
Benchmarking GPU-Accelerated Databases Against Traditional Databases

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Paul Lee
Spring, 2020

Technical Project Team Members
Paul Lee

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines

for Thesis-Related Assignments

Benchmarking GPU-Accelerated Databases Against
Traditional Databases

Paul Lee
Computer Science Department

University of Virginia
psl7ds@virginia.edu

Abstract—Databases systems play a critical role in the ability
to organize and analyze data. In an increasingly data-inundated
world, databases must continue evolving to provide sufficient
compute power to analyze large datasets. GPU-accelerated
databases are a particular type that leverage the highly-parallel
nature graphical process units to perform rapid fast queries.
In this paper, the performance of a GPU-accelerated database,
Kinetica, is benchmarked against PostgreSQL, a popular open-
sourced database, for various queries using a standardized
database benchmarking framework: TCP-DS. GPU-accelerated
databases show promise in database performance for complex,
OLAP query workloads.

I. INTRODUCTION

Humans leverage data to make informed decisions con-
stantly. From sensory observations to writing down informa-
tion, every phenomena in the natural world is recorded in the
form of data through various mediums. With the improve-
ments in computer technology, such as processing power and
memory systems, computers have become an integral part of
data storage through the use of databases. Databases bring
unprecedented efficiency by leveraging computational power
to organize, process, and manage data at scale and speed.
Subsequently, databases have become integral components of
software systems.

Databases systems are organized collections of data that
reside within a computer system. A database management
software system (DBMS) provides an interface to manipulate,
retrieve, and manage data within a database. These software
systems have inundated markets as companies and institutions
use them in managing their data warehouses. The database
market size is expected to reach $65.30 billion by 2026 [1].

With the rise in big data, machine learning, artificial intelli-
gence, and internet of things (IoT), data volumes are growing
faster at an exponential rate. 90% of the world’s data has been
created in the past 2 years [2]. These tremendous volumes
of data require computer and software systems to perform
faster and more efficiently that ever before. Databases are
continuously evolving to tackle these challenges. This includes
using faster hardware to store and query data and optimized
implementations of DBMS.

Different types of databases are used for different appli-
cations. Generally, databases fall into two broad categories:
online transactional processing (OLTP) and online analytical
processing (OLAP). OLTP databases are used for transaction-
based operations, such as withdrawing and depositing money

into a bank account. OLAP databases are used for analyti-
cal workloads, such as analyzing data sources for business
intelligence. Naturally, OLAP databases are used for big data
workloads, such as powering machine learning data pipelines
[3].

Because OLAP databases generally deal with large datasets
that can be several terabytes large, these databases must be
able to deal with large workloads at speed. Many different
implementations of databases use unique ways of optimizing
performance through unique software and hardware imple-
mentations. For example, MariaDB, a popular open source
database, can be configured to store data using a columnar
format, which refers to how data is stored column-wise rather
than row-wise [4]. This approach allows for faster read speed
and better data compression because data is aligned with
fewer disk space gaps. However, such an approach results in
slower write speeds, making it unsuitable for OLTP work-
loads. Among various database implementations, conventional
approaches use a combination of CPU, memory, and disk.

However, conventional hardware remains compute bound
compared to the growth in data volumes. Kinetica is a novel
DBMS that is designed to overcome hardware limitations
by utilizing graphical processing units (GPUs). GPUs are
frequently used in video rendering and other highly paralleliz-
able workloads but also show potential in making database
operations faster due to the ability to parallelize database
workloads [5]. In this paper, Kinetica’s performance bench-
marked against PostgreSQL [6], an open-sourced database that
is used for similar workloads, through an industry-standard
database benchmarking framework [7].

II. BACKGROUND

A. Kinetica and PostgreSQL

Kinetica is a proprietary database that was originally imple-
mented for a contract with the U.S. army. Initially deployed
for various government project, its gained adoption for various
projects. In 2016, Kinetica was founded, built on its GPU-
accelerated database and has been gaining traction in the
database market for data analysis workloads [5].

PostgreSQL is one of the world’s most popular open-
sourced databases. Originally developed at University of Cal-
ifornia, Berkeley and released in 2016, PostgreSQL was born
from Ingres, an early relational database, as part of an effort

to address the limitations of databases in the 1980s. Break-
throughs included being able to define various user types and
storing mass amounts of data [6].

Both Kinetica and PostgreSQL share many fundamental
attributes. First, they are both relational databases. In other
words, they follow the relational model, which organizes data
into tables. Within each table are rows, which are synonymous
with records. Each table defines a set of columns that describe
an entity type of each row so that every row in a given
table follow a certain schema. Second, both databases are
columnar (if PostgreSQL is configured to use Citus as its
storage engine), which refers to how data is stored column-
oriented rather than row-oriented. Columnar databases are
generally good for larger, complex workloads that are used for
analytical workloads [3]. As such, both databases are suited
for OLAP workloads. Lastly, both databases can be deployed
as in-memory databases. In-memory databases primarily rely
on memory for storage rather than disk, which has drastically
slower seek and write times. In memory databases are heavily
utilized for analytical workloads.

B. TPC-DS

The Transaction Processing Performance Council (TPC) [7]
is an international consortium that seeks to establish standards
for software transaction performance. Founded in 1985, it
has released a set of benchmarks to measure the speed and
accuracy of such operations. In terms of a DBMS, a transaction
refers to an atomic set of operations on a database that can
result in the manipulation or retrieval of data. Transactions
are supported through the Structured Query Language (SQL),
which provides a language interface for databases to define
and execute a transaction. One of the many benchmarks TPC
has released is TPC-DS, which is well suited for database
benchmarking and has become an industry standard. TPC-DS
specifically benchmarks the integrity and performance of a
database by providing a set of SQL scripts that run a variety
of standard queries against a database. TPC-DS is configurable
so that tests are run in a replicable, controlled workload
environment that emulates different levels of workload and
user stress against a database [7].

III. TESTING EXPERIMENTATION

The following environment and package versions were used
to conduct the benchmarks:

• CPU: Intel Xeon Silver 4214
• GPU: Nvidia GeForce RTX 2060
• Memory: 128GB
• Operating system: CentOS 7
• Kinetica v7.0
• PostgreSQL v12.2

These settings were based on computer resources that
were available at the time. Package versions of Kinetica and
PostgreSQL were based on the latest stable releases at the
time of testing. No configurations were made to Kinetica and

PostreSQL. Only a single user was made for access purposes
for each database.

Part of the TPC-DS benchmark involves generating 99
queries (in the form of SQL scripts) that run various database
transactions. There are 4 classes of queries the scripts cover:
reporting, ad-hoc, ad-hoc OLAP, data extraction. Reporting
refers to answering well-defined questions of a business or
operation. The general structure of such queries are static and
are repeatedly used, with a minor parameter adjustment being
made such as date. Ad-hoc queries refer to impromptu queries
that must generally be made to answer a specific business
question. Ad-hoc OLAP queries refer to queries made for
exploratory and analytical purposes, generally involving more
complex and sequential queries. Lastly, data extraction queries
involve queries that seek to find relations between data sets
to model predictions. Naturally, such queries are heavy on
merging tables through joins. Overall, these four general class
of queries encompass the following types of transactions:

• Creating tables with a variety of schemas
• Populating tables with rows
• Filtering rows from a table with certain columns
• Merging several tables
• Calculating aggregated values (mean, count, etc.)
• Grouping rows with matching values
• Sorting rows based by column values
• Getting the intersection/union of separate query results

Queries emulate the data generated from a retail store, such
as store sales, customers, inventory, and items. The following
example is one of the many types of queries that would be
generated and ultimately executed through TCP-DS:

select top 100 c customer id
from customer total return ctr1
where ctr1.ctr total return > (select avg(ctr total return)*1.2
from customer total return ctr2
where ctr1.ctr store sk = ctr2.ctr store sk)
and s store sk = ctr1.ctr store sk
and s state = ’TN’
and ctr1.ctr customer sk = c customer sk
order by c customer id;

To prevent databases from hard-coding favorable perfor-
mance, TPC-DS uses a seed to generate random queries and
data for the testing suite. Specifically, the randomized genera-
tion is seeded from the timestamp at which the benchmark is
run.

TPC-DS also requires an additional configuration parameter
called the scale factor, which indicates the raw data size.
These values are exponentially scaled and include 100G,
300G, 1000G, 3000G, 10000G, 30000G, and 100000G. For
this project, a scale factor of 100G was selected, since the
available testing server could fit 100G of data into memory.

After configurations were made and the sample query and
data sets were generated, the Kinetica and PostgreSQL servers
were restarted to prevent any potential cache that were pre-
viously stored. The TPC-DS tests for each database, on after

each other, with the server being rebooted between runs to nor-
malize for external variables. The results for each query was
stored in csv files, which resided on the testing server’s disk.
The speed at which each query was executed was recorded
as well. After each execution, the validity of the results were
measured using the benchmark results generated by TPC-DS.
A script was run to find any discrepancies between query
results by scanning through the generated csv files and the
generated benchmarked results. Validations included checking
for the following:

• Matching row counts
• Matching calculations for aggregations
• Matching orderings of query results

The testing script was run 5 times for each database, and the
average query execution times for each database by query class
was recorded. Between each run, all the created and populated
tables within each database was deleted to ensure clean run.
The server was also rebooted between each run to clear any
cache.

IV. RESULTS

The average execution times of the 5 iterations of the
experiment are shown in Figure 1:

Average Execution Time(s)
Query Class Kinetica PostgreSQL
Reporting 1.4 5.2
Ad-hoc 1.7 9.8
Ad-hoc OLAP 2.3 23.2
Data extraction 2.1 12.7

Fig. 1. Average execution type by query class

For Kinetica, the standard deviation for reporting, ad-hoc,
ad-hoc OLAP, and data extraction queries was 0.24s, 0.07s,
1.3s, and 0.17s respectively. For PostgreSQL, these values
were 0.17s, 0.05s, 0.13s, and 0.17s. Both databases scored
100% accuracy in terms of data validity for all trials. Across
all query classes, Kinetica outperformed PostgreSQL. For
reporting, ad-hoc, ad-hoc OLAP, and data extraction, Kinetica
was faster than PostgreSQL by 73.1%, 82.7%, 90.1%, and
83.5%, respectively.

The larger difference in performance between Kinetica and
PostgreSQL for OLAP and data extraction queries was ex-
pected. These query classes involve joining multiple tables and
performing intermediate calculations. Because these tasks are
more easily parallelized, GPU-driven optimizations become
more pronounced. As such, the more complex and larger the
queries, the better competitive performance Kinetica exhibits.
In contrast, PostgreSQL uses CPU hardware to conduct its
queries. Naturally, however, CPUs are better for sequential
calculations than parallel ones. Although CPUs can have
multiple cores to multithread calculations, it is nowhere the
number found in GPUs, which can have hundreds. As such,
the performance differential between Kinetica and PostgreSQL
is not as large for simpler queries (such as those found for
reporting and ad-hoc queries) because many of these queries

involve simpler SELECT queries with few or no intermediate
calculations needed.

V. CONCLUSION

GPU-accelerated databases are designed to outperform tra-
ditional databases for complex queries. The results of the tests
show that Kinetica drastically outperforms PostgreSQL on
various queries. The starkest differences in out performance
were seen in ad-hoc OLAP and data extraction queries, which
generally encompass more complex, larger queries (character-
ized by several table joins, several sequences of calculations,
and intermediate computations). This was expected behavior,
since Kinetica leverages the highly parallel nature of GPUs to
speed up SQL join queries, which can utilize multiple threads.

The results of this paper tested basic operational perfor-
mances of databases in an isolated, non-production environ-
ment. In reality, database deployments are complex, as they
require tuning and complex configurations for various use
cases. In addition, the tests conducted in this paper did not use
any sort of cache, an important element in improving database
read performance. The testing methodology discussed in this
paper can be extended to measure how each database performs
in different enviornments and with different configurations.

For companies and institutions with GPUs in their com-
pute infrastructure, Kinetica shows promise of delivering fast
computations for business intelligence workloads. There is the
consideration of hardware costs for having additional GPUs.
However, the sheer efficiency Kinetica delivers for lower costs
in hardware (Nvidia GeForce RTX 2060 at $299 [8] vs. Intel
Xeon Silver 4214 at $694 [9]) can actually reduce costs.
Pairing the same GPUs with machine learning workloads can
bring upon synergistic benefits and allows Kinetica to be a
powerful data-retrieval layer to feed model training jobs.

VI. ACKNOWLEDGEMENT

This project was completed with the help of Professor
Upsorn Praphamontripong and UVA Research Computing.

REFERENCES

[1] Data, R. and. (2019, July 23). Enterprise Database Market
To Reach USD 155.50 Billion By 2026: Reports And
Data. Retrieved from https://www.globenewswire.com/news-
release/2019/07/23/1886552/0/en/Enterprise-Database-Market-To-
Reach-USD-155-50-Billion-By-2026-Reports-And-Data.html

[2] deMontigny, J. (2017, August 16). Internet Trends 2017. Retrieved from
https://stratabeat.com/internet-trends-2017/

[3] Stojanovski, V., Rami, V. (n.d.). In-Memory
OLAP vs. Traditional OLAP. Retrieved from
https://it.toolbox.com/blogs/vladimirstojanovski/in-memory-olap-vs-
traditional-olap-092908

[4] MariaDB Foundation. (n.d.). Retrieved from https://mariadb.org/
[5] Dilworth, J. (n.d.). About Kinetica - Leadership, History, Openings.

Retrieved from https://www.kinetica.com/about/
[6] A Brief History of PostgreSQL. (n.d.). Retrieved from

https://www.postgresql.org/docs/8.4/history.html
[7] Homepage V5. (n.d.). Retrieved from http://www.tpc.org/
[8] (n.d.). Retrieved from https://www.nvidia.com/en-

us/shop/geforce/gpu/?page=1&limit=9&locale=en-
us&category=GPU&gpu=RTX 2060

[9] Intel® Xeon® Silver 4214 Processor (16.5M Cache,
2.20 GHz) Product Specifications. (n.d.). Retrieved from
https://ark.intel.com/content/www/us/en/ark/products/193385/intel-
xeon-silver-4214-processor-16-5m-cache-2-20-ghz.html

