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Chapter 1

Introduction

It is of interest to statistical make inference of a certain events given data in the field

of statistics. In the context of survival analysis, for example, researchers are interested

in modeling occurrence and timing of events of interest. However, the event of interest

may not be observed exactly, which compllicates the analysis of such data. This lack

of complete data is called censoring, which refers to the case that where the specific

timing of events of interest remains unknown, and we only have information about

their occurrence within a specified interval.

1.1 Types of Censoring

An event is referred to as ”left-censored” when it happens before a predefined time,

known as the censoring time. This form of censoring frequently arises when a cohort

of patients is enlisted to partake in a clinical trial, and the event of interest has already

transpired for certain individuals prior to the initiation of the study.

In certain scenarios, the event times, denoted as T , are constrained to exist solely

within a specified interval, denoted as [L,R], where L ≤ T ≤ R. This occurrence

typically arises when patients are subjected to periodic follow-ups, and it is established

that the event has not been witnessed at time L, but it has indeed occurred by time

R. In this context, such data is characterized as ”interval censored.”
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Right-censored data pertains to events for which their actual occurrence remains

unobserved up to a specified censoring time. This situation frequently arises when

certain patients have not experienced the events by the conclusion of the study or

due to instances of being lost to follow-up.

1.2 Wide Spread of Censoring

While we have primarily introduced and elucidated the concept of censoring from a

biostatistical standpoint, it’s important to note that censoring finds applicability in

various domains beyond the medical context. In credit scoring, for instance, censor-

ing is encountered when modeling time-to-default directly, as evidenced in studies

by Narain, 2004; Dirick, Claeskens, and Baesens, 2017. Similarly, in the field of

engineering, the accelerated failure model proves invaluable for modeling the failure

time of machinery, as demonstrated in Wei, 1992; Newby, 1988. Even in the realm

of politics, interval censored data can arise, particularly when pollsters exclusively

provide aggregated statistics for conducted polls, as discussed by Tian and Porter,

2022a.

Despite its prevalence, the analysis of censored data often does not receive the same

level of attention as it does in the field of biostatistics. Notably, there is a scarcity of

research on crucial topics related to censored data in various domains. For instance,

there is limited exploration on methods for detecting change points when dealing with

censored data, and forecasting in the presence of censoring remains an underdevel-

oped area. These gaps in research highlight the need for further investigation and

innovation in the analysis of censored data across a range of disciplines.

In this thesis, we delve into critical subjects that encompass change point detection,
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intensity estimation, and forecasting within the context of political polling and crime

data, all while contending with the challenges posed by interval-censored data.

1.3 Handling Censoring

Several straightforward methods have been devised for transforming interval-censored

data, rendering them amenable to the same analytical techniques developed for exact

data. Research has underscored the potential for bias in results when censoring is not

appropriately managed, necessitating the utilization of suitable techniques and tools,

as highlighted in studies by Turkson, Ayiah-Mensah, and Nimoh, 2021; Lindsey and

Ryan, 1999.

One tempting approach is the straightforward imputation method, such as replacing

the interval with its midpoint, which is favored for its simplicity, as noted by Lindsey

and Ryan, 1999. Another noteworthy method is the Aoristic approach, as introduced

by Ratcliffe, 2000 within the realm of crime analysis. This method treats each event

individually and allocates a partial count to the corresponding bins covered by each

interval. In this section, we would like to do a comparison to demonstrate how the

likelihood-based approach is better at uncovering the true intensity curve compared

with mid-point imputation and the aoristic method. Synthetic data has been gener-

ated to ensure a fair comparison. This dataset comprises 2000 observations, with a

predetermined proportion of censored observations set at 0.8, mirroring the propor-

tions observed in the real data we analyzed. Additionally, the average length of the

intervals has been established in accordance with this proportion and is assumed to

adhere to an exponential distribution with a mean value of 8. The experiment has

been conducted a total of 5,000 times for each of the methods under consideration, en-
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abling a robust and comprehensive assessment. In Figure 1.1, we present a summary

0.000

0.025

0.050

0.075

0.100

0.125

1 5 9 13 17 21
bin

Y series

mid_point

true density

Figure 1.1: Estimated density with midpoint imputation

of the performance when applying mid-point imputation to analyze the aforemen-

tioned dataset. The solid black line represents the true density that every method

aims to unveil. The blue line in the center denotes the average estimated density

across 5,000 simulations. The remaining two lines correspond to the 2.5th percentile

and 97.5th percentile of the estimated densities, providing a range that encapsulates

the variation observed in the simulations. A comparison between the middle blue line,

which represents the average estimated density, and the solid black line depicting the

underlying density, leads us to the conclusion that mid-point imputation falls short

in capturing the peaks and valleys within the density distribution. In Figure 1.2, we

present the performance of applying the Aoristic method, as introduced earlier, to

analyze the same synthetic data. As expected, the Aoristic method also falls short of

fully capturing the true underlying density. However, the plot does indicate that the

variation in the estimates is comparatively smaller when compared to the mid-point
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Figure 1.2: Estimated density with aoristic method

imputation method. Finally, we present the results here of applying a likelihood-

based approach to analyze the same data. Specifically, the number of occurrences

of the events is assumed to follow a Poisson distribution. We also derived the maxi-

mum likelihood estimate based on Expectation-Maximization Dempster, Laird, and

Rubin, 1977. Figure 1.3 illustrates that the likelihood-based approach demonstrates

remarkable capability in uncovering the true underlying density, particularly in cap-

turing the peaks and valleys within the density curve. Additionally, the variation

in estimates, as denoted by the grey-shaded area, is comparable to that observed

with the Aoristic method, which is a significantly less complex model. Therefore,

the experiment presented here underscores that the likelihood-based approach yields

superior results compared to other methods considered, as it accurately uncovers the

true density while achieving comparable variation.

Figure 1.4 illustrates the squared bias obtained through various approaches to han-
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Figure 1.3: Estimated density with EM approach

dling censored data. A notable spike in squared bias occurs when the underlying

intensity is at its peak or valleys. The reason why both the aoristic and midpoint

methods fail to accurately capture the intensity is that they produce an overly smooth

curve, leading to an increase in bias at intensity spikes.

The simulation study mentioned above illustrates that the utilization of simple im-

putation methods may result in significant bias, while the likelihood-based approach

can yield better inference by considering the intensity covered by each interval. The

subsequent sections of the dissertation will delve into important applications of cen-

sored data modeling, encompassing change point detection, intensity estimation, and

forecasting. These applications highlight the significance of handling censored data

appropriately to obtain sensible and accurate results.
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Chapter 2

Change point detection

Change point detection (CPD) involves identifying abrupt changes in data, indicat-

ing a shift in a property of the time series. Depending on the nature of the methods,

CPD can be achieved through likelihood ratio-based approaches, probabilistic meth-

ods, clustering methods, and so on. The detection of change points with probabilistic

methods encompasses both frequentist and Bayesian approaches. Gaussian processes

are often assumed and employed for change point detection by comparing data points

with a reference distribution Chandola and Vatsavai, 2010. Bayesian Change Point

Detection (BCPD) focuses on identifying abrupt changes using Bayesian-based meth-

ods by estimating the posterior distribution of the run length, which is the time

elapsed since the last change point Tan et al., 2015; Ruggieri and Antonellis, 2016.

These methods exhibit two distinct characteristics: 1) their primary goal is to find

the point at which the underlying mechanism changes, and 2) they assume data is

precisely observed. However, data such as political polling is often reported in an ag-

gregated form, rendering methods suitable for exact data inapplicable. In this project,

we introduce a method that leverages the combination of the joinpoint model with

the Expectation-Maximization (E-M) framework to detect change points in the pres-

ence of censored data. Furthermore, we propose the use of Bayesian Model Averaging

(BMA) to average the evidence for the change points and obtain the probability for

each change point.
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Changing Presidential Approval: Detecting and Understanding Change

Points in Interval Censored Polling Data

AbstractUnderstanding how a society views certain policies, politicians, and events

can help shape public policy, legislation, and even a political candidate’s campaign.

This paper focuses on using aggregated, or interval censored, polling data to estimate

the times when the public opinion shifts on the US president’s job approval. The

approval rate is modelled as a Poisson segmented (joinpoint) regression with the EM

algorithm used to estimate the model parameters. Inference on the change points

is carried out using BIC based model averaging. This approach can capture the

uncertainty in both the number and location of change points. The model is applied

to president Trump’s job approval rating during 2020. Three primary change points

are discovered and related to significant events and statements.

Keywords:Bayesian Model Averaging, Change Point Detection, EM algorithm, Ag-

gregated Data, Interval Censoring, Joinpoint Regression, Segmented Regression, Polling,

Presidential Approval

2.1 Introduction

Polling data is an important source of information for evaluating how a society views

issues, people, and policies (Weisberg, Krosnick, and Bowen, 1996). It is especially

useful for understanding how politicians and political candidates are viewed by the

voting public (Jonge, Langer, and Sinozich, 2018; Walther, 2015; Murray, Riley, and

Scime, 2009; Prosser et al., 2020; Mostafavi et al., 2021) and can be used to predict

election results (Lock and Gelman, 2010). Prior research has identified that the poll

standing of a politician can change significantly after important events like party
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conventions, political debates, policy decisions, and speeches (Campbell, Cherry, and

Wink, 1992; McAvoy, 2006; Benoit, Hansen, and Verser, 2003; Willer, 2004; Druck-

man and Holmes, 2004).

This paper examines President Trump’s job approval rating. Instead of testing a set of

pre-determined events for their influence on the poll results, we focus on identifying

the time points when public opinion shifts on Trump’s approval and then relating

those change points to potential explanatory events. The task of identifying the

change points is complicated by the aggregated, or interval censored, nature of the

polling data; a poll often spans multiple days but only the aggregated results are

available.

We posit that change in approval will not be abrupt, but rather develop over time

as news coverage and public opinion builds following decisive events. This leads us

to consider identifying change points in the trend of approval rating. The hypothesis

is that certain events will trigger a change in opinion, either positive or negative,

that will lead to growing or shrinking job approval. Because we expect these changes

to be gradual, we consider joinpoint models; these are change detection models that

represent the underlying mean of a process as a set of piece-wise linear segments

that are connected at the change, or join, points (Lerman, 1980; Hinkley, 1971; Kim

et al., 2000). Joinpoint regression models are popular approaches for capturing trend

changes in cancer, mortality, and epidemiological data (Martinez-Beneito, García-

Donato, Salmerón, et al., 2011; Qiu et al., 2009; Dehkordi, Tazhibi, and Babazade,

2014; Wong et al., 2018; Puzo, Qin, and Mehlum, 2016). Sometimes called segmented

regression, joinpoint models partition the data into segments and model the data in

each segment with a (usually) simple regression function. A key aspect of joinpoint

models is that they enforce the estimates to be equal at the joinpoints (i.e., no abrupt
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changes are assumed). Mathematically, a joinpoint model can be expressed:

f(t; β, τ) =



f1(t|β1) for t≤ τ1

f2(t|β2) for τ1≤ t≤ τ2

...

fk(t|βk) for t≥ τk

where τ1...τk are the unknown change points and each fi is a known parametric

function of the parameter(s) βi. Lerman (1980) described a grid search to estimate

both the change points and corresponding parameters. Hinkley (1971) proposed an

estimation approach in the case of a single joinpoint. Ghosh et al. (2009) took

a Bayesian approach to allow prior information about the number and position of

change points.(Siddiqa, Ali, and Shah, 2021) used an integer programming

approach to detect common change points in multivariate time series with

censored Gaussian observations. Assareh and Mengersen (2012) used a

Bayesian hierarchical model to detect single change points in right cen-

sored survival data. Wang, Wang, and Song (2019) tackled the problem of

single change point detection in the hazard function for interval censored

survival data. Polls are often conducted over a duration of several days and only

the aggregated data are made available. This can also be viewed as interval censoring;

the exact time of poll responses are not known, but only that they occurred some-

time within the survey period. This introduces additional difficulties in accurately

estimating change points as polls that span the change points will only provide in-

formation on the average responses weighted by how much of the poll was conducted

before and after the change point. A common approach in estimating models using

censored data is to formulate a two-stage procedure that iteratively estimates the
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time of each censored event based on the current model parameters and then updates

the model parameters using the estimated event times (e.g., the EM algorithm) (Yu

et al., 2009). We take this approach and derive an EM algorithm for maximizing the

likelihood of a joinpoint Poisson regression model with interval censored data.

Instead of model selection, we use model averaging to assess the evidence for change

points occurring at certain times. This approach fits separate models for a large

collection of change points and uses the Bayesian Information Criterion (BIC) to

estimate the posterior probability that changes occurred at those times.

The contribution of our work includes:

• an EM approach for estimating the model parameters in a joinpoint Poisson

regression using aggregated polling data.

• a Bayesian model averaging approach to estimate the number of change points

and their locations.

• a list of change points in President Trump’s 2020 approval rating and their

alignment with potential explanatory events.

2.2 Methodology

We consider observing p polls that were conducted over days 1, 2, . . . , T . Let Di =

(Li, Ri, Ni, Yi) be the observed information from poll i where 1 ≤ Li ≤ T is the start

time, Ri ≥ Li is the end time, Ni is the number of respondents, and Yi is the number

of those respondents that support the outcome of interest. Note that we only observe

the aggregate counts, (Ni, Yi), but not the daily responses (for polls that span more
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than one day).

Our goal is to estimate the probability that a randomly selected respondent supports

the president on days t ∈ {1, 2, . . . , T}. Because we expect trend changes in response

to significant events we model the support probability on day t as

αt = exp
(
β0 + β1t+

∑
s∈τ

βs(t− s)+

)
(2.1)

where τ ⊂ {2, 3, . . . , T − 1} are the unknown change points, β are the changes in

trend associated with the change points, and (t−s)+ = max(0, t−s). Thus, the slope

changes by βs if there is a change point at time s. We formulate the model as

logα = Xβ where the design matrix X has a column for the intercept, slope,

and change points. For example, the design matrix for a two change point

model (τ = {4, 10}) is X = [X0, X1, X4, X10] where X0 = [1, 1, . . . , 1]T , X1 =

[1, 2, . . . , T ]T , X4 = [0, 0, 0, 0, 1, 2, . . . T − 4]T , and X10 = [0, . . . , 0︸ ︷︷ ︸
10

, 1, 2, . . . T − 10]T .

We model the number of supporting respondents for poll i as a Poisson random

variable with intensity

λi =
T∑
t=1

nitαt

where nit = Ni/(Ri−Li+1)1(Li ≤ t ≤ Ri) is the assumed number of respondents for

poll i on day t. This specifies that the number of respondents is equally distributed

over the duration of the poll and zero for the other days. The (observed) log-likelihood
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is

logL(β) =
p∑

i=1

Yi logλi − λi

=

p∑
i=1

Yi log
(

T∑
t=1

nitαt

)
−

T∑
t=1

nitαt

=

p∑
i=1

Yi log
(

T∑
t=1

nite
XT

i β

)
−

T∑
t=1

nite
XT

i β

where αt is a function of the model parameters β as given in (2.1). This expression

is not easy to optimize due to the sum inside the log. An alternative to direct

optimization is the Expectation-Maximization (EM) algorithm (Dempster, Laird, and

Rubin, 1977), an iterative algorithm to find the maximum likelihood estimates in the

presence of unobserved data (latent variables). Let the latent variables be {Zit} which

represent the unobserved number of supporters from poll i who responded on day t.

The EM algorithm approach is an iterative two-step procedure that first calculates

the expected value of the complete log-likelihood with respect to the latent variables

given a current estimate of β (E-step) and next updates β to maximize the expected

log-likelihood (M-step).

The expected (complete) log-likelihood is

E[logL(Z, β) | β] =
p∑

i=1

T∑
t=1

ϕit(Xβ + lognit)− nite
Xβ

=

p∑
i=1

T∑
t=1

ϕit logαtnit − αtnit

(2.2)
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where the conditional expectation, ϕit = E[Zit | Yi, α̂] is written

ϕit = Yi
nitα̂t∑t
s=1 nisα̂s

(2.3)

as a function of the current estimate of α̂. The updated β values can be obtained

from a Poisson regression with offset lognit using ϕit as the outcome variables.

2.2.1 Bayesian Model Averaging

Our approach involves fitting many different change point models and combining the

information from all models to quantify the evidence for changes in approval rates at

certain times. Recall that we use τ = {s : β̂s ̸= 0, s > 1} to represent a model. Each

model includes the number of change points |τ | and the associated change times.

Following Neath and Cavanaugh (2012), we approximate the posterior probability of

τ given the poll data D using the Bayesian Information Criterion (BIC)

p̂(τ | D) ∝ e−B(τ)/2 p(τ)

where

B(τ) = −2 log L̂(τ) + d(τ) log p

is the BIC for model τ , L̂(τ) is the observed likelihood using the MLE estimated

coefficients of β̂ obtained from the EM algorithm, d(τ) = 2 + |τ | are the number of

estimated model parameters, and p are the number of polls. The prior probability of

model τ can be written

p(τ) = p(|τ | = k) p(τ1, . . . , τk | |τ | = k)
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where the first component corresponds to the prior on the number of change points

and the second on the locations of the k change points.

Once we have have estimated p̂(τ | D), then many useful estimates can be obtained.

For example,

P̂r(k change points) =
∑
τ

p̂(τ | D) · I(|τ | = k)

P̂r(t is a change point) =
∑
τ

p̂(τ | D) · I(t ∈ τ)

(2.4)

Similar to Lerman (1980), we take a grid search approach to obtain information on the

evidence about |τ̂ | and τ̂ . Considering how media (television, newspapers and social

media) respond to political events or campaigns and appropriate time it takes for the

voting public to react, we set the gap between the change point to one-week. Also,

only those events of significance are able to shift people’s option (Shaw, 1999). Hence,

we set the maximum number of change points for the time period considered to five.

After the grid search, the evidence about the change points is combined

using equations 2.4 to get the predicted number of joinpoints ˆ|τ | and their

locations τ .

The complete algorithm for our proposed model is summarized in Algorithm 1.

2.3 Simulation

To illustrate the performance of our approach, we carried out a simulation study. With

the aim of mimicking realistic data we used the observed US Presidential approval

rating data (detailed in Section 2.4) to guide the simulation. Specifically, we used

the observed times and intervals of the 73 polls (spanning 315 days) and
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Algorithm 1 EM Algorithm for Estimating Change Point Model with Censored
Data

Initialize the support rate αt as a constant
for Each set of change points considered in the search space do

while Convergence criteria is not met do
for Each polli do

Calculate expectation of latent vector using equation 2.3
end for
Use Poisson regression to find the β vector that maximizes the expected log

likelihood in equation 2.2
end while

end for

only simulated the number of respondents and number of supporters. The

simulated number of respondents of poll i was generated as a Poisson

random variable

Ni ∼ Pois

(
T∑
t=1

nit

)
where nit is from the observed data. The total number of supporters is generated

from a binomial distribution

Yi ∼ Binom

(
Ni,

∑T
t=1 nitαt∑T
t=1 nit

)

where αt is a specified approval rate.

We considered four different scenarios corresponding to zero through 3

true change points. Figure 2.1 shows the underlying approval rates used for each

scenario. For the three change point scenario, the underlying change point ares set

to March 23rd, June 29th and August 31st, respectively. For the two change point

scenario, the underlying change point are set to March 30th and April 27th, respec-

tively. For the one change point scenario, it’s set to June 29th. To evaluate how well

our method can detect the real number of change points and how certain it is about
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Figure 2.1: Approval rates used for simulation. Each line represents a simulation
scenario.

the locations detected, we simulated data from each scenario 100 times.

k % (k̂ = k) Avg P̂ (τ | D) > P̂ (τtrue | D)
0 100% 0.00%
1 89% 0.00%
2 95% 0.01%
3 28% 0.31%

Table 2.1: Performance on simulated data. k is the true number of change points,
%(k̂ = k) is the percentage of simulations that favored the true number of change
points, and Avg P̂ (τ | D) > P̂ (τtrue | D) is the average percentage of models that
were favored over the true model.

Key performance metrics are summarized in Table 2.1. The result suggests that

the algorithm is able to detect the true number of change points very well in the

case of no change points, one change point, and two change points. In

addition to estimating the correct number of change points, we are also interested in

the proportion of models τ̂ that have larger model evidence than the true underlying

model τ . If this value is small, the model is confident in finding the true change point

locations. The mean number of models that are favoured over the true underlying
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Figure 2.2: Distributions of most likely number of change points from simulated data.

change points is adequately small compared with the sheer number of models that

have been considered. It was also found that the models that were preferred over true

models often include combination of change points that are in the neighborhood of

real change points used.

Figure 2.2 shows the distribution of the estimated number of change points

for each k considered in the simulation study. This shows that the model

is able detect the true number of change points in the first three cases

considered. For the three change point scenario, the model more often

favors the two change point model. There are two reasons for this finding.

First, we specified the prior distribution on the number of change points

to be a truncated geometric with p = .4, which will favor k̂ = 2 over k̂ = 3.

The other reason is that there are several two change point models that

have similar likelihoods and even smaller BIC scores then the best three

change point model. Because the simulated data closely follows the real data,



20

this result indicates that we may have difficulty distinguishing between two and three

change point solutions.

2.4 Results

We illustrate our method on the 2020 US Presidential approval rating. The polling

data comes from 538 (Silver, 2020a). We consider the 73 polls conducted in 2020 that

had an A- or better rating and used the bias adjusted approval rates (Silver, 2020b).

The adjusted approval rates take into account all sorts of possible bias ranging from

sample size, pollster to how surveys are conducted. We used a truncated (k ≤ 4)

geometric prior, with p = 0.4 to model the a priori number of change

points, used a uniform prior on the locations of the change points, and eval-

uated the model for change points every 7 days apart. This led to a total

of 149986 models evaluated which took less than 1 hour to run. Code for

replication can be found at: github.com/mdporter/presidential-approval.

Figure 2.3 shows the estimated fit using the best single model (i.e., lowest BIC) for

zero to four change points. Figure 2.4 shows the estimated distribution of the number

of change points which gives a preference to the k = 2 change point models. Figure 2.5

shows the estimated distribution for the first two change points. While there is strong

evidence for the first change point being around the end of March, the second change

point is less certain with a dates around the end of April or end of June being favored.

The upper panel of Figure 2.6 shows the distribution of the change point locations.

The filled polygons show the contribution for all four potential change points. Again,

this shows the uncertainly around the second change point but also indicates there is

limited support for the three or four change point models.

github.com/mdporter/presidential-approval
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Figure 2.3: Estimated approval rates from the best models for each k change points.
The black horizontal segments correspond to the observed aggregate polls.

We found three significant events in Trump’s presidency and campaign that align

with these three time periods. The end of March sees Trump’s approval peak and

begin a decline. This is during the COVID-19 pandemic when Trump signs the largest

stimulus package in US history (CARES Act on March 27), announces estimates that

240K Americans are likely to die from the virus, and most Americans are under stay

at home orders. The second mode around the end of April follows Trump’s suggestion

that COVID-19 could possibly be treated by injecting bleach or UV light into a human

(April 23). The third mode occurs at the end of June when Trump’s approval rating

hits and all-time low and begins increasing. This change point corresponds to the

start of Trump’s re-election campaign and first rally in Tulsa, OK (June 30).

To further explore the potential change point explanations, we collected google trend

keyword searches during 2020 (Google, 2020). The bottom of Figure 2.6 shows how

relative search interest for the three events discussed above line up with the distri-

bution of change point locations. The sharp peaks in the searches align with the
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Figure 2.4: Estimated distribution of the number of change point for the observed
data.

identified change points well, indicating that the public paid increased attention to

the events listed here and these events have potential to trigger a change in voting

public’s opinion.

2.5 Discussion

This article introduces our approach to joinpoint regression modeling with interval-

censored survey data. Our approach comprises three steps: (i) an efficient EM based

algorithm for estimating model parameters in a Poisson regression with interval cen-

sored, or aggregated, survey data; (ii) a search over a large collection of possible

change point models; and (iii) using Bayesian model averaging, based on BIC, to ac-

cumulate the information from all models about the number and location of change

points. This approach was used to efficiently discover potential change points and

model trends in the 2020 approval ratings of US president Donald Trump. This
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revealed three potential change points that we associated with significant events in

Trump’s presidency and campaign.

We evaluated the performance of our approach on realistic simulated data. By match-

ing the properties of the actual data, our simulation performance can give a more

accurate assessment of how well the model can identify the true change points. For

the data we analyzed in this paper, the simulation exercise gives us confidence in the

reported change points.

There are also some factors that could affect the performance of the purposed algo-

rithm and the understanding of the results. Even though we filtered out polls with

less trustworthy ratings, factors like sample size and bias introduced by pollsters also

have effects on the data quality. Besides these, the length of polls affects the ability

to capture the true structure. Longer intervals introduce extra variability that will

lead to smoother (fewer change points) estimated support rates. In cases where few

polls span the change points, it would be difficult for the algorithm to detect both
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the k̂ and model τ̂ .

While we developed this approach for polling data, it can be modified to address

joinpoint modeling of other aggregated, or interval censored, data. If the focus is on

trend modeling, without change point detection, instead of the best-subsets type of

search we used here, a lasso or ridge type penalty on adjacent coefficients could be

added to the likelihood to encourage a smoother trend estimate (see Eilers and Marx

(1996) and Kim et al. (2009) for details). The model can be used as a standalone

method to detect both the number of change points and locations. The results can

provide statistical evidence to findings in political science (Shaw, 1999).
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Chapter 3

Intensity Estimation

The modeling of censored data is extensively explored in the biostatistical commu-

nity, particularly in contexts where the focus lies in making inferences regarding

time-to-event. However, the application of censored data modeling outside the field

of biostatistics is less mature. Typically, methods adopted in non-biostatistical do-

mains often result in biased inferences. Crime modeling is one such domain where

prevailing practices in censored data modeling yield overly smooth curves, impeding

the identification of peaks and valleys in intensities. Consequently, the derived in-

tensity estimates become less useful to informed decision-making. In this project, we

introduced a method for estimating intensity in the context of interval-censored data,

aiming to provide law enforcement agencies with precise intensity estimates for the

optimization of resource allocation. The method incorporates two distinctive penalty

terms, coupled with hierarchical clustering, to ensure uniformity of estimates within

the same cluster. This innovative approach provides law enforcement agencies with

the flexibility to achieve the maximum level of crime reduction with the resources

available. Our method yields intensity estimates subject to dual penalties and incor-

porates a clustering algorithm, resulting in an optimized and realistic patrol plan. It

is noteworthy that our approach diverges from the two-stage methodology outlined

by (Camacho-Collados and Liberatore, 2015), wherein intensity estimates are initially

derived without constraints, followed by a subsequent optimization process to devise
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a patrol strategy under realistic constraints. Our method provides a holistic approach

to get accurate estimates with constraints imposed in the form of penalties.
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Time of week intensity estimation from interval censored data with appli-

cations to police patrol planning

Abstract Law enforcement agencies are tasked with crime prevention and crime

reduction under limited resources. Having an accurate temporal estimate of the

crime rate would be valuable to achieve such a goal. However, estimation is usually

complicated by the interval censored nature of crime data. We cast the problem of

intensity estimation as a Poisson regression using an EM algorithm to estimate the

parameters. Two special penalties are added that provide smoothness over the time

of day and day of week. This approach provides accurate intensity estimates and

can also uncover day of week clusters that share the same intensity patterns. Both

simulated and real crime data gathered from the city of Cincinnati and the city of

Dallas are used to demonstrate the effectiveness of the proposed model.

Keywords:Intensity Estimation; EM Algorithm; Cluster Detection; Interval Censor-

ing; Patrol Planning; Smart Policing Initiative

3.1 Introduction

Anticipating where and when crimes might occur is a key element to successful polic-

ing strategies (National Academies of Sciences, Engineering, and Medicine and others,

2018). However, this task is complicated by the presence of interval censored data.

The censored data refers to the type of data that the event time is only known to lie

within an interval instead of being observed exactly. This type of data is prevailing

in the field of criminology because of the absence of victims for certain types of crime.

Despite its importance, the research in temporal analysis of crime has lagged behind

the spatial component (Ashby and Bowers, 2013). Inspired by the success of solving
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crime-related problems with statistics (Ratcliffe, 2000; Porter, 2016; Koch, Tian, and

Porter, 2020), we proposed a statistical model for the temporal intensity estimation of

crime with interval censored data. The model is built on Poisson regression and has

special penalty terms added to the likelihood. The proposed model is able to yield

accurate intensity estimates and generate meaningful day of week clusters compared

with the competing method.

Our research is in line with the smart policing initiative (SPI) proposed by the Bureau

of Justice of Assistance (BJA) as an effort to support law enforcement agencies in

building evidence-based, data-driven law enforcement tactics. The goal is to identify

strategic approaches that are effective in crime prevention and reduction. One of

the key practices specified by SPI is Strategic Targeting which refers to the analysis

that could help agencies focus on a small percentage of people or places with limited

resources. In our case, we allow agencies to deploy their resources in a relatively

short period of time to achieve the maximum level of crime reduction. By analyzing

a particular area within cities where data are available, our proposed approach could

not only provide an accurate estimate of intensities for the time unit considered, but

a time-variation crime incidence pattern. Both will be helpful in the allocation of

limited resources when the agencies design their patrol plan. We discussed how the

plan could be improved with the estimates given by the model in Section 3.4.

The remainder article organizes as follows. In Section 3.2, we introduce the research

in the area of criminology and censored data and describe the model of the penalized

temporal intensity estimation method and a procedure for tuning the penalty param-

eter. We present both simulation study and real data analysis in Section 3.3 with the

idea of repeated-cross validation to demonstrate how our proposed framework could

generate more accurate results. The concluding remarks and the discussion are given



29

in Section 3.4 and 4.7.

3.2 Temporal analysis in crime and censored data

3.2.1 Temporal analysis

Research into the temporal patterns associated with different types of crimes provides

us with insights into criminal behavior. For instance, offenders are more likely to

commit crimes in the early evening (Tompson and Townsley, 2010). Weekends usually

see a large number of residential burglaries. This illustrates how the knowledge of the

victim’s behavior affects the criminal’s behavior. Research showed that crime rates

are found to go up on holidays (Cohen and Felson, 1979). One possible explanation

is the lack of capable guardians and suitable targets encourage offenders to commit

crimes. It was also shown that crime rates are found to be related to both the type

of crime and the type of holidays (Cohn and Rotton, 2003). It has been shown in

the same paper that crime rates of violent crime go down on major holidays and the

opposite is true for property crimes. The effects of the type of holiday on crime rates

were also investigated using routine activity theory (Towers et al., 2018). This type

of research is valuable to our research in the sense that it shows how crime rates could

vary with time and provides us with an idea to describe the variation with statistical

power.

Generating temporal maps of when crimes occur is quite difficult because of the na-

ture of crimes and possible data issues. The research showed how circular statistics

can be adapted to analyze crimes by time of day and day of week. In this project,

we estimate the crime intensity for each hour in a week, leading to 168 estimated

intensity (Brunsdon and Corcoran, 2006). To overcome the difficulties brought by
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the indeterminate timing at which the crime actually occurs, aoristic analysis was

proposed and it was shown that this method was able to uncover underlying tempo-

ral patterns in burglary crime data that would not be observed using other analysis

methods (Ratcliffe and McCullagh, 1998). The aoristic approach assumes that the

contribution of an event to each time unit covered by the time interval is equal. Each

event is processed individually without considering all other events that happened

around the same time. The research suggests that the temporal distribution gener-

ated by the aoristic method was smoother than other methods which showed peaks

related to routine activities of burglary victims, reducing irregularities in the data

set. (Ratcliffe, 2000).

Though the aoristic method has a variety of advantages like easy-to-understand, com-

putationally inexpensive, the aoristic method also oversimplifies the problem. One

important idea in supervised learning in the area of machine learning/data mining is

bias-variance tradeoff (Hastie et al., 2009). The aoristic approach produces a model

with a low variance but high bias by oversmoothing the rate, thus interesting pat-

terns could be concealed. The deployment strategy could go wrong in two possible

ways; when a crime occurs without police officers present or no crimes occur when

police officers are on duty. The first situation adversely affects the effectiveness of

developed strategies. The second situation, however, is a waste of valuable resources.

Intensity estimates provided by the method that is over-smooth could conceal peaks

and valleys in intensity. The incapability to detect peaks causes the absence of polic-

ing at crime scenes, and the inability to detect valleys could waste limited resources

available. Therefore, such temporal analysis only provides limited help in terms of

crime prevention. In other words, the performance of the fitted model on unseen data

could be impaired by adopting a method that can’t fully extract the information from
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the data. The fact that the aoristic method doesn’t consider the other events while

generating temporal distribution increases bias. By acknowledging the weakness as-

sociated with the current practice, there is a need for novel approaches for intensity

estimation when interval censoring is present which takes advantage of information

that exists in the data to generate more accurate temporal intensity.

3.2.2 Censored data

Due to the uncertain nature of the data, we manage to solve the problem from the

perspective of censored data analysis. Interval censored data could be observed in a

variety of areas including epidemiological, financial, medical, and sociological studies.

In politics, the interval censored data appear because pollsters only report aggregate

statistics for polls conducted (Tian and Porter, 2022b). In medical research, the

interva l censored data arise because the event of interest requires laboratory tests or

a comprehensive examination (Goggins and Finkelstein, 2000). Also in crime analysis,

the interval censored data were recorded because the victims were not present when

certain types of crime happened and the event timing is only known to occur within an

interval (Ratcliffe and McCullagh, 1998). Censored data has been well studied in the

medical field where the patients’ progression of disease is assessed periodically and the

time to event is known to occur between two adjacent visits. Extensive literature on

regression analysis for interval censored data is available. Most of the work has been

focusing on the proportional hazard model(Cox, 1972). The use of the Cox model

for interval-censored data with discrete hazard assumed is considered in (Finkelstein,

1986). Asymptotic properties of the Cox model and nonparametric estimation are

investigated in (Huang and Wellner, 1997). Hazard regression for interval censored

data using linear splines was studied in (Kooperberg and Clarkson, 1997). Penalized
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spline approach for hazard estimation was proposed in (Cai and Betensky, 2003). The

nonparametric method for estimating survival function was purposed in (Peto, 1973).

We consider the problem of temporal intensity estimation in the context of interval

censoring for crime data. We adopted a piecewise Poisson model for each temporal

unit considered, which is similar to the work in (Friedman et al., 1982) where a

piecewise exponential model was assumed. An Expectation-Maximization (Dempster,

Laird, and Rubin, 1977) is then used for the estimation of densities by optimizing the

likelihood function incorporating penalty structure which is based on routine activity

theory.

3.2.3 Notation and model

Let T ∈ [0, 168) denote the time of the week, in hours, that an event of interest

(e.g., a crime) occurred. The event time can either be observed exactly (T = t) or

only observed within an interval (T ∈ X), where X ⊆ [0, 168). We are interested in

modeling the weekly crime intensity to help with police patrol planning. We discretize

time into a set of J equally sized bins and let λj be the intensity in the jth bin denoted

by bj. Each bin has a width of bw = 168/J hours with the first bin starting at time

0. Let N be the number of events and ti the true event time of event i, which is not

known exactly for interval censored events.

This specifies a piecewise constant model for the intensity λ(t) =
∑

j λjI(t ∈ bj)/bw.

We denote wij as the proportion of bin j that is contained in event i’s interval:

wij =


∫
Xi

I(t ∈ bj)dt/bw censored events

I(ti ∈ bj)/bw uncensored events
(3.1)
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The log-likelihood for our partially interval-censored data consists of three compo-

nents. Following Kim, 2003, one component represents the density from the uncen-

sored data and another the probability for the interval censored events. The third

component represents the overall event rate. The notation introduced in (3.1) allows

the first two components to be written in the same form giving the log-likelihood:

logL =
∑
i∈unc

log f(ti) +
∑
i∈cen

log Pr(T ∈ Xi) + log Pr(N = n)

=
N∑
i=1

log
(∑

j λjwij∑
j λj

)
+N log

(∑
j

λj

)
−
∑
j

λj − logN !

=
N∑
i=1

log
(∑

j

λjwij

)
−
∑
j

λj − logN !

(3.2)

Our model for the intensity is logλj = βj for j = 1, 2, . . . , J . While this model

stipulates one parameter per bin, we will use two penalties during the estimation to

discourage over-fitting. The first penalty is what we call time of day penalty, and

encourages adjacent estimates (e.g., βj and βj+1) to be close to produce a smoother

estimate. The other type of penalty is the day of week penalty, which forces estimates

at the same time on similar days to be close (e.g., βj and βj+24). This encourages

similar estimates for different days within the same day-of-week cluster, over all 24

hours. The addition of this penalty is backed by the routine activity theory (Andresen

and Malleson, 2015) which relates offending behaviors to the daily patterns of social

interaction. For example, the routine activities of potential victims are often similar

on weekdays, but different on the weekend days.

The penalty takes the form:

Pen(β) = ϕ1β
TK1β + ϕ2β

TK2β (3.3)
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where βT = [β1, β2, . . . , βJ ], K1 and K2 are J ×J matrices that enforce the two types

of penalties. The ϕ1 and ϕ2 are the strength of the two penalties. The time of day

penalty matrix is K1 = DT
1 D1, where D1 is the first order difference matrix:

D1 =



−1 1 0 0 . . . 0 0

0 −1 1 0 . . . 0 0

0 0 −1 1 . . . 0 0

... ... ... ... ... ... ...

0 0 0 0 . . . −1 1


This difference matrix specifies the time of day penalty βTK1β =

∑J
j=1(βj − βj−1)

2

to penalize differences in adjacent estimates.

Similarly, the day of week penalty matrix is defined as K2 = DT
2 D2. The difference

matrix D2 is more complex to incorporate a grouping structure that specifies the days

of the week that should have more similar estimates. For example, if we have a group

of days corresponding to weekdays, we want to encourage the estimates for 9 AM

(and every other hour of the day) on Mondays - Fridays to be close. Specifically, we

develop a difference matrix that penalizes the variance of the estimated coefficients

for the same hour in each group.

As an example, consider a two-group structure that specifies a weekday group and

a weekend group. Considering a one-hour binwidth, let dj ∈ {1, 2, . . . , 7} indicate

the day and hj ∈ {1, . . . , 24} the hour of bin j, respectively. Also, let β′
d,h denote βj

where dj = d and hj = h. The penalty is

βTK2β =
5∑

d=1

24∑
h=1

(
β′
d,h −

1

5

5∑
d′=1

β′
d′,h

)2

+
7∑

d=6

24∑
h=1

(
β′
d,h −

1

2

7∑
d′=6

β′
d′,h

)2
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where the first term with d ∈ {1, 2, 3, 4, 5} specifies the weekdays and the second

term with d ∈ {6, 7} the weekend days. The day of week difference matrix, D2, for

this scenario is illustrated in Figure 3.1. D2 is a 168 x 168 matrix, with each row and

column corresponding to a specific hour in a week. In the context of the weekday-

weekend two-group structure, this plot is divided into two segments at hour 120,

which marks the end of Friday. The diagonal line in the matrix represents the hours

subject to penalization, while any other non-zero entries in the same row represent

the same hour on different days within the same group. In addition to preventing
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Figure 3.1: The day of week difference matrix, D2, for a two-group (weekdays and
weekend) scenario with one-hour bin width.
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over-fitting, the penalties also allow estimation in bins in which no events occurred.

As long as there is a small time of day penalty (i.e., ϕ1 > 0) then all intensity related

parameters can be uniquely estimated (Eilers and Marx, 1996).

3.2.4 An expectation-maximization algorithm

The penalized log-likelihood we want to maximize is

J(β) = logL(β)− Pen(β)

=
N∑
i=1

log
(∑

j

eβjwij

)
−
∑
j

eβj −
(
ϕ1β

TK1β + ϕ2β
TK2β

) (3.4)

Due to the summation inside the log this equation doesn’t lend itself to direct

optimization techniques. Therefore, we introduce a latent vector for each event

Zi = [Zi1, Zi2, . . . , ZiJ ] where Zij takes a value of 1 if the true event time ti falls into

bin j and 0 otherwise. The partially observed number of events occurring in bin j, de-

noted as yj, is represented in terms of the latent variable Zij, where yj =
∑N

i=1 Zij. If

the latent vectors were known, the complete penalized log-likelihood could be written

(up to a constant)

Jc(β) =
J∑

j=1

(
yjβj − eβj

)
−
(
ϕ1β

TK1β + ϕ2β
TK2β

)
(3.5)

which is easier to optimize. The details of the derivation are given in the appendix.
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E-step

The conditional expectation of (3.5) at the (r + 1)th iteration is :

Q(β, βr) = E(Jc(β))

=
J∑

j=1

(
E[yj]βj − eβj

)
−
(
ϕ1β

TK1β + ϕ2β
TK2β

)
)

(3.6)

The expected bin counts are given by

E(yj|βr, Xi) =
N∑
i=1

E(I(Zij = 1)|βr, Xi)

=
N∑
i=1

P (Zij = 1|βr, Xi)

=
N∑
i=1

wijλ
r
j∑

k wikλr
k

(3.7)

M-step

After the pseudo counts are estimated in (3.7), the expected penalized log-likelihood

(3.6) can be maximized using the Newton-Ralphson algorithm with:

βr+1 = βr −H−1U (3.8)

where H−1 and U correspond to the inverse Hessian and Score, respectively. They

can be obtained through the equation below:

U =
∂Q

∂β
= Ŷ − eβ

r − Pϕβ
r − P T

ϕ β
r (3.9)

H =
∂2Q

∂βr ∂βrT
= −W − Pϕ − P T

ϕ (3.10)
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where Ŷ = E(y|βr, Xi) is the vector expected bin counts and the matrix Pϕ = ϕ1K1+

ϕ2K2 lumps the two types of penalties together. Therefore, the updating formula for

parameters β is:

βr+1 = (W + Pϕ + P T
ϕ )

−1WA (3.11)

matrix W is a diagonal matrix with entries eβk on the diagonal and zeros everywhere

else. A is

A = W−1Ŷ −W−1eβ
r

+ βr (3.12)

The EM algorithm iterates between equations 3.7 and 3.11 until successive estimates

of parameters are close enough to meet the stopping criterion. In our implementation,

the algorithm stopped when maxk(β
r+1
k − βr

k) < ϵ, where ϵ = 10−6.

Model selection

Given a model specified by hyper-parameters (ϕ1 and ϕ2) and the time of day penalty

matrix (K1) and day of week penalty matrix (K2) defined, a criterion that allows

a comparison between different models is necessary. We propose the use of the

Akaike Information Criterion (AIC) to select an accurate and parsimonious model

(Sakamoto, Ishiguro, and Kitagawa, 1986).

We define AIC as

AIC = −2 logL+ 2 edof

The first term in the equation represents the observed log-likelihood defined in (3.2),

and edof represents effective degrees of freedom, which is defined as the trace of the

smoother matrix (i.e., the hat matrix defined below). The hat matrix S is an approx-

imation to the degrees of freedom in the presence of penalty Hastie and Tibshirani,
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1990. The hat matrix S can be obtained from (3.11) with algebraic manipulation:

S = (W + Pϕ + P T
ϕ )

−1W

3.2.5 Uncovering the grouping structure

Besides the regularization effects, the penalty terms added in the likelihood (3.3) also

introduce a way to search for the underlying grouping structure given a particular

city. In other words, instead of imposing a pre-specified grouping structure, the model

allows us to find the appropriate grouping structure with given data.

Inspired by hierarchical clustering, the search starts with the scenario where each day

is in its own group. We let C denote the number of clusters. At each iteration, the

algorithm searches for all combinations of two clusters and merges the two clusters

together that produces the minimum of resulting AIC, leading to C − 1 clusters for

the next iteration. The algorithm stops when there exists only one cluster. The

grouping structure that yields the lowest AIC value is the most probable one.

Algorithm 2 EM algorithm for estimating temporal intensity with interval censored
events.

Input: X, ϕ1, ϕ2, K1, and day of week cluster
Output: Intensity estimate for all bins λt

Use uncensored observations to help initialize β with non-censored data and start
EM algorithm
while Convergence criteria is not met do

for Each bin j do
Calculate pseudo count using equation

∑N
i=1

wijλj∑
k wikλk

end for
Maximize the β using equation βr+1 = (W + Pϕ + P T

ϕ )
−1WA

end while
return Intensity estimates λt
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Algorithm 3 Hyper-parameter tuning and cluster detection
Input: X, K1, upper and lower bound for ϕ1 and ϕ2, and maximum

number of iteration
Output: Intensity estimate for all bins λt and day of week cluster

while Maximum number of iterations has not reached do
Update ϕ1 and ϕ2 based on Bayesian optimization
Set number of clusters C = 7
while C > 1 do

for
(
C
2

)
possible clusters do

use Algorithm 4 to fit model and obtain AIC
end for
merge the clusters with the lowest AIC
set C = C − 1

end while
Return {day of week structure, ϕ1, ϕ2,AIC} associated with the lowest AIC

end while
return Intensity estimates λt, ϕ1, ϕ2, day of week structure associated with best
model

It’s important to note that the shrinkage parameters ϕ1, ϕ2 are regarded as tuning pa-

rameters. We employed the rBayesianOptimization Snoek, Larochelle, and Adams,

2012 package to efficiently fine-tune and identify the optimal combination of ϕ1 and

ϕ2. Bayesian optimization provides a sensible way to explore areas in parameter space

that improve the objective function. Our experiments indicate that typically,

3.3 Real data analysis

Unless the criminal is captured at the scene or a witness observed the crime, it is

unlikely that the exact event time of a crime is known. This makes interval cen-

sored data prevalent for many crime types (e.g. theft, burglary). To demonstrate

the predictive performance and the capability of detecting the grouping structure of

the proposed model, we applied it to real data that were gathered in the cities of

Cincinnati and Dallas in the United States Department, 2023a; Department, 2023c.
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To ensure consistency and avoid any changes introduced by the pandemic, we used one

year’s worth of data from the year 2019. Cincinnati has five districts in total. Since

the patrol officers and shifts are assigned district-wise, we concentrate the analysis

on district three which has the most observations in the year 2019 with offense types

of Burglary and Breaking and Entering. The total number of observations is 996, out

of which 34 observations have the exact event time recorded. For Dallas, we analyzed

data on burglary and theft from the Northeast division, resulting in a total of 4293

observations, with 379 of them being non-censored. The crime types analyzed in this

study are those that research has shown can be deterred by the presence of police in

the right place at the right time Evans and Owens, 2007. Table 3.1 shows the number

of each type of observation for the cities considered in this section. For the two types

City Censored Uncensored
Cincinnati 962(96.6%) 34(3.4%)
Dallas 3914(91.2%) 379(8.8%)

Table 3.1: Number of censored and uncensored crimes in 2019.

of offenses of interest, drastically different interval length pattern was observed. In

Cincinnati, the median interval length for Breaking and Entering is 13.1, while for

burglary it is 5.25. For Dallas, the corresponding values are 8 and 1.16, respectively.

We hypothesize that models that analyze each event in isolation, without taking

into account the intensity of the intervals they encompass during estimation, are

less efficient in addressing interval censored data. This inefficiency arises due to the

increased uncertainty associated with longer intervals.

We demonstrate how our model is used to cluster the days of the week such that each

cluster corresponds to the days that have similar time of day crime patterns. This

can help patrol planners simplify the schedules as the days in each cluster can be
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assigned the same patrol times. We also provide an analysis of how well our model

predicts crime rates without restricting the days into hard clusters.

3.3.1 Day of week cluster discovery

To understand how crime occurrences vary within the week, we only tune the pa-

rameter ϕ1 and set the parameter ϕ2 to a large value, forcing parameter estimates

within the cluster to be nearly identical. Our analysis suggests that there should be

three clusters. Monday, Thursday, and Friday are in a group, Tuesday and Wednes-

day are in a group, and Saturday and Sunday make the third group. The findings

that weekdays and weekends belong to different group matches our expectation as

different patterns exist within a week (Andresen and Malleson, 2015).

3.3.2 Intensity Estimation

There are also times when we care more about how accurate those estimated intensi-

ties are. In such cases, we lift restrictions of forcing all estimates within a cluster to be

nearly identical and tune both penalty coefficients ϕ1 and ϕ2 and put less emphasis on

the structure discovery. In other words, penalties are imposed to prevent over-fitting

and improve the model’s performance, rather than focusing on cluster discovery as in

the previous section. In order to evaluate the performance of our proposed algorithm

and compare it with that of the aoristic algorithm. We took twenty percent of the

data as hold-out data. We then obtained intensity estimates from both algorithms

and compare their performance in the following scenarios. After obtaining the es-

timated values of β, we used (3.7) to calculate the expected number of occurrences

and determine the proportions of crimes that occurred in each bin. Next, we ranked

the bins in decreasing order based on the estimated intensities derived from different
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models. We then used the ranking orders from each model to compute the optimal

cumulative proportions of captured crimes for each model as a function of the patrol

hours.

Figure 3.2: Cumulative proportions of crimes captured versus the number of hours
patrolled for the city of Cincinnati. The reference line denotes a typical number of
patrol hours in a week.

Figure 3.2 shows the performance of both models. The x-axis is the number of hours

patrolled. This plot can be interpreted as the percentage of crimes that could be

deterred by police patrolling a certain number of hours each week. This not only

shows that our proposed model is better at deterring crimes because the area under

the curve (AUC) is larger but the percentages are higher for those typical number

of patrol hours (e.g., the Northeast division of Dallas police department patrols 112

hours per week Department, 2023b). We also calculate the information gain for

the hold-out data for each algorithm. The information gain is the log-likelihood

ratio between our fitted model and a reference model. The reference model is a

homogeneous Poisson with the intensity of 1. The information gain can be calculated
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as follows:

Gain(λ) =
n∑

i=1

log
(∑

j λjwij∑
j wij

)
−
∑
j

λj + J (3.13)

Figure 3.3 displays the variation in performance obtained from conducting the hold-

out analysis 20 times. We also carried out a one-sided paired t-test to test the

Figure 3.3: Violin plot showing variation of difference in likelihood ratio returned by
two models for cities analyzed.

difference between the information gain returned by two methods for both cities. The

p-values of 0.013 for Cincinnati and 0.006 for Dallas obtained from the paired t-tests

suggest that the null hypothesis of equal performance can be rejected at a significance
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level of 0.05, indicating that the proposed model has improved performance compared

to the aoristic model.

Figure 3.4: Cumulative proportions of crimes captured versus the number of hours
patrolled for the city of Dallas. The reference line denotes a representative number
of patrol hours in a week.

We created a plot similar to Figure 3.2 for Dallas, which also demonstrates the perfor-

mance improvement achieved by our model, as shown in Figure 3.4. It is noteworthy

that the benefit derived from employing the proposed algorithm is more pronounced

in the case of Dallas compared to Cincinnati. This observation is supported by the

density curve of the difference in likelihood ratio depicted in Figure 3.3. One possi-

ble explanation for this performance improvement is the disparity in the size of the

datasets between Dallas and Cincinnati. The larger number of observations in the

Dallas dataset allows for a more robust estimation of the model parameters. This is

explored in more detail with a simulation study.
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3.3.3 Simulated Data Analysis

In order to explore how data size and interval lengths affect performance, we per-

formed a simulation study using simulated data that closely mimics the real data

from Cincinnati. To generate the simulated data, we utilized the intensity estimates

derived from our model, which includes three distinct day-of-week clusters. The

exact observations were initially generated using inverse transform sampling and sub-

sequently transformed into interval-censored observations, with the interval length

determined by random draws from an exponential distribution whose mean was set

to the average interval length observed in the actual data. We considered four dif-

ferent scenarios that varied in the size of the training data and the proportions of

non-censored observations. Specifically, panels A and B in Figure 3.5 correspond to

cases where the size of the training data was set to 1K and the non-censored propor-

tion was set to 0.03 and 0.09, respectively. Increasing the percentage of non-censored

observations, while keeping the size of the training data constant, reduces variance

and yields better results due to less uncertainty in the data. Panel C and D in plot

3.5 refer to cases where the size of the training data was increased to 5K and the

exact proportion was set to 0.03 and 0.09. It turns out that increasing the amount of

data helps reduce the variance significantly. Additionally, it is worth mentioning that

the proposed model’s performance at hour 112 closely approximates the performance

of the true underlying model, which achieves an upper bound of 0.88. In all four

scenarios we considered, our proposed model was able to capture a higher percentage

of crimes during typical patrol hours than the aoristic model. Furthermore, we con-

ducted one-sided paired t-tests to assess the performance of the models specifically

at hour 112. The results indicate that the null hypothesis of equal performance can

be rejected at a significance level of five percent for all four simulation scenarios un-
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der consideration. Hence, our estimated intensity provides a more precise temporal

representation of crime intensity, offering the potential to capture a greater number

of crimes if utilized effectively.
P
ro
po

rt
io
ns

P
ro
po

rt
io
ns

P
ro
po

rt
io
ns

P
ro
po

rt
io
ns

Figure 3.5: The box plots illustrate the cumulative percentage of crimes that occurred
in the top 112 predicted hours. Panel A shows the results for a training size of 1K and
a non-censored proportion of 0.03, while Panel B displays the corresponding data for
a non-censored proportion of 0.09. Panel C and D exhibit the results for a training
size of 5K, with non-censored proportions of 0.03 and 0.09, respectively.

3.4 Discussion

The aforementioned analysis demonstrates that our model is better at estimating

crime intensities than existing approaches. It has the added benefit of being able

to discover the day of week structure. Figure 3.2 shows the proportion of crimes in

Cincinnati that would have occurred during a patrol if the optimal patrol scheduled

from our model (PenEM) and the current state-of-art (Aoristic) was followed. The

vertical reference line at 112 hours is Cincinnati’s weekly number of patrol hours. If
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112 hours were patrolled according to our model, 6.3 percent of more crimes could

be potentially deterred. Also, the patrol plan could be designed with the help of

day of week structures detected to minimize the disturbance to their routine plan.

Figure 3.6 shows the estimated intensities for each of the three groups detected for

the city of Cincinnati. Each group has different peak hours and time of day patterns.

For Dallas, Figure 3.7 shows the estimated intensities for the two groups identified

by our model.
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Figure 3.6: Heatmap of estimated intensity with grouping structure for each hour of
the week for the city of Cincinnati
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Figure 3.7: Heatmap of estimated intensity for with grouping structure each hour of
the week for the city of Dallas
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Depending on the resources each police station has, they could make a patrol plan

that follows the intensity estimates given by the model or use a model to estimate

intensities with any number of groups for day of week structure for ease of operation.

The first option enables planners to create optimal schedules, but it may necessitate

unique staffing and resource requirements for each day. On the other hand, the second

option offers planners the flexibility to attain the best possible outcomes with a less

complex schedule. For example, the best one-group model could be estimated to

have a uniform patrol plan throughout the week. Figures 3.8 and 3.9 demonstrate

cumulative probabilities for each day of the week versus hours patrolled. This type

of information is particularly useful in the case where the enforcement agencies have

extra resources to spend on patrolling and have to decide what day and time to patrol.

The time and day could be picked based on the largest cumulative probability gain.

These findings align well with the strategic targeting of the smart policing initiative

by allowing law enforcement agencies to focus on the times with the highest expected

occurrence of crimes.

Besides ARC analysis which demonstrates the gains when the proposed method is

used for resource planning, we also investigated the performance of the intensity

estimates. In our simulations, we have noticed that the estimated intensities generated

by our model closely align with the actual underlying intensities used in creating

synthetic data. In the scenario with 1,000 observations, the estimated intensities,

on average, deviate from the true intensity by 10.76 percent. In the case of 5,000

observations, the average deviation of the estimated intensity from the true intensity

is 6.23 percent. We observed a 30% performance improvement over the competing

aoristic methods.
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3.5 Conclusion

This article introduces our approach to estimating crime intensity from interval-

censored data. Our model could serve three connected purposes with different levels

of flexibility: (i) produce accurate intensity estimates and associated optimal patrol

plan for the maximum crime reduction; (ii) improve existing patrol plan with the

understanding of the discovery of day of week cluster, (iii) support better decision

making for extra resources available. The proposed model was applied to both data

gathered from the city of Cincinnati and the city of Dallas. Day of week structure

was detected for each city and suggestions to modify the patrol plan based on the

result were also made. Also, it turns out that the proposed model, if utilized, could

deter more crimes by accurately estimating peak hours in crime occurrence (Braga,

Papachristos, and Hureau, 2008) on hold-out data.

The proposed model achieves an accurate estimation of intensity by leveraging a

structured statistical approach and specially designed penalties. The resulting penal-

ized likelihood allows for a better estimation of intensity by considering the intensity

estimate of adjacent bins as well as bins in the same cluster. Given the application

setting, our proposed model assumes a piece-wise constant intensity for all discretized

bins. However, the model could be easily extended to a more flexible model, such as

penalized splines (Eilers and Marx, 1996; Cai and Betensky, 2003). The simulation

study and real data analysis demonstrate the predictive performance compared with

the competing method and its usefulness in the design of patrol for practical use. The

performance of our model is affected by the number and length of the censored obser-

vations. Although our model effectively utilizes censored observations, the variance

of the model will be proportional to the severity of censoring. While we developed

the model for crime data, it can be modified to address the modeling of other interval
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censored data.
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Figure 3.8: Cumulative proportions versus number of hours for each day of week for
the city of Cincinnati.

3.6 Appendix

Let P (Xi) represent the likelihood for event i. Following Kim, 2003, the density is

used for the uncensored events and probability for the interval censored events:

P (Xi) =


f(ti) uncensored events

Pr(T ∈ Xi) =
∫
Xi

f(t)dt censored events
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Figure 3.9: Cumulative proportions versus number of hours for each day of week for
the city of Dallas.

The observed Poisson likelihood is

Pr(X1, X2, . . . , Xn) =

(
n∏

i=1

P (Xi)

)
Pr(N = n)

which combines the event likelihoods with the likelihood of observing n total events.

The complete likelihood is

Pr((X1, Z1), (X2, Z2), . . . , (Xn, Zn)) =

(
n∏

i=1

P (Xi, Zi)

)
Pr(N = n)

where Zi = [Zi1, Zi2, . . . , ZiJ ] is a latent vector with Zij taking a value of 1 if the true

event time ti falls into bin j and 0 otherwise.
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The likelihood for the latent vectors is

P (Zi) =

∏
j λ

Zij

j∑
j λj

and the conditional likelihood of the observed event is

P (Xi | Zi) =
∏
j

w
Zij

ij

where wij is the proportion of bin j that is contained in interval Xi as defined in

(3.1). The complete log-likelihood for event i can be written

logP (Xi, Zi) = logP (Zi) + logP (Xi | Zi)

=
∑
j

Zij logλj − log
(∑

j

λj

)
+
∑
j

Zij logwij

with the sum over all n events

n∑
i=1

logP (Xi, Zi) =
∑
j

(∑
i

Zij

)
logλj − n log

(∑
j

λj

)
+
∑
j

∑
i

Zij logwij

=
∑
j

yj logλj − n log
(∑

j

λj

)
+
∑
j

∑
i

Zij logwij

where the last line uses the notation yj =
∑n

i=1 Zij as the number of events falling in

bin j. The last term
∑

j

∑
i Zij logwij can be ignored because it doesn’t involve any

model parameters.

To complete the derivation we note that the likelihood corresponding to the total
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number of events is

log Pr(N = n) = n log
(∑

j

λj

)
−
∑
j

λj − logn!

The logn! can be dropped since it doesn’t involve any model parameters.

These equations are used to write the complete penalized log-likelihood in (3.5).
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Chapter 4

Forecasting

The project outlined in Chapter 3 proves effective in resource allocation and patrol

planning under the assumption that there is no alteration in the underlying mecha-

nism driving crime occurrences. However, this assumption may not hold in the face

of significant events that influence how offenders engage in criminal activities. For in-

stance, the FBI’s annual crime report indicates a notable increase of 7.1% in property

crime in the year 2022 (Investigation, 2023). Hence, in this chapter, we introduce

an analytical framework that incorporates historical censored data to generate multi-

horizon forecasts, considering trends and seasonalities evident in the historical data.

Our forecasting framework, inspired by the sucecss of deep-learning based solutions

in a variety of areas Vaswani et al., 2017; Mostafavi and Porter, 2021, produces prob-

abilistic multi-horizon forecasts. It operates as a unified model for all interconnected

time series, mitigating challenges associated with insufficient data in certain time

series. The simulation results illustrate the model’s capability to accurately capture

trend changes and seasonality, yielding reliable forecasts. Furthermore, the model

was evaluated using real data collected in Dallas.

In contrast to existing methods, the DeepCensored framework exhibits notable ad-

vantages, as outlined below:

• Unified Model for Related Time Series: The DeepCensored framework
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stands out by generating a singular model capable of handling all interconnected

time series. This consolidated approach streamlines the modeling process and

promotes a cohesive understanding of diverse data sets.

• Strength Borrowing: One distinctive feature is the model’s ability to leverage

strength from related series, particularly in scenarios where certain time series

lack sufficient observations.

• Uncertainty Quantification: DeepCensored adopts a probabilistic forecast-

ing approach, enabling the quantification of uncertainty in predictions. This

not only provides insights into the model’s confidence levels but also enhances

decision-making processes by offering a nuanced understanding of potential out-

comes.
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DeepCensored: Deep-Learning Based Probabilistic Forecasting Frame-

work for Censored Data

Abstract Time series forecasting is an essential field where future values are predicted

based on past observations, with applications ranging from demand forecasting to

electricity usage prediction. While earlier research has mainly centered on real-valued

data, our focus lies in forecasting count data, which poses additional challenges due

to the inherent constraints on count values. What complicates the problem at hand

even further is that certain events, such as crime, involve data that is not precisely

observed, bringing an extra layer of complexity. It is crucial to develop accurate and

robust forecasting algorithms in the presence of such data, providing valuable insights

for resource allocation in crime deterrence for law enforcement agencies. In this paper,

we propose a deep learning framework combined with the Expectation-Maximization

(E-M) algorithm to enable probabilistic forecasting with censored data. Through

both simulation and real data analysis, our proposed methods demonstrate superior

performance compared to existing approaches.

Keywords Censoring, EM, Probabilistic Forecasting

4.1 Introduction

Crimes incur significant losses to both the victims and the entire society, negatively

affecting the quality of life of people and the stability of society. The estimated annual

cost of crimes in the U.S., including direct and indirect costs, amounts to $4.71−$5.76

trillion U.S. dollars Anderson, 2021. According to the Bureau of Justice Statistics,

the median dollar value of financial loss due to burglary increased 54% from 1994

to 2011 Walters et al., 2013. Besides financial loss, research has shown that crime
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victimization has implications for individual health and well-being Tan and Haining,

2016. Therefore, it’s essential to have effective crime control measures to minimize

the impacts of crime.

In an effort to reduce crime, the Bureau of Justice of Assistance (BJA) proposed

the smart policing initiative (SPI) BJA, 2022 to support law enforcement agencies in

building evidence-based, data-driven law enforcement tactics. The goal of the SPI is

to identify strategic approaches that are effective in crime prevention and reduction.

In the paper, we aim to develop a model that bridges the gap in current practices of

crime forecasting in the spirit of the initiative.

Previous research has established that quantitative methods can play a beneficial role

in providing insights into crime deterrence. A randomized block design was imple-

mented to assess the impact of foot patrol on crime reduction in Philadelphia, with the

results indicating a substantial decrease in crimes within the treatment areas after 12

weeks Ratcliffe et al., 2011. Additionally, randomized control trials were conducted

in both Los Angeles and Kent to evaluate the effectiveness of predictive policing al-

gorithms in comparison to hotspot maps given by crime analysts. The experiments

demonstrated that employing predictive algorithms for determining policing patrols

resulted in a significant reduction in crime Mohler et al., 2015.

The process of pinpointing hotspots empowers law enforcement agencies by allowing

them to focus their efforts on specific small areas responsible for a substantial portion

of crimes. However, an effective strategy must also include the identification of when

these crimes are most likely to occur. The temporal aspect of the strategy plays a

pivotal role in determining the optimal times of day for patrols, thereby achieving

the greatest reduction in crime while working within realistic staffing constraints.
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Forecasts given by predictive models are essential to the development of efficient

and effective policing strategies, as SPI stated, allowing agencies to focus on a small

percentage of people and places that account for most crimes Yu et al., 2011; Hunt,

2019; Rummens, Hardyns, and Pauwels, 2017. Our proposed model produces accurate

multi-horizon forecasts, enabling the identification of times with high occurrences of

crimes and facilitating more effective crime reduction strategies. Anticipating when

crimes might occur is complicated by the presence of interval-censored data. Interval-

censored data refers to situations where the exact event time is only known to fall

within a specific interval, rather than being observed precisely Zhang and Sun, 2010.

This type of data is prevalent in the field of criminology, especially in cases where

there are no victims present when crimes occur. Forecasting with interval-censored

data poses a significant challenge due to the heightened uncertainty involved. Pre-

vious research has predominantly focused on forecasting problems using exact data.

However, certain crimes such as burglary and theft make it impossible to precisely

record when these incidents occur. Prior research proposed the Aoristic method that

individually addresses each event without taking into account variations in crime

intensity at different times, as highlighted in references Ratcliffe, 2000; Camacho-

Collados and Liberatore, 2015. This method involves assigning a partial count to

each pre-defined bin that the time interval encompasses. In addition to its individ-

ual event focus, this method isn’t directly applicable for forecasting purposes, as it

assumes that future crime intensity remains the same as observed in the past. Given

the frequency of such crimes, there is a pressing need to develop methods capable

of handling interval-censored data while addressing the aforementioned limitations.

These advanced methods have the potential to offer valuable insights for optimizing

law enforcement patrols and strategies.
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The key contribution of the work is to adapt a deep-learning-based probabilistic

forecasting framework to make forecasts from historic crime data that are partially

interval censored. Our proposed model demonstrates superior performance, surpass-

ing the competing method by a 50% reduction in the Mean Absolute Error (MAE)

of forecasts when tested on realistic simulations. Furthermore, our model exhibits

the capability to detect emerging crime trends, thereby providing timely support to

address and mitigate these evolving criminal activities.

The structure of this paper is organized as follows. Section 4.2 provides a review

of the technical background, encompassing censored data modeling and the deep

learning architecture utilized in this study. In Section 4.3, we introduce our deep

learning framework tailored for handling censored data. Section 4.4 introduces how

parameters are estimated. Section 4.5 presents empirical evidence of the effectiveness

of our proposed approach to generating forecasts with highly uncertain censored data.

Section 4.6 delves into a discussion of our findings within the context of providing

support for public decision-making. Finally, in Section 4.7, we conclude the paper by

summarizing the major findings and contributions.

4.2 Background

4.2.1 Censored data modeling

Censored data arises when the occurrence of an event of interest is only known to

have taken place within a specific interval. These kind of events are commonly en-

countered in various fields such as clinical research, finance, and sociology Halling

and Hayden, 2006; Haibe-Kains et al., 2008; Guo, 1993; Tian and Porter, 2022a.

Censored data can arise in clinical trials, particularly when patients are subject to
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scheduled follow-up visits. In such cases, if the event of interest occurs, its timing is

only known to fall within the interval between two consecutive visits. In another sce-

nario, interval censored data is encountered in specific crime types, such as car theft

and burglary. In these cases, the absence of on-site victims results in the reporting of

intervals defined by the earliest and latest times when the crime could have been com-

mitted Ratcliffe, 2000. The increased uncertainty inherent in such data introduces

complexities into its modeling. Improper handling of such data could potentially re-

sult in biased conclusions. As a consequence, diverse methodologies and frameworks

have been explored to address the challenges posed by censored data. For example, a

penalized EM framework is introduced for estimating crime rate intensity in the pres-

ence of censored data Tian, in review. Considerable research effort has been directed

towards time-to-event analysis, which traditionally originated from the analysis of

right-censored data. This method has been extended to encompass interval-censored

data analysis, aiming to derive the cumulative distribution function, as proposed in

Peto, 1973; Turnbull, 1976. A substantial body of literature is dedicated to regres-

sion analysis techniques tailored for interval-censored data. Much of this work has

concentrated on the proportional hazard model Cox, 1972; Finkelstein, 1986; Huang

and Wellner, 1997; Kooperberg and Clarkson, 1997; Cai and Betensky, 2003.

Event forecasting involves making predictions about future events based on historical

data observations. The methods discussed earlier are ill-suited for addressing this par-

ticular challenge, as many of them are oriented toward density estimation and cannot

handle count forecasting naturally. In this context, deep learning has gained consid-

erable traction for time series forecasting involving events with recorded timestamps.

Notably, the DeepAR framework has been introduced as a deep-learning-based prob-

abilistic forecasting approach capable of generating forecasts for multiple time series
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Salinas et al., 2020. Moreover, Temporal Fusion Transformers have harnessed at-

tention mechanisms to capture long-term dependencies, resulting in accurate multi-

horizon forecasts Lim et al., 2021. Deep-Learning based forecasting frameworks have

already been successfully applied to solve a wide range of problems. A deep learning

model has been devised to predict the citation count of academic papers by leveraging

bibliometric features and metadata Ma et al., 2021. In the realm of genomic selec-

tion, a Poisson deep neural network has been applied to address the genomic selection

problem Montesinos-Lopez et al., 2021. In this paper, our focus is on tackling the

challenge of making multi-step predictions for crime incidences in pre-defined bins,

while accounting for the presence of interval-censored data.

4.2.2 Deep Forecasting

DeepAR

DeepAR represents a state-of-the-art deep-learning forecasting framework that har-

nesses neural networks to effectively manage long-term dependencies in forecasting

Salinas et al., 2020. It distinguishes itself as a powerful competitor due to its ca-

pacity to handle a multitude of interconnected time series and produce probabilistic

forecasts. The concurrent modeling of multiple related time series is particularly

advantageous, especially in the realm of crime modeling. Urban areas commonly

employ a hierarchical organizational structure for law enforcement purposes. Cities

are typically partitioned into distinct districts, each falling under the purview of its

respective police department. To optimize resource allocation and management, these

districts are further subdivided into finer units referred to as beats. Information is

then recorded and reported at this more localized beat level, resulting in the creation

of multiple interrelated time series. The geographical proximity of these series con-
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tributes to their interconnected nature. Consequently, the joint modeling approach

enhances the development of a more robust predictive model, leveraging the shared

geographical context for improved accuracy. At the core of the DeepAR model lies

the LSTM module, which is a specialized type of Recurrent Neural Network (RNN).

The recurrent nature of RNN, allowing it to make predictions based on both the cur-

rent input and the information processed in the past, renders them a robust choice for

forecasting tasks. However, RNNs can encounter issues like gradient vanishing or ex-

ploding when dealing with extended sequences. To address this limitation, the Long

Short-Term Memory (LSTM) architecture offers a remedy through the incorporation

of a gating mechanism within the memory cell Hochreiter and Schmidhuber, 1997.

This mechanism enables LSTMs to effectively mitigate the challenges associated with

long-range sequences. DeepAR employs two identical LSTM models, one serving as

an encoder and the other as a decoder. The encoder is responsible for processing all

the information within the prediction range, while the decoder utilizes the informa-

tion obtained from the encoder to make forecasts. The capacity of LSTM networks to

capture dependencies enables the framework to take into account all previous informa-

tion when generating forecasts in the decoder. DeepAR, being a probabilistic model,

directly models the parameters of the assumed distribution. Probabilistic forecast-

ing holds significant importance in various scenarios as it facilitates decision-making

while quantifying the associated uncertainty.

Attention

The attention mechanism has been a pivotal breakthrough in recent advancements in

the field of deep learning, serving as a cornerstone for many groundbreaking frame-

works Bahdanau, Cho, and Bengio, 2014; Vaswani et al., 2017; Lim et al., 2021;

Fan et al., 2021. The attention mechanism operates in a manner akin to the human
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brain, directing greater attention toward pertinent information and minimizing focus

on irrelevant data. For example, achieving state-of-the-art performance in machine

translation has been made possible by enabling the model to concentrate on the source

sentence relevant for predicting the next word Bahdanau, Cho, and Bengio, 2014. In-

spired by the achievements in natural language processing and computer vision, deep

learning methods for forecasting have increasingly adopted attention mechanisms,

resulting in notable improvements in performance Yi et al., 2023; Hu and Xiao, 2022.

4.3 Censored data forecasting using deep learning

4.3.1 Notation and Data

Let T denote the actual time that an event of interest (e.g., a crime) occurred. The

event time can either be observed exactly (T = t) or only known to occur within

an interval T ⊆ [L,R]. where L and R are the reported left and right endpoints.

We discretize time into equally sized bins, and each bin has a width of one hour, by

default. In our problem, we utilize historical data consisting of N partially interval-

censored events from K locations to generate one-week-ahead probabilistic forecasts

(equivalent to 168 hours). Mathematically, the model outputs

P (ck,t0+s|D) where s = 1, 2, . . . , 168 (4.1)

where ck,t0+s denotes the number of events that will occur at time t0+ s and location

k, with t0 representing the start of the forecasting period. D encompasses all crime

events used for model training, along with any known covariates employed in the

forecasting process.
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4.3.2 Model Parameters

As demonstrated in Equation 4.1, our objective is to model the probabilistic distri-

bution of count data at a given hour. We employ the Poisson distribution to model

count data, which is parameterized by the mean value.

P (ck,t|λ) =
e−λk,tλ

ck,t
k,t

ck,t!

λk,t(hk,t) = log(1 + exp(wThk,t + b))

(4.2)

where ck,t represents the count for timestamp t and series k, and w and b denote the

weight matrix and bias associated with the fully connected layer. hk,t represents the

hidden states outputted by the LSTM layer, which is a function of the count at the

previous step and covariates. Following Salinas et al., 2020, the covariates include the

count observed at the previous timestamp, the time of day, the day of the week, and

the month of the year. It is important to note that the count is not precisely observed

for censored data, and we substitute the estimated count. The estimation process is

detailed in Section 4.4. To ensure the non-negativity of the predicted parameters for

Poisson distribution, the soft plus activation function is applied to the output of the

fully connected layer.

4.3.3 Scale handling

Modeling multiple series from different beats enables the creation of a more robust

model, as series without enough observations can draw valuable information from

other series. Utilizing a single unified model also eliminates the need to train sep-

arate models for each series. However, the task of creating a shared model for all

related series also poses challenges, particularly when these series exhibit significant
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differences in scale. Therefore, it becomes essential to scale the output of the network

depending on the specific series being modeled. As elucidated in Salinas et al., 2020,

addressing this issue involves rescaling the network’s output using a factor specific

to each time series. Following this approach, the scaling is achieved by multiplying

the network’s output by a series dependent factor, denoted as νk. Consequently, the

scaling factor is applied to the results of the soft plus activation and the formulation

takes the shape λk,t = νk log(1 + exp(wThk,t + b). The introduction of the time-series

dependent factor νk serves to appropriately adjust the scaling of the output, aligning

it with the specific range requirements of each time series. νk = 1+ 1
t0

∑t=t0
t=1 ck,t works

well following the practice recommended in Salinas et al., 2020.

4.3.4 Training window selection

For traditional time series forecasting tasks, selecting the training time window is

a straightforward process. The division of the training and forecasting period is

straightforward as it’s always desirable to include as much data in the modeling as

possible. However, when dealing with censored data modeling, special consideration

is required when choosing the training window. Censoring introduces a challenge, as

events can not be recorded until they are reported to the police department. If all

training data are incorporated into the model, it would entail modeling time steps

with insufficient censored event coverage, leading to a significant drop in predicted

values near the end of the training window. To address the issue mentioned above,

instead of including all censored events, we exclude those censored events that fall

within one week leading up to the last covered time step. Figure 4.1 illustrates how

training data is selected during the modeling phase. The grey dots represent timesteps

not included in the modeling because not all censored events have been reported in
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that window. Including them could introduce bias for those timestamps.

Figure 4.1: Training window selection for censored and exact data

4.3.5 Masked attention

The distinctive feature of LSTM lies in its gating mechanism, which grants the model

the ability to discard information processed in preceding steps. Nonetheless, the

introduction of the forget gate, while enhancing the network’s adaptability, can inad-

vertently lead to the network disregarding information that was initially processed,

particularly when dealing with lengthy sequences. This can significantly impede the

model’s capability to capture long-term dependencies within the data. Building upon

the principles outlined in Vaswani et al., 2017, we introduced the use of an attention

mechanism to allow the model to determine which time steps processed thus far are

significant for predicting the current step. The attention mechanism is applied to

the hidden states produced by the LSTM before they are fed into the fully connected

layer for the prediction of distribution parameters at the current step. In our im-

plementation, we utilized masked attention to ensure that forecasting is carried out

exclusively using historical data, without incorporating future information.
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4.3.6 Model Architecture

Figure 4.2 depicts the architecture of DeepAR with masked attention. The model

takes into account both the response at the previous time step and the covariates

mentioned earlier, generating hidden states as output. These hidden states are then

passed through an attention layer, allowing the model to consider all available infor-

mation from the past up to the respective timestamp and generate updated hidden

states. These transformed hidden states are subsequently input into a fully connected

layer, which produces the predicted values for the distribution parameters. Note that

the paper Salinas et al., 2020 employed an encoder-decoder structure, and we ad-

hered to their approach by maintaining the same structure for both the encoder and

decoder in our implementation.

4.4 Parameter Estimation

The optimal parameters of the model are determined by maximizing the likelihood.

However, censored data introduces complexities, rendering the count data inaccessible

without appropriate transformation. Research has indicated that improper handling,

such as midpoint imputation of censored data, may introduce bias into the estimates,

as discussed in Turkson, Ayiah-Mensah, and Nimoh, 2021. To address this challenge,

we combine the previously mentioned framework with the Expectation-Maximization

(E-M) framework Dempster, Laird, and Rubin, 1977.

The E-M framework operates through an alternating process between the E-step,

which entails calculating expectations of the likelihood based on the current model

parameter values, and the M-step, which seeks to maximize the model parameters us-

ing the expectations computed. In the context of our problem, the E-step refers to the



69

Figure 4.2: Architecture of the proposed deep learning forecasting framework with
self-attention

calculation of the expected count ĉk,t in the training range and the M-step optimizes

the neural network-related parameters. The computation of the expected count of

observations within each bin requires information on the proportion of bin j covered
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in the ith interval, denoted by wij. The complete algorithm for the Expectation-

Maximization (E-M) framework is outlined below.

Algorithm 4 EM algorithm for forecasting with interval censored events.
Input: Interval censored data, initial λ
Output: predicted count

while Convergence criteria is not met do
for Each bin j do

Calculate pseudo counts using equation ĉk,t =
∑N

i=1
witλt∑
J wijλj

end for
Maximize the λ using the DeepCensored

end while
Make forecast for the specified steps
return Predicted distribution parameters

Figure 4.3 demonstrates the general framework of our proposed model. Two com-

ponents in the figure are associated with E-step and M-step described above. Note

that the M-step pictured on the right is the DeepAR with attention model shown

in Figure 4.2. The M-step could be replaced with any time series model that could

make forecasts, but we chose DeepAR model for its ability to capture long-range

dependency and trend changes.

4.5 Experiment results

To evaluate the model’s forecasting capability and its capacity to capture changes

in crime intensity patterns, simulations were conducted using synthetic data featur-

ing related series. The simulation process begins by specifying the intensity and

generating the events. The training window is set to ninety days. To create the

synthetic intensity data, we started with one-week-long intensities, where each value

corresponds to the intensity for each hour of the week. Additionally, we assume that

there is an increasing trend in intensity after a certain point in time, driven by salient
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Figure 4.3: Framework of DeepCensored to handle interval censored data.

events such as the pandemic. To simulate the intensities over the specified length, we

replicate the one-week intensity pattern to the desired length and generate intensity

values that follow an increasing linear trend. This reflects the changing patterns, with

intensities exhibiting an upward trend beyond a certain point. This approach allows

us to incorporate the evolving nature of crime intensity and assess the model’s ability

to capture such changes accurately. Mathematically, the simulated intensities can be

expressed as follows:

λk,t = Trendk,t + Seasonalityk,t

where Trendk,t = constantseries ∗ max(0, t − tchgpt). constantseries is set to 0.01 for

series A and 0.03 for series B, and the change point is fixed at 1200. In the simulations,

the two series under consideration differ in the trend component while sharing the

exact same seasonality component. With the intensity for each bin, we proceed to
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simulate the number of observations falling into each bin by generating samples from

the Poisson distribution. For events in bin j, we generate the exact time for those

events from uniform distribution within the bin. To convert exact event times into

censored data, the process begins by generating interval lengths from an exponential

distribution len ∼ Exp(8), aligning with observations in real data. Censored data is

then created by two steps: The left point is randomly selected to be U(0, len) from

the true event time. The right endpoint is set accordingly based on the length of each

interval and length between left endpoint and exact time created in the previous step.

We utilize three months’ worth of data (90 days) to train the model to make fore-

casts of intensity for the subsequent 168 hours. For a single realization, Figure 4.4

illustrates the plot of fitted values provided our our DeepCensored model alongside

the true intensities. Our model visually captures both the cyclic pattern and the

increasing trend present in the training data, even in the presence of increased uncer-

tainty due to censored data. This illustrates the effectiveness of our proposed model

in discerning intricate patterns within the synthetic data. In addition, our model

is a single, unified framework applicable to both related time series, enabling it to

make accurate predictions even for series with diverse scales. To illustrate this, con-

sider the intensities for series A, displayed in the upper panel of the plot, which are

approximately half the magnitude of those for series B, shown in the lower panel.

The fitted time series serves as a demonstration of the proposed model’s proficiency in

identifying both trend changes and seasonality within the training data. However, of

paramount importance for law enforcement agencies is the model’s ability to provide

precise forecasts for future time periods. As depicted in Figure 4.5, our model’s

forecasts closely align with the actual underlying mean. Furthermore, the model

excels in accurately predicting both peaks and valleys in intensities. This capability
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Figure 4.4: Predicted intensities versus true intensities for both series considered

empowers law enforcement agencies to design strategies that maximize efficiency and

minimize resource wastage by deploying officers at the most appropriate times.

Figure 4.6 demonstrates the area reduction curve of different methods and ground

truth for both series considered Tian, in review. This plot can be interpreted as the

percentage of crimes that could be deterred by police patrolling a certain number

of hours each week, assuming that patrols would follow the predicted peak hours.

This metric bears resemblance to the hit ratio employed in the study in Kadar,

Maculan, and Feuerriegel, 2019, albeit with a temporal perspective. To gauge the
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Figure 4.5: Forecast of intensities for one week period

effectiveness of our model, we compare its forecasting performance with that of the

aoristic method Ratcliffe, 2000. The plot demonstrates that, across two time series in

the simulation, the proposed model consistently outperforms the competing method

on a global scale. This is evident from the larger Area Under the Curve (AUC), which

closely approaches the upper bound established by the ground truth. Furthermore,

the cumulative proportion at any given number of hours is consistently higher for

DeepCensored compared to the Aoristic approach. This observation implies that the

adoption of the proposed method could potentially result in a greater deterrence of

crime, as it is associated with a higher preventive impact.
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Figure 4.6: ARC plot of various methods under consideration compared with the
ground truth.

In addition to the visual assessment provided by the plotted forecasts, we have em-

ployed numerical metrics to evaluate the performance of our proposed model on syn-

thetic data. Table 4.1 summarizes the models’ performance across five realizations

and numbers after ± denote the standard error. This demonstrates the superior per-

formance of our proposed approach compared to the competing methods we have

consideredMelard and Pasteels, 2000; Ratcliffe, 2000. Note that for methods like Ex-

ponential smoothing and AutoARIMA that require exact observations, we used the

resulting count obtained by applying the aoristic method. The non-competitive re-
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Series DeepCensored Aoristic Exponential Smoothing AutoARIMA
A 2.94(6.70%)± 0.58 5.18(13.5%)± 0.39 4.68(10.6%) ±0.32 6.82(17.8%)± 0.43
B 6.04(6.69%)± 0.52 9.17(10.7%)± 0.30 12.79(14.16%)± 0.26 19.72(23.1%)± 0.37

Table 4.1: MAE of different methods considered in the simulation.

sults also underscore the challenges that traditional methods encounter when handling

interval-censored data using transformed data that treats each event individually in

a forecasting scenario.

The proposed model was also applied to real crime data. We use data gathered from

the city of Dallas in the year 2019. This dataset includes detailed information indi-

cating the specific beat and division in which each crime occurred. In Dallas, each

division encompasses a considerable number of beats; for instance, the Southwest

division comprises 33 beats. While it is conceivable to construct individual models

for each beat through independent time series analysis, this approach presents sev-

eral drawbacks: 1) certain beats may lack sufficient data, hindering the development

of a robust model; 2) the correlated relationships among beats are overlooked; and

3) creating a model for each beat entails repetitive and labor-intensive work. This

is precisely where our proposed model comes into play, as it leverages relationships

among similar time series to construct a unified model, thereby mitigating the afore-

mentioned limitations.

We applied our model to analyze the data collected from the Southwest division during

the period spanning June 1st to September 1st in the year 2019. Before modeling, we

took out those observations with interval lengths longer than one week. The resulting

dataset contains a total of 17,668 observations from 33 different beats/units, with an

average interval length of 6.8 hours. Among these, 1415 observations, or eight percent

of the total, are uncensored. We built a unified DeepCensored model encompassing
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all beats and generated forecasts for the subsequent week after the training period. To

assess the efficacy of the forecasts on censored observations, we employed the observed

likelihood of the data for the following week where the forecasts were generated.

The observed likelihood characterizes the probability of observing the censored data,

considering the estimated parameters provided by various models. It is computed as

follows:

logL =
K∑
k=1

N∑
i=1

log
(∑

t λ̂k,twit∑168
t=1 λ̂k,t

)
The evaluation dataset contains 1472 observations. Our model achieved better re-

sults than the competing aoristic method and yields an average observed likelihood

of −5.11, outperforming the −5.18 produced by the competing method for all obser-

vations considered in the dataset. Additionally, it is noteworthy that the proposed

model exhibits superior performance in beats with limited observations. For instance,

Beat 425, with the least number of observations at 38, demonstrates a more substan-

tial performance gain over the competing model compared to beats with greater

observations. Specifically, the observed likelihood produced by the proposed model

is −180.5, surpassing the −185.7 from the competing method in this beat.

4.6 Discussion

The analysis presented in the preceding section underscores the effectiveness of the

proposed model relative to other competing methods in the realm of time series fore-

casting with censored data. Beyond accurate estimates, the forecasts and associated

further analyses offer tangible real-world benefits, such as crime reduction and im-

proved resource allocation. This, in turn, leads to enhanced efficiency and a reduction

in resource wastage.
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To enhance crime prevention and deterrence efforts, applying our proposed model

to the dataset and generating time series of fitted values enables the detection of

intricate trends and patterns. For instance, the emergence of an increasing trend in

crime occurrences may warrant the implementation of targeted programs or strategies

for effective crime reduction. Research conducted by the National Institute of Justice

(NIJ) has indicated that well-designed policing strategies can indeed be effective in

deterring crime Haskins et al., 2019. Identifying areas requiring such interventions

facilitates timely and proactive measures.

The allocation of human resources has become increasingly crucial, especially in light

of the downsizing challenges that certain police departments are currently grappling

with. This issue has been a central focus of prior research in decision support system

in proactive policing Tian, in review . Similar to the ARC curves in Figure 4.6, Fig-

ure 4.7 creates an ARC for each day of the week. This type of plot will be particularly

useful in the scenario where the enforcement agencies have extra resources to spend on

patrolling and have to decide what day and time to patrol. The time and day could be

picked based on the largest cumulative probability gain. As an example, if resources

permit more than 12 hours of patrols in beat A, allocating additional resources to

Thursday could result in more significant potential crime reduction. Similarly, as-

signing extra resources to Wednesday yields a higher Return on Investment (ROI) in

beat B. These findings align well with the strategic targeting of the smart policing

initiative by allowing law enforcement agencies to focus on the times with the highest

expected occurrence of crimes.

The proposed model has demonstrated its efficacy in making accurate forecasts of

future counts. This capability allows the police department to design strategies based

on precise probabilistic forecasts provided by the model. Our next research step
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involves crafting the optimal strategy by taking into account both the model forecasts

and all practical constraints that law enforcement agencies may encounter.

4.7 Conclusion

In this research, we introduce a deep-learning-based model for forecasting a specific

type of incident occurrence, wherein the actual event time is only known to fall

within a given interval. By applying the model to both synthetic data and real data,

we demonstrate two key findings:

Firstly, our proposed model demonstrates the capability to model all related time

series with a single unified framework, effectively capturing trends within the data

even in the presence of interval-censored observations.

Secondly, the proposed model exhibits superior predictive performance, as measured

by the Area-reduction curves and MAE, when compared to previously proposed meth-

ods. This enhanced forecasting ability, particularly for multi-horizon forecasts, em-

powers practical resource allocation and planning well in advance. Overall, our model

is well-suited for a diverse range of problems involving interval-censored data analysis.
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Figure 4.7: ARC for each day of the week.
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Chapter 5

Conclusion

We initiated our discussion of modeling censored data by addressing the bias intro-

duced due to the inappropriate handling of such data. We conducted a simulation

study to underscore the bias associated with the straightforward mid-point imputa-

tion approach. The study confirmed the notion that the likelihood-based approach

leads to smaller bias during inference because each censored event is processed in a

way that considers all intensities of the corresponding bins it covers.

Throughout the dissertation, we addressed three crucial tasks in the presence of in-

terval censoring. Change point detection (CPD) is a well-researched area, typically

approached from various angles, with much of the research assuming that the data is

precisely observed. In our project, we explored the utilization of the joinpoint model

combined with the Expectation-Maximization (E-M) framework to detect change

points. Additionally, we leveraged Bayesian model averaging to combine evidence

and assign probabilities to each change point. We applied the proposed model to the

2020 Presidential approval rate and identified change points that are supported by

various sources of evidence. Intensity estimation for crime data with interval censor-

ing is an under-researched area, often addressed using data transformation methods.

The oversmoothed intensity curve resulting from such methods could lead to resource

wastage. In our work, we demonstrated a penalized Expectation-Maximization (E-
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M) approach to intensity estimation, combined with hierarchical clustering. This

approach produces an estimated intensity that is both realistic and has the poten-

tial to achieve optimal crime reduction. For example, this approach yields clustering

results that group days of the week into clusters, where intensity estimates within

the same group share identical values. Such results provide law enforcement agencies

with flexibility in setting the number of different patrol plans they can afford, aiming

to achieve the maximum level of crime reduction with available resources.

The estimated intensity provided by the previous project may work well for resource

planning in a city where the seasonality remains consistent on a weekly basis. How-

ever, this may not hold if a significant event occurs, triggering a change in the under-

lying mechanism of crime. For instance, the COVID-19 pandemic altered the modus

operandi(MO) of offenders due to the shift to remote work. The forecasting model can

explicitly consider all historical information and make forecasts for future timesteps.

We proposed a deep learning-based forecasting model that generates probabilistic

forecasts in the presence of censored data. The model also offers estimates for all

related time series simultaneously, instead of constructing separate models for each.

The model generates multi-horizon forecasts, enabling the optimization of resources

across multiple future steps.

Through a series of projects, we have demonstrated that machine learning/deep learn-

ing is superior to simple data transformation in terms of handling interval-censored

data. As the next steps in research, some additional directions could be pursued.

Our DeepCensored model leveraged a recurrent model for forecasting, capturing de-

pendencies through time. However, it may face two potential issues: 1) The LSTM

module alone might struggle with processing long-range dependencies, potentially

relying on short-term memories for predictions. Addressing this could involve stor-
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ing all hidden states and incorporating attention mechanisms, though this could be

computationally and storage expensive. 2) The use of LSTM inhibits the possibil-

ity of parallelism in computation, which could be a concern when dealing with large

amounts of data.

A potential solution could involve eliminating the recurrent module altogether and

relying solely on a Transformer-like module with positional encoding to denote the

temporal distance. Research has shown promising results with the replacement of

LSTM Song et al., 2018; Lim et al., 2021, suggesting that this architecture might

be beneficial in censored data prediction tasks. Moreover, our current approach pri-

marily leverages tabular data for forecasting crime occurrences. Prior research has

demonstrated the effectiveness of incorporating other sources of information in crime

prediction. For instance, Twitter data has shown promise in providing additional

signals for crime prediction tasks Chen, Cho, and Jang, 2015. Additionally, images

such as Google Street View can offer valuable information about the environment

for forecasting Kang and Kang, 2017. It is conceivable that the fusion of informa-

tion from different modalities could lead to improved forecasting performance. Both

directions show promise in terms of further improving the performance of modeling

censored data.
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