
The Struggles of Kubernetes Key-Value Stores

CS4991 Capstone Report, 2024

James Draudt

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

wzg6qh@virginia.edu

ABSTRACT

As Cloud Native Infrastructure

continues to evolve rapidly, its built-in key-

value store, ETCD, has struggled to keep pace

due to a lack of maintainers and a heavy

footprint. To address this issue, Kine has been

developed as a shim for ETCD, enabling the

use of alternative key-value store technologies

within a cluster. By incorporating Kine, users

can specify an endpoint flag during cluster

creation to direct the cluster to a different

database, which then serves as the key-value

store. Some Kubernetes distributions have

Kine built-in as an intermediary, while others

require it to be run externally. However, any

distribution can leverage this technology to

bypass ETCD, leading to potential

performance improvements such as reduced

memory usage, faster task completion, and

enhanced cluster availability. Exploring

various backend options for Kine is crucial,

particularly in determining which database

technologies are most effective for

Kubernetes. While multi-clustering via Kine is

an intriguing concept, further testing is needed

to assess its viability as a replacement for

multi-cluster organizers like K0smotron.

1. INTRODUCTION

Cloud Native Infrastructure, and more

specifically Kubernetes Clusters, allows

modern technology to thrive. Many companies

that haven't yet adopted these microservice

architectures are considering doing so, as

“[m]igration to the cloud has been a popular

topic in industry and academia in recent

years.” However, “[d]espite the many benefits

of the cloud, such as high availability and

scalability, most on-premise application

architectures are not fully prepared to exploit

the benefits of this environment” (Balalaie et

al., 2016). The main challenges seem to be

reliability and ease of use for these new and

complex cloud architectures. Cloud Native

Architecture relies heavily on Kubernetes

Clusters, which make programs more modular,

allowing each component to work

independently on any computer while still

integrating seamlessly with the rest of the

system. A key part of these architectures is

ETCD, the built-in key-value store for

Kubernetes. This database is vital for the

cluster's operation, as it stores essential data.

 Despite ETCD’s importance in Cloud

Native Infrastructure, it struggles with issues

such as complexity, size, and updates. These

challenges can affect performance since “both

the Kubernetes control plane and the deployed

application depend strongly, and sometimes

unexpectedly, on the performance of the

ETCD database” (Larsson et al., 2020).

Because of these issues, some companies have

sought workarounds, leading to the creation of

Kine. Kine translates ETCD calls into a

language that other databases can understand.

This raises several questions: Which databases

are best suited for Kubernetes key-value

storage? How does the size of a cluster affect

key-value store requirements? And finally,

what other uses could Kine technology have?

To answer these questions I researched and

experimented with different database

backends, determined which work best with

Kine through looking at the resulting data, and

explored potential new uses for this

technology.

2. RELATED WORKS

 ETCD has well-documented

limitations, many of which are highlighted in

the paper by Larsson et al. (2020). This

research discusses the performance link

between ETCD and Kubernetes, revealing

several underlying issues with ETCD. When

analyzing inconsistent results, their “data

indicate[d] that at the core of the problem is the

ETCD database and its performance”. This

paper was among the first to expose the

inherent complexity of ETCD and its potential

to hinder performance, inspiring the need for

new key-value store technologies.

Several resources were instrumental in

my work with Kine. First, the Kine GitHub

page (vitorsavian, 2024) provided the

foundational knowledge I needed to

experiment with different backend databases

and understand how Kine operates. Much of

my research was built on the insights provided

by this page, and without it, I would have faced

significant difficulties in utilizing this

technology.

In addition, Denis (2023) introduced

the idea of combining Kine with YugabyteDB,

a distributed PostgreSQL database, which

significantly advanced my research. Using this

approach, I was able to create a unique

distributed key-value store capable of

operating globally and connect multiple

clusters to a single database—a discovery that

became one of the most interesting aspects of

my project.

These three sources were pivotal in

shaping my understanding of the problem and

guiding me toward effective solutions.

Without them, I would not have been able to

grasp the complexity of the ETCD issues or

develop viable alternatives.

3. PROJECT DESIGN

The proposed design consists of three main

components: a Kubernetes distribution with

Kine integration, Kine itself, and

YugabyteDB. Combined, these elements

enable administrators to set up their own

distributed database, monitor it easily, and

scale it to meet the needs of their cluster.

3.1 Kubernetes Distribution with Kine

The first part of the design is a

Kubernetes distribution that includes Kine.

Many newer, lightweight distributions have

adopted Kine as it offers more flexibility, with

some even moving away from using ETCD as

the default backend. Among the options tested,

K3s proved to be the best. It is lightweight and

provides simple Kine commands that allow for

quick database connectivity. While Kine can

be used with any Kubernetes setup, without

built-in support, it must be run as a standalone

service, which adds extra work and system

overhead. Another option tested was K0s, but

it was found to be less user-friendly. However,

with time and additional documentation, K0s

could become a better choice for smaller

clusters.

3.2 Setting up Kine with K3s

The next step is getting Kine running

with K3s. Kine acts as a translator, converting

ETCD-compatible calls into standard SQL,

which is used by many other databases. This

allows for simple cluster connections using

just a few flags. To do this, a flag is passed to

K3s on startup with the --datastore-endpoint

option. The connection string format is

[DATABASE

TYPE]://root:$[PASSWORD]@[LINK

TYPE]([DATABASE IP])/kine. For more

detailed instructions on connecting specific

databases, I recommend referring to Kine's

GitHub page or other relevant tutorials.

Alternatively, this configuration can be set in

the cluster’s YAML file.

When configured properly, the cluster

should perform similarly to one using ETCD.

Depending on the backend database,

performance may vary slightly, but when set

up correctly, these differences will have a

minimal impact on overall cluster

performance.

3.3 Replacing ETCD with YugabyteDB

The most critical part of this design is

replacing ETCD with YugabyteDB.

YugabyteDB offers the same reliability as

ETCD while providing a significantly

improved user experience, increased

customizability, and more robust monitoring

capabilities.

YugabyteDB is a distributed

PostgreSQL database, meaning it maintains

copies of the same database across different

nodes. This redundancy ensures that even if

one copy is lost, the data remains accessible.

Administrators can choose the location of

these copies and optimize performance based

on their locality. Yugabyte supports

replication across local networks, regions, or

even continents. Using techniques like

sharding and leader tables, these copies remain

synchronized efficiently, with minimal

overhead. Additionally, Yugabyte allows for

geo-isolated databases, where some

information is shared across nodes while other

data is confined to specific regions. This

feature is especially useful for clusters that

must comply with data privacy regulations.

YugabyteDB's customizable distribution and

replication ensure that the database remains

operational even if a majority of the copies are

lost. This is achieved using the Raft Consensus

Algorithm, which handles data replication. As

long as one copy remains, the data is preserved

and can be quickly restored after a simple

restart.

A major advantage of YugabyteDB

over ETCD is the elimination of a single point

of failure. In ETCD, the database runs within

the cluster, which creates a vulnerability. With

YugabyteDB, however, the database can be

distributed across multiple locations. If one

copy is running within the cluster and two

others are outside it, the system remains secure

even if the cluster experiences downtime.

Additionally, if the cluster goes offline, it can

reconnect to the database backend and resume

operation without issue. This contrasts with

ETCD, where complex commands and buggy

processes are required to restore from a

snapshot.

3.4 Monitoring with YugabyteDB

Another significant advantage of

YugabyteDB is its free, open-source

monitoring software. This tool provides

numerous utilities that allow users to identify

potential issues before they become serious

problems. This solves the challenge faced with

ETCD, where setting up reliable monitoring

was tedious and error prone.

3.5 Review

This design utilizes a Kubernetes distribution

with Kine integration, sets up a Kine datastore

backend, and connects to a YugabyteDB

distributed database. This approach offers

equal or greater reliability compared to ETCD,

while significantly improving customizability,

monitoring, and ease of use.

4. RESULTS

This model exceeded expectations in

multiple areas. Not only did it meet the

anticipated goals of reliability and ease of use,

but it also demonstrated an unexpected

capability for seamless multi-clustering. This

feature allows multiple clusters to connect to a

single Yugabyte database, enabling them to

work together and balance loads

automatically.

Setting up Yugabyte with K3s proved to be

straightforward, requiring just one flag for K3s

and a few simple commands to configure the

distributed database. The monitoring tools

were highly customizable and performed

exceptionally well. They provided clear

visibility into any issues, detailed information

about each database copy, and useful warnings

that helped troubleshoot problems with ease.

Overall, Yugabyte lived up to its reputation for

simplicity and proved to be a strong option as

a key-value store.

Through testing, it was discovered that

connecting two clusters to the same backend

enabled effortless multi-clustering. This

system allowed for automatic workload

distribution, even when work was initially

assigned to only one cluster. It also provided

failover recovery, seamlessly transferring

processes from a failed cluster to the

operational one, and offered comprehensive

monitoring across all clusters. This solution

has the potential to replace current multi-

clustering technologies, which are still

challenging to use and prone to bugs. While

further work is needed to ensure this approach

is viable long-term, the results are extremely

promising.

5. CONCLUSION

This project highlights the growing

need for efficient and scalable cloud-native

infrastructure, particularly in key components

such as Kubernetes' key-value store. As cloud

infrastructure adoption accelerates, every

element within this ecosystem must be capable

of handling increased demand. However,

ETCD—the default key-value store for

Kubernetes—struggles to meet the

requirements of larger clusters, making its

replacement both necessary and beneficial.

My investigation into alternative solutions

revealed workarounds for ETCD, allowing for

the deployment of customizable clusters suited

to various sizes and demands.

By leveraging Kine to bypass standard

Kubernetes calls, I found that any SQL-

compliant database could potentially replace

ETCD and enable effective cluster

management. In particular, YugabyteDB stood

out as a strong candidate, offering high

availability, configurability, and efficiency,

especially for larger clusters. An unexpected

finding was the capability of a single key-

value store to support multi-cluster

management, a feature that could serve as a

viable alternative to current, less mature multi-

cluster management solutions.

6. FUTURE WORK

Replacing ETCD requires further

exploration and testing. For future work, a

comprehensive benchmarking of various SQL

databases should be conducted to assess the

viability of different backends for Kubernetes.

Additionally, long-term validation is needed to

determine how well these SQL databases

perform in production environments over

extended timeframes. Further configuration

testing with YugabyteDB is also

recommended to optimize node setups for

maximum availability and efficiency.

In terms of multi-cluster management,

more extensive testing and development are

required. Due to time constraints, I could only

evaluate this framework briefly, so additional

research would help identify and address

potential limitations. I anticipate some

challenges with this setup; however, if these

can be overcome, multi-clustering on a single

key-value store could unlock significant

advantages previously untapped in cloud

infrastructure.

7. ACKNOWLEDGMENTS

I would like to express my gratitude to

my intern team and mentor for supporting my

decision to pursue this niche topic, which

enabled me to explore innovative solutions. I

am also thankful to Denis (2023) for an

exceptional tutorial on setting up clusters with

YugabyteDB, without which my work would

not have been possible.

REFERENCES

Balalaie, A., Heydarnoori, A., &
Jamshidi, P. (2016). Migrating to
cloud-native architectures using
microservices: An experience
report. In A. Celesti & P. Leitner
(Eds.), Advances in Service-
Oriented and Cloud Computing (pp.
201–215). Springer International
Publishing.
https://doi.org/10.1007/978-3-
319-33313-7_15

Larsson, L., Tärneberg, W., Klein, C.,
Elmroth, E., & Kihl, M. (2020).
Impact of etcd deployment on
Kubernetes, Istio, and application
performance. Software: Practice
and Experience, 50(10), 1986–
2007.
https://doi.org/10.1002/spe.288
5

Denis, M. (2023, July 28). Kubernetes

evolution: Transitioning from etcd to

distributed sql - dzone. Dzone.Com.

https://dzone.com/articles/kubernete

s-evolution-transitioning-from-etcd-

to-di

Vitorsavian (2024).

Kine/examples/minimal. Md at

master · k3s-io/kine. GitHub; k3s.

https://github.com/k3s-

io/kine/blob/master/examples/minim

al.md

