used to describe the abstract dis-
tance between learning tasks. Accordingly, far transfer refers to dissimilar tasks,
and near transfer refers to similar tasks. While many transfer learning algorithms
involve computing a transfer distance, e.g., maximum mean discrepancy [62], as a
distributional-divergence-based component of loss functions, there are few works
studying it directly [5,10,59,102], let alone studying its use in engineering practice.
The presented research helps fill this gap by formalizing transfer distance in systems
theoretic terms, wherein transfer distance is a function of the behavioral similarity
of learning systems, and applying this formalism towards empirical methodology
for system design and operation.
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2.3.1 Generalization Bounds in Domain Adaptation

Domain adaptation is a sub-field of transfer learningwhereXS×YS = XT×YT [33].
In other words, only the probability distributions change between the sources and
target, not their sample spaces. Domain adaptation theory places transfer distance
at the center of bounding error in new environments [5,10]. The common approach
taken is to note that the error in the target is related to the error in the source plus
some measure of similarity between the source and target.

These bounds can be loosely represented by the following inequality,

εT ≤ εS + δ + C (1)

where εT and εS are the errors in the source and target, δ is the transfer distance,
andC is a constant term which accounts for relevant complexities, for example, VC-
dimension [5]. Although Inequality 1 is an approximation of the underlying learning
theory, specifications can be added to arrive at proper, learning theoretic bounds
using statistical divergence [10], H-divergence [5], Rademacher complexity [59],
or integral probability metrics [102].



18

3 A Systems Theory of Transfer Learning

3.1 Introduction
Transfer learning, unlike classical learning, does not assume that the training and op-
erating environments are the same, and, as such, is fundamental to the development
of real-world learning systems. In transfer learning, knowledge from various source
sample spaces and associated probability distributions is transferred to a particular
target sample space and probability distribution. Transfer learning enables learning
in environments where data is limited. Perhaps more importantly, it allows learning
systems to propagate their knowledge forward through distributional changes.

Mechanisms for knowledge transfer are a bottleneck in the deployment of learn-
ing systems. Learning in identically distributed settings has been the focus of
learning theory and machine learning research for decades, however, such settings
represent a minority of use cases. In real-world settings, distributions and sample
spaces vary between systems and evolve over time. Transfer learning addresses
such differences by sharing knowledge between learning systems, thus offering a
theory principally based on distributional difference, and thereby a path towards the
majority of use cases.

Existing transfer learning frameworks are incomplete from a systems theoretic
perspective. They focus on domain and task, and neglect perspectives offered by
explicitly considering system structure and behavior. Mesarovician systems theory
can be used as a super-structure for learning to top-down model transfer learning,
and although existing transfer learning frameworks may better reflect and classify
the literature, the resulting systems theoretic framework offers a more rigorous
foundation better suited for system design and analysis.

Mesarovician systems theory is a set-theoretic meta-theory concerned with the
characterization and categorization of systems. A system is defined as a relation on
sets and mathematical structure is sequentially added to those sets, their elements, or
the relation among them to formalize phenomena of interest. By taking a top-down,
systems approach to framing transfer learning, instead of using a bottom-up survey of
the field, we naturally arrive at a framework for modeling transfer learning without
necessarily referencing solution methods. This allows for general considerations
of transfer learning systems, and is fundamental to the understanding of transfer
learning as a mathematical construct.

We provide a novel definition of transfer learning systems, dichotomize trans-
fer learning in terms of structure and behavior, and formalize notions of negative
transfer, transferability, transfer distance, and transfer roughness in subsequent elab-
orations. This section is structured as follows. First we define learning systems and
discuss their relationship to abstract systems theory and empirical risk minimization
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in Section 3.2. Using this definition, transfer learning systems are defined and stud-
ied in Sections 3.3 and 3.4. We conclude with a synopsis and remarks in Section
3.5.

3.2 Learning Systems
We followMesarovic’s top-down process to sequentially construct a learning system
S. Learning is a relation on data and hypotheses. To the extent that a scientific
approach is taken, those hypotheses are explanations of initial-final condition pairs
[67]. Otherwise put, we are concerned with learning as function estimation. We
additionally note that learning algorithms use data to select those hypotheses and
that the data is a sample of input-output pairs [87]. Such a learning system can be
formally defined as follows.

Definition 6. (Input-Output) Learning System.
A learning system S is a relation

S ⊂ ×{A,D,Θ, H,X, Y }

such that

D ⊂ X × Y,A : D → Θ, H : Θ×X → Y

(d, x, y) ∈ P(S)↔ (∃θ)[(θ, x, y) ∈ H ∧ (d, θ) ∈ A]

where
x ∈ X, y ∈ Y, d ∈ D, θ ∈ Θ.

The algorithm A, data D, parameters Θ, hypotheses H , input X , and output Y are
the component sets of S, and learning is specified in the relation among them.

The above definition of learning formalizes learning as a cascade connection of
two input-output systems: an inductive system SI ⊂ ×{A,D,Θ} responsible for
inducing hypotheses from data, and a functional system SF ⊂ ×{Θ, H,X, Y }, i.e.
the induced hypothesis. SI and SF are coupled by the parameter Θ. Learning is
hardly a purely input-output process, however. To address this, we must specify the
goal-seeking nature of SI , and, more particularly, of A.

A is goal-seeking in that it makes use of a goal relation G : D × Θ → V that
assigns a value v ∈ V to data-parameter pairs, and a seeking relationE : V ×D → Θ
that assigns parameter θ ∈ Θ to data-value pairs. These consistency relations G
and E specify A, but not by decomposition; i.e., in general, G and E cannot be
composed to formA. The definition of a learning system can be extended as follows.
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Definition 7. (Goal-Seeking) Learning System.
A learning system S is a relation

S ⊂ ×{A,D,Θ, G,E,H,X, Y }

such that

D ⊂ X × Y,A : D → Θ, H : Θ×X → Y

(d, x, y) ∈ P(S)↔ (∃θ)[(θ, x, y) ∈ H ∧ (d, θ) ∈ A]

and

G : D ×Θ→ V,E : V ×D → Θ

(d,G(θ, d), θ) ∈ E ↔ (d, θ) ∈ A

where
x ∈ X, y ∈ Y, d ∈ D, θ ∈ Θ.

The algorithmA, dataD, parameters Θ, consistency relationsG andE, hypotheses
H , input X , and output Y are the component sets of S, and learning is specified in
the relation among them.

Figure 4: Learning systems are a cascade connection of the inductive system SI and
the induced hypothesis SF . SI is goal-seeking.

Learning systems are depicted in Figure 4. These systems theoretic definitions of
learning have an affinity to learning theoretic constructions. Consider empirical risk
minimization (ERM), where empirical measures of risk are minimized to determine
the optimal hypothesis for a given sample [87]. Apparently, ERM specifies G to be
a measure of risk calculated on the basis of a sample drawn independently according
to a probability measure on the approximated function f : X → Y and specifies E
to be a minimization of G over Θ.
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We have demonstrated how our definition of a learning system anchors our
framework to both AST and ERM.We posit these definitions not as universal truths,
but rather as constructions that anchor our framing of transfer learning to systems and
learning theory. We abstain from further elaboration on these definitions, however,
proofs of the above propositions can be found in the Appendix. In the following, we
leaveG andE implicit, only making reference to f and related probability measures.

Example 3.1. Learning in an Unmanned Aerial Vehicle.
Consider an unmanned aerial vehicle (UAV) with a learning system S for path
planning. H is a function from sensor data X , e.g., from accelerometers, cameras,
and radar, to flight paths Y . D, then, consists of sets of sensor-path pairs. If S is
a support-vector machine (SVM), then H is a set of half-spaces parameterized by
Θ and A is a convex optimization routine [82]. The inductive system SI consists
of the optimization routine A and is responsible for selecting path planning models
h ∈ H . Those models h form the functional system SF which takes in sensor data
X and outputs paths Y .

3.3 Transfer Learning Systems
Transfer learning is conventionally framed as a problem of sharing knowledge from
source domains and tasks to a target domain and task. We propose an alternative
approach. We formulate transfer learning top-down in reference to the source and
target learning systems, and then dichotomize subsequent analysis not by domain
and task, but rather by structure, described primarily by the X × Y space, and
behavior, described primarily by probability measures on the estimated function
f : X → Y .

A transfer learning system is a relation on the source and target systems that
combines knowledge from the source with data from the target and uses the result to
select a hypothesis that estimates the target learning task fT . We define it formally
as follows.

Definition 8. Transfer Learning System.
Given source and target learning systems SS and ST

SS ⊂ ×{AS, DS,ΘS, HS, XS, YS}
ST ⊂ ×{AT , DT ,ΘT , HT , XT , YT}

a transfer learning system STr is a relation on the component sets of the source and
target systems

STr ⊂ SS × ST
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such that
KS ⊂ DS ×ΘS, D ⊂ DT ×KS

and

ATr : D → ΘTr, HTr : ΘTr ×XT → YT

(d, xT , yT ) ∈ P(STr)↔ (∃θTr)[(θTr, xT , yT ) ∈ HTr ∧ (d, θTr) ∈ ATr]

where
xT ∈ XT , yT ∈ YT , d ∈ D, θTr ∈ ΘTr.

The nature of source knowledgeKS 1, the transfer learning algorithmATr, hypothe-
ses HTr, and parameters ΘTr specify transfer learning as a relation on SS and ST .

Trivial transfer occurswhen the structure and behavior ofSS andST are the same,
or, otherwise put, when transfer learning reduces to classical, identically distributed
learning. Transfer is non-trivial when there is a structural difference XS × YS 6=
XT × YT or a behavioral difference P (XS) 6= P (XT ) ∨ P (YS|XS) 6= P (YT |XT )
between the source SS and target ST . If the posterior distributions P (Y |X) and
marginal distributions P (X) are equal between the source and target systems, then
transfer is trivial. Non-trivial transfer is implied when XS × YS 6= XT × YT .

Proposition. STr in Definition 8 is a learning system as defined in Definition 6.
Proof: As stated in Definition 8, a transfer learning system is a relation STr ⊂
SS × ST . More particularly, it is a relation STr ⊂ (DS ×ΘS)× (DT ×XT × YT ),
and has a function-type representation STr : DS × ΘS × DT × XT → YT . Its
inductive system is the relation ATr : D → ΘTr, where D ⊂ DS ×ΘS ×DT . And
its functional system is the relation HTr : ΘTr × XT → YT . Thus, we can restate
STr as a relation

STr ⊂ ×{ATr, D,ΘTr, HTr, XT , YT}

and since by Definition 8

(d, xT , yT ) ∈ P(STr)↔
(∃θTr)[(θTr, xT , yT ) ∈ HTr ∧ (d, θTr) ∈ ATr]

where
xT ∈ XT , yT ∈ YT , d ∈ D, θTr ∈ ΘTr,

we have that STr is an input-output learning system as in Definition 6.

1Here, we define the transferred knowledgeKS to beDS and ΘS , the source data and parameters,
following convention [64]. In general, however, source knowledgeKS ⊂ P(P(SS)).
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Figure 5: Transfer learning systems STr are a relationKS ×DT ×XT → YT , while
the target system ST is a relation DT ×XT → YT .

Transfer learning systems are distinguished from general learning systems by
the selection and transfer of KS , and its relation to DT by way of D ⊂ KS × DT

and its associated operator KS × DT → D. In cases where {ATr,ΘTr, HTr} ↔
{AT ,ΘT , HT}, e.g., as is possiblewhen transfer learning consists of pooling samples
with identical supports, the additional input KS is all that distinguishes STr from
ST . Classical and transfer learning systems are depicted in Figure 5.

As wewill see, however, this is no small distinction, as it allows for consideration
of learning across differing system structures and behaviors. But before we elaborate
on the richness of structural and behavioral considerations, first, in the following
subsections, we interpret existing frameworks in terms of structure and behavior and
define preliminary notions related to generalization in transfer learning.

Example 3.2. Transfer Learning in UAVs.
Consider UAVs with learning systems SS and ST defined according to Example 3.1
and a transfer learning system STr ⊂ SS × ST . If STr is also a SVM, then HTr are
also half-spaces parameterized by ΘTr. IfKS ⊂ DS×ΘS , ΘS can provide an initial
estimate for ΘTr, and DS can be pooled with DT to update this estimate. ATr, in
distinction to AT , must facilitate this initialization and pooling.

3.3.1 Comparison to Existing Frameworks

Using Definition 8, the central notions of existing frameworks can be immediately
defined in terms of structural and behavioral inequalities. Homogeneous transfer
specifies structural equality of the source and target sample spaces, XS × YS =
XT × YT , and heterogeneous transfer specifies otherwise. Domain adaptation, co-
variate shift, and prior shift are all examples of homogeneous transfer [18, 33, 64].
Transductive and inductive transfer entail more nuanced specifications.

Recall, inductive transfer specifies that TS 6= TT and transductive transfer spec-
ifies that DS 6= DT ∧ TS = TT , where D = {P (X), X} and T = {P (Y |X), Y }.
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Technically, transductive transfer occurs ifXS 6= XT or if P (XS) 6= P (XT ). How-
ever, ifXS 6= XT , then it is common for P (YS|XS) 6= P (YT |XT ) because the input
set conditioning the posterior has changed, and thus it is likely that TS 6= TT . To that
extent, in the main, transductive transfer specifies a difference between input behav-
ior while output behavior remains equal. Inductive transfer, on the other hand, is
more vague, and merely specifies that there is a structural difference in the outputs,
YS 6= YT , or a behavioral difference in the posteriors, P (YS|XS) 6= P (YS|XT ).
Note, this behavioral difference in the posteriors can be induced by a structural
difference in the inputs as previously mentioned, and is implied by a structural
difference in the outputs.

In short, the homogeneous-heterogeneous dichotomy neglects behavior and the
transductive-inductive framing muddles the distinction between structure and be-
havior. While frameworks based on either cover the literature well, they only
provide high-level formalisms which are difficult to carry through into general, for-
mal characterizations of transfer learning systems. In contrast, Definition 8 provides
a formalism that can be used to define transfer learning approaches and auxiliary
topics in generalization.

3.3.2 Transfer Approaches

Consider how the seminal framework informally classifies transfer learning algo-
rithms [64]. Three main approaches are identified: ‘instance transfer’, ‘parameter
transfer’, and ‘feature-representation transfer’. While the transductive or inductive
nature of a transfer learning system gives insight into which approaches are avail-
able, the approaches cannot be formalized in those terms, or in terms of domain D
and task T for that matter, because they are a specification on the inductive system
SI ⊂ ×{ATr, DTr,ΘTr}, whereas the former are specifications on the functional
system SF ⊂ ×{ΘTr, HTr, XTr, YTr}.

With the additional formalism of Definition 8, these transfer approaches can
be formalized using system structure. First, note that differently structured data D
leads to different approaches. Consider the categories of transfer learning systems
corresponding to the various cases whereD ⊂ P(P(DT ∪DS ∪ΘS)). Instance and
parameter transfer correspond to transferring knowledge in terms of DS and ΘS ,
respectively, and can be formally defined as follows.

Definition 9. Instance Transfer.
A transfer learning system STr is an instance transfer learning system ifKS ⊂ DS ,
i.e., if

ATr : D → ΘTr ⇐⇒ ATr : DS ×DT → ΘTr.
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Definition 10. Parameter Transfer.
A transfer learning system STr is a parameter transfer learning system ifKS ⊂ ΘS ,
i.e., if

ATr : D → ΘTr ⇐⇒ ATr : ΘS ×DT → ΘTr.

Feature-representation transfer, in contrast, specifies that learning involves trans-
formations on ST , KS , or both. It can be defined formally as follows.

Definition 11. Feature-Representation Transfer.
Consider a transfer learning system STr and a learning system SL, termed the latent
learning system. Note, STr and SL can be represented as function-type systems,

STr : D ×XT → YT

SL : DL ×XL → YL.

STr is a feature-representation transfer learning system if there exist maps

mD : D → DL,mXT
: XT → XL,mYL : YL → YT

such that

∀(d, xT , yT ) ∈ (STr)

STr(d, xT )↔ mYL(SL(mD(d),mXT
(xT )))

where
d ∈ D, xT ∈ XT , yT ∈ YT .

In other words, STr is a feature-representation transfer learning system if transfer
learning involves transforming to and from a latent system where learning occurs.

Proposition. Learning in SS , ST , and SL.
Consider a case of feature-representation transfer where KS ⊂ DS . Let mDT

:
DT → DL and mDS

: DS → DL. Then, mD ⇐⇒ (mDT
,mDS

). Recall
Di ⊂ Xi × Yi. IfmDT

is the identity andmDS
is not, then XT × YT = XL × YL—

learning occurs in the target sample space. If mDS
is the identity and mDT

is not,
then XS × YS = XL × YL—learning occurs in the source sample space. If mD is
the identity, thenXS × YS = XT × YT = XL × YL, i.e., STr involves homogeneous
transfer. If neither mDT

or mDS
are the identity, then learning occurs in a latent

sample space XL × YL that is unequal to XT × YT and XS × YS .

In feature-representation transfer, data D ⊂ DT × KS is mapped to a latent
system SL where learning occurs. By way ofmD : D → DL, feature-representation
transfer involves relating the source and target input-output spaces to a latent space
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Figure 6: Morphisms in feature representation learning. Learning in the target
sample space requires amorphism from that of the source, as shown in red. Learning
in the source sample space requires a morphism from that of the target, as shown
in blue, and a map from the source output to the target output, as shown by the
dashed blue arrow. And learning in a latent sample space requires morphisms from
both the source and target sample spaces to that of the latent system, as shown in
green, and a map from the latent output to the target output, as shown by the dashed
green arrow. As discussed in Section 5, the nature of these morphisms affects the
difficulty of transfer.

XL × YL. Learning can occur inXL × YL, and, usingmYL , the output can be given
in terms of the target output YT . Similarly, the target can be mapped onto the source,
XL × YL = XS × YS , where learning can occur given mYL , or the source can be
mapped onto the target, XL × YL = XT × YT .

Figure 6 depicts these three cases of morphisms using a commutative diagram.
As the individual maps that compose these morhpisms become more dislike iden-
tities and partial, feature-representation transfer becomes more difficult. We will
discuss this further in our elaboration on structural considerations. Additionally
note, even ifXS × YS = XT × YT , feature-representation transfer may still be used
to better relate source and target behavior.

Instance, parameter, and feature-based approaches are shown in terms of their
specification on transfer learning algorithmsATr in Table 1. Another general notion
in transfer learning approaches is n-shot transfer. It can be defined as follows.

Definition 12. N-shot Transfer.
A transfer learning system STr with target data dT ∈ DT is referred to as a n-shot
transfer learning system if |dT | = n. Zero-shot transfer occurs if ATr : D →
ΘTr ⇐⇒ ATr : KS → ΘTr.

Machine learning is often concerned with few-shot learners—transfer learning sys-
tems that can generalize with only a few samples from the target. We will discuss
generalization in transfer learning in the following subsection, but first, to get a
sense of how we formalize instance, parameter, and feature-representation trans-
fer, consider how a few canonical transfer learning algorithms are modeled by our
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Transfer Approach Algorithm Structure

Instance ATr : DT ×DS → ΘTr

Parameter ATr : DT ×ΘS → ΘTr

Instance & Parameter ATr : DT ×DS ×ΘS → ΘTr

Feature-Representation ATr : mD(D)→ ΘTr

Table 1: Structural differences between transfer approaches.

framework.
Transfer component analysis uses a modified principal component analysis ap-

proach to project the source and target data into a relatable latent space [63], i.e.,
it is an instance approach in that DS is used in ATr and a feature-representation
approach in thatXS andXT are projected into a latentXL. Constraining parameters
to be within a range of those of the source, as in hierarchical Bayesian and regular-
ization approaches, is parameter transfer [26, 75]. Deep learning approaches often
involve parameter transfer in that the weights ΘS of the source network are shared
and frozen in the target, or otherwise used to initialize ΘT [7]. Other deep learning
approaches also involve instance transfer to increase sample size, such as those that
use generative adversarial networks [74]. When the source and target data must first
be transformed before the data can be related, they are also feature-representation
approaches, as in joint adaptation networks [47].

By formalizing the canonical classes of transfer approaches, we are better able
to understand them in terms of their general requirements on STr, particularly on
SI , and more particularly on ATr and D. The informal use of these classes by
existing frameworks, wherein a solution method’s dominant nature sorts it into a
particular class, does well to organize the literature. Our formalisms can cloud
these scholarly distinctions, as shown in the case of deep learning where a single
method can belong to all three classes, however, they give a basis for defining formal
categories of transfer learning systems STr in terms of their inductive systems SI .

3.3.3 Generalization in Transfer Learning

Generalization is, perhaps, the ultimate aim of learning. It is the ability for the
learned hypothesis to approximate f out-of-sample, i.e., on samples not seen in
training. Generalization as a goal for learning systems is implicit in A when a
measure of error ε between h(θ) and f specifies G, such as in ERM. Herein, we
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define it as follows.

Definition 13. Generalization.
Given a learning system S and data d ∈ D, generalization is the ability for a learned
hypothesis h(θ) to estimate learning task f : X → Y , on samples (x, y) /∈ d.

In moving from the classical, identically distributed learning setting to transfer
learning, we move from generalizing to a new sample from the same system, to
generalizing to a new sample from a different system. In classical learning, for a
learning system S, the estimated function f is specified by P (Y |X) and dataD are
drawn from a related joint P (X, Y ). In transfer learning, however, theX×Y space
and probability measures specifying f and D vary between SS and ST .

In classical learning, given a learning system S, data d ∈ D, a measure of error
ε : H(Θ)× f → R, and a threshold on error ε∗ ∈ R, we generalize if

ε(H(A(d)), f) ≤ ε∗.

That, is, if the measure of error between the learned hypothesis and the function it
estimates is below a threshold. In practice, since f is not known, error is empirically
estimated using samples (x, y) ∈ X × Y such that (x, y) /∈ d.

In transfer learning, given STr and data d ∈ D, we generalize if

ε(HTr(ATr(d)), fT )︸ ︷︷ ︸
εT

≤ ε∗.

If εT is smaller without any transferred knowledge from SS than with, transfer from
SS to ST is said to result in negative transfer. Negative transfer is defined in accord
with Wang et. al as follows.

Definition 14. Negative Transfer.
Consider a transfer learning system STr. Recall D ⊂ DT × KS . Let d ∈ D and
dT ∈ DT . Given a measure of error ε : H(Θ)× f → R, negative transfer is said to
occur if

ε(HT (AT (dT )), fT ) < ε(HTr(ATr(d)), fT ),

that is, if the error in estimating fT is higher with the transferred knowledge than
without it.

As Wang et. al note, negative transfer can arise from behavioral dissimilarity be-
tween the source and target [91]. In general, it can arise from structural dissimilarity
as well.

Because generalization in transfer learning considers generalization across sys-
tems, as opposed to generalization within a given system, naturally, it is concerned
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with the set of systems to and from which transfer learning can generalize. Using
εT and ε∗, we can describe these sets as neighborhoods of systems to which we can
transfer and generalize,

{ST |SS, εT ≤ ε∗}︸ ︷︷ ︸
Neighborhood of Targets ST

and neighborhoods of systems from which we can transfer and generalize,

{SS|ST , εT ≤ ε∗}︸ ︷︷ ︸
Neighborhood of Sources SS

.

Noting Definition 14, if ε∗ = ε(HT (AT (dT )), fT ), these neighborhoods are those
systems to and from which transfer is positive.

The size of these neighborhoods describes the transferability of a learning system
in terms of the number of systems it can transfer to or from and generalize. To the
extent that cardinality gives a good description of size2, transferability can be defined
formally as follows.
Definition 15. Transferability.
Consider a target learning system ST and a source learning system SS . Given a
measure of error εT : HTr(ΘTr) × fT → R and a threshold on error ε∗ ∈ R, the
transferability of a source is the cardinality of the neighborhood of target systems
ST to which it can transfer and generalize,

|{ST |SS, εT ≤ ε∗}|,

and the transferability of a target is the cardinality of the neighborhood of source
systems SS from which we can transfer and generalize,

|{SS|ST , εT ≤ ε∗}|.

These cardinalities are termed the source-transferability and target-transferability,
respectively.

Note, this defines transferability as an attribute of a particular system—not an
attribute of a source-target pairing.

Our interest in transferability as an aim of transfer learning systems echoes a
growing interest of the machine learning community in a notion of generalist learn-
ing systems [32, 39, 84]. Put informally, generalists are learning systems which can
generalize to many tasks with few samples. Using our formalism, these systems can
be described as learning systems with high source-transferability. More particularly,
they can be defined as follows.

2Cardinality counts arbitrarily close systems as different, and it may be preferable to define a
measure of equivalence, and consider the cardinality of the neighborhoods after the equivalence
relation is applied.
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Definition 16. Generalist Learning Systems.
A generalist learning system SS is a system that can transfer to at least t target
systems ST with data dT ∈ DT and generalize with at most n target samples
(xT , yT ) ∈ XT × YT . That is, they are systems SS where

|{ST |SS, |dT | ≤ n, εT < ε∗}| ≥ t

Otherwise put, generalists are sources SS that can n-shot transfer learn to t or more
targets ST . Generalists are typically studied in the context of deep learning for
computer vision, where a single network is tasked with few-shot learning a variety
of visual tasks, e.g., classification, object detection, and segmentation, in a variety
of environments [39].

In the following, we go beyond existing frameworks to explore notions of
transferability—and thereby generalization, transfer roughness, and transfer distance
in the context of structure and behavior. In doing so, we demonstrate the mathe-
matical depth of Definition 8. We show that not only does it allow for immediate,
formal consideration of surface-level phenomena covered by existing frameworks,
but moreover, it allows for a considerable amount of modeling to be done at the
general level, i.e., without reference to solution methods, in following with the spirit
of AST depicted in Figure 1.

3.4 Structure and Behavior in Transfer Learning
To the extent that generalization in transfer learning is concerned with sets of
systems, it is concerned with how those sets can be expressed in terms of those
systems’ structures and behaviors. In the following subsections, we discuss how
structural and behavioral equality and, moreover, similarity relate to the difficulty of
transfer learning. Equalities between SS and ST give a basic sense of the setting and
what solution methods are available. Similarities between SS and ST are a richer
means for elaboration, and can give a sense of the likelihood of generalization.

Learning systems are concerned with estimating functions f : X → Y . As
transfer learning is concerned with sharing knowledge used to estimate a source
function fS : XS → YS to help estimate a target function fT : XT → YT , natu-
rally, the input-output spaces of the source XS × YS and target XT × YT are the
principal interest of structural considerations. Similarly, the principal interest of
behavioral considerations are the probability measures which specify fS and fT ,
and, correspondingly, DS and DT .
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3.4.1 Structural Considerations

For source and target systems SS and ST we have the following possible equalities
between system structures:

XS = XT , YS = YT ,

XS 6= XT , YS = YT ,

XS = XT , YS 6= YT ,

XS 6= XT , YS 6= YT .

The first case XS × YS = XT × YT specifies transfer as homogeneous—all others
specify heterogeneous transfer. This is the extent of discussion of structure in the
existing frameworks [64, 93]. We elaborate further.

To do so, we extend past structural equality to notions of structural similarity.
Recall, structural similarity is a question of the structural homomorphism between
two systems. As is common in category theory, we define a morphism as simply a
map between systems, and define an ontomap between systems as a homomorphism.
We can investigate homomorphism in reference to a morphism m : SS → ST .
First, note that we can quantify structural similarity using equivalence classes. Let
mx : XS → XT and my : YS → YT such that m ↔ (mx,my). And let SS/m,
XS/mx, and YS/my be the equivalence classes of SS , XS , and YS with respect to
m,mx, andmy, respectively.

Consider the two sets of relations

w : SS → SS/m

wx : XS → XS/mx

wy : YS → YS/my

z : SS/m→ ST

zx : XS/m→ XT

zy : YS/m→ YT

Relation w maps the source SS to its equivalence class SS/m and relation z maps
SS/m to the target ST , as depicted by the commutative diagram shown in Figure 7.
That is,

SS −−−−→
(wx,wy)

SS/m −−−−→
(zx,zy)

ST

The equivalence class SS/m describes the ‘roughness’ of the structural similarity
from SS to ST . Its cardinality quantifies the ‘surjective-ness’ ofm : SS → ST . The
greater the difference between |SS| and |SS/m|, the more structurally dissimilar SS
and ST are. However, in the large, structural similarity is not measurable in the
same way as behavioral similarity.

The homomorphism between SS and ST is better investigated in terms of the
properties of m, such as whether it is injective, surjective, invertible, etc. For
example, partial morphisms from XS × YS to XT × YT are associated with partial
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Figure 7: A commutative diagram depicting how equivalence classes can describe
roughness.

transfer [13]. When the partial morphism is surjective, only a subset of the source
is transferred to the target. When the partial morphism is injective, the source
transfers to only a subset of the target. Also, structural similarity can be expressed
using category theory, where the structural similarity between two systems can be
studied with respect to the categories of systems to which they belong. To describe
structural similarity in a broad sense, we define transfer roughness as follows.

Definition 17. Transfer Roughness.
Transfer roughness describes the structural homomorphism from the source system
SS to the target system ST . When SS and ST are isomorphic, transfer roughness
is minimal or otherwise non-existent. When roughness exists, it is defined by its
properties, and thus there is no clear notion of maximal roughness.

The structure of the source relative to that of the target determines the roughness
of transfer. Structures can be too dissimilar to transfer no matter what the behav-
ior. Homomorphisms are onto and thus structure preserving, and, as such, it is a
reasonable principle to characterize structural transferability in terms of the set of
homomorphisms shared between the source and target. The supporting intuition is
that either the source must map onto the target or they must both map onto some
shared latent system, if not fully, at least in some aspect. Otherwise information in
the source is lost when transferring to the target.

Let H(X, Y ) denote the set of all structures homomorphic to X × Y . The set
of homomorphic structures between SS and ST is given by,

H(XS, YS) ∩H(XT , YT ).

In transfer learning, we are specifically interested in using knowledge from SS to
help learn fT . Thus, not all elements of this intersection are valid structures for
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transfer learning, only those whose output can be mapped to YT . This set of valid
structures can be expressed as,

V = {X × Y ∈ H(XS, YS) ∩H(XT , YT )|∃my : Y → YT}.

Apparently not all elements ofV will be useful structures for estimating fT , however,
those that are useful, presuming structural homomorphism is necessary, will be in
V .

If we define V ′ to be the subset of V where transfer learning generalizes, i.e., the
homomorphic structures where εT < ε∗, transferability can be defined in structural
terms as follows.

Definition 18. Structural Transferability.
Consider a target learning system ST and a source learning system SS . The struc-
tural transferability of a source SS is,

|{ST |SS,∃(X × Y ) ∈ V ′(SS, ST )}|,

and the structural transferability of a target is,

|{SS|ST ,∃(X × Y ) ∈ V ′(SS, ST )}|.

In other words, structural transferability concerns the set of systems that share a
useful homomorphism with SS and ST . While in practice V and V ′ are difficult to
determine, they provide a theoretical basis for considering whether transfer learning
is structurally possible between two systems and the structural invariance of the
usefulness of transferred knowledge, respectively.

The relation V ′ ⊂ V is particularly difficult. Ordering structural usefulness by
homomorphism alone is difficult because of the vagueness of how homomorphism
can be measured. The more isomorphism there is between SS and ST , the more
the question of usefulness shifts to the behavior. There, the error ε provides the
ordering3 and the threshold ε∗ provides the partition. Structural similarity provides
no clear parallel.

It is true that if no homomorphism exists between SS and ST , they are from
different categories. While functors can be used to map between categories, they
necessarily distort transferred knowledge because they must add or remove structure
to do so. Homomorphisms between systems, in contrast, are structure preserving.
And so perhaps a partial order between homomorphic and non-homomorphic sys-
tems is justified. But this ordering is hardly granular. A more formal digression on
this topic is beyond the scope of this paper, but well within the scope of AST [56].

3ε is a transfer distance between posteriors specifying h(θ) and f .
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Example 3.3. Transfer Roughness in UAVs.
Consider SS , ST , and STr defined according to Example 3.2. From Example 3.1
XS × YS = XT × YT , so STr involves homogeneous transfer. But, if XT did not
include radar, transfer would be heterogeneous. Similarly so if YS described paths
up to 100 meters in length and YT paths up to 10 meters. In either case, XS × YS
can map onto XT × YT , but XT × YT cannot map onto XS × YT . Thus, transfer
from ST to SS is rougher than transfer from SS to ST .

3.4.2 Behavioral Considerations

In transfer learning, the primary behaviors of interest are P (X) and P (Y |X) from
the domain D and task T , respectively, and the joint distribution they form,

P (X, Y ) = P (X)P (Y |X).

It is important to realize that P (XS, YS) 6= P (XT , YT ) only implies that P (XS) 6=
P (XT ) ∨ P (YS|XS) 6= P (YT |XT ). That is, the posteriors P (Y |X) can still be
equal when the joints P (X, Y ) are not if the marginals P (X) offset the difference,
and vice versa. In the main, these behavioral equalities make absolute statements
on the inductive or transductive nature of a transfer learning system. Behavioral
similarities, in contrast, have the richness to make statements on the likelihood of
generalization, and, thereby, on transferability.

In AST, behavior is a topological-type concept and, accordingly, behavioral
similarity is akin to a generalized metric. However, because in transfer learning we
are concerned primarily with behaviors which are probability measures, behavioral
similarity between SS and ST takes the form of distributional divergences. In
our elaboration of behavioral similarity we focus on a notion of transfer distance.
Transfer distance is the abstract distance knowledge must traverse to be transferred
from one system to another. We consider it to be a measure on the input spaces
XS×XT , output spaces YS×YT , or input-output spaces (XS×YS)× (XT ×YT )—
more specifically, as a measure on probability measures over those spaces. It can be
defined formally as follows.

Definition 19. Transfer Distance.
Let SS and ST be source and target learning systems. LetZi be a non-empty element
of P(Xi ∪ Yi). Transfer distance δT is a measure

δT : P (ZS)× P (ZT )→ R

of distance between the probabilitymeasuresP (Zi) related to the estimated functions
fi : Xi → Yi of SS and ST .
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In practice, transfer distances are often given by f -divergences [22], such as
KL-divergence or the Hellinger distance, Wasserstein distances [77], and maximum
mean discrepancy [34, 47, 62]. Others use generative adversarial networks, a deep
learning distribution modeling technique, to estimate divergence [30, 86]. Com-
monly, these distances are used to calculate divergence-based components of loss
functions. Herein, we consider transfer distance’s more general use in characterizing
transfer learning systems.

In heterogeneous transfer, transfer distances can be used after feature-representation
transfer has given the probability measures of interest the same support. Transfer
distances between measures with different support are not widely considered in
existing machine learning literature. However, the assumptions of homogeneous
transfer and domain adaptation, i.e., XS × YS = XT × YT , allow for a rich theory
of the role of transfer distance in determining the upper-bound on error.

Upper-bounds on εT have been given in terms of statistical divergence [10], H-
divergence [5], Rademacher complexity [59], and integral probability metrics [102],
among others. Despite their differences, central to most is a transfer distance
δT : P (XS)×P (XT )→ R that concerns the closeness of input behavior and a term
C that concerns the complexity of estimating fT . These bounds roughly generalize
to the form,

εT ≤ εS + δT + C

where εT and εS are the errors in ST and SS , δT is the transfer distance, and C is a
constant term. C is often expressed in terms of sample sizes, e.g., |DS| and |DT |,
capacity, e.g., the VC-dimension of HT [5], and information complexity, e.g., the
Rademacher complexity of DT [59]. Note, closeness and complexity are often not
as separable as suggested by Inequality 1.

To the extent that Inequality 1 holds, we can describe transferability in terms of
transfer distance. Generalization in transfer learning occurs if εT ≤ ε∗, and since
εT ≤ εS + δT + C, εS + δT + C ≤ ε∗ =⇒ εT ≤ ε∗. Thus, transferability can be
defined in behavioral terms as follows.

Definition 20. Behavioral Transferability.
Consider a target learning system ST and a source learning system SS . The behav-
ioral transferability of a source SS is,

|{ST |SS, εS + δT + C < ε∗}|,

and the behavioral transferability of a target is,

|{SS|ST , εS + δT + C < ε∗}|.
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For sources SS with similar εS and targets ST with similar C, given a threshold
on distance δ∗ ∈ R, behavioral transferability can be expressed entirely in terms of
transfer distance:

|{ST |SS, δT < δ∗}| and |{SS|ST , δT < δ∗}|.

Of course, specific bounds on εT with specific distances δT from the literature can be
substituted in the stead of Inequality 1. Also note, we are assumingXS×YS = XT×
YT . WhenXS × YS 6= XT × YT , transfer distance is a measure between probability
measures with different supports, and while an upper-bound like Inequality 1 may
be appropriate, it is not supported by existing literature. In such cases it is important
to consider structural similarity.

Example 3.4. Transfer Distance in UAVs.
Consider SS , ST , and STr defined according to Example 3.2. Let source SS be
associated with a desert biome and ST a jungle biome. When comparing P (XT )
to P (XS), increased foliage in ST suggests accelerometer readings with higher
variance, camera images with different hue, saturation, and luminance, and radar
readings with more obstacles. Similarly, increased foliage may also mean paths
in P (YT |XT ) must compensate more for uncertainty than those in P (YS|XS). In
contrast, foliage is more similar between the desert and tundra, thus, transfer distance
is likely larger from the desert to the jungle than from the desert to the tundra.

3.4.3 Remarks

In summary, structure and behavior provide ameans of elaborating deeply on transfer
learning systems, just as they do for systems writ large. Structural considerations
center on the structural relatability of SS and ST and the usefulness of the related
structures X × Y for transfer learning. Behavioral considerations center on the
behavioral closeness of SS and ST and the complexity of learning fT . These
concerns provide guideposts for the design and analysis of transfer learning systems.
While the joint consideration of structure and behavior is necessary for a complete
perspective on transfer learning systems, herein, in following with broader systems
theory, we advocate that their joint consideration ought to come from viewing
structure and behavior as parts of a whole—instead of approaching their joint
consideration directly by neglecting notions of structure and behavior entirely, as
is advocated implicitly by the existing frameworks pervasive use of domain D and
task T .
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3.5 Conclusion
Our framework synthesizes systems theoretic notions of structure and behavior with
key concepts in transfer learning. These include homogeneous and heterogeneous
transfer, domain adaptation, inductive and transductive transfer, negative transfer,
and more. In subsequent elaborations, we provide formal descriptions of transfer-
ability, transfer roughness, and transfer distance, all in reference to structure and
behavior.

This systems perspective places emphasis on different aspects of transfer learning
than existing frameworks. When we take behavior to be represented by a posterior or
joint distribution, we arrive at constructs similar to existing theory. More distinctly,
when we introduce structure, and study it in isolation, we arrive at notions of
roughness, homomorphism, and category neglected in existing literature.

The presented framework offers a formal approach for modeling learning. The
focal points of our theory are in aspects central to the general characterization and
categorization of transfer learning as a mathematical construct, not aspects central
to scholarship. This strengthens the literature by contributing a framework that is
more closely rooted to engineering design and analysis than existing frameworks.
Because our framework is pointedly anchored to concepts from existing surveys,
practitioners should face little difficulty in the simultaneous use of both. Taken
together, practitioners have a modeling framework and a reference guide to the
literature.

Herein, we have modeled transfer learning as a subsystem. Transfer learning
systems can be connected component-wise to the systems within which they are em-
bedded. Subsequently, deductions can be made regarding the design and operation
of systems and their learning subsystems with the interrelationships between them
taken into account. In this way, we contribute a formal systems theory of transfer
learning to the growing body of engineering-centric frameworks for machine learn-
ing. In the following, we explore the use of transfer distance in system design and
operation.
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4 TransferDistance for SystemDesign andOperation

4.1 Introduction
Machine learning is moving from laboratories to the field, however, the identically
distributed environments found in the lab are rarely found in the real-world. Algo-
rithmic approaches for dealing with non-stationarity rely heavily on data from the
new environment, however, such data is not always available.

Applied machine learning for prognostics and health management (PHM) is pro-
totypical of this trend and challenge. Non-stationarities are unavoidable in PHM for
machinery. Differences in manufacturing and installment give supposedly identical
machines different initial conditions, and phenomena such as degradation, repair,
and part replacement cause behavior to drift over a machine’s life cycle. Adding
to these challenges, labeled data from fielded machines is rarely available because
when a failure occurs, the machine is repaired or rebuilt, inducing a distribution
change, or rendered irreparable.

Similarly, in defense settings, imagery related to new missions is limited. Data
collection for new missions is costly. It can require operating in hostile territory or
airspace and within enemy field of fire. Moreover, battlefields are dynamic and often
do not afford data collection at the scale required by existing data-driven computer
vision methods. Additionally, defense is game-theoretic in nature, and adversaries
can manipulate the appearance of concerns such as aircraft or ground vehicles to
take advantage of an over-reliance on data [70].

In both PHM and defense, algorithmic approaches for relating behaviors be-
tween systems and over time are fundamentally constrained. Instead of focusing on
engineering ever-more adaptive learning systems, we suggest a focus on method-
ologies that support the design and operation of systems to limit non-stationarities
to acceptable levels. This interdisciplinary approach treats generalization, i.e., sat-
isfactory predictive performance on new data, as a systems-level goal, not a goal
exclusive to algorithm design.

Designing and operating in this way requires metrics that bring the learning
theoretic challenges of learning systems to the systems-level. Transfer distance, the
abstract distance knowledge must traverse to transfer from one system to another,
is focal in domain adaptation theory and is used to relate the magnitude of distri-
butional change between systems to prediction error in the new system. Although
transfer distance is typically left as an informal notion or implicit in transfer learning
methods, here, we formalize it and position it as central to the characterization of
the relationship between systems and the generalization of their component learning
systems.

We present a Bayesian approach for empirically quantifying transfer distance.
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The accompanying studies offer a guide for practitioners on how to quantify the
difficulty of transfer, the transferability of different learning tasks, and the role of
sample size in transferability, as well as how to use transfer distance to quantify
expected operational performance. We consider a case in hydraulic actuator health
monitoring where non-stationarities occur as the result of actuator rebuilds. We
also consider a case in computer vision with a mission context, where information
regarding a mission’s expected operating environment is used to assess expected
operational performance. We frame the former in terms of system design and the
latter in terms of system operation. In doing so, we contribute to the broader effort
of developing principled methodologies for the systems engineering of AI.

This section is structured as follows. First, we provide additional background on
concept drift, PHM, and computer vision in Section 4.2. We then justify the use of
transfer distance as a metric by drawing from domain adaptation theory and present
our methodology for quantifying transfer distance in Section 4.3. Subsequently, we
apply our methodology to characterize the transfer learning problems induced by
an actuator rebuild procedure and mission deployment in Section 4.4 and 4.5. We
conclude with a synopsis and a statement of future work in Section 4.6.

4.2 Background
We briefly review concept drift, PHM, and computer vision, and note this section’s
relationship to them. In short, this Section 4 presents PHM and computer vision
case studies in empirically characterizing transfer distance using principles from
domain adaptation and methods from concept drift.

4.2.1 Concept Drift

Whereas transfer learning considers distributional change between a source and tar-
get, concept drift considers distributional change that occurs in streaming data from
one stable distribution, termed a concept, to another. There are many metrics simi-
lar to transfer distance used in the concept drift literature to characterize drift [92].
Drift in these streaming systems has been modeled and simulated using Gaussian
mixture models [21, 95]. Many methods use Hellinger distance to calculate distri-
butional divergence because it is bounded [0, 1] and symmetric [22,92]. Consistent
with concept drift literature, we use a combination of Gaussian mixture models and
Hellinger distance to characterize distributional change.
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Figure 8: Data-driven models inform maintenance actions which change the distri-
bution of their data. Non-stationarity is inherent in PHM.

4.2.2 Prognostics and Health Management

PHM is concernedwith the use of prognostics and diagnostics for themanagement of
machine health [85]. In mechanized systems generally, it is essential for continuous
operation, and, thus, is an important field of engineering research. As machine
down-time is the eminent failure in production systems [45], PHM is crucial to
economic productivity. Furthermore, PHM helps safeguard critical systems such
as gears in rotorcraft [20], whose failure can cause loss of propulsion mid-flight,
and air filtration systems [41], whose failure in high pressure environments such as
submarines can be equally catastrophic, among others [25].

Currently, machine healthmanagement is dominated by time-basedmaintenance
schedules, however, there is an increasing interest in and use of data-driven PHM for
adaptive scheduling [104]. This has led to extensive application of machine learning
for health state classification and remaining useful life regression. There is a much
smaller body of literature, however, using transfer learning to dealwith the challenges
these methods face in practice due to the aforementioned non-stationarities and label
constraints [46, 48, 76, 100, 103].

Non-stationarity is a fundamental challenge in PHM. In data-driven PHM, sensor
data from machines is used for prognostics and diagnostics to inform operations
management. When a maintenance action is taken, such as a machine rebuild,
where the machine is deconstructed and rebuilt, the distribution of the sensor data
changes. This cycle is represented in Figure 8. Minor physical differences in the
tensions of fasteners or locations of sensors can degrade predictive performance.
The extent of degradation is difficult to ascertain because after an example of failure
occurs, the systemwill be repaired, inducing a distribution change, or will be deemed
irreparable.

Thus, in PHM systems, there is a real limit in our ability to address non-
stationarity with algorithm design; it is necessary to take into account the role of
system design in the generalization of learning. And to that end, it is necessary to
have metrics which can link notions like the design of maintenance procedures, e.g.,
regarding details like tensions and sensor locations, to notions like the transferability
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of knowledge.
In recent work, we extensively studied PHM for hydraulic actuators in order to

better place related data-driven modeling in a systems context, including cost and
power constraints [2, 3, 27, 51]. These studies have used a fault-simulating test-bed
that consists of two matched rotary actuators, where one acts as the actuator and the
other acts as the load [1]. Here, we use data collected from this test-bed to extend
the literature on data-driven PHM for hydraulic actuators by explicitly modeling
the transfer distance associated with a rebuild procedure. Previously, we showed
that sample transfer can be used to recover performance across the rebuild [17].
Here, instead of solving the transfer learning problem, in contrast, we use transfer
distance as a means of characterizing the transfer learning problem associated with
the rebuild.

4.2.3 Computer Vision

Computer vision is a broad field concerned with visual perception and pattern recog-
nition. In recent years, deep learning has overtaken handcrafted feature engineering
methods for processing images in the computer vision research literature [60, 99].
Instead of extracting expert-defined features from images as a pre-processing step,
deep learning takes raw images as inputs and learns to both extract its own features
and make predictions as part of a single, end-to-end process. While deep learning
increases predictive performance and allows for novel use cases, it is heavily reliant
on large data sets [31].

As previously described, in defense applications, this presents a bottleneck to
deployment. Image classifiers have been trained to detect planes and their orientation
when parked in airports’ aprons using knowledge transferred from general visual
recognition tasks [14]. However, such models are highly dependent on the airports
included in training. As we will demonstrate, classifiers can suffer a decrease in
performance when the biomes surrounding the airports change between training and
operation. We calculate the transfer distance associated with transferring a model
from one geographical region to another, as in a mission deployment scenario, and
use it to anticipate model degradation. We use an auto-encoder for dimension
reduction, similar to existing approaches to explainable AI [12].

4.3 Methods
Transfer distance is usually referred to informally, e.g., to describe near or far
transfer. It is implicit in the use of Wasserstein distance [77], maximum mean dis-
crepancy [47, 62], generative adversarial networks [30, 86], and others, to calculate
distributional-divergence-based components of loss functions in transfer learning
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Algorithm 1: Calculating Transfer Distance in Domain Adaptation with
Discrete Y
Input: dataS , dataT , P (Y = y)∀y ∈ Y
Output: δX|Y=y, δX , δY=y|X
def fit(data):
{P (X|Y = y)}y∈Y ← fitter(data)
P (X)←

∑
y∈Y P (X|Y = y)P (Y = y)

{P (Y = y|X)}y∈Y ← {P (X|Y = y)P (Y = y)/P (X)}y∈Y
return P (X|Y ), P (X), P (Y |X)

{PS(X|Y = y)}y∈Y , PS(X), {PS(Y = y|X)}y∈Y ← fit(dataS)
{PT (X|Y = y)}y∈Y , PT (X), {PT (Y = y|X)}y∈Y ← fit(dataT )

{δX|Y=y}y∈Y ← δ(PS(X|Y ), PT (X|Y ))
δX ← δ(PS(X), PT (X))
{δY=y|X}y∈Y ← δ(PS(Y |X), PT (Y |X))

return {δX|Y=y}y∈Y , δX , {δY=y|X}y∈Y

algorithms. We consider transfer distance explicitly, in a way that may not necessar-
ily be useful in calculating loss functions, but is interpretable to system designers
and operators.

Definition 19 of transfer distance directs our interest towards the marginal dis-
tributions P (X) from the domains D and posterior distributions P (Y |X) from the
tasks T . For the purposes of explainability and analysis, we model these distribu-
tions explicitly, in closed-form, and take a Bayesian approach to constructing the
posterior. We only fit P (X|Y ), and, using an estimate for the prior P (Y ), construct
the marginal P (X) and posterior P (Y |X). Note, due to the focus on probability,
we distinguishX and Y as random variables corresponding to sample spacesX and
Y , respectively, in contrast to Section 3.

Our algorithm for computing transfer distances can be described as follows. We
assume that XS = XT = X , YS = YT = Y , that X is continuous, and that Y is
discrete. We first fit the likelihood distributions PS(X|Y = y) and PT (X|Y = y)
for all y ∈ Y . We construct PS(X) and PT (X) using a prior P (Y ) and the total
probability law, and then construct PS(Y = y|X) and PT (Y = y|X) for all y ∈ Y
using Bayes theorem. We then sample from X × Y according to the source and
target distributions and calculate the transfer distance δ using these samples. This
process is shown in Algorithm 1.
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We use Gaussian mixture models (GMMs) to fit the likelihoods P (X|Y ), i.e.,
as the fitter method in fit function of Algorithm 1. Gaussian mixture modeling
is a clustering technique whereby a mixture of probability weighted multi-variate
Gaussian distributions is fit to data. Each point is assigned to a single multi-variate
Gaussian, i.e., its cluster. For a GMM with K clusters,

p(X) =
K∑
k=1

πkN (X|µk, σk),

where p(X) is the density function of X , πk is the probability weight of cluster k,
and N is the multi-variate Gaussian distribution with mean µk and co-variance σk.

Explicit, closed-form models of the source and target allow for a rich set of
distance functions. Different applications may call for different distances, and
closed-form distributions afford this flexibility. In our case, we use the Hellinger
distance and Kullback-Leibler (KL) divergence as our transfer distances δ. Given
two discrete probability distributions P = (p1, ..., pn) and Q = (q1, ..., qn), the
Hellinger distance between P and Q is

H(P,Q) =
1√
2

√√√√ n∑
i=1

(
√
pi −
√
qi)2.

H is symmetric and bounded [0, 1], where H = 0 implies that the distributions are
completely identical and H = 1 implies that they do not overlap at all. The KL
divergence between P and Q is

KL(P,Q) =
n∑
i=1

pi log
pi
qi
.

KL is not symmetric and is unbounded above [0,∞), where its lower bound implies
that the distributions are completely identical.

4.4 Transfer Distance for System Design
In system design, transfer distance can be used to design systems with an awareness
of the generalization difficulty faced by component learning systems. Generalization
difficulty concerns the difficulty of achieving a certain level of error on new data.
Different design decisions can be associatedwith different generalization difficulties.
Inequality 1,

εT ≤ εS + δ + C,
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suggests that a higher transfer distance δ is associated with a higher demand on the
error in the source εS and the constant term C to keep the upper bound on error in
the target εT the same as with a lower transfer distance. Therefore, transfer distance
has a strong, fundamental influence on generalization difficulty.

In cases where the distance between the source and target is, for example,
associated with some physical change in the system, we can use transfer distance as
a means of associating the physical change with generalization difficulty. Consider
the generalization of prognostics models across system rebuilds. In previous work,
we found that while binary health states for hydraulic actuators can be classified
with an accuracy of 98% when trained and tested on the same actuator, when the
actuator is deconstructed and rebuilt, the same classifier does marginally better than
random guessing. When transfer learning is applied classification accuracy recovers
to almost 90% [17].

In the following, transfer distance is used to characterize the generalization
difficulty associated with a particular actuator rebuild procedure. We show how an
analysis of transfer distance can be used to understand why the original classifier
failed, to suggest why transfer learning worked, and, ultimately, to inform the
iterative design of rebuild procedures to limit degradation in predictive performance
across system rebuilds. We quantify the generalization difficulty associated with the
rebuild procedure in terms of the transfer distance between binary and multi-class
health state classification before and after the rebuild. Then, we quantify the number
of samples required to achieve a stable estimate of transfer distance.

Faults were simulated on a hydraulic actuator, the actuator was deconstructed
and rebuilt, and the faults were re-simulated. The failure modes considered are
opposing load, external load, bypass valve, and leak valve failures, among miscel-
laneous others. The hydraulic actuator test stand is equipped with sensors to collect
acceleration, pressure, flow, temperature, and rotary position. In pre-processing, to
capture aspects of time-dependence, the data is first windowed and summarized by
the mean and standard deviation of each window. Then, to reduce the dimension of
the data, principal component analysis is applied. The first two principal compo-
nents capture 90% of the variance in the windowed features. These two components
are used in our studies.

4.4.1 Transfer Distance Induced by Rebuild

First, we consider binary health state classification, wherewe learn to predictwhether
the hydraulic actuator is healthy, Y = 0, or damaged, Y = 1. The original actuator
is the source, the rebuilt actuator is the target, and we are interested in empirically
quantifying the change in the binary classification problem induced by the rebuild
process, i.e., the changes in the distributions underlying the problem. There are 789
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(a) p(X|Y = 0) (b) p(X|Y = 1) (c) P (Y = 0|X)

Figure 9: Likelihood Densities and Healthy Posterior Distributions

healthy and 1480 damage samples in the source, and 1098 and 1822 in the target,
respectively.

The empirical priorP (Y = 0) is given by the ratio of healthy samples to damaged
samples, but such a prior implies almost even odds of failure. We approximate
the empirical prior as P (Y = 0) = 0.40 and compare against P (Y = 0) ∈
{0.9, 0.99, 0.999}. The same priors are used for both the source and target.

The fitted likelihoods and the constructed posterior probability of being healthy
are plotted in Figure 9. The likelihood densities in Figures 9a and 9b show the source
in red and target in blue, fit with 2-component Gaussian mixture models, where
each concentric ellipse represents 1 standard deviation from a component’s mean.
The plotted points are from samples held-out from the fitting process. Whereas
the healthy densities overlap closely between the source and target, the damaged
densities do not. The target, rebuilt actuator has a larger spread in the distribution of
damaged data when represented by its first two principal components. Classification
likely dropped because of this increased variance. Despite this difference, the
posteriors, shown in Figure 9c for P (Y = 0) = 0.40, are fairly similar. Transfer
learning likely succeeded at bringing accuracy back to nearly 90% because the
increased variance in the damaged likelihood did not strongly affect the posterior.

Transfer distances δ are shown in Table 2. As in the plots, the healthy likelihoods
are closer than the damaged likelihoods. Notably, the transfer distance between the
marginals P (X) is larger than that between the posteriors P (Y = 0|X). In other
words, there are changes in the distribution of the sensor data that do not have a
material effect on the binary classification problem. We can also note that as the
the prior odds of failure decrease, δX and δY=0|X decreases as well, because the
difference in the damaged likelihood is weighted less.

These results show that the rebuild procedure affects the distributions of damaged
data far more than the distribution of healthy data. This means that while healthy
behavior appears similar across rebuilds, failure does not. This is particularly
worrisome because in fielded systems we will typically only have access to healthy
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Transfer Distance P (Y = 0)

0.40 0.90 0.99 0.999

δX|Y=0 0.22 - - -
δX|Y=1 0.54 - - -
δX 0.41 0.25 0.22 0.22
δY=0|X 0.24 0.23 0.23 0.23

Table 2: Hellinger transfer distance for relevant distributions. Note, δX|Y does not
depend on P (Y ).

(a) p(X|Y = 1) (b) p(X|Y = 2) (c) P (Y = 5|X)

Figure 10: Posterior Distributions for Different Failure Modes

samples. The transfer distance between the healthy source and target data suggests
a much smaller change than actually occurs. This finding reaffirms our position
that designing systems to avoid difficult transfer learning problems is essential to AI
engineering because there are distributional changes over a system’s life cycle that
we cannot sample and empirically characterize in the field.

In PHM systems, it may be the case that some failure modes are similar across
manymachines or many rebuilds, whereas others are not. Transfer distance provides
a means for empirically quantifying how transferable failure modes are relative to
each other, and thereby serves as a mechanism for directing related engineering
effort, such as data collection and algorithm design.

Since transfer learning comes with associated costs and risks, it is important to
know where it is needed and where it is not. A need-based approach not only allows
for reduced knowledge transfer and retraining, but also, it allows transfer learning
algorithms to specifically focus on transferring knowledge for those failure modes
which need source knowledge the most.
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Failure Type Likelihood δX|Y Posterior δY |X

Opposing Load 0.53 0.64
External Load 0.41 0.72
Bypass Valve 0.18 0.69
Leak Valve 0.74 0.88
Other 0.67 0.80

Table 3: Hellinger transfer distance for relevant distributions.

We quantify the transfer distance between failure modes in the source and target
using a multi-class health state classification problem. Now, Y = {0, 1, 2, 3, 4, 5}
where Y = 0 signifies healthy and Y = 1, ..., 5 signify opposing load, external
load, bypass valve, leak valve, and other failures, respectively. We have a similar
number of samples between source and target and across failure modes. Using the
presented methodology we fit a posterior distribution for ∀y ∈ Y . Table 3 shows
the likelihood and posterior transfer distances for each failure mode.

Opposing load failures have a posterior transfer distance of 0.64 and leak valve
failures have a posterior transfer distance of 0.88. This suggests that the sensor-data
representations of opposing load failures in the source and target actuators are closer
than those of leak valve failure. Put flatly, opposing load failures look more similar
after the rebuild than leak valve failures.

Figure 10 shows the source and target posterior probabilities for opposing load,
external load, and other miscellaneous failures. The overlap of the distributions
in the plots corresponds to the posterior transfer distances in Table 3. Perhaps an
algorithm designer may conclude that knowledge transfer is feasible for opposing
load failures, but not for other failures. Or, perhaps a systems engineer would
suggest redesigning the rebuild procedure to bring those failure modes with a higher
transfer distance closer in PCA space.

4.4.2 Transfer Distance and Sample Size

We have shown how transfer distance can be used to characterize transferability and
provide insights for system and algorithm design. It is important to note that the
distribution of the target actuator has a certain sample complexity. Transfer learning
that relies on measures of distributional difference should wait for the distribution to
settle first, otherwise methods such as sample weighting and selection will be using
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Figure 11: The top-left plot shows how the empirical cumulative distribution func-
tion (CDF) of the standard deviation of a pressure gauge changes with sample size.
The top-right plot shows how many samples it takes for different sensor-feature
types to converge to a stable value, labeled according to sensor-type. The bottom
plot shows the transfer distance between GMMs trained on a subsample of target
data and a full sample of target data.

inaccurate estimates of distributional divergence. Similarly, transfer distance may
require a number of samples to be collected before it can be considered a reliable
metric for design and operational decision-making.

In the hydraulic actuators, each sensor-feature, e.g., the mean of acceleration
1, the standard deviation of pressure 1, etc., has its own sample complexity. Note
the top-left plot in Figure 11 which shows the empirical cumulative distribution
functions (CDFs) associated with different size samples of the standard deviation
of a pressure gauge. The CDF appears not to settle until 150 to 200 samples. If
we use the Kolmogorov Smirnov (KS) statistic, which gives the largest absolute
difference between two univariate CDFs, we can test when successive increases in
sample size no longer change the distance between a sensor-feature’s CDF in the
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source and target. In the top-right plot of Figure 11 the point where the change in the
KS statistic between the source and target for successive sample sizes changes less
than 5% is plotted for each type of sensor-feature, e.g., acceleration, pressure, etc.
Apparently the distances between the source and target univariate CDFs converge
at different rates. Accelerations have the largest KS statistics, but also the lowest
sample size to settle.

We are learning using multiple sensor-features, thus, we are interested in how
they settle jointly. In the bottom plot of Figure 11 we consider sensor-feature
interdependence by calculating the Hellinger transfer distances δ between target
subsamples of a size corresponding to the x-axis and the full target sample. Transfer
distances δY |X and δX|Y=0 decrease as sample size increases, and transfer distances
δX and δX|Y=1 roughly follow the same trend. Based on these results, it appears
as though it takes at least 300 to 350 samples in the target before estimates of
distributional divergence are stable. Note, that in practice, we often will only be
able to conduct this analysis using healthy data.

In the context ofmachinery, depending on the nature of amaintenance procedure,
the time to estimate the new distribution of sensor-data may change. This period
relates to the lag-time before we can transfer knowledge to the new system to support
data-driven PHM. The design of maintenance procedures to influence the length of
this intervention is an important aspect of keeping PHM systems functioning.

4.5 Transfer Distance for System Operation
In system operation, transfer distance can be used to operate systems with an aware-
ness of the expected generalization performance of component learning systems.
Generalization performance concerns a learning system’s error on new data. Dif-
ferent operational decisions are associated with different expected generalization
performances. Inequality 1 suggests that transfer distance plays a fundamental role
in determining the upper bound on error in new environments. Therefore, transfer
distance has a strong connection to expected generalization performance.

In defense applications of computer vision, look angle, pixel density, time of
day, and biome, for example, can vary between missions. Even when the sample
spaces of images X and image labels Y have the same structure, the probability
distributions associated with those sample spaces can differ drastically. Sometimes,
one can intuit the existence of significant differences, for example, between image
classification problems in the tundra and jungle. Other times, it is not as clear, for
example, between classification problems in Southern and Northern California. In
either case, transfer distance can empirically support or reject such intuition.

In the following, we first explore the relationships between transfer distance and
expected generalization performance on the canonical handwritten digit recognition
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Figure 12: Example MNIST digit images 0-9 from left to right, top to bottom.

data set MNIST [42]. Then, with this understanding, we explore an application
in defense where a model trained to detect the presence of aircraft in Southern
California is deployed on amission in Northern California [35]. In both cases we use
auto-encoders to compress the images into a low-dimensional, latent representation
before applying Algorithm 1 to compute transfer distances of interest. We use
Gaussian mixture models as before, but now use KL divergence instead of Hellinger
distance as our measure of transfer distance δ.

4.5.1 MNIST and Expected Operational Performance

Just as transfer distance can be used as a metric for assessing the difficulty of
generalization associated with a particular system design, it can be used to assess
expected operational performance. Unlike in system design, in system operation
we do not have direct control over transfer distance. We are not looking to change
transfer distance directly, but rather, to operate in such a way that performance
remains satisfactory 4. Viewed discretely, we have a training environment, the
source, and an operating environment, the target, and are interested in identifying if
generalization performance in the operating environment will be satisfactory.

To see how transfer distance relates to expected operational performance, con-
sider the MNIST handwritten digit recognition problem. The data set contains
examples of handwritten digits 0 thru 9. We let the original data act as the source,
training environment. To create a target we rotate all original data by 90 degrees
clockwise. We fit a variational auto-encoder to the source images and use it to
represent the source and target images as bivariate Gaussian distributions [37].

The transformed images are plotted in Figure 13 according to their Gaussian
means µ. Whereas 0, 1, 6, and 7 are well separated in the source, as shown in the
left plot, no rotated digits are well separated in the target, as shown in the right plot.
The target images are interspersed with each other and have a smaller variance in
µ1 and µ2 than the source images. This immediately suggests that the rotation of

4In general, design and operation are inextricable, but herein we establish a dichotomy to empha-
size the dual use of transfer distance.
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the images has a significant effect on P (X).
This difference in P (X) is not the same for all digits however. Consider the

digits 0, 3, and 6, as shown in Figure 14. While all show differences, both the source
and target ‘0’ and ‘6’ images share some overlap. In contrast, the source and target
‘3’ images are almost partitioned by µ1 = 0.5. It makes intuitive sense that 0 and 6
are more similar because of the invariance of circles to rotation.

To investigate further, we use a random forest to classify digits [61]. When
we calculate the recall on the rotated, target images of a classifier trained on the
non-rotated, source images we find that those digits with a higher transfer distance
(in this case a higher KL divergence) have a lower recall, as shown in Figure 15.
Different to accuracy, recall considers the true positive rate, i.e., the ratio of correct
classifications to number of instances of that class. ‘0’ images have the highest recall
and transfer distance, whereas ‘8’ and ‘1’ images have the lowest recall and transfer
distance. Recall decreases with transfer distance. Given a measurement of transfer
distance, we can form an empirical judgement of expected operational performance
and, correspondingly, can make empirically informed operational decisions. In
the following, we consider a ‘go, no go’ mission deployment problem in aircraft
detection.

Figure 13: MNIST original, source images (left) and rotated, target images (right)
in the variational auto-encoder’s latent space.
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Figure 14: The variational auto-encoder’s latent space shows the effect of rotation
varies by digit.

Figure 15: Higher recall digits tend to have lower transfer distance.
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4.5.2 Mission Scenario in Aircraft Detection

Figure 16: Example aircraft images and non-aircraft images from California in the
top and bottom rows, respectively.

Object detection from overhead imagery is a core function in defense systems.
Despite the success of high-capacity models like deep learning, image classifiers
are not global. Classifiers trained in one geographic region suffer performance
degradation when deployed in other geographic regions. Fundamentally, this occurs
because of a change in the underlying distribution of images. Transfer distance can
be used to anticipate and detect drops in performance by comparing the distributional
difference between samples from the training and operating environments.

Consider a case where a classifier is trained to detect the presence of aircraft in
Southern California and is tasked with operating in Northern California. Example
images are shown in Figure 16. There are roughly 20000 images from Southern
California and 12000 images from Northern California. We trained a convolutional
neural network to detect aircraft on Southern California images.

When classifying held-out images from Southern California the classifier’s accu-
racy is nearly 98%, but when classifying images from Northern California accuracy
drops to nearly 85%, as shown in Figure 17. The classifier still has predictive power,
but, in critical applications like defense, the difference between a 2% error rate and
a 15% error rate is significant enough to constitute failure.

In order to apply our transfer distancemethodologywe first train an auto-encoder
on the Southern California images. To do this, we initialize a convolutional auto-
encoder with weights from the VGG-16 image classification network and then we
fine-tune those weights [80]. We use the auto-encoder to encode the images into
vectors. Then, we find the principal components of the encoded Southern California
images and transform all images into the first two principal components, as in the
actuator example. In contrast to the actuator example, however, because of the size
of the data set, we batch the data into samples of 100 before fitting Gaussian mixture
models.

When we calculate transfer distances δX between samples drawn from Southern
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Figure 17: Shown is the classification accuracy of a convolutional neural network
trained in Southern California evaluated on Southern California images, in blue, and
on Northern California images, in orange, over the course of 10 training epochs.

California, we find them to have a mean KL divergence of 5.60. When we cal-
culate transfer distances δX between samples drawn from Southern and Northern
California, we find them to have a slightly higher mean KL divergence of 5.97.
This suggests that samples drawn from Southern and Northern California are, on
average, farther from each other than two samples drawn from Southern California.
The small difference in expected transfer distance corresponds to the slight drop in
classification accuracy in Figure 17.

We can investigate this trend by calculating transfer distances δX|Y of correctly
and incorrectly classified images. Correctly classified Northern California aircraft
images have a KL divergence of 0.94 from Southern California aircraft images,
while misclassified Northern aircraft images have a KL divergence of 1.99, twice
as high. These distances correspond to true positive and false negative cases,
respectively. Correctly classified non-aircraft images from Northern California
have a KL divergence of 2.34 from Southern California non-aircraft images, while
misclassified non-aircraft images from Northern California have transfer distance
of 3.11. Note, the transfer distance for incorrectly classified images is higher than
the transfer distance for correctly classified images for both aircraft and non-aircraft
images. That is, higher transfer distance correlates to higher error. We can analyze
why this is so by using the principal components of the encoded images.

True positives refer to correctly classified aircraft images and false negatives
refer to incorrectly classified aircraft images. The true positives and false negatives
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(a) True positives (b) False negatives

Figure 18: The first two principal components of true positives and false negative
classifications when classifying images in Northern California using a classifier
trained in Southern California. Misclassified Northern California aircraft images do
not share a center of mass with Southern California aircraft images.

associated with the classifier trained on Southern California overhead imagery are
shown in Figure 18a and 18b, respectively. Notice that the correctly classified aircraft
images are near the center of mass of the Southern California aircraft images while
the incorrectly classified aircraft images are not. In other words, the incorrectly
classified Northern California aircraft images are in the tails of the distribution of
Southern California aircraft images.

This suggests that system operators can empirically inform ‘go, no go’ deploy-
ment decisions using transfer distance. In this case, the transfer distance between
unlabeled images δX suggests a slight drop in performance. Further, transfer dis-
tance between misclassified images is higher than that of correctly classified images.
Before deployment, system operators can use this empirical evidence to anticipate
challenges to mission success. After deployment, system operators can use transfer
distance to adjust their confidence in themodel’s classification accuracy in real-time.

4.6 Conclusion
As machine learning is deployed into systems, it is important to consider the role
systems engineering plays as a mechanism for generalization. Systems engineering
for AI requires metrics that can relate learning-theoretic concerns to the systems-
level. Transfer distance is such a metric. In learning theory, it is central to the
bounding of prediction error of learned models in new settings, such as rebuilt
actuators or new look angles. At the systems-level, it serves as a measurement of the
closeness of learning problems, and thereby a metric for designing and operating
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systems with the generalization performance of component learning systems in
mind.

Herein, we formally defined transfer distance as a measure, presented an algo-
rithm for calculating it, and demonstrated its use in system design and operation.
We emphasized how, by using transfer distance as a metric, systems can be designed
to influence generalization difficulty and can be operated to influence generalization
performance.

We demonstrated how to use transfer distance to compare the transferability
of binary and multi-class health state classification. In doing so, we showed how
transfer distance can be used to quantify the transferability of both generalized and
specific modes of failure across maintenance procedures. Also, we showed how to
determine the number of samples needed for stable estimates of transfer distance and
transfer learning parameters, and suggested the role of the design of maintenance
procedures in the length of this intervening period. We also demonstrated transfer
distance’s use in computer vision. In particular, we identified which kinds of images
are least transferable across changes in look angle and we anticipated and analyzed
degradation in aircraft detection performance between geographic regions. We
used different measures of transfer distance and generalization performance as well
as different size data sets from different domains, i.e., sensor data and images, to
highlight the generality of the methodology.

In future work, we plan to further explore the use of transfer distance in engineer-
ing practice. For example, in designing rebuild procedures, we aim to characterize
the sensitivity of transfer distance to the tensions of fasteners, locations of sensors,
and the manufacturer of replacement parts. Also, in making ‘go, no-go’ operational
decisions, e.g., in unmanned aerial systems, we aim to tie mission success to the
transfer distance between training and operating environments.
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5 Closing Remarks
Machine learning is heralded as a revolutionary technology. Its transition from a
topic of research to a discipline of engineering is underway. Theoretical frameworks
for characterizing learning systems in the context of the systems within which they
are embedded are both understudied and essential to the principled application of
machine learning technologies.

Herein we formulated a systems theory of transfer learning that is closely stitched
to learning theory and machine learning, but takes a top-down, systems view. We
showed that the resulting framework can be used to develop and organize best prac-
tices by showing how transfer distance can be used in system design and operation.
We were able to integrate best practices from domain adaptation theory and quickly
arrive at discipline-specific tradecraft for realizing best practice, such as the use of
principal component analysis, Gaussian mixture models, and Hellinger distance in
prognostics and health management and the use of auto-encoders and convolutional
layers in computer vision. Therefore, the framework can be used both to make
general considerations about best practices in learning systems and also to arrive at
discipline-specific tradecraft for realizing those systems. And, thus, we showed that
a systems theory of learning can serve as a foundation for a principled discipline of
systems engineering for AI.

The limitations of the presented systems theoretic framework and systems en-
gineering methodology stem from the level of abstraction with which they are
concerned. The presented systems theory, in following with Mesarovician systems
theory, is a minimal formalization of transfer learning. While the elaborations in
Sections 3.3 and 3.4 add additional formalism, they do so at the general systems
level of abstraction. Because, as demonstrated in Section 3.2, the presented sys-
tems theory is a super-structure for learning, these general systems findings apply
to specific considerations of learning processes, the focus of learning theory, and
learning algorithms, the focus of machine learning. But while research into new
understandings of learning processes and algorithms can use the presented systems
theory, that research is likely more parsimonious without the tedium of carrying
along all of its set-theoretic formalism. If such research involves unconventional
formulations, such as using topology or category theory instead of probability and
linear algebra, the systems framework presented herein offers a foundation to build
outwards from a shared base. That is, as long as the topology or category theory ap-
plies to learning systems as defined in Section 3.2, its findings should be consistent
with existing probability theoretic and algebraic findings. Thus, the case for using
the presented systems theory is strongest for meta-theoretical concerns and weakens
the more specific a transfer learning phenomena of interest becomes.

Similar limitations apply to the presented systems engineering methodology.
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Within the discipline of PHM or computer vision, there may be discipline-specific
nuances which suggest exactly what distance measures to use. We highlighted the
flexibility of our methodology to these nuances by applying it to both disciplines and
using different distributional modeling techniques and different distance measures.
This flexibility benefits the systems engineer by giving them a general measurement
approach for any learning system, but necessitates a limitation on what can be
specified about distributional modeling techniques, distance measures, etc., before
the application area is known.

By building directly on the foundations of systems theory, the framework pre-
sented herein has natural, established ties to the practice of systems engineering. In
future work, this connection to the broader body of systems research can be used to
develop best practices for specification and certification, validation and testing, and
life cycle engineering and sustainment of systemswith learning algorithms. Further-
more, extending the application of the framework in system design and operation
can help elucidate the role of systems engineers in machine learning engineering
and the interplay between systems engineers, machine learning engineers, and oth-
ers in achieving system and mission success in AI-heavy applications, as well as
help develop the suite of tools available for facilitating such interdisciplinary work,
e.g., transfer distance. Also, importantly, the systems theory of transfer learning
presented herein suggests large gaps in the learning theory and machine learning
literature involving notions of structure, homomorphism, and category. The set-
theoretic structure of AST may provide a better means of closing this gap than the
structure of the probability and optimization theory commonly found in learning
theory and machine learning.

Real-world systems need transfer learning, and, correspondingly, engineering
frameworks to guide its application. The presented framework offers aMesarovician
foundation.
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6 Appendix

6.1 Mesarovician Glossary
Definition 21. System Behavior.
System behaviors are properties or descriptions paired with systems. For example,
consider a system S : X → Y and a map S → {stable, neutral, unstable} or from
S → P (X, Y ). System behavior is a topological-type concept in the sense that it
pairs systems with elements of sets of behaviors.

Definition 22. Behavioral Similarity.
Behavioral similarity describes the ‘proximity’ between two systems’ behavior. To
the extent that behavior can be described topologically, behavioral similarity can
be expressed in terms of generalized metrics (topological ‘distance’), metrics and
pseudo-metrics (measure theoretic ‘distance’), and statistical divergences (proba-
bility/information theoretic ‘distance’), depending on the nature of the topology.

Definition 23. System Structure.
System structure is the mathematical structure of a system’s component sets and
the relations among them. For example, there may be algebraic structure, e.g. the
linearity of a relationship between two component sets, related to the definition of
the relation.

Definition 24. Structural Similarity.
Structural similarity describes the homomorphism between two systems’ structures.
It is described in reference to a relation m : S1 → S2, termed a morphism.
The equivalence class S1/m describes the ‘roughness’ of the structural similarity
between S1 and S2. Its cardinality gives a quantity to the ‘surjective-ness’ of
m : S1 → S2. However, in the large, structural similarity is not measurable in
the same way as behavioral similarity. The homomorphism is better studied using
properties ofm.

Definition 25. Cascade Connection.
Let ◦ : S × S → S be such that S1 ◦ S2 = S3, where,

S1 ⊂ X1 × (Y1 × (Z1)), S2 ⊂ (X2 × Z2)× Y2

S3 ⊂ (X1 ×X2)× (Y1 × Y2), Z1 = Z2 = Z

and,

((x1, x2), (y1, y2)) ∈ S3 ↔
(∃z)((x1, (y1, z)) ∈ S1 ∧ ((x2, z), y2) ∈ S2)

◦ is termed the cascade (connecting) operator.
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6.2 Learning Systems
Proposition. S in Definition 6 is a cascade connection of two input-output systems.
Proof: Recall S ⊂ ×{A,D,Θ, H,X, Y }. First we will show A and H to be input-
output systems. First note that A ⊂ ×{D,Θ}. Noting D ⊂ X × Y , apparently
D ∩ Θ = ∅ and D ∪ Θ = A. Similarly, H ⊂ ×{Θ, X, Y }. Letting X ′ = {X,Θ},
apparentlyX ′∩Y = ∅ andX ′∪Y = H . Therefore, by definition,A andH are input-
output systems. Let SC : D×X → Y . Apparently, for d ∈ D, x ∈ X, y ∈ Y, θ ∈ Θ,
((d, x), y) ∈ SC ↔ ∃θ((d, θ) ∈ A ∧ (θ, x, y) ∈ H . Therefore, SC : A ◦H . Lastly,
note SC is a function-type representation of S, where A, H , and Θ are left as
specifications on relations, not included as component sets.

Proposition. S in Definition 7 is a goal-seeking system.
Proof: Goal-seeking is characterized by the consistency relations (G,E) and by
the internal feedback of X × Y into SG. Note D ⊂ X × Y satisfies internal
feedback. The consistency relations (G,E) in Definition 3 and 7 can be shown
to be isomorphic by substituting D ⊂ X × Y into consistency relations G and
E in Definition 3 and (x, y) ∈ d into their constraints. Thus, by definition, S in
Definition 7 is a goal-seeking system, where SG is the inductive system A and SF is
the functional system H .

Proposition. Empirical risk minimization is a special case of a learning system as
defined in Definition 7.
Proof: A learning system given by Definition 7 is an empirical risk minimization
learning system if (1) D is a sample of l independent and identically distributed
observations sampled according to an unknown distribution P (X, Y ), and (2)A se-
lects θ ∈ Θ byminimizing the empirical riskRemp, calculated on the basis ofD, over
θ ∈ Θ. Otherwise put, ERM is a learning system S ⊂ ×{A,D,Θ, G,E,H,X, Y }

where G(D, θ) = Remp(D, θ) = 1
l

l∑
i=1

L(yi, h(xi, θ)) and E = minθ∈ΘG(D, θ),

where L is a loss function.
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