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ABSTRACT 

Industrial control systems recently have become the targets of cyber-attacks that manipulate the 

parameters of their normal operating procedures to produce unstable behavior. Previous research has 

shown that security solutions embedded within the system being protected can provide a method for 

cyber-attack detection. Fault detection, specifically system identification, can offer multiple methods of 

detection of deviations from set system parameters in a dynamic model representation of the industrial 

control system using the measurements obtained and the inputs specified during operation. In 

particular, this research effort uses different system identification techniques to determine if a system is 

operating as designed and configured. During the investigation for this Thesis a detection algorithm was 

created that monitors a system by comparing real time estimates of the dynamic model of the system with 

the known designed system dynamic model. When sufficient deviations between the estimated dynamic 

model and the known dynamic model are judged by the similarity algorithms, the detection algorithm 

informs system operators of the possible existence of an attack. The operators of the systems then use a 

series of guidelines created in this Thesis that examines the conditions and the situational disutility 

surrounding the event to help determine the likelihood of a cyber-attack versus a hardware or software 

failure. This Thesis will compare multiple existing systems identification techniques to determine how 

effective the selected techniques are at detecting cyber-attacks, with the criteria of success being the true 

positive rates, the false alarm rates, and the detection time. 
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1. PROBLEM STATEMENT 

1.1 Motivation 

In the past, typical cyber-attacks have focused on stealing information and data, denying access to 

services, or defacing and damaging online applications. Recently some cyber-attacks have attempted to 

manipulate the control systems of infrastructure with the intent of damaging or hampering the operation 

of the physical systems, a previously unseen motive. The Stuxnet and Maroochy attacks are openly 

documented examples [1][2][3]. In the Stuxnet attack, a computer worm compromised the Supervisory 

Control and Data Acquisition (SCADA) of multiple Iranian centrifuges and caused them to spin at 

damaging speeds. The worm accomplished this by manipulating computer controlled parameters that 

maintained the rotation rate of the motors in the centrifuges for short periods of time. These 

manipulations sabotaged the normal operating conditions of the centrifuges and caused them to fail more 

quickly [1]. In the Maroochy Shire attack, an insider manipulated the controller of multiple sewage 

pumping stations for a waste management system and caused approximately a million liters of sewage to 

be released into the waterways. The pumps were centrally monitored and controlled, allowing the insider 

to manipulate the pumps at will and to disable any alarms that were triggered; his combined access to 

both systems allowed him to remain undetected for a long period of time [3][22].  Both of these cyber-

attacks show that perimeter security on critical control systems no longer offers enough protection from 

damage from motivated attackers. The fallibilities of perimeter security have necessitated the addition of 

layers of security that are embedded within the systems being protected [5] [20]. Furthermore, insider and 

supply chain attacks are initiated within an attacked system, calling for additional security inside the 

protected system. 
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1.2 Problem Definition 

The advent of cyber-attacks on control systems requires new methods of perimeter security and 

cyber-attack detection to protect critical systems. Because of the impossibility of providing completely 

comprehensive perimeter security, cyber-attack detection becomes essential to maintaining the normal 

operating conditions of industrial control systems. Many industrial control systems use bounds in the 

form of control charts on states of operation to provide a form of cyber-attack or fault detection [22]. 

Sensors monitor specific states of the physical system to determine if the values of the states exceed an 

upper and lower threshold. If an value exceeds the threshold (from here on referred to as an event), then 

the operator is notified and appropriate actions are taken. However, if a cyber-attack can change the 

parameters of the dynamic system then it is possible that the attack can disrupt the system without causing 

the states of the system to exceed their bounded values. Stuxnet is an example of an attack that changed 

the parameters of the dynamic system and avoided event detection for a long period of time. In the case of 

Stuxnet, the worm caused the system to operate at non optimal levels and to fail at a quicker rate then 

designed. This thesis attempts to detect cyber-attacks that follow the same attack pattern (i.e. for long 

periods of time the cyber-attack remains undetected, but the cyber-attack continually impacts the 

performance of the physical system). For attacks that avoid detection in this way, the underlying structure 

of the controller and the physical dynamic system can be used to provide additional information regarding 

the likelihood of a cyber-attack. Additionally, once an event has been flagged the event must be 

categorized as a human error, a fault, a cyber-attack, or some other degradation of the system. This will 

allow the operator to take the appropriate actions to rectify the disruption to the system.  
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1.3 Proposed Solution 

This research project uses Fault Detection techniques, specifically Systems Identification and 

Parameter Estimation, to detect when cyber-attacks that modify a dynamic system’s parameter values 

occur. Parameter Estimation algorithms offer multiple methods for the detection of deviations from 

designed and configured system parameters in the mathematical representation of the industrial control 

system. To detect cyber-attacks that modify system components, a monitoring system will compare a real 

time estimate of the dynamic model of a system created using recent measurement and input values with 

the known designed system dynamic model. When there are sufficient discrepancies between the 

estimated dynamic model and the known dynamic model, the monitoring system will inform system 

operators of the possible existence of an attack. The operators of the systems will then use the conditions 

and the situational disutility surrounding the event to determine the likelihood of a cyber-attack versus a 

hardware or software failure and, if possible, will detect the source of deviations in the parameters and 

restore the system to its designed operation mode. Specifically, if a cyber-attack changes one of the 

components in the physical system and that change is reflected in the real time estimate of the parameters 

of linear dynamical system, then the physical system will begin to differ from the mathematical 

representation of the system used to control the physical system. This research project uses existing 

Systems Identification techniques that create estimates of linear dynamic systems using the measurements 

of the inputs and outputs to extract the current parameters of the physical system. It then compares the 

real time estimate of the parameters of the mathematical model (specifically the A matrix) to the 

parameters used by the current mathematical representation of the system. The different estimation 

methods and similarity algorithms will be evaluated by their: 

 False Alarm Rate 

 Missed Detection Rate 

 Detection time 

 Inherent Limitations 
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An estimation method is considered successful if it correctly detects changes in the A matrix of the linear 

dynamic system within a predetermined sample time period with set success rates and set false alarm rates 

determined by the application. Additionally, the deviation detection algorithms are tested against the same 

criteria. This research project also develops criteria using the conditions and the situational disutility 

surrounding the event to determine the likelihood of a cyber-attack as opposed to alternative causes for 

faults like hardware or software failures.   
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2. LITERATURE REVIEW 

2.1 Previous Attempts at Problem Solutions 

The resilient systems and cyber security disciplines each have attempted to detect attacks similar 

to Stuxnet in different ways. The resilient systems community has adapted fault detection techniques to 

detect unplanned changes in the operation of critical systems. [4] defined and simulated three types of 

cyberattacks; surge, bias and geometric. A surge attack on a control system attempt to inflict the most 

possible damage the instant the system is compromised. Bias attacks modify the control system to 

produce less then optimal output while remaining undetected for the longest amount of time possible. 

Geometric attacks combine surge and bias attacks; geometric attacks try to remain undetected until the 

system becomes vulnerable and then attempt to cause the maximum amount of damage. Bias attacks are 

the hardest of the attacks to detect, but geometric attacks typically cause the most damage; Stuxnet was 

classified as a bias attack [4]. It is assumed that if a bias attack on a control system is detectable, then a 

geometric or surge attack on the same system will also be detectable. For this reason the detection of bias 

attacks will be the focus of this Thesis. A method for detecting ‘man in the middle’ attacks on sensors 

reporting measurements is discussed in [5]. The authors used a set of states not directly shown to the 

operator to predict the value of the displayed states which could then be used as a form of validation and 

manipulation detection. Similar to this Thesis, the authors used the structure of a mathematical model 

representation of the physical system to gather information about the possibility of a cyber-attack on one 

of the displayed states. 

The cyber security community has taken a different track attempting to detect the presence of 

attacks similar to Stuxnet. They have decided, instead, to monitor the computers that provide the control 

for the dynamic systems to detect aberrations. Power Fingerprinting characterizes the voltage draws for 

the processor in clean systems for various system processes and detected anomalies in characterized and 

actual power draws [6]. HyperCheck uses external cloud computing processors to independently validate 
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the integrity of core operation system files [7]. Behavior modeling monitors the series of low-level 

function calls of various vulnerable programs and compares them to known good series of function calls. 

A weakness of these cyber security approaches is the assumption that a computer that has been 

compromised will still be in a state that will allow it to monitor itself. The systems identification approach 

can be run independently of the control system and requires only the measurements and inputs from the 

physical system. A design issue for this approach will be obtaining and trusting the measurements and 

inputs of the physical system through sensors; however, using the method described in [5] can provide a 

method for validating the measurements. 

2.2 Fault Detection using Systems Identification 

Fault detection is the procedure for identifying failing or failed components in a physical system 

in a timely manner, so the system can either be restored or be taken offline to prevent further damage to 

the system in question. Cyber-attacks on the software controllers of physical systems can cause 

performance degradations in a physical system in a manner very similar to a hardware failure event, 

usually by adjusting the configuration of hardware devices to create faults. This Thesis hypothesized that 

fault detection techniques will translate to the detection of cyber-attacks on control systems because of the 

similar disruptions in service that occur. However, much of fault detection is centered on hard failures; 

whereas cyber security is focused on software induced failures. Cyber-attack patterns are limited to 

parameters that can be computer controlled.   

Systems Identification has been used as a method of fault detection to determine when 

performance of the physical system has degraded to unacceptable levels. Systems Identification is used in 

[9] to classify the states of the physical system during the failure of three modules on a jet engine and 

determine from those states the failed module or modules. System Identification also is used in [10] to 

detect perturbations introduced into in the spin rate of a DC motor by estimating the parameters of the 

mathematical model at each time step. Similarly [11] uses Systems Identification to determine the 
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parameters of a DC motor in six different fault states in continuous time using a block pulse function. [30] 

proposes using the balanced realization algorithm, a Systems Identification technique, to detect faults in 

systems. This Thesis uses Systems Identification to identify cyber-attacks by comparing the real time 

estimate of the dynamic system to the mathematical model used to control and simulate the system. 

2.3 Background 

2.3.1 Mathematical Representation of the Dynamic System 

Industrial Control Systems are typically represented by multiple mathematical models in discrete 

time. They are constructed to be piecewise functions of the current operating state that change over time 

as the physical system changes. Assuming errors are zero mean, Gaussian, and stationary, a linear 

dynamic system can be represented by the following discrete-time mathematical equations: 

                  

                

where x is a nx1 vector of the states of the system at time step k, A is nxn matrix of parameter values, B is 

nxm matrix of parameter values, u is a mx1 vector of input values, y is a px1 vector of measurement 

values at time step k, C is a pxn matrix of parameter values, D is a px1 matrix of parameter values, wk is 

the nx1 process error of the system at time step k, and vk is the px1 measurement error of the system at 

time step k. n refers to the number of states of the system, m refers to the number of inputs in the system, 

and p refers to the number of measurements taken from the system. The parameter values in A, B, and C 

are combinations of the component values in the system. In some cases it is possible to create a set of 

linear equations that can extract the individual component values. When C is a full rank square matrix the 

values of all the states can be approximated at each time step by calculating C
-1

yk under the assumption 

that vk is zero mean, Gaussian, and stationary. When C is less than full rank, alternative methods must be 

used to obtain the values of the states at each time step. 
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Another important construct used from the field of control theory is the minimum state 

companion form representation of a state space. Given an A, B, C and D matrix, the transfer function of a 

Single Input and Single Output (SISO) state space can be calculated with the formula:  

                     
                 

              
 

Assuming the transfer function is in its minimal state (any potential reductions in the order have been 

factored out) then a specific realization of the state space can be constructed shown below: 

     

 
 
 
 
 
               

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

      
 
 
 
 

    

 
 
 
 
 
 
 
 
 
  
 
 
 
 

       

                         

This transformation can be extended to Multiple Input and Multiple Output (MIMO) systems. The main 

advantage of this form is the ability to compare realizations of different transfer functions easily. Because 

there are infinite numbers of state space realization for the same transfer function, real time estimates 

created may have the same underlying transfer function, but look completely different in their 

realizations. Putting all the estimates in a similar form allows the similarity algorithms to compare the real 

time estimates much quicker and efficiently. Additionally, realizing the transfer function in companion 

form reduces the number of variable parameters in the state matrix A. A downside to realizing the matrix 

in companion form is the states created in this realization will be intangible states and not linked directly 

to physical processes which will make interpretation more difficult. The measurements of the system 

however will remain the same no matter what transformation is made. Comparing the estimates in 

companion form also makes fault isolation more difficult as it is very difficult to retrieve the previous 

realization of the system which contains useful information about the combinations of components in its 

parameters. 
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2.3.2 Kalman Filtering for Estimate Smoothing  

Kalman filtering is an approach that is often used to mitigate the effects of process and 

measurement error on the stability of the mathematical model that is being used to predict the control 

inputs for the physical system. The process of Kalman filtering uses the mathematical representation of 

the system defined in 2.3.1, and is shown in [13] and [17]. Many of the parameter estimation techniques 

that are applied perform better in systems of low noise, so mathematical models of systems are often 

smoothed using a Kalman filter to reduce the amount of noise inherent in the physical system. 

Additionally, Kalman filtering provides a method of real time estimation of parameters discussed in 

Section 2.3.3.2. 

2.3.3 Parameter Estimation 

Parameter Estimation is a branch of Systems Identification used for determining the optimum 

parameter values for a mathematical model that represents the physical system in question. Typically, this 

is accomplished by minimizing either the variance or the mean squared errors between the predicted 

measurements and inputs and the actual measurements and inputs for the selected model for a specific 

time period. Multiple potential methods of Parameter Estimation are laid out in this section. Linear Least 

Squares Estimation and Kalman Filter Parameter Estimation require all states of the mathematical model 

to be directly extractable from the measurements and inputs, while Subspace System Identification and 

Expectation-Maximization only require the measurements, inputs, and number of states to fit 

mathematical models. Extractable is defined as either the values of all the states are all measured directly 

using the C matrix (The C matrix would be represented as an identity matrix) or the C matrix is full rank 

and a system of linear equations can be solved to determine the values of all the states. Each of the 

methods will produce an estimate of the state space matrix for the mathematical representation of the 

dynamic system.  

 



13 

 

2.3.3.1 Linear Least Squares Estimation 

A common method for determining parameter values of a mathematical model of a dynamic 

system that contains many measurements is the linear least squares method. The process for computing 

the linear least squares estimate is shown in [12]. Linear Least Squares Estimation will fit a mathematical 

model that minimizes the sum of squares residuals between a set of predictions produced by the model 

and observed values. Linear Least Squares Estimation assumes that the uncertainties in the sources of 

system perturbations and measurements are zero mean, Gaussian, and stationary. Linear Least Squares 

Estimation is a regression method and could potentially be replaced with different regression methods like 

Ridge Regression or Principal Components Regression that could produce better performing results in 

some cases. However, for the purposes of this Thesis, Linear Least Squares regression was deemed to 

capture a sufficient amount of the predictive quality offered by regression methods. 

2.3.3.2 Kalman Filtering as a Parameter Estimation Technique 

Kalman filtering can be used as a form of parameter estimation when reformulated into a model 

where the parameters of the A matrix become the states of the mathematical model and are driven 

towards their true values by the Kalman filter. A reformulated model and algorithm can be seen in [18]. 

At each time step, the Kalman filter computes the innovation error between the predicted measurements 

and the observed measurements and moves the parameter values in a direction to decrease the error 

between the two. Each parameter value converges to some value (assuming the parameter values are 

stationary) that attempts to minimize the innovation error. One potential downfall of this method is that 

the error covariance matrix P will continue to decrease in size and after long time periods the filter will 

become less responsive to changes in the parameters of the physical system. The decrease in sensitivity 

can be avoided by resetting the covariance matrix P at specific time intervals causing the filter to become 

responsive to its prediction errors again and to converge to a new set of parameter estimates. This rapid 

convergence allows changes in parameter values to be recognized quicker than would occur with a 
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smaller covariance matrix P but can cause instability in the estimates of the parameters in situations where 

the parameters have not been changed recently. This is an iterative method that only has memory based 

on the prior value of the estimates of the states and the current value of the covariance matrix P. 

2.3.3.3 Subspace Systems Identification Algorithms 

The Subspace System Identification algorithms are methods for estimating the parameters of A, 

B, C, D, Q, and R matrices of a mathematical model using only the measurements of the physical system, 

the number of states, and the system inputs [19]. Unlike the previous two parameter estimation methods 

described above, Subspace Systems Identification algorithms do not require the values of all the states of 

the physical system to be directly extractable from the measurements. Subspace System Identification 

algorithms overcome the lack of information about the values of the states by using a sequence of 

orthogonal and oblique projections between Hankel matrices formed from the measurements and inputs 

yielding Kalman smoothing estimates of the extended observability matrix Ti and the values of the states 

of the system at two consecutive time indices estimate xi and estimate xi+1. From the estimates of xi and Ti, 

the parameter estimates are calculated using Linear Least Squares Estimation [16]. A more in depth 

description of overarching model with the most basic Subspace System Identification algorithm are 

described in [19]. All Subspace System Identification algorithms make the assumption that the noises w 

and v are uncorrelated with the input u, an important point later. Two common methods of Subspace 

Systems Identification algorithms are Multivariate Output-Error State Space(MOESP) model and 

Canonical Variate Analysis(CVA) model [24][25]. Each algorithm is created by using a different 

weighting matrix during the orthogonal projection process. [26] shows the differences in the weighting 

matrices between the most common Subspace System Identification algorithms. MOESP and CVA are 

used in this Thesis to create real time estimates of the physical system’s mathematical model both in 

situations where the values of the states are known and situations where the values of the states are not 

known. 
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2.3.3.4 Expectation-Maximization Algorithm 

The Expectation-Maximization algorithm proposed in [15] calculates the maximum likelihood 

estimate of unknown parameters iteratively until they converge to some value. The process consists of 

two steps; first, an expectation of the log-likelihood evaluated using the current estimate for the 

parameters, second, a search for parameters that maximize the expected log-likelihood. This algorithm 

runs iteratively through these two steps until a minimum change threshold is reached. This differs from 

the Subspace Systems Identification algorithms, which are deterministic. Like the Subspace Systems 

Identification algorithms, the values of all states of the physical system do not have to be directly 

extractable from the measurements. However, it is necessary to know the total number of states and 

hidden states that there are in the physical system.  
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3. APPROACH 

 Two Systems will be simulated to determine the effectiveness of Systems Identification methods 

for cyber-attack detection: a software controlled RLC circuit structured as a band pass filter and the fuel 

injection system for a turbine. The values of states of the RLC circuit are all directly extractable so all 

four Systems Identification methods can be applied to the system. The fuel injection system has a single 

measurement that is comprised of a combination of either five or ten states, therefore, since all the values 

of the states are not directly extractable, only the Subspace Identification methods and the Expectation 

Maximization method were used on it.  

3.1 RLC Filter system 

Figure 1: RLC circuit with varying resistance 

 

 
The RLC circuit shown in Figure 1 is the initial system upon which the parameter estimation 

methods will be tested. The resistance is computer controlled but has Gaussian noise around its value 
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while the inductor and capacitor are physically set. There are two states in this dynamic system, the 

current across the inductor x1 and the voltage across the capacitor x2. The equations of the state space are 

obtained through Kerchoffs laws and shown below: 

 
   
   

   
        
    

   
  

  
   

   
 

      

 
  

  
   

  
  

   
  

  
    

where R is the resistance of the resistor, L is the inductance of the inductor, C is the capacitance of the 

capacitor, w is the process error, and v is the measurement error. The system running during normal 

operation is shown in Figure 2. 

Figure 2: RLC filter system during normal operation 
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The simulated cyber-attack on the RLC filter changes to the value of the computer controlled 

resistor through software controls and causes the RLC filter to more sensitive to specific frequencies. An 

example attack is shown in Figure 3, where blue is the original response and green is the attack response. 

Figure 3: Bode Diagram showing modifications to the magnitude and phase of the system 

 
  

3.2 Description of the Fuel Injection System 

 The second dynamic system modeled is a gas turbine fuel regulator system provided by General 

Electric(GE) whose physical model is composed of a large number of internal states, a single input state, 

and a single measurement output; the measured output is the intercavity pressure in the P2 turbine 

compartment. The fuel injection system's goal is to maintain a constant volume outflow rate by regulating 

the intercavity pressure in the compartment via a hydraulic servovalve that controls an inflow rate varied 
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by Gaussian noise to the compartment. Figure 4 shows a model of the Position Regulator for the 

servovalve/actuator system, a subsystem of the fuel injector system.  

Figure 4: Position Regulator Block Diagram [27] 

 
The open loop form of the transfer function for this system (including a 5ms computation delay 

approximated by a second order Padé approximant) is shown below: 

     
                          

                        
 

The Position Regulator is a subsystem of the full block model, which consists of a Proportion Integral 

controller (  ), the Position Regulator subsystem(  ), the response of the gas fuel piping system (   ), 

and the P2 pressure transducer (  ).  The full fuel injection block model is shown in Figure 5.  
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Figure 5: Fuel Injector System Block diagram [27] 

 

 
The transfer function for the above block (including an additional computation delay of 40 ms 

approximated as a second order Padé approximant (PA)) is: 

                      

GE provided two approximations of the response of the gas fuel piping system, one at light-off or start up 

conditions, and one at full speed-no load or normal operating conditions [27]. This Thesis only covers 

cyber-attacks occurring during normal operations, so the full speed-no load approximation was used for 

all simulations. GE also provided an approximation of the Pressure Regulator subsystem approximated to 

a first order equation shown below. 

     
                          

                        
  

 

      
  

 The pressure transducer was assumed to have a transfer function equal to 1. With these assumptions, the 

equation for a Proportion Integral controller, and the approximate computation delay, the resulting 

transfer function is shown below: 

      
       

 
  

 

      
  

 

        
 
            

            
 

GE also provided the tuned parameters of Proportion Integral controller, along with the physical 

parameters for a real life system. The transfer function in open loop form with all the physical parameters 

plugged in is shown below: 



21 

 

     
                             

                                       
 

Figure 6 shows a simulation of the approximate mathematical model for a fuel injection system operating 

at normal conditions with a variable input. 

Figure 6: Fuel injection system during normal operation 

   
In the fuel injection system the vulnerable computer controlled variables were identified as both 

of the terms in the PI regulator (        and the demodulation gain (D). This Thesis focuses on attacks on 

the PI regulator; The PI regulator is a feedback mechanism widely used in the field of control systems. 

The simulated cyber-attacks on the system will change either the    or    gain in the PI regulator, 

causing the filter to either overact to errors in the system or overact to the bias in the system, respectively. 

An example attack is shown in Figure 7, where blue is the designed frequency response, and green is a 

possible attack on the system. 

 



22 

 

Figure 7: Bode Diagram showing modifications to the magnitude and phase of the system 

 

3.3 Attack Detection Methodology 

Both the RLC filter and the Fuel injection system were approached with the same general 

methodology during this Thesis. The following methodology is a top level description of the detection 

algorithm. First, both dynamics systems were simulated with measurement and process noise. After a set 

warm-up time, the detection algorithms began to collect the observations necessary to create the real time 

estimates. Once the detection algorithms finished collecting enough observations to fill a window, a real 

time estimate of the parameters of the mathematical model is generated. A similarity algorithm then 

compares the A matrices of the real time estimate of the mathematical model behind the dynamic system 

with the designed and configured mathematical model. If the similarity algorithm judges the difference 

between the models to be above a threshold, then a deviation is flagged. If more than a set number of 
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deviations occur in a sliding window, then an event is flagged. After an event has been flagged, the 

problem then moves into the domain of event categorization.  

3.3.1 Simulation Setup 

Both simulations are set up similarly. The initial conditions are set as normal operating condition 

and at each time step a new value of the states is computed based on the designed A matrix and the input 

to the system. It is assumed for this Thesis that the B, C, and D matrices are known and stay constant 

throughout the attack. The states are then corrupted with process noise and a measurement is made. The 

measurement is then corrupted with measurement noise and the final measurement and current input are 

recorded as observations. The measurement noise and process noise are modeled as independent Gaussian 

white noise with an expected value of zero. Later in this Thesis, the measurement noise and process noise 

are selected as independent variables upon which the effectiveness of the detection algorithms is tested. 

For the RLC filter, the values of the states undergo Kalman filtering to attempt to reduce the noise of the 

measurements. The simulations iterate forward until it is judged that they are in fact at normal operating 

conditions at which point the detection algorithms start collecting observations to use to build their 

estimates. The detections algorithms all use the same measurements to create their estimates with the 

exception of the Kalman Filter Parameter Estimation which uses only the current values of the 

parameters, the current Covariance matrix P and the current Kalman filter gain K. For the first time step 

Kalman Filter Parameter Estimation needs to be initialized with a set of parameter values, for this Thesis 

the designed values of the parameters of the mathematical model are used. The detection algorithms do 

not create an estimate at each time step due to some algorithms being unable to perform the calculations 

necessary within the small time intervals in the models (The RLC filter is sampled at 180 times per 

second, 1.5 times the Nyquist rate) Instead the detection algorithms create estimates after set intervals of 

time have passed. The real time estimation period is split into two equally sized sections, the attack-free 

phase and the attack phase. The True Positive rates and False Alarm rates are set based on the number of 
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correct detections and the number of false alarms at specific thresholds that are made in each of these 

sections. 

3.3.2 Similarity Algorithms 

 Three different algorithms are used to determine if the A matrices of the designed system and the 

real time estimate are sufficiently different to warrant a deviation flag. In order to reduce the number of 

parameters in the A matrix (which grows exponentially as the number of states increase) and to facilitate 

comparison of the real time estimates even if the realizations of each estimate’s transfer functions are not 

similar to each other, both the designed matrix and the real time estimate were converted into the 

companion form representation of the matrices before comparison. It is as this point the Expectation 

Maximization algorithm became unfeasible. The Expectation-Maximization algorithm returned real time 

estimates of the system that were rank deficient during some circumstances. The rank deficient estimates 

could not be converted into companion form so they could not be compared to the designed and 

configured system. The Expectation-Maximization algorithm was not able to provide meaningful 

estimates and therefore was excluded as a candidate for cyber-attack detection. 

 Before each trial in the simulation, the selected model is run for a long period of time at the set 

independent variables. During this time each real time estimation method creates an estimate of the 

mathematical model at each time step.  The values of each parameter for each estimate are recorded to 

establish the variability of each parameter for each estimation method. These historical parameter values 

are used to create distributions of the deviations from the real parameter values for each parameter and for 

each method. The similarity algorithms use these distributions during the independent trials to determine 

whether the real time estimates of the parameters move within an acceptable range or exceed the 

acceptable movement during normal operating conditions. Each of the similarity algorithms combines the 

deviations from the true designed values in different ways that affect the sensitivity of the threshold value. 
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3.3.2.1 Scaled Sum of Squares Method. 

 The scaled sum of squares method compares the parameters of the A matrices using the deviation 

between each parameter and the historical calculated standard deviation of each parameter value. The 

historically calculated standard deviations were computed in the previously described long run attack-free 

state. The current deviations from the parameters are scaled by the historical standard deviations so they 

can be combined into a single metric. The scaled deviations are then squared and summed resulting in a 

single value that can be compared to a threshold. The only assumption this method makes is that the 

historical values of each parameter follow a Gaussian distribution. 

3.3.2.2 Bayesian Update Heuristic 

 This method compares each of the estimated parameter values obtained in the long run to the 

designed values of each of the parameters in the mathematical model to find Gamma distributions of the 

residuals during normal operating conditions for each parameter value and for each estimation method. 

During the simulation, the cumulative distribution function of each Gamma distribution gives the 

percentage of residuals from the actual value that fall below the current residual. When interpreted as a 

probability, the percentages of each parameter can be combined using a Bayesian Update function: 

                
             

    

             
                        

    
  

where      is the probability of an attack and         are the percentage of residuals from the actual 

value that fall below the current residual for each of the parameters. The      can be tuned to the desired 

false alarm rate for an attack, in this case the desired false alarm rate is one event per month, given 8 

hours of operation a day and 30 days of operation. Depending on the sampling rate (240hz for the RLC 

circuit, and 10hz for the fuel injection system) the probability of attack will be 

     
  

                                             
 



26 

 

It should be noted that the Bayesian Update process requires that the updates be independent of each 

other. The parameter values in each A matrix are unlikely to be independent of one another, forcing this 

method to be considered a heuristic. The value of                 can be compared to a probability 

threshold to flag deviations from the norm. Because of the method that the Bayesian Update Heuristic 

combines the deviations, it is the most effective similarity algorithm for detecting small changes to 

multiple parameters in contrast to a large change in a single parameter. 

3.3.2.3 Binomial Method 

The Binomial Method also uses the Gamma distributions of the residuals created from the long 

run simulation albeit in a different method. A similar percentage threshold for each of the parameters is 

set; residuals in the cumulative distribution that fall below this threshold are considered zeros and 

residuals that fall above this threshold are considered ones. When interpreted as a binomial distribution 

where the zeros are failures, the ones are successes, and below the percentage threshold is the probability 

of a zero occurring, the binomial distribution can combine the residuals of the parameters and compute 

the likelihood that multiple residuals exceed the percentage threshold. This probability of success can be 

compared to a probability threshold to flag incongruities. In this Thesis, the probability of failure was set 

at 95%, only deviations larger than 95% of the historical values of the residuals would result in a success. 

The probability thresholds for the Binomial Method operate differently than the previous two methods 

because of the reduced number of outcomes for the Binomial distribution. The number of outcomes the 

Binomial method can take is limited to the number of states plus one and any further thresholds will 

overlap on previous thresholds 

3.3.3 Event detection 

 Event detection uses a window of a set number of past real time estimates to determine if an event 

has occurred. If the percentage of deviations in the window exceeds a set percentage, then the detection 

algorithm reports that an event has occurred. The simulation makes the event judgment at each new real 
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time estimate of the dynamic system and makes an equal number of judgments in the attack-free time 

period and the attack time period. The Percentage of Deviations (POD) allowed is an independent 

variable used in the simulation, a larger percentage allowed reduces the number of false alarms, while a 

shorter percentage allowed reduces the detection time and missed detection rate. The events detected 

during the attack free phase are marked as false positives, while events detected during the attack phrase 

are marked as true positives. Likewise, non-events in the attack free phase are considered true negatives, 

and non-events in the attack phase are considered missed detections. Each value in a specific contingency 

table has the total count for each outcome, and each combination of estimation method, similarity 

algorithm, and detection threshold level has its own contingency table.  

3.4 Independent Trials 

 Three variables were varied to test the robustness and performance of the each of the estimation 

methods and similarity algorithms under different conditions. The process noise and measurement noise 

determine the overall variability of the system, albeit, the measurement noise is usually smaller than the 

process noise due to the quality of modern sensors. The percentage of deviations allowed determines how 

responsive the algorithms are to attacks and the importance of false alarms versus missed detections. Six 

combinations of the variables were selected as trials shown in Figure 8. The experiment was set up 

orthogonally so that the effect of each of the independent variable could be measured; a few selected 

interesting cases were also included. Each independent variable had three levels of values shown in 

Figure 9. The trails were set so that process noise of each state is set to 10%, 5%, and 1% of the standard 

deviation of the normal values of the states and the measurement noise is set to 5%, 1%, and .5% of the 

standard deviation of the normal values of the states.  
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Figure 8: Independent Variable combinations 

 

 Process Noise Measurement Noise Incongruity percentage 

allowed 

1. Good System, Slow 

detection time 

Low Low High 

2.Good System, Quick 

detection time 

Low Low Low 

3.Bad System, Slow 

detection time 

High High High 

4.Average System Middle Middle Middle 

5.Bad Process Noise, 

Good Measurement 

Noise 

High Low High 

6.Good Process Noise, 

Bad Measurement Noise 

Low High Low 

 

Figure 9: Levels for each Independent Variable for each system. 

 

 RLC filter Fuel injection system 

 Measurement 

noise(MN) 

Process 

Noise(PN) 

Incongruity 

percentage 

allowed(POI) 

Measurement 

noise(MN) 

Process 

Noise(PN) 

Incongruity 

percentage 

allowed(POI) 

Low .005 .01 25 .01 .1 25 

Middle .01 .05 50 .1 1 50 

High .05 .1 75 1 5 75 

 

A full list of the variable values used in each simulation can be found in Appendix 10.1. Additionally 

three levels of attacks were simulated for each model shown in Figure 10. The following Figures 11 and 

12 show the impact of each attack on the behavior of the system. 

 

Figure 10: Levels for each cyber-attack on each system. 

 

 RLC filter Fuel Injection System 

Attack variable Resistance R(originally 4 ohms) Proportion gain    

(originally .13) 

Integral    gain 

(originally .888) 

High .25ohms .52 3.552 

Medium 1ohms .26 Not simulated 

Low 3ohms .163 Not simulated 
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Figure 11: RLC filter cyber-attacks listed in order: The Resistance R is changed from 4 ohms to 3, 1, and 

.25 respectively at the dashed red line.  

  

 

The cyber-attacks shown in Figure 11 show the effects of changing the resistance in the circuit to specific 

levels. At .25ohms and 1ohm the change is readily apparent, however at 3ohms, it is harder to 

differentiate the attack. 
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Figure 12: Fuel Injection system listed in order:    is changed from .13 to .52, .26, and .163 or    is 

changed from .888 to 3.552   

   

  

 

The cyber-attacks shown in Figure 12 show the effects of changing gains in the PID controller to 

specific levels. Unlike the RLC filter system, it is not readily apparent that the system has changed in the 

attacks on the PID controller. After the initial response to the attack, all the systems settle into values that 

are difficult to distinguish from the attack free state. Methods that can detect subtle cyber-attacks like the 

ones shown would be valuable to operators of critical systems. 
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5. RESULTS 

 Each trial was compared using two tradeoff criteria, first, the False Alarm versus True Positive 

rate, and, second, the False Alarm versus Detection Time. The False Alarm versus True Positive was the 

primary method used to compared estimation methods and similarity algorithms. The experiments are 

also evaluated secondarily from a False Alarm versus Detection Time viewpoint to determine if there are 

large changes in the detection time.  Users of the cyber-attack detection algorithms fall into two groups, 

those who place the most value in minimizing the number of missed detections and the detection time, 

and those who are interested in minimizing the number of false alarms to reduce operator fatigue. Each 

viewpoint is explained and the results are analyzed from both viewpoints. For both of the simulated 

systems, the false alarm rate needs to be sufficiently low so that the detection algorithm is not causing 

operator fatigue. The large time scales suggest that an upper bound on the percentage of false alarms be 

less than 10%. All the ROC curves are scaled so that the maximum false alarm rate shown is 10%. It is 

likely that this rate is still too high for normal operation, but on high risk and high value systems, the 

possibility of a missed detection may outweigh the possibility of operator fatigue. 

5.1 RLC Filter 

5.1.1 Effect of Percentage of Deviations (POD) allowed 

The POD allowed was hypothesized to affect the false alarm and true detection rates of the 

algorithms. Figures 13 and 14 shows the effect the POD has on the ROC curves. The results are as 

expected; decreasing the POD increases the true detection rate, but does not cause the false alarm rate to 

decrease.  The Bayesian Heuristic and Binomial method both perform better than the SSS method in this 

experiment and show the predicted decrease in false alarm rate and true positive rate. The similarity 

algorithm that performs better in the high POD experiment is the Binomial method, while the method that 

performs better in the low POD experiment is the Bayesian method. Of the estimation methods the KFPE 
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performs better than the alternative options in nearly all of the experiments. In Figures 15 and 16, for the 

Bayesian method, the false alarm rate decreases a large amount without sacraficing much in terms of 

detection time. The Binomial method shows a slightly lower false alarm rate for the same detection time 

in the higher POD experiment. The Binomial method is much faster then the Bayesian Heuristic method 

with the maximum time being much slower at a zero false alarm rate.  The slowest estimation method in 

all cases is the KFPE. 
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Figure 13: ROC of POD=.75 at Attack level 2, MN=.005 and PN=.01 
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Figure 14: ROC of POD=.25 at Attack level 2, MN=.005 and PN=.01  
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Figure 15: False Alarm rate vs. Detection Time of POD=.75 at Attack level 2, MN=.005 and PN=.01  

 
Figure 16: False Alarm rate vs. Detection Time of POD=.25 at Attack level 2, MN=.005 and PN=.01  
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5.1.2 Effect of Process Noise 

The second experiment shows the effect of increased process noise on the predictability of the 

system. The only differentiator between the experiments conducted to generate Figure 13 and Figure 17 is 

the size of the process noise in the system. Adding process noise to the system makes the SSS method and 

Bayesian Heuristic method more predictive, and makes the Binomial method less predictive. A possible 

explanation for the increase in the false alarm rate is that the distributions created from the long run 

historical data are too narrow and not assigning enough weight to deviations in the tails. Increasing the 

noise would cause the fitted distributions of the deviations to widen and increase the size of the tails. This 

would lead to lower probabilities for large deviations and would reduce the false alarm rate.  The increase 

in predictive power could also be due to the estimation methods being over determined at the lower noise 

levels and producing better estimates from relaxed bounds on the noise. By constraining the noise in the 

system, the estimation methods could have been forced to operate on over determined data. Another 

alternative reason for the increase in the false alarm rate is that the SSS and Bayesian Heuristic methods 

are more sensitive at detecting a multitude of small changes to the parameters in the A matrix than the 

Binomial method. If the additional process noise causes the estimation methods to register smaller 

changes in multiple variables as opposed to large changes in single variables, then the SSS and Bayesian 

Heuristic methods would perform better on the system, while the Binomial method experiences a 

reduction in predictive power. One more hypothesis for the increase in the false alarm rate is that 

increasing the process noise may force the PI controller to contribute more to the stability of the system. 

The contributions made by the PI controller may create a more noticeable presence in the real time 

estimates mathematical model and make detection of attacks on the PI controller easier to detect. Of the 

four estimation methods the KFPE method once again performs better than the three alternatives. Figure 

18 shows that the KFPE method still takes the longest time detecting and attack, and that increasing the 

process noise increases the detection time across the board. The Binomial method still performs much 

better than the Bayesian method in detection time at a zero false alarm rate. 
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Figure 17: ROC of POD=.75 at Attack level 2, MN=.005 and PN=.1 
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Figure 18: False Alarm rate vs. Detection Time of POD=.75 at Attack level 2, MN=.005 and PN=.1 
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5.1.3 Effect of Measurement Noise 

The effect of measurement noise can be measure by comparing Figure 13 and Figure 19 All other 

independent variables during the experiment are held constant. Increasing the measurement noise causes a 

decrease in the predictive power of the SSS method and the Binomial method, and an increase in the 

predictive power of the Bayesian method. Like Figure 34, the predictive power of the Bayesian Heuristic 

method increases. The Bayesian Heuristic method is the most sensitive of the similarity algorithms to the 

values of multiple parameters, reinforcing the hypothesis that increasing the noise places more value on 

collective change in the parameters of the A matrix as opposed to single individual changes. The LLSE 

method outperforms the KFPE method in the Bayesian ROC Curves however performs badly in the SSS 

ROC curves. Figure 20 shows that for the Bayesian Heuristic, the effect of the process noise kept the time 

for detection to about the same level for all experiments, but increased the false alarm rate by a large 

amount. For the Binomial the detection time was about the same for all cases except for the LLSE method 

which increase to the levels of the Bayesian Heuristic method.  
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Figure 19: ROC of POD=.75 at Attack level 2, MN=.05 and PN=.05  
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Figure 20: False Alarm rate vs. Detection Time of POD=.75 at Attack level 2, MN=.05 and PN=.05 
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5.1.4 Worst Case Scenario 

The ROC curve showed in Figure 21 shows the toughest experiment given to the detection 

algorithm. The process noise and measurement noise are both set to their highest values, the POD is set to 

75% and the attack is set to the smallest change in parameters simulated. The KFPE still is able to detect 

the change in parameters with a near zero false alarm rate and a 77% true positive rate. The actual 

parameter values for the system in a single simulation are shown in Figure 39. The blue values are    and 

the green values are    in Figure 22 but it is clear that a change is detected when the attack starts. The 

parameters attempt to return to their previous values after a certain period of time in all cases but the 

KFPE case. This is possibly due to the Kalman smoother on the measurements pulling the values back to 

normal operation. Figure 23 shows the false alarm rate vs the detection time for the worst case scenario. 

The detection time is similar to what has been seen in the other experiments and acceptable for the range 

of detection necessary. The Bayesian Heuristic method still performs much worse the Binomial method. 
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Figure 21: False Alarm rate vs. Detection Time of POD=.75 at Attack level 3, MN=.05 and PN=.1 
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Figure 22: Real time estimates of parameter values    and    in the state matrix A at POD=.75, Attack 

level 3, MN=.05 and PN=.1 
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Figure 23: False alarm vs. Missed detection rate at POD=.75, Attack level 3, MN=.05 and PN=.1 
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5.1.5 Overall Statistics 

Overall the best similarity algorithm was the Bayesian Heuristic method in 87.5% of the 

experiments, the Binomial method in 6.25% of the experiments and indistinguishable in 6.25% of the 

experiments. The best estimation method was KFPE in 75% experiments, LLSE in 14% of the 

experiments, MOESP in 5% of the experiments, and indistinguishable in 5% of the experiments. For this 

system KFPE combined with the Bayesian Heuristic similarity algorithm produced the best predictor of 

an attack. The KFPE produced estimates that were very consistent in all trials of the experiment, the 

difference in the parameter estimates between the best case scenario and the worst case scenario is 

imperceptible. Figures 22 and 24 show the estimates of the parameters at each time step for each 

estimation method in the best case scenario and in the worst case scenario. In both cases the attack on the 

systems can be detected by estimating the values of the parameters at each time step. The remaining 

performance ROC charts and False Alarm vs Detection Time charts an can be found in Appendixes 10.2.1 

and Appendix 10.2.2 

Percentage of Success LLSE KFPE MOESP CVA No difference 

False Alarm Reductionist 15% 83% 2% 0 0 

Missed Detection Reductionist 28% 59% 13% 0 0 

 

Percentage of Success SSS Bayesian Binomial No difference 

False Alarm Reductionist 0 89% 5.5% 5.5% 

Missed Detection Reductionist 0 89% 5.5% 5.5% 
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Figure 24: Real time estimates of parameter values    and    in the state matrix A at POD=.75, Attack 

level 1, MN=.005 and PN=.01 
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5.1.5.1 Evaluation from a False Alarm Reductionist Viewpoint 

In this scenario the operator is primarily focused with reducing false alarms to a minimum, and 

secondarily focused on maximizing the true detection rate and minimizing detection time. For the RLC 

filter system the best estimation method in most cases is the KFPE method. In practically all experimental 

cases at all attack levels KFPE registered a false alarm rate of zero while still maintaining at least a 73% 

true detection rate. When the POD was set to 75%, the true detection rate could be maximized to 73% 

without triggering a false alarm. When the POD was set to 25%, the Binomial Method triggered false 

alarms in two experimental cases below the 73% true detection rate. The best similarity algorithm for 

reducing the false alarm rate was the Bayesian Heuristic method; with the POD set to 25% it increased the 

true detection rate to 77% without triggering a false alarm. The KFPE consistently offered a reduced false 

alarm rate at the cost of an increase in detection time, which may be acceptable for some operators. 

Detailed Breakdown: 

 

 

False Alarm 

Reductionist 
LLSE KFPE MOESP CVA 

No 

difference 

SSS 0 0 0 0 0 

Bayesian 4 11 1 0 0 

Binomial 1 0 0 0 0 

No difference 0 1 0 0 0 

 
 

      The Detailed Breakdown shows that for the False Alarm Reductionist, the results are as expected, 

with the KFPE combined with the Bayesian Heuristic performing the best in most of the cases. 
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5.1.5.1 Evaluation from a Missed Detection Reductionist Viewpoint 

In this scenario the operator is primarily focused with reducing missed detections to a minimum, 

and secondarily focused on minimizing detection time and minimizing the false alarm rate. The variable 

that had the largest effect on the true detection rate was the POD, with a lower POD increasing the true 

detection rate. For the RLC filter system the best estimation method in most cases is the KFPE method. In 

some cases the LLSE method performs better than KFPE method, but the KFPE method consistently 

outperforms the LLSE method in experiments where the cyber-attack changes the component value a 

minimal amount. The Bayesian Heuristic performed better than the other similarity algorithms at 

maximizing the true detection rate. In both operator scenarios for this experiment, the KFPE method and 

Bayesian Heuristic method were the optimal selections, with the differentiating factor being the POD. 

Detailed Breakdown: 

      Missed 

Detection 

Reductionist 

LLSE KFPE MOESP CVA 
No 

difference 

SSS 0 0 0 0 0 

Bayesian 4 6 6 0 0 

Binomial 1 0 0 0 0 

No difference 1 0 0 0 0 

 

 The detailed breakdown shows that the results were actually much closer then suggested across 

estimation methods. The reason for the decrease in disparity is that often when evaluating estimation 

methods the Bayesian Heuristic similarity algorithm continued the best estimation method across all 

screening algorithms. In the SSS and Binomial methods, however, the KFPE estimation method 

performed better than the other estimation methods, inflating its score. 
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5.2 Fuel Injection System 

5.2.1 Effect of Percentage of Deviations (POD) allowed 

The first case examined shows the difference the percentage of deviations has on the false alarm 

and true positive rate.  Figure 25 shows the POD rate at 75% and Figure 26 shows the POD rate at 25% 

for the second attack. Increasing the percentage has nearly no effect on the SSS Method, a clear positive 

effect on the false alarm rate and negative effect on the true positive rate for the Bayesian method, and a 

positive effect on the false alarm rate and negative effect on the true positive rate for the Binomial 

method. The Binomial performs better in the first experiment, but the Bayesian Heuristic appears to 

perform better in the second experiment. Both operator cases would select it over the other similarity 

algorithms. MOESP outperforms CVA at a three to one ratio in these two cases (The SSS similarity 

algorithm shows both estimation methods too close to determine the most effective method).  The false 

alarm vs. detection rate shown in Figures 27 and 28 showed that the Binomial method performed better 

than the alternatives and that the CVA usually outperformed the MOESP algorithm. The differences 

between the maximum amounts of time to detect are much smaller in this simulation.  
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Figure 25: ROC of POD=.75 at Attack level 1, MN=.01 and PN=.1  
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Figure 26: ROC of POD=.25 at Attack level 1, MN=.01 and PN=.1  
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Figure 27: False Alarm rate vs. Detection Time at POD=.75, Attack level 1, MN=.01 and PN=.1 

 
Figure 28: False Alarm rate vs. Detection Time at POD=.25, Attack level 1, MN=.01 and PN=.1 
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5.2.2 Effect of Process Noise 

The second case shows the effect of increased process noise on the predictability of the system. 

The only differentiator between the experiments that generated Figure 25 with Figure 29 is the size of the 

process noise in the system. There does not appear to be a change in the Sum of Squares ROC curves, 

while it is clear that the Bayesian Heuristic method and Binomial method suffer from the increase in 

process noise. The Bayesian Heuristic Method maximizes the false alarm rate but decreases in the true 

positive rate whereas the Binomial method has the highest true positive rate but increases in the false 

alarm rate. The final decision will depend on the operator preference. Figure 30 shows the False Alarm vs 

Detection Time chart with the detection time and rate being comparable to the previous two experiments. 

The reason the MOESP line is missing from the Bayesian Heuristic method is the false alarm rate is zero 

for the every trial (There were 25 threshold levels for the Bayesian Heuristic starting at 0 and continuing 

to 1 with a threshold level at each .04). The zero false alarm rates mean that the threshold levels for the 

MOESP could potentially be lowered even more and to continue to increase the true detection rate while 

maintaining the zero false alarm rate. 
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Figure 29: ROC of POD=.75 at Attack level 1, MN=.01 and PN=5 

 
Figure 30: False Alarm rate vs. Detection Time at POD=.75, Attack level 1, MN=.01 and PN=5  
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5.2.3 Effect of Measurement Noise 

The effect of measurement noise can be measured by comparing Figure 25 and Figure 31. All 

other variables during the experiment are held constant. Increasing the measurement noise has no impact 

on the SSS method, a small negative impact in the true positive rate for the Bayesian method, and a large 

negative impact on the Binomial Method. The best predictor for this case is the Bayesian Heuristic; 

however the best estimation method changes to MOESP. The False Alarm rate vs. Detection Time chart 

shown in Figure 32 show that the detection time does not change significantly between most of the 

previous graphs, however the scale for the false alarms does increase. The Binomial method has been 

similar for each of these charts shown, suggesting that it is consistent in its time for detection. 
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Figure 31: ROC at POD=.75, Attack level 1, MN=1 and PN=.1  
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Figure 32: False Alarm rate vs. Detection Time at POD=.75, Attack level 1, MN=1 and PN=.1  
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5.2.4 Worst Case Scenario 

The ROC curves shown in Figure 33 show the worst case scenario simulated, with the 

independent variables set so that the process noise and measurement noise were at their highest values, 

the POD was set to 75% and the attack was to the smallest change in parameters (  = .13 originally, 

attack sets   = .163). At these independent variable levels the detection algorithm runs into major 

problems differentiating between the attack-free state and the attack state. The detection algorithm would 

not be applied to a system that operates at these conditions because there would not be any value added. 

In Figure 34 the Bayesian Heuristic method experiences a large increase in the detection time for this 

experiment, most likely due to the poor detection rates. Figure 35 shows the real time estimate of a single 

parameter for both cases. It is very difficult to determine from the real time estimates the presence of an 

attack.  
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Figure 33: ROC at POD=.75, Attack level 3, MN=1 and PN=5 
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Figure 34: False Alarm rate vs. Detection Time at POD=.75, Attack level 1, MN=1 and PN=5  

 
Figure 35: Real time estimates of parameter values    and    in the state matrix A at POD=.75, Attack 

level 3, MN=1 and PN=5 
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5.2.5 Overall Statistics 

Overall, excluding the SSS method which was inefficient across all trials, the Bayesian Heuristic 

method performed best 13% of the time, the Binomial Model performed best 58% of the time, and 29% of 

the time the curves were inconclusive and subject to operator judgment based on their values. The 

Bayesian Heuristic method typically performed better in the low variance cases while the Binomial 

method performed better in high variance cases. This split suggests that the selection of either method is 

application specific, and the tuning and configuration of the models could have a significant effect. The 

MOESP estimation method performed best in 65% of the cases, the CVA performed best in 19% of the 

cases, and 16% of the time the curves were inconclusive and subject to operator judgment based on their 

values. MOESP was the best estimation method for this system; however the CVA curve was only 

marginally worse than the MOESP curve in most cases. In cases of low noise there was a noticeable 

difference in the values of the parameters before and after the attack; this is shown in Figure 36. The 

detection time was fairly constant among the combinations similarity algorithms and estimation methods, 

reducing the metrics of evaluation to the false alarm rate and the true detection rate. The remaining 

performance ROC charts and False Alarm rate vs Detection Time charts an can be found in Appendixes 

10.2.3 and Appendix 10.2.4 

Percentage of success MOESP CVA Undetermined 

False Alarm Reductionist 77% 19% 4% 

Missed Detection 

Reductionist 
63% 27% 10% 

 

Percentage of success SSS Bayesian Binomial Undetermined 

False Alarm Reductionist 0 58% 42% 5.50% 

Missed Detection 

Reductionist 
0 8% 92% 5.50% 
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Figure 36: Real time estimates of parameter values    and    in the state matrix A at POD=.75, Attack 

level 1, MN=.01 and PN=.1 
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5.1.4.1 Evaluation from a False Alarm Reductionist Viewpoint 

Evaluating the ROC curves from a fault reductionist viewpoint led to conflicting selections. The 

SS method was immediately ruled out for poor performance. The choice of one similarity algorithm over 

another was very dependent on the independent trials, the attack size and the estimation method. The 

Bayesian Heuristic method maintained the lowest false alarm rate 58% of the time but often sacrificed 

large portions of the true positive rate in the process. Selecting the best similarity method will be 

application specific and will require testing and tuning. The decision between estimation methods was 

much more definitive then the decision between similarity algorithms. MOESP obtained values that 

minimized the false alarm rate 77% of the experiments, where CVA only minimized values 19% of the 

experiments. Between the four combinations of methods, the difference in detection was not large, so the 

major tradeoffs should be limited to false alarm rate and true positive rate. 

Detailed Breakdown: 

False Alarm 

Reductionist 
MOESP CVA 

No 

difference 

SSS 0 0 0 

Bayesian 11 4 0 

Binomial 7 1 1 

No difference 1 0 0 

 

The detailed breakdown of the experiments shows the same behavior of the summarized cases, 

with the Bayesian Heuristic similarity method and MOESP estimation algorithm performing better than 

the alternatives. 

5.1.4.2 Evaluation from a Missed Detection Reductionist Viewpoint 

From the viewpoint of an operator who wants to reduce missed detections, the Binomial method 

was the clear choice from the available similarity algorithms in 92% of the experiments. The MOESP 
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estimation method performed better than the CVA estimation method in 63% of the experiments. The 

Binomial method was the clear choice for maximizing the true positive rate and performed much better 

than the Bayesian Heuristic method. The percentage of times the MOESP estimation method was better 

decreased in the missed detection viewpoint, but it was still a better predictor than the CVA estimation 

method.  

Detailed Breakdown: 

Missed 

Detection 

Reductionist 

MOESP CVA 
No 

difference 

SSS 0 0 0 

Bayesian 1 2 0 

Binomial 15 4 1 

No difference 0 1 0 

 

The detailed breakdown shows that the behavior shown in the summarized cases holds for the 

detailed case. The Binomial Heuristic similarity method and the MOESP estimation algorithm perform 

better then the alternatives. 
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6. DISCUSSION 

6.1 Results Discussion 

 The experiments conducted on the two simulated systems showed that in certain cases, Systems 

Identification Parameter Estimation can provide a method for cyber-attack detection. In the RLC filter 

system, a combination of KFPE estimation method and the Bayesian Heuristic similarity algorithm were 

able to detect cyber-attacks on the system that changed the value of a single component reflected in the 

parameters of the A matrix. In the Fuel Injection system, it is show that under certain conditions, it is 

possible to use advanced Systems Identification techniques to estimate the real time values of the 

parameters of an A matrix of a complex system given only a single state of measurements, the inputs and 

the number of states in the system. These parameters can then be used to determine if an attack is 

occurring and notify an operator. The best combination of estimation methods and similarity algorithms 

varied for the Fuel Injection system with the Bayesian Heuristic method performing best from a false 

alarm reductionist viewpoint and the Binomial method performing best from a missed detection 

reductionist viewpoint. The MOESP estimation method performed better than the CVA estimation 

method for both similarity algorithms justifying its use. The independent variable that had the largest 

impact on the false alarm rate was the POD allowed, however in some experiments where the false alarm 

rate was already zero it only had a negative impact on the performance by reducing the true positive rate. 

The process and measurement noise were shown to be large factors in the performance of the algorithms 

and that different estimation methods reacted differently to increases in them. Increases in the process and 

measurement noise did not always negatively impact the performance of the estimations methods, a 

surprising result. It is hypothesized that this affect is either due to the distributions of the historical 

deviations being too narrow, the estimation methods being over determined, or similarity algorithms 

better recognizing small changes in the system parameters. Changes in the measurement noise resulted in 

larger changes in the simulated systems than expected, despite the smaller size. The SSS similarity 
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algorithm did not perform better than the competing algorithms and should not be considered as a 

similarity method for either of the systems simulated. The detection time was similar in most 

combinations of the algorithms and was not a large differentiator between algorithms and methods. It 

should be used as a secondary metric when deciding between estimation methods and similarity 

algorithms with the false alarm rate and true positive rate being the primary metrics. Because of the 

variable performance across the experiments, any implementation of this detection algorithm in the field 

will require large amounts of operational data to determine the applicability and fine tune the performance 

of the algorithm. Of the estimation methods, the MOESP and CVA algorithms will apply to the most 

different types of systems because of reduced number of assumptions made during the estimation process. 

However they can perform at levels comparable to the LLSE and KFPE in certain experiments. 

6.2 Implementation Considerations 

The detection algorithms presented carry with them multiple factors that guide their 

implementation. The first such factor is the false alarm rate of the detection algorithm. The false alarm 

rate must be minimized to prevent operator fatigue and to reduce system downtime. Otherwise, the 

operators of the system will begin to devalue the events that are detected and the revenue loss resulting 

from system downtime will grow infeasible. For this reason, it is suggested that the detection algorithm 

be tuned on actual operation data to detect on average one event per month. Additionally, when 

examining the data, the false alarm detections tended to disappear shortly after being detected, while the 

true positive detections tended to persist for longer durations. The temporality of the false alarm 

detections suggests that the size of the deviation windows could continue to be increased to reduce the 

number of false alarms detected by the algorithm.  

It should be implicitly obvious from the variability of the results that any detection algorithms 

implement will require tuning in order to be beneficial. The optimal algorithms for each system will vary 

along with the optimal estimation methods. Systems that do not have directly extractable measurements 
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will preclude themselves from the LLSE and KFPE algorithms, but will still have the MOESP and CVA 

algorithms available to them. Before implementation, the system in question should be tested to 

determine the optimal estimation method and similarity algorithm to maximize the true detections, 

minimize the number of false alarms, and minimize the detection time. After implementation, data should 

be continually collected during field use to help fine tune the set of algorithms chosen. 

6.2.1 Assumptions 

Many of the estimation methods and similarity algorithms used in this Thesis carry assumptions 

along with them that are violated. The following section describes the assumptions that are violated 

during this Thesis.  

1. The Bayesian update algorithm used as a similarity method assumes that the variables            

that P(A) is conditioned on be mutually independent of each other. When the systems are converted into 

companion form the parameters of the original matrix become intertwined in the parameters of the output 

matrix and the individual effect of a component can affect all the non-static values in the companion form 

matrix. Therefore an attack on a single component can affect all the non-static values of the companion 

form matrix. The independence assumption is violated because the estimated values of the parameters in 

the companion form matrix, which are variables            during the Bayesian update algorithm, are 

not independent of each other.  

2. The Subspace Systems Identification algorithms make the assumption that the noise in the system(w 

and v) is uncorrelated with the input u. In closed loop systems, the input to the system is usually to correct 

for noise in the previous time steps. Implementing Subspace Systems Identification algorithms on closed-

loop systems introduces bias into the estimation of the dynamic system [23]. 

3. The Gaussian model used to fit the deviations of the long run attack-free model may be biased in a 

direction, producing not optimal standard deviations 
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All of the violations of the assumptions that occur in the detection algorithm potentially decrease the 

predictive power of their algorithms. If violating the assumption had a negative impact upon the 

predictive power, then the negative impact would be present in the ROC curve generated for that 

algorithm and the detection time for that algorithm. 

6.2.2 Cyber-Attack Isolation 

 Once a cyber-attack has been detected, the source of the attack will need to be identified. 

Unfortunately, when the detection algorithm transforms the system into companion form it is very 

difficult to return to the designed realization of the state space system. Being able to return to the 

designed realization would allow an operator to examine the parameters of that realization and the 

components that make up each parameter and potentially solve a system of equations to determine the 

values of each component that makes up the parameters. Without the ability to return to the designed 

realization the options for cyber-attack isolation are limited. Fault isolation techniques are potentially 

applicable and a survey of current fault detection techniques is shown in [29]. The operator can also 

characterize the behavior of each parameter in the companion form based on changes of a single 

component, but this process quickly becomes tedious if the parameters are interrelated. The number of 

components that require characterizing can be reduced by eliminating components that are not computer 

controlled, however even after this the number of components could still be very large. More research is 

need into this subject to identify the source cyber-attacks quicker and restore the systems under attack to 

normal operation faster. 

6.3 Potential Improvements to the Detection Algorithm 

  In many of the experiments simulated, multiple combinations of estimation methods and 

similarity algorithms provided approximately the same predictive power for the false alarm and true 

detection rates. To potentially improve the total predictive power of the detection algorithm, an ensemble 

forecast could be created from the different combinations of estimation methods and similarity 
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algorithms. The ensemble forecast would reduce the modeling error created during the algorithm 

formulations and possibly produce a better classifier then any single model could achieve. The predictive 

methods selected to be part of the ensemble forecast would be application specific, with the most robust 

methods being selected. 

 A Cumulative sum function (CUSUM) of each sequential observation would eliminate the need 

for a sliding window to filter the results. The models would be able to have a sequential value at each 

time step that would determine whether the system is experiencing an event or operating under normal 

conditions. The percentage of deviations variable would become unnecessary with this function, and the 

threshold for the CUSUM function would become the new independent variable. The benefit of the 

CUSUM method is the ability to detect cyber-attacks that manipulate the system with a small bias in one 

direction more effectively than a sliding window.  

 Another potential improvement to the algorithm only applies to the Subspace Identification 

algorithms. For practical purposes, the detection algorithm made the assumption that the B, C, and D 

matrices remained constant during operation of the system. Relaxing this constraint, specifically on the C 

matrix, precludes the use of the LLSE method and KFPE method, but can allow us a larger number of 

parameters to check for deviations. The additional parameters can be seen in the description of the 

Companion form matrix in 2.3.1. The LLSE and KFPE method no longer apply to systems that relax this 

assumption because they require a constant C matrix to extract the states of the system. However, for 

systems that are already rank deficient in the C matrix, using the values of the C matrix will offer more 

predictive power to the detection algorithm. 
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7. EVENT CLASSIFICATION 

The detection algorithm created in this Thesis does not differentiate between faults, cyber-attacks 

or other causes of disturbances in the physical system. Once an event has been flagged the event must be 

categorized to determine if it is the result of a fault, human error, cyber-attack, or other causes. Cyber-

attacks on control systems have previously been discovered through the process of elimination, the 

operators of the system ruled out hardware faults, human errors, software bugs, among other causes 

before finally considering cyber-attacks. Fault Modeling classifies changes in the parameter of a dynamic 

system as multiplicative faults and attempts to use fault isolation algorithms to locate the source of the 

fault [29]. However the fault isolation algorithms are rarely comprehensive of all the components in the 

system and often focused solely on hardware components. Human errors can be checked via logs; 

however, in systems with large numbers of computer controlled components, it can be difficult to locate 

the source of the error. Software bugs take extensive testing to find and often will only present themselves 

under certain conditions. Overall, by the time all the previous methods have been ruled out, the system 

may have been taken offline for a long period of time or will have been operating under the influence of a 

cyber-attack causing damage or sub-optimal performance. This Thesis proposes that under some 

conditions cyber-attacks are more likely and should be examined with greater urgency. A streamlined 

process to help operators label events as potential cyber-attacks was created to help operators recover 

from events quickly.   

7.1 Disutility of Events 

Assuming a cyber-attacker has compromised the system, they will attempt to maximize the 

damage performed while still remaining undetected. The Disutility of an event is defined as the 

importance of the current functions of the physical system. It is posited that cyber-attacks are more likely 

during critical system functions, maximizing the damage done to either the system itself, or the output of 

the system. The Disutility can be also be defined as the difficultly of shutting the affected system down, 
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maximizing the amount of time cyber-attack is allowed to affect the machine. Periods of time where the 

physical system will be forced to continue operating are considered prime targets for a cyber-attack. 

Lastly, the Disutility can be defined as the length of the downtime for the system and the amount of time 

the system requires to restart. Attacks that can disable multiple systems for long periods of time can 

effectively reduce the performance to suboptimal levels. If an event occurs during any of these critical 

periods of time, the probability increases that the event can be classified as a cyber-attack.  

7.2 Situational Context 

The Situational Context of an event is defined as the set of circumstances and conditions 

surrounding the event. Any recent modifications or changes made to the system are potentially 

responsible for the change in system dynamics rather than a cyber-attack. These modifications could 

include changes in configuration, operator changes, recent maintenance, among other reasons. The 

presence of one of these modifications may be the underlying reason for the change in system behavior, 

making the likelihood the change of behavior is a result of a cyber-attack less likely. The Situational 

Context can also mean the absence of changes to the system including large times since the last fault 

(which can be modeled as a Gamma distribution) or large times between maintenance. The absence of a 

change could increase of decrease the probability depending on the case. 

7.3 Human Error 

Human error accounts for a large portion of the failure events in the operation of systems. Human 

error is defined as unintentional changes to the parameters controlling the designed and configured 

operation of a system. Cyber-attacks and insider attacks on systems mimic human error failures because 

of the similar way they manipulate parameters. Logs of parameter changes by operators should be kept to 

rule out cyber-attacks originating from outside the perimeter and internal checks should prevent insiders 

from manipulating the parameters to extreme values. 



73 

 

7.4 Previous Events 

The operators of the system likely keep logs of previous events and faults that can provide 

information about the probability of an attack. If the current event mimics a previous event, then it could 

possibly be a repetition of the same event. If the cause of this previous event was determined to be 

unrelated to a cyber-attack, then it suggests that the cause of the current event is less likely to be a cyber-

attack. Additionally, systems that experience events at increased rates compared to other systems have a 

reduced a priori probability of being the victims of cyber-attacks. Likewise the opposite is true and 

additionally if no previous event is similar to the current attack, then it can be considered unique and 

more likely to be a cyber-attack.  

7.5 Cyber-attack Checklist 

To account for the previous event classification factors, a checklist has been created to organize 

the decision making process. The first step in preparing this checklist is to chart the components 

vulnerable to cyber-attack. Components are considered vulnerable if their operation can be manipulated 

by commands issued from a computer. This limits the number of systems that the checklist will apply to 

and increase response time. Prior to an event, the operators should classify all the periods of system 

operating time into High Risk, Medium High Risk, Medium Low Risk, and Low Risk. Operations receive 

the High Risk designation if they are both difficult to stop when in progress or take a long time to restart 

and likely to cause damage to the machine or output if administered inappropriately. Operations receive 

the Medium High Risk designation if they are likely to cause damage to the machine or output if 

administered inappropriately, but able to stopped quickly if events are detected and can be restarted 

quickly. Operations receive the Medium Low Risk designation if they difficult to stop when in progress 

or take a long time to restart but have minimal lasting effects. All other operations are deemed Low Risk.  
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When an event is discovered using the detection algorithm, the first step on the checklist is to 

classify its risk level. On High Risk systems it may be necessary to take the system offline in order to 

prevent damage. The next step on the checklist is to compare the logs of the system to previous failures 

and determine if any of the previous failures resemble the current failure. This comparison can help 

separate the common hardware failure cases from the uncommon failure cases and, if there have been 

previous cyber-attacks, can potentially identify the current event case faster than normal. The next step on 

the checklist involves looking at the Situational Context of the system. First the system should be 

examined for recent changes. If no recent changes can be identified on the checklist, then the absence of 

changes should be examined. If the Situational Context provides no additional information about the 

system event, the case is unique, and the system functions are High Risk, then the event should be 

strongly considered as a potential cyber-attack and the computers controlling the system should be tested 

for malware and monitored. The checklists likely will have to be tailored for each system to add more 

detail, or reduce extraneous fields.  An example checklist is shown in Figure 37. 
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Figure 37. Potential Checklist format. 

_____________________________________________________________________________________ 

Risk Classification of affected system: 

1. High Risk   2. Medium-High Risk  3. Medium-Low Risk  4. Low Risk 

 

Previous Event similarity: 

1. Known Cyber-Attack   2. Unknown Event  3. Known not a Cyber-Attack 

 

Possible Human error: 

□ Were the system parameters recently modified by an operator? 

Situational Context Recent changes: 

□ Maintenance 

□ Operator  

□ Configuration 

□ Policy 

□ Temperature 

□ Computer Software 

□ Shift 

□ Inputs 

□ Power Source 

 

Previous failures: 

□ Days since last failure exceeds average? 

□ Days since last maintenance exceeds average? 

□ Does this system fail more often than other systems? 

 

If the total sum of the Risk Classification rating, Human Error checkmarks, Situational Context 

checkmarks, and Previous Events checkmarks less than four, strongly consider the possibility of a cyber-

attack. 

_____________________________________________________________________________________ 
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8. CONCLUSION 

In conclusion, Fault Detection techniques, specifically Systems Identification Parameter 

Estimation techniques, have shown that they can be valuable methods for detecting cyber-attacks that 

change the operational parameter of systems. By creating real-time estimates of the parameters of the 

system and comparing those estimates to the designed and configured parameters, deviations from the 

norm can be recognized and reported to the operators. The operators can then use the guidelines created in 

this Thesis to determine a qualitative likelihood that the reported event fits the criteria of a cyber-attack 

and the correct response to the event. In the two systems simulated, the detection algorithm was able to 

detect cyber-attacks in non-trivial cases within a reasonable time after the attack. The estimation methods 

and similarity algorithms were evaluated on each of the simulated systems to determine the most robust 

methods for implementation. The effects of the percentage of deviations allowed, the process noise, and 

the measurement noise were explored to determine the applicability of the detection algorithm to different 

environments. For the RLC filter, the most effective combination of estimation method and similarity 

algorithm was the Kalman Filter Parameter Estimation method and the Binomial method. For the Fuel 

Injection system the most effective combination of estimation method and similarity algorithm varied, 

with the false alarm reductionist selecting the Bayesian Heuristic method and the MOESP method, and 

the missed detection reductionist selecting the Binomial method and the MOESP method. Differences in 

the effectiveness of each algorithm on each system have shown the application specific nature of the 

estimation methods and similarity algorithms. Any implementations of this detection algorithm will have 

to be tested and tuned to determine the best methods for implementation and to optimize the detection 

rates, false alarms and detection time. For categorizing events a check list was created that looks at the 

Situational Disutility, the Situational context, the Human Error component, and the Previous Failures to 

give a qualitative approach to determining the likelihood the event can be classified as a cyber-attack. 
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10. APPENDICES 

10.1 Simulation Parameters 

10.1.1 RLC filter 

Trials=25 

Simulations=100 

Sampling rate =180hz 

Covariance matrix P reset time = 200 iterations 

Settling time=100 iterations 

Sliding window size =400 

Prediction period = 400 iterations 

Long run simulation size =10000 iterations 

Non attack period = 1000 iterations 

Attack period =1000 iterations 

Time between estimations = 20 iterations 

Probability of attack = 1/144000 

Capacitor = .0001 F 

Set resistance = 4 ohms 

Inductor= .0704 H 

Q= v^2*[.1 0 ; 0 2.5] where w=process noise 

M=w^2*[.1 0; 0 .1] where v=measurement noise 

Voltage source= 10V AC 60hz 

 

 

 



81 

 

10.1.2 Fuel Injection system 

Trials=25 

Simulations=100 

Sampling rate =10hz 

Settling time=100 iterations 

Sliding window size =200 

Prediction period = 400 iterations 

Long run simulation size =10000 iterations 

Non attack period = 1000 iterations 

Attack period =1000 iterations 

Time between estimations = 20 iterations 

Probability of attack = 1/1000000 

Q= v^2*5x5 identity matrix where w=process noise 

M=w^2 where v=measurement noise 

Probability of attack = 1/144000 

Input is noisy constant with a mean = 420liters/sec 
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10.2 Performance Charts 

10.2.1 RLC ROC charts.  

List of ROC charts in order. The types can be found on pages 27 and 28 

Type 1 Attack 1 

Type 1 Attack 2 

Type 1 Attack 3 

Type 2 Attack 1 

Type 2 Attack 2 

Type 2 Attack 3 

Type 3 Attack 1 

Type 3 Attack 2 

Type 3 Attack 3 

Type 4 Attack 1 

Type 4 Attack 2 

Type 4 Attack 3 

Type 5 Attack 1 

Type 5 Attack 2 

Type 5 Attack 3 

Type 6 Attack 1 

Type 6 Attack 2 

Type 6 Attack 3 
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10.2.2 RLC False Alarm rate vs Detection Time Charts.  

List of False Alarm rate vs. Detection Time charts in order. The types can be found on pages 27 and 28 

Type 1 Attack 1 

Type 1 Attack 2 

Type 1 Attack 3 

Type 2 Attack 1 

Type 2 Attack 2 

Type 2 Attack 3 

Type 3 Attack 1 

Type 3 Attack 2 

Type 3 Attack 3 

Type 4 Attack 1 

Type 4 Attack 2 

Type 4 Attack 3 

Type 5 Attack 1 

Type 5 Attack 2 

Type 5 Attack 3 

Type 6 Attack 1 

Type 6 Attack 2 

Type 6 Attack 3 
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10.2.3 Fuel Injection ROC charts.  

List of ROC charts in order. The types can be found on pages 27 and 28 

Type 1 Attack 1 

Type 1 Attack 2 

Type 1 Attack 3 

Type 1 Attack 4 

Type 2 Attack 1 

Type 2 Attack 2 

Type 2 Attack 3 

Type 2 Attack 4 

Type 3 Attack 1 

Type 3 Attack 2 

Type 3 Attack 3 

Type 3 Attack 4 

Type 4 Attack 1 

Type 4 Attack 2 

Type 4 Attack 3 

Type 4 Attack 4 

Type 5 Attack 1 

Type 5 Attack 2 

Type 5 Attack 3 

Type 5 Attack 4 

Type 6 Attack 1 

Type 6 Attack 2 

Type 6 Attack 3 

Type 6 Attack 4 
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10.2.3 Fuel Injection False Alarm rate vs. Detection Time charts.  

List of False Alarm rate vs. Detection Time charts in order. The types can be found on pages 27 and 28 

Type 1 Attack 1 

Type 1 Attack 2 

Type 1 Attack 3 

Type 1 Attack 4 

Type 2 Attack 1 

Type 2 Attack 2 

Type 2 Attack 3 

Type 2 Attack 4 

Type 3 Attack 1 

Type 3 Attack 2 

Type 3 Attack 3 

Type 3 Attack 4 

Type 4 Attack 1 

Type 4 Attack 2 

Type 4 Attack 3 

Type 4 Attack 4 

Type 5 Attack 1 

Type 5 Attack 2 

Type 5 Attack 3 

Type 5 Attack 4 

Type 6 Attack 1 

Type 6 Attack 2 

Type 6 Attack 3 

Type 6 Attack 4 
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