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Abstract 
We have prepared a measurement of the energy asymmetry in wide- and medium-angle 
electron/positron pair production off protons and heavy targets. This asymmetry is caused by the 
interference between the first- and second-order Born diagrams and the Compton scattering 
diagram.  It directly probes aspects of QED, as well as providing a direct measurement of the real 
part of the Compton amplitude. It will be conducted at the HI𝛾⃗S facility at Duke University, using 
a 60 MeV photon beam. This dissertation serves as documentation of the preparation stage of the 
Bethe-Heitler experiment. The major was the recommissioning of the vertical drift chambers 
previously used in the Q-weak experiment at the Jefferson Lab. Cosmic test runs were conducted, 
drift time data were collected and efficiency plateaus were measured. We made modifications to 
the JLAB Hall A analyzer to suit the geometry and drift characteristics of these wire chambers. 
The analyzer was used for the reconstruction of the trajectories of cosmic ray test runs with the 
results confirmed by direct measurement of trigger geometry. Spatial and angular resolution is 
estimated to ~300𝜇𝑚 and 0.17° respectively. Geant 4 simulations with generated Bethe-Heitler 
pairs satisfying theoretical differential cross sections. It was used to check detector acceptance, 
optimize apparatus layout, and estimate measurable energy asymmetry. The measureable 
asymmetries from electron/positron pairs with polar angles around between approximately 5° and 
8°, azimuthal angles differing by 180°,  and energy differing by approximately 9 MeV to 15 
MeV are predicted to be above 10%. The kinematics of primary vertices are reconstructed using 
the data from wire chambers in the simulation. The energy resolution is determined to be better 
than 1MeV. 
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Part I Theory 
 

1 Physics Intro [1] 
 

The Gerasimov-Drell-Hearn (GDH) sum rule [2] [3] relates the total cross section of 
circularly polarized photons on a longitudinally polarized target to the anomalous magnetic 
moment of the target: 

 

 ∫ ൫𝜎ଵ ଶ⁄ − 𝜎ଷ ଶ⁄ ൯
ஶ

௧௛௥

ௗఔ

ఔ
= −2𝜋ଶ𝛼

఑మ

ெమ 

 
This sum rule has been shown to hold for all targets, both point-like and compound. The sum rule 
follows from the dispersion relation for forward Compton scattering, along with the optical 
theorem and the low energy theorem. The forward Compton amplitude may be written in terms of 
two scalar functions of ν:  

 
f(𝜈) = 𝑓ଵ(𝜈)𝜖ᇱ∗ ∙ 𝜖 + 𝜈𝑓ଶ(𝜈)𝑖𝜎⃗ ∙ 𝜖ᇱ∗ × 𝜖 

 
where 𝜖 and 𝜖ᇱ are the transverse polarization vectors of the incident and forward-scattered 
photon.  Due to the 1 𝜈⁄  weighing of the integrand, the sum rule is expected to be dominated by 
the low energy region. 

 
The Bethe-Heitler [4] (BH) process   𝛾𝑍 → 𝑒ା𝑒ି𝑍 , lepton pair photoproduction in a 

Coulomb field, is one of the most well-studied processes in quantum electrodynamics.  In a 
remarkable calculation, Bethe and Maximon [5] [6] evaluated the total cross section analytically 
to all orders in 𝑍𝛼, providing one of the few nonperturbative all-orders results known in quantum 
field theory.  Samuel C.C. Ting's group at DESY [7], showed that the differential cross section 
for wide-angle electron-positron pair production is in good agreement with the QED predictions, 
providing an important verification of fundamental theory. 
 

The electron-positron charge asymmetry in either energy or angle measures the 
interference of first Born and second Born contributions to the BH amplitude, or more generally, 
the interference of an even and odd number of Coulomb exchanges. A simplified calculation is 
given by Brodsky and Gillespie [8], predictions of which are in fair agreement with the 
measurements of Asbury et al. [7]  The analogous process in QCD is pomeron-odderon 
interference which leads to a charm-anti-charm asymmetry in the diffractive process 𝛾𝑝 → 𝑐𝑐̅𝑝. 

 
At low energies, one can use the BH charge asymmetry to check the low energy theorem 

for Compton scattering, extended to time-like virtuality.  The first correction to the low energy 
limit of the forward Compton amplitude [9] [10] [11] has the spin-dependence 𝑆 ∙ሬሬሬሬ⃗ 𝜖 × 𝜖′ and is 

proportional to the anomalous magnetic moment squared 𝜇஺
ଶ = ቂ

ఓି௘ௌ⃗మ

ெ
ቃ

ଶ

 for any particle of charge 

e, mass M, and spin S.  This amplitude is the key input for the dispersion relation underlying the 
Drell-Hearn-Gerasimov sum rule [2] [3], generalized for any spin, due to the dominance of low 
energy processes in the integrand.  For additional references and discussion see ref. [12]. 
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The interference of the two-photon and one-photon exchange amplitudes is the primary 
cause of the electron-positron asymmetry in BH pair production.  The two-photon BH amplitude 
is closely related to the two-photon exchange amplitude in  𝑒𝑝 → 𝑒𝑝′ which is believed [13] [14] 
to cause the breakdown of the Rosenbluth separation.  It may be much easier to measure two-
photon exchange effects to high precision in 𝛾𝑝 → 𝑒ା𝑒ି𝑝′  than to measure the electron-positron 
asymmetry in  𝑒±𝑝 → 𝑒±𝑝′ elastic scattering. 

 
The electron-positron charge asymmetry in 𝛾𝑝 → 𝑒ା𝑒ି𝑝′ also is sensitive to the 

interference of the real part of the virtual Compton amplitude 𝑇(𝛾𝑝 → 𝛾𝑝∗ → 𝑒ା𝑒ି𝑝′ ) with the 
Born contribution to BH pair production from one-photon exchange [15] [16].  This is 
particularly interesting at high photon energies where the real part of the Compton amplitude 
measures the 𝐽 = 0 fixed pole [17] due to the local coupling of the two photons to the 
fundamental carriers of the electromagnetic current [16] [18].  This is also called the `D term' in 
the deeply virtual Compton scattering (DVCS) literature [19]. 
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2 Cross section and Asymmetry Calculation 
The following is a summary of the calculation of corrections to the BH cross section 

which give rise to an asymmetry [20]. The main contribution comes from next-to-leading 
correction with respect to 𝑚/𝜔 (𝑚 the electron rest mass, 𝜔 the photon energy). This is an odd 
function of 𝜂 = 𝑍𝛼 (𝑍 the atomic number of the nucleus, 𝛼 the fine structure constant) which 
causes asymmetry. The contribution of the Compton-type amplitude to the pair production cross 
section also leads to an asymmetry but is relatively minor so won’t be elaborated on here. 

2.1 Diagrams 
The diagrams of both contributions are shown below: 

 

I Fig2. 1 Diagram of BH pair production. 

(Left) FIG. 1 of ref. [20] Diagram of pair production by a photon in a strong Coulumb field. 
Thick lines correspond to the positive- and negative-energy solutions of the Dirac equation in the 
Coulomb field. (Right) FIG. 3 of ref. [20]. Compton-type diagram for pair production by a photon 
in a strong Coulomb field. Thick lines correspond to the positive- and negative energy solutions 
of the Dirac equation in the Coulomb field. Double lines denote nucleus. 
 

2.2 Calculation of cross section 
The cross section of 𝑒ା 𝑒ି pair production in external field is given by [21]: 

𝑑𝜎 =
ఈ

(ଶగ)రఠ
𝑑𝒑𝑑𝒒𝛿൫𝜔 − 𝜀௣ − 𝜀௤൯|𝑀ఒభഊమ

|ଶ                            (2.1) 

where 𝜀௣ = ඥ𝑝ଶ + 𝑚ଶ, 𝒑 and 𝒒 are the electron and positron momenta, respectively. The matrix 
element 𝑀ఒభഊమ

 has the form: 

𝑀ఒభഊమ
= ∫ 𝑑𝒓 𝑢തఒభ𝒑

(௢௨௧)
(𝒓)𝜸 ∙ 𝒆𝑣ఒమ𝒒

(௜௡)
(𝒓) exp (𝑖𝒌 ∙ 𝒓)                   (2.2) 

where 𝑢തఒభ𝒑
(௢௨௧)

(𝒓) is a positive-energy solution and 𝑣ఒమ𝒒
(௜௡)

(𝒓) is a negative-energy solution of the 

Dirac equation in the external field, 𝜆ଵ = ±1 and 𝜆ଶ = ±1 enumerate the independent solutions 
of the Dirac equation, 𝒆 is the photon polarization vector, 𝒌 is the photon momentum, 𝜸ఓ are the 
Dirac matrices. The leading term and the first order correction of Born approximation for  

𝑢തఒభ𝒑
(௢௨௧)

(𝒓) and 𝑣ఒమ𝒒
(௜௡)

(𝒓) are derived by utilizing the asymptotic form of the Green function of the 

Dirac equation in the Coulomb field. ((14),(15) in [20]) 𝑢തఒ𝒑
(௜௡)

(𝒓) and 𝑣ఒ𝒑
(௢௨௧)

(𝒓) can be represented 

by integration of: 



4 
 

 

𝑢ఒ𝒑 = ට
ఌ೛ା௠

ଶఌ೛
ቆ

𝜙ఒ
𝝈∙𝒑

ఌ೛ା௠
𝜙ఒ

ቇ, 𝑣ఒ𝒑 = ට
ఌ೛ା௠

ଶఌ೛
ቆ

𝝈∙𝒑

ఌ೛ା௠
𝜒ఒ

𝜒ఒ

ቇ              (2.3) 

The matrix element represented by the leading term and the first order correction is: 

𝑀ఒభഊమ
= 𝜙ఒభ

ା ((𝑎଴ + 𝑎ଵ) + 𝝈 ∙ (𝒃𝟎 + 𝒃𝟏))𝜒ఒమ
                  (2.4) 

 
where 𝑎଴ and 𝒃𝟎 are represented by 𝒆, 𝝂, 𝝂 × 𝒆, 𝑔 and 𝒈(±).  In addition to those terms, 𝑎ଵ, 𝒃𝟏 
are also represented by ൫𝜽௣ ± 𝜽௤൯. 𝑎଴ and 𝒃𝟎 are linear in 𝜽௣ = 𝒑ෝୄ, 𝜽௤ = 𝒒ෝୄ, which are the ⊥ 
components of unit vectors 𝒑ෝ and 𝒒ෝ,where the notation 𝑿ୄ = 𝑿 − (𝝂 ∙ 𝑿)𝝂, 𝝂 = 𝒌/𝑘. 𝑎ଵ and 𝒃𝟏 

are quadratic in these variables.  𝑔 and 𝒈(±) are integrations over 𝑑𝒓 with terms 𝐹஺
(±), 𝐹෨஻

(±), 
which can be expressed by integration of 𝑆஺൫𝑥𝒑, 𝑝𝑟൯ and 𝑆஻൫𝑥𝒑, 𝑝𝑟൯, where 𝑥𝒑 =

𝒓∙𝒑

௥௣
.  𝑆஺(𝑥, 𝜌) 

and 𝑆஻(𝑥, 𝜌) are represented by infinite sums of Bessel functions and Legendre polynomials.  

Taking the leading terms of 𝑆஺ and 𝑆஻ one then integrates to get 𝐹஺
(±), 𝐹෨஻

(±). Writing 𝑔 = 𝑔଴ + 𝛿𝑔 

and 𝒈(±) = 𝒈଴
(±)

+ 𝛿𝒈(±) yields 𝑔଴ represented by 𝑁 = −𝑖
ଶగ

௠ொమ ൬
ఌ೜క೜

ఌ೛క೛
൰

௜ఎ

|Γ(1 − 𝑖𝜂)|ଶ, 𝜂, 𝜉௣ =

ଵ

ଵାఋ೛
మ , 𝜉௤ =

ଵ

ଵାఋ೜
మ, 𝑢 = 1 −

𝑸఼
మ

௠మ 𝜉௣𝜉௤, (𝑸 = 𝒑 + 𝒒 − 𝒌), ℱ = 𝐹(−𝑖𝜂, 𝑖𝜂, 1, 𝑢) (here 𝐹(𝑎, 𝑏, 𝑐, 𝑥) is 

the hypergeometric function), and ℱᇱ =
డℱ

డ௨
. In addition to those terms, 𝒈଴

(±) is also represented by 

𝜔, 𝜹௣ =
ఌ೛𝜽೛

௠
, 𝜹௤ =

ఌ೜𝜽೜

௠
. 

The first corrections, 𝛿𝑔 and 𝛿𝒈(±) are in addition represented by integration over 𝑑𝜆 of their 

expression with above terms and 𝒢 = 𝐹 ቀ
ଵ

ଶ
− 𝑖𝜂, 𝑖𝜂, 1, 𝑧ቁ , 𝒢 ᇱ =

డ𝒢

డ௨
,  𝑧 = 1 −

ொమక೛క೜(ଵାఒ)

௠మ൫ଵାక೛ఒ൯൫ଵାక೜ఒ൯
. 

Total amplitude of matrix elements is: 
 

∑ |𝑀ఒభఒమ
|ଶ = 2[|𝑎଴ + 𝑎ଵ|ଶ + |𝒃଴ + 𝒃ଵ|ଶ]ఒభ,మ

      
                                     = 2[|𝑎଴|ଶ + |𝒃𝟎|ଶ + 2Re(𝑎଴𝑎ଵ

∗ + 𝒃଴ ∙ 𝒃ଵ
∗)].      (2.5) 

 
In the next-to-leading order approximation, terms |𝑎ଵ|ଶ and |𝒃𝟏|ଶ are neglected and 
2Re(𝑎଴𝑎ଵ

∗ + 𝒃଴ ∙ 𝒃ଵ
∗ ) = 0 for any photon polarization. Restricting the discussion to unpolarized 

photons for simplicity, the cross section is given by: 
 

𝑑𝜎 =
ఈ௠రௗఌ೛ௗ𝜹೛ௗ𝜹೜

ଶగరఠయ ቂ൫𝜀௣
ଶ + 𝜀௤

ଶ൯ห𝒈(ି)ห
ଶ

+ 𝜔ଶ|𝑔|ଶቃ.                      (2.6) 

 
Writing 𝑑𝜎 = 𝑑𝜎௦ + 𝑑𝜎௔, the leading term, 𝑑𝜎௦, and 1st correction, 𝑑𝜎௔ , can be expressed with 

leading terms 𝑔 = 𝑔଴ + 𝛿𝑔 and 𝒈(±) = 𝒈଴
(±)

+ 𝛿𝒈(±) shown above. 

2.3 Special cases 
 

Only the special cases relative to our experiment are listed here: 
 

(1) If 𝜂 ≪ 1 (applies for most lighter nucleus), the leading term 𝑑𝜎௦ and correction 𝑑𝜎௔  : 

𝑑𝜎௦ =
ଶఈ௠మఎమௗఌ೛ௗ𝜹೛ௗ𝜹೜

గమఠయொర × [
ொమ

௠మ 𝜉௣𝜉௤൫𝜀௣
ଶ + 𝜀௤

ଶ൯ + 2𝜀௣𝜀௤൫𝜉௣ − 𝜉௤൯
ଶ

] ∝ 𝜂ଶ        

 (2.7) 
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𝑑𝜎௔ = −
𝛼𝑚ଶ𝜂ଷ𝑑𝜀௣𝑑𝜹௣𝑑𝜹௤

2𝜋𝜔ଷ𝑄ଷ
{൫𝜉௣ − 𝜉௤൯ ቈ4 ቆ𝜀௣𝜉௣ + 𝜀௤𝜉௤ +

𝜔൫𝜀௣
ଶ + 𝜀௤

ଶ൯

𝜀௣𝜀௤
ቇ቉ 

    +(𝜀௣ − 𝜀௤)
൫ఌ೛

మାఌ೜
మ൯

ఌ೛ఌ೜

ொమ

௠మ 𝜉௣𝜉௤}          (2.8) 

 

(2) In the limit 𝛿௣>>1 and 𝛿௤>>1 with 𝜹௣ =
ఌ೛

௠
𝜽௣ =

ఌ೛

௠

𝒑఼

௣
, then 𝛿௣>>1, 𝜀௣~𝑝 and  𝛿௣~

௣఼

௠
∝ 𝑝ୄ, 

or 𝛿௣ is proportional to the electron transverse momentum, and 𝛿௣ is proportional to positron 
transverse momentum: 

𝑑𝜎௔ = −
𝛼𝜂ଷ൫𝜀௣

ଶ + 𝜀௤
ଶ൯𝑑𝜀௣𝑑𝜹௣𝑑𝜹௤

2𝜋𝜀௣𝜀௤𝛿௣
ଶ𝛿௤

ଶ𝜔ଷ𝑄ଷ
ൣ𝑚ଶ൫𝛿௣

ଶ−𝛿௤
ଶ൯𝜔 + ൫𝜀௣ − 𝜀௤൯𝑄ଶ൧ 

          = −
ఈఎయ൫ఌ೛

మାఌ೜
మ൯ௗఌ೛ௗ𝜹೛ௗ𝜹೜

ଶగఌ೛ఌ೜ఋ೛
మఋ೜

మఠయொయ
(𝜽௣ − 𝜽௤) ∙ 𝑸.                                                 (2.9) 

For instance, with 𝜀௣ = 30 𝑀𝑒𝑉 and polar angle 𝜃 = 9° at the primary vertex, we have 

𝑝ୄ~𝜀௣𝑠𝑖𝑛𝜃~4.7𝑀𝑒𝑉/𝑐 and 𝛿௣~
ସ.଻

଴.ହଵଵ
= 9.18 ≫ 1 is satisfied. However, it’s not convincing with 

a lower energy of ~ 18 𝑀𝑒𝑉 and 𝜃 = 5°.  Equation 2.9 can also applied to case |𝜹௣ + 𝜹௤| ≪

|𝜹௣ − 𝜹௤|, which can be satisfied if we measure azimuthal angle difference 𝜑~180° and the two 
particles have similar 𝛿௣ and 𝛿௤ values. 

2.4 Asymmetry 
The cross section of 𝑒ା𝑒ି pair photoproduction satisfies: 

 
𝑑𝜎(𝒑, 𝒒, 𝜂) = 𝑑𝜎(𝒒, 𝒑, −𝜂)                              (2.10) 

 
And the charge asymmetry 𝐴 is defined as: 
 

𝐴 =
ௗఙ(𝒑,𝒒,ఎ)ିௗఙ(𝒑,𝒒,ିఎ)

ௗఙ(𝒑,𝒒,ఎ)ାௗఙ(𝒑,𝒒,ିఎ)
=

ௗఙ(𝒑,𝒒,ఎ)ିௗఙ(𝒒,𝒑,ఎ)

ௗఙ(𝒑,𝒒,ఎ)ାௗఙ(𝒒,𝒑,ఎ)
                  (2.11) 

 
If we now write 𝑑𝜎 = 𝑑𝜎௦ + 𝑑𝜎௔, then 𝑑𝜎௦ is an even function in 𝜂 and 𝑑𝜎௔ is odd in 𝜂. Then, 
eq. 2.11 turns into: 

𝐴 =
ௗఙೌ(𝒑,𝒒,ఎ)

ௗఙೞ(𝒑,𝒒,ఎ)
                                                  (2.12) 

 
Outside the narrow region 𝑄ୄ ≲ ห𝑄∥ห = |𝝂 ∙ 𝑸|~𝑚ଶ/𝜔, the approximation 𝑄ଶ ≅ 𝑄ୄ

ଶ =

𝑚ଶ(𝜹௣ + 𝜹௤)ଶ can be applied.  In addition, if we fix 𝜹௣, 𝜹௤ and 𝑥 =
ఌ೛

ఠ
 (portion of 𝜀௣ out of total 

energy), it can be verified that the asymmetry 𝐴 scales with 𝑚/𝜔. Fig 2.2 below shows the 
asymmetry 𝐴 in units of 𝑚/𝜔 as a function of 𝛿௣ with different fixed 𝛿௤ and 𝑥 when 𝜑 = 𝜋 (𝜑 is 
the angle difference between 𝜹௣ and 𝜹௤or, in the Geant 4 simulation, the azimuthal angle 
difference between electron and positron). 
In addition, if we make the 𝜂 ≪ 1 approximation and use equations 2.7 and 2.8 to compute 
asymmetry, we find that the asymmetry is proportional to both 𝑚/𝜔 and 𝜂.  Fig 2.3 shows the 
dependence of asymmetry on 𝜂 in units 𝑚/𝜔 for 𝛿௣ = 2, 𝛿௤ = 4 , 𝜑 = 𝜋 and a few values of 𝑥. 
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I Fig2. 2 The dependence of asymmetry 𝐴 on 𝛿௣. Ordinate: asymmetry 𝐴 in 
௠

ఠ
, abscissa: 𝛿௣ =

ఌ೛

௠
𝜃௣ =

ఌ೛

௠

௣఼

௣
 no unit. 

(Right side of FIG. 4 in Ref. [20]) Drawn for 𝜑 = 𝜋 and a few values of 𝛿௤ and 𝑥. 𝑥 = 0.25 
(solid curves), 𝑥 = 0.5 (dashed curves), and 𝑥 = 0.75 (dotted curves), 𝜂 = 0.54 (tungsten). 

A few observations: 
(1) the curves are all discontinue at 𝛿௣ = 𝛿௤ , 𝜑 = 𝜋 which means 𝑄ୄ~0 and approximation 𝑄ୄ ≲

ห𝑄∥ห = |𝝂 ∙ 𝑸|~𝑚ଶ/𝜔 cannot be satisfied. 
(2) Since we have fixed 𝑚 for electron and positron, the asymmetry 𝐴 then is inversely 
proportional to 𝜔. Thus, the lower the photon energy, the larger the asymmetry. 

(3) An estimate for the proposed experimental configuration: 𝜔 = 60 𝑀𝑒𝑉, and 
௠

ఠ
=

଴.ହଵଵ

଺଴
≅

1/117.4. The largest value in plots is about 18, then asymmetry at 𝜔 = 60 𝑀𝑒𝑉 could be about 
18/117.4=15.3%. 
 

 

I Fig2. 3 The dependence of asymmetry 𝐴 on 𝜂 = 𝑍𝛼. Ordinate: asymmetry 𝐴 in  
௠

ఠ
, abscissa: 

𝜂 = 𝑍𝛼 no unit. 

(Right side of Fig. 5 in Ref. [20]) Drawn for 𝛿௣ = 2, 𝛿௤ = 4 , 𝜑 = 𝜋 and a few values of 𝑥. 
 

Observations: 
(1) For the proposed experimental configuration, 𝜔 = 60 𝑀𝑒𝑉. Thus, 𝑥 = 0.25 means 𝜀௣=15 
MeV, 𝑥 = 0.5 means 𝜀௣=30 MeV, and 𝑥 = 0.75 means 𝜀௣=45 MeV. All energies here are within 
the detector acceptance. 
(2) The curves flatten at about  𝜂 = 0.6.  With an asymmetry value 𝑥 = 0.75, about 9 in the plot, 
the asymmetry is about 9/117.4=7.7% for 𝜔 = 60 𝑀𝑒𝑉. 
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Part II Apparatus 
 
Introduction 

 
The BH experiment will measure the charge asymmetry of electron-positron pairs 

produced from high energy photons scattered from the Coulomb field of various nuclei via the 
Bethe-Heitler process. The apparatus of proposed measurement from upstream to downstream 
includes:  

The beam - we will use high intensity photon beam provided by the HI𝛾⃗S (High Intensity 
Gamma Source) in the Duke Free Electron Laser Laboratory (DFELL) located on the campus of 
Duke University.  

Targets – we plan to use square thin foils of various materials. 
Magnet – we will use a dipole magnet to analyze the electron-positron pairs. 
Detectors – we will use two pairs of vertical drift chambers and two arrays of plastic 

scintillators to measure tracks of the electrons and positrons. 
Data acquisition system (DAQ) – we will use a system based on the CODA system in use 

at Jefferson Lab. 
 

In this part, all components of the apparatus will be introduced in the above order.  No 
significant development work is required for the beam and targets; only their suitability for the 
requirements of the experiment is discussed. Preparation of the drift chambers and scintillators 
preparation is emphasized, with results from the tests shown. Further off-line track reconstruction 
results are presented in Part III Analyzer. 
 

1 Beam 
 

The beam is provided by the High Intensity Gamma Source (HI𝛾⃗S) in the Duke Free 
Electron Laser Laboratory (DFELL) located on the campus of Duke University.  It utilizes 
Compton backscattering to generate a mono-energy gamma beam. As seen from the diagram (Fig 
1.1) below, wigglers (or undulator) are magnets placed periodically with opposite polarizations. 
They cause the transverse acceleration of the electrons to result in photons (synchrotron radiation) 
being emitted. The mirrors at each end create an optical cavity with a length of half the 
circumference of the storage ring, causing the radiation to form standing waves. The multi-
layered mirrors can achieve a reflectivity of ~0.9995 for the laser which results in an intense 
beam of photons being stored. The electrons in the storage ring are synchronous with the photons 
in the optical cavity.  On each pass the electrons interact with the transverse electric field of the 
synchrotron radiation, making electrons clump into microbunches within a period of one optical 
wavelength.  The bunched electrons are in phase. [22] 

 
There are two bunches in the storage ring.  One generates the free electron laser beam. The other, 
half the storage ring circumference away, intersects with the photons in the optical cavity with 
each going in opposite directions.  Some photons Compton backscatter from the electrons to 
generate a high intensity beam of 𝛾′𝑠.  At our proposed photon beam energy of 60 MeV, a rate of 
1.2 × 10଻𝐻𝑧 with an energy spread of 5% FWHM can be delivered. [23] 
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II Fig 1. 1 (Fig. 1 from Ref. [23]) Gamma ray source. 
 

2 Target 
 

The targets for the BH experiment will consist of 4𝑐𝑚 × 4𝑐𝑚 foils of 𝐶𝐻ଶ, 𝐶ଵଶ , and 𝑈ଶଷ଼ .  
They will be mounted in frames and attached to a movable horizontal support structure. The 
structure will be moved using a remotely controlled stepping motor. The structure will have 
positions for five frames; one for each of the target materials; an empty one; and a multi-foil 
carbon optics target. [24]  
There are several parameters of the targets that must be considered for the planning of the 
experiment. The materials of the targets determine the differential cross section and thus the 
angular distribution of the emerging electrons and positions. The cross section combines with the 
thickness of the target to determine the event rate. The distance between the target and the magnet 
is the major factor in determining the detector acceptance: 

(1) The opening angle from target to downstream of the yoke hole determines the maximum 
polar angle of primary particles; 

(2) The distance from target to center of magnet, along with the diameter of magnet and the 
gap between the magnet pole faces determines the vertical angle acceptance; and 

(3) A tungsten cone shaped baffle will be placed between the magnet poles to block high rate 
and low-resolution portion of the primary particles. 
 
Referencing the Geant 4 simulation results, the targets will be placed perpendicular to the 

beam 42.3 cm upstream from magnet and 13.4 cm upstream from the back side of the yoke hole.  
This gives maximum polar angle of 14.7° with respect to the target center. The thickness of the 
targets will be 25𝜇𝑚 which, based on computation utilizing theoretical differential cross sections 
code, the raw data rate considering yoke hole and cone shaped baffle with polar angle 4° to 7° 
will be between 1.2 Hz to 13 Hz, see Part IV 1.4. 
One possible issue caused by the thickness and density of the target is the multiple scatter of 
primary particles inside the target volume. Since the cross section dependence on polar angle is 
very sensitive, the measurable region lies between 5° and 10°, based on a balance of rate and 
resolution considerations. (c.f. Part IV Simulation, Figs. 1.4 and 2.18) A 𝑈ଶଷ଼  target with a 
thickness of 25𝜇𝑚 could cause change of primary particle direction on the order about 1°, which 
would hamper the asymmetry extraction. A lighter nucleus such as Cu is being considered to 
replace 𝑈ଶଷ଼ . 
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3 Magnet [25] 
 

The electron-positron pairs will be analyzed using the magnet from the pair spectrometer 
constructed at the Saskatchewan Accelerator Laboratory (SAL). [26] The magnet was mapped at 
Jefferson Lab. The field map was consistent with that measured at SAL more than twenty years 
ago indicating no degradation of the magnet coils. The results of the field map are shown in Fig. 
3.1. The SAL pair spectrometer was calibrated at a photon energy of 60 MeV by J.R. Sigurdson 
et al. [26]. The range of energies for the detected positrons and electrons was from 26 MeV to 34 
MeV, close to the range of energies we will use: 22 MeV to 38 MeV. Our simulations, performed 
using the program DIMAD, were matched to the SAL results and then extended to the wider 
energy range. [27] 
 

The acceptance of the system is constrained by the pole tip separation and physical 
constraints of where the detectors can be placed. The vertical acceptance is constrained by the 
pole tips to about ± 3°. The horizontal acceptance is constrained by the optics to between + 30° 
and − 15° for the highest energy (40 MeV) particles and between + 15° and − 30° for the lowest 
energy (20 MeV) particles. Inasmuch as both particles can be expected to come out at 
approximately the same angle (measured with respect to opposite sides of the photon beam), this 
means the effective overall horizontal acceptance will be ≈ ± 15°. Based on our later Geant 4 
simulation, the horizontal acceptance is more constrained by the rear wire chamber. Inasmuch as 
the magnet was powered and performed stably for the magnetic field measurements, we 
anticipate no significant development work on it will be required. 
 

The magnet has three major roles for the experiment: 
(1) to separate the BH electron and positron pair from an event; 
(2) to provide energy and momentum dependent spectrum of BH electron or positron; 
(3) to be the major component which determines the acceptance. 

Our collaborator, Prof. Rob Pywell of the University of Saskatchewan, has interpolated the field 
map and integrated it into the Geant 4 simulation. In the simulation, the magnetic field pointed 
vertical down, the electrons going to the right side of the beam, and the opposite for the positrons.  
Most of the behavior of the BH pair acquired through the simulation is discussed in detail in the 
Geant 4 simulation chapters. 
 

Here list some principal results: 
(1) The existence of the cone baffle blocks particles with polar angle from target less than the 

cone angle. In addition, it blocks electrons with initial direction to the left side of the 
beam; the opposite for positrons. 

(2) When approximated by a uniform field, the charged particles have helical trajectories 
inside the magnet. The radius of the horizontally projected circle of the helix is 
proportional to 1/B.  Thus, the bending effect is less for higher energy particles. As a 
consequence, the lower energy acceptance measured at the detectors drops first and 
continuously to zero before the high energy particle on the other side does. 

(3) In addition to (2), the 1/B dependent radius causes the horizontally projected angle at the 
exit of magnetic field, 𝜃௢௨௧ , is not a monotonic function of the horizontal entering angle, 
𝜃௜௡ , for certain energies. This is different than visible light being separated by a prism 
where transformations through refractions make 𝜃௢௨௧ always a monotonic function of 𝜃௜௡ 
for monochrome. 
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(4) The vertical acceptance is constrained by the pole tips to about ±3°.  This is the cause of 
the greatest loss of incident particles. 

(5) The side opening of the magnet frame spans a much larger vertical acceptance than the 
magnet pole tip.   Thus, it has no effect on the acceptance.  Meanwhile, the horizontal 
acceptance has major effect on the energy acceptance. According to (2), most particles 
can be accepted with energies even higher than 50 MeV, but many with low energy, and 
therefore small bending radius and energy loss through multiple scattering are lost. 
However, the major loss of acceptance of low energy particles is from the back wire 
chamber, where almost all 9 MeV particles are lost. 

 

II Fig 3. 1 SAL pair spectrometer magnet. 

SAL pair spectrometer magnet for BH experiment, currently at UVA.  
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II Fig 3. 2 Field map of the magnet. Ordinate: Magnetic field in Gauss, abscissa: horizontal 
displacement from center of the magnet in cm. 

Fig. 3 from [25]. 
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4 Vertical drift chamber 
4.1 Introduction 
 

Region III vertical drift chambers (or wire chambers, abbr. VDC) from the Q-weak 
experiment will be used in the BH experiment. The functioning components of drift chambers are 
composed of a plane with parallel thin conducting wires (called sense wires) and two conducting 
foil planes (with equi-distance) lies above and below the wire plane, which has been made gas 
tight. During operation, the wire chambers are supplied with high negative voltage applied to the 
foils as cathodes, and wires connected to ground. In addition, the gas mixture with inert gas is 
constantly flowing through the wire plane. When an ultra-relativistic charged particle passes 
through the active region of the chamber, electron-ion pairs are created along its path. Electrons 
drift to anode and ions drift to the cathode due to the electric field. These primary electrons drift 
at constant speed when they are away from sense wires and the electric field is essentially 
constant. When they are very close to wires (within a few wire diameters), the electric field 
strength increases dramatically.  The electrons gain such energy that they cause ionization, and so 
can these secondary electrons. This phenomenon, which is called avalanche or cascade, produces 
gains of the order of 10ହ to 10଺. [28] The induction from avalanche ions causes a measurable 
pulse on the corresponding sense wire where the electrons are collected. The pulse is pre-
amplified and discriminated by a discriminator card attached to the wire chamber, then 
transmitted through ribbon cables to a time to digital converter (abbr. TDC). The drift time of the 
first primary electron to reach a sense wire is converted to drift distance (c.f. Part III Analyzer, 
section 2.4 Time to distance conversion).  All drift distances from all sense wire intersecting the 
track of the ultra-relativistic charged particle inside the wire chamber are fitted to reconstruct its 
track. 
 

In this chapter we only discuss the hardware part of the preparation of VDC for BH 
experiment. Track reconstruction using Jlab Hall A analyzer is discussed in Part III Analyzer, 
section 2.3 to 2.5. The basics of design and construction of the VDC are discussed in 4.2, and the 
commissioning test of the VDC is discussed in 4.3. 
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II Fig 4. 1 A pair of Q-weak drift chambers. 

Fig. 4 from [1]. 

4.2 Design and construction [29] 
 
4.2.1 Overview 
 

There are four wire chambers, identical in dimensions to be used in the BH experiment.  
One pair is placed on either side of the beam to provide tracking information of the primary 
Bethe-Heitler electron-positron pairs. The overall dimensions of a wire chamber are 3 feet by 8 
feet by 5.5 inches. Two wire planes lie within with parallel wires oriented at different directions 
lies within, each with dimension 21 inches by 80.5 inches by 1 inch. The particle tracks are 
designed to cross wire planes at ~ 45° angle to give spatial resolution about 200𝜇𝑚. Thus, the 
wire chambers will tilted at 45° to the horizontal plane. The original high voltage applied to 
cathode planes for the Q-weak experiment was -3800V, and 0V at wires.  At the last cosmic test 
run in March 2020, the HV was set to -3900V. The chambers are gas tight, with 50% (by volume) 
argon and 50% ethane flowing through all wire planes. 
 
 
 
 



14 
 

 

4.2.2 Design 
 

The design of the wire chambers is based on the JLAB HRS chambers, with two wire 
planes in each chamber. Due to the requirement of multiplexing 9 channels for the Q-weak 
experiment, there are 279 (as multiple of 9) wires per plane to provide the required resolution. 
[29] 

The chambers were designed such that ultra-relativistic charged particles would hit each 
plane with a minimum of 4 wires to provide sufficient resolution and a maximum of 8 matching 
the readout design. Only single-track events were allowed. The wire stringing angle (angle 
between wires and long axis of the wire plane) was designed to maximize number of wire hits 
under the above requirements. Garfield [30] and Geant 4 simulations [31] suggested an angle of 
30° was optimal.  An angle of 26.45௢[= 𝑎𝑟𝑐𝑡𝑎𝑛(0.5)] [29] p was chosen to make for easier wire 
stringing design and fabrication.  It should be noted for comparison that the JLAB Hall A High 
Resolution Spectrometer (HRS) chambers use an angle of 45°[= 𝑎𝑟𝑐𝑡𝑎𝑛(1)]).  Material to 
support and hold frames is chosen to be G10-FR4 circuit board material [29].  It fulfills the 
requirement of holding shape under tension of wires and cathode foil, gas tight and strong 
dielectric.  The complete structure of the frames is shown in the Fig 4.2 below.

 
II Fig 4. 2 Cross section of one VDC. 

(Modified version of Ref. [29] Fig. 4.6) Eight 0.5-inch thick G10 boards holds wires and Mylar 
foils. The outside Mylar foils of wire frame are aluminized on side facing wires, and the center 
Mylar foil is double side aluminized to provide conduction. U, V wire frames are flipped by 180° 
to each other. U, V wires indicated are using dash lines since they’re not parallel or perpendicular 
to sides of the frames. 
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4.2.2 Construction 
 While we were not involved in the construction of these chambers relevant details of their 
construction are included here as they are important to their use in the Bethe-Heitler Asymmetry 
measurements to be performed. 
 

Wires: Each 0.5“ thick G10 frame shown in Fig 4.2 is constructed by gluing 4 rectangle 
pieces. 25𝜇𝑚 gold-coated tungsten wires are used, all electrically connected outside through 
custom boards. They are tensioned to ensure flatness and resistance to repulsion between wires.  
Wire spacing on the long side of the frame was measured to be 11.074 ± 0.078𝑚𝑚. [29] Thus, 
the perpendicular wire spacing is: 

 
11.07 𝑠𝑖𝑛[𝑎𝑟𝑐𝑡𝑎𝑛(0.5)] = 4.95 𝑚𝑚             (4.1) 
 

The Mylar foils are 0.0005’’ thick [29] and also stretched and secured. Two 0.75“ thick 
aluminum frames are secured on both sides of G10 frames, making 5.5“ the total thickness of one 
VDC 5.5”. [29] 
 

Gas handling system: Holes drilled in aluminum frames and G10 frames allow gas to 
travel freely.  Gas flows from one short side of the frame to the other and returns in the next 
frame. To illustrate in Fig 4.1, gases go left in uppermost gas frame, then right in U wire frame, 
left in V wire frame, and back to the right side of the frame in bottommost gas frame. Gases are 
slightly over pressured to ensure a steady flow which is monitored using a bubbler for each 
chamber.  The purpose of the filling gas is to provide electrons and ions, and prevent electron 
absorbing molecules, oxygen, etc. The gases used in the Q-weak experiment was 50 % argon and 
50 % ethane. [29] Noble gases are used since they have the lowest electric field intensity for 
avalanche, and argon is the cheapest. Ethane absorbs high energy photons created from Argon to 
prevent continuous discharge before primary electrons reach the wires, which would reduce the 
gain.  In this usage, gain means the average number of avalanche electrons from a single primary 
ionization. With ethane, the gain improved from 10ଷ~10ସ to ~10଺. The gas composition during 
my cosmic ray tests are different due to the flammable nature of ethane. [28] 

 
High voltage supply: HV is delivered to the aluminized Mylar foils using a custom-built 

distribution/safety circuit.  Bertan 377N power supplies are used, one for each chamber.  One 
constraint is that they must be ramped up slowly to prevent discharge by a larger avalanche, 
tripping the supply.  Dark current is about 50nA. [29] 
 

Gain: The number of ionizations is 94 per cm for Ar, 111 per cm ethane at atmospheric 
pressure. In these chambers, one primary electron can generate 10ହ − 10଺ secondary electrons, 
making wire hit signal a measurable quantity.  

 
Chamber current: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 × 𝑟𝑎𝑡𝑒 × 𝑔𝑎𝑖𝑛 + 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑠.  Here, 

background means background radiation from cosmic rays. Ultra-relativistic charged particles 
through chambers at 45° angle, one wire plane is 5.08 cm thick, which leads to path length ~8 cm 
and ~816 ionizations. A 75 kHz incident particle rate draws ~2.25 𝜇𝐴 giving a gain of ~2.3 
× 10ହ. [29] 
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4.3 Commissioning 
 

The purpose of the commissioning of the VDC is to set up the wire chambers and test if they 
are fully operational for the purpose of the BH experiment. This includes: 

1) Setting up the gas system. 
2) Preparing high voltage supplies for cathodes of the wire chambers. 
3) Implementing front end electronics. This includes preparing and testing pre-amp 

discriminator cards, their installation, and testing.  
4) Signal cable management. 
5) Grounding improvement and noise reduction. 
6) Setting up scintillator triggers for cosmic tests. This includes logic operation for 

combined PMT signals, and its connection to TDC.  
7) Setting up the data acquisition. This includes collecting the wire drift time raw data into 

“evio” formatted raw data file. The program was set up by Dr. Brad Sawatzky of JLAB.  
8) Analyzing the VDC data using a modified wire chamber code derived from the Jlab Hall 

A analyzer to reconstruct particle tracks. 
9) Performing test runs to find efficiency plateaus in terms of HV applied on chambers, to 

determine discriminator cards threshold voltages, and to confirm the good efficiency of 
the chambers. 

 
Since this chapter is introducing the hardware preparation of the VDC, above items 1) 

through 5) and 8) and 9), will be discussed here.  Items 6) and 7), which concern software will be 
discussed elsewhere.  Except for grounding, which has been integrated into the discussion of the 
preparation of each individual component, each of these topics are discussed separately here. 

 
4.3.1 Power supplies. 
 

There are two types of power supplies used for the VDC: one provides high negative 
voltage for the Mylar foil cathodes of the wire planes, the other provides power and threshold 
settings for the discriminator cards. 

 
1) HV supply for VDC:  The wire chambers operate at a very high voltage, 3900V for the 

current Nanometric discriminator card setup (100V higher than in their original use in the Q-weak 
experiment) and very low current (~ 𝜇𝐴). The Bertan 377N HV supplies are the same as in Q-
weak experiment.  It has a maximum voltage of 7.5 kV and the trip currents can be set from 
0.1 𝜇𝐴 to 100 𝑚𝐴 with 10x change at each step, which is adequate for the wire chambers. Each 
Bertan 377N has two channels to provide HV for one wire chamber each. The HV was applied to 
the foils using a custom-built distribution/safety circuit. 
 

The procedure to setup the HV operating the chambers is as follows. After each change 
of gas cylinder for the chambers, a day or two wait was required to give the gas flow time to 
settle.  HV cables were connected to the distribution circuit attached on the wire chamber. The 
HV dial was set to 0V, the trip current to 100𝜇𝐴, but was overridden while the HV was turned 
on.  Both high voltages for the pair of wire chambers were set to the low 3 kVs, then dialed up 
even slower one chamber at a time.  The HV supply had to be monitored carefully as it was 
common for the current to become very unstable for voltages above 3700 V. A few minutes after 
the desired voltage was reached the trip current was set to 10𝜇𝐴, the normal trip level for the 
VDC. 
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There are three points to be noted:  1) Due to the high sensitivity to change of voltage for 

the VDC mentioned above, the grounding has to be good for the HV supply. However, the power 
in ESB building of Jlab is not clean.  HV supplies were easily tripped during unmonitored test 
runs, especially during thunderstorm weather in the summer.  2) The HV wires which connect the 
3 aluminized Mylar foils of a wire chamber (c.f. Fig 4.1) from the shorter side of the wire 
chamber are very thin and much smaller than the connector on the HV distributor. In addition, a 
few original distributors attached to the chamber are had arcing issues which caused trips. Some 
better made distributors with thicker and better insulation materials replaced those.  3) The 
stability of the chamber current also depends on the gas mixture.  Since ethane is flammable, 75% 
Argon and 25% 𝐶𝑂ଶ was used. This was not as good as an argon-ethane mixture and could cause 
avalanches before drift electrons get very close to the sense wires, resulting in a larger region of 
discharge and current. This also affects the stability of the HV supply. 
 
 
 

              
 

II Fig 4. 3 Wire chamber HV supply and HV distributor. 

Here HVs are set to 3900V and trip current level to 100𝜇𝐴. However, the right channel current is 
high for the normal chamber operation. Right, replacement of the HV distributor on the VDC. 
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II Fig 4. 4 Diagram for HV supply on VDC cathodes. 
 
 

2) Low voltage supplies for the discriminator cards:  The low voltage supplies provide 
power and threshold to discriminator cards plugged onto each VDC through 0.25" × 0.25" 
copper bars attached parallel to the chamber. [29]  Four parallel bars are reserved to be used, 4 
crimp connectors are screwed onto the copper bars and the other sides are merged into a pigtail 
connector to the cards. The MAD cards (discriminator cards with MAD chips) used in the original 
Q-weak experiment were observed to have an unidentified false signal issue. Thus, they were 
replaced by Nano N-277-C(CD) cards (abbr. Nano card).  These proved to be reliable during 
cosmic test runs.  Detailed discussion of the MAD card is in discriminator card section 4.3.4.  
This change required updates of low voltage power and threshold supplies. There’re two major 
reasons: 1) the way of supplying power to the cards are different, and 2) Nano cards have much 
higher power consumption. 
 

The MAD cards have pins connected to +6 V power, positive and negative thresholds, 
and ground in that order.  Nano cards have positive +5 V, -5 V, thresholds, and ground, in that 
order.  The diagram showing connections to copper bars for both power supplies and thresholds 
of a pair of wire chambers is shown in Fig 4.4.  In short, both +5 V or -5 V power supplies 
connect to the cards in parallel for each wire chamber, and in series for cards inside one chamber, 
while a threshold supply connects to chambers in series.  The ±5 𝑉 power supplies are Acopian 
model 5PH60, providing 5 V voltage and maximum 60 A current. The full 96 implemented Nano 
cards for all four chambers draw currents of more than that for -5V power, resulting in a drop of 
voltage for the cards, which in turns cause unexpected results. Thus, two -5V power supplies are 
used for four wire chambers, while one +5V supply is enough for the total 20A draw. Due to the 
high current compared to MAD cards, the power lines from power supplies and between copper 
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bars from opposite side of wire chamber have been replaced by heavy duty cables. For MAD 
cards, powers are connected through 1 gauge wire, and thresholds through 18-gauge wire. 
The connectors with crimp connectors on the copper bar and integrated plastic connectors on 
discriminator cards connect power and threshold directly to the cards, so bad crimp connectors 
are a common cause of strange behavior of discriminator cards. Unlike the MAD cards, if the 
crimp connector causes disconnection there is no LED light indicator of power on with Nano 
cards; the bad connector might only be identified when analyzing the data during test run.  In 
2018, all crimp connectors on copper bars were overhauled. To find bad crimp connectors, simply 
tried to pull them out from wires by hand. In total about 70 bad connectors found, the high failure 
rate was due to lack of twisting threads of wires before crimping, and having the threads spread 
out into thin layers during crimping.  After the re-crimping, connectors were screwed back onto 
the copper bars parallel to the bars for better electric connection.  It should be noted that there are 
18 discriminator card slots for each wire plane, but only 12 are used for our tests and are 
necessary for the BH experiment. Thus, there is significant redundancy. 

 

II Fig 4. 5 Diagrams for discriminator cards threshold and power supplies. 

Left Diagram for +5 V power supply. Right: Diagram for threshold supply and ground on 
discriminator cards on wire chamber. The V3, V4 means chamber 3,4; L, R means Left and Right 
side of the chamber. 
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4.3.2 Gas type and flow regulation 
 

Gas mixtures are essential for the operation of drift chambers. As mentioned in the 
overview, gas used for VDC usually is composed of a mixture of two components.  An inert gas, 
usually argon, provides electron-ion pairs creating avalanches; the other provides quenching for 
photons emitted from excited argon ions to control the region of the avalanches to within several 
diameters of the sense wires.  This produces pulses useful to extract drift time data from primary 
electrons.  In addition, these gases prevent humidity and electronegative gases [28] (which 
capture free electron) such as 𝑂ଶ into the chamber.  Thus, gases flow constantly through 
chambers even they’re not under high voltage. 

 
During our tests, 75% Argon and 25% 𝐶𝑂ଶ were used. They were slightly overpressured 

(20 psi at outlet of gas cylinder) to ensure flow inside chamber. During our tests one gas cylinder 
was used for two wire chambers.  The gas system is composed of the following components from 
upstream to downstream: gas cylinder, flowmeter and bubbler, gas filters into and out of wire 
chambers, and lastly the return bubbler.  Each full gas cylinder went from 2500 psi to 500 psi 
within about two weeks. The flowmeter can be dialed to control the flow. The bubbler helps to 
visualize the return gas and prevents back-flow of gas. 
 

A diagram of the gas flow inside a pair of wire chambers is shown in Fig 4.5 below.  
Gases flow in series from the top chamber to the bottom chamber.  Each wire chamber consists of 
two gas entrance holes and two exit holes to aid smoother flow to prevent pocket gas build up in 
the corners.  From top to bottom, there are four layers of chamber separated by Mylar foils (c.f. 
Fig 4.1), of which the middle two are under high voltage. Gases flow through each layer along the 
long axis from one side to the other, then return to the same side of chamber in the layer below.  
After two repetitions of the gas flowing to the other end of a chamber then returning to the same 
side, it exits the chamber on the opposite face to the entrance hole. 
 

During testing in 2019 the return bubbler of chamber 1 and 2 showing much less 
frequency of bubbling.  In addition, chamber 1 on the top showed a lower wire hit frequency 
when operated at the same HV as chamber 2.  This indicated a gas leak along the line.  Gas leak 
detection sprays were used on all joints of the gas line and no bubbles were seen.  Dr. Sawatzky 
suggested the possibility of a gas leak from the wire chambers, which could be hard to fix.  
Instead, gas flow was increased from 90 (unit) to the maximum 150 at the flowmeter.  
Consequently, the efficiency of the chamber 1 was restored. 
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II Fig 4. 6 Diagram of gas flow inside wire chambers. 

Diagram of gas flow inside the wire chambers with arrows indicating flow direction. The 
entrance and exit holes drilled into the chamber are all on one side.  Here only the top chamber is 
shown and the bottom chamber follows the same pattern due to the identical construction.  There 
is only one gas filter for the two chambers. 
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II Fig 4. 7 Return bubbler diagram. 

Fig 4.17 from [29]. 

4.3.3 Cable management 
 

Several different types of cables were used during the wire chamber tests.  The HV cables 
for wire chambers and PMTs, the LEMO cables for trigger electronics and oscilloscope input, and 
the most heavily used ribbon cables for transmitting discriminator card signals to TDCs.  Here we 
only discuss the ribbon cable management. 
 

Since the wire chambers have a lot of wires, there are a lot of ribbon cables needed for signal 
transmission. Each wire chamber has 279 wires per wire plane.  With each discriminator or TDC 
slot containing 16 channels, it needs 18 cards to fill up a wire plane leaving 16 × 18 − 279 = 9 
channels empty. The disconnected channels are all inside one discriminator card, but located in 
either 9th or 10th card counting from one end based on the wire plane orientation. [29]  We only 
implemented 12 cards per wire plane, which leads to 16 × 12 − 9 = 183 channels implemented.  
See Fig. 4.8 and Fig. 4.9 below for implemented discriminator cards on one wire chamber.  The 
TDC module we use is the Lecroy 1877, with 96 channels (for 6 cards) each.  Thus, for each wire 
plane we need 2 TDC modules or 16 modules for all 4 wire chambers.  The actual number of 
TDC modules used is 18.  Two are for spares and for reference trigger channels from PMTs to 
provide software cuts on trigger geometry.  In total, there’re 16 × 6 batches of ribbon cables, and 
the management of those includes: 

1) Prepare cables in group of 6 batches, to match one TDC module. 
2) Print and tape labels on both ends of the cables. 
3) Fix cables on the wire chambers to provide strain relief for connectors on cards. 
4) Organize cables on TDC module side. 

We’ll expand upon the procedures following this order. 
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II Fig 4. 8 Full set of labeled cards in chamber 1 or 2. 

(Same as Part III Analyzer, Fig 2.2.8) Every 6 cards spatially located close to each other are 
bundled together to ribbon cables, thus from this diagram, U4 to U9 as group 1; V10 to V12 and 
U1 to U3 as group 2; V4 to V9 as group 3; U10 to U12 and V1 to V3 as group 4 of 6 cards 
plugged into 4 modules in TDC.

 
II Fig 4. 9 Locations of 12 cards implemented in U wire planes. 

(Same as III Fig 2.7) The rest of the 6 cards U13 to U18 are not drawn. All 9 inactive channels lie 
on the last 9 channels of card U9.  
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The U wires are oriented from lower left to higher right direction.  Refer to Fig 4.8, for V 
wire plane, they’re constructed identical as U wire plane, but flipped 180° around short axis of 
the chamber, and thus the first 9 channels of card V10 is inactive. 

 
1) Prepared cables in group of 6 batches, to match one TDC module.  All connectors on each side 
of the cables were checked and damaged ones were cut off and replaced by newly made ones.  
The distances from discriminator cards plugged onto a chamber to the TDC varies.  As mentioned 
in Fig 4.8 above, a group of 6 ribbon cables should connect to 6 adjacent card slots on wire 
chamber.  Thus, the lengths of all cables in a group should match in a batch. To make lengths 
match means all cables in the group with the same number of periods. Once a group of 6 cables 
was picked they were made as flat as possible, laid on top of each other, and then cable tied with 
connector ends offset to match the spacings between locations of the corresponding card on the 
chamber. 
 
2) Print and tape labels on both ends of the cables. 
 
3) Fix cables on the wire chambers to provide strain relief for connectors on cards.  There are 
original rectangle tooled aluminum pieces with holes drilled attached to the main aluminum 
frame to hold copper grounding plates. Ribbon cables are attached to them after being wrapped 
with cardboards. See Fig. 4.10 below. 
 
4) Organize cables on TDC module side.  A TDC module with 6 slots is vertically slid into the 
crate.  All ribbon cables had to be neatly inserted into and remove from TDC in groups.  The 
solution was to hang cables on rods above the TDC, and use machined plastic holders to hold a 
group of 6 ribbon cables for a single TDC module.  These holders have 45° slots to insert cables 
and make them turn 90° to change orientation from vertical to horizontal. The slot locations are 
set based on measurements of TDC connector slots, and cables have enough length to allow some 
flexibility. In such a way cables are neatly organized so that searching for connectors from a 
single TDC is like flipping a book.  Check Fig 4.11 and Fig 4.12. 
 

                                    
 
                                   II Fig 4. 10 Fixation of cables on wire chamber. 
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II Fig 4. 11 (Left) A single ribbon cable holder for TDC. 

II Fig 4. 12 (Right) Full implementation of holders and hanger of ribbon cables on TDC side. 

4.3.4 Discriminator cards. 
 

Discriminator cards are inseparable parts of the wire chambers.  The cards accept signal 
pulses from sense wires, pre-amplify and discriminate them into signals with certain standard 
shapes before the signal is transmitted to the TDC.  From the preceding section, there were a total 
of 96 discriminator cards prepared and confirmed to be in good condition from cosmic test runs.  
Also from section 4.3.1, all discriminator cards on one wire chamber are driven by the same 
power and threshold supplies through the copper bars on the chamber. Thus, all should be the 
same type.  Initially the plan was to use MAD cards for the BH experiment. The plan to use MAD 
cards was aborted due to a serious issue found on drift TDC time distribution after analysis of test 
run data.  

 
4.3.4.1 MAD card test and issue 
 

The power connection of the MAD cards is described in section 4.3.1.  Each card takes 
16 single input channels and outputs, 16 dual (one twisted pair on a ribbon cable) channels.  The 
output signal is a low-voltage differential signal (LVDS) logic pulse. [29]  In order to convert it to 
an acceptable signal for a TDC, the LDVS pulse must be converted to an ECL signal by a 
translator board. [32]  A photo of a MAD card is shown in Fig. 4.13 and the diagram for the 
signal transmission is shown in Fig. 4.14.  The MAD cards were initially picked due to their prior 
success on other experiments, predicted lower noise level due to lower power consumption, and 
low voltage signal output.  See Chapter 2.4 Time to Distance Conversion in Part III Analyzer for 
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a detailed description of a typical TDC time distribution.  Typically, the drift time distribution 
was composed of two regions.  The frequency is higher (a peak in the distribution) at lower drift 
time due to increased electron drift speed in the higher electric field strength region near the sense 
wires.  There is also a plateau of longer drift times due to the constant and lower electric field 
away from sense wires.  Eventually the plateau falls off indicating the boundary of the wire plane.  
For the MAD card data, a 2nd peak was found where the plateau falls off, at about a 250 ns drift 
time.  Fig 4.15 shows a comparison of TDC time distributions obtained using MAD cards and 
Nano cards from the same test run with the Nano cards inserted on the chamber between the two 
MAD cards.  Power and thresholds were supplied individually. 
 

 

II Fig 4. 13 MAD card attached on adaptor board. 

The blue arrows point to standoff screws for support on the adaptor board, black arrow to a fuse, 
and yellow to voltage dividers.  The potentiometer is located on the lower right to the left of the 
2-test pin, which can be adjusted slightly by screw driver. The threshold voltage will be divided 
by 20. (e.g., 5 V on copper bar converted to 250 mV on card.) 
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II Fig 4. 14 Diagram for the signal transmission for both MAD card and Nano card. 
 
 

                    
II Fig 4. 15 TDC time distribution of all data from 3 discriminator cards. Ordinate: counts no unit, 
abscissa: TDC time in TDC time unit (0.5 ns). 

Two MAD cards (Green and Blue), one Nano card (Black) which connects to the chamber in 
between the two MAD cards. It should noted that TDC times are in reverse order of real time, 
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0.5ns per TDC time unit. It’s clearly seen the MAD cards TDC time distribution has 2nd peak 
(lower peak). 

Apart from the obvious distinction between MAD and Nano cards for any normal TDC time 
distribution, there are some additional descriptions of the 2nd peak and explanation of why it’s not 
from physical events: 

1) All 2nd peaks lie around a single time: 250ns. 
2) The 2nd peak appears all TDC time data obtained using MAD cards. 
3) We cannot confirm if it is the MAD cards or the LDVS to ECL level translators or the 

combination because the origin of the 2nd peak is inseparable with the MAD card setup.  
When MAD cards were replaced by Nano cards, there were no TDCs which could accept 
LDVS signals as direct input available. 

4) The relative 2nd peak height compared to the 1st peak depended on the threshold voltage.  
Thus, the on-board potentiometer which makes small corrections to actual thresholds 
requires calibration.  Since there shouldn’t be any drastic change in TDC time 
distribution when a discriminator card is operating under the threshold voltage within the 
plateau of efficiency, this indirectly showed that data in 2nd peak arise from unphysical 
events. 

5) For the same MAD card, the 2nd peak height depended on the card location on chamber. 
That is, if we inserted the card into another slot on the wire chamber under the same 
threshold voltage, the 2nd peak height changed. If the chamber is uniformly illuminated 
within the active area of the wire chamber, the drift time distribution should not change 
much except for statistical fluctuations. This also shows invalidity of the 2nd peak data. 

6) See Fig 4.16 below. It shows more characteristics of the 2nd peak in a plot of the 2D 
histogram of two adjacent wires’ TDC time distributions, along with their difference, 
with the comparison of the same location on wire chamber with the MAD card replaced 
by a Nano card.  The additional green region in the histogram of the MAD card time 
compared to Nano card represents the 2nd peak.  In addition, the TDC time difference 
shows two distinct peaks, very similar in shape and amplitude but with the opposite signs, 
corresponding to the effect of 2nd peak.  Those two peaks in the TDC time difference 
shows some degree of correlation between the two adjacent channels, while Nano card 
data doesn’t show such peaks and the time differences are much more uniform. Since the 
cosmic tracks cross the wire chamber at random angles, the drift distance between 
adjacent channels is close to uniformly random, where drift time difference is similar.  
The distribution obtained using MAD cards did not follow this pattern. 

7) See Fig 4.17. Additional correlation between two neighboring channels of MAD card 
signals showed up for some test runs. There are two effects shown, none of which 
happens for Nano card runs: 

1) the time differences are sharply peaked at multiple values suggesting cross talk. 
2) there is a sharp peak of drift time at 700 unit for both channels. 

 
Note: All the heights of 2nd peaks above are relative to the height of the 1st peak, or the height 
from normalized distribution. 
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II Fig 4. 16 Two adjacent MAD or Nano Card channels TDC time comparison. Top left figure 
ordinate: MAD card TDC time of channel 100 in TDC time unit (0.5 ns), abscissa: MAD card 
TDC time of channel 101 in TDC time unit (0.5 ns). Top right figure ordinate: Nano card TDC 
time of channel 300 in TDC time unit (0.5 ns), abscissa: Nano card TDC time of channel 301 in 
TDC time unit (0.5 ns). Bottom left figure: difference between MAD card TDC time of channel 
100 and MAD card TDC time of channel 101 in in TDC time unit (0.5 ns). Bottom right figure: 
difference between Nano card TDC time of channel 300 and Nano card TDC time of channel 301 
in in TDC time unit (0.5 ns). 

Top: 2D histogram of two adjacent MAD or Nano Card channels TDC time.  Bottom:  TDC time 
difference of adjacent MAD or Nano card channels. 
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II Fig 4. 17 Cross talk on two adjacent MAD Card channels. Left figure ordinate: MAD card 
TDC time of channel 320 in TDC time unit (0.5 ns), abscissa: MAD card TDC time of channel 
321 in TDC time unit (0.5 ns). Right figure: difference between MAD card TDC time of channel 
320 and MAD card TDC time of channel 321 in in TDC time unit (0.5 ns). 

Left: 2D histogram of two adjacent MAD card channels from another run.  Right: TDC time 
difference of the two channels. The TDC time spectrum has a 3rd peak, the tiny red region around 
700 TDC time.  Cross talk between adjacent channels shows up as peaks in the time difference 
histogram. 
 
The possible reasons could cause 2nd peak are: 

1) Poor grounding. 
2) Cross talk between neighboring channels.  A copper strip crossing the input traces on a 

different layer by construction in all MAD cards.  If this is the reason, it cannot be fixed. 
[14] 

3) LVDS to ECL Level translator issue. 
4) Some components of the MAD cards were damaged during previous experiments.  MAD 

cards with burnt fuses and/or missing MAD chips were replaced and determined not to be 
the cause of the 2nd peak. 

Extensive tests have been done to mitigate the 2nd peaks. The most common ones include: 
1) test one MAD card only on a wire chamber. 
2) use a VME crate to hold one level translator for a single MAD card. 
3) add aluminum wrap around ribbon cables for MAD card to increase shielding. 

None of them were effective. Due to the inability to conduct some other tests, which included 
using a TDC able to accept LDVS signals, a convincing idea of origin of the 2nd peak, as well as 
the more reasonable results from the Nano cards, dictated the choice of the Nano cards. 
 

4.3.4.2 Nano card setup. 

Due to the reasons mentioned in the last section, Nano cards are used to replace MAD cards for 
VDCs. The setup changes include: 

1) There is no LVDS to ECL level translators. The signals from Nano cards are directly 
transmitted to TDC through ribbon cables. Thus, longer ribbon cables are prepared and 
installed. 

2) Power supplies changed, as mentioned in 4.3.1., four copper bars on wire chambers are 
now using +5V power, -5V power, threshold, ground. 

3) Changes in grounding of the cards. 

(1) As shown in Fig 4.13, for each MAD card and the adaptor board (green, 
below the card), there’re four holes (indicated by the blue arrows in the figure) 
drilled through with metal coating. Sets of small screw, spacer, and nut combined 
to keep MAD cards fixed on the board, while providing grounding for card to the 
board. In addition, the grounding from adaptor board to copper plate on chamber 
is also provided by standoff screws with spacers. 

(2) The adaptor boards for MAD cards are not replaced, and paired again for 
Nano cards. Since Nano cards has completely different dimensions and layout, 
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the spacers for grounding is not applicable here. Instead, copper tapes are used, 
there’re three places copper tapes used for grounding: (1) Covering all the 
grounding pins of the adaptor board on its wire chamber side. (2) Linking the 
upper left corner of Nano card to the back of the adaptor board after sanding to 
make copper layer exposed. (3) Linking the back side of the adaptor board to 
copper plates on wire chamber. For pictures, see Fig 4.18. It should note that, 
there is significantly amount of heat generated from long term operations of nano 
cards, causing the deterioration of copper tapes stickiness and detachment on 
Nano cards. For this reason, those tapes are remade and additional electric tapes 
are added to cover them, see left of Fig 4.18. 

4) The different dimensions of Nano card to MAD card causes mismatches in mounting 
alignments. This is easily seen by comparing Fig 4.13 and Fig 4.18 Left, seeing how 
much Nano card boundary shift to the right of the plate. In addition, Nano cards also 
block some standoff screws between upper and lower copper plates of the chamber, new 
holes are drilled for relocation. 

This sums up all the changes made for the setup change from MAD cards to Nano cards. 
It is proven to be quite robust for the test period besides the heating issue of the tapes, which are 
replaceable. 

 

II Fig 4. 18 Grounding setup for Nano cards. 

Left: Copper tape grounding on Nano card. Right: Copper tape grounding from adaptor board to 
copper plates on chamber. Paper cover of the original tape reel are unpeeled within the gap 
between tape on plate and tape on card to prevent electric connection on other places. 

4.3.4.3 Nano card trouble shooting and noise reduction. 
 



32 
 

 

 In order to make the efficiency for detecting charged particles high for the wire chambers, 
we first had to ensure that all discriminator cards were working properly;  then, try to find the 
best operating parameters, i.e., HV for the chambers and threshold voltages for the cards, etc.  
Extensive test runs were conducted to identify issues of noisy/bad channels, etc., and then the 
defect components were fixed or replaced. The general procedure was: 

1. After replaying the data using the JLAB Hall A analyzer, we checked the generated 
ROOT file, which included raw TDC hit data for each of the TDC channels and the track 
reconstruction results. Through data mapping we located the physical locations of the 
defective channels. (c.f., Part Analyzer for how to generate ROOT file) 

2. If the all channels on the adjacent card are good, the easiest way is to swap components 
between the good and the bad from upstream to downstream and rerun.  Based on the 
result, the general rule of thumb is 1) if the bad channels is swapped along with the swap 
of the component (e.g. discriminator card, ribbon cable, TDC module) in the rerun ROOT 
file, the component is bad; 2) Any good components swapped upstream or downstream of 
the bad component won’t change the location of the bad channel. 

3. Once the bad component is identified the easiest way is to swap in a spare, then rerun to 
check if it’s good or bad. 

For the most common issues related to Nano cards, the description, effect, and fix are listed 
below: 

1. Low efficiency card.  When checking the cumulative hit distribution of each channel, 
those cards have significantly fewer counts, resulting in discontinuity in the distribution. 
This results in loss of real data, and the solution is to replace. 

2. Bad channel, no data from the channel at all, self-explanatory. 
3. Discriminator card ringing. 

 
All cards start to ring when the threshold voltage is low enough.  The lower the threshold 

for ringing ring, the higher the Nano cards efficiency due to more signal from event being 
transmitted safely to the TDC. Certain cards ring at much higher thresholds than others and 
identifying their location is crucial for the entire system.  The ringing frequency is high, around 
the order of 10଻𝐻𝑧. As long as one channel starts ringing, TDC data from ringing overwhelms 
actual hit signals and the data rate will easily hit its limit, resulting in completely useless data. 

 
Some different forms of ringing are observed.  The most common situation is when a 

group of cards starts ringing at the same time.  With the same threshold supply for all cards in a 
chamber, usually a certain card drives the ringing of all these cards.  Swapping a good card for 
one of the ringing cards, one at a time until ringing is suppressed for the same threshold, can 
eliminate the problem.   In a second case, a less frequent occasion is that an isolated channel rings 
during a particular test run.  When this happens, signals from other channels in the card are 
completely suppressed and no data are shown for those channels. The cause of this effect is 
unknown, it could come from TDC feedback.  
 

There are two major sources of loss of efficiency that we could not change during the 
tests: (1) the gas mixture used, 𝐶𝑂ଶ although used for absorbing photon energies from argon, is 
known to be electronegative, which lowers the gain; (2) the JLAB ESB building, where tests were 
conducted does not have clean power.  Constant efforts to improve grounding to mitigate card 
ringing were made throughout the period of wire chamber hardware preparation and tests.  
Despite the setback of unclean power, a decent solution was to improve global grounding of the 
entire system. This improvement included: (1) linking all copper plates on the left and right, up 
and down, and through the gaps by copper braids; (2) linking all grounds from all wire chambers, 
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power supplies, and the TDC crate to a common ground through heavy duty cables; and (3) 
improve the grounding of the Nano cards as described in 4.3.2 3. Due to the higher voltage signal 
output and higher power consumption, the heat and noise levels of Nano cards are naturally 
higher than those of the MAD cards. Currently the threshold at which the cards start ringing is 
about 6.5 V. 

 

II Fig 4. 19 2D histogram showing the time dependent data rate of a test run. Ordinate: count for 
the event no unit, abscissa: event number no unit. 

The abscissa is the event number and ordinate are the total number of TDC data from all channels 
for the event. As seen the strip averaged near 50, shows the number of about 50 wires hit from all 
4 wire planes for the normal events. When cards start ringing due to the unstable power in the 
ESB building in Jlab, the rate will be seen constant at the cap 420. 

 

 

4.3.6 Efficiency. 
 

The efficiency is generally defined as the number of events detected by the detector 
divided by number of events triggered under certain conditions.  Based on different situations, the 
specific definition of efficiency will be different.  First let’s examine how to define efficiency of 
the wire chambers.  Since only a pair of wire chambers fastened together through a Z-shaped 
plate is designed to detect individual particle tracks, the efficiency must be defined for each such 
pair (referred as a package by the original constructor).  When all the components working 
properly through prior preparation described above the data are credible.  The replayed ROOT 
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file through raw TDC time includes (1) hit time (in TDC time) from each event of each channel 
and (2) modified Jlab Hall A analyzer wire chamber class calculated from the results of the track 
reconstruction. For (2), during the hardware test the Hall A analyzer code was not thoroughly 
understood, thus the full analysis of track reconstruction efficiency is not described here but later 
in Part III Analyzer, Chapter 5 Analyzer track finding fitting and efficiency. 
 

Here we only use (1), the raw TDC hit time data to calculate efficiency.  We don’t have 
beam data to give a reliable reference for tracks so had to rely on data from cosmic rays which 
arrive from widely varying directions.  In addition, cosmic rays often shower, producing multiple 
tracks which do not satisfy the requirement of detecting a single track with the number of hit 
wires per wire plane ranging from 4 to 8.  In order to utilize data at hand under this condition, 
there is the efficiency definition 1: 

 

𝐸𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௙௢௥ ௪௛௜௖௛ ௔ ௪௜௥௘ ௣௟௔௡௘ ௛௔௦ ்஽஼ ௛௜௧ି௧௜௠௘ ௗ௔௧௔

ே௨௠௕௘௥ ௢௙ ௦௖௜௡௧௜௟௔௧௢௥ ௧௥௜௚௚௘௥௘ௗ ௘௩௘௡௧௦
         (4.2) 

 
The events in the denominator in (4.2) means scintillators on top of both top and bottom wire 
chambers are triggered.  This efficiency is well defined for cases of a single-track event and a 
shower where a large range of wires should be hit.  The only exception is that at least two 
uncorrelated tracks, one track hitting the top chamber and corresponding scintillator but missing 
the bottom scintillator, while the other coming from an extreme angle triggers the bottom 
scintillator but not the wire chamber.  This case should be rare considering the timing window of 
the TDC. 
 

Dr. Sawatzky suggested another efficiency definition which is independent of scintillator 
trigger and only based on wire chamber TDC time data. Efficiency definition 2: 

 

𝐸𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௙௢௥ ௪௛௜௖௛ ௔ ௪௜௥௘ ௣௟௔௡௘ ௛௔  ்஽஼ ௛௜௧ି௧௜௠௘ ௗ௔௧௔

ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௪௛௘௡ ௢௧௛௘௥ ଷ ௪௜௥௘ ௣௟௔௡௘௦ ௔௟௟ ௛௔௩௘ ்஽஼ ௛௜௧ି௧௜௠  ௗ௔௧௔ 
         (4.3) 

 
For instance, denote wire planes from a pair of wire chambers by U1, V1, U2, and V2.  If U1, U2, 
V2 planes are hit, then a track should also through wire plane V1. 
 
   Efficiency plateau scanning test runs were conducted.  The efficiency depends on two main 
parameters: (1) the high voltage applied to the wire chamber; (2) the threshold voltage applied to 
the discriminator card.  No matter which definition of efficiency is used, by varying one 
parameter at a time, a plateau shows up when plotting the efficiency as a function of that 
parameter.  By operating the wire chambers in the center of these plateaus, the system is the most 
robust when subjected to fluctuations of power supplies.  It is most pronounced when changing 
(1) the high voltage applied to the wire chamber.  When the HV is low, the electric field strength 
is not high enough to cause avalanches and/or the gain is not high enough to pass the threshold of 
discriminator card.  When the HV is too high, the avalanche can happen in a much larger region 
of the wire plane and the discharge can cause a trip of the HV supply.  The plateau should be seen 
in between.  Different effects are seen when changing (2) the threshold voltage applied to the 
discriminator card.  When it is at the low end cards start ringing; at the high end the chance of a 
signal passing the threshold drops significantly.  Since changing (1) causes a larger change in 
efficiency, we scanned through the high voltage first, then fixed the high voltage and scanned 
through the threshold voltage.  The results of plateaus obtained using efficiency definitions 1 and 
2 are shown in Fig. 4.20 (through HV scan) and Fig. 4.21 (through threshold scan).  Based on the 
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efficiency results below, under the setup for the corresponding pair of wire chambers, the 
efficiency plateau for HV is reached at about 3750V except for wire plane represented by the blue 
line.  The plateau based on card threshold is reached at about 7.0 to 9.0V.  As a result, the 
operating HV was set to 3900V and threshold of Nano card is set to 8.0V. 

 

II Fig 4. 20 Nano card efficiency plateau scan of high voltage dependence. Figure ordinate: 
efficiency no unit, abscissa: high voltage to the chambers in unit V. Efficiency in the left figure is 
defined by definition 1, right by definition 2. 

For wire chamber 1,2 package. Different colors indicate 4 different wire planes. The scan run 
through high voltage from 3600V to 3900V. 
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II Fig 4. 21 Active U/V wires in chamber 1 or 2. 

Top: Illustration of active U/V wires in chamber 1 or 2.  Black lines represent U wires, blue lines 
V wires. The wire plane is scaled, wire directions are the same as real chamber, and region 
covered is close to implementation region.  Middle: Flaw of efficiency definition 1 as a result of 
scintillator projection on wire planes outside area of common region of wire planes in the 
chamber.  Bottom: Flaw of efficiency definition 2 as a result of the common implementation 
region of both wire planes being smaller than one wire plane. 
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5 Hodoscopes 
 

Introduction 

[33] Hodoscopes in the BH experiment provide trigger and crude position information for the 
events.  The hodoscopes are composed of scintillation material (scintillator), photomultiplier 
tubes (PMTs), and light guides coupling the last two.  When a charged particle passes through the 
scintillator, it deposits energy and excites the energy states of the scintillation material.  Light is 
emitted during deexcitation.  Light is then collected and transmitted through the light guide to the 
photocathode of the PMT, which causes emission of photoelectrons through photoelectric effect. 
The PMT then collects and amplifies the current signal which is later amplified and discriminated 
to provide the trigger for an event. The reasons to use hodoscopes as coincidence trigger for BH 
experiment are: 

(1) the whole process above is extremely fast, around dozens of nanoseconds. The overall 
variation in transition time is much smaller, providing precise timing. 

(2) The efficiency is very high.  When a charged particle passes through scintillation material 
there is almost always some energy deposited, near 100% probability of providing 
enough light to produce a trigger. 

 
In this chapter, the principle and characteristics of each hodoscope component is 

discussed first in section 5.1.  Then the preparation of the hodoscopes for wire chamber test runs 
is explained in section 5.2.  How the test run trigger were set up is elaborated on in 5.3.  To end 
the chapter, the plan of the final experiment set up is shown in 5.4. 

 

5.1 Elements of the Hodoscope 
 
5.1.1 Scintillator  

The scintillator [33] has the property of luminescence.  That is, when exposed to certain 
forms of energy, it absorbs and emits visible light.  The most important features of scintillation 
material for our purpose are: 

1) sensitivity to energy; the total light emitted depends linearly with energy deposited. 
2) fast time response, on the order of nanoseconds; this gives great timing precision. In 

addition, both the fast response and recovery time greatly reduce dead time. 
The time evolution of reemission can be formulated as: 
 

 𝑁 =
ேబ

ఛ೏
exp ቀ−

௧

ఛ೏
ቁ (5.1) 

 
where 𝑁 is the number of photons emitted at time 𝑡, 𝑁଴ total number of photons emitted, 𝜏ௗ is the 
decay constant. Rise time is much shorter than the decay time. The requirements for a good 
scintillator are: 

1) high efficiency for conversion of excited energy to fluorescence radiation; 
2) transparency to its fluorescent radiation so as to allow transmission of the light; 
3) emission in a spectral range consistent with the spectral response of coupled PMT; 
4) a short decay constant 𝜏ௗ. 

Fluorescent radiation is the immediate reemission after absorption, within 1ns. 
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We use plastic scintillator, which is a type of organic scintillator. It is composed of 
aromatic hydrocarbon compounds, in a solid plastic solvent.  The transparency above can be 
explained by the deexcitation energy being less than the excitation energy.   plastic scintillators 
emit light with wavelengths between 400 and 500 nm, which is in the most efficient range of the 
photosensitive material on the photocathode of the PMT.  It produces a fast signal with a decay 
constant about 2 to 3 ns.  The scintillation material that will be used in the BH experiment is 
shown below in Fig 5.1. 

 

II Fig 5. 1 Scintillation material for BH experiment.  

Bicron BC412. The piece shown is longer than the wire chamber active area width 80.5“.  This 
was chosen since it has the longest attenuation length (210cm) within the BC400 family of 
scintillators. 
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II Fig 5. 2 Light emission spectral for a typical plastic scintillator. [34] Ordinate: relative light 
output no unit, abscissa: wavelength of scintillated photons in unit nm. 

[33]The detection efficiency depends on: 
1) mechanisms by which the radiation interacts with the molecules of the particular 

scintillator material; 
2) probabilities that these interactions occur in the scintillator volume, given by the mean 

free path of the radiation in the scintillator material; 
3) response in light output, governed by the luminescence mechanisms in the scintillator. 

For the purpose of the BH experiment, we are detecting electrons and positrons with moderate 
energies.  The mean free path is at microscopic level and it is nearly certain that a particle will 
lose some energy in any scintillator.  In addition, the light weight of organic material in plastic 
scintillator reduces the effect of backscatter, which would make electrons exit the material 
prematurely. 
 

5.1.2 Photomultiplier (PMT) [33] 
 

Photomultiplier tubes [33] convert light into a measurable electric current.  They are 
composed of (from upstream to downstream): 

(1) Photocathode emits electrons when struck by light through photoelectric effect; 
(2) Electron-optical input system accelerates electrons and focuses the cathode current to the 

1st dynode; 
(3) Electron-multiplier section consists of a series of dynodes (secondary emission 

electrodes) which make a weak photocurrent into a measurable current; 
(4) Anode, which collects the current; 
(5) Voltage dividers which stabilize voltages between dynodes; 
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with all enclosed in a vacuum glass tube.  The photomultiplier we are planning to use in the BH 
experiment is the Hamamatsu R7725.  Below are simple illustrations of each of these components 
(with Hamamatsu R7725 as an example): 

 

II Fig 5. 3 Diagram for a typical PMT with linear focused configuration. [35] 

The photocathode. 
 

The cathode is composed of photosensitive material inside of the PM window. From the 
Einstein’s formula, the kinetic energy of the electrons from photoelectric effect is: 

 
𝐸 = ℎ𝜈 − 𝜙                                                               (5.2) 
 

Here, 𝐸 is the kinetic energy of the electron, 𝜈 the frequency of the light, and 𝜙 the work 
function.  The conversion efficiency is far from 100%, it depends on the frequency of the light. 
One of the commonly used quantities to describe spectral response is the Quantum efficiency: 
 

𝜂(𝜆) =
௡௨௠௕௘௥ ௢௙ ௣௛௢௧௢௘௖௟௧௥௢௡ ௥௘௟௘௔௦௘ௗ

௡௨௠௕௘௥ ௢௙ ௜௡௖௜ௗ௘௡௧ ௣௛௢௧௢  ௢௡ ௖௔௧௛௢ௗ௘(ఒ)
              (5.3) 

 
For the Hamamatsu R7725, the photosensitive material used is Bialkali, with a spectral 

response range of 300 to 650 nm, which is well matched to the light emission spectrum of the 
plastic scintillator. The 𝜆 at maximum response is 420 nm and at this wavelength 𝜂(𝜆) = 26%. 
See Fig 5.4 for spectral response. 

 
The Electron-optical input system 
 

The system provides electric field, which accelerates and focuses the electrons emitted at 
the cathode to the 1st dynode.  It is composed of accelerating electrodes, with the same potential 
as first dynode, and a focusing electrode on the sidewall of the glass housing.  The requirements 
for the system are (1) efficiency and (2) time to travel independent of point of emission. 
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The electron-multiplier section 
 

It is composed of a series of dynodes (secondary emission electrodes) to increase the 
weak primary photocurrent into a measurable current.  The secondary emission factor 𝛿 is 
defined as the gain of each electrode, or the ratio between the number of emitted electrons and 
incident electrons on a dynode.  The factor depends on the secondary emission material and the 
voltage applied on the dynode.  For the Hamamatsu R7725, the number of stages is 12 and the 
total gain under the suggested HV is 6.7 × 10଺. 

 
There are different configurations of dynodes.  For the Hamamatsu R7725 it is linearly 

focused, the advantages of which are (1) space is efficiently used, (2) it provides a well isolated 
cathode and anode, (3) it is linear, and (4) it has less deviation in its single electron spectrum. 
Here linearity means the direct proportion between current at the cathode and anode.  The more 
linear a configuration of dynode is means the linearity is maintained across wider range of anode 
current.  The single electron spectrum is the measured pulse height distribution from the entry of 
a single electron.  In addition to the configuration of dynodes, it also depends on the secondary 
emission factor 𝛿. 
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II Fig 5. 4 Spectral response of R7725. Ordinate: Cathode radiant sensitivity in unit mAW or 
quantum efficiency in unit %, abscissa: wavelength of incident photon in unit nm. 

As the scintillators has light in range around 400 to 520 nm, it’s nicely coupled with the PMT’s 
cathode photosensitive material. [36] 

 

Operational parameters 
 

1) Voltage dividers: Gain and voltage supply. The relation is approximately: 
 

𝐺 = 𝛿௡ = (𝐾𝑉ௗ)௡                       (5.4) 
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where 𝛿 is secondary emission factor, 𝑛 the number of stages, 𝐾 a constant,  and 𝑉ௗ the potential 
difference between dynodes.  For the Hamamatsu R7725 at suggested gain 6.7 × 10଺ and 12 
stages, 𝛿 ≅ 3.7.  The number of stages that minimize total voltage (supply voltage) 𝑛𝑉ௗ for a 
given overall gain 𝐺 is given by: 
 

𝑛 = ln𝐺                                       (5.5) 
When applied to Hamamatsu R7725, 𝑛 =15.7.  It can be derived from (5.4) that the relation 
between the relative variation of the gain and corresponding supply is: 
 

ௗீ

ீ
= 𝑛

ௗ௏೏

௏೏
= 𝑛

ௗ௏್

௏್
                     (5.6) 

 
where 𝑉௕ is the supply voltage. Thus, a stable supply is required. 
 
Voltage dividers:  In addition to a stable voltage supply, an additional chain of resistors is added 
to stabilize voltage on the dynodes, with capacitors added on later stages to handle the high 
currents. 

 
2) Linearity:  As mentioned, linearity means the direct proportion between current at 

cathode and anode. It requires that near all of the electrons from previous stage has been 
collected on current stage. Sufficiently high voltage is required for compensating space 
charge formed in between dynodes, which hinders electron collection. When operating 
above the high voltage linearity will be well maintained. 

3) Pulse shape:  Assuming exponential decay of scintillator light, the anode current is: 
 

 𝐼(𝑡) =
ீே௘

ఛೞ
exp (

ି௧

ఛೞ
) 

  

Using the equivalent circuit: 𝐼(𝑡) =
௏

ோ
+ 𝐶

ௗ௏

ௗ௧
 

 

 𝑉(𝑡) = −
ீே௘ோ

ఛିఛೞ
[exp ቀ

ି௧

ఛೞ
ቁ − exp ቀ

ି௧

ఛ
ቁ]             (5.7) 

 
where 𝜏௦ is the scintillator decay constant, 𝜏 = 𝑅𝐶, where 𝑅, 𝐶 are equivalent resistance 
and capacitance of the voltage dividers.  For plastic scintillators, 𝜏௦ ≅ 2~3𝑛𝑠.  Thus, in 
our application 𝜏 ≫ 𝜏௦, the rising edge is determined by 𝜏௦, and falling edge is by 𝜏. This 
is called voltage mode; signal amplitude is much higher than current mode when 𝜏 ≪ 𝜏௦. 
A typical pulse shape is shown in Fig 5.5 below. 
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II Fig 5. 5 Typical test PMT pulse shape. Ordinate: pulse height in unit 50 mV, abscissa: time in 
unit 20 ns. 

Time response and resolution 
 

Principle factors causing time variation in PMTs are: 
1) variation in the transit time of the electrons through the PMT and 
2) fluctuation due to statistical noise. 

Of the two, 1) is the main factor.  The transit time difference from cathode to the 1st dynode 
depends on the initial kinematics of the electron, the path, and electric field.  Among them, the 
time difference caused by variation of initial electron velocity component perpendicular to 
cathode is called transit time spread.  For R7725, it’s about 1.3ns. 
 

Noise is mainly composed of the following: (1) Dark current which is the small current 
flowing when the PMT is not illuminated. It should be small compared to the signal, on the order 
of nA.  For the R7725, the typical value is about 9 nA.  (2) After pulses which result from 
ionization of residue gas inside the PMT.  Positive ions drift backwards to the previous stage of 
the dynode, causing secondary emission at times ranging from a few hundred ns to microseconds 
after the actual signal. (3) Statistical noise, which is measured by the variance of the fluctuations 
about the mean anode current. 
 
 



45 
 

 

Environmental factors 
 

These include: 
1) Expose to ambient light. Since the PMTs are extremely sensitive to light, exposure will 

cause high current and fatigue. It can increase dark current and even destroy the PMT. 
The identification and prevention of light leaks will be discussed in section 5.2. 

2) Operating under a magnetic field. 
3) Temperature effect. It causes (1) dark noise, (2) changes in spectral sensitivity of the 

cathode of about 0.5% per ℃, and (3) variation of the gain in the PMT. 
 

5.1.3 Coupling of scintillation material to PMT 
 

Neither the scintillator nor the PMT can work individually for the purpose of detecting 
charged particles.  We already understand the light emission process and transit of electrons in 
PMT.  The missing part of coupling scintillation material and PMT to function as a hodoscope for 
particle detection are the light collection and transportation from location of scintillation to PMT 
cathode window. 

  
Light collection 
 

There are two ways to lose light during light collection: (1) escape from the scintillator 
boundary and (2) absorption by the scintillator material.  For latter the light intensity as a function 
of path length is: 

 
 𝐿(𝑥) = 𝐿଴exp (

ି௫

௟
)                      (5.8) 

 
where 𝑙 ≅ 1𝑚 or more is the attenuation length.  For the BH experiment, the scintillator length 
should cover the wire chamber, which is 81 inches ≅ 2𝑚.  Thus, the absorption can be 
significant. The former is still the more important loss.  If incident angle is larger than critical 
angle of total internal reflection: 
 
 

 𝜃௖ = asin (
௡೚ೠ೟

௡ೞ೎೔೙೟
)                           (5.9) 

 
All light will stay inside scintillator, when 𝜃 < 𝜃௖ but can diminish quickly after multiple 
reflections.  Total internal reflection can be maximized by reducing 𝜃௖ , 𝑛௢௨௧~1 and making 
𝑛௦௖௜௡௧~1.58; for our scintillator 𝜃௖~39.3°.  There is another problem: non-uniformity in pulse 
height response over the volume of the detector-depending on point of emission.  That is, 
different fractions of the total light output will reach the photocathode.  This can be partially 
compensated for by using multiple PMT as described below. We will loosely wrap external 
reflection materials around the scintillator to return some light to the scintillator.  There’re two 

surface type: specular (mirror like), diffuse, following Lambert’s cosine law: 
ௗூ

ௗఏ
∝ 𝑐𝑜𝑠𝜃.  We 

plan to use specular reflector; Al foil and Mylar are two of the most common choices.  It should 
be noted that their reflectivity is wavelength dependent.  In order to improve light collection and 
transportation for plastic scintillator, the follow steps were taken: 1) polish surface, 2) wrap with 
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Al foil loosely to allow a thin layer of air to be in contact with the scintillator, which facilitates 
internal reflection, and 3) apply a light-tight layer of black tape. 
 
 
Coupling to PMT 
 

The material used must maximize the light transmission.  Thus, it should be made from 
material whose index of refraction is as close as possible to that of scintillator and PM window. 
We can also use silicone grease and “cookies”, which are flexible plastics to improve the 
coupling of uneven faces of PMT and scintillators. 

 
Multiple Photomultipliers 
 

Placing PMTs on both ends of a scintillator and then summing the two signals increases 
the effective light collection. This is particularly useful for large scintillator. 
 
Light guides 
 

Scintillator light may be conducted to a PMT via a light guide. These are optical quality 
plexiglass, lucite, or perspex, which can be made in any shape and length for desired geometry. 
This is very useful for adapting inconvenient scintillator shapes to the circular face of the PM. 
Common setups for light guide: (1) the “fish tail” light guide which is shaped such that slow 
changes in form make for a smooth transition from the long rectangular scintillator edge to the 
round face of the PMT. (2) twisted light guide, use separate strips of Lucite. 
We’ll use the “fish tail” setup. The maximum efficiency is achieved by configuring as adiabatic 
light guide, which changes shape gradually without any sharp bent. These light guides are 
computer machined with the shape computed using optimization programs. 
 

5.2 Preparations of hodoscopes 
 

In the following the preparation of the hodoscopes is discussed. Since the hodoscopes to 
be used in the BH experiment have not yet been constructed, here we describe only the 
preparation of hodoscopes for the wire chamber test runs. Procedures will be similar for the actual 
BH experiment hodoscopes.  We first discuss the assembling of the hodoscopes, then the 
handling and cleaning to make each hodoscope ready for test runs. There is a brief description on 
setting up the test, followed by light leak check.  The last step as to set up the HV applied to 
hodoscopes to ensure that they were all operating at the same count rate for the BH electrons and 
positrons we will be detecting.  Unlike wire chambers, for which the HV on the sense wires and 
discriminator cards thresholds is the same for an entire chamber, hodoscopes are prepared as 
individual scintillator, light guide, and PMT units; the HV for each PMT is applied separately. 
This requires gain matching of all scintillators used for the same measurement. 

 
5.2.1 Assemble 
 

The assembling of the hodoscope to be used in BH experiment follows the same scheme 
of scintillator, light guide, and PMT.  Scintillators will be cut into rectangle shape with 
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appropriate dimensions, followed by sanding and polishing the surface to improve light 
transmission.  Light guides will be machined to fit the shape of scintillator and PMT on its ends.   
Silicone grease or optical cements can be used for binding the scintillator-light guide and light 
guide-PMT surfaces.  They are chosen to be close to index of refraction of the scintillator and 
glass window of PMT for better optical transmission.  It also should be noted that the optical 
transmission is depend on the wavelength of the lights and thickness of the grease or cement.  In 
addition, setting aside then apply the binding material and pressing carefully to prevent any 
formation of air bubbles and/or air gaps forming between the hodoscope components.   
For scintillators and light guides, as mentioned before, to improve external reflection, a layer of 
Al foil or mylar are loosed wrapped around the entire scintillator and light guide.  Since the 
scintillators used will be large, instead of black tape, black plastic or rubber wrap will be wrapped 
around the entire surface of both components to make them light tight.  Still, additional black tape 
will be used at joints, edges, and corners, as well as for fixing light leaks.  For PMTs, in addition 
to the light-tight requirement, magnetic shielding (MuMetal products) and a protective shell will 
be added. The Fig 5.6 below shows a pair of assembled huge hodoscopes used for wire chamber 
test runs. 
 

II 
Fig 5. 6 Hodoscopes assemble used for wire chamber test run. 

It lies on the top of upper wire chamber, with two PMT attached on its sides and metal support 
frame.  A small scintillator paddle lying across the huge scintillator is used as a reference channel 
for timing. 
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5.2.2 Handing and cleaning [37] 
 

Plastic scintillators are relatively strong under external forces, but are easily damaged by 
certain chemicals.  Care must be taken during handling and cleaning: 

1) Handling: When handling bare scintillator, one must wear clean soft cotton gloves, or 
wash hand to remove any oils as body oils can damage the scintillator. 

2) Cleaning: Plastic scintillators are susceptible to most organic solvents, their vapors and 
other aromatic compounds. The exceptions are lower alcohols, such as methanol, ethanol, 
and isopropanol.  Isopropanol is preferred as it causes less cooling during evaporation. 
Alcohols are best around epoxy joints (e.g. optical cement) but wiping motions must be 
avoided.  Clean water/soapy water followed by a clean rinse are best; a solution of 10g of 
Alconox/ a gallon of water is recommended. 

3) Drying: Oil-free compressed air is recommended. Gently patting must be done with 
clean, soft, non-abrasive cloths/ paper towels (Kimwipes). 

4) Sanding: Each step of sanding must be at right angle to the previous one. Waterproof 
sand paper, with grit 240, 400, 600 should be used. 

5) Hand Polishing: Polishing alumina, size 9 microns, on flannel cloth form paste with 
water must be used.  Scintillators should be rinsed with general purpose non-abrasive 
plastic polishing liquid. 

 
PMTs are a lot more fragile than scintillators due to the glass housing and light sensitive 

cathode window.  Thus, preventing impact and ensuring light tightness are top priorities.  The 
same applies to all the optical joints of the hodoscope.  When handling the hodoscopes, hands 
must be placed near the joints to prevent bends.  Also use cushioning, when possible, when laying 
hodoscopes. 

 

5.2.3 Light leak check 
 

Since PMTs are extremely light sensitive, when exposed to ambient light the current 
induced is much higher than the light from the excitation of charged particles to be detected.  In 
addition, operating PMTs with a light leak present causes fatigue of light sensitive materials on 
the cathode and dynodes, which can increase dark current, damage, or even destroy the PMT. 
[33] Light-leak checks must be made of all components before using them with PMTs as such 
leaks can develop during handling.  Analog oscilloscopes are better than digital counterparts for 
checking light leaks due to the sensitivity of currents on display.  To test for light leaks, we 
applied HV to a PMT and connected the PMT anode output to oscilloscope.  As cosmic rays, BH 
electrons or positrons excite multiple photons in nanoseconds the pulse heights from these 
particles are much higher than those of ambient light.  Thus, to check signals on oscilloscope, 
lower (negative) threshold of oscilloscope is applied.  For a typical test, HV was applied such that 
the pulse height from particles averaged around -150mV, where threshold has been set about -
50mV on the oscilloscope. To test for light leaks the threshold was lowered to around -10mV. 

 
Big light leak spots can be identified easily if the high intensity display on the 

oscilloscope screen is reduced when turning off the light in the room.  For wire chamber tests in 
the ESB building at JLAB making the room dark was impractical and black cloths was used. To 
check for light leaks, we covered the entire hodoscope with the cloth and used a flash light inside 
and scanned slowly across the surface of the hodoscope.  A sudden change in intensity of 
oscilloscope display was caused by light leak.  To pinpoint the leak spot, we ran a finger slowly 
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across the lit area to see if the oscilloscope screen signal darkens. Fig 5.7 below shows a light 
leak displayed on oscilloscope. 

 
Common light leak spots are corners and edges of scintillator as well as the optical joints 

when sharp corners exist.  It is also very common that holes at folds of black tapes are leak spots.  
Although only light with very constrained direction could leak into the scintillator or light guide, 
they still needed to be fixed.  Flat surfaces of scintillators should also be checked in case of pinch 
holes. 
 

To fix a light leak, clean the surface around the leak spots, remove the old tape if there is 
any near the spot and apply black tape.  There’re three good practices to follow when applying 
tapes on the leak spot: 

1) Cut open or shape the tape around the sharp corners of the assembly to match near the 
zero curvature of the tape surface.  Use force to cover with tape the kinks that could lead 
to folds or excess tension of the tape as these can easily cause a loss of light tightness. 

2) Put the tape center on leak spot and slowly spread it to each side to prevent fold and 
tension. 

3) It’s usually a good idea to add additional layer of tape on the boundary of the tape over 
the leak spot. 

Once the leak spot is taped, the spot should again be lighted with a flash light to determine if the 
fix was successful.  It should also be noted that occasionally high currents persist even after the 
hodoscope is fully covered in black cloth and the HV on PMT is reasonable.  This could mean the 
PMT is damaged and should be set aside for further analysis. 

 

II Fig 5. 7 Normal and light leak pulse from PMT. Ordinate: pulse height, abscissa: time. 

Left: Normal pulse from a PMT in hodoscope. Right: PMT signal with flash light lit the light leak 
spot. Ringing (small secondary pulses behind the main pulse) can be tolerated as long as it’s 
smaller than the discriminator threshold. 

5.2.4 Gain match 
 

After the previous steps were completed, PMTs were gain matched before being used in 
trigger and count cosmic ray events.  It is seen in section 5.1.2 that the overall gain of the PMT 
depends on the HV applied.   The manufacturer has provided suggested HV values and gains 
associated with it, but the gain verses voltage relation varies between individual PMTs. It is 
allowed to have PMTs operating at different voltage provided: 

(1) the voltage applied exceeds a certain value necessary to overcome space charge and make 
the PMT have a linear response; 
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(2) the voltage is within the range (about 1000V near recommended value for many PMTs) 
that gain is large enough and current is not so high that it can damage the dynodes. 

Since the PMT efficiency is determined by the portion of the current signals with pulse heights 
above the counter threshold, let’s investigate the factors causing the variation of pulse height. 
According to pulse shape formula (5.7, eq. 8.3): 

𝑉(𝑡) = −
𝐺𝑁𝑒𝑅

𝜏 − 𝜏௦
൤exp ൬

−𝑡

𝜏௦
൰ − exp ൬

−𝑡

𝜏
൰൨ 

 
the pulse height is proportional to gain the 𝐺 and the number of photoelectrons 𝑁. 𝑁 is ultimately 
proportional to the energy deposited in the scintillator.  The cosmic rays and BH pairs are in the 
energy region of minimal ionization where, 𝑑𝐸/𝑑𝑥, the rate of energy deposited over a particle 
track inside scintillation material is almost the same for individual particles with different energy. 
Then the total energy deposited is proportional to the length of the particle trajectory inside the 
scintillator.  This, and additional random factors causing loss of light during collection and 
transmission are the two main factors causing variation of pulse height for fixed gain.  Thus, 
when the PMTs have enough gain to make most pulses after amplification comfortably larger 
than the threshold voltage of the discriminator, the efficiency of detecting an event is nearly 
100%.  The goal of gain match is to find HV for each PMT for the required gain and making 
them have nearly the same efficiency. 

 

II Fig 5. 8 Configuration of gain match. 
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Up: Configuration diagram of gain match. A threefold AND logic applied to two reference 
paddles and the one to be gain matched after amplifier and discriminator are triggered (3-fold 
AND) for oscilloscope channel 3.  The oscilloscope displays its channel 1 and 2 from one 
reference paddle and the paddle to be gain match.  Then the HV on the paddle is adjusted to 
match the gains match.  Right: Placement of hodoscopes for gain matching.  Two hodoscope 
paddles are laid perpendicular to each other below the one to be matched.  That one is placed 
parallel to the bottommost paddle and above the middle paddle.  The trigger is set by connecting 
the two reference paddles to an amplifier, discriminator, and logic unit with AND condition, then 
to the oscilloscope. All 3 PMTs are also connected to the oscilloscope through matched 
impedance.  Thus, only pulses from tracks through the square common surface of bottom two 
paddles will be shown on oscilloscope, which shape and height varies from track to track. The 
distance of paddles trigger area, which is located near the center region of the scintillators, to 
PMTs were measured to be the same.  The setup has two major benefits: 

1) the coincidence trigger almost ensures pulses come from the same particle track and 
2) the distance from scintillation location to PMT cathode is constrained, thereby reducing 

attenuation effects of light collection and transportation (c.f., 5.1.3).  As a result, variation 
of pulse height from event to event is small. 

To match the gains, we adjusted the HV on the PMT to be matched using a single pulse display 
on the oscilloscope and checked snap shots of pulse shapes and heights from PMT to be gain 
matched and bottommost reference PMT (these two paddles are placed parallel and pulse height 
should be similar) by eye.  The pulse height of the paddle to be matched could be larger or 
smaller than the reference paddle from event to event, but if on average they are almost the same, 
then it’s considered to be gain matched.  A result of pulses shown after gain matching is shown in 
Fig 5.9.   
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II Fig 5. 9 Pulse shape of two PMTs before and after gain match. Ordinate: pulse height in unit V, 
abscissa: time in unit 40 ns. 

Pulse shape of two PMTs before (Up) and after (down) gain match, channel 2 pulse is not 
showing up here. 
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5.3 Test run trigger setup 
 

Once a number of hodoscopes have been gain-matched, they were ready for setting up as 
triggers for the wire chamber TDCs.  First, hodoscopes were usually placed in an array in contact 
with each other to cover an area.  Next, the PMTs are powered with their outputs going through 
electronics and undergoing certain logic tests.  The output of the logic unit was used to trigger the 
TDC.  Thus, both the geometry of the hodoscope placement and the logic of PMT signals   
determine the allowable particle tracks of an event. 

 
5.3.1 Trigger setup diagram 
  

Fig 5.10 below shows a simple diagram of the trigger setup of the hodoscopes.  PMT 
anode pulses are first amplified by the 10-time amplifier, then passed to the discriminator.  If their 
amplitude is higher than the discriminator threshold, the signals will be passed to the logic unit 
and, after certain logic operations, the output will be the input to TDC trigger.  The additional 
added operations include: 

1) another output of the logic unit will be connected to counter, which can be used to check 
count rate etc. and 

2) all outputs of the discriminators from any hodoscope as part of the trigger are translated 
to pulse standard by the translator, then connected to the TDC as reference channels.  
Those individual triggers are handy when analyzing the data after the raw data have been 
replayed and stored as ROOT files. 

 

II Fig 5. 10 Diagram of trigger setup of for wire chamber cosmic ray detection test run. 

Top (lying on top of the upper chamber) has 5 parallel scintillator paddles, represented by x0 to 
x4, and one (y0) perpendicular to all of them.  Bottom (lying on top of the bottom chamber) has a 
pair of perpendicular paddles.  In order to trigger common areas of paddles shown in black (top 
x2 and y0, bottom x0 and y0), the top has logic (x2 AND y0) AND (AND (NOT x0,x1,x3,x4)) to 
prevent triggering multi-track events with one track in black shade region, but some other tracks 
through red shade region. 
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5.3.2 Trigger logic and count rate, pics in replayed file 
 

Since we need to place scintillators such that particle tracks through them are also 
through both wire chambers of a set, it is good to have scintillators lie above both wire chambers 
and use the AND condition in defining the trigger.  To be specific, we had 9 small hodoscope 
paddles with dimension of about 11 by 70 cm and a larger one with dimension about 30.8 by 73.5 
cm prepared (the exact volume of scintillation area is unknown since light guide-scintillator joints 
have not been marked).  Fig 5.11 shows the physical placement of all mentioned paddles.  Five 
parallel small paddles placed above the top wire chamber are subjected to an OR logic, then to 
AND logic with the larger hodoscope which is placed above bottom wire chamber. Thus, the set 
of triggered events can be formulated as: 

 
 (∪ (5 𝑡𝑜𝑝 𝑝𝑎𝑑𝑑𝑙𝑒𝑠 ℎ𝑖𝑡)) ∩ (𝐵𝑜𝑡𝑡𝑜𝑚 𝑙𝑎𝑟𝑔𝑒 𝑝𝑎𝑑𝑑𝑙𝑒 ℎ𝑖𝑡)             (5.10) 
 
There are still 4 small paddles left, 3 of which are used as additional reference channels whose 
trigger times are stored in the TDC raw data.  One was placed on top of and oriented 
perpendicular to the 5 paddles and the other two are placed on top the large paddle with one 
parallel to the 5 paddles and the other perpendicular to them.  Such placement gave a very limited 
solid angle constraint selected with certain cuts applied to 4 paddles (two pairs placed 
perpendicular to each other).  Detail analysis is contained in “part 3 Analyzer, Chapter 2.5 
Analyzer track finding, fitting and efficiency, section 2.5.1”. 
 

Here we only give a quick estimation of the ratio of count rate of a 4-paddle “telescope” 
and the total count rate by taking product of the ratio of one square area of the “telescope” 
scintillation area to top square and 5 top paddles 𝑅ଵ and the ratio of one square area of the 
“telescope” scintillation area to the bottom large paddle  𝑅ଶ.  As all dimensions are specified 
above: 
 

𝑅ଵ =
ଵଵ×ଵଵ

଻଴×ହହ
≅ 3.14%, 𝑅ଶ =

ଵଵ×ଵଵ

଻ଷ.ହ×ଷ଴.଼
≅ 5.35%                             (5.12) 

 
Thus, 𝑅ଵ × 𝑅ଶ ≅ 0.168% and it is estimated that about one “telescope” trigger per every 595 
total triggers.  The actual value from a test run with about 1.07 million events shows the 
measured number is 1 per 562.7 events.  The lesser measured value is mainly caused by regions 
which are defined by light guides instead of the scintillator material in the measurement above. 
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II Fig 5. 11 Trigger paddles placement on chambers after gain match. 

Up: top chamber Down: bottom chamber. 
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5.3.3 Test trigger setup compare to BH experiment 
 

Although there are similarities, there are some fundamental differences between the test 
trigger setup and trigger to be used in the BH experiment.  Due to these differences, we cannot 
possibly set up a real experimental trigger during our tests.  This is discussed below. 
 

In terms of similarity, the trigger logic is similar in that coincidences of scintillator 
signals from two different planes in space are required.  For the test setup, one of these planes 
belongs to paddles above the top wire chamber, and the other belongs to the large paddle above 
bottom wire plane.  For the experiment, the two planes will belong to scintillator arrays one on 
the left side of the magnet and the other on the right side. So, instead of the logic formulated in 
formula (5.10), there is only a slight change needed for experiment trigger: 

 
 (𝑜𝑛𝑒 𝑜𝑓 𝑙𝑒𝑓𝑡 𝑝𝑎𝑑𝑑𝑙𝑒𝑠 ℎ𝑖𝑡) ∩ (𝑜𝑛𝑒 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑝𝑎𝑑𝑑𝑙𝑒𝑠 ℎ𝑖𝑡)            (5.11) 
 
Where “one of a set of paddles hit” can be implemented by a logic operation: For convenience, 
hit from arrays of paddles are labeled by 𝑃௜,  𝑖 = 1,2, … , 𝑛 if paddle 𝑖 hit. Then: 
 
 𝑜𝑛𝑒 𝑜𝑓 𝑙𝑒𝑓𝑡 𝑝𝑎𝑑𝑑𝑙𝑒𝑠 ℎ𝑖𝑡 = ⋃ (𝑃௜  ⋂ 𝑃௝

௡
௝ୀଵ, ௝ஷ௜ )௡

௜ୀଵ                             (5.12) 
 
One setback may be that 𝑃௜ ⋂ 𝑃௝

௡
௝ୀଵ, ௝ஷ௜  is not usually easy to implement using a logic unit rather 

than using code after replay, although still doable. 
 

There’re two major differences: 
(1) Cosmic particles cannot produce situation with a coincidence of a pair of charged 

particles as in the experiment.  We cannot layer 4 wire chambers, with 45° to horizontal 
plane and two arrays of scintillators one above all wire chambers and one below all to 
setup coincidence from one cosmic particle.  However, even this is the case, it doesn’t 
prevent us to successfully setting up the trigger for the experiment since trigger (5.11) 
can be set up successfully with our prepared hodoscopes.  The only major issue is that we 
must take signal transmission time into account; the two arrays of hodoscopes are placed 
about 1.5 m away from the magnet center.  Thus, cuts on the timing difference to identify 
a BH event must be carefully calibrated. 

(2) The scintillators are horizontally placed to match the wire chambers’ long axis lengths. 
Thus, the light collection and transmission is different.  Due to the length of those 
paddles (~2m), attenuation of light intensity is significant (For reference, pulse height 
ratio from the two PMTs of the same scintillator in Fig 5.6 can be as large as 5). Thus, 
PMTs are attached on both sides of the scintillators and pulses are summed before 
amplification. 
 

5.4 Scintillator setup in BH experiment 
 

Fig 5.11 below shows a sketch of the proposed assembly of hodoscopes.  The assembly 
of hodoscopes followed the standard scintillator, light guide and PMT scheme described in 5.1.3. 
Scintillators will cut into dimension about 4 inch by 2 meters with 6 of them aligned in an array 
for one side of the magnet.  Six scintillators provide a coverage width of 24 inches which is 
enough to cover the short axis dimension of a wire chamber, which is 21 inches.  Similarly, the 
length of the scintillators is enough to cover the long axis dimension.  There will be 3 PMTs on 
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one end of the scintillators, and 4 on the other end.  PMTs on each end of scintillators are offset 
by one scintillator to reduce the number of PMTs needed while still providing coincidence 
information from signals of PMTs from both ends.  For example, if there is a particle that 
illuminates scintillator S2 in Fig 5.11, then PMT L1 and R2 will render signals.  Due to the light 
attenuation along the long scintillators, their pulses will then be summed up as an event trigger. 
The mount of hodoscopes will also be constructed to serve as support.  They will be built so that 
all paddles are secured, and stresses on optical joints are prevented.  In addition, unlike the wire 
chambers, which are placed with 45° to the vertical plane to ensure enough wires are to 
reconstruct tracks, scintillators can be placed vertically as no precise location information is 
needed to be extracted from them. 

 

II Fig 5. 12 Schematic proposed assembly of hodoscopes for the experiment. 

Two of such assemble will be constructed and placed parallel to and behind wire chambers on left 
and right side of the beam. 
 

 

 

 

 

 

 

 

 

 



58 
 

 

Part III Analyzing test run data 
 

1 Basics of JLab Hall A analyzer 
 

1.1 JLab Hall A analyzer 
 

The JLAB Hall A analyzer (abbreviated analyzer in what follows) was mainly 
contributed by Prof. Ole Hansen for users to have a common and easy-to-use framework for 
calculating and storing experimental data.  The analyzer has software analysis objects that 
correspond to hardware of JLAB Hall A.  Parameters of individual detectors are embedded inside  
apparatus/spectrometers.  By combining apparatus, users can build objects called physics 
modules that make calculations for their desired results: kinematics calculations, vertex finding, 
etc. 

 

1.2 Users utilize the analyzer 
 

For users there are a few codes to write or modify to customize the analyzer for their own 
application: 

1. A replay script that defines detectors/apparatus to be analyzed, physics modules, and the 
calculation(s) needing to be done, and file/variable names; 

2. Set of database files: (1) detector database files that contain parameters and hardware 
mapping information for individual detectors, (2) run database files which define beam 
energy, etc., and (3) crate/scaler mapping database defines decoder parameters which, 
for example, maps individual hardware channels onto analyzer channels; 

3. Output definition file that defines which physical quantities are to be calculated and 
stored on disk; and 

4. Raw data (CODA file), which is a standardized form of binary data file. 
Once the above files are complete, the replay script and analyzer can be run, and the root file 
storing the calculation results will be generated. 
 

1.3 Using analyzer for BH experiment 
 

For our purpose, one of the most important tasks in preparing for the BH experiment is 
extracting reliable track information from Q-weak drift chambers (will be called VDC as vertical 
drift chamber, or wire chamber in what follows) being used.  Once the BH electron/positron 
pair’s tracks are calculated and combined with the magnetic field we can ray trace back to 
primary vertex to obtain all kinematic quantities (energies and scattering angles) of the pair, the 
distribution of which is essentially what we need to calculate BH charge asymmetry. 

 
Our application is a bit different from that at JLAB since the BH experiment has a much 

simpler spectrometer than HRS.  Another program besides the analyzer will perform the ray 
tracing; this will be discussed in Part IV Simulation.  What we need from the analyzer is to 
calculate particle tracks from raw data from VDCs.  Dr.  Sawatzky has already set up a data 
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acquisition system (DAQ) for the VDCs, the output of which the analyzer accepts.  Thus, we had 
raw data files ready after cosmic test runs provided the VDC hardware worked properly. Once we 
set up the replay script, database files, and output definition file, the analyzer will calculate VDC 
tracks (particle tracks that have been simplified as straight lines) for us, assuming its track finding 
algorithm also applies for our VDC as well as for those in the HRS.  There is also a bonus that the 
analyzer will convert raw binary data (i.e. raw drift time of VDC from TDC, for individual 
channel, into .evio format) into root file branches for easy access. 

 

1.4 Contents in this part 
 

In the following chapters we will discuss: 
Chapter 2 VDC database file setup - how the VDC database file for the analyzer is modified from 
HRS chamber geometry and channel mapping to the Q-weak wire chamber setup.  Then, after a 
brief explanation of how our replay script and output/cut definition files were written, raw VDC 
drift-time results of cosmic ray test runs are shown.  We use the raw VDC drift time distribution 
to determine TDC time offsets of each channel in VDC database file.  Once this is done, we can 
get tracking results by running our replay script. (2.3.4 Determine TDC time offset in wire 
chamber database file) 
 

The main goal of the analyzer is to reconstruct tracks from the TDC time of each wire on 
which a hit is registered.  The next three chapters discuss this issue, the algorithms are illustrated 
and test run results are shown. 

 
Chapter 3 Cluster finding and fitting - a sequence of hit wires along with their drift times within a 
wire plane representing the response of the wire chamber to a charged particle is called a cluster. 
The algorithm for finding individual clusters from collections of hits is explained.  The cluster 
fitting algorithm computes the track crossover point coordinates for the corresponding wire plane, 
which serves as input of track fitting. 
Chapter 4 Determination of time to distance conversion parameters - Drift times are converted 
into drift distances to be used for cluster fitting.  The determination of the time to distance 
conversion function, however, is independent of the analyzer and is treated separately.  Two 
algorithms based on differing minimization criteria are described.  Then, a more commonly used 
algorithm is chosen, based on the uniformity of the distance distribution through the conversion. 
Then the conversion function is represented by either a fitting function and its parameters or an 
interpolation through a generated (drift time, incident angle, drift distance) table. 
Chapter 5 Analyzer track finding and fitting algorithm - Test run track fitting results from a 
specific trigger setup is shown, with the validity of the fitted tracks confirmed by checking 
geometrical constraints of the trigger.  The track fitting efficiency of single-track events from the 
test run is computed, along with suggestions for its improvement.  The end of the chapter 
discusses two misc. topics, estimation of track reconstruction (angular and position) resolution 
and the effect of a bad wire. 
Chapter 6 Other files that are required to generate root file are briefly introduced. 
Chapter 7 Other rudimental results analyzed from root file are shown as a credibility check. 
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2 VDC database file setup 
 
For more information about VDC hardware, see Part I Apparatus Chapter 5 Wire 

chamber. 
 

2.1 The use of database file 
 

When a particle propagates through a VDC, it ionizes the inert gas inside the wire plane 
along its track.  Ions then drift to cathode wires of the wire plane under high voltage within wire 
plane of the VDC.   In the process capacitance of the wire plane is changed and signal pulses are 
generated at sense wires.  Since there is a one-to-one correspondence between drift time and drift 
distance (non-linear), by knowing the drift time from a TDC of the VDC we can compute drift 
distance, which is the distance (measured perpendicular to VDC wire planes) from where the 
particle track passed the corresponding sense wire.  By fitting the drift time of a cluster we can 
reconstruct the projected angle between track and the line linking sense wires (in the plane 
perpendicular to all sense wires in a wire plane).  That determines one component of the direction 
vector, to get another component we need another wire plane parallel to the first wire plane with 
sense wires oriented in a different direction to wires in the first plane.  The complete track fitting 
process determines both projection of the track on the 1st wire plane, represented by (x, y) 
coordinates of the track intersection on the 1st wire plane, and the track direction, represented by 
projection angles (tangents of which are change of (x, y) over distance between front and back 
chamber) (𝜃, 𝜑).  In summary, by using the analyzer we acquire track fitting results using the 
following sequence of steps: 

(1) decode TDC raw time data to get a collection of all hit (sense wire indices, raw time) 
pairs in each wire plane; 

(2) through cluster finding, clusters of (sense wire, drift time) pairs in each wire plane as 
candidates for track calculation; 

(3) through time to distance conversion, convert drift time to drift distance to get (sense wire, 
drift distance) pairs of each cluster; 

(4) fit each cluster of each wire plane to find their intersection on the wire plane.  The 
intersections are represented as either u or v coordinates (wires in wire planes lie in 
different directions than x, y directions, thus been represented as u or v coordinates which 
lie along the direction perpendicular to its corresponding wire direction) depending on 
which wire plane is being calculated; and 

(5) use (𝑢ଵ, 𝑣ଵ) and (𝑢ଶ, 𝑣ଶ) coordinates from each wire plane to solve for pairs defining 
particle tracks (x, y) (𝜃, 𝜑), and store track fitting results in a ROOT file. 

 
The role of database file here is to provide necessary information for the analyzer (its 

THaVDC and THaVDCPlane classes) to reconstruct the tracks described above.  That 
information includes: (1) mapping of sense wires to TDC channels, (2) some cuts as part of 
criteria for determining cluster, (3) raw time offset of each channel, (4) time to distance 
conversion parameters, and (5) wire plane geometry.  For example, wire angle entry in database 
file specifies angle between x axis and u or v axis, thus wire locations and track intersection on 
wire planes can be determined.  Thus, setting the VDC database file parameters is crucial to the 
analyzer’s ability to render correct track reconstruction results.  In the process of assigning 
correct parameters for the database, multiple checks were conducted before and after replaying 
test run data, until all values and results were consistent. 
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2.2 Four main categories of parameters 
 

1. Physical parameters: they are usually applied for all physical components in the 
individual VDC.  For example, these include drift velocity, TDC time resolution, 
parameters which determine cuts on finding clusters, and time to distance conversion 
parameters. 

2. Geometric parameters: parameters that uniquely determine the spatial location of each 
wire in each wire plane.  These include wire plane locations, wire angles, wire spacing, 
etc. 

3. Detmap: it generates a one-to-one mapping of each (wire plane#, wire#) to (crate#, 
module#, channel#) of a TDC.  That is, it maps each hardware channel to a software 
channel. 

4. VDC raw time offset of individual channel: for different channels, it takes a different 
time for signals to propagate through read-out electronics (partially resulting from 
different lengths of ribbon cables connecting discriminator cards and TDC).  Setting raw 
time offsets will eliminate real time offsets for each channel which could affect the values 
of reconstructed track coordinates since drift time and drift distance are related. 

 

2.3 Determine parameters in database file 
 
The analyzer finds parameters in database this way: 1) In the replay script, initiates a 

THaHRS object, and name the instance “B” 2) Add a VDC type detector to the THaHRS object 
3) in the default database directory DB/ write VDC database file and set filename to db_B.vdc.dat 
4) run the replay script in analyzer (ReadDatabase() function in THaVDC class will read the 
database) and VDC related tracking result will be stored in root file with root tree branch with 
prefix “B.” 

 
1.3.1 Global physical parameters 

All units used in database files are SI units. 

1) B.vdc.driftvel = 55000, (unit m/s) is the drift velocity of argon ions in wire plane.  The wire 
chamber has 1 inch (2.54cm) thick wire plane filled with test gas; thus, maximum drift distance 
will be 1.27cm.  Drift time data collected in TDC is about 225 ns. Thus 55,000 m/s is a good 
approximation for current use, it obeys relation  𝑑 ≅ 𝑣ௗ௥௜௙௧ × 𝑡 . (Drift velocity depends on 
electric field of wire plane, thus depends on high voltage applied to VDC and location of the ion 
inside wire plane, here the driftvel is approximation of drift velocity when it is enough far from 
sense wires that electric field is uniform)  
2) B.vdc.tdc.min/max = 0/4096, are the lower/upper limit of raw time (in TDC unit) will be 
registered as a wire hit. They have been set to min/max possible values the analyzer allowed. 
3) B.vdc.tdc.res = 5 × 10ିଵ଴, (or 0.5 ns) is one TDC time unit. 
4) B.vdc.ttd.param, time to digital conversion parameters, 9 floating numbers. (FIXME: Will be 
discussed in time to distance conversion section) 
5) B.vdc.t0.res = 6 × 10ିଽ, (or 6 ns) is the average resolution of cluster time offset fit. 
 

The parameters below are related to criteria applied when analyzing collections of 
(sequence of wire index, drift time) pairs of all hits from all wire planes in an event of each wire 
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plane.  They are used to separate the clusters into continuous pieces and to determine if each 
piece is a full cluster in the context of 2.2.1; Fig. 2.1 is an illustration. 

 
6) B.vdc.clust.minsize = 3, is the minimum size of the wire sequence to qualify as a cluster, i.e., 
the number of channels with raw-time data.  As a particle propagates through a wire plane, the 
distances between the track of a particle and the corresponding sense wires are first decreasing 
then increasing as the track passes through the midplane.  Thus, drift times will also first decrease 
then increase.  The drift time vs wire-index graph will be a V shape.  Since time data from 3 wires 
is the minimum required to define the time vs index V shape, that’s how the minimum cluster size 
has been set. 
7) B.vdc.clust.maxspan = 12, the maximum span (max index of wire minus min index of wire +1) 
of a cluster.  Span is somewhat different than size, since there could be a situation when a certain 
wire in the cluster provides no signal.  Such wires are regarded as a gap in the cluster.  They will 
be included in the span of a cluster but not in the size of the cluster. 
8) B.vdc.maxgap = 1, the maximum number of gaps of wires allowed in a single cluster.  This 
takes defects in the wire chamber into account as some wire(s) could be bad or have abnormally 
low efficiency and thus render no signal in certain events even if they should.  Here it means 
allowing gap of one wire within cluster. It should be noted that there could be multiple gaps in a 
cluster. 
9) B.vdc.tdiff.min/max = 0.0/ 3.0 × 10ି଻s, the minimum/maximum drift time difference between 
adjacent wires in a cluster.  Below is the approximate formula for tdiff: (see Fig. 2.2, also see 
Appendix A 1.2 for the definition of 𝛿௨ or 𝛿௩ if considering v,z plane; in the appendix 𝑑ௗ௜௙௙ is 
denoted by ∆𝑑): 
 

𝑡ௗ௜௙௙ =
ௗ೏೔೑೑

௩೏ೝ೔೑೟
=

௦

௩೏ೝ೔೑೟
tan 𝛿௨                       (2.1) 

 
𝑑ௗ௜௙௙ is the drift distance difference between adjacent wire, 𝑣ௗ௥௜௙௧ is the drift velocity, 𝑠 is the 
wire spacing, and 𝛿௨ is the angle between a track and the line linking wires in the projected plane 
perpendicular to the wires. 
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III Fig 2. 1 An example of a cluster. 

An example of a cluster with size of 7 (7 wires have signal) and a span of 8 Wires.  Wire with #6 
is not counted in cluster size since it has no signal, but is included in cluster span.  Maximum gap 
set to 1, so it allows the gap at wire #6. 
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III Fig 2. 2 Relation between drift time difference and drift distance difference. 

Or between drift time difference and the slope of the track in projection plane perpendicular to all 
wires. 

As an approximation, in the Q weak chambers we use: 𝑠 ≈ 0.5𝑐𝑚, 𝑣ௗ௥௜௙௧ ≈

55000 ቀ
௠

௦
ቁ ⇒ 𝑡ௗ௜௙௙ ≈ 9.1 × 10ି଼𝑡𝑎𝑛 𝛿௨(𝑠).  For examples, (1) 𝛿௨ = 45° , 𝑡ௗ௜௙௙ ≈

9.1 × 10ି଼ = 91(𝑛𝑠) and (2) in an extreme case, 𝑑ௗ௜௙௙ = 0.5" =  1.27𝑐𝑚, which is half a wire 

plane thickness.  In this case the maximum possible 𝑡ௗ௜௙௙ =
ௗ೏೔೑೑

௩೏ೝ೔೑೟
=

ଵ.ଶ଻௖௠

ହହ଴଴଴(௠/௦)
=

2.31 × 10ି଻(𝑠) , which is still less than tdiff.max = 3.0 × 10ି଻ (s).  It means that tdiff.max is a 
pretty relaxed condition, only to exclude abnormal time difference values, such as in the case of 
noise.  
 

2.3.2 Geometry parameters 

We assign geometric parameters to uniquely determine the location and direction of each 
individual wire in each wire plane.  Since 1) all wires in a wire plane are parallel, we only need 
one parameter (i.e. wire angle) to determine their direction and 2) the (absolute value of) wire 
spacing is also the same for all adjacent wires in all wire planes.  Thus, the only coordinate 
(including x, y, z) of the 1st wire in each wire plane is left to be designated and the geometry is 
completely determined. The analyzer utilizes this coordinate system for HRS wire chamber as 
well.  The following notation is used: 

1. wire spacing in the analyzer is defined as the perpendicular distance between adjacent 
wire; 

2. in the analyzer, wire spacing is assumed to be the same for all wire planes but in practice 
the wire spacing varies slightly from wire to wire; 



65 
 

 

3. the analyzer regards all wires as having ‘infinite’ length.  Thus, invalid track can result in 
a track intersection point on the u or v plane lying outside the active area of the wire 
plane.  Such events were eliminated by an added cut. 
 

Coordinate system 
 
Coordinate axes 
 

 X: (Primary) projected direction of tracks, parallel to short side of drift chamber.  In 
projected plane parallel to wire plane, the +x direction points from the center of the bottom wire 
chamber to the center of the top wire chamber.  Since there is a shift in projection between two 
wire chambers within a pair of wire chamber, a line segment linking the two wire chambers is at 
45° to wire planes.  Unlike the case of the HRS, our x-axis is parallel to the side of spectrometer’s 
non-dispersive direction. 

 
Z: Perpendicular to wire planes, pointing from the bottom wire chamber to the top, larger 

z-position is further from target. 
 

Y: Chosen to make x-y-z right hand orthogonal coordinate system. 
 

Wire axes 
 
U, V axis: 
(1) Wire plane axes are perpendicular to wires in corresponding wire plane. 
(2) Parameters in the database file such as wire.spacing and wire.start are measured along these 
axes. 
(3) Angle 𝛽 and 𝛾 are in wire.angle. Wire.angle is measured from x axis in and lie in the x-y 
plane. 
If the axis (u or v) has acute angles with respect to the x- and y-axes, then wire.angle of the u/v 
axis is positive.  If the axis has an acute angle to w.r.t. the x- and –y-axes, then wire.angle of the 
u/v axis is negative.  The origin of u, v, x, and y axes coincides with the center of the 1st wire 
plane; it is the origin of the whole coordinate system in x, y projection plane.  For the analogous 
HRS coordinate system see Fig. 2.2.3. For BH coordinate system see Fig. 2.2.4 and Fig. 2.2.5. 
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III Fig 2. 3 Coordinate system illustrated for HRS chambers. 

[38] p. 338, Fig. 27. Shown is the top view of the wire plane and VDC detector coordinate 
system.  The u and v (mislabeled as y-axis in the figure) axes are perpendicular to wires of the U 
and V planes respectively and point in the direction of increasing wire index.  The x-axis lies in 
the wire plane and points along the spectrometer dispersive direction (parallel to the long side of 
HRS VDC frame, and short side of BH VDC frame) such that 𝑥ௗ௘௧ increases as momentum 
increases.  𝑧ௗ௘௧ points in the vertically upwards direction and 𝑦ௗ௘௧ is oriented along the non-
dispersive direction (HRS chambers) to form a right-handed coordinate system.  The u and v axes 
form angles 𝛽 and 𝛾 with respect to VDC x-axis.   For all VDCs, 𝛾 = 45°, and 𝛽 = - 45°. (HRS 
setup, as shown above) 
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III Fig 2. 4 Coordinate system and wire dimensions of wire chamber. 

In the top view the z-axis is pointing out of page; in the side view the y-axis is pointing out of 
page.  All lengths are in inches, but in database file they will be converted to meters.  The dashed 
line represents the upper side of the bottom wire chamber. 
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III Fig 2.5 U-axis and computation of absolute value of wire.spacing.   

The average wire spacing along long axis of wire plane is 11.07 mm.  The wire angle of 26.45° 
was measured during construction of the chambers. 
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Database file units: 

(1) all lengths are in meters; 
(2) all angles are in degrees; database naming convention for wire planes from bottom to top: u1, 
v1, u2, v2 for the test run setup. In the experiment, u1 will be the frontmost wire plane. 
 
Database file entries 

(1) B.vdc.nwires = 279 is the number of wires in a single wire plane; 
(2) B.vdc.u1/2.wire.angle = 26.45, B.vdc.v1/2.wire.angle = -26.45. B.vdc.u1/2.wire.angle 
corresponds to angle 𝛽 in Figure 2.3 and B.vdc.u1/2.wire.angle corresponds to angle 𝛾 in Figure 
2.3. 
3) wire.spacing = -0.00493 (m); its absolute value is the perpendicular wire distance and is also 
the wire coordinate difference between adjacent wires along u- or v-axis.  The reason for 
choosing the negative sign is because the 1st wire (wire with index 0) in each wire plane is chosen 
such that it has largest u or v coordinate of all wires in corresponding wire plane. 
4) B.u1/v1/u2/v2.wire.start and B.vdc.u1/v1/u2/v2.position are determined simultaneously. The 
center of bottommost wire plane is the origin of the coordinate system.  Position and wire.start 
combine to determine location of the 1st wire (wire with index 0) in each wire plane.  For 
example, assume the unit base vectors are  𝑥ො = (1,0,0), 𝑦ො = (0,1,0), 𝑧̂ = (0,0,1), 𝑢ො =
(𝑐𝑜𝑠𝛼,  𝑠𝑖𝑛𝛼,  0),  𝑣ො = (𝑐𝑜𝑠𝛼,  − 𝑠𝑖𝑛𝛼,  0), where 𝛼 = 26.45° = 𝛽 = −𝛾 (see wire.angle entries). 
If the wire plane position gives three values (𝑥, 𝑦, 𝑧) and the wire.start gives one value 𝑢 (𝑜𝑟 𝑣), 
then a point on the 1st wire in each wire plane has coordinate: 
 

𝒓 = 𝑥𝑥ො + 𝑦𝑦ො + 𝑧𝑧̂ + 𝑢𝑢ො                      (2.2) 
 
For all wire planes when 𝑥 = 𝑦 = 0 , 𝑧 equals to 0,  0.0254 m, 0.3937 𝑚, 0.4191 𝑚 for u1/ v1/ 
u2/ v2 (c.f. side view in Fig 2.2.4).  In terms of database file entries: 
B.vdc.u1.position = 0 0 0 
B.vdc.v1.position = 0 0 0.0254 
B.vdc.u2.position = 0 0 0.3937 
B.vdc.v2.position = 0 0 0.4191 
(See Fig. 2.2.6)   
 
For the bottom wire chamber’s wire.start: There are 279(nwires) wires in bottom wire plane, with 
its center at 𝑈 = 𝑉 = 0.  The U/V coordinate of the1st wire B.u1/v1.wire.start = 
wire.spacing*(B.vdc.nwires-1)/2 = 0.00493 * (279-1)/2 = 0.686 (m).  The center of the 
bottommost wire plane is the origin. For B.u2/v2.wire.start, 0.3937 m shift in the x direction 
induces a shift in the u direction of 0.3937 * 𝑐𝑜𝑠26.45° = 0.35249 𝑚): B.u1/v1.wire.start= 
B.u1/v1.wire.start+0.35249 = 1.03811 m.  All geometry database entries are thereby determined. 
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III Fig 2. 6 Computation of wire.start and determine sign of wire.spacing. 

 

 

 

 

2.3.3 Determine wire mapping in wire chamber database file 

 

The purpose of wire mapping is to map each physical wire in each wire chamber to an 
indexed wire in the analyzer.  Since there is only a finite number of wires, all the mapping here is 
a finite, discrete one-to-one map.  There are three sets needs that must be mapped to each other: 

Set 1: Sense wires in wire chambers. 
Set 2: Channels on TDC. 
Set 3: Wire indices in each wire plane in analyzer. 

These three sets are directly or indirectly mapped to each other by: 
Set 1 is mapped to set 2 by physically connected wires through discriminator cards to ribbon 
cables into TDC. 
Set 2 is mapped to set 3 through “B.vdc.u1/v1/u2/v2.detmap” entries in VDC database file. 
Set 1 and set 3 also mapped each other by wire indexing conventions of wires in the analyzer 
as described in the last section. 

 
The last mapping is trivial since wires in a wire plane can be set from 0 to 278 (279 wires 

in a wire plane) by their increment or decrement of the u/v coordinate on the wire chamber.  The 
other two are not trivial, since channels in each wire plane are divided into smaller sets of 
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channels; for example, into 16 channels per discriminator card, or into 96 channels per TDC 
module.  This introduces some reordering and flipping.  Thus, here we only describe how the first 
two mappings are deduced. 
 

In this section, we will first discuss the main factors to consider to ensure the correct 
mapping, then the systematic procedure to determine the “detmap” entries in database file, 
followed by an example.  Before we continue, the format of the wire mapping in the database 
followed by “B.vdc.u1/v1/u2/v2.detmap =” are lines (number of lines is not fixed) with 5 non-
negative integers separated by spaces.  Their meanings are: (1) crate index of TDC, (2) module 
index of TDC, (3) starting channel index of the TDC module, (4) ending channel index of the 
TDC module, (5) corresponding index of wire in analyzer corresponding to channel in (3). 
In short, the first four numbers represent a set of consecutive channels on a wire chamber mapped 
onto a TDC, the last number is the analyzer wire index mapped to first of the channels 
represented by the first four numbers.  For example: a line 21 10 32 47 0 means TDC crate 21, 
module 10, begin from channel 32 to channel 47, will correspond to channel 0 (to channel 15) in 
the wire plane. 
 
Factors under consideration: 

1. the are 279 wires in a wire plane, thus number of channels contained in a “detmap” for a 
wire plane should also be 279; 

2. Only 183 = 16 × 12 − 9 channels are active.  Since 279 = 16 × 18 − 9, there are 18 
discriminator cards for each wire plane, with one card having 9 inactive channels. 
However, we currently connect 12 cards per wire plane based on the acceptance 
investigation using a Geant 4 simulation.  In addition, the 9 inactive channels are located 
in the middle wires (in card 9 or 10 of the plane, not on either end) so -9 is always 
presented in 12 consecutive discriminator cards.  Thus, a slot of a TDC only contains 7 
channels for “detmap”, before or after the line (in context of last page) so the last number 
won’t be divisible to 16. (Fig. 2.7) The remaining 6 cards/ 96 inactive channels will be 
mapped into non-existing channels on the TDC.  This is acceptable since there are no 
drift time data coming from them to affect track calculations from the active wires; 

3. There are 12 ribbon cables connecting discriminator cards to TDCs, with printed labels. 
They facilitate checking of mapping wires to TDCs.  The labeling was done before the 
study of the analyzer wire indexing convention.  Thus, the 1st cable might correspond to 
last 16 channels rather than the first 16 channels as in the analyzer convention. 

4. The active area of wires starts from the corners on the short sides of a wire chamber, but 
in analyzer coordinate convention 1st wires on both wire planes lie on a long side of wire 
chamber. Thus, V wire planes have active wires as wire 96 to 278 rather than wire 0 to 
182 in analyzer convention. (Fig 2.9) 
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III Fig 2. 7 Nine inactive channels from card U9 of chamber 1,2. 

They are at the corner of the chamber, but in the middle of wires. 

 

III Fig 2. 8 Full set of labeled cards in chamber 1 or 2. 

Every 6 cards spatially located close to each other are bundled together to ribbon cables, thus 
from this diagram, U4 to U9, V10 to V12 and U1 to U3, V4 to V9, U10 to U12 and V1 to V3 are 
4 groups of 6 cards plugged into 4 modules in TDC.  
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5.   The active area of wires starts from corners on short side of wire chamber, but in analyzer 
coordinate convention 1st wires on both wire planes lie on a long side of wire chamber. V 
wire planes has active wires as wire 96 to 278 rather than wire 0 to 182 in analyzer 
convention. (Fig 2.9) 

 

III Fig 2. 9 Schematics of active U/V wires in chamber 1 or 2. 

Since U/V wire with index 0 defined in analyzer is on top left/right corner of their corresponding 
wire plane. 
Thus, active U wires correspond to wire 0 to 182 in analyzer U plane, and V wires correspond to 
wire 96 to 278 in analyzer V plane. (c.f. Fig 2.6) 
 

6.   Polarity of ribbon cable connector result in the need of reversing inner channels of half of 
the discriminator cards in database file to make wire continuous (Fig 2.10): all TDC 
modules are facing one side, makes right side of card with smaller label (with higher 
indices in the module) always adjacent to left side of card with larger label. However on 
wire chamber, connectors are facing opposite direction, makes cards on one side of wire 
chamber has same relative location as cards on TDC, but on the other side of the chamber 
left of smaller labeled card will adjacent to right of larger labeled card.(See Fig 2.11 
example) In database file, if a group of consecutive labeled cards are making wires 
continuous, they will be grouped together in one line of “detmap” entry, otherwise, all 
channels within each slot needs to reverse inner channels to make continuous wire. 
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III Fig 2. 10 Six discriminator cards have to be reverse their channels. 

Reverse internally to make hit counts vs wire indices continuous. 
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III Fig 2. 11 Chamber 1,2 U wire mapping. 

Top: U cards on U plane.  L, R indicate the polarity of how the ribbon cables are connected to 
chamber.  Upper left is wire 0, wire drawn in the middle of U plane is the last wire of card U12 as 
last active wire (wire 182) of the U plane.  Bottom: Cards plugged into TDC slots. Upper 
numbers 17, 16, 15, 14 indicate module number of TDC, V1 to V12, U1 to U12 for a total of 24 
cards on the of bottom wire chamber 2 which are plugged into the 4 modules of TDC.  L, R 
indicate the polarity of how ribbon cables are connected into the TDC.  Note: Shaded regions in 
card U9 of both top/bottom diagrams indicates location of the 9 inactive channels on wire 
chamber/TDC. They should be excluded in “detmap” line including card U9 channels.  
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Systematic mapping procedure 

1. Identify active wires in the wire plane corresponding to wire 0 to 182 or wire 96 to 278 in 
the analyzer wire plane. Set the remaining unconnected channels to nonexistent modules. 

2. Match cards (1 to 12 for each wire plane) in incremental order as analyzer wire indices. 
3. If polarity (explained on last page) of how a ribbon cable is plugged into a TDC is the 

same as how the cable is plugged into a wire chamber, group these cards together and 
note that all cards in the group will be represented by continuous wires in the analyzer. 
Otherwise, reverse the first/last channels inside TDC start/end channel number entry in 
database file for each card. 

4. While writing database file, also note the 9 inactive channels in the middle of each wire 
plane and exclude corresponding channels on TDC from the database file.  Then, the 
starting index of the next card will be +7 (7 active channels in the card) of this card 
instead of +16. 

 

Example: Chamber 1,2 U wire mapping (See Fig 2.11) 
1. All implemented cards (U1 to U12) will map to wire 0 to 182 in the database file. 
2. Compare to TDC card map (Note: when plugging into a TDC, an arbitrary card (either U 

or V card) N is always below card N+1, so R(ight) side of card N is always adjacent to 
L(eft) side of card N+1.  If a ribbon cable is plugged into the chamber following the same 
pattern (polarity), they will be continuous in the meaning described before, and vice 
versa.  Also note that the right side of each card will be a smaller channel of the TDC 
module.  In chamber 2: Card U1 to U9 are discontinuous (For example Left side of card 
U1 is adjacent to Right side of card U2 when ribbon cables plugged from top. While 
Right side of card U1 is adjacent to Left side of card U2 when they’re plugged on TDC 
module 14) while cards U10 to U12 are continuous. 

3. nine empty cards are at the Left side of U9. (Indicated by shaded area) 
 
2.3.4 Determine TDC time offset in wire chamber database file 
 
Significance of TDC time offsets 
 

We have described the following entries in the wire chamber database file: 1) physical 
parameters, 2) geometric parameters that define coordinate systems and location of each 
individual wire, and 3) the mapping that mapping of every TDC channel to a wire in the analyzer. 
For track fitting, we need location of each wire and drift distance of each hit wire.  The location 
of each wire is determined by geometric parameters, while drift distances to wires are computed 
from drift time data. 

 
Without knowing the details of the time to distance conversion function, one can still 

deduce that: 1) greater drift times correspond to greater drift distances; thus, the function is 
monotonically increasing and 2) zero drift time corresponds to zero drift distance.  Drift time is 
computed from TDC time (or raw time as named in analyzer).  The TDC starts counting time, in 
TDC units, after the trigger, and stores the time when the signal from a sense wire reaches a TDC. 
Thus, TDC stores time in reversed order from real time and the conversion formula from TDC 
time 𝑇 to real time 𝑡 is: 
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𝑡 = −(𝑇 − 𝑇௢௙௙௦௘௧) × 𝑢𝑛𝑖𝑡                       (2.3) 
 

This is a simple linear relation, much simpler than the time-to-distance conversion.  The TDC 
raw time offset 𝑇௢௙௙௦௘௧ of each TDC channel is the only parameter left to be determined.  These 
offsets can be defined as time (in TDC unit) taken for a signal propagating from a sense wire to a 
TDC.  There are multiple sources of this offset, for instance length of ribbon cable linking 
discriminator card to TDC varies (see TDC raw time data in Fig. 2.15).   
 

  
III Fig 2. 12 Drift time vs hit wire indices of matched clusters. Ordinate: Drift time in 𝜇𝑠, 
abscissa: channel index no unit. 

Of each wire plane of a given event. For example: if all hit wires in a cluster have drift time 
shifted the same amount to be larger, then all drift distances will go up.  As a result, during track 
fitting, (absolute value of) slope fitted will increase. Thus, calibrating raw time offset is necessary 
for accurate track fitting. 

Determination of TDC time offsets 
 

We define the TDC time offsets as follows: assuming a drift distance distribution of a 
large number of events/tracks for all wires is uniform (see Fig. 2.13).  To justify this assumption 
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consider a single track.  Drift distances have equal intervals and therefore contribute a number of 
equal interval points in the distribution.  For the 8 wire (spanning 7 wire distances of the u or v 
coordinate) hit track in the figure, with wire plane thickness 1 inch, an example of drift distances 
can be 1.25, 0.90, 0.55, 0.20, 0.15, 0.50, 0.85, and 1.20 cm.  For a large number of tracks, we can 
assume a track with same direction as this track but with a translation will also contribute to drift 
distance distribution, and result in a uniform distribution.  In addition, different tracks will have 
different number of hit wires and drift distance intervals.  Similarly, they with all have 
translations of their tracks which also make uniform contributions to the drift distance 
distribution.   

 
According to above assumption, the real drift time distribution can be approximately 

separated into two regions (see Fig. 2.14):  
1)   where the track is away from sense wires, the electric field is approximately uniform and 

perpendicular to wire planes, and drift speed will be approximately uniform. Drift time 
distribution will be approximately uniform in this region since drift time and distance are 
linearly related, and 

2)   where the tracks are close to wires, the electric field is nonlinear and becomes much 
stronger closer to the wire, resulting in increased drift velocity.  Since drift speed 
increases, electrons drift through same distance in shorter time. Thus, the drift time 
distribution in this region will have a distinct peak (higher frequency in distribution) in 
this region. 

 

III Fig 2. 13 Copy of Fig A1.4 Relation between drift distance ∆𝑑  and 𝛿௨. 
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III Fig 2. 14 Typical drift time distribution for a wire plane. Ordinate: counts no unit, abscissa: 
drift time in ns. 

(Data from HRS chamber U1 plane), non-zero counts at 0 drift time here are due to background 
noises. 

 

As mentioned earlier [formula (2.3)], TDC time is closely related to real drift time.  Since 
all TDC channels share the same ending trigger, the TDC times are reversed with respect to real 
time, shifted by an offset, and scaled by its unit (0.5ns per TDC unit); larger TDC time 
corresponds to smaller real time and vice versa (see Fig. 2.15 for cumulative TDC time 
distribution of one discriminator card).  According to the previous definition of TDC time offset, 
time (in TDC units) is that taken for the signal to propagate from the sense wires to the TDC. 
TDC time offset can also be defined as: TDC time where the peak in TDC time distribution of the 
channel drops down to zero (excluding background noise), in TDC time units.  Remark: The 
definition is not strictly defined. Based on different shape of the peak in drift time distribution 
from different wire chambers, some adjustment can be made.  Remark: Credibility check of TDC 
time unit is done by recording TDC time differences in a data file using a pocket pulse generator 
as signal, and comparing the corresponding time difference between consecutive pulses on an 
oscilloscope. 
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Procedure to determine TDC time offset 

 

1) We first acquire the TDC time distribution. To access the TDC time, we utilize the decoder 
portion of the analyzer to convert raw binary data of TDC time into ROOT format.  The TDC 
time data are stored by channel in a ROOT file with each channel indexed.  This is different from 
detmap entries in the VDC database file, which maps (crate, slot, group of channels) numbers on 
a TDC to (wire plane, group of wires) numbers. Here we use a decoder database file called 
db_D.dat to map all (crate, slot, channel) numbers on TDC to just channel indices. 

T1144 crate 21 14 88 

means TDC crate 21, slot 14, channel 88 raw time data will be stored in analyzed ROOT file 
entry D.T1144) 
2) Perform cosmic ray test runs for a pair of chambers to collect enough raw time data to make 
the raw time distribution histogram smooth when bins are finely divided for fitting of the peak. 
Since the data rate from cosmic ray is low, we collected enough data for every 16 channels, 
which is the number of channels per discriminator card.  Offsets for all channels in each 
discriminator card are the same to a good approximation. 
3) Run replay script to convert all raw data file into a ROOT file which contains all TDC time 
data for each wire.  
4) Fill each discriminator card raw time data into a ROOT histogram.  
5) Extract counts in each bin in those histograms. Perform a linear fit of all histograms from peak 
to bottom of the TDC time distribution.  The calculated intersection between the fitted line and 
the abscissa is the TDC time offset (Fig 2.16). 
 

Weighted least chi square fitting was used for finding the offset, that is if we have entries 
of histogram bins with TDC time and counts (𝑡௜,  𝐶௜) with error for counts as 𝜎௜ and negligible 
error for TDC time. Assuming linear relation between 𝑡௜ ,  𝐶௜ in the portion of TDC time 
distribution falling from peak to bottom.  Assuming linear relation 𝐶 = 𝑎𝑡 + 𝑏, then fit 
parameters are: 
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𝑁 is the number of bins used in fit. 
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III Fig 2. 15 TDC time distribution for 16 channels in the same discriminator card. Ordinate: 
counts no unit, abscissa: TDC time in TDC unit (0.5 ns). 

From data of a cosmic ray run,  using a bin size of 2 TDC unit (1ns) for fit.  The time offset is 
defined by intersection of linear fit of the down slope from the peak.  

 

III Fig 2. 16 Linear least chi square fit result for TDC time offset. Ordinate: counts no unit, 
abscissa: TDC time in TDC unit (0.5 ns). 
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The starting and ending bin centers are 1881 and 1895, which were manually picked.  The reason 
for manually picking the starting/ending bin rather than using the code to find bin with maximum 
count and fit between bin with values between a high percentage and a low percentage of 
maximum counts is if the discriminator card is noisy the maximum count value could be higher 
than the maximum of the “real” peak. 
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3 Cluster finding and fitting 
3.1 Introduction [39]  
 

When a charged particle passes through a wire chamber, a sequence of adjacent wires 
register hit signals.  This is called a cluster.  From the wires of the cluster, viewed in the 
projection plane perpendicular to all wires, a straight-line segment perpendicular to the wire in 
the projection plane can be drawn and intersect the track projection.  Thus, ions from ionized inert 
gas atoms will drift to wires of the cluster due to the potential difference generated by the cathode 
plane on upper and lower side of the gas layer.  See next page for a typical cluster (Fig. 3.1 or 
Fig. 25. from Ref. [39]).  It should be noted that the concept of wire plane has two related 
meanings here.  One is the entire volume of the gas layer with thickness 1 inch for the wire 
chamber and the other is a geometric plane that passes through all sense wires’ central axes.  It’s 
easy to distinguish them in context. 
 

Here are some additional concepts relative to clusters. The pivot wire of a cluster is the 
wire which is the closest to particle trajectory and also with the least drift time.  The crossover 
point is where the particle track intersects the wire plane.  Drift distance 𝑑௜ and drift cell 𝐶௜ are 
defined in description of the Fig 3.1.  Thus, to specify a cluster with all drift information it 
contains, we only need to specify pairs (𝑛௜, 𝑑௜) of all wires in the cluster, where 𝑛௜ is the wire 
index (of the wire plane) of the 𝑖th wire of the cluster. 
 
 Cluster finding is the process of identifying all individual clusters of each wire plane in a 
triggered event from hit collection.  As a particle passes through the wire plane, from the first 
wire in the cluster to the last, the drift distances 𝑑௜ first decrease then increase, same as drift times 
𝑡௜.   Thus, when plotted the data points (𝑛௜, 𝑡௜), will define a V shape, as we’ll visualize later in 
3.3. This is the key point of cluster finding. 
 

Cluster fitting is the process immediately after cluster finding and time to distance 
conversion that converts pairs (𝑛௜, 𝑡௜) into (𝑛௜, 𝑑௜) and which fits (𝑛௜, 𝑑௜) to a “straight line”.  A 
straight line is the fitted result of particle trajectory inside the projection plane (the plane 
perpendicular to all wires in the wire plane; see Fig. 3.1).  We obtained two important pieces of 
information from the fit: 1) the crossover point’s 𝑢 or 𝑣 coordinate and 2) the slope 𝜏 = 𝑡𝑎𝑛(𝛼௨) 
or 𝑡𝑎𝑛(𝛼௩) based on the wire plane in Fig. 3.1.  The crossover point coordinates of all 4 wire 
planes will be used to calculate particle trajectory and the slope 𝜏 will be used to compute the 
local track direction, which can be further compared with the global track direction 
(𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) to estimate the cluster span. 
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III Fig 3. 1 A typical cluster of thits in a VDC plane. 

From Basic instrumentation for Hall A at Jefferson Lab (Hall-A-NIM) (Fig. 25. from Ref. [39]) 

Thus, the cluster finding and fitting process provides results as direct input for track 
fitting.  In this chapter, we first explain cluster finding (section 3.2), then after briefly introduce 
JLAB Hall C event display (section 3.3) as a tool to visualize individual events we explain cluster 
fitting (section 3.4) with results of some examples shown.  To end the chapter, we talk about 
some miscellaneous topics related to cluster finding and fitting. 
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3.2 Cluster finding. 
 
3.2.1 Hall A analyzer wire plane class cluster finding 
 

In the introduction, it was shown that identifying the V-shape drift time 𝑡௜ vs wire index 
𝑛௜ relation in the (𝑛௜, 𝑡௜) graph is the key to find a cluster.  The analyzer algorithm is straight 
forward; that is, when searching through the wire index in the hit collection if the drift time value 
first falls then rises, it indicates a V shape and is identified as a cluster.  [40]  (Note, all wire 
chamber tracking algorithms are included in THaVDC*.h or THaVDC*.cxx source file) 
There are some conditions that will determine the end point of a cluster: 1) during the rising part 
of the V-shape, a gap in the wire index over the set gap limit (1 or 2 in wire chamber database 
file), 2) the estimated drift distance which was computed by drift velocity (calibrated, as a 
parameter in database file) times drift time is more than 1.1 times or less than -0.1 times the wire 
plane half-thickness, or 3) drift time starts falling again after rising. The end points are then set as 
limits of the new cluster and the new cluster will be registered and written in the ROOT file. 
There are some conditions that will end a cluster candidate as a cluster prematurely, and the wires 
will not be included in any cluster: 1) only falling and no rising before a large enough gap in the 
wire index or 2) only rising.  These wires will be skipped, etc. 
 

There are certainly some defects and some special cases for which this algorithm doesn’t 
work since there are always some special cases a simple falling then rising concept the algorithm 
does not take into consideration.  An obvious one is that the searching is one directional (at the 
moment searching from lower wire index to higher wire index in hit collection, also see Fig 3.6). 
Then if two adjacent clusters create a W shape, the middle local maximum drift time of the W 
shape will always be assigned to the lower indexed cluster.  In addition, if the middle local 
maximum time is the only hit on left part of the V shape the right cluster cannot complete a V 
shape and will be discarded.  It’s been found that changing the searching direction will give about 
1% difference in final fitted track result.  We’ll come back to this when fit track results are 
displayed in track fitting chapter. 
 

3.2.2 An alternative cluster finding algorithm 

 

The one directional search routine in the analyzer cluster finding code introduces an 
artificial asymmetry because it focuses on the falling then rising structure of drift time in a 
sequence of wires.  In order to correct this an alternative algorithm was developed.  Although it 
has not yet replaced the algorithm in the analyzer, it does provide a useful credibility check of the 
analyzer results. 
 

For this algorithm, instead of focusing on the falling and rising timing structure of hit 
wires in the cluster, it searches for the local minimum times first.  In other words, we find the 
pivot wire first.  Once this pivot wire is found, we start to iterate wires in the hit collection on 
both sides of the pivot wire.  The cluster end wires are determined when: 1) a gap appears that is 
larger than the database file limit, 2) a drift time starts to decrease again, or 3) the drift time 
difference of adjacent wires is outside the limits set in the database file. (Also see Fig 5.27)  This 
cluster finding algorithm will keep the middle wire with local maximum drift time for both 
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clusters it shared.  It can eventually be discarded from both clusters but we keep it anyway so that 
it won’t generate spurious error in local cluster fitting. Thus, this algorithm will usually render 
similar cluster finding results as the original analyzer algorithm since a V shape structure is the 
basic unit.  However, since the asymmetry of falling and rising of drift time in analyzer algorithm 
is replaced by only rising of drift time when searching from the pivot wire, this alternative 
algorithm is simpler and much less error prone.  Moreover, it allows us to introduce more cuts to 
ensure a good cluster.  For example, since the time difference between adjacent wires in a cluster 
are related to the cluster span, a constraint can be imposed on the drift time of the pivot wire. 
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3.3 Visualizing events 
An event-by-event display program called EveHallC ([24] by ?) displays track 

information event by event.  It has been modified to suit our wire chamber geometry and channel 
mapping.  After the analyzer has replayed a full test run and generated the ROOT file, the event 
display program reads the hit collection and fitted track information and visually displays the 
tracking and clustering information event by event. 

   
There are two displays (see Fig. 3.2 below) that are most useful for our purpose: 

1) a 2D projection of two wire chambers.  It illustrates track geometry information, 
displaying wire locations.  Wires that have been hit are highlighted.  In addition, the track 
crossover point on wire planes have also been drawn.  Due to the limited space on 
canvas, one line on the wire plane represents 5 wires in actual wire plane; and 

2) drift time vs hit wire indices or (𝑛௜, 𝑡௜) graph on each wire plan It displays the entire hit 
collection of the event, and thus cluster information. 

Thus, the event display program’s main application is to check track reconstruction results.  For 
example, if the track intersection on a wire plane is not located on one of the “intersections” 
(“Intersection” is not a precise word.  Since the U and V wire planes are different planes, with a 1 
inch offset from one to the other, U and V wires cannot intersect each other.  Thus, to be more 
precise the track intersection on one wire plane must lie between two adjacent wires of the hit 
wires and as does its intersection on the other wire plane.) between U wire and V wire of the same 
wire chamber, then the fitted track is incorrect and the reason must be investigated.  The drift 
time vs wire index graph will give a general idea of number of clusters, cluster span, and its 
slope, maximum and minimum drift time information, etc., which can also be used as 
confirmation of results of cluster finding or indicate necessary improvements. 
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III Fig 3. 2  A typical event by event display in 2D view. Bottom figures ordinate: drift time in 
𝜇𝑠, abscissa: wire number in the corresponding wire plane, no unit. 

This is an event with a good track reconstructed. The upper diagram shows the active area of the 
top wire chamber (LDC2) and bottom wire chamber (LDC1) with red and green wires indicate U 
and V wires respectively.  The dots are track intersection on U wire plane and thus should lie on 
one of the U wires and close to one of the V wires that lie above it.  The red and green squares are 
the boundaries of the trigger scintillator projection on each wire plane computed by projecting 
intersection area to wire planes.  The lower diagrams are drift time vs wire index plots for each 
wire plane. From left to right, they represent U of LDC1, V of LDC1, U of LDC2, and V of 
LDC2. 
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3.4 Cluster fitting 
 

3.4.1 Procedure of cluster fitting 

 

After finding clusters with indices and drift times (𝑛௜, 𝑡௜) associated with each wire the 
drift times, 𝑡௜, we convert them into drift distances, 𝑑௜ , through time to distance conversion, which 
will be discussed in next chapter.  The relation we want to fit is either the relationship between 
the local distance, 𝑑௜, vs local wire number, 𝑛௜, the (𝑛௜ , 𝑑௜) or the (𝑢௜, 𝑑௜) (𝑣௜ , 𝑑௜) relation, where 
𝑢௜, 𝑣௜ are U, V coordinates of wires in the cluster.  For fitting (𝑛௜, 𝑑௜) we use the least square fit 
without weight. The relation is: 

 
𝑑 = 𝐴 + 𝐵𝑛                            (3.1) 
 

Denoting |𝑠| as the (unsigned) wire spacing, we can also find slope 𝑡𝑎𝑛(𝛿௨) or 𝑡𝑎𝑛(𝛿௩) of the 
track in projection plane (also see Fig. 3.3. below for definition of 𝛿௨ or 𝛿௩): 
 

𝐵 = 𝑡𝑎𝑛൫𝛿௨/௩൯ × |𝑠|                  (3.2) 
 

Denote ℎ = 1(𝑖𝑛𝑐ℎ) = 2.54(𝑐𝑚) as the wire plane thickness.  From 𝑡𝑎𝑛൫𝛿௨/௩൯ we can also 
compute the cluster span (unitless): 
 

𝑛௨/௩ =
௛

|௦×௧௔௡൫ఋೠ/ೡ൯|
=

௛

|஻|
           (3.3) 

 
In addition, if we want to check the hit crossover point in terms of wire plane U, V coordinates all 
we need to do is to convert them from intersection 𝑛௜௡௧ = −𝐴/𝐵: 
 

𝑢௜௡௧ = 𝑢଴ + 𝑛௜௡௧ × 𝑠               (3.4) 
 

Here 𝑢଴ is the U coordinate of 0th wire in U plane, 𝑠 is the signed wire spacing, which is the same 
for both U and V planes. Same formalism for V plane by replacing 𝑢 by 𝑣. According to the setup 
in the database file, we obtained parameters for (3.4), 279 wires per wire plane and 𝑠 =

−0.493(𝑐𝑚), thus 𝑢଴ = (279 − 1)
|௦|

ଶ
= 68.527(𝑐𝑚). 
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III Fig 3. 3 Geometry of cluster fitting. 

(Redraw of Fig 2.13) projection view in 𝑢𝑧 plane.  A fitted cluster is shown, with all the notations 
the same as on last page.  In addition, the wire spacing s in the figure is its absolute value. 
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𝑛௜ 𝑑௜ (cm) 

102 1.098 

103 0.540 

104 0.0420 (Pivot point) 

105 -0.397 

106 -0.884 

107 -1.057 

𝐴(cm) 𝐵(cm) 

46.1 -0.442 

−𝐴/𝐵 (Intersection 𝑛௜௡௧) 𝛿௨(°) 

104.3 41.86 

𝑛௨ by (𝑛௜, 𝑑௜)  𝑛௨ by (𝜃, 𝜑) 

5.74 = (2.54/0.442) 4.39 

Table 3.1. A typical cluster fitting result.  The cluster consists of wires 𝑛௜ from i = 102 to 107 
without a gap, and associated drift distance, 𝑑௜.  The least square fit got A and B.  Then, the 
intersection is −𝐴/𝐵, and complement of the incident angle 𝛿௨ = 90° − 𝛼௨ = 41.86°, and the 

wire span 𝑛௨ =
௛

|௦×௧௔௡(ఋೠ)|
=

௛

|஻|
 = (2.54/0.442) = 5.74.  It has been compared with cluster span 

computed from track direction angle (𝜃, 𝜑), by relations: 𝑡𝑎𝑛(𝛼௨) = 𝑐𝑜𝑡(𝛿௨) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 +

𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 (Formula (4) in appendix A1.3) 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛(0.5) ≅ 26.45° is the angle between 
analyzer 𝑦-axis and U wires inside the wire plane. 

 

We made a quick explanation of the notation 𝛿௨/௩ and 𝛼௨/௩ = 90° − 𝛿௨/௩. [39]  𝛼௨ and 
𝛼௩ are the global track angles in the u-v coordinate system, i.e., the angles between the 𝑧-axis and 
the projection of the track onto the u-z and v-z planes, respectively.  𝛼௨/௩ is a better representation 
of the track direction under 𝑢, 𝑣 coordinate system, which is converted from track direction 𝑡 in 
the analyzer coordinate system as shown below. 

 
The track direction in analyzer coordinate system is represented by 
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𝑡 = (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) = ቀ
∆௫

∆௭
,

∆௬

∆௭
,

∆௭

∆௭
ቁ                 (3.5) 

 
while ∆𝑥 can be computed from ∆𝑥 = 𝑥 − 𝑥଴, where 𝑥 is the 𝑥 coordinate of any point on track, 
𝑥଴ is the 𝑥 coordinate of the track crossover point in the 1st wire plane, and similarly for ∆𝑦 and 
∆𝑧.  We have the linear transformation of track angles 𝜃, 𝜑 from coordinates system xyz to track 
angles 𝛼௨,  𝛼௩ from coordinates system uvz (Formula (4) in appendix A1.3): 
 

 𝑡𝑎𝑛(𝛼௨) = 𝑐𝑜𝑡(𝛿௨) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 = 𝑡 ∙ 𝑢ො 
 𝑡𝑎𝑛(𝛼௩) = 𝑐𝑜𝑡(𝛿௩) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 − 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 = 𝑡 ∙ 𝑣ො 

 
Notice that unit base vector 𝑢ො = (𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼, 0) is similar to (3.5): 
 

 𝑡𝑎𝑛(𝛼௨) =
∆௨

∆௭
, 𝑡𝑎𝑛(𝛼௩) =

∆௩

∆௭
 

 
The track angles 𝜃, 𝜑 are essentially 𝛼௫ ,  𝛼௬ while 𝛿௨/௩ = 90° − 𝛼௨/௩ is better to represent the 
slope of the cluster fitting (see formula (3.2)). 𝛿௨/௩ and 𝛼௨/௩ describe the same issue, the choice 
of which to use depends on the situation just explained. 
 

3.4.2 Up-down ambiguity and disambiguation 

 

In the cluster fitting result shown in Table 3.1. the drift distance 𝑑௜ is signed so the 
projected track is a straight line.  However, the measured drift time 𝑡௜ values from the TDC are 
always positive.  This introduces an up-down ambiguity (see Appendix A1.5.3). Thus, 
determining the signs of drift distances 𝑑௜ is a must for resolving this ambiguity and performing 
accurate cluster fitting. We resolve signs for drift distance of each wire in two steps: 

1. determine side of pivot point; and 
2. determine signs of distances on each side. 

 
For step 1, which has been explained before, as a particle travels through a wire plane, 

the track gets closer to sense wires, intersects wire plane at crossover point (see Fig. 3.1), then 
gets further away from sense wires.  This results in clusters with index and drift time (𝑛௜, 𝑡௜) 
having a V-shape structure as shown in Fig. 3.2.  Wires on opposite sides of a V shape in an 
(𝑛௜, 𝑡௜) graph have different signs of drift distance 𝑑௜.  Recall that the wire with the least drift 
time and drift distance at the bottom of V shape is called pivot wire.  Since the pivot wire belongs 
to both sides, the sign of its drift distance needs additional analysis. 

 
There are two ways to resolve the side of drift distances (see Fig 3.4 below):  
1) (Fig. 3.4 Left) assign all wires on one side of the pivot wire one sign and those on the 

other side the opposite sign. Then, fit a straight line from cluster data (𝑛௜, 𝑑௜) twice, with the 
pivot point drift distance being either positive or negative.  Calculate 𝜒ଶ for both fits with the one 
with the lower 𝜒ଶ indicating the correct pivot point 𝑑௜ sign. [39]  
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2) (Fig. 3.4 Right) compute drift time difference between pivot wire and wires adjacent to 
it.  The wire with larger time difference means it has the same sign as pivot wire, and thus the 
sign of pivot wire is determined. 

 
Generally, the results of methods 1) and 2) in last paragraph are the close to the same 

except in a few cases when the drift distance is very close to 0 or, equivalently, the drift time 
difference between pivot wire and both wires adjacent to it are almost the same.  In either 
situation the difference of the results of the two strategies is minuscule. 

  

III Fig 3. 4 Pivot wire drift distance sign. Right figure ordinate: drift time in 𝜇𝑠, abscissa: wire 
number in the corresponding wire plane, no unit. 

Pivot wire is the wire with the least drift time.  We know the signs of the drift distance of wires 
with index larger than that of the pivot wire and wires with index less than that of the pivot wire 
are opposite, but the sign for pivot wire is unknown. 
1) fit distances twice with pivot wire assigned a different sign in each case; the fit with the lower 
𝜒ଶ corresponds to the best choice of sign for drift distance of the pivot wire. (Left) 
2) compare drift time differences between pivot wire and its neighbor wires, one with larger 
difference is the side where the pivot wire belongs. (Right) 
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III Fig 3. 5 Illustration of resolving up-down ambiguity. 

For step 2 we refer to appendix A 1.5.3. In short, we need to determine if the track enters wire 
plane from lowest indexed wire in the cluster or the highest indexed wire.  That is, we acquired 
|𝑐𝑜𝑡(𝛿௨)| or |𝑐𝑜𝑡(𝛿௩)| but its sign is undetermined. (see Fig. A 1.6) 
 

The track direction 𝑡 = (𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑, 1) has its projection in the x-y plane to be 
(𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑), while its projection on U/V axes are 𝑐𝑜𝑡൫𝛿௨/௩൯ by the formula, and noting 
(𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼) and (𝑐𝑜𝑠𝛼, −𝑠𝑖𝑛𝛼) are 𝑢ො and 𝑣ො in 𝑥𝑦 plane respectively: 

 
 𝑐𝑜𝑡(𝛿௨) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 
 𝑐𝑜𝑡(𝛿௩) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 − 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 
 

Since the sign of 𝑐𝑜𝑡൫𝛿௨/௩൯ can be either + or -, there will be 4 possible track directions 
computed by drift distance information.  These 4 directions are represented by ABCD above (For 
example, point B has positive 𝑐𝑜𝑡𝛿௨ and negative 𝑐𝑜𝑡𝛿௩).  Forming a parallelogram, each end 
point is in a quadrant divided by both U and V axis. 
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To disambiguate: compare differences of these 4 directions to global fit direction 
(𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑) in the x-y plane (uses intersections of track on each wire plane in global track 
fitting), and pick the direction with the smallest angle difference.  Note: A much quicker 
disambiguation method is to check formulas below (3.5): 

 

 𝑐𝑜𝑡(𝛿௨) = 𝑡𝑎𝑛(𝛼௨) = 
∆௨

∆௭
 and 

 𝑐𝑜𝑡(𝛿௩) = 𝑡𝑎𝑛(𝛼௩) =
∆௩

∆௭
.  

 
When ∆𝑢 = 𝑢ଶ − 𝑢ଵ > 0 , 𝑢ଶ is the cluster fit intercept for upper u plane, 𝑢ଵ for lower u plane, 
then 𝛼௨ > 0, and vice versa. A similar argument applies for 𝛼௩. 
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3.5 Misc. issues 
 

3.5.1 Time to distance conversion 

After cluster finding (3.2) we have clusters containing information on indices and drift 
times (𝑛௜, 𝑡௜), the time to distance conversion convert drift time to 𝑡௜ into absolute value of drift 
distance |𝑑௜|, then we resolve up-down ambiguity of the cluster by determining sign of drift 
distance 𝑑௜, and converted cluster (𝑛௜, 𝑑௜) is used in cluster finding. The missing part time to 
distance conversion (abbr. as TTD) will be discussed in detail in chapter 4. 

  
Here we list some basic properties of TTD.  First, the TTD relation is incident angle 𝛼௨ 

or 𝛼௩ dependent. Second, for fixed incident angle TTD is a monotonically increasing function 
𝑑൫𝑡; 𝛼௨ ௩⁄ ൯; that is, a larger drift time corresponds to a larger drift distance.  Thus, TTD is a 
function to be fitted with incident angle dependent parameters, to make resulting the (𝑛௜, 𝑑௜) 
relation to be as straight as possible, and result in local tracks from (𝑢௜, 𝑑௜) or (𝑣௜ , 𝑑௜) relations as 
close to charged particle tracks as possible.  The fitting procedures will be the main content in 
chapter 4 Time to distance conversion. 

 
3.5.2 Improving Hall A analyzer cluster finding algorithm 

 

The goal of the cluster finding algorithm is to find correct clusters from primary charged 
particles in BH process.  Note that the cluster finding result will eventually affect the track fitting 
result, so we should avoid the mistake of aiming for high efficiency.  Based on these factors the 
actual algorithm will fulfill the goal to a decent degree. 
 

There were aspects of the Hall A analyzer that required improvement; some major 
defects were found during examination of wire chamber test data. 

 
For the algorithm itself:  
1) (See Fig. 3.6) As explained in 3.2.1. the falling then rising search method to find the V 

shape structure is one directional and “common” hit wires from both cluster candidates will be 
always assigned to the one with lower indices. This leads to about 1% difference when compared 
to searching in the both directions.  

2) Uncategorized wires during the previous search will be interpreted as the starting wire 
of the new cluster candidate after finding a cluster.  This can be unnecessary and can result in a 
redundancy of wires in the new cluster. 

 
For cuts:  
1) Some cut parameters were determined while entirely overlooking difference between 

wire planes.  For example, the time distribution of hits is different between wire planes, and so 
should TTD parameters.  

2) Cluster span (𝑛௨, 𝑛௩) limits neglect differences between 𝑢 and 𝑣 wire planes.  Since 
the orientations of the wire planes are different, the possible allowed cluster spans depend on both 
𝑢 and 𝑣 orientation.  It is actually better if we can assign limits of ordered pairs (𝑛௨, 𝑛௩) by 
enumeration as this will allow better conditional efficiency analysis.  The 2D region of allowed 
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(𝑛௨, 𝑛௩) pairs from detector acceptance can be estimated by simulation. We will revisit this topic 
later in Part IV Simulation, section 3.4.2 Wire span (𝑛௨, 𝑛௩) distribution.  

3) (See Fig. 3.7) The parameters for minimum and maximum time differences between 
adjacent wires in a cluster is useful to cut off clusters with abnormal time data.  However, they 
will be much better to designate these parameters based on cluster size, since larger clusters 
correspond to smaller time differences between neighboring wires, and vice versa.  

4) Wires are regarded as infinitely long according to the analyzer source code, that even a 
pair of 𝑢 and 𝑣 clusters from one wire chamber don’t have any intersection inside active area of 
the wire chamber, they could still be paired and used in track fitting, resulting in tracks outside a 
wire chamber. 

 

III Fig 3. 6 One directional search of clusters in the JLAB analyzer. 

Dots in the graph are (𝑛௜, 𝑡௜) data point.  Assume a gap of 1 wire in cluster finding is allowed.  
Now suppose wire 6 doesn’t have data (might be the result of a bad wire).  The arrow indicates 
iterative direction of cluster finding; if the search starts from the smallest wire index, then the 
only found cluster found includes wires (1,2,3,4,5) while the group of wires (7,8,9) is not a cluster 
since there’s no V shape structure.  If search starts from largest wire index, two clusters will be 
found: wires (1,2,3,4) and wires (5,7,8,9). 
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III Fig 3. 7 Drift time difference between adjacent wires. 

From wires in a cluster should be cluster size dependent.  In the two clusters illustrated, cluster 1 
has 7 wires and cluster 2 has 3 wires.  Thus, the incident angle 𝛼ଵ > 𝛼ଶ. The difference in drift 
time between two adjacent wires in the cluster can be approximated by  ∆𝑡ଵ =

௪௦

௩௧௔௡ఈభ
<

௪௦

௩௧௔ మ
=

∆𝑡ଶ, here 𝑤𝑠 is wire spacing and 𝑣 is drift velocity. Thus, drift time difference between adjacent 
wires in a cluster will decrease as cluster size increases. 
 
3.5.3 More on ambiguities 

We have already considered two ambiguities: 1) the sides of the pivot wire and 2) the 
sign of drift distances.  For 2), the ambiguity is resolved once we have picked correct set of 
clusters belonging to the same track, one in each wire plane.  This leads to 3), the u-v association. 
[41]  That is, to choose one cluster from the 𝑢 wire plane and one from the 𝑣 wire plane of one 
wire chamber, both of which belong to the same particle track.  Determining this association is 
only required for a case of multiple clusters, when all wire planes have cluster(s) and at least one 
of them has more than one cluster.  Since the number of possible ways of the u-v association 
equals the product of the number of clusters from all wire planes, this number can get large and 
computation time will increase significantly. 

 
During our wire chamber test runs using cosmic rays, the probability of multi-clusters 

produced by a shower is very high, and the u-v  association algorithm in the analyzer had 
difficulty finding correct result.  In our experiment, based on projected event rates, detector 
acceptances, and the pulsed nature of the beam, coincident two-pair production in the same drift 
time window is negligible and single cluster events will be our principal concern.  Nevertheless, 
we will give a short explanation of u-v association when discussing track finding. 
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4 Time to distance conversion 
 

4.1 Origin of the problem 
 

Once we obtained cluster, we acquired the wire index and drift time (𝑛௜, 𝑡௜) of each wire 
in the cluster.  In order to fit the cluster and reconstruct the local track projection inside the wire 
plane, we have to convert (𝑛௜, 𝑡௜) to (𝑛௜, 𝑑௜), where 𝑑௜ is the drift distance of 𝑖th wire of the 
cluster.  This operation is called time to distance conversion and can be abbreviated by TTD, and 
the conversion function that converts any 𝑡 to a 𝑑 is called the TTD function.  Our objective in 
this chapter is to establish and calibrate the time to distance conversion function that converts 
(𝑛௜, 𝑑௜) data can be used in cluster fitting to produce local tracking results. 

 
4.1.1 Drift time data for a single event 

The spatial volume containing all electric field lines leading to a single sense wire is 
called a drift cell.  Due to the large area of the wire plane compared to the ionized region of a 
single particle track and equally spaced sense wires, drift cells have translation symmetry and the 
center plane between two adjacent sense wires separates them.  Thus, one drift cell contains 
volume that extends half a wire plane thickness (1.0ᇱᇱ/2) above and below a sense wire, and half 
a wire spacing (~0.493𝑐𝑚/2) to the left and right of the sense wire [29].  The signal of a single 
sense wire is only generated from ionized electrons within the corresponding drift cell.  The drift 
time data from the TDC corresponds to the time of the 1st drift electrons that reach its 
corresponding wire.  If all sense wires are efficient enough, the drift time data for a single event 
contains times from all sense wires that the charged particle crosses in all wire planes (see Fig. 
3.2. for visualization of single event data). For a single cluster of a single wire plane the data are 
(𝑛௜, 𝑡௜). 
 

4.1.2 Distribution of drift time and drift distance 

 
The distributions of drift times and drift distances are the most direct results reflecting 

time to distance conversion.  We discuss drift distance 1st since it is directly related to trajectory 
of particles inside wire plane.  The drift time collected in the TDC corresponds to the 1st bunch of 
ionized electrons that reach the sense wire.  The corresponding drift path is not necessarily the 
straight line directly above or below the sense wire, which represents the reconstructed drift 
distance.  We assume that the actual and reconstructed drift distance are the same to a 1st order 
approximation.  In addition, the drift distance distribution is uniformly distributed from around 0 
to half wire plane thickness if certain assumption is satisfied: for each set of tracks with the same 
incident angle, their crossover point coordinate is uniformly distributed (translation symmetry). 
This can be further relaxed to assuming that the crossover point coordinate is uniformly 
distributed between the coordinate of two adjacent wires.  The assumption can be easily satisfied 
when the active area of wire chambers are large enough to retain translation symmetry.  A 
detailed discussion of the condition of uniform distance distribution appears in section 4.3.4 3). 
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Under the assumption that we have uniformly distributed drift distances, we consider the 
drift time distribution.  Since the TTD function 𝑑(𝑡) is also incident angle 𝜃 = 𝛼௨ or 𝛼௩ 
dependent and should be represented as 𝑑(𝑡; 𝜃), we constraint our discussion below to tracks with 
nearly the same incident angle.  As discussed in 4.1.1, when a track is away from sense wire in 
the corresponding drift cell, the drift velocity is constant due to the uniform electric field, thus we 
have uniformly distributed drift time in this region. And when track is close to sense wire, the 
increased electric field will result in increased drift velocity and for same interval of time more 
drift distance is covered. Due to the uniformly distributed drift distance, drift time distribution has 
higher frequency in the sense wire region. 

 

III Fig 4. 1 Drift time distribution of wire chamber. Ordinate: counts, no unit, abscissa: drift time 
in unit ns. 

(Fig. 4.19 in Ref. [29]) As described above, it has a peak near 0, and is nearly uniform when the 
drift time is sufficiently large. 
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4.2 Time to distance function 
 

4.2.1 Properties of TTD function 

There are several properties of that TTD function that we can utilize to simplify its 
determination process: 

1) The function is incident angle 𝛼௨ or 𝛼௩ dependent.  There are several reasons for this: 
incident angle determines where the particles will cross the region close to a sense wire 
with increased electric field and drift velocity.  The drift path with the least drift time will 
also be different for different incident angle.  It should be noted that the incident angles 
are only determined after a track has been fully fit.  The input in TTD function in 

analyzer is an estimated incident angle 𝑡𝑎𝑛(𝛼௨) ≅
|௨బି௨ಿ|

௩(௧బା௧ಿ)
 [42], which takes the absolute 

value of the coordinate difference over the estimated sum of the drift distance of the 1st 
and last hit wire in the cluster.  It will be a further improvement to implement an iterative 
routine to use fit track incident angles as arguments for the TTD function. 

2) At fixed incident angle TTD function is a monotonic increasing function of drift time. 
3) To a good approximation, the TTD function goes through the origin.  In the real data 

acquisition process, there is some fluctuation due to the length of the sense wire. The 

longest wires have length 
ଶଵᇲᇲ

௦௜௡ଶ଺.ସହ°
≅ 4 𝑓𝑒𝑒𝑡 and we observed a fluctuation in drift time 

data on the order of 4 ns with same drift distance during testing.  Here 21ᇱᇱ is the short 
axis length and 26.45° is the angle between wire and long axis for active area of a wire 
plane. 

4) As shown in Fig 4.2 below, the TTD function can be approximated by 3 pieces: (1) where 
the particle tracks close to sense wire, (2) where there is a constant drift velocity in 
uniform electric field region away from sense wire, and (3) where the particle track 
crosses the corners while entering or exiting the drift cell of a wire and the reconstructed 
drift distance is beyond height of drift cell or cathode plane.  Thus, they are virtual 
distances. For cluster fitting purpose, the piece (3) is of less importance and we could 
already fit good tracks from converted drift distances within regions (1) and (2).  In 
addition, any drift time corresponding to piece (3) or a virtual distance will be discarded 
since the TTD function formula in the analyzer (4.1) did not describe piece (3). 
 

4.2.2 TTD function in analyzer 

Based on 3) 4) above the analyzer uses two straight line segments to represent time to 
distance function: 

 

 𝑑(𝑡; 𝜃) = 𝑣 ∙ 𝑡 ∙ ቀ1 +
௔మ(ఏ)

௔భ
ቁ ,       𝑣 ∙ 𝑡 ≤ 𝑎ଵ 

𝑑(𝑡; 𝜃) = 𝑣 ∙ 𝑡 + 𝑎ଶ(𝜃).               𝑣 ∙ 𝑡 > 𝑎ଵ            (4.1) 
 

Here 𝜃 represents either 𝛼௨ or 𝛼௩ based on the wire plane.  And, for the anglular dependence, the 
default choice is a 2nd order polynomial of tan(𝜃) for 𝑎ଶ: 
 

 𝑎ଵ = 𝐴ଵ଴ 
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 𝑎ଶ = 𝐴ଶଶ𝑡𝑎𝑛ଶ൫𝛼௨/௩൯ + 𝐴ଶଵ𝑡𝑎𝑛൫𝛼௨/௩൯ + 𝐴ଶ଴  (4.2) 
 

However, the wire chamber database file supports parameter 𝐴ଵ, 𝐴ଶ from 0th to the 3rd order of 
polynomial [43].  In addition, the drift velocity 𝑣 is also a parameter, representing the constant 
velocity in piece (2) of the TTD function.

 

III Fig 4. 2 Time to distance conversion function. Ordinate: drift distance in unit mm, abscissa: 
drift time in unit ns. 

(Fig. 4.20 from [29]) This function is mapped by assuming uniform distance distribution and 
relates the time distribution by conservation of probability.  That is for each drift time in each 
event, by applying this TTD function, the resulting drift distance distribution will be uniform. 
 

4.2.4 Meaning of analyzer TTD function parameters 

As illustrated in Fig 4.3. below the meaning of TTD function parameters is: 
1. 𝑣 (constant) drift speed of ionized electrons in the region of a drift cell where there is 

sufficient distance to the sense wire that the electric field is nearly uniform.  We assume 
𝑣 is only depend on the HV applied to the cathode plane of the wire chambers, and 
independent of incident angle.  

2. 𝑎ଵ/𝑣 (𝑎ଵ + 𝑎ଶ) is the drift time (distance) at the intersection of the straight-line segment 
representing the region in drift cell with lower drift speed and higher drift speed. In 
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addition, 1 +
௔మ(ఏ)

௔భ
 is the ratio between the higher and the lower drift speeds. 𝑎ଶ is also 

the intercept of piece (2) of the TTD function and the distance axis, which means the 
additional drift distance added due to the higher drift speed in the region. 

In short, the analyzer TTD function uses two straight line segments to represent the (curved) 
calibrated TTD function in Fig 4.2. 

 

III Fig 4. 3 Graph of function 𝑑(𝑡).  
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III Fig 4. 4 Ideal 𝑑 𝑎𝑛𝑑 𝑡 distribution. 

Assume the drift distance uniformly distributed from 0 to a upper limit D (half wire plane 
thickness), thus the probability density function of distance is: 
 

𝑓ଵ(𝑑) =
ଵ

஽
,  0 ≤ 𝑑 ≤ 𝐷; 𝑓ଵ(𝑑) = 0 elsewhere                                (4.3) 

 
By coordinate transformation using the relation (4.1) and equating the probabilities by integrating 
𝑓ଵ(𝑑) we find corresponding time distribution: 
 

𝑓ଶ(𝑡) =
௩

஽
ቀ1 +

௔మ(ఏ)

௔భ
ቁ ,  0 ≤ 𝑡 ≤

௔భ

௩
; 0 elsewhere   

𝑓ଶ(𝑡) =
௩

஽
,   

௔భ

௩
≤ 𝑡 ≤

஽ି௔మ

௩
; 𝑓ଶ(𝑡) = 0 elsewhere (4.4) 

 

4.2.5 Analyzer TTD function applied to single cluster 

 
Figure 4.5 shows an example of applying the analyzer TTD function formula (4.1) to a 

set of UV associated clusters in an event from a test run.  On the left side are the wire index and 
drift time (𝑛௜, 𝑡௜) for 𝑢ଵ cluster (black line, upper left graph), 𝑢ଶ cluster (red line, upper left 
graph), 𝑣ଵ cluster (black line, lower left graph), 𝑣ଶ cluster (red line, lower left graph). The 
corresponding converted wire index and drift distance (signed) (𝑛௜, 𝑑௜) graph are shown on the 
right plots.  Here the up-down ambiguity is not resolved, thus the lower right lines are parallel 
only when all signs of distances 𝑑௜ for one of the lines are reversed. 
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III Fig 4. 5 U-U and V-V matched clusters. Left figure ordinate: drift time in unit 𝜇𝑠, abscissa: 
wire number, no unit. Right figure ordinate: drift distance in unit 𝑚, abscissa: wire number, no 
unit. 

Left: (𝑛௜, 𝑡௜) graph. Right: (𝑛௜, 𝑑௜) graph. 
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4.3 Preliminary TTD function calibration and results 
 

4.3.1 Introduction 

 

The default TTD function parameter values 𝐴ଵ௜ and 𝐴ଶ௜, for 𝑖 = 0 − 3 in the analyzer 
have to be recalibrated because of the difference between wire chambers, HV applied, 
composition of the inert gas, etc.  The approximated value for 𝑎ଵ can be estimated by noticing 
𝑎ଵ/𝑣 is the width of time distribution peak in Fig. 4.4.  Based on the default values in the 
analyzer 𝑎ଵ = 𝐴ଵ଴ is fixed, and we started with this in initial calibrations.  For 𝑎ଶ =

𝐴ଶଶ𝑡𝑎𝑛ଶ൫𝛼௨/௩൯ + 𝐴ଶଵ𝑡𝑎𝑛൫𝛼௨/௩൯ + 𝐴ଶ଴, we are not changing the relative ratio between 𝐴ଶ଴, 𝐴ଶଵ, 
and 𝐴ଶଶ, but are adding a new parameter scale 𝐶 to the new 𝑎ଶ value: 

 
𝑎ଶ = 𝐶(𝐴ଶଶ𝑡𝑎𝑛ଶ𝛼௨/௩ + 𝐴ଶଵ𝑡𝑎𝑛𝛼௨/௩ + 𝐴ଶ଴)       (4.5) 
 

As seen in Fig 4.3, calibration essentially using 𝑎ଶ alone only changes the slope (drift velocity) of 
the first segment of the TTD function.  In addition, parameter 𝑣 can be determined by using (4.1) 
and setting the drift distance 𝑑 and drift time 𝑡 at the point where the ionization happened at 
cathode plane.  In Leckey’s test, according to Fig 4.1, the drift time from ionized electrons at 
cathode plane 𝑑 = 1.27𝑐𝑚 should be about 𝑡 = 250 𝑛𝑠 based on the plot, where the uniform 

drift time plateau starts to drop.  If 𝑎ଶ is ignored in (4.1), then 𝑣 ≅
ௗ

௧
= 50800(𝑚/𝑠).  During our 

tests, the HV and inert gas compound were different and, therefore, 𝑣 is different, about 
60000(m/s).  Thus, the only parameter left to be determined is the scale factor 𝐶.  In this section, 
based on the physical meaning of TTD function, we are minimizing certain statistical errors of the 
resulting drift distance distribution by using an iterative method.  With each change of 𝐶 or any 
TTD parameters in the database file, the analyzer should replay the test run events again, which 
would lead to long computation time and large consumption of disk space.  Thus, determining the 
number of divisions in each iteration is crucial to reduce the total number of iterations needed to 
reach our final result.  This will be discussed in appendix A 4.3.1.  In the following sub-sections 
4.3.2 and 4.3.3 of this section we devise two different determinations of statistical errors and 
determine value of 𝐶, respectively.  Sub-section 4.3.4 will give an explanation for the shape of 
resulting drift distance distribution due to the constraints imposed by a certain trigger condition. 
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4.3.2 Minimize local and global track direction angles difference squared. 

There are two sets of track direction angles: 
1)  One is from fitting of local clusters, which fit straight lines (𝑢௜, 𝑑௜) or (𝑣௜, 𝑑௜) 

which include TTD converted drift distances 𝑑௜ in form 
𝑑 = 𝐴 + 𝐵𝑢                                         (4.6) 

The slope 𝐵 is related to incident angle 𝛼௨: 
𝐵 = 1/𝑡𝑎𝑛𝛼௨                                      (4.7) 

Exchange 𝑢 and 𝑣 for the results in 𝑣 wire planes. A pair of local fit incident angles 
𝛼௨ and 𝛼௩ in one wire chamber can be converted to track direction angles 𝜃, 𝜑 by 
relation (slightly modified formula (5) and (6) in appendix A 1.4): 

𝑡𝑎𝑛𝜃 =
ଵ

ଶ௖௢௦ఈ
 (𝑡𝑎𝑛𝛼௨ + 𝑡𝑎𝑛𝛼௩)        (4.8) 

𝑡𝑎𝑛𝜑 =
ଵ

ଶ௦௜௡ఈ
 (𝑡𝑎𝑛𝛼௨ − 𝑡𝑎𝑛𝛼௩)        (4.9) 

2)  On the other hand, the track direction by 𝛼௨ and 𝛼௩ can be solved by crossover 
point coordinates (𝑢ଵ, 𝑣ଵ) and (𝑢ଶ, 𝑣ଶ) directly (Eq. (20) (21) from [38]): 

𝑡𝑎𝑛𝛼௨ =
௨మି௨భ

ௗೠ
                                     (4.10) 

𝑡𝑎𝑛𝛼௩ =
௩మି௩భ

ௗೡ
                                      (4.11) 

Here 𝑢ଶ, 𝑣ଶ are crossover point coordinates on the top wire chamber, while 𝑢ଵ, 𝑣ଵ 
for bottom wire chamber in analyzer coordinate system, which origin is center of 
the lowest (𝑢ଵ) wire plane.  𝑑௨ and 𝑑௩ are distances (separation in the z coordinate 
in the analyzer coordinate system) between two 𝑢 wire planes or two 𝑣 wires 
planes respectively; for our Q-weak chamber 𝑑௨ = 𝑑௩ = 15.5ᇱᇱ = 39.37(𝑐𝑚). 
Then use the same formula (4.8) (4.9) to get 𝜃, 𝜑. 

 
We compare track direction 𝑑 = (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) calculated from method 1), which 

utilized TTD function to get 𝑑௜s as data for fitting, and method 2) which can be regarded as the 
true value since there are very small errors from (4.8) and (4.9) for each fitted track from 
analyzer, by scaler product of vectors: 

acos (
ௗ⃗೗∙ௗ⃗೒

|ௗ⃗೗|∙|ௗ⃗೒|
)                                        (4.12) 

Here 𝑑௟ and 𝑑௚ represents local and global fit track direction angles.  Our criterion to calibrate 𝐶 
in (4.5) is to minimize sum of all track direction angular differences squared from all events in the 
test run data. This will indicate that local fit tracks 𝑑 = 𝐴 + 𝐵𝑢 are close to the real track, and 
thus drift distances 𝑑௜ in  (𝑢௜, 𝑑௜) or (𝑣௜, 𝑑௜) have been converted correctly. 
 

The result of minimizing the average of squares of angular differences in (4.12) is 

𝑓(𝐶) =
ଵ

ே
∑ [acos (

ௗ⃗೗∙ௗ⃗೒

|ௗ⃗೗|∙|ௗ⃗೒|
)]ଶ

௔௟௟_௧௥௔௖௞௦                         (4.13) 

For each trial, we set a value 𝐶 to change TTD parameter 𝑎ଶ = 𝐶(𝐴ଶଶ𝑡𝑎𝑛ଶ൫𝛼௨/௩൯ +

𝐴ଶଵ𝑡𝑎𝑛൫𝛼௨/௩൯ + 𝐴ଶ଴).  After the analyzer found all tracks, it computed the statistics quantity in 
(4.13) for selected events (the reason of manual selection of events or tracks in sum (4.13) will be 
explained in the next chapter 5).  Following the algorithm in Appendix A 4.3.1. we expect to find 
value of 𝐶 converging to within a specified accuracy.  Fig. 4.6 shows a histogram of a distribution 

of difference of angle squared [acos (
ௗ⃗೗∙ௗ⃗೒

|ௗ⃗೗|∙|ௗ⃗೒|
)]ଶ for selected events: 
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III Fig 4. 6 Distribution of angle difference squared between cluster fit and track fit squared. 
Ordinate: counts, no unit, abscissa: angle difference squared in unit degree squared. 

From a trial run of the minimization algorithm (ordinate units degree squared).  From the replay 
of test run data using 𝐶 with the smallest value of (4.13). 
 

This calibration of 𝐶 is invalid when the assumption that the function 𝑓(𝐶) in (4.13) with 
𝐶 as parameter has one minimum is incorrect.  During the minimum searching on the last 
iteration, the value of 𝑓(𝐶) at 9 end points of 8 divisions (see Appendix A 4.3.1 for reason that 8 
division was chosen) are 12.34, 12.11, 11.98, 11.92, 11.94, 11.86, 11.79, 12.02, 12.13 with units 
of degree squared, gave local minima: 11.92 and 11.79.  During further investigation the cause 
was found. The reason is that for small changes of 𝐶, for certain events the matched clusters used 
for track fitting changed.  The reason of the use of different clusters could be that the previous 
clusters didn’t satisfy a particular cut during the cluster finding or that a particular hit wire was 
removed from original cluster due to its being out of range, etc.  These can result in a huge 
difference in angle for the individual event, which makes its impact even greater when squared. 
Those isolated events cause the jump in 𝑓(𝐶) value and a discontinuity.  To make matters worse, 
during the last division of interval for minimum searching, events with changes in clusters that 
contribute the most to 𝑓(𝐶) in (4.13) are random and display almost no discernable pattern. Thus, 
in addition to changing 𝐶, eliminating these events that cause a jump in 𝑓(𝐶) are too time 
consuming and leads to a small subset of events could be used in the summation in (4.13). Thus, 
using this criterion is quite impractical. The converted distance distribution for each wire plane 
from these selected events is shown in Fig. 4.7. 
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III Fig 4. 7 Converted distance distribution after finding 𝐶 which minimize 𝑓(𝐶). Ordinate: 
counts, no unit, abscissa: drift distance in cm. 

It’s easy to see that the distance distribution is quite uniformly distributed, but having gaps with 
low counts in certain distance region, the cause will be explained in section 4.3.4. 
 
4.3.3 Modified cluster fit 

Motivation 

Comparing the TTD function by integration in drift time distribution (section 4.4) in Fig 4.2 
and Fig 4.3 which approximated by two straight line segments. Since the near 0 drift time or drift 
distance near sense wire is highly non-linear, 1st part of analyzer TTD function (4.1) will never 
accurately describe this region. On contrary the TTD in region away from wires are well behaved. 
If we assume that in these regions the electric field is uniform, then the drift velocity is constant, 
thus drift time and distance distribution are uniform. 
 
Analyzing the cluster (𝑛௜ , 𝑑௜) graph shape 

 
For cluster fitting, the hit data we use (𝑢௜, 𝑑௜) or (𝑣௜, 𝑑௜) are highly accurate in region away 

from sense wire because of the well-behaved TTD relation in this region. While the case is not so 
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good for hit data point near sense wire from the highly non-linear electric field, which for most 
clusters it correspond to the pivot wire. 
Since we essentially only change TTD parameter 𝑎ଶ in TTD function (4.1) in this section while 
keeping all other TTD parameter fixed. Let’s check the effect when 𝑎ଶ is too small or too large. 
Referring to Fig 4.8 below, it draws the (𝑛௜, 𝑡௜) and (𝑛௜, 𝑑௜) converted from TTD function (4.1) 
graphs in the same canvas. Since 𝑎ଶ is always positive (near wire drift velocity is always higher 
than the away from wire region), Fig 4.8 illustrate two cases: 𝑎ଶ = 0 and 𝑎ଶ is large. 
When 𝑎ଶ = 0 the drift velocity is constant in the entire region from (4.1) and absolute drift 
distance |𝑑| is proportional to drift time 𝑡. Thus, if we have the (𝑛௜, 𝑡௜) of a cluster, the converted 
(𝑛௜, 𝑑௜) graph is coincided with (𝑛௜, 𝑡௜) on one side of pivot wire and for the other side is the 
reflection of (𝑛௜, 𝑡௜) over 𝑡 = 0 line, when scale is chosen as the constant drift velocity 𝑣. Since 
the higher drift velocity near sense wire, the drift time distribution near sense wire has a peak (c.f. 
Fig 4.1), (𝑛௜, 𝑡௜) relation shrunk near 𝑡 = 0 and so does the converted (𝑛௜, 𝑑௜). As a result, the 
entire (𝑛௜, 𝑑௜) graph is a bent straight line with near 𝑡 = 0 region having less slope (Left plot Fig 
4.8). When 𝑎ଶ is too large, compare to 𝑎ଶ = 0 case, the only change is the slope becomes large in 
the near 𝑡 = 0 region, which results in again a bent straight line (Right plot Fig 4.8). 

  

III Fig 4. 8 Effect of different 𝑎ଶ values in TTD. 

For left illustration 𝑎ଶ = 0, for right illustration 𝑎ଶ is too large.  For both plots, blue lines 
represent (𝑛௜, 𝑡௜) graph of the cluster, while black line in left illustration represents fit line of 
(𝑛௜, 𝑑௜) relation, and black line in right illustration represents (𝑛௜, 𝑑௜) data of the cluster after 
TTD conversion. 
If 𝑎ଶ is chosen that its value is between two extreme cases in Fig 4.8 and making TTD conversion 
totally accurate, then the bent straight line becomes a straight line. However, because the TTD 
relation represented by formula (4.1) is linear instead of non-linear shown in Fig 4.1 in drift time 
distribution, the TTD conversion by (4.1) will never making those bent straight line to straight 
line in all different cases. 
As a results, we accept this effect that for all converted (𝑛௜, 𝑑௜) graphs are more or less deviate 
from a perfect straight line due to inaccuracy near 𝑡 = 0 region. We change the fit accordingly to 
fit two line segments, one on the same side as pivot wire while the other on the opposite side, 
with a shift ∆𝑦 as an additional parameter. Hoping the combined two lines segment to be as 
straight as possible. We use the slope 𝐵 from this fit to compute track incident angles 𝛼௨ and 𝛼௩ 
as local cluster fit result to compute track direction angles 𝜃, 𝜑, and compare it to global fit track 
directions. 
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Derivation of slope 𝐵 in modified cluster fit 
 

First, we relabel our independent variables (𝑛௜, 𝑑௜) or (𝑢௜, 𝑑௜) or (𝑣௜, 𝑑௜) to (𝑥௜, 𝑦௜).  Once 
we disambiguate the side of pivot wire, 𝑥௜′𝑠 are grouped as above, with indices 
(𝑥ଵ, 𝑦ଵ), (𝑥ଶ, 𝑦ଶ), … , (𝑥௡, 𝑦௡) having one sign, and (𝑥௡ାଵ, 𝑦௡ାଵ), (𝑥௡ାଶ, 𝑦௡ାଶ), … , (𝑥௡ା௠ , 𝑦௡ା௠) 
having the opposite sign.  Also, we assume all that all 𝑥௜′𝑠 have negligible 𝜎௫′𝑠 compared to 𝜎௬′𝑠, 
and all drift distances 𝑦௜′𝑠 have the same 𝜎௬ value.  From the principle of maximum likelihood, 
the fit will be to minimize: 

 
∑ (𝑦௜ − 𝐴 − 𝐵𝑥௜)ଶ௡

ଵ + ∑ (𝑦௜ + ∆𝑦 − 𝐴 − 𝐵𝑥௜)ଶ௡ା௠
௡ାଵ                   (4.14) 

 
where A, B, and Δy are to be fitted.   ∑௡

ଵ  will be abbreviated by ∑(ଵ) and ∑௡ା௠
௡ାଵ  will be 

abbreviated by ∑(ଶ)  during the derivation.  Taking partial derivatives of A, B, and Δy in 
equation (4.14), gives three equations respectively: 
 
∑ 𝑦(ଵ)ା(ଶ) = ∑ 𝐴(ଵ)ା(ଶ) + ∑ 𝐵𝑥(ଵ)ା(ଶ) + ∑ ∆𝑦 (ଶ)   (4.15) 
∑ 𝑥𝑦(ଵ)ା(ଶ) = ∑ 𝐴𝑥(ଵ)ା(ଶ) + ∑ 𝐵𝑥ଶ

(ଵ)ା(ଶ) + ∑ 𝑥∆𝑦 (ଶ)               (4.16) 
∑ ∆𝑦 (ଶ) = ∑ 𝐴(ଵ)ା(ଶ) + ∑ 𝐵𝑥(ଵ)ା(ଶ) − ∑ 𝑦 (ଵ)ା(ଶ)  (4.17) 
 
where in equations 𝑥, 𝑦 without suffices should not cause confusion.  The solution for B of these 
simultaneous linear equations (4.15) to (4.17) with unknown variables A, B, and Δy is 
 

𝐵 =
ቈ∑ ௫௬(భ)శ(మ) ି

∑ ೣ(భ) ∑ ೤(భ)

∑ భ(భ)
ି

∑ ೣ(మ) ∑ ೤(మ)

∑ భ(మ)
቉

ቈ∑ ௫మ
(భ)శ(మ) ି

(∑ ೣ(భ) )మ

∑ భ(భ)
ି

(∑ ೣ(మ) )మ

∑ భ(మ)
቉

 (4.18) 

 
where ∑ 1(ଵ)   and ∑ 1(ଶ)  can be abbreviated as 𝑁ଵ and 𝑁ଶ.  For reference, compare the slope 
result of standard linear fit: 
 

𝐵 =
ே ∑ ௫௬ି∑ ௫ ∑ ௬

ே ∑ ௫మି(∑ ௫)మ                                                    (4.19) 

 
When all terms with sums  ∑(ଵ)  or ∑(ଶ)  are totally omitted in (4.18), it will reduce to the 
same form as (4.19). 
 
Some properties of the slope 𝐵 formula 
 
1) From the symmetries in equation (4.19), it can be seen that if all 𝑦௜′𝑠 in formula (4.19) are 
added by the same ∆, the resulting 𝐵 will be unchanged, while the intersection 𝐴 will shift by ∆.  
In addition, equation (4.18) will have more symmetry: 

(1) Result of 𝐵 is symmetric under exchange of ∑(ଵ)  and ∑(ଶ) . 
(2) Rewriting ∑ (𝑦௜ − 𝐴 − 𝐵𝑥௜)ଶ௡

ଵ + ∑ (𝑦௜ + ∆𝑦 − 𝐴 − 𝐵𝑥௜)ଶ௡ା௠
௡ାଵ  as ∑ (𝑦௜ + ∆𝑦ଵ − 𝐴 −௡

ଵ

𝐵𝑥௜)ଶ + ∑ (𝑦௜ + ∆𝑦ଶ − 𝐴 − 𝐵𝑥௜)ଶ௡ା௠
௡ାଵ  ,while keeping ∆𝑦 = ∆𝑦ଵ − ∆𝑦ଶ constant, results 

in 𝐵 being unchanged. 



112 
 

 

2) An improved result of intersection 𝐴 on the y-axis of the fit can be found by setting ∆𝑦ଵ =

−∆𝑦ଶ.  Then, the estimated intersection on the 𝑥-axis (−
஺

஻
) (crossover point of track and wire 

plane) can be computed accordingly. 
 

As for the result of using the new fit (4.18), it’s not much of the improvement over the 
standard straight line fit (4.19) when minimizing the squared angle difference (4.13).  The reason 
could be that we did not remove the pivot wire data point which is non-linear.  However, 
removing the pivot wire could lead to a lack of data points for the fit, especially for clusters with 
low number of wires, e.g., 3 or 4. 
 

4.3.4 Making all fit track as straight as possible 

 

The goal of cluster fitting is to fit TTD converted (𝑛௜, 𝑑௜) data of each found cluster as a 
straight line.  Thus, the premise of the cluster fitting is that the (𝑛௜, 𝑑௜) data indeed represent a 
straight line.  As we already saw in Fig. 4.8, the (𝑛௜ , 𝑑௜) graph lines are more or less bent near the 
𝑡 = 0 region.  Following the same idea of (4.13), we want to formulate a function of 𝐶 to quantify 
the linear relation of (𝑛௜, 𝑑௜) data, then minimize it to optimize value of 𝐶. The coefficient of 
linear correlation is used to quantify the linear relation: 
 

𝑟 =
∑(௫೔ି௫̅)(௬೔ି௬ത)

ඥ∑(௫೔ି௫̅)మ ∑(௬೔ି௬ത)మ
                              (4.20) 

 
Here (𝑥௜, 𝑦௜) represent independent and dependent variables.  We know that when |𝑟| is close to 1 
the 𝑥,  𝑦 relationship is more linear.  Defining the probability 𝑃(𝑟଴; 𝑁) = 𝑃(|𝑟| > 𝑟଴; 𝑁) to be 
that when considering 𝑁 data points, the probability of |𝑟| > 𝑟଴.  As we can see here the 
probability is also dependent on the number of data points; the larger the 𝑁 the less the 𝑟଴ needed 
for same value of 𝑃(𝑟଴; 𝑁). When 𝑁 is fixed, the larger the 𝑟଴, the less probable of 𝑃(𝑟଴; 𝑁) and 
the data (𝑥௜, 𝑦௜) relation is more probable to be linear. [44]  Then, our criterion to optimize 𝐶 is to 
minimize the average probability of 𝑃(𝑟଴; 𝑁) squared: 
 

𝑓(𝐶) =
ଵ

ே
∑ 𝑃(𝑟଴; 𝑁)ଶ

௔௟௟_௧௥௔௖௞௦                (4.21) 

 
Since most of the events in the cosmic ray test run are showers, the sum of all tracks here are 
tracks manually picked from selected events to ensure a good single track.  In addition, 𝑃(𝑟଴; 𝑁) 
requires numerical integration so we utilized a table of 𝑃(𝑟଴; 𝑁) values with a spline interpolation 
from a built-in ROOT function.  Then we minimized (4.21) to optimize 𝐶 through the iterative 
method explained in Appendix A 4.3.1. 
 

The criterion for minimizing (4.21) is a lot better behaved and we get a single minimum 
without indication of discontinuity in 𝑓(𝐶) compared to minimizing the squared angular 
difference.  We use the same manually picked events as in section 4.3.2. and add two additional 
cuts: 

(1) Only hits with the best matched slopes in the  UU and VV clusters of these events are 
included in the histogram. 
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(2) Events for which the TTD converted distance is larger than half wire plane thickness (0.5 
inches) were omitted. 

The resulting drift distance distribution is shown below: 

 

III Fig 4. 9 Drift distance distribution of each wire plane. Ordinate: counts, no unit, abscissa: drift 
distance in cm. 

From manually selected clusters with cuts described above. 

 

III Fig 4. 10 Signed drift distance distribution. Ordinate: counts, no unit, abscissa: drift distance in 
cm. 

It’s derived from the same clusters as in Fig 4.9. That is flip sign of (absolute valued) drift 
distances if the hits are on the other side of the pivot wire. 
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4.3.5 Converted drift distance distribution and explanation 

1) The motivation of the discussion 

As we seen from the distance distribution histograms Fig 4.7 and Fig 4.10. The distance 
distribution has multiple peaks, which leads to a question on one intuitively obviously correct 
statement: drift distance distribution is uniform. In this section we are trying to answer the 
question: What causes the peaks in distance distribution? 

2) Geometry of the trigger 

 
Trigger paddles placement: The scintillator trigger used to test the wire chambers was not 

fully explained.  We placed the scintillator paddles with widths of about 11 cm parallel to 𝑥 or 𝑦 
axes above the top and bottom wire chambers.  Above each wire chamber, at least a pair of 
paddles were placed perpendicular to each other forming an 11 cm by 11 cm square area defining 
the area through which particles can pass and generate tracks.  They’re placed above and on the 
center line (parallel to the long axis, or 𝑦 axis) of the wire chamber.  While along the long axis, 
the square areas formed by trigger paddles have the same x coordinate.  The tracks are allowed 
only if they pass through the square areas above both wire chambers. 
 

Track direction angles: Based on how the paddles are placed, the track direction angles 

𝜃, 𝜑 to represent track direction as (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) = ቀ
∆௫

∆௭
,

∆௬

∆௭
,

∆௭

∆௭
ቁ through the centers of square 

areas are estimated to be 𝜃~ > 45° and 𝜑~0°.  By placing cuts such that only 4 paddles from 2 
squares are hit, the (𝜃, 𝜑) distribution is shown below.  It can be seen that the direction of tracks 
satisfying the trigger cut is quite well constrained.  We hope to explain the cause of peaks in drift 
distance distributions under both direction and area constraint of the cut on the trigger. 
 

 

III Fig 4. 11 Analyzer fitted track (𝜃, 𝜑) distribution. Ordinate: track projection angle in x 
direction (short axis of chamber) 𝜃 in unit degree, abscissa: track projection angle in y direction 
(short axis of chamber) 𝜑 in unit degree. 



115 
 

 

(𝜃, 𝜑) 𝜃 as abscissa, 𝜑 as ordinate distribution with cut on trigger described above. 

3) Conditions for uniform distance distribution. 
Here we consider the condition which makes distance distribution uniform. Consider the 

following situation: assume incident angles 𝛼௨ or 𝛼௩ of the track be fixed; that is, in the u-z or v-z 
projection we consider the set of parallel tracks.  Then, if the crossover point coordinate of the 
tracks are uniformly distributed, covering through integer number of wire periods (abbr. as 
translation symmetry) the drift distance distribution will be uniform, within half wire plane 
thickness range (0 to 1.27 cm).  If we consider the signed drift distance distribution, it will be 
uniformly distributed from -1.27cm to 1.27cm instead. The reason is illustrated in Fig. 4.12: 

  

III Fig 4. 12 Signed drift distance of parallel tracks with 5-wire cluster. 

With crossover point uniformly distributed from wire 0 to wire 1. Notation: 𝑑௜,  𝑖 =
−3, −2,1,0,1,2,3 are drift distances of the 𝑖th wire; 𝑤𝑠 is the wire spacing; 𝜃 = 90° − 𝛼௨/௩; ∆ℎ =
௛

ଶ
− 2𝑤𝑠 ∙ 𝑡𝑎𝑛𝜃, where ℎ = 2.54𝑐𝑚 is the wire plane thickness. 

 
Let us consider drift distances between two parallel tracks. When the 2nd track has its 

crossover point shifted by ∆𝑢 in the 𝑢 coordinate, then the relation between the two sets of drift 
distances from the two parallel tracks will be +𝑑௜

ᇱ = 𝑑௜∆𝑑 = 𝑑௜ + ∆𝑢 ∙ 𝑡𝑎𝑛𝜃.  Thus, the change 
of drift distance is proportional to the change of crossover point 𝑢 coordinate, and if 𝑢 is 
distributed uniformly, so should 𝑑.  However, there are more constraints in this case: 
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(1) All drift distances 𝑑௜ must be within the wire plane region: r −ℎ/2 < 𝑑௜ < ℎ/2. 
(2) The drift distance distribution is filled with all wire hits having drift distances 𝑑௜ from 

each cluster. 
(3) The translation symmetry, that is if a track translate along 𝑢 by wire spacing 𝑤𝑠, then the 

next wire in the original cluster will have the same drift distance as the current wire in the 
original cluster.  This generates the same set of data point to be filled in the drift distance 
distribution. 

As an example of the track and corresponding cluster with 6 wires, we translate the track 
uniformly along the 𝑢 direction, with a crossover point from wire 0 translated to wire 1, as shown 
in Fig. 4.12.  We denote 
 

∆= 𝑤𝑠 ∙ 𝑡𝑎𝑛𝜃                                (4.22) 
௛

ଶ
= 2∆ + ∆ℎ                                  (4.23) 

 
Then drift distances of each wire in the clusters are: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

 𝑑ିଶ ∈ [−2∆ − ∆ℎ, −2∆]                            
𝑑ିଵ ∈ [−2∆, −∆                                          

 𝑑଴ ∈ [−∆,0]                                                  

𝑑ଵ ∈ [0, ∆]               

𝑑ଶ ∈ [∆,2∆]             
𝑑ଷ ∈ [2∆,2∆ + ∆ℎ]

                                     

       (4.24) 

 
Based on the assumption (1) and noting the relation (4.23), the drift distances 𝑑௜,  𝑖 =
−2, −1,0,1,2,3 of all wires in the cluster are filling the drift distance 𝑑 distribution from −ℎ/2 to 
ℎ/2 with no gap and no overlap.  If we consider the absolute value of the drift distance |𝑑௜| 
distribution, it can be seen that the distance distribution of 𝑑ିଶ 𝑑ିଵ 𝑑଴ are exactly the negatives 
of 𝑑ଵ 𝑑ଶ 𝑑ଷ.  Thus, |𝑑| will be uniformly distributed from 0 to ℎ/2.  That illustrates the statement 
above Fig 4.12.  A simple simulation is conducted and both crossover points coordinate and drift 
distance distributions are shown below. 

  

III Fig 4. 13 Simulated crossover points 𝑢 coordinate and drift distance distribution. Left figure 
ordinate: counts, no unit, abscissa: cross over point 𝑢 coordinate in unit cm. Right figure ordinate: 
counts, no unit, abscissa: drift distance in unit cm. 

Left, crossover point 𝑢 coordinate distribution. Right, drift distance distribution.  The geometry of 
the simulation was: wire spacing 𝑤𝑠 = 0.493 𝑐𝑚, track incident angle 𝛼௨ = 45°, thus ∆= 𝑤𝑠 =
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0.493 𝑐𝑚.  Wire plane thickness ℎ = 2.54𝑐𝑚 and ∆ℎ =
௛

ଶ
− 2∆.  Simulation setup: One million 

events generated with crossover point coordinates uniformly distributed in range [−
௪௦

ଶ
,

௪௦

ଶ
] and 

corresponding drift distance of wire 0 being 𝑑଴ ∈ [−∆/2, ∆/2], 𝑑ଵ = 𝑑଴ + ∆∈ [∆/2,3∆/2] and so 
on.  Results of the simulation: Take all distances from all wires in the cluster satisfying 
−ℎ/2 < 𝑑௜ < ℎ/2, compute their absolute value then fill the drift distance histogram.  The 

distribution is uniform in range ቂ0,
௛

ଶ
ቃ = [0,1.27𝑐𝑚 ] in right Fig.  As we can see from the number 

of entries of crossover point coordinates is 1,000,000, while drift distance distribution number of 
entries is 5,152,473. Note that the ratio of the number of entries to the number of trials is about 

5.1521 = 
௛

∆
=

ଶ.ହସ௖௠

଴.ସଽଷ௖௠
. 

 
4) Explanation of peaks in distance distributions 
 

Following the discussion above, we will explain the peaks in distance distribution. 
First, we can partition all tracks passing the trigger cut when we analyze replayed ROOT files 
into small subsets, each containing particles with similar incident angle values, i.e., 
approximately parallel to each other.  Then, if each subset satisfies the condition the “crossover 
point coordinate of the tracks are uniformly distributed, covering an integer number of wire 
periods” then “the drift distance distribution will be uniform, within half wire plane thickness 
range” as argued above.  However, the translation symmetry of the tracks above is broken. From 
the geometric constraint of the trigger, for certain set of parallel tracks, their allowed sub-area 
inside the 11 cm-by-11 cm square of common area a pair of perpendicular trigger scintillator 
paddles could be far from translationally symmetric due to two factors illustrated in Fig. 4.14: 

1) The parallel tracks for a certain direction can be seen as a set of parallel vectors pointed 
from the top square trigger to the bottom square trigger.  Constrained by the boundaries 
of the squares, the allowed area for these sets of parallel tracks are rectangles (shaded red 
areas). 

2) The locations of wires within the projection of the squares cannot be measured precisely 
and can be seen as somewhat random. Further analysis of the projection will be analyzed 
in the next chapter. 

Combining with 1) and 2) we arrive at the following results: 
1) The wires in the middle of the rectangle projection have longer lengths in the projection 

compared to the wires on the sides, and thus the distance distribution will have more 
events for these wires. 

2) The translational symmetry is broken as wires on the sides have shorter lengths within the 
rectangle projection, since the probability of a track passing through these wires are no 
longer uniform for a period of wire spacing. 

These breaks of translation symmetry will result in gaps and peaks for the set of parallel tracks. 
The result from a simple simulation demonstrating this is shown in Fig. 4.15. In addition, Fig. 
4.15 also shows that the higher peak at the pivot wire could be a result of an error in the TDC 
time offset calibration. 
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III Fig 4. 14 Geometry explanation of peaks in drift time distribution. 

Left: allowed area (in red shade) for a set of parallel tracks within common trigger paddle area.  
Right: projection of allowed area (enclosed by red rectangle) on 𝑢 wire plane, with wires drawn. 
For this set, the span in 𝑢 coordinate is: 
 

∆𝑢 = (∆𝑥, ∆𝑦) ∙ 𝑢ො ≅ (2.75𝑐𝑚, 5.5𝑐𝑚) ∙ ቀ
ଶ

√ହ
,

ଵ

√ହ
ቁ  

                                ≅ 4.91𝑐𝑚 ≅ 9.97 × 0.493𝑐𝑚 = 9.97 wire spacings 
 

Approximately 10 wires cross the rectangle.  And, wires on the sides (upper left and lower right 
wires) have broken translation symmetry, with less length covered compared to middle wires. 
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III Fig 4. 15 Simulated signed drift distance distribution. Ordinate: counts, no unit, abscissa: 
signed drift distance in unit cm. 

Compared to Fig 4.13, the crossover point coordinates are uniformly distributed in 𝑢 for a 0.8 
wire spacing, the rest of the region has 0 probability density.  This break of translation symmetry 
within a wire spacing period of crossover points coordinates results in gaps and peaks in the 
distance distribution above. 
Also, a shift of positively signed distances down by a small amount shifts negative signed events 
up a small amount to simulate the effect of error of the TDC time offset.  This results in the 
higher peak in the center wire (pivot wire) distance distribution. 
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4.4 Integration of drift time distribution density function as time to distance 
function 
 
4.4.1 Introduction 
 

Now we change the procedure to determine TTD function based on the assumption that 
the converted distance distribution should be uniform.  As we already saw in last section (4.3.5), 
this assumption is based on the translation symmetry of parallel tracks.  If the trigger has a tight 
geometric constraint on track direction and small in area (dimension comparable to wire spacing), 
then the translation symmetry is broken for nearly parallel tracks.  This results in peaks in the 
distance distribution, as seen in Fig. 4.7 and Fig. 4.10 as a result of previous TTD conversion. 
If we now consider all hit time data from a test run with enough statistics, considering the fact 
that each wire plane has 183 wires activated, then the translation symmetry for parallel tracks 
with reasonable angles should be approximately preserved.  Thus, the uniformity of the drift 
distance distribution should be valid. 
 

The TTD function can be derived from the drift time distribution through integration.  
The result is a TTD function curve, with discrete points (𝑡௜ , 𝑑௜) computed.  Now we have two 
options: 

1)   Assuming the TTD function has certain functional form (e.g. the default TTD 
function (4.1)), we fit parameters of that function from data points (𝑡௜ , 𝑑௜).  This will 
be described in section 4.5. 

2)   We interpolate data points (𝑡௜, 𝑑௜) to find drift distance 𝑑 for certain drift time 𝑡. This 
will be described in section 4.6.   

 
4.4.2 Derivation of TTD curve 
 
Now when we have the following information: 

1)  the drift time distribution, from replay ROOT file entries from TDC raw data file and 
2)  the drift distance distribution is uniformly distributed, for tracks with fixed incident 

angle, 
the derivation of the TTD curve is pretty simple, based on the transformation of variable of a 
probability distribution. [45] 

 
The probability distribution for time t is: 

 

𝐹(𝑡଴) ≡ 𝑃𝑟𝑜𝑏(𝑡 ≤ 𝑡଴) = ∫ 𝑓(𝑡)𝑑𝑡
௧బ

଴
                          (4.25) 

 
where 𝐹(𝑡଴) is the probability distribution function of drift time, 𝑃𝑟𝑜𝑏(𝑡 ≤ 𝑡଴) is the probability 
of time 𝑡 ≤ 𝑡଴, and 𝑓(𝑡) is the probability density function of drift time.  The distribution drift 
distance d has form: 
 

G(𝑑଴) ≡ 𝑃𝑟𝑜𝑏(𝑑 ≤ 𝑑଴) = ∫ 𝑔(𝑑)𝑑𝑑
ௗబ

଴
=

ௗబ

஽
             (4.26) 
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where G(𝑑଴) is the probability distribution function of drift distance, 𝑃𝑟𝑜𝑏(𝑑 ≤ 𝑑଴) is the 
probability of time𝑑 ≤ 𝑑଴, and 𝑔(𝑑) is the probability density function of drift distance.  𝐷 is the 
upper bound on the value for 𝑑 (could be larger than half of wire plane thickness due to virtual 
drift distance (see section 4.2.1).  Now in order to determine the relation 𝑑(𝑡), we want to 
associate time 𝑡଴ with drift distance 𝑑଴, thus 
 

𝑃𝑟𝑜𝑏(𝑡 ≤ 𝑡଴) = 𝑃𝑟𝑜𝑏(𝑑 ≤ 𝑑଴)                                   (4.27) 
 

It should be noted that both the probability density functions 𝑓(𝑡) and 𝑔(𝑑) are non-negative, and 
thus both 𝐹(𝑡଴) and G(𝑑଴) are monotonically increasing.  In addition, the function 𝑑(𝑡) is 
monotonically increasing so the inverse function exists.  We will have the relation 𝑡(𝑑) =
𝑑ିଵ(𝑑(𝑡)).  By equating (4.25) and (4.26) due to (4.27), we have: 

 

 𝐺(𝑑଴) ≡ 𝑃𝑟𝑜𝑏(𝑑(𝑡) ≤ 𝑑଴) = ∫ 𝑔(𝑑)𝑑𝑑
ௗబ

଴
=

ௗబ

஽
 

            = 𝑃𝑟𝑜𝑏(𝑡 < 𝑡(𝑑଴)) = ∫ 𝑓(𝑡)𝑑𝑡
௧(ௗబ)

଴
    (4.28) 

 
Alternatively: 
 

 𝑑଴ = 𝐷 ∫ 𝑓(𝑡)𝑑𝑡
௧(ௗబ)

଴
                                                                        (4.28′) 

 
If we utilize data from the histogram of the distribution of 𝑡 which can be normalized, and if we 
then approximate the integration by the sum we can numerically compute time to distance 
conversion function 𝑑(𝑡) by: 
 

 𝑑଴ =  𝑑଴(𝑡଴) ≈ 𝐷 ∑ 𝑓(𝑡௜)∆𝑡௧೔ழ௧(ௗబ)ୀ௧బ
                                                (4.28′′) 

 
Then, 𝐷 and the normalization of the t distribution will uniquely determine d as function of t. 
 
4.4.3 Practical procedure to obtain TTD function by integration 
 

Before we apply equation (4.28) to compute the TTD function, we should note that for 
our experiment the range of BH pair particle directions is much larger than the situation in most 
JLAB experiments.  Thus, the incident angles 𝛼௨ or 𝛼௩ dependence on drift distance, which is 
already shown in the parameter 𝑎ଶ in default analyzer formula (4.1), should not be overlooked. 
And, we should incorporate the incident angle dependence in our calculations.  Instead of 𝑑(𝑡) 
for all wire hit data, we calculate 𝑑(𝑡; 𝜃) from the subset of data with incident angle close to 𝜃 
(the estimated slope tan𝜃 instead of 𝜃 could also be a choice). Convention: in this section and  
4.5 we denote incident angle by 𝜃 instead of 𝛼௨ or 𝛼௩ for simplicity. 
 

The steps to follow to compute TTD function 𝑑(𝑡; 𝜃) with fixed 𝜃 : 
1) (Analyzer) find clusters for each wire plane in each event. 
2) Determine if a cluster has an estimated incident angle 𝜃 within range [𝜃 − ∆𝜃, 𝜃 +

∆𝜃] (∆𝜃 = 1° during calculation) 
3) Fill the drift time distribution histogram of clusters with selected incident angle. 
4) Calculate the sum ∑ 𝑓(𝑡௜)∆𝑡௧೔ழ௧(ௗబ)ୀ௧బ

 for a set of time 𝑡௜ till a cutoff value. Record 
each 𝑡௜ then normalize the sum to 1. 
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5) Set the cutoff drift distance 𝐷. 
6) 𝑑௜ = 𝐷 ∑ 𝑓(𝑡௜)∆𝑡௧೔ழ௧(ௗబ)ୀ௧బ

 and record data (𝑡௜ , 𝑑௜) and plot the graph. 
The cutoff time could be chosen for any time beyond the plateau of time distribution. For 
example, in Fig 4.1 it is 310 ns. A cutoff distance 𝐷, which corresponds to the cutoff time, should 
be close to the half wire plane thickness (1.27cm) at this point, since it’s near the transition 
between a region with uniform electric field with uniform time distribution and a region outside 
the plane beyond cathode plane with a different drift distribution. The value of 𝐷 can be fine 
tuned later based on the track reconstruction result, now we choose 𝐷 = 15 𝑚𝑚 and cutoff time 
𝑇 = 300 𝑛𝑠. 
 
4.4.4 Result 
 

The resulting TTD curves, based on our test run data, are very similar to the TTD function 
in Fig 4.2.  They’re shown below in Fig 4.16.  The function still can be approximated as 3 straight 
line segments (see section 4.2.1).  In addition, we have the calculated result of different estimated 
incident angles.  As for the estimated incident angles for a given found cluster is computed by: 

 

tan𝜃 ≅
|௨బି௨ಿ|

௩(௧బା௧ಿ)
                              (4.29) 

 
or replace 𝑢 by 𝑣 for 𝑣 wire planes.  The meaning is interpreted as |𝑢଴ − 𝑢ே| being the 𝑢 
coordinate difference between the 1st and last wire of the cluster, while 𝑣(𝑡଴ + 𝑡ே) is the 
estimated absolute drift distance sum of the 1st and last wire of the cluster.  As seen from the 
functions, the TTD functions are heavily dependent on incident angle 𝜃. 

  

  

III Fig 4. 16 TTD plot. Ordinate: drift distance in unit mm. Abscissa: drift time in unit ns. 

From sum of time probability density described in previous pages.𝜃 = 35° ,40°, 45°, 50°. 
Abscissa drift time, unit ns; ordinate drift distance, unit mm. 
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4.5 Time to distance conversion parameters fitting 
 

We now have the TTD curve with some selected incident angles shown in Fig 4.16.  Next 
we want to fit them to a single functional form for simpler representation of the TTD relation. 
 
4.5.1 The TTD function 
 
As with all the curves in Fig 4.16, as well as Fig 4.2., we can the divide each curve by 3 pieces 
and approximate each by a straight line segment.  That is: 
 

 𝑑(𝑡; 𝜃) = 𝐴ଵ(𝜃) + 𝑣 ∙ 𝑡 ∙ ቀ1 +
௔మ(ఏ)

௔భ(ఏ)
ቁ        , 𝑣 ∙ 𝑡 ≤ 𝑎ଵ(𝜃) 

𝑑(𝑡; 𝜃) = 𝑣 ∙ 𝑡 + 𝑎ଶ(𝜃)                                 , 𝑣 ∙ 𝑡 > 𝑎ଵ(𝜃)  (4.30) 
 

Here this is just a modified form of (4.1) with 𝑎ଵ now also incident angle dependent, and the 
intercept 𝐴ଵ(𝜃) as a new term is added (ignored in some fit attempts). Here several points that 
need to be pointed out: 

(1) The 3rd piece has not been determined in this formula.  The reason is that the hits in 
this region are beyond the cathode planes and represent virtual distances which need 
additional care.  The data in the 1st and 2nd pieces are already sufficient to the fit local 
track with high precision. 

(2) The incident angle dependence in (4.30) is much more than in the previous version. 
The reason is that for our experiment the solid angle range of primary particles are a 
lot larger and so does the incident angles range in different wire planes. The larger 
range requires the more general form of 𝜃 dependence in the TTD function. 

(3) The additional incident angle dependent intercept 𝐴ଵ(𝜃) results from the fact that 
TDC time offset for the wires are not perfectly calibrated.  The insufficient 
calibration of TDC time offset will result in 𝑑(𝑡 = 0) ≠ 0 and it is the reason that 
𝐴ଵ(𝜃) is needed for more accurate 𝑑(𝑡; 𝜃) fitting.  There are several reasons that at 
the current stage TDC time offsets cannot be calibrated precisely enough.  First, the 
offset is sense wire or channel dependent but, due to the lack of statistics, they are 
calibrated per 16 channels from each discriminator card.  Second, the propagation of 
signals within a wire takes time, so the time offset also depends on where the 
particles intersect the wires (see section 4.2.1 2).  This results in a fluctuation of 
about 4 ns in the result.  Also see Fig 4.17 below.   The absolute nominal value of 𝐴ଵ 
is 0.64 mm, and for 𝑣 = 6 × 10ସ(𝑚/𝑠), it results in about 10.7 ns offset in time, 
which is about 5% of the total range of drift time (~200 ns). 

(4) We treat 𝑣 as constant and scale to the same 𝑣 after the fit.  During the TTD 
calculated from numerical integration the time distribution density function we used 
the condition 𝐷 = 𝑑(𝑇) with 𝐷 = 15 𝑚𝑚 and 𝑇 = 300 𝑛𝑠 to normalize the 
integration.  However, due to the unknown incident angle dependence of the TTD 
function, the normalization condition failed.  The drift velocity 𝑣 in region 
sufficiently away from sense wires on the other hand should only depends on HV and 
inert gas properties due to the randomness of acceleration of the electric field and 
scattering by the gas molecules.  In the most reliable fit result, 𝑣 is kept as constant. 
And after each fit, all other parameters (𝑎ଵ, 𝑎ଶ, 𝐴ଵ) were scaled to keep 𝑣 constant. 
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III Fig 4. 17 TDC time offset from length of sense wire. 

Even though the time when the cosmic particle track intersects with the wire should represent 0 

time, the sense wire has length (longest is about 
ଶଵᇲᇲ

௦௜௡ଶ଺.ସହ°
≅ 4 𝑓𝑒𝑒𝑡) and it will take different time 

to propagate the signal when the track intersects the wire in different locations. 
 
4.5.2 Procedure for fitting the TTD function 

 
1)   In order to extract discrete data points (𝑡௜, 𝑑௜), import the images of each graph in Fig 

4.16 into a digitizer; [46] select sufficient data points from the 1st and 2nd pieces of 
the TTD curve, and specify maximum range on 𝑡 and 𝑑 axes. The digitizer will then 
export the values of points (𝑡௜ , 𝑑௜). 

2)   Using separated data points from (𝑡௜, 𝑑௜), we fit them with straight lines with form: 
 𝑑(𝑡; 𝜃) = 𝐴ଵ(𝜃) + 𝐵ଵ(𝜃)𝑡  

               = 𝐴ଵ(𝜃) + 𝑣(𝜃) ∙ 𝑡 ∙ ቀ1 +
௔మ(ఏ)

௔భ(ఏ)
ቁ 𝑑(𝑡; 𝜃)         

               = 𝐴ଶ(𝜃) + 𝐵ଶ(𝜃)𝑡 = 𝑎ଶ(𝜃) + 𝑣(𝜃) ∙ 𝑡  (4.31)   
                   Write values of 𝐴ଵ(𝜃), 𝐵ଵ(𝜃), 𝐴ଶ(𝜃), 𝐵ଶ(𝜃) for each 𝜃 into a table. 

3)   Compute 𝑎2(𝜃) = 𝐴ଶ(𝜃) first, then use the 𝑎ଶ(𝜃) value in 𝐵ଵ(𝜃) = ቀ1 +
௔ଶ(ఏ)

௔ଵ(ఏ)
ቁ to 

determine 𝑎ଵ(𝜃). 
4)   𝐵ଶ(𝜃) is supposed to be 𝑣 and should not have incident angle dependence, set 𝑣 =

60000 𝑚/𝑠, and scale 𝐴ଵ(𝜃), 𝐴ଶ(𝜃), 𝑎ଵ(𝜃) accordingly to make 𝐵ଶ(𝜃) = 𝑣 =
60000 𝑚/𝑠 a constant. 

5)   Fit all TTD parameters 𝐴ଵ(𝜃), 𝐴ଶ(𝜃) = 𝑎ଶ(𝜃), 𝑎ଵ(𝜃) as polynomial functions of 
tan𝜃, and similarly for 𝐴ଵ(𝜃) and 𝑎ଵ(𝜃). 

6)   Fill wire chamber database file TTD parameters with fit parameters 
𝐴ଵ(𝜃), 𝑎ଶ(𝜃), 𝑎ଵ(𝜃) and 𝑣.  Replay the raw data file to generate a new ROOT file 
and check drift distance distribution. 
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4.5.3 TTD function fit results 

 
The goal of the fit is to reproduce the drift distance distribution under the assumption that it is 
uniform.  Alone from the generation process of TTD curves in section 4.4, if we directly apply 
the curved functions to drift time distribution, we expect to obtain a uniform distance distribution. 
The TTD function fit in this section approximated the curve by two straight line segments and it 
will never be making drift distance distribution fully uniform.  The fit turns to find proper forms 
of TTD parameters 𝐴ଵ(𝜃), 𝑎ଶ(𝜃), 𝑎ଵ(𝜃) and 𝑣 that makes resulting distance distribution as 
uniform as possible.  Our best attempt is to fit 𝐴ଵ(𝜃), 𝐴ଶ(𝜃) = 𝑎ଶ(𝜃), 𝑎ଵ(𝜃) as quadratic 
functions of tan𝜃.  The result is shown below: 
 

1) TTD function parameters. 
 𝐴ଵ = −0.2190 − 0.2698𝑡𝑎𝑛𝜃 + 0.09438𝑡𝑎𝑛ଶ𝜃 (𝑚𝑚)  

 𝑎ଶ = 0.8712 − 0.7221𝑡𝑎𝑛𝜃 + 0.9722𝑡𝑎𝑛ଶ𝜃 (𝑚𝑚) 
 𝑎ଵ = 1.907 − 1.487𝑡𝑎𝑛𝜃 + 0.7046𝑡𝑎𝑛ଶ𝜃 (𝑚𝑚) 
 𝑣 = 60000(𝑚/𝑠)                                                 (4.32) 
 

2)  Drift distance distribution of each wire plane from a package of wire chambers. 
 

 

III Fig 4. 18 Drift distance distribution by applying TTD function. Ordinate: counts, no unit, 
abscissa: drift distance in unit m. 

From function (4.31) with incident angle 𝜃 dependent parameters on drift times, unit meter.  Here 
𝑢1, 𝑣1 are bottom wire chamber wire planes, and 𝑢2, 𝑣2 are top wire chamber wire planes. 
 

3) Drift distance distribution for each incident angle in wire plane 𝑢1  
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III Fig 4. 19 Drift distance distribution from applying the TTD function. Each left figure ordinate: 
counts, no unit, abscissa: drift time in unit 𝜇𝑠. Each right figure ordinate: counts, no unit, 
abscissa: drift distance in unit m. 

(4.31) with incident angle 𝜃 dependent parameters on drift times in wire plane 𝑢ଵ (in meters).  
From upper left to lower right, 𝜃 = 35°, 45°, 50°, 55° respectively. 
 
Discussion on the resulting drift distance distribution 
 
The TTD function makes drift distances somewhat uniformly distributed, except the part where 
drift distance and time transits from the 1st to 2nd segment of the curve.  This is understandable 
since two line-segments could never reproduce a curve with a nearly continuous transition.  The 
TTD function (4.31) essentially shrinks the 1st segment of the drift time distribution uniformly 
(see Fig 4.4.), and we can see from all plots in Fig. 4.18 and Fig. 4.19 that near the 𝑑 = 0 the 
region has been shrunk to match the frequency of 2nd plateau segment. The time and distance at 
intersection of 2 segments in function (4.31) now is particularly important since it determines the 
region to shrink.  The fitted values for the intersection parameters are shown below in Table 4.1. 
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𝟑𝟓° 𝟒𝟎° 𝟒𝟓° 𝟓𝟎° 5𝟓° 

𝐴ଵ (𝑚𝑚) -0.4542 -0.5118 -0.5832 -0.6746 -0.7968 

𝑎ଵ (𝑚𝑚) 1.211 1.155 1.125 1.136 1.221 

𝑎ଶ (𝑚𝑚) 0.8422 0.9498 1.1213 1.3914 1.8228 

𝑡 =
௔భ

௩

௔మି஺భ

௔మ
 (ns) 31.08 29.63 28.49 28.10 29.23 

𝑑(𝑡) = 𝑎ଶ+
௔భ(௔మି஺భ)

௔మ
 

(mm) 

2.704 2.933 2.831 3.078 3.577 

Table 4.1 Fitted parameters 𝐴ଵ, 𝑎ଵ, 𝑎ଶ for selected incident angles.  t is the drift time and 𝑑(𝑡) is 
the drift distance at intersections between the 1st and 2nd segments in TTD function (4.31). 

 

III Fig 4. 20 Drift distance vs incident angle (𝑑, 𝜃) distribution of each wire plane. Ordinate: track 
incident angle in each wire plane 𝜃 in degrees, abscissa: drift time in m. 

The drift distance 𝑑 is on the abscissa in meters; the incident angle 𝜃 is on the ordinate in degrees.  
We can clearly see the dividing lines between the 1st and 2nd segments.  In addition, we can see 
the difference in the resulting distance distributions on different wire planes, especially for the 𝑣ଵ 
plane result, the dividing lines should be pushed to larger distances for larger 𝜃.  This indicates 
that it might be necessary to fit a separate TTD function for each wire plane. 
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4.6 TTD function by interpolation 
 
4.6.1 Introduction 
 
Till now we have applied the formula (4.28") to generate the TTD curve for different incident 
angles with some results plotted in Fig. 4.16.  There are different options for applying the result 
of (4.28") to the cosmic ray test run data.  One is to approximate and fit a TTD function, then 
apply the function to the drift time data as discussed in section 4.5.  Another reliable way to 
utilize the result is to interpolate to get drift distances from arbitrary drift times, which will be 
discussed in this section.  The benefit of interpolation is the drift distance distribution is 
significantly more uniform than that obtained using a TTD function. 

 
4.6.2 Procedure of interpolation and result 
 
1) Calculate drift distance 𝑑(𝑡; 𝜃) by applying formula (4.28”) 
  𝑑଴(𝑡଴) ≈ 𝐷 ∑ 𝑓(𝑡௜)∆𝑡௧೔ழ௧(ௗబ)ୀ௧బ

 
 for various incident angles and drift times.  The result generates a 2-dimensional table of 𝑑(𝑡; 𝜃). 
2) [47] During the analyzer replay process, once we get drift time 𝑡 and estimate the cluster slope 
𝑡𝑎𝑛𝜃 after cluster finding, we interpolate the drift distance linearly from nearest drift distance 
values from 4 data points (𝜃௜(ାଵ), 𝑡௝(ାଵ)) enclosing our 𝑡 and 𝜃: 

𝜃௜ < 𝜃 < 𝜃௜ାଵ and 𝑡௝ < 𝑡 < 𝑡௝ାଵ                               (4.33) 
3) We 1st interpolate 𝜃: 

𝑑(𝜃, 𝑡௜) =
ఏ೔శభିఏ

ఏ೔శభିఏ೔
𝑑(𝜃௜, 𝑡௜) +

ఏିఏ೔

ఏ೔శభିఏ೔
𝑑(𝜃௜ାଵ, 𝑡௜)        (4.34) 

and get 𝑑(𝜃, 𝑡௜ାଵ) similarly.  Then we interpolate 𝑡: 

𝑑(𝜃, 𝑡) =
௧ೕశభି௧

௧ೕశభି௧೔
𝑑൫𝜃, 𝑡௝൯ +

௧ି௧ೕ

௧ೕశభି௧ೕ
𝑑൫𝜃, 𝑡௝ାଵ൯             (4.35) 

This 2D interpolation algorithm is simple and the resulting drift distance distributions are very 
close to uniform.  A set of TTD results from this interpolation method is shown in Fig. 4.21 
below. 
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III Fig 4. 21 Drift distance distribution from interpolation of TTD table. Ordinate: counts, no unit, 
abscissa: drift distance in mm. 

Unit mm. With incident angle range indicated in the titles.  As we can see there are still some 
problems in the result. This distance distribution has a peak in the initial small 𝑑 region and a 
sharp drop in the large 𝑑 region, both regions are where 𝑓(𝑡) changes rapidly.  The obvious flaw 

is in using the sum ∑ 𝑓(𝑡௜)∆𝑡௧೔ழ௧(ௗబ)ୀ௧బ
 in (4.28′) to replace the integral ∫ 𝑓(𝑡)𝑑𝑡

௧(ௗబ)

଴
  in eq. 

(4.28′), or replacing average value ∫ 𝑓(𝑡)𝑑𝑡
௧೔

௧೔శభ
/∆𝑡 of each interval by its center value 𝑓(

௧೔ା௧೔శభ

ଶ
). 
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4.6.3 Modified 𝑑(𝑡) calculation 
 
It is suggested that by finding drift times 𝑡௜ in the time distribution in which each interval 
[𝑡௜, 𝑡௜ାଵ] has the same number of time data points, then the resulting distance 𝑑(𝑡௜) points should 
be equally spaced. This is proved by seeing that in interval [𝑡௜, 𝑡௜ାଵ] the change of drift distance is 

𝑑(𝑡௜ାଵ) − 𝑑(𝑡௜) = 𝐷 ∫ 𝑓(𝑡)𝑑𝑡
௧೔

௧೔శభ
                     (4.36) 

and the integral is the probability of drift time in [𝑡௜ , 𝑡௜ାଵ], which is proportional to counts in 
interval [𝑡௜, 𝑡௜ାଵ].  Our goal is to get all drift time data from all clusters within a small incident 
angle range in a wire plane.  Then group them into same counts in each interval so that all time 
data in one interval [𝑡௜, 𝑡௜ାଵ] should be larger than any interval on its ‘left’, and also for the 
‘right’. (Assuming finding median by sorting a data set, but now it’s extended to sorting into 100 
subsets, with any time 𝑡 in the 𝑖௧௛ set of data larger than all time 𝑡 data in previous i-1 sets, and 
less than all time 𝑡 data in sets starts at i+1.)  We don’t have to sort inside each subset, that’s 
called a quick sort algorithm and greatly increases computation speed.  A brief discussion of the 
quick sort algorithm used is in Appendix A 4.6. 
 
There are also changes in the interpolation, to use the previous 2D linear interpolation formula 
(4.33) to (4.35), we have 4 data points (𝜃௜, 𝑡௝), (𝜃௜ାଵ, 𝑡௝), (𝜃௜, 𝑡௝ାଵ), (𝜃௜ାଵ, 𝑡௝ାଵ) located at 4 
corners of a rectangle in the 𝜃-t coordinate system.  Now, instead of numbers in (𝜃, 𝑡, 𝑑(𝜃, 𝑡)) 
table being equally spaced 𝜃 and 𝑡 values, we have numbers in table (𝜃,  𝑑, 𝑡(𝜃, 𝑑)) with equally 
spaced 𝜃 and 𝑑 values. The method of finding the interpolation formula using 𝑑 and 𝜃 is to find 
𝑡(𝑑, 𝜃) first, then solve 𝑑 as 𝑑(𝜃, 𝑡) from 𝑡(𝑑, 𝜃), as elaborated on below.  We derive the formula 
for 𝑑(𝜃, 𝑡) from the 2D table with numbers (𝜃௜, 𝑑௝, 𝑡((𝜃௜, 𝑑௝)).  For simplicity we use the notation 
𝜃ଵ, 𝜃ଶ and 𝑑ଵ, 𝑑ଶ in the derivation. 
1) At line 𝑑 = 𝑑ଵ linear interpolate 𝜃 

𝑡(𝑑ଵ, 𝜃) =
ఏమିఏ

ఏమିఏభ
𝑡(𝑑ଵ, 𝜃ଵ) +

ఏିఏభ

ఏమିఏభ
𝑡(𝑑ଵ, 𝜃ଶ) (4.37) 

Replace 𝑑ଵby 𝑑ଶ in (4.37), then for 𝑑 = 𝑑ଶ 

𝑡(𝑑ଶ, 𝜃) =
ఏమିఏ

ఏమିఏభ
𝑡(𝑑ଶ, 𝜃ଵ) +

ఏିఏభ

ఏమିఏభ
𝑡(𝑑ଶ, 𝜃ଶ) (4.38) 

2) Interpolate 𝑑 on line 𝜃 = 𝜃: 

𝑡(𝑑, 𝜃) =
ௗమିௗ

ௗమିௗభ
𝑡(𝑑ଵ, 𝜃) +

ௗିௗభ

ௗమିௗభ
𝑡(𝑑ଶ, 𝜃)  (4.39) 

3) We know time 𝑡 = 𝑡(𝑑, 𝜃) as a result value in the table, but not 𝑑. However, we can solve for 
𝑑 from equation (4.39): 

𝑑 =
(ௗమିௗభ)௧(ௗ,ఏ)ିௗమ௧(ௗభ,ఏ)ାௗభ௧(ௗమ,ఏ)

௧(ௗమ,ఏ)ି௧(ௗభ,ఏ)
   (4.40) 

It should be noted that we don’t expand 𝑡(𝑑, 𝜃) in (4.40) by (4.39), the 𝑡(𝑑, 𝜃) is the drift time 
from measurements so all the terms in (4.40) can be acquired. 
 

In order to apply formula (4.40), the last issue is to determine which cell with 4 corners 
(𝑑ଵ, 𝜃ଵ), (𝑑ଵ, 𝜃ଶ) , (𝑑ଶ, 𝜃ଵ) , (𝑑ଶ, 𝜃ଶ) we use to apply the interpolation formulas (4.37) to (4.39).  
There are two pieces of information we can exploit: 

1) We know the value of 𝜃 (see eq. 4.29), here 𝜃 is the arctangent of the estimated slope) so 
we only need to find two adjacent values of 𝜃 for which 𝜃௜ < 𝜃 < 𝜃௜ାଵ in the table. 

2) When 𝜃 is fixed, the function 𝑡(𝑑, 𝜃) is a monotonically increasing function of 𝑑. 
Thus from the 𝜃 we use interpolation formulas such as (4.37) to get a sequence of interpolated 
drift time data: 
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𝑡൫𝑑௝, 𝜃൯ =
ఏ೔శభିఏ

ఏ೔శభିఏ೔
𝑡൫𝑑௝, 𝜃ଵ൯ +

ఏିఏ೔

ఏ೔శభିఏ೔
𝑡൫𝑑௝ , 𝜃௜ାଵ൯         (4.41) 

Since 𝑡(𝑑, 𝜃) is a monotonically increasing function of 𝑑, 𝑡൫𝑑௝ , 𝜃൯ < 𝑡൫𝑑௝ାଵ, 𝜃൯ is always 
satisfied.  Thus, we can end our search for 𝑑௝ and 𝑑௝ାଵ once we have 

𝑡൫𝑑௝, 𝜃൯< 𝑡(𝑑, 𝜃) < 𝑡൫𝑑௝ାଵ, 𝜃൯                                         (4.42) 
 

The resulting distance distributions from the modified 𝑑(𝑡) calculation are shown in Fig. 
4.22 and Fig. 4.23.  As we see, the previously seen anomalies either in a narrow range in the 
incident angle 𝜃 or a large range the distance distribution 𝑑(𝑡), are eliminated and the distribution 

shows only statistical fluctuations.  The defect of using 𝑓(
௧೔ା௧೔శభ

ଶ
)∆𝑡 to approximate ∫ 𝑓(𝑡)𝑑𝑡

௧೔

௧೔శభ
 

is solved. 
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III Fig 4. 22 Drift distance distribution of wire plane 𝑢1 with incident angle 𝜃 from 35° to 36°. 
Ordinate: counts, no unit, abscissa: drift distance in mm. Note the counting error with 500 counts 
is √500 = 22.4. 

 

III Fig 4. 23 Drift distance distribution of wire plane 𝑢1 with incident angle 𝜃 from 35° to 55°. 
Ordinate: counts, no unit, abscissa: drift distance in mm. 
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5 Analyzer track finding, fitting and efficiency 
 

5.1 Introduction 
 

In Chapters 3 and 4 we discussed how to find and fit clusters from wire chamber TDC 
time data. The most important results are found clusters and their crossover point coordinates 
(𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ).  In the analyzer replayed ROOT file, track information is stored as 

(𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑)h are the 𝑥, 𝑦 coordinates of lowest wire plane and 𝑡𝑎𝑛𝜃 =
∆௫

∆௭
 and 𝑡𝑎𝑛𝜑 =

∆௬

∆௭
 

are track projection angles between in the x-z axis and y-z axis, respectively.  In this chapter, we 
will discuss the analyzer track fitting algorithm and how the track position and direction 
information (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) is obtained from the cluster fitting result (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) (Section 
5.2).  In order to check the validity of the current analyzer code track fitting result, we compare 
the analyzer track results with specific geometric constraints to the predicted range of tracks from 
direct measurement of the geometries of the trigger scintillator paddles.  Thus, not only tracks 
should be found and fitted for these specified triggers, but also the track fitting result needs to lie 
within the bounds of the trigger geometry.  The trigger setup will be discussed in 5.3. The results, 
including found tracks and efficiency are shown in 5.4. To end this chapter, suggestion of 
improvement of the track finding efficiency are proposed in 5.5.  Some miscellaneous topics are 
discussed in 5.6. 
There are two very important points to be made here: 

1) The difference between JLAB experiment and BH experiment are mainly in the data rates 
and range of track directions.  Experiments at JLAB have much higher rates and it is 
common that multi-cluster/track events emerge.  Some aspects of the Hall A analyzer 
track finding and fitting code are written specifically to handle these situations.  For the 
BH experiment this is not the case. From a Geant 4 simulation using a 25𝜇𝑚 thick 
Uranium-238 target, the rate of events at the yoke hole of the magnet not excluded by the 
tungsten cone baffle is on the order of 10 Hz (see Part IV Simulation, Section 1.4.2). 
Compared to typical drift time of ionized electrons in wire chamber 200 ns, this data rate 
should rarely result in a multi-track situation.  Thus, the main focus of the test run results 
is on single-cluster/track events.  On the other hand, the range of track directions in the 
BH experiment is much larger than in JLAB experiments.  This gives some additional 
requirements on our wire chambers and tracking code to have good efficiency covering a 
wider range of track angles. 

2) The main difference between cosmic ray tests and the BH experiment is the shower of 
cosmic particles, which result in very messy hit collections, both in terms of the number 
of wires hit and their hit time structures.  This inevitably results in the domination of 
multi-cluster/track events. In order to compensate for this, small sized scintillator paddles 
were placed to constraint track crossover location on wire chamber and direction for 
easier handling of the tracking results. The downside is just as mentioned, the constraint 
geometry of these triggers cannot fully cover the area and angles of track in BH 
experiment.  However, if we assume that the untested regions of the wire planes perform 
at similar efficiency as the tested regions, then the test runs are good indications of 
successful tracking in experiment. 
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5.2 Track finding and fitting 
 

The condition for an event rendering a track is simple; each wire plane has at least one 
cluster found.  Once this condition is satisfied, each wire plane will have at least one crossover 
coordinate (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) calculated.  The next step is to calculate track info (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑), 
which are defined in 5.1.  This calculation is called track fitting and will be discussed in 5.2.2, 
Appendix A5.2.1, and Appendix A5.2.2. 
 

The analyzer handles track finding and fitting based on two cases [38]: 
(1) One and only one cluster per wire plane for the event; a single-cluster event. 
(2) Each wire plane has a cluster, and at least one wire plane has more than one cluster for 

the event; a multi-cluster event. 
For case (1), it’s simple in that there is only one crossover coordinate per wire plane, so one and 
only one track is found and fitted. For case (2), even only two tracks will result in a much more 
complex situation.  It will be only briefly discussed in 5.2.1, since it is expected to rarely be the 
case for the BH experiment but frequently appears in test run replays.  The effects of cuts which 
will change the result of track finding and fitting results will be discussed in 5.2.3. 
 
5.2.1 Track identification by path analysis ( [38]) 

 
Let’s consider a 2-track event to illustrate the challenge of track finding and fitting in 

multi-cluster or multi-track events. It should be noted that: 
1) two tracks in the trigger timing window won’t cross wire chambers at the exactly the 

same time, in other word one track will cross the wire chambers earlier than the other. If 
this time separation is large enough (e.g., larger than the maximum drift time), then the 
time difference between two tracks can be observed from their corresponding cluster drift 
time distribution off trigger timing.  That is, the 1st track starts the trigger, the 2nd and 
later track will have uniform drift times offset to the 1st track time. 

2) For a single hit wire, only the 1st hit time will be stored in TDC and analyzed.  Thus, if 2 
tracks cross a wire plane on some common wires, only the 1st arrived track will have drift 
time info stored and 2nd track timing info on these wires are lost. 

 
Disregarding the much rarer case when 2 tracks have overlapped hit wires on even one 

wire plane, we should observe 2 clusters on each wire plane.  In total, there are total 2ସ = 16 
combinations of clusters from 4 wire planes.  So, we have to make 16 times of the number of fits 
compared to the 1 track case.  In addition, comparisons of total 𝜒ଶ are need to find 2 tracks out of 
16 combinations, which will greatly increase computation time. 
 

Let’s consider general case.  Assuming that there are multiple tracks through wire 
chambers, and thus multiple clusters found on each wire plane.  Let the numbers of clusters found 
in each wire plane be 𝑛௨ଵ, 𝑛௨ଶ, 𝑛௩ଵ, 𝑛௩ଶ .  By choosing any combination from 𝑛௨ଵ𝑛௨ଶ𝑛௩ଵ𝑛௩ଶ 
possible combinations of 4 clusters, one from each wire plane, a possible track can be calculated. 
Each such combination is considered a possible path of the track through the chambers. The 
process of identify tracks from all possible paths is called track identification.  A link is a 
combination of two clusters from wire planes with same orientation; that is, a combination of 
𝑢ଵ, 𝑢ଶ clusters or 𝑣ଵ, 𝑣ଶ clusters.  The fundamental of path analysis is to fit all hits (𝑢௜, 𝑑௜) in a 
link, that is a fit straight line from (𝑢௜, 𝑑௜) data from both 𝑢ଵ, 𝑢ଶ clusters of the link together (note 
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𝑢௜ should be replaced by 𝑣௜ for 𝑣 wire planes).  All hits in the link should align in a straight line if 
both clusters in the link belong to the same track.  Results associated with a link, including 𝜒ଶ, 
crossover position, timing offset 𝑡଴, and track slope are stored.  Next comes path ordering: order 
all possible paths according to an error function that combines the quality of straight line fit of 
clusters in 𝑢, 𝑣 links and the hit timing to give most probable tracks from multi-cluster events.  
There are two methods for doing this: 

(1)  [38] All possible combinations of links that composed possible paths are connected by 
following order u1-u2, u2-u1, then v1-v2 to form a path.  The 𝜒ଶ of links u1-u2 and v1-v2 
contains both 𝜒ଶ of straight line fit and difference in timing info while link u2-u1 only 
contains difference in timing. According to equation (14) in [38]: 

𝜒௧௢௧
ଶ = 𝜒௨ଵ௨ଶ

ଶ + 𝜒௩ଵ௩ଶ
ଶ + (

𝑡଴,௩ଵ௩ଶ − 𝑡଴,௨ଵ௨ଶ

min (𝜎൫𝑡଴,௩ଵ௩ଶ൯, 𝜎൫𝑡଴,௨ଵ௨ଶ൯)
)ଶ 

Here, 𝜒௨ଵ௨ଶ
ଶ  and 𝜒௩ଵ௩ଶ

ଶ  are the 𝜒ଶ values found in the U1-U2 and V1-V2 global cluster 
fits, respectively, 𝑡଴,௩ଵ௩ଶ and 𝑡଴,௨ଵ௨ଶ are the timing offsets obtained from these respective 
fits, and the 𝜎(𝑡଴) are the uncertainties in those offsets. This total 𝜒ଶ of all paths are 
sorted into increasing order, and min(𝑛௨ଵ, 𝑛௨ଶ, 𝑛௩ଵ, 𝑛௩ଶ) paths with lowest total 𝜒ଶ and 
without common clusters are the identified tracks. 

(2) The Hall A analyzer code suggests another way of path ordering: sorting errors of all 
point pairs. A point pair is a pair of points, one from wire chamber 1 and the other from 
wire chamber 2, from crossover point coordinates of local cluster fits.  Points undergo 
coordinate transformations (𝑢௜, 𝑣௜) → (𝑥௜ , 𝑦௜),  𝑖 = 1,2 to the analyzer 𝑥𝑦𝑧 coordinate 
system.  When the track direction (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) is fit, we can propagate (𝑥ଵ, 𝑦ଵ) with 
the track direction onto wire chamber 2 to get (𝑥௣ଶ, 𝑦௣ଶ), then compute distance between 
(𝑥ଶ, 𝑦ଶ) and (𝑥௣ଶ, 𝑦௣ଶ) squared.  Do the same for the other way and the sum is the error 
of the point pair, which will be sorted as was done with path ordering. 
 
This sums up the procedure of track finding. One last point that should be noted is that 

for our test run data, if the event corresponds to shower this algorithm for multiple-cluster usually 
won’t give the correct result.  Two main reasons are: first, due to there being too many clusters 
the chances that 𝜒ଶ values are close increases.  The result of path ordering would not necessarily 
give correct answer, in addition wrong ordering results from lower 𝜒ଶ hinders higher 𝜒ଶ paths to 
find correct one that correspond a track.  Second, if the shower is close to wire chambers, it is 
highly possible that the tracks on 1st wire chamber no longer reaches 2nd wire chamber and result 
is useless. We discard shower events when analyzing track fitting results. 
 

5.2.2 Track fitting 

 
It takes 4 linear equations to solve for (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) from (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ).  Thus, a 

unique solution almost always exists once we find at least one track from track finding.  Since 
there is one and only one straight line intersecting with 4 straight lines in each of 𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ 
wire plane with crossover coordinate (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) while having 0 distance to these 4 straight 
lines, track fitting is rather more precisely called track reconstruction.  Once the equations are set, 
the calculational procedure is straight forward.  Derivation of the linear equations to solve is in 
Appendix A5.2.2. 
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If we take geometric constraints such as 𝑢ଵ & 𝑢ଶ wires and 𝑣ଵ& 𝑣ଶ wires being parallel, 
and all 𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ wire planes being parallel into consideration, then the solutions are greatly 
simplified and the result can be immediately obtained.  The steps are as follows: 

1) (see 4.3.2) The incident angles 𝛼௨, 𝛼௩ (recall they’re track direction angles in the u-v 
coordinate system are defined as the angles between the z-axis and the projection of the 
track onto uz or 𝑣𝑧 plane.) are easy to compute (Eq. (20) (21) from [38]): 

1) 𝑡𝑎𝑛(𝛼௨) =
∆௨

∆௭
=

௨మି௨భ

ௗೠ
                       (5.1) 

2) 𝑡𝑎𝑛(𝛼௩) =
∆௨

∆௭
=

௩మି௩భ

ௗೡ
                        (5.2) 

3) where 𝑑௨ and 𝑑௩  are distances between 2 𝑢 wire planes or 2 𝑣 wire planes.    
Crossover coordinates 𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ can be either computed from local cluster fit, 
or fit of a link as described in Section 5.2.1. 

2) (see 4.3.2) The track direction angles are: 

1) 𝑡𝑎𝑛𝜃 =
∆௫

∆௭
=

ଵ

ଶ௖௢௦ఈ
 ൫𝑡𝑎𝑛(𝛼௨) + 𝑡𝑎𝑛(𝛼௩)൯                (5.3) 

2) 𝑡𝑎𝑛𝜑 =
∆௬

∆௭
=

ଵ

ଶ௦௜௡ఈ
 ൫𝑡𝑎𝑛(𝛼௨) − 𝑡𝑎𝑛(𝛼௩)൯                (5.4) 

             which are solved from: 
𝑡𝑎𝑛(𝛼௨) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 = 𝑡 ∙ 𝑢ො 
𝑡𝑎𝑛(𝛼௩) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 − 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 = 𝑡 ∙ 𝑣ො 

where 𝛼 ≅ atan(0.5) ≅ 26.45° is the angle between 𝑢-axis and 𝑥-axis (short axis of wire 
chamber) of wire plane, 𝑡 = (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) is the track direction vector, and 𝑢ො =
(𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼, 0), 𝑣ො = (𝑐𝑜𝑠𝛼, −𝑠𝑖𝑛𝛼, 0) are unit vector of 𝑢, 𝑣 axes. 
Remark: Note that 

 ቌ

ଵ

ଶ௖௢௦ఈ

ଵ

ଶ௖௢௦
ଵ

ଶ௦௜௡ఈ

ିଵ

ଶ௦௜

ቍ = ቀ
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

ቁ
ିଵ

 

       Which illustrates the relationship between (5.3), (5.4) and the formulas for 𝑡𝑎𝑛(𝛼௨), 
𝑡𝑎𝑛(𝛼௩). 

3) As for track crossover point coordinate on wire plane 𝑢1 (𝑥, 𝑦): 

𝑥 =
ଵ

ଶ௖௢௦ఈ
(𝑢 + 𝑣)                     (5.5) 

𝑦 =
ଵ

ଶ௦௜௡ఈ
(𝑢 − 𝑣)                     (5.6) 

Here (𝑢, 𝑣) : 
𝑢 = 𝑢ଵ                                       (5.7) 
𝑣 = 𝑣ଵ − 𝑑௨௩𝑡𝑎𝑛𝛼௩                  (5.8) 

Is the 𝑢, 𝑣 coordinates of track crossover point on wire plane 𝑢1, 𝑑௨௩ = 1(𝑖𝑛𝑐ℎ) is the distance 
between 𝑢, 𝑣 wire planes in the same wire chamber. Thus, by set 𝛼 = 𝑎𝑡𝑎𝑛(0.5) ≅ 26.45° and 
𝑑௨ଵ = 0,  𝑑௩ଵ = 𝑑௨௩ = 2.54 𝑐𝑚, 𝑑௨ଶ = 𝑑௨ = 39.4 𝑐𝑚, 𝑑௩ଶ = 𝑑௨௩ + 𝑑௨ = 41.9 𝑐𝑚 in the wire 
chamber database file.  The Hall A analyzer will successfully perform track fitting 
(reconstruction) for our wire chamber data.  Equations (5.1) to (5.8) are all we need to solve 
(𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) from (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) for track reconstruction. 
 

A simple geometric derivation of formula (5.3) to (5.6) presented in Appendix 5.2.1. 
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5.2.3 Effect of cuts on track fitting 

 
The goal of cosmic ray test runs is to confirm that the wire chamber and analyzer produce 

accurate tracking results and have a high enough efficiency.  The simple definition of analyzer 
efficiency: 

𝐸𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௛௔௩௘ ௧௥௔௖௞(௦)

ே௨௠௕௘௥ ௢௙ ௧௥௜௚௚௘௥௘ௗ ௘௩௘௡௧௦
                  (5.9) 

is not meaningful if the fitted tracks are inaccurate.  In addition, if we apply additional cuts the 
number in the numerator will decrease while denominator stays the same, and the efficiency also 
decreases.  It should be noted that the triggered events do not always correspond to events in 
which a track intersects all four wire planes.  For example, a track could miss one wire chamber 
but hit the other and the trigger scintillator.  As a result, we still have a triggered event but no 
tracks should be found.  To cope with this, we set up a new set of triggers using scintillators with 
a lot stricter geometric constraints.  Such a trigger greatly increases the chance for a track to be 
real, and narrows down possible track positions and directions.  In addition, if we measure and 
calculate geometric constraints on such a trigger, issues in the analyzer track reconstruction can 
be observed if the reconstructed tracks fails to pass these constraints. This trigger setup will be 
discussed in next section 5.3. 
 
Besides the change in the denominator of (5.9) by changing trigger setup, we can also apply cuts 
on both denominator and numerator.  For example, the tracks from BH experiment only have 
certain range of directions, so it limits the cluster spans, e.g., we shouldn’t worry about tracks 
reconstructed from clusters with 20 wires.  Thus, if apply cut, for example “𝑢 wire plane cluster 
size equals 5” on both denominator and numerator, the resulting conditional efficiency is a lot 
more meaningful. 
 
Various cuts can change the result of all steps in the tracking, and have an impact not only on 
tracks being found but the results of the fit (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) as well.  We have already 
introduced certain cuts in previous chapters; for instance, cuts on cluster finding in 3.5.2, cuts on 
geometry of trigger in 4.3.5 2. These will certainly change the final track fitting result.  The only 
cuts that need to be added here are on geometrical constraints.  First, the analyzer treats all wires 
as having infinite length. Thus, (see Fig. 5.1) even the crossover point coordinate (e.g. on the 𝑢ଵ 
wire plane is (𝑢, 𝑣) = (𝑢ଵ, 𝑣ଵ − 𝑑௨௩𝑡𝑎𝑛𝛼௩) in 𝑢, 𝑣 coordinate system, or (𝑥, 𝑦) =

(
ଵ

ଶ௖௢௦ఈ
 (𝑢 + 𝑣),

ଵ

ଶ௦௜௡ఈ
 (𝑢 − 𝑣)) ) can lie outside of the active area of wire plane.  A track which 

does not cross the wire plane will still be computed.  Thus, a cut on (𝑥, 𝑦) for all 4 wire planes 
should be added to limit the boundary of track.  Second, if we use the more constrained trigger, 
we have to add a cut requiring that the reconstructed track’s crossover point on all wire planes is 
also within the projection of the trigger. 
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5.3 Test run setup 
 
The only setup change compared to the preparation discussion in the hardware chapters is the 
placement of trigger scintillator, we only discuss trigger setup in this section.  As was introduced 
previously, the goal is to constraint the geometry such that the range of straight lines within all 
triggers is so limited that we can be almost certain that the coincidence of all triggers having 
signals indicates the existence of a track.  As a bonus, the triggers are purposely placed such that 
the track fitting result is much easier to be analyzed due to its simple geometry.  The physical 
setup of trigger is discussed in 5.3.1 and the geometry of the trigger is discussed in 5.3.2.  In the 
next section, 5.4, track reconstruction results are compared with the projection of the trigger  
scintillators on each wire plane. 
 
5.3.1 Trigger setup 
 

1) Placement of trigger scintillators: 
We have 8 tested and gain-matched thin scintillator paddles with lengths and widths of about 70 
cm by 11 cm.  Six of them are placed above the top wire chamber, with one vertically above the 
center line of the long axis of the wire chamber.  The other 5 lie below this paddle, oriented 
perpendicular to it (so they’re parallel to the short axis of the wire chamber), and touching each 
other.  Two other thin paddles are placed above the bottom wire chamber, oriented perpendicular 
to each other, and parallel to the long and short axes of wire chamber respectively, and vertically 
above center line.  Since the thin paddle has a small area, a medium sized scintillator was placed 
above bottom chamber as a trigger paddle.   
2) Trigger logic: 
The 5 parallel scintillators on top of the top wire chamber comprise the trigger paddles; any one 
of them firing is considered a top trigger.  The medium sized scintillator is the only trigger paddle 
on the bottom.  An event is triggered and will be analyzed only when both top and bottom 
triggers fire.  The active scintillation area for the top one is about 55 cm by 70 cm along the long 
and short axes of the wire chamber, respectively. The bottom scintillator is about 70 cm by 30 cm. 
3) Reference trigger logic: 
A pair of perpendicularly oriented thin scintillator paddles above one wire chamber are touching 
each other on their largest surfaces, the shared area is a square shaped planar region with area 11 
cm by 11 cm.  Two of such pairs, one on the top chamber and one on bottom chamber allow only 
straight lines intersecting two 11 cm by 11 cm squares to constitute a reference trigger with a 
strict geometrical constraint.  Five pairs on the top chamber are labelled as (0,0), …, (4,0), the 
only pair on bottom chamber is labelled as (0,0).  Thus, 5 combinations of a top square to bottom 
square shaped area firing is considered as a reference trigger.  Each of those paddles are linked to 
a separate TDC module and the logic applied to the replayed ROOT file can implement reference 
trigger logic.  As an example, if we want trigger top (2,0) to bottom (0,0) the pseudo code is: 
(Top (2,0) hit) AND (Top (0,0), (1,0), (3,0), (4,0) not hit) AND (Bottom (0,0) hit).  The “not hit” 
is necessary.  Since there’re such a possibility that in a multi-track event, which is very common 
from a shower during our cosmic rays test runs, track 1 triggers top (2,0) but misses bottom (0,0), 
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track 2 triggers top (1, 0) and also bottom (0,0), then both top (2,0) hit AND bottom (0,0) hit but 
there is no valid track through both top (2,0) and bottom (0,0) reference trigger square areas.  The 
schematic diagram of the reference triggers is shown in Fig. 5.2, the top and bottom scintillator 
placement photos are shown in Fig. 5.3 and Fig. 5.4, respectively. 

 

III Fig 5. 1 Thin scintillator paddles labeling conventions and their channels on TDC. 
(0,0) … (4,0) indexing trigger with square shaped common area from left to right, 1st number 
indexes scintillators lie parallel to short axis of wire chamber, 2nd number indexes the only 
scintillator parallel to long axis of wire chamber. 
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III Fig 5. 2 Upper chamber trigger and reference scintillators. 

 

III Fig 5. 3 Bottom chamber trigger and reference scintillators. 
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Only the one in the middle (within vertical projection from (2,0) trigger paddles on upper 
chamber) is linked to reference channel in TDC. 
 
5.3.2 Trigger geometry, projection on wire planes 

 
In this section, we are approximating all possible tracks through a fixed reference trigger 

by considering projection of two parallel squares in space. The contents include: 
1) Establish some properties of such projection and identify the shape and dimension of 

projection on any plane parallel to these two squares. 
2) Numerically compute the projections on each wire plane, and draw an event-by-event 

display. 

3) Additional calculation of ranges of track angle ቀ𝜃 = atan (
∆௫

∆௭
), 𝜑 = atan (

∆௬

∆௭
)ቁ. 

4) Properties of projection. 
There are a few approximations to make: 

(1) Squares as shared surface regions of two oriented perpendicular thin scintillator paddles 
are parallel, and they also parallel to all wire planes. 

(2) The sides of any pair of squares are considered parallel to each other. 
Now back to properties of projection: 

(1) Placing paddles above wire chambers means they are shifting in the z direction in the 
analyzer coordinate system.  If both planes of paddle squares (one lies above top 
chamber, one lies in between top and bottom chambers) shift in the z direction by ∆𝑧, the 
parallel projections of those squares will shift in x direction by −∆𝑧. See Fig 5.5 for an 
illustration. 

(2) The shape of projection on any plane parallel to those two planes containing a square 
each. First the boundary of projection from two parallel squares should be lines linking 
from boundary of one square to boundary of the other square. Consider drawing a straight 
line from one side of one square to one of two sides which are parallel to it on the other 
square, the projection of all these straight lines on any plane parallel (wire planes as a 
special case) to the squares is also a straight line which is parallel to any sides of the 
square considered. Those projected straight lines meet each other at projections of 
corners of the squares, so the projection boundary is at least rectangle in shape. As for the 
length of sides, since the two planes containing squares and the plane considered for 
projection are all parallel, any ratio in length is the same no matter whether it is in the x 
or y direction.  Thus, the boundary of a projection from two squares is always a square. 
(Fig. 5.6 and Fig. 5.7) 

(1) If the projected plane is a plane parallel and between the planes of squares, the 
boundary is determined by lines linking corresponding top and bottom square 
sides.  Thus, the projection is square with same dimensions as a square from 
shared area of trigger paddles. This applies to the projection on the top chamber 
wire planes. (Fig 5.6, Right sketch) 

(2) If the projected plane is a plane parallel but lies above the top square or below 
bottom square, the boundary is square with corners determined by linking 
diagonal corners of squares of trigger paddles.  They are always bigger than the 
original squares; the further away from original squares the larger the projected 
square.  This applies to projection on bottom chamber wire planes. (Fig. 5.6 Left 
sketch and Fig. 5.7) 
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III Fig 5. 4 Z positions of paddles affect projection locations on wire planes. 

Illustrated in x-z projection in analyzer coordinates.  A pair of square shaped paddle shared areas 
and their projections by linking corresponding sides on u1 and u2 wire plane.  Two configurations 
are drawn in black and red lines.  Both red squares are shifted in the z direction by ∆𝑧 from the 
black squares, leading to a −∆𝑧 shift in the x direction on the wire planes. 
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III Fig 5. 5 Outer and inner projection boundaries. 

Left: Outer projection is bounded by diagonal lines, and size is bigger than the original squares.  
Right: Inner projection is bounded by parallel lines, and size is equal to the original squares. No 
matter which case, their solid angle coverages of tracks are the same. 
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III Fig 5. 6 Projection of a square should be also a square. 

.  The example here, suppose z = 0, -5, -7.5 cm for top cross square, bottom cross square, and 
projected plane.  Top and bottom cross both with side length 5 cm.  Then, the square on the 
projected plane is of side length 10 cm.  Since it is an outer projection (see Fig. 5.6 Left), the 
projected square is larger than the original squares and its corners are determined by linking 
diagonal corners of the two original squares, illustrated by black dashed lines.  The projection of a 
single point is also a square.  From the same assumption, the projection of a single point is a 
square with side length 7.5/5 = 1.5 times the original square side length.  The projection of upper 
right corner of top square is drawn.  
2)  Numerically compute the projections on each wire plane, and draw in event-by-event display. 
What we need for calculating the boundaries of projection of trigger square areas are: 

(1) 𝑧 coordinates of each wire plane, which are documented. 
(2) 𝑧 coordinates of both top  and bottom scintillators common square areas. 
(3) 𝑥, 𝑦 coordinates of 4 corners of each square in (2). 

For 𝑥, 𝑦 coordinates of corners scintillators’ common square areas, we measured them from lower 
left corners of wire chambers, then converted to (𝑥, 𝑦) with center of the wire chamber as the 
origin.  For 𝑧 coordinates of scintillators, we can only measure their height above wire chamber, 
add half wire chamber height depth to find center plane of wire chamber first, then take offsets of 
sense wire planes z coordinate into consideration.  The numerical calculation of square projection 
on each wire plane from trigger is straight forward (see Fig. 5.6): 

(1) For top chamber wire planes 𝑢ଶ, 𝑣ଶ, their projected square is computed by linking a 
straight line through corresponding corners of trigger squares. (Fig. 5.6 Right, inner 
projection) 

(2) For bottom chamber wire planes 𝑢ଵ, 𝑣ଵ, their projected square is computed by linking a 
straight line through diagonal corners of trigger squares. For instance, upper left corner 
(see in 𝑥, 𝑦 projection) of square from upper trigger square to lower right corner of lower 
trigger square. (Fig. 5.6 Left, outer projection) 
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The intersection of those straight lines on each wire plane are the corners of projected squares. 
For visualization, draw polyline (TPolyLine in ROOT) in the Hall C Event display to indicate 
boundaries of projected squares on each wire plane, only for (2,0) trigger.  Crossover points of 
reconstructed tracks by analyzer on each wire planes are examined to see whether they are inside 
projected squares.  It is illustrated in Fig. 5.8. 

 

III Fig 5. 7 Hall C event display of a good event. 

LDC 2 is top wire chamber, LDC1 is bottom wire chamber. LDC2 is the top wire chamber, LDC1 
is the bottom wire chamber.  The highlighted lines are hit wires (one drawn wire represents 5 real 
wires), with red lines for 𝑢 wires and green lines for 𝑣 wires.  Green and red squares are projected 
squares on 𝑢 and 𝑣 wire planes, respectively.  Black dots are reconstructed track intersection on 𝑢 
wire planes. Thus, for a valid track, black dots should lie within green squares. 
3) Additional calculation of ranges of track angles.  As seen in Fig. 5.6, the outer projection will 
cover a larger track direction anglular range. Thus, we compute: 

𝜃 = atan (
∆௫

∆௭
), 𝜑 = atan (

∆௬

∆௭
))                 (5.10) 

from straight lines linking diagonal corners of trigger squares. 
(1) It should be noted that all squares on the top are aligned in the 𝑥 direction, and thus the range 
of ∆𝑥 is the same for all triggers from (0,0) to (4,0).  The measured range of 𝜃 is [37.5°, 53.6°] for 
all triggers. 
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(2) The range of 𝜑 for different trigger are different but there have overlaps between adjacent 
trigger. From trigger (0,0) to trigger (4,0) the ranges of 𝜑 are: 

Trigge
r 

(0,0) (1,0) (2,0) (3,0) (4,0) 

𝜑 
range 

[17.2°, 42.0°] [0.8°,  31.2°] [−15.8°,  17.2°] [−30.0°,  0.8°]  [−41.2°,  − 15.8°]

 

There is a pattern here: for every trigger (𝑖,0), its lower limit of range of 𝜑 equals upper limit of 
range of 𝜑 in trigger (𝑖 + 2,0).  The common angles are 17.2°, 0.8°, and −15.8°.  This can be 
seen in Fig. 5.9 below; the diagonal line going from the upper (0,0) trigger to the lower right 
corner is parallel to the diagonal line going from the upper (2,0) trigger to the lower left corner. 
The parallel lines are marked by (1), (2), and (3) in Fig. 5.9 Left.  Another important observation 
from Fig. 5.9 is that in order to make the range of 𝜑 completely disjoint, we have to skip one 
trigger.  This can be seen from Fig. 5.9 Right. 
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III Fig 5. 8 Angle ranges for individual scintillator trigger telescopes. 

Up: Pairs of parallel diagonal straight lines link corners of trigger squares which have the same 𝜃 
and 𝜑 (in order words, they’re parallel), indicated by (1), (2), and (3). 

Down: The indicated points A and B are just disjoint in the 𝜑 range.  Seen from the left figure, 
point A is the lower right corner of the square from upper trigger (1,0), and point B is the lower 
left corner of the square from the upper trigger (3,0).  Thus, the 𝜑 range trigger (0,0) and (2,0), 
trigger (1,0) and (3,0), trigger (2,0) and (4,0) are just disjoint. 
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5.4 Track fitting results 
 

5.4.1 Track geometry result 

1) Track crossover point on wire planes 
Since reconstructed tracks are straight lines, we don’t need to draw tracks in 3 dimensions. 
Instead, the crossover points (𝑥, 𝑦) coordinate on wire plane 𝑢ଵ, 𝑢ଶ are drawn. The Fig 5.10 
below shows the distribution of  (𝑥, 𝑦) coordinate on wire plane 𝑢ଵ, 𝑢ଶ. We can extract following 
information: 
(1) The active area of the wire chamber. Since only 183 channels out of 279 of all wire planes 
have been connected to TDC, only partial area of each wire plane would have reconstructed 
tracks covering. As seen in Fig 5.10, these area covers left side of the wire planes, with a “pencil” 
shape. (Also see the common area of U and V wires in Fig 2.9) 
Let’s estimate the location of the apex point of the “pencil” shape. Centers of wire planes are their 
origins. Note 𝑥 axis is the short axis of the wire chambers and point up. Due to same amount of 
𝑢, 𝑣 wires implemented, based on symmetry: 

𝑥 = 0(𝑐𝑚) 
For the abscissa in Fig 5.10 is −𝑦 and its estimation is: 

 −𝑦 = ቂ(80.5 + 21/tan (atan (0.5))) ×
ଵ଼ଷ

ଶ଻ଽ
+ 21 − 42 −

଼଴.ହ

ଶ
ቃ (𝑖𝑛𝑐ℎ) 

       = 48.5(𝑐𝑚) 
Here 80.5 𝑖𝑛 and 21 𝑖𝑛 are the length and width of the wire chamber and atan(0.5) is the angle 
between wires and the 𝑦 axis in the wire plane.  The estimation is very close to the apex point of 
the “pencil” shape in Fig. 5.10. 
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III Fig 5. 9 Crossover point (𝑥ᇱ = −𝑦, 𝑦ᇱ = 𝑥) of all tracks in wire plane 𝑢ଵ (lower chamber, 
upper histogram) and wire plane 𝑢ଶ. Ordinate: short axis coordinate of wire plane in m, abscissa: 
long axis coordinate of wire plane in m. 

Wire plane 𝑢ଵ (lower chamber, upper histogram) and (upper chamber, lower histogram). It’s 
proportional to real wire plane shape.  (𝑥ᇱ, 𝑦ᇱ) is abscissa and ordinate of the histogram, and 
(𝑥, 𝑦) are the horizontal coordinates in the analyzer coordinate system.  The apex point location 
where the last active wires from both 𝑢, 𝑣 wire planes meet is estimated above.  The numbers on 
the sides below the upper chamber histogram are pairs indicating (𝑛, 𝑥ᇱ) as wire index and 𝑥ᇱ as 
coordinate of where bad 𝑣 wires intersect the lower side of the wire plane in the figure.  Similar 
numbers are placed on the left of lower histogram to indicate bad 𝑢 wires on the lower chamber. 
(2) There exist wires without TDC data.  There are some straight strips in the histograms with 
much less hit frequency compared to their neighboring regions.  These are caused by wires with 
no TDC data.  The causes of no TDC data could be any disconnect between the wire chamber and 
the TDC, bad channels on discriminator cards or on TDC modules, etc.  It is hard to eliminate all 
of them since they can also be caused by the threshold voltage of discriminator cards, which are 
uniformly applied to all cards of each wire plane.  If the bad wires are located in a region where 
the wire is short, or the hit frequency is low, e.g. wires 33 to 41, then they won’t affect the 
experimental result much due to the low hit density and small area the wires covered.  On the 
other hand, if a bad wire with longest length is in a high hit density region, the loss of its drift 
time information could cause significant loss in track fitting efficiency. 
An example of finding bad wires intersection coordinate on wire plane boundary: 
𝑢 wire planes, if using the same coordinate system in histogram ((𝑥, 𝑦) here is (𝑥′, 𝑦′) in Fig. 5.10 
description): 

𝑟 ∙ 𝑢ො = −𝑥𝑠𝑖𝑛𝛼 + 𝑦𝑐𝑜𝑠𝛼 = (140 − 𝑁) ∙ 𝑊𝑆                                          (5.11) 
Where 𝑢ො = (−𝑠𝑖𝑛𝛼, 𝑐𝑜𝑠𝛼), 𝛼 = 𝑎𝑡𝑎𝑛0.5 ≅ 26.45°, 140 is half number of wires in each wire 
plane rounded up, 𝑁 is the bad wire index (1 to 279) counting from upper left corner of 𝑢 wire 
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planes, and 𝑊𝑆 = 0.493 𝑐𝑚.  Solve for the y coordinate from (5.11) where the bad wire 
intersects the left boundary of the wire plane:   

ቐ  
𝑦 = 𝑥𝑡𝑎𝑛𝛼 +

(ଵସ଴ିே)∙ௐௌ

௖௢௦ఈ
                      

𝑥 = −
଼଴.ହ

ଶ
(𝑖𝑛𝑐ℎ) = −102.235 (𝑐𝑚)

                                           (5.12) 

The results of the lower chamber 𝑢 wire plane bad wires are shown in Fig. 5.10 upper histogram. 
For 𝑣 wire planes: 

𝑟 ∙ 𝑣ො = −𝑥𝑠𝑖𝑛𝛼 − 𝑦𝑐𝑜𝑠𝛼 = (140 − 𝑁) ∙ 𝑊𝑆                                           (5.13) 
where 𝑣ො = (−𝑠𝑖𝑛𝛼, −𝑐𝑜𝑠𝛼), 𝛼, 140, and 𝑊𝑆 are the same as for the 𝑢 wire planes.  𝑁 is the bad 
wire index (1 to 279) counting from lower left corner of 𝑣 wire planes.  Solve for the x coordinate 
from (5.13) where the bad wire intersects the left boundary of the wire plane: 

ቐ
𝑥 = −𝑦𝑐𝑜𝑡𝛼 −

(ଵସ଴ିே)∙ௐௌ

௦௜௡ఈ
             

𝑦 = −
ଶଵ

ଶ
(𝑖𝑛𝑐ℎ) = −26.  67(𝑐𝑚)

                                                        (5.14) 
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III Fig 5. 10 Upper 𝑣 plane hit index distribution. Ordinate: counts, no unit, abscissa: TDC 
channel number, no unit. 

Bad wire indices 𝑁 (1 to 279) from lower left corner shown in lower histogram of Fig 5.10 are 
26, 47 (low efficiency), 68, and 97.  The channels indexed in this histogram start with 192 × 6 −
1 = 1151. 1151+26=1177 is the wire with empty hit in this histogram, same check applies for 
other bad wires. 
 
2) Confirm by projective geometry 
As discussed in 5.3, we placed trigger scintillators in specific locations.  The projection from the 
trigger paddles on each wire plane is computed (see 5.3.2 and Fig. 5.7).  We expect for events 
that trigger all 4 scintillators for a specific trigger and also not trigger other scintillators (see 
5.3.1) tracks should intersect each wire plane inside the projection of the trigger paddles.  As a 
reminder, we restate the cut used to constrain our track geometry: 

(Top (2,0) hit) AND (Top (0,0),(1,0),(3,0),(4,0) not hit)  
                        AND (Bottom (0,0) hit)        (5.15) 

The check procedure is simple: apply trigger cuts for the replayed ROOT file, draw (𝑥, 𝑦) 
histogram of track crossover points on wire plane, one from each wire chamber is enough, then 
check if (𝑥, 𝑦) points in the histogram are within the projected squares from the geometrically 
constrained trigger.  The result is shown in Fig 5.11 where we only marked the lower wire plane 
long axis coordinates with limits of the trigger projection. 
Remarks: 

1. The placement of trigger paddles can greatly reduce the chances that a multi-cluster event 
with one track through the top trigger but none in the bottom trigger, while another track 
has one track through bottom trigger but none in the top trigger.  One way of applying a 
cut to reduce such events is to require other scintillators in the same layer to not have a 
hit, which is shown in (5.15).  However, only the top layer has multiple scintillators to 
apply such a cut.  Therefore, such multi-track events still exist.  Fig 5.11 includes such 
multi-track events, so still a noticeable portion of track crossover points are outside the 
trigger projection. 

2. There are discrepancies between the area covered by accumulated track crossover points 
on wire planes and trigger projections. The following causes of this discrepancy are: 
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1. Planes not being parallel; especially bottom trigger scintillators, due to the tilt of 
medium sized trigger paddle. 

2. Sides of squares not being parallel due to lack of a precision alignment tool. 
Thus, paddles are not perpendicular to each other and the geometry is irregular.  

3. Measurement error. 
4. The lack of location information of the relative locations of wire planes inside the 

wire chamber frame. 
3. Due to the effect shown in Fig 5.5, the trigger projection on the bottom wire chamber is 

partially outside of wire plane active area.  One suggestion regarding changing the 
positions of the crosses: move the paddles in the +x direction by about 19.1 cm, then in 
the x direction, the projected square will lie somewhere on the center line of the wire 
planes. (i.e. the centers of the squares in the distribution below will shift to 0 in ordinate) 

 

III Fig 5. 11 Track crossover point distribution (𝑥ᇱ = −𝑦, 𝑦ᇱ = 𝑥) on 𝑢 wire planes. Ordinate: 
short axis coordinate of wire plane in m, abscissa: long axis coordinate of wire plane in m. 

Dimensions are in meters.  The trigger cut is for the combination (2,0) (0,0) (see Fig. 5.2).  The 
numbers below the upper histogram are the marked ranges of squares computed from outer 
projections (see Fig. 5.6 and Fig. 5.7) based on measured trigger locations.  Most of the points are 
contained in squares, as predicted in 5.3.2. 

 
4. Additional cuts suggestion: 
(1) Use the number of clusters in each wire plane to isolate single track events.  The cut 

should be: at least one wire plane contained only one cluster, and the others found at most 
two clusters. 

(2) Cluster spans of clusters in 𝑢 wire planes and in 𝑣 wire planes. This will be discussed 
later. 

An improvement to Fig 5.11 is the separation of single-cluster events from all other events. 
The results are shown below in Fig 5.12 for crossover point coordinate distributions on 𝑢 wire 
planes and in Fig 5.13 for cluster span distributions for all wire planes. 
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III Fig 5. 12 Separated crossover points coordinate distributions. Ordinate: short axis coordinate 
of wire plane in m, abscissa: long axis coordinate of wire plane in m. 

On 𝑢 wire planes Fig 5.12, separated by conditions: 

(1) only single-cluster event in top 2 plots. 
(2) all other events (all wire planes have cluster, and at least one wire plane has more than 

one cluster) in bottom 2 plots. 
 

 The top two plots have very distinct square shape boundaries with fewer than 30 tracks 
out of 682 out of square region.  The bottom two plots contain events with multi-tracks.  Due to 
the effect in remark (1) above, some events in these plots have tracks through only one side of the 
trigger but miss the other side, resulting in points outside a square region. 
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III Fig 5. 13 Cluster span distribution for all wire planes. Ordinate: counts, no unit, abscissa: 
cluster size of the corresponding wire plane, no unit. 

For top 4 and bottom 4 histograms respectively: 

(1) only single-cluster events in top 4 histograms. 
(2) all other events (all wire planes have cluster, and at least one wire plane has more than 

one cluster) in bottom 4 histograms. 
For a group of 4 histograms, left two are 𝑢 wire planes cluster spans and right two are 𝑣 wire 
planes cluster spans.  As seen many times, the relationship between (non-integer) cluster span 

relationship to track angle in 𝑢, 𝑣 coordinates 𝑛௨/௩ =
௛

|௦×௧௔௡൫ఋೠ/ೡ൯|
 (see formula (3.3)).  We expect 

the (integer) cluster spans for wire planes with same orientation to have similar distributions, 
which has been confirmed here.  The top 4 histograms have a much more constraining cluster 
span distribution since the clusters correspond to tracks with constrained geometry.  The bottom 4 
histograms have more spread in cluster span due to tracks being outside the constrained region, 
and there being clusters not belonging to the same track or simply being due to noise. 
 
2) Simulation checking track direction angles (𝜃, 𝜑) and cluster span (𝑛௨, 𝑛௩) 
A simple simulation was conducted to check the track incident angles and cluster spans by 
dividing trigger squares into smaller equally spaced squares, linking every possible center of one 
top smaller square to one bottom smaller square, and using measured data for the relative 
locations of the squares.  The (𝜃, 𝜑) distribution of the results of the simulation is shown in Fig. 
5.13, and the (𝜃, 𝜑) distribution of the data in the replayed ROOT file from a test run is shown in 
Fig. 5.14.  The shape of the dense angular regions and average values are quite similar. The major 
factors generating discrepancies come from: 

(1) The difference of idealization of considering tracks bounded by two squares with the 
same size parallel to each other in space; see 5.4.1, 2 and remark 2, 

(2) The simulation generated direction angular distribution is different from the cosmic ray 
test run counterpart. 

Simulated cluster spans (𝑛௨, 𝑛௩) distributions are generated from converting track direction 
angles (𝜃, 𝜑) to track incident angles 𝛼௨, 𝛼௩ in 𝑢𝑧 and 𝑣𝑧 plane by formulas below (5.4): 



155 
 

 

 𝑡𝑎𝑛𝛼௨ = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 
 𝑡𝑎𝑛𝛼௩ = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 − 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 

Then (modified formula (3.3)) 

𝑛௨ =
|௛∙௧௔ ೠ|

௦
 and 𝑛௩ =

|௛∙௧௔௡ఈೡ|

௦
 

The 2D (𝑛௨, 𝑛௩) distribution is shown in Fig. 5.15 and the individual 1D 𝑛௨, 𝑛௩ distributions 
from the simulation are compared with the single-cluster events 𝑛௨, 𝑛௩ distribution (upper 
histograms in Fig 5.13) in Fig 5.16(2). 

 

III Fig 5. 14(1) Simulated and test run cluster span (𝜃, 𝜑). Ordinate: simulated track direction 
angle 𝜃 (track projection angle along short axis of wire plane) in degrees, abscissa: simulated 
track direction angle 𝜑 (track projection angle long axis of wire plane) in degrees. 
Simulated track direction angle (𝜃, 𝜑) (angles in degrees for track direction vector 𝑡 =
(𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1)) distribution.  The trigger square location based on measured (2,0) trigger. 
See table 5.1 for ranges of 𝜃 [37.5°, 53.6°] and 𝜑 [−15.8°,  17.2°] which match the purple square 
region here. 
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III Fig 5.14(2) Cosmic ray test run track direction angle (𝜃, 𝜑). Ordinate: test run track direction 
angle 𝜃 (track projection angle along short axis of wire plane) in degrees, abscissa: test run track 
direction angle 𝜑 (track projection angle long axis of wire plane) in degrees. 
For track direction vector 𝑡 = (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1).The trigger square location based on the measured 
(2,0) trigger. Ordinate: track direction angle 𝜃 (along short axis of wire plane) in degrees, 
abscissa: track direction angle 𝜑 (along short axis of wire plane) in degrees. 

 

III Fig 5. 15(1) Simulated cluster span (𝑛௨, 𝑛௩) distribution of trigger (2,0). Ordinate: u cluster 
span, no unit, abscissa: v cluster span, no unit. 
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III Fig 5.15 (2) Simulated cluster span 𝑛௨ (non-integer, lower left histogram) and  𝑛௩ (non-
integer, lower right histogram) of trigger (2,0), compared with integer cluster span 𝑛௨ and  𝑛௩ 
distribution (Upper, copies of upper histograms of Fig 5.13). Top 4 figures ordinate: counts, no 
unit, abscissa: cluster size of the corresponding wire plane, no unit. Bottom 2 figures ordinate: 
counts, no unit, abscissa: simulated cluster size (non-integer) of the corresponding wire plane, no 
unit. All left figures for wire span 𝑛௨ and all right figures for wire span 𝑛௩. 
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5.4.2. Relative efficiency (events with track/triggered events). Counting events 
under certain trigger cut. Single, multiple cluster track results, cluster spans 

 
As noted earlier, there are different ways to define the efficiency of track fitting.  One of the 
easiest way is: 

𝑒𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௪௜௧௛ ௧௥௔௖௞

ே௨௠௕௘௥ ௢௙ ௧௥௜௚௚௘௥௘ௗ ௘௩௘௡௧௦
                    (5.16) 

The definition is attractively simple but there are a few things to be noted: 
1) It is expected that the efficiency defined here not only depends on both the analyzer code 

and the hardware.  For example, the threshold voltage of discriminator card, the negative 
HV applied to cathode plane, the flow of inert gas inside wire chamber, etc.  Thus by 
changing any parameters in the database file of the analyzer for a given test run, the 
efficiency will still hit a plateau with maximum value that is hardly close to 100%. 

2) The placement and logic of the trigger is also very important to the resulting value of the 
efficiency.  Every triggered event is expected to have at least one track through the 
geometric constraints on the trigger.  Thus, any possibility of triggered events that cannot 
be detected by wire chambers or triggered events could lead to incorrect tracks reducing 
the efficiency. For example: 

1) If any straight line linking trigger scintillators misses a wire chamber active area, 
then if a track coincides with the line it won’t be detected by the wire chamber. 
Our test run trigger setup has this issue and will be discussed in 5.4.3. 

2) There is the possibility of multiple tracks with trigger scintillators triggered by 
different particles.  We expect very few wrongly computed track through all 
scintillators. As explained in Section 5.1 Subsection 1) we should avoid multi-
cluster/track events in our experiment since the probability of multi-track events 
is negligible. 

3) The geometry of the trigger should avoid the possibility of extreme track angles 
and locations. The reason is that the efficiency for such tracks is irrelevant for the 
BH experiment. 

The measured efficiencies under definition (5.16) with different triggers discussed in 5.1.3. 2) 3) 
are computed and tabulated below 
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Condition Number of 
tracks from all 
events 
(Multiple tracks 
per event 
allowed and 
counted) 

Event with all 4 
wire plane 
cluster and 4 
paddle trigger 

Events with 
Trigger 

Efficiency (%) 

All paddles 
trigger 

255039 
 

1075300 23.7 

(0,0) (0,0) 
trigger 

938 882 1192 78.69/73.99 

(1,0) (0,0) 1320 1227 1583 83.3/77.51 

(2,0) (0,0) 1362 1287 1698 80.2/75.79 

(3,0) (0,0) 1334 1241 1606 83.06/77.27 

(4,0) (0,0) 1114 1040 1405 79.28/74.02 

 

Table 5.2. Number of tracks in triggered events, number of events with trigger obeying (5.15) 
trigger logic, number of events with trigger, and relative efficiency. 
Note: For example, efficiency numbers in row with (0,0) (0,0) trigger: 78.69% = 938/1192, 
73.99% = 882/1192. 73.99% = (Number of event with track, under 4 paddles trigger)/(Event with 
4 paddles trigger) is the efficiency defined in (5.16). 
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III Fig 5. 16 Analyzer track reconstruction efficiency. Ordinate: efficiency, no unit, abscissa: 
threshold voltage of discriminator card in V. 

(Fig 4.31 from [29]) The efficiency with the same definition is a bit lower than our result in Table 
5.2.  The reason could be the different trigger setup been used, resulting in different levels of loss 
of efficiency defined in (5.16). 
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Condition Events with track & 
with all 4 wire plane 
cluster and 4 paddle 
trigger 

Event with all 4 wire 
plane cluster and 4 
paddle trigger 

Efficiency (%) 

All paddles trigger 255039 
 

23.7 

(0,0) (0,0) trigger 882 882 100 

(1,0) (0,0) 1227 1227 100 

(2,0) (0,0) 1287 1287 100 

(3,0) (0,0) 1241 1241 100 

(4,0) (0,0) 1040 1040 100 

Table 5.3. Efficiency under following condition: 

𝑒𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௪௜௧௛ ௧௥௔௖௞

ே௨௠௕௘௥ ௢௙ ௧௥௜௚௚௘௥௘ௗ ௘௩௘௡௧௦ ௔௡ௗ ௪௜௧௛ ௔௟௟ ସ ௪௜௥௘ ௣௟௔௡௘௦ ௙௢௨௡ௗ ௖௟௨௦௧௘௥ ௕௬ ௔௡௔௟௭௬௘௥
                   

(5.17) The efficiency as shown in the table is always 100%.  The result in the table means: As 
long as there are 4 paddles triggered, and all 4 wire planes each has at least 1 cluster found by 
analyzer. Then analyzer will fit a track for the event. 
 
On the next page, we try to find out which wire plane is the least efficient in finding a cluster. 
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u1 v1 u2 v2 counts 

0 0 0 0 11 

1 0 0 0 7 

0 1 0 0 5 

0 0 1 0 0 

0 0 0 1 0 

1 1 0 0 33 

1 0 1 0 7 

1 0 0 1 0 

0 1 1 0 2 

0 1 0 1 9 

0 0 1 1 77 

1 1 1 0 45 

1 1 0 1 36 

1 0 1 1 12 

0 1 1 1 112 

1 1 1 1 1227 

Table 5.4. For row “(1,0) (0,0) trigger” in table 5.2.  Sort and count the number of events with 
different combinations of wire plane finding clusters.  For example, the row with numbers 1, 1, 0, 
0, 33 means for u1, v1, u2, v2 the result was find, find, not find, not find a cluster, respectively. 
There are only two cases: 

1) As long as all 4 wire planes have a trigger and a cluster, it has a 100% chance to have a 
track. Thus, counts = 1227. 

2) When there is at least one wire plane without a cluster, there will be no track for the 
event. Thus, counts = 11+7+5+0+0+33+7+0+2+9+77+45+36+12+112 = 356. 
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The efficiency by definition (5.16) is 1227/(356+1227) = 1227/1583=77.51% is the same as row 
“(1,0) (0,0) trigger” in table 5.2.  Bold rows cause large efficiency loss.  It’s seen in the table that 
the u1 plane is the most unlikely to find cluster (row (0111)), since the trigger paddle projection is 
over the edge of wire plane u1.  It is better to move the trigger paddle to avoid this. 
3) Separate single-cluster events and multi-cluster events.  Single-cluster events will be almost 
the only events we expect to detect in the Bethe-Heitler experiment.  The efficiency of such 
events need special care.  Not only do we want the analyzer to be successful in finding tracks for 
these events, but we also want those tracks limited within the geometric constraint of the 
corresponding trigger discussed in section 5.3. Instead of efficiency: 
 

𝐸𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௪௜௧௛ ௦௜௡௚௟௘ ௧௥௔௖௞

ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௧௥௜௚௚௘௥௘ௗ ௔௡ௗ ௛௔௩௘ ௘௫௔௖௧௟௬ ௢௡௘ ௖௟௨௦௧௘௥ ௣௘௥ ௪௜௥௘ ௣௟௔௡௘
    (5.18) 

 
which considers only a subset of events in (5.17) under the condition “exactly one cluster found 
per wire plane” and, as a result always yields an efficiency 100%, we should consider the 
following definition of efficiency: 
 

𝐸𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௪௜௧௛ ௦௜௡௚௟௘ ௧௥௔௖௞

ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௧௥௜௚௚௘௥௘ௗ, ௛௔௩௘ ௘௫௔௖௧௟௬ ௢௡௘ ௖௟௨௦௧௘௥ ௙௢௨௡ௗ 
௣௘௥ ௪௜௥௘ ௣௟௔௡௘, 𝒂𝒏𝒅 𝒍𝒊𝒆 𝒘𝒊𝒕𝒉𝒊𝒏 𝒕𝒓𝒊𝒈𝒈𝒆𝒓 𝒈𝒆𝒐𝒎𝒆𝒕𝒓𝒚 𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

    (5.19) 

 
That is, (see Section 5.4.2. Subsection 2) Entry 3)) we not require that a track be found, but also 
that a found tracks be “correct”. 
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III Fig 5. 17 The copy of Fig. 5.12. Ordinate: short axis coordinate of wire plane in m, abscissa: 
long axis coordinate of wire plane in m. 
The track crossover points on wire planes under the (2,0) (0,0) trigger divided into two cases: 
1) (upper plots) single-cluster events where each wire plane has one and only one cluster found 
for the event. 
2) (Lower plots) multi-cluster events where we focus on the counts and efficiency: 
682+680=1362 is the count in column 2 for a (2,0) (0,0) trigger in table 5.2.  As discussed above, 
our focus is single-cluster events, satisfying the geometric constraints on the trigger.  The number 
of points outside the square area of the trigger projection in the top plot is about 29, and in 2nd top 
plot is about 21. Thus, the efficiency by the definition (5.19) above is at least about (682-29-
21)/682=92.7%. 
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Trigger (Single-cluster) 
Events with one 
and only one 
cluster per plane 

(Multi-cluster) 
Events with all wire 
plane cluster, and 
at least one wire 
plane has more 
than one cluster. 
(Track count in 
bracket) 

Event with all 4 
wire plane cluster 
and 4 paddle 
trigger 

(0,0) (0,0) 469 413 (469) 882 

(1,0) (0,0) 662 565 (658) 1227 

(2,0) (0,0) 682 605 (680) 1287 

(3,0) (0,0) 620 621 (714) 1241 

(4,0) (0,0) 547 493 (567) 1040 

Table 5.5. Separated counts of single/multi-cluster events (2nd and 3rd columns).  Since single and 
multi-cluster conditions are mutually exclusive, their sum will be the number of events satisfying 
geometrically constraint triggers where each wire plane has at least one cluster in the last column.  
This is just the numbers in the 3rd columns of Table 5.2. 
 
5.4.3. Cause of loss of efficiency 

According to table 5.3., as long as there is at least one cluster on each wire plane, the analyzer 
will have track(s) found and fitted.  This is also the subject of the discussion in section 5.2.2 on 
track fitting where it was noted that the crossover points of clusters (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) on each wire 
plane is sufficient to determine track information (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑).  Thus, there are two ways to 
lose track fitting efficiency: 1) At least one wire plane has no cluster found and 2) the track is 
computed from the wrong cluster (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) association.  Some of the most common cases 
are explained with examples below. 

1) Placement of trigger paddles. We must place trigger paddles such that their projection on 
each wire plane is within the active area of the wire plane.  The combination of effects 
shown in Fig 5.5 (higher placement of trigger paddles results in shift of projection on the 
short axis of wire planes) and in Fig 5.6 (lower chamber wire plane trigger projection is 
computed by outer projection with larger area than shared area of mutually perpendicular 
trigger scintillators in the same layer results in u1 wire plane projection outside its active 
area).  No drift time data in u1 plane means no cluster found. 
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2)  

III Fig 5. 18 Calculated trigger outer projection on lower chamber wire planes. 

It’s based on tape measure measurement of scintillator paddle locations. It’s easy to see in 
Eve_HallC event by event display, the projection of paddles on bottom u plane (red square) is 
just out of its active area and efficiency is lost accordingly.  Furthermore, it can be noted that 
the calculated bottom u1 plane x coordinate in the analyzer coordinate system (-y coordinate 
in the figure) is -28.23 cm < -26.67 cm which is the lower bound of wire plane active area. 
3) Wrong u-v association (ambiguity).  This loss of efficiency only affects multi-cluster 

cases, where u-v clusters from different tracks are associated to fit tracks; see discussion 
in 5.2.1 With the track identification by path analysis all possible paths are paired and 
fitted and the ones with best fits chosen.  In the cosmic ray test runs, a shower event 
would result in tracks with nearly the same timing and slope.  Thus, a pair of adjacent 
clusters in the same wire plane would easily get similar 𝜒ଶ values and yet result in a 
wrong u-v association. Below, figures show several special cases where a wrong u-v 
association occur: 

 

 

III Fig 5. 19 Wrong uv association cases. Bottom figures ordinate: drift time in unit 𝜇𝑠, abscissa: 
wire number of wire plane u1,v1,u2,v2 from left to right, no unit. 



167 
 

 

(1) Wrong u-v association case 1. The top chamber v plane (LDC2 projection view green lines, 
and lower rightmost drift time graph) has two clusters, the analyzer track finding algorithm 
picked the wrong one, which resulted in the track crossover point missing the trigger projection 
on the top chamber. 

 

III Fig 5.20 (2) Wrong u-v association case 2. Bottom figures ordinate: drift time in unit 𝜇𝑠, 
abscissa: wire number of wire plane u1,v1,u2,v2 from left to right, no unit. In an event with close 
clusters and similar slope on bottom chamber LDC1, the u-v association could easily pick an 
adjacent cluster of the cluster from the same track of top wire chamber clusters.  

 

III Fig 5.20 (3). Wrong u-v association case 3. Ordinate: drift time in unit 𝜇𝑠, abscissa: wire 
number of a u wire plane, no unit. Hit wire indices vs drift time in seconds graph of a wire plane 
for an event.  When clusters are adjacent to each other (in the sense of hit wire indices) with 
similar slope and timing, the current analyzer track finding algorithm is inadequate to resolve 
which cluster to choose in such case. 
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3) No clusters found in a wire plane.  This results from the combination of algorithmic and 
hardware inefficiencies.  The analyzer relies on the V shape drift time structure to identify a 
cluster. (Function THaVDCPlane::FindClusters() in [48] )  Anything causes incomplete V shape 
timing structure will make cluster identification failure. Some examples are shown in below 
figures. 

Some cases causing incomplete V shape time structure. When one wire does not have drift time 
data, due to bad wire(s). From top to bottom: 
Case 1: With a 3-wire cluster, eliminating any wire makes it a 2 wire cluster. Result is no V shape 
time structure and less than minimum cluster size. 
Case 2. The eliminated wire is the only wire on one side of the cluster.  Eliminating it will 
disqualify V shape. 
Case 3: The eliminated wire is the wire with the minimum time and only one wire has the 2nd 
minimum time on one side of V shape.  This will also disqualify the V shape. 

 

III Fig 5. 20 Missing wire plane u1 hits leads to loss of efficiency. Bottom figures ordinate: drift 
time in unit 𝜇𝑠, abscissa: wire number of wire plane u1,v1,u2,v2 from left to right, no unit. 

Wire plane u1 (LDC1 red wires, and lower leftmost drift time graph) only has drift time data on 
one side of V shape.  This disqualifies it in the analyzer cluster finding algorithm.  As a result, no 
track is found. 

4) Algorithm inefficiency. 

The one orientation cluster finding (see 3.5.2 and Fig. 3.6) makes the common wire of two 
adjacent clusters always belong to the 1st cluster. This results in the elimination of a possible 1st 
wire for the adjacent cluster and possible disqualification of the cluster due to an incomplete V 
shape.  This effect is due to the defect of the algorithm instead of a bad wire. 
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III Fig 5. 21 Redraw of III Fig. 3.6. 

One directional search of clusters in the JLAB analyzer.  Dots in the graph are (𝑛௜, 𝑡௜) data point.  
Assume a gap of 1 wire in cluster finding is allowed.  Now suppose wire 6 doesn’t have data 
(might be the result of a bad wire).  The arrow indicates iterative direction of cluster finding; if 
the search starts from the smallest wire index, then the only found cluster found includes wires 
(1,2,3,4,5) while the group of wires (7,8,9) is not a cluster since there’s no V shape structure.  If 
search starts from largest wire index, two clusters will be found: wires (1,2,3,4) and wires 
(5,7,8,9). 
 
In order to estimate this effect on track finding efficiency, we compare the track fitting results by 
cluster finding with the default direction iteration method of hit collection and cluster finding 
with reversed direction iterations. A well-behaved algorithm will have the same result, regardless 
of the direction of iteration, which is not the case here. 
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III Fig 5. 22 Fitted tracks crossover points on u wire planes, using default hit collection iteration 
direction for cluster finding. 

 

III Fig 5. 23 Fitted tracks crossover points on u wire planes, using reversed hit collection iteration 
direction for cluster finding. Ordinate: short axis coordinate of wire plane in m, abscissa: long 
axis coordinate of wire plane in m. 

 

III Fig 5. 24 Difference histogram of fitted tracks between default and reversed cluster finding. 
Ordinate: short axis coordinate of wire plane in m, abscissa: long axis coordinate of wire plane in 
m. 

The difference of efficiency is about 3108/269555~1.15%  
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5.5 Changes for improving efficiency 
 
Based on the efficiency results shown in the last section, we propose a few methods which could 
improve the efficiency of the measurement either for the BH experiment or for test runs. 
 
5.5.1 Conditional efficiency 
 
The efficiency we measured with fewest constraints was very low (see Table 5.3).  However, only 
efficiency under certain conditions is what we care about.  The primary particles exiting the 
magnet in the BH experiment only have a certain range of direction and thus hit positions on the 
wire chambers.  In order to have a successful measurement, the wire chambers and analyzer track 
finding algorithm only need to have good efficiency over this range. 
One of the parameters in the analyzer that is well connected to wire chamber drift time data is the 
cluster span.  Recall that simulated cluster span (𝑛௨, 𝑛௩) distributions were generated from 
converting track direction angles (𝜃, 𝜑) to track incident angles 𝛼௨, 𝛼௩ in the u-z and v-z planes 
by the formulas below (5.4): 

 𝑡𝑎𝑛(𝛼௨) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 
 𝑡𝑎𝑛(𝛼௩) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 − 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 

Then (modified formula (3.3)) 

𝑛௨ =
|௛∙௧௔௡ఈೠ|

௦
 and 𝑛௩ =

|௛∙௧௔௡ఈೡ|

௦
 

The non-integer cluster spans (𝑛௨, 𝑛௩) have a linear relation to tangents of track angles 𝛼௨, 𝛼௩ in 
u-v coordinate system, and also have a linear relation to tangents of track angles 𝜃, 𝜑 in the 
analyzer 𝑥𝑦𝑧 coordinate system.  The integer cluster spans are larger than non-integer cluster 
spans.  Their range is based on the acceptance of the spectrometer and wire chambers and has 
been estimated in Geant 4 simulations (see Chapter 4 Cluster finding and fitting using Geant 4 
results; Fig. 4.3 and Fig. 4.4). 
Thus, the efficiency under the condition for a certain range of cluster span is the one we need to 
investigate.  For this we use concepts in conditional probability to establish the cuts we’re 
applying in analyzer database file. 
 
Conditional probability is defined as [49]: 

𝑃(𝐵|𝐴) =
௉(஺∩஻)

௉(஺)
                                                            (5.20) 

Here, 𝑃(𝐵|𝐴) is the probability that event 𝐵 occurs under the condition that event 𝐴 also occurs, 
𝑃(𝐴 ∩ 𝐵) is the probability of both event 𝐴 and 𝐵 occur, and 𝑃(𝐴) is the probability of event 𝐴 
occurs. 
 
Total probability theorem: 𝐵௜,  𝑖 = 1,  … ,  𝑛 are finite, mutually exclusive, and exhaustive event 
(⋂ 𝐵௜௜ = Ω is the sample space) and 𝐴 is any event. Then: 

𝑃(𝐴) = ∑ 𝑃(𝐴 ∩ 𝐵௜)௜ = ∑ 𝑃(𝐵௜)𝑃(𝐴|𝐵௜)௜                     (5.21) 
The first equating sign means the probability of event 𝐴 occurs over the entire sample space is the 
sum of the probability of both event 𝐴 and 𝐵௜ occur over 𝑖, when 𝐵௜s is mutually exclusive (𝐵௜ ∩
𝐵௝ = 0 for any 𝑖 ≠ 𝑗) and exhaustive (⋂ 𝐵௜௜  is the sample space). It is the direct result of defining 
property of probability 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐶) = 𝑃(𝐴 ∩ (𝐵 ∪ 𝐶)) if  𝐵 ∩ 𝐶 = ∅. The 2nd equating 
sign is reached by applying the definition of conditional probability 𝑃(𝐴 ∩ 𝐵௜) = 𝑃(𝐵௜)𝑃(𝐴|𝐵௜). 
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Bayes’ theorem: 

𝑃(𝐵௞|𝐴) =
௉(஻ೖ)௉(஺|஻ೖ)

௉(஺)
=

௉(஻ೖ)௉(஺|஻ೖ)

∑ ௉(஻೔)௉(஺|஻೔)೔
                                                (5.22) 

Where 𝐵௞ , 𝑘 = 1 … , 𝑛 are the subsets of sample space under the same conditions of total 
probability theorem. The 1st equating sign uses the definition of conditional probability: 

𝑃(𝐴)𝑃(𝐵௞|𝐴) = 𝑃(𝐴 ∩ 𝐵௞) = 𝑃(𝐵௞)𝑃(𝐴|𝐵௞) 
The 2nd equating sign expands 𝑃(𝐴) in the denominator using the total probability theorem (5.21). 
As an example: 𝐴 represents event with tracks found by the analyzer, and 𝐵௞ represents event 
with cluster with 𝑘 wires hit. Then the conditional probability of  𝑘 wires under the condition of 
tracks are found by the analyzer can be computed from knowing all 𝑃(𝐵௞) (the probability of 
event occurs with cluster with 𝑘 wires hit) and each conditional probability of event with tracks 
found by the analyzer under the condition of the event has cluster of size 𝑘. 
 
Consider a procedure as below: Let 𝐵௜ represent an event with a certain span of clusters, 𝑖 =
3, … ,8.  Let 𝐴 represent an event with tracks.  We can classify events by 𝐵௜.  For example, 𝐵ହ is 
event with cluster span of 5.  When the analyzer is finding and fitting tracks, it reads an event, 
applies cuts to clusters, then uses the clusters after cuts to each wire plane to fit the track.  Now 
we apply the total probability theorem.  We expect it to be interpreted as: the probability of an 
event with track(s) found is the sum over cluster span 𝑖 of the probability of an event with cluster 
span 𝑖 times the conditional probability of finding tracks with certain cluster span 𝑖.  Thus, 𝑃(𝐵௜) 
and 𝑃(𝐴|𝐵௜) with 𝑖 = 3, … ,8 give complete information of the efficiency of track finding.  In 
addition, if the wire chamber and analyzer combined don’t have a good track finding efficiency 
for events with certain cluster spans, then we may discard such an event by adding a cut in the 
database file.  Based on results from the Geant 4 simulations (see Part IV Simulation, section 2.4 
Track finding and fitting using Geant 4 results; Fig. 2.29 and Fig. 2.30), the range of cluster spans 
during BH experiment is 𝑛௨ ∈ [4,8] and 𝑛௩ ∈ [4,7].  Thus, as long as in these range (𝑛௨ ∈ [4,8] 
and 𝑛௩ ∈ [4,7]), we expect high efficiency globally by the total probability theorem if efficiency 
𝑃(𝐴|𝐵௜) is high, while any efficiency during test run with 𝑖 = 𝑛௨ or 𝑛௩ is not in this range is 
irrelevant. 
As for applying the total probability theorem to the current analyzer, the theorem relies on all 𝐵௜ 
being mutually exclusive and exhaustive.  However, in the database file, limits of cluster spans 
are applied to all wire planes and they cannot represent mutually exclusive events.  For example, 
the minimum cluster size and maximum cluster span will limit the span of cluster in range 
[𝑛௠௜௡, 𝑛௠௔௫], if pick range of 𝑖 for 𝐵௜ to be (𝑛௠௜௡, 𝑛௠௔௫) = (3,7) and (𝑛௠௜௡, 𝑛௠௔௫) = (8,12) 
Their union set is not equal to the set of events corresponding to (𝑛௠௜௡, 𝑛௠௔௫) = (3,12).  Then a 
cluster span of u1, v1, u2, v2 with span (𝑛௨ଵ, 𝑛௩ଵ, 𝑛௨ଶ, 𝑛௩ଶ) = (8,4,8,4) will not be included in each 
of the above cases, but it does apply to (𝑛௠௜௡, 𝑛௠௔௫) = (3,12).  Thus, the total probability 
formula does not apply. 
Proposed improvement in defining track finding efficiency: 
In order to correct the over generalized specification of range of cluster span in database file, cuts 
on wire spans for each u-v wire plane (𝑛௨௠௜௡, 𝑛௨௠௔௫ , 𝑛௩௠௜௡ , 𝑛௩௠௔௫) should be separately 
specified.  In other words, the conditional probability 𝑃(𝐴|𝐵௜) here should be interpreted as 
𝑃(𝐴|𝑛௨, 𝑛௩). 
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5.5.2 Placement of trigger paddles 
 
Due to the current placement of trigger scintillator paddles, their projections on the bottom 
chamber u wire plane is partially outside of wire plane active area (see Fig 5.8).  Based on the 
definition of efficiency (5.16): 

𝑒𝑓𝑓 =
ே௨௠௕௘௥ ௢௙ ௘௩௘௡௧௦ ௪௜௧௛ ௧௥௔௖௞

ே௨௠௕௘௥ ௢௙ ௧௥௜௚௚௘௥௘ௗ ௘௩௘௡௧௦
  

which requires that every triggered event can be detected by the wire chamber, is not applicable 
in this situation.  In addition, we can also observe in the second last row in Table 5.4, which 
shows the number of events for which the wire plane u1 does not find a cluster, while wire planes 
v1, u2, v2 have found cluster(s). This is the case with the most efficiency loss.  However, an easy 
fix for this is to relocate trigger paddles. 
 
 
 
 

5.5.3 Improvement on analyzer track fitting algorithm. 
 
Since there are always special cases in drift time vs sense wire structure for hit collection it is 
impossible for an analyzer cluster finding or track finding algorithm to identify all of them.  In 
addition, to deal with certain types of special cases in the timing structure new algorithms and 
parameters are often introduced, which complicate the issue.  There are two ways to improve the 
efficiency of analyzer cluster and track finding:  
(1) Modify the algorithm and calibration of parameters for current method.  The current analyzer 
cluster finding is based on identifying the V shape timing structure by searching for a falling then 
rising trend in drift time vs sense wire pattern.  It has some obvious flaws which might not be 
easily resolved using current method. Thus  
(2) Invent a new algorithm from scratch, in which possible flaws are dealt with from the 
beginning.  In this section both cases are discussed.  It should be noted that the discussion here is 
more proposition than real implementation in the analyzer code.  However, these improvements 
are expected. 

1) Identifying bad timing structure. 
The current analyzer algorithm does not deal with the change from “falling” to “rising” with 
flexibility.  For example, during “falling” a single wire eventually starts “rising” while the trend 
after the wire is still “falling”.  The analyzer, by changing the flag to “rising”, and then detecting 
the 2nd time it starts “falling” ends because of the new “fall” and determines that the cluster is cut 
short.  For such a case, the global trend is not properly dealt with since the code itself lacks the 
logics to consider the magnitude of change in drift times between adjacent wires.  Such an 
example is shown in Fig 5.26. 

2) UV association of similar slope cluster, compare local and global fit.  As seen in 5.4.3 2) 
the incorrect u-v association of clusters leads to an incorrect track, which is a very 
common result from the current analyzer track finding algorithm. Additional cut or 
modified 𝜒ଶ will improve this. 

3) Use data of clusters with bad timing structure.  See Fig. 5.21.  Losing timing information 
on one side of the V shape from hardware causes no cluster in one wire plane, which 
leads to no track being found.  However, the information obtained from the hardware, 
which includes 3 full clusters in the other 3 wire planes and the half cluster in the 
disqualified wire plane, is more than enough to fit a track with good precision.  We can 
easily fit the half cluster to a straight line, or combine it with the cluster with same 
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orientation in the other wire chamber (see 5.2.1 for path analysis) to find the crossover 
point.  The real issue is how to identify such half cluster through a stable and reliable 
algorithm.  

4) Two defects in cluster V shape identification. (Difference of results when searching 
clusters on hit collection through increasing/decreasing wire index, reuse of failed wires 
in previous cluster candidate) (c.f. 5.4.3 4))  The “falling” to “rising” identification as 
criteria for a cluster is one directional and an asymmetry originates from iterating hit wire 
indices from different directions (see Fig 5.23 to Fig 5.25).  However, identifying a real 
cluster should never depend on the direction of iteration of wire indices. In order to fix 
this, a new algorithm independent of iteration direction is devised below.  

 

III Fig 5. 25 Illustration of premature ending of cluster finding. Ordinate: drift time in unit 𝜇𝑠, 
abscissa: wire number of a u wire plane, no unit. 

The circled hit wire will end the current new cluster build up, because the next wire hit time is 
falling instead of continue to rise. However, the real cluster should also include next 3 wires. 
 
2) Another defect is in the classification of each wire in the hit collection in the analyzer 
algorithm.  During the iteration of wires to build up a new cluster, a wire with bad hit time is 
removed in the current cluster and set aside.  Then those wires will be re-examined again for new 
cluster candidate, this could cause a sequence of adjacent wires in the hit collection being 
identified as two clusters with common range mixed together.  Such result is usually incorrect and 
has little use for track finding and fitting. 
5) New cluster finding algorithm. 
The new algorithm does not depend on the direction of iteration of wire indices during cluster 
finding, which eliminates the difference between results of clusters finding in different direction 
as shown in Fig 5.25. 
The idea is also very simple: instead of first “falling” then “rising”, the V shape can also be 
interpreted as from a local minimum and “rising” on its both sides until reaches the local 
maximum or big wire gap. Thus, the steps to find clusters in this algorithm is: 

(1) Read entire hit collection. Search for wires with local minimum drift time; that is, drift 
times of hit wires on its both sides are larger than the time of current wire. Call those 
local minimum wires pivot wires. 



175 
 

 

(2) Start with each pivot wire, iterate through wires on its lower index side, then add the wire 
into the new cluster if drift time is “rising”.  Do not end the iteration until a maximum is 
found, a big wire gap appears, or other exceptions controlled by database file parameters. 

(3) Do the same for wires on the higher wire index side of pivot wire. 
(4) Combine both sides wires with “rising” time and the pivot wire as a new cluster. 

An illustration of this new algorithm is shown in Fig. 5.27. 

 

III Fig 5. 26 Illustration of new cluster finding method. 

First, find pivot wires, which are wires with local minimum in drift time. Then search from each 
pivot wire to the left and right, until drift time reaches local maximum. 
 
6) Suggestion on additional cuts. 

(1) Add maximum number of clusters in each wire plane, since the BH experiment rarely 
generate multi-cluster/track events. 

(2) As suggested in the last section 5.5.1, specify the maximum and minimum cluster span 
on u wire plane and v wire plane independently instead of maximum and minimum 
cluster span for both wire orientations. 

(3) The tdiff (drift time difference between adjacent wires in a cluster) could be cluster span 
dependent. For instance, if there are 3 wires hit for a cluster, 2 side wires ionization point 
at cathode, then tdiff in this case is ~200ns, which equals the maximum drift time.  But, for 
a 7-wire cluster with side wires ionization point at cathode, tdiff ~200/3 ~ 70 ns. 

(4) Add the maximum of the smallest drift time of the V shape.  For instance, if the pivot 
wire has a large drift time, the cluster associated to it should not be the one that triggers 
the scintillators, then a time offset should add to all wires.  The cluster fit should be 
similar to that which has been discussed in 4.3.3. 
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5.6 Misc. topics 
 

5.6.1 Track angle and location resolutions estimation 

According to how the track is fitted in section 5.2.2, the track angle 𝜃, 𝜑 and location 𝑥, 𝑦 
resolution originates from the error of crossover point coordinates (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) in the wire 
chamber.  Those coordinates are fit results from each cluster of the wire plane. Thus, the 
uncertainty/resolution ultimately originates from errors of drift distance or drift time.  Now we 
estimate the resolutions with two different methods. 
1) Estimated by error propagation of fit parameters. 
The crossover points coordinate 𝑢 or 𝑣 is fitted in form: 

𝑑 = 𝐴 + 𝐵𝑢                        (5.23) 
where 𝑑 is the drift distance, and 𝑢 or 𝑣 is the position of wires in the cluster; replace 𝑢 by 𝑣 for 𝑣 
wire planes.  The crossover point coordinates is then: 

𝑢଴ = −
஺

஻
                             (5.24) 

With 

𝐴 =
∑ ௨మ ∑ ௗି∑ ௨ ∑ ௨ௗ

∆
, 𝐵 =

ே ∑ ௨ௗ ∑ ௨ ∑ ௗ

∆
, ∆= 𝑁 ∑ 𝑢ଶ − (∑ 𝑢)ଶ       (5.25) 

Thus, we can apply the error propagation formula 

𝜎௨ = ට(
డ௨

డ஺
)ଶ𝜎஺

ଶ+(
డ௨

డ஻
)ଶ𝜎஻

ଶ = ට(−
ଵ

஻
)ଶ𝜎஺

ଶ+(
஺

஻మ)ଶ𝜎஻
ଶ                 (5.26) 

to find the resolution of the crossover point coordinate 𝜎௨ or 𝜎௩.  Here 𝜎஺ and 𝜎஻ are also need to 
be determined, and we are making some assumptions before proceeding: 

(1) Since both 𝐴 and 𝐵 are 𝑢 and 𝑑 dependent, we assume error of each data point’s 𝑢 
coordinate is negligible compared to 𝜎ௗ.  The reason for this is that the sense wire 
locations in the wire chambers are fixed during construction, and their positions are 
constructed and measured with very high precision, compared to drift distance. 

(2) All drift distances have the same uncertainty 𝜎ௗ ≅ 𝑣𝜎௧ ≅
଺଴଴଴଴௠

௦
× 10𝑛𝑠 = 0.6 𝑚𝑚. 

Here 𝑣 is the estimated drift velocity, and 𝜎௧ is the error of drift time. 𝜎௧ is combined 
from the drift time offset and random fluctuations of ionization and scattering processes. 

 
Thus, by error propagation on drift distance 𝑑 only. We have: 

𝜎஺ = 𝜎ௗට
∑ ௨మ

∆
                                           (5.27) 

𝜎஻ = 𝜎ௗට
ே

∆
                                               (5.28) 

Replacing 𝜎஺ and 𝜎஻ in (2.5.27) and (2.5.28) into (2.5.26) 

𝜎௨ =
ఙ೏

మ

஻మ

ே

∆
[

∑ ௨మ

ே
+

஺మ

ଶ஻మ]                                                      (5.29) 

We have the crossover point resolution dependence on wire positions and drift distances (𝑢௜, 𝑑௜) 
in the cluster, which can be pretty messy.  We still have to impose a credibility check on the 
formula.  The resulting formula should be invariant for translation of coordinate of 𝑢; that is, if 
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we add a constant ∆𝑢 to all 𝑢 coordinates 𝑢௜, the formula (5.26) should still render the same 
results.  See Fig 5.28 for illustration. Under translation: 

∑ 𝑢ଶ → ∑(𝑢 + ∆𝑢)ଶ = ∑ 𝑢ଶ + 2∆𝑢 ∑ 𝑢 + 𝑁(∆𝑢)ଶ            (5.30) 
∑ 𝑢 → ∑(𝑢 + ∆𝑢) = ∑ 𝑢 + 𝑁∆𝑢                                        (5.31) 
∑ 𝑢𝑑 → ∑(𝑢 + ∆𝑢)𝑑 = ∑ 𝑢𝑑+ ∆𝑢 ∑ 𝑑                              (5.32) 

Which leads to  
 ∆= 𝑁 ∑ 𝑢ଶ − (∑ 𝑢)ଶ 

                              → ∆′ = 𝑁[∑ 𝑢ଶ + 2∆𝑢 ∑ 𝑢 + 𝑁(∆𝑢)ଶ] − (∑ 𝑢 + 𝑁∆𝑢)ଶ = ⋯ = ∆      (5.33) 

𝐴ᇱ =
ൣ∑(௨ା∆௨)మ ∑ ௗି∑(௨ା∆௨)ௗ ∑ ௨൧

∆ᇱ
                  

   = ⋯ = 𝐴 +
∆௨

∆
(∑ 𝑢 ∑ 𝑑 − 𝑁 ∑ 𝑢𝑑) = 𝐴 − 𝐵∆𝑢  (5.34) 

𝐵ᇱ =
ே ∑(௨ା∆௨)ௗି∑(௨ା∆௨) ∑ ௗ

∆ᇱ
= 𝐵                                     (5.35) 

𝜎′஺
ଶ
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ଶ ∑ ௨మାଶ∆௨ ∑ ௨ାே(∆௨)మ

∆
= 𝜎஺

ଶ + 𝜎஻
ଶ(

ଶ∆௨ ∑ ௨

ே
+ (∆𝑢)ଶ)   (5.36) 

𝜎′஻ = 𝜎ௗට
ே

∆ᇱ
= 𝜎஻                                                                                        (5.37) 

 

III Fig 5. 27 Illustration of translation invariance of standard deviation of 𝜎௨. 

Here (𝑢௜, 𝑑௜) to (𝑢௜ + ∆𝑢, 𝑑௜) with the same ∆𝑢 to keep all distances and spacing of each 𝑢௜ same, 
and drift distances same to represent the same track.  However, the origin of coordinate system is 
shifted −∆𝑢 in 𝑢 direction.  When combined leads to 

𝜎௨′ଶ = 𝜎௨
ଶ + 2

ఙಳ
మ

஻మ
(∆𝑢)[

∑ ௨

ே
−

஺

஻
+ (∆𝑢)]                                    (5.38) 

which does not satisfy the invariance for translation of coordinate of 𝑢.  The 
reason is that both 𝐴, 𝐵 are 𝑢, 𝑑 dependent, thus heavily correlated to each other.  The formula 
(5.26) is for independent random variables, which cannot be applied here.  Still we can estimate 
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by using (5.29), assuming (by translation) 𝐴 = 0, for 45° track 𝐵 = 1, cluster size 𝑁 ≅ 5.  Also 
assume 

 ∑ 𝑢 = 0, so by ∆= 𝑁 ∑ 𝑢ଶ − (∑ 𝑢)ଶ ⇒
∑ ௨మ

∆
=

ଵ

ே
. 

𝜎௨
ଶ =

ఙ೏
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஻మ

ே
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ቂ
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ଶ஻మቃ ≅
ఙ೏

మ
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∑ ௨మ

∆
≅

ఙ೏
మ

ே
                                     (5.39) 

Which gives 𝜎௨ = 𝜎ௗ/√𝑁 ≅ 0.27𝑚𝑚. 
 
2) A crude estimation 
 
This is about the estimation of upper limit of 𝜎௨ or 𝜎 of intersection.  This results from shifting all 
hits of the track up or down by 𝜎ௗ 

𝜎ௗ = 𝐵𝜎௨                 (5.40) 
The range of slope 𝐵 is approximately from 𝑡𝑎𝑛(30°) = 1/√3 to 𝑡𝑎𝑛(60°) = √3  so use 45° as 
estimate (~5 wire hit cluster), so  𝜎௨~ 

ఙ೏

஻
~𝜎ௗ~0.6 𝑚𝑚 from previous result.  To estimate the 

final track angle error, use a 𝜃 = 45° track and add 0.6 𝑚𝑚 in the 𝑥 direction (parallel to short 
side of wire chamber) as overestimate.  With 38.1cm apart from bottom to top chamber: 

𝑡𝑎𝑛𝜃 =
ଷ଼.ଵ௖

ଷ଼.ଵ௖௠
=

௫

௭
= 45°, then shift 𝛿𝑥 = 0.6 𝑚𝑚 in the 𝑥 direction  

𝛿(𝑡𝑎𝑛𝜃) =
డ௧௔௡

డ௫
𝛿𝑥 =

ఋ௫

௭
=

଴.଺௠

ଷ଼.ଵ௠௠
~1.6 × 10ିଷ                                              (5.41) 

Error of track angle: 

𝛿𝜃 ≅ ቀ
డ௧௔௡

డఏ
ቁ

ିଵ
𝛿(𝑡𝑎𝑛𝜃) = 𝑠𝑒𝑐ଶ𝜃𝛿(𝑡𝑎𝑛𝜃) = 2𝛿𝑡𝑎𝑛𝜃~3 × 10ିଷ𝑟𝑎𝑑~0.17°   (5.42) 

 
5.6.2 Location of bad wires, and their effect on loss of efficiency 
 
We investigate the effect of removing all hit time data from one wire of a test run before analyzer 
cluster finding, which equivalently corresponds to a bad (broken?) wire situation.  The result is 
shown in Fig 5.29 and Fig 5.30 below. 
We have seen from the track crossover point distributions (𝑥, 𝑦) on wire chambers that bad wires 
cause less tracks found and results in less density strip in the distribution of the wire plane bad 
wire lies. We should note: 

(1) Removing hit time data from a wire in a cluster will not necessarily result in the loss of 
the cluster found. See 5.4.3. 3) for some cases leading to loss of cluster. 

(2) The loss of efficiency is also heavily depended on the location of a bad wire.  Wires with 
short lengths that lie on the corners of the wire plane with a small area covered or wires 
that lie in a region where the hit density is low will not have an effect as big as a long 
wire in densely hit region. 
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III Fig 5. 28 Track crossover point coordinates (𝑥, 𝑦) in 𝑢 planes of both wire chambers. 
Ordinate: short axis coordinate of wire plane in m, abscissa: long axis coordinate of wire plane in 
m. 

 

Compare to Fig 5.23. Wire 204 in the v2 plane was “cut off” during replay (its data were 
removed by the code).  The lower plot shows an extra low hit density strip in the upper 
chamber (𝑥, 𝑦) coordinates, which correspond to tracks lost. 

 

III Fig 5. 29 Difference histogram of Fig 5.23 and Fig 5.29. Ordinate: short axis coordinate of 
wire plane in m, abscissa: long axis coordinate of wire plane in m. 

This shows the effect of loss of efficiency by one bad wire in the most densely hit region of 
test run. The relative loss is: 
6184/259034 = 2.4% 
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6 Other items required for replay 
As mentioned before in the Introduction chapter 1, in order to replay the data we need following 
items: 

1. A replay script that defines detectors/apparatus to be analyzed, physics module and 
calculation that need to be done, and file/variable names. 

2. Set of database files: (1) Detector database files that parameters and hardware mapping 
info of individual detectors are stored. (2) Run database files which defines beam energy 
etc. (3) Crate/scaler mapping database defining decoder parameters which for example 
maps individual hardware channel into channel in analyzer. 

3. Output definition file that defines which physical quantities to be calculated and stored in 
ROOT file. 

4. Raw data (CODA file), which is a form of binary data. 
We already have the following items determined: detector database files, run database file (even 
though it is irrelevant for our application), and raw data.  In addition a database for the decoder 
that maps channels from TDC by format (crate, slot, channel) into integer channels which are 
used to convert raw time data to ROOT data is written for credibility checks and determination of 
the TDC offset.  Now we still need following items: 1. Replay script. 2. Crate mapping database. 
3. Output definition file. 4. Cut definition file. 
 
Files needed other than replay script 
 

1. Crate mapping database: this is a simple database file that assigns info relevant to TDC 
crate, which includes crate number, type; and slot number, model, number of channels for 
each slot etc. 

2. Output definition file: For now, all VDC class related data (including accumulated raw 
time, time, track direction etc. for each wire plane), all decoder data (raw time for each 
channel/wire converted from binaries), and global data (number of events, event length 
etc.) will be calculated and stored in ROOT file for test purpose. 

3. Cut definition file. 
 
Replay script 
 

Only two apparatuses (corresponding to two pairs of wire chambers) in our case are to be 
analyzed.  Thus replay script is pretty straight forward: 

1. We instantiate a THaHRS object since it includes VDC, and VDC database file has been 
rewritten in last section, and a THaApparatus object for decoder data. 

2. The prefixes of these objects also included in these objects’ constructor thus database file 
names are set accordingly. 

3. Set raw data file (the CODA file includes binaries of raw time), output file (ROOT file 
stores results), output definition file and cut definition file names. 

Once all above items set in replay script, run the replay script then we will get desired results. 
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7 Decoder results and their applications 
Data stored in a replayed ROOT file after running replay script with other files properly set, 

as described in Chapter 2 and 6.  They are divided into three categories: 
1) Decoder data, which are raw time for each channel (possible multiple hits per channel per 

event).  It has been used to determine raw time offset and various credibility checks. 
2) Analyzer processed HRS object data, we will focus on its wire chamber class VDC track 

finding results.  It requires a fully modified VDC database file to render reliable results, 
which was not the case in early stage of the BH experiment preparation. 

3) Variables storing event number, event length, etc. 
 
Usage of data in 1) will be discussed this chapter: 

(1) Make several basic plots to check if TDC working properly (believable raw time 
distribution, noise level is low, etc.). 

(2) Another important application is to determine TDC raw time offsets from them, already 
discussed in chapter 2 section 2.3.4.  

(3) Based on efficiency defined by wires hit over scintillator trigger, or other similar 
definitions we use with these data to compute efficiencies of wire planes using various 
definitions. 

(4) Use these data with definition of efficiency in (3) to scan efficiency vs threshold voltage 
of discriminator cards or vs high voltage applied on wire planes. 

 
(1) will be discussed in this chapter. (4) was discussed in Part II Chapter 3 Wire chamber. 
Usage of data in 2) will be mainly focus on credibility checks of the validity of fitted tracks and 
track finding efficiency.  This efficiency will be lower than the efficiency defined in the last 
paragraph, which merely requires at least one wire hit in a wire plane coincident with a trigger. 
There are, however, some exceptions: the wire can be outside the area covered by scintillator 
paddles, or there may not be enough hit wires in a wire plane to form a cluster.  When combining 
wire plane geometry, geometry of trigger scintillator paddles, fitted track direction/intersection, 
and event-by-event hit time vs wire graph, we can decide if a fitted track is valid.  Event-by-event 
display was discussed in Chapter 3, section 3.3 “Visualizing events” as visualization of wire hits. 
Track finding related application of the data in 2) was discussed in Chapter 5, section 5.4 track 
fitting results and onward. 
For decoder data, there are only two types of entries: (1) Prefix D.T followed by a 4-digit number, 
stores the TDC time data for individual channel. (2) Prefix Ndata.D.T followed by a 4 digit 
number, stores the number of hits for the channel for each event.  The number of hits capped at 6 
per event per channel to prevent high-rate noise from discriminator cards ringing to dominate the 
data file. 
We generate three useful plots from these data: 

1) The cumulated TDC time distribution for all channels give us general ideal of the raw 
time distribution.  It only uses the largest TDC time (correspond to the smallest real time, 
or from the 1st hit) entry for each wire for each event. 

2) The cumulated hit time when the wire has more than one hit in the event, and only fill 
times indexed larger than 0.  This indicates the noise level of the run when compared to 
the number of entries to plot 1), with some residue image of the raw time distribution. 

3) The hit counts for each wire.  The wire indices have been rearranged to make them 
follow the increment or decrement order of wires since when writing the crate map 
database file, the channel indices follow the positions of channels on the TDC from top to 
bottom, then left to right (since a single TDC module/slot arranges 96 channels from top 
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to bottom).  The ordering of these wires can be in the same order as analyzer convention, 
or the opposite. 

Remarks: 
(1) 96 × (2 × 8 + 2) = 1728 channels are implemented, 2 × 8 means 2 TDC modules per 

wire plane, and 8 wire planes from 4 wire chambers, with 2 additional spares, thus 4 
digits are needed to specify a channel.  

(2) Cuts could be easily applied to these histograms. D.T stores raw time, so applying cuts on 
raw time is natural.  Another common cut is applying geometric constraints, usually 
accomplished by placing additional smaller (than trigger paddles) scintillator paddles 
above or below wire chambers and connecting output from these scintillators to TDCs as 
reference channels.  Logic AND condition of these triggers will give geometric 
constraints for the tracks. 

 

III Fig 7. 1 Cumulated hit time for all channels. Ordinate: counts, no unit, abscissa: TDC time 
with corresponding cuts explained in legend in TDC unit (0.5 ns). 

From all 4 active wire planes in the run of test run 2998. (From 1st 100k events, abscissa 
represents TDC time, ordinate represents counts.) 
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III Fig 7. 2 Cumulated hit time when the wire has more than one hit in the event. Ordinate: 
counts, no unit, abscissa: TDC time with corresponding cuts explained in legend in TDC unit (0.5 
ns). 

Using the same condition as Fig 7.1.  Abscissa represents TDC time, ordinate represents counts.  
Note: for histogram with other colors, the cuts applied were different as described in legend. 
Remark: 

1. It can be seen here the number of entries is 11.4 million, which is a lot more than 1.51 
million entries from the last histogram.  It means noise level were high in this run, as it 
can be seen in the much higher peak with low TDC time (about 150 TDC time and less). 
At most of the time it means for certain time interval certain discriminator card(s) 
was/were ringing. 

2. Although the high noise rate is present, the data from this run are mostly valid when it is 
not ringing since comparing the peak and the plateau in comparison to the previous 
histogram in Fig. 7.1.  Fig. 7.1 has about 7 times data in this TDC time region. Thus if we 
apply cut in TDC time to remove data in the noisy region that could not possibly be a real 
drift time, the rest of the data are mostly valid. 

3. To pinpoint where the noise originated we will refer next histogram (Fig 7.3).  Wires 
with noise usually have much higher hit counts.  In some cases the ringing cards are on 
the other pair of wire chambers (usually when 4 wire planes not 8, are tested at a time), 
which were not holding high voltage during the run.  The cards on the other pair of wire 
chambers were still powered to suppress noise, but sometimes they ring.  It is exactly the 
case in this run. (Fig 7.3 is zoomed in and didn’t show TDC time from the other 4 wire 
planes.) 

4. To check if there is a power surge that triggers ringing of a certain discriminator card, we 
can draw event length vs event number, a jump of event length in a certain region of 
event number indicates the time region of the ringing. 



184 
 

 

 

III Fig 7. 3 Hit distribution of all wires. Ordinate: counts, no unit, abscissa: TDC channel number, 
no unit. 

Data of wire chamber 1,2 form run 2998 (chamber 3,4 are not active in this run). Red vertical 
lines are separating channels of different discriminator cards.  Abscissa represents wire index, 
ordinate represents counts. 
Remarks: 
1. The 9th or 10th cards in each wire plane has a gap of 9 channels since they’re not connected to 
any wires (see Fig. 2.7). 
2. The right-most channels (with indices > 1600) with higher counts are reference channel counts 
from small scintillator paddles.  Applying cuts of coincidence to these paddle triggers gives 
geometry cuts on tracks. 
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Part IV Simulation 
 

1 Generate BH pairs 
 

1.1 Introduction 
The Geant 4 physics package does not have the Bethe-Heitler cross section built in.  Positron and 
electron pairs produced from the BH process is required as primary vertex input for Geant 4 
simulation.  That is, a text file storing BH pair kinematics information has been read by our Geant 
4 simulation program, as the primary vertex. The simulation then simulates these electron 
positron pairs by propagating them through background and detector materials as well as the 
magnetic field.  The simulation then retrieves track information from preset simulation sensitive 
detector volumes that represents response of real detectors. 
R.N Lee et al. have calculated the BH cross section and provided us the code to compute the BH 
cross section at any point in phase space. [20]  Prof. R. Pywell has written a “wrapper” code that 
provides a C++ class BH_cross_sections and simplifies the use of Lee’s code along with the 
internal global variables needed within the code from any code written by the user. [50]. First, we 
provide atomic number of the target 𝑍, and photon beam energy 𝐸ఊ, then the code calculates 
differential the cross section: 

 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯  (1.1) 
where the subscripts 𝑝, 𝑞 represent the electron and positron, respectively, Ep,q are total energy of 
the particle, θp,q are polar angle, and 𝜑௤ି௣ is the difference of azimuthal angles between two 
particles.  The dependence of the cross section on azimuthal angle is only one difference between 
the two particles, yet the azimuthal angles of both particles are to be specified for Geant 4 
simulation. 
The task left is to generate the BH pairs satisfying this distribution.  Briefly speaking, the 
generation process starts with random (kinematics) pair generation, followed by Monte Carlo 
simulation selecting pairs satisfying distribution of the cross section. The resulting file stores the 
following information: 

𝐾𝐸௣, 𝐾𝐸௤ , 𝜃′௣, 𝜑′௣𝜃′௤ , 𝜑′௤ , 𝑑𝜎          (1.2) 
where 𝐾𝐸 are the kinetic energies of the particles, 𝜃′ are the horizontal projection angles and 𝜑′ 
are vertical projection angles of particle velocity direction with respect to the beam direction.  𝑑𝜎 
is the differential cross section of this pair at this kinematics. 
In this chapter we first discuss the procedure of the pair generation, showing the resulting pair 
energy, angle distributions at the end.  Some modification of the code has been made, either to 
confirm the precision of the result or to increase the efficiency of the Monte Carlo simulation.  In 
the end applications of the pair text file are discussed. 
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1.2 Pair generation procedure 
 

1.2.1 Introduction 
 

The first step of pair generation includes generating pairs random in energy and direction.  
The cross section calculation using the program provided by the R. Lee is the most time-
consuming part of the routine, which is followed by the Monte Carlo simulation to select 
qualified BH pairs. 

Thus, both energy and angle cuts before cross section calculation is essential for Monte Carlo 
simulation speed.  Energy cuts are made based on how magnets bend the particles and the wire 
chamber acceptances.  The solid angle acceptances are mainly constrained by the acceptance of 
the magnet, which provide the most opportunity for efficiency improvement.  It includes: 1. Yoke 
hole of the magnet, which limits maximum spherical angles; 2. Inner cone shaped baffle, which 
places a limit on minimum spherical angles; 3. Magnet poles, which are circles in shape parallel 
to horizontal plane, and mainly limit azimuthal angles of the particles. In addition, kinematics 
constraints have also been considered. 

The final step is to use Monte Carlo simulation to generate a text file with pairs distributed 
according to the cross section.  The main reasons this part is so time consuming are: 1. Cross 
section code by Lee consists of numerical operations on special functions and interpolations. 2. 
the cross section is very sensitive to the difference in energies of the pair and to polar angles, 
which makes Monte Carlo simulation very inefficient.  A modification has been made to improve 
greatly the Monte Carlo efficiency. It reduced computation time to 1/20 or even less based on 
beam energy, specific cuts used and randomness of the Monte Carlo process. 

 
1.2.2 Uniform random pairs generation 
 

The main methods used here include uniform random number generation and change of 
variables of random variables.  A function 𝑅 = 𝑟𝑎𝑛𝑑𝑓𝑙𝑜𝑎𝑡() which generates random floating 
point numbers in the range [0,1] is coded based on the random() function from C++, which 
generates random non-negative integer from 0 to INT_MAX~2 × 10ଽ. 
To generate uniform random energy: 
 𝐸௣ = 𝐸௠௜௡ + (𝐸௠௔௫−𝐸௠௜௡)𝑅                 (1.3) 
 𝐸௤ = 𝐸ఊ − 𝐸௣                                             (1.4) 
where 𝐸௠௔௫ = 𝐸ఊ − 𝐸௠௜௡. 

To generate uniform random solid angles between minimum polar angle 𝜃௠௜௡ to 𝜃௠௔௫ is a bit 
more complicated. The differential solid angle is: 

 𝑑𝛺 = 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 = 𝑑𝑐𝑜𝑠𝜃𝑑𝜑                   (1.5) 
It’s easy to see in order to have uniform random solid angle, 𝑐𝑜𝑠𝜃 and 𝜑 must be uniformly 

distributed.  The one issue here is that 𝜃 and 𝜑 are not necessarily generated in the entire range of 
solid angle.  For 𝜑, since the existing cone baffle with center axis coincide with beam, electron 
only propagate to right side detectors while positron to the left.  In addition, limits on the angles 
are symmetric about horizontal plane as the beam lies in the symmetry plane of magnet pole. 
Currently 𝜑 are generated in range: 

 𝜑௣ ∈ [180° − 𝜑଴, 180° + 𝜑଴], 𝜑௤ ∈ [−𝜑଴, 𝜑଴]   (1.6) 
And 𝜑௣, 𝜑௤ are generated using the uniform random number 𝑅 by: 

𝜑௣ = 180° + (2𝑅 − 1)𝜑଴,   𝜑௤ =  (2𝑅 − 1)𝜑଴                  (1.7) 
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where 𝜑଴ is chosen as 28° and will be explained in next section. 
In order to generate the angle 𝜃 making c𝑜𝑠𝜃 uniformly distributed from 𝜃௠௜௡ to 𝜃௠௔௫.  𝜃௠௜௡ 

is determined by polar angle of the con baffle, 𝜃௠௔௫ is determined by polar angle spanned from 
target center to bound of yoke hole. Using the change of variable formula for cumulative 
distribution function in probability theory [51]: 

𝑁(𝑐𝑜𝑠𝜃௠௜௡ − 𝑐𝑜𝑠𝜃) = 𝑃(𝑐𝑜𝑠𝜃 < 𝑐𝑜𝑠𝛩 < 𝑐𝑜𝑠𝜃௠௜௡) = 𝑃(0 < 𝑟 < 𝑅) = 𝑅    (1.8) 

𝑃(𝑐𝑜𝑠𝜃 < 𝑐𝑜𝑠𝛩 < 𝑐𝑜𝑠𝜃௠௜௡) is the probability of random variable 𝑐𝑜𝑠𝛩 in range 

[𝑐𝑜𝑠𝜃, 𝑐𝑜𝑠𝜃௠௜௡] , noting 𝑐𝑜𝑠𝜃 is monotonic decreasing function in region ቂ0,
గ

ଶ
ቃ ⊃ [𝜃௠௜௡ , 𝜃௠௔௫]. 

𝑃(0 < 𝑟 < 𝑅) is the probability of our uniform random variable 𝑟 in range [0, 𝑅 ] ⊂ [0,1]. 
Here 𝑁 is the normalization factor, which is determined by: 

 𝑃(𝑐𝑜𝑠𝜃௠௔௫ < 𝑐𝑜𝑠𝛩 < 𝑐𝑜𝑠𝜃௠௜௡) = 𝑁(𝑐𝑜𝑠𝜃௠௜௡ − 𝑐𝑜𝑠𝜃௠௔௫) = 1 
 𝑁 = 1/(𝑐𝑜𝑠𝜃௠௜௡ − 𝑐𝑜𝑠𝜃௠௔௫) 

Thus, random angle 𝜃 , with condition 𝑐𝑜𝑠𝜃 uniformly distributed in range [𝑐𝑜𝑠𝜃௠௔ , 𝑐𝑜𝑠𝜃௠௜௡] 
is: 

(𝑐𝑜𝑠𝜃௠௜௡ − 𝑐𝑜𝑠𝜃)/(𝑐𝑜𝑠𝜃௠௜௡ − 𝑐𝑜𝑠𝜃௠௔௫) = 𝑅 
𝜃 = acos[𝑐𝑜𝑠𝜃௠௜௡ − 𝑅(−𝑐𝑜𝑠𝜃௠௔௫)]              (1.9) 

Both 𝜃௣ 𝑎𝑛𝑑 𝜃௤ were generated this way. 
 
1.2.3 Choosing cuts based on magnet and wire chamber acceptance 
 
The purpose to using cuts on particle energy and direction angles is to improve pair generation 
efficiency. For current setup, it takes about a week to generate one million events on local 
machine. For example, the differential cross section dependence on polar angle 𝜃 ranges over 
10଺, and it will greatly decrease the Monte Carlo simulation selection of the pairs. 
 
1. Choosing energy cut 
 As seen in below figure, the electron energy distribution (from current simulation setup, which 
includes 𝜑 ∈ [−28°, 28°]) is peaked near 30 MeV and density dropped to less than 1/5 of the 
peak value near 10 MeV and 50 MeV. By 𝐸௤ = 𝐸ఊ − 𝐸௣ positron energy distribution is mirror 

image of electron energy about 
ாം

ଶ
= 30𝑀𝑒𝑉. The energy cut is: 

10𝑀𝑒𝑉 ≤ 𝐸௣, 𝐸௤ ≤ 50𝑀𝑒𝑉                         (1.10) 
Since the trajectory of charged particles in uniform magnetic field is helix, the projected radius in 
horizontal plane is proportional to total energy 𝐸 of the particle according to special relativity. 
Thus, particles with low energy the radius is very small that track direction has been bent too 
much, which will easily miss wire chamber. On the other end, the higher energy particles tracks 
have much larger radius in magnet, and could miss the wire chamber in downstream direction. 
In addition, the low or high energy particles intersect both front and back wire chambers but at 
some shallow angle to wire plane. In this situation, based on geometry of the wire planes (c.f. Part 
III, Appendix A1.5 formula (1)(2)), it always results in one of the u or v wire plane as high 
number of wires intersects the track and render signals, while the other wire plane has too few 
wires fired. This results in very low efficiency of track reconstruction from software by wire 
chamber. 
It’s proposed that the measurement of asymmetry will be between 18 to 42 MeV, the expanded 
energy range in simulation dealing with the effects of multiple scattering smearing the tracks, 
which needs to be taken into account in fitting BH pair kinematics from track information. 
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IV Fig 1. 1 Energy distribution of electrons at primary vertex. Ordinate: counts, no unit, abscissa: 
electron energy at primary vertex in MeV. 

Using current planned experimental configuration. 

 

 

 

 

2. Choosing the angle cuts 
Spherical angles 𝜃, 𝜑 are combined to determine tracks that could propagate through the magnet. 
The polar angle 𝜃 range 𝜃௠௜௡ to 𝜃௠௔௫ are simple: tracks of the particles are straight lines before 
entering magnetic field and the geometric constraints prior to the magnet determine the range of 
𝜃.  For 𝜃௠௜௡, it is determined by the baffle cone aligned with the beam.  The proposed polar 
angular limit for the cone is 5° and for Geant 4 simulations 𝜃௠௜௡ = 4° is set to approximate the 
effects of a finite beam radius and scattering of particles inside the target.  𝜃௠௔௫ = 15°, which is 
a bit larger than the polar angle spanned from center of target to back circumference of yoke hole: 

 𝜃௠௜௡ = 4° ≤ 𝜃 ≤ 𝜃௠௔௫ = 15°       (1.11) 
Since the small gap (2’’) of the magnet poles is the most constraining factor for 𝜑.  In addition, 
the smaller the value of 𝜃, the broader the range accessible for 𝜑. To estimate the largest value of 
𝜑 at the smallest 𝜃 = 4°, we assume straight line tracks to the back side of magnet poles. The 
target center to pole center distance is ~42 cm, and pole radius is 19.7 cm.  Thus, the distance 𝑑 ≅
62 𝑐𝑚 from target center to back edge of magnet pole. If it hits the pole: 

 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 = ℎ                  (1.12) 
𝑟 ≅ 𝑑 is the straight track length to back upper or lower edge of the pole, ℎ = 2.54 𝑐𝑚 is the 
half-gap between the two poles. 
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Solving (1.12) 

 𝜑 = arcsin ቀ
௛

௥௦௜௡ఏ
ቁ    (1.13) 

It gives following typical values for max 𝜑 range: 
𝜑 = 36.0° 𝑎𝑡 𝜃 = 4° 
𝜑 = 28.0° 𝑎𝑡 𝜃 = 5° 
𝜑 = 9.11° 𝑎𝑡 𝜃 = 15° 

For this reason, 𝜑଴ = 28.0° in formulas (1.6) and (1.7).  The simulation results also support this  
estimate.  The figures below show the 𝜑 distribution for a simulation using a generated pair file 
with range of 𝜑 ∈ [0°, 360°), while particle energies were bounded at 10 MeV and 50 MeV: 

 

IV Fig 1. 2 Electron 𝜑 distribution for the simulation. Ordinate: counts, no unit, abscissa: electron 
azimuthal angle 𝜑 at primary vertex in degrees. 

 

With all possible values of 𝜑 at the primary vertex when wire chambers on both sides generate 
signals.  In the description of the plot, θ and φ are horizontal and vertical projection angles of the 
electron direction at the primary vertex.  As it shows, 𝜑଴ = 28.0° is a reasonable estimate. 
 
3. Additional cuts on track projection angles 𝜃′௣, 𝜑′௣, 𝜃′௤ , 𝜑′௤  to constraint 
spherical angles 
𝜃௣, 𝜑௣, 𝜃௤ , 𝜑௤. Projection angles 𝜃′ and 𝜑′ are defined as arctangents of the horizontal and vertical 
coordinate verses beam direction coordinate spanned from target. Since Geant 4 simulation uses 
direction vector to specify particle momentum directions, projection angles are convenient. While 
spherical angles are input for cross section calculation in code provided by theorists. The particle 
momentum direction can be represented in either way: 

 𝒅 = (1,  𝑡𝑎𝑛𝜃ᇱ, 𝑡𝑎𝑛𝜑ᇱ)                        (1.14)       (1.14) 
 𝑑መ = (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)    (1.15)     (1.15) 

By relating both equation above we can solve 𝜃ᇱ, 𝜑ᇱ by 𝜃, 𝜑 and vice versa: 
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൜
𝑡𝑎𝑛𝜃ᇱ = 𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑

𝑡𝑎𝑛𝜑ᇱ = 𝑡𝑎𝑛𝜃𝑠𝑖𝑛𝜑
                            (1.16) 

൜
𝑡𝑎𝑛ଶ𝜃 = 𝑡𝑎𝑛ଶ𝜃ᇱ + 𝑡𝑎𝑛ଶ𝜑ᇱ    

𝑡𝑎𝑛𝜑 = 𝑡𝑎𝑛𝜑ᇱ/𝑡𝑎𝑛𝜃ᇱ             
           (1.17) 

Due to the constraint on the yoke hole and upper/lower magnet pole the track projections seen 
from target center has a strip shape.  The constraint on 𝜃ᇱ and 𝜑ᇱ with maximum values will 
contain the strip shape in a rectangular box when projected onto a plane behind the magnet and 
perpendicular to the beam direction as seen in Fig. 1.3. For the current setup: 

𝜃ᇱ
௠௔௫ = 15° = 𝜃௠௔௫  , 𝜑ᇱ

௠௔௫ ≅ 4° 
𝜑ᇱ

௠௔௫ cut makes 𝜑 much more constraint.  Because of the variation of tracks for different 
energies and angles, the 𝜑ᇱ range cannot be simply determined from analytic calculation as it 
requires relating tracks with certain energy and angle, propagate it into the magnet until it reaches 
the plane of the upper or lower pole’s circle shaped boundary.  By the result of simulation in 
figure below, we set 𝜑ᇱ

௠௔௫ = 4° to contain physically interested region. 

 

IV Fig 1. 3 𝑡𝑎𝑛𝜃ᇱ (abscissa) vs 𝑡𝑎𝑛𝜑ᇱ (ordinate) from simulation. Ordinate: 𝑡𝑎𝑛𝜑ᇱ, no unit, 
abscissa: 𝑡𝑎𝑛𝜃ᇱ, no unit. 𝜃ᇱ and 𝜑ᇱ are horizontal and vertical projection angle of electron 
momentum direction at primary vertex. Under cut: BH pairs must reach detectors on both sides of 
the magnet.  

The plot here has less constrained generated pair file that also required the wire chambers on both 
sides to detect particles.  
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1.2.4 Selection of random pairs by Monte-Carlo simulation 
 
Once the randomly distributed 𝑒ା − 𝑒ି pair has been specified by 𝐸௣, 𝐸௤ = 𝐸ఊ −

𝐸௣, 𝜃௣, 𝜃௤ , 𝜑௤ି௣ = 𝜑௤ − 𝜑௣, Monte Carlo simulation is used to determine if it will be written in to 
the generated pair data file.  The procedure is simple.  Calculate the differential cross section 𝑑𝜎 
with the kinematics, then generate a random number 𝑟 ∈ [0, 𝑑𝜎௠௔௫].  If 𝑟 < 𝑑𝜎 , write the 
corresponding 

 𝐾𝐸௣, 𝐾𝐸௤ , 𝜃′௣, 𝜑′௣𝜃′௤ , 𝜑′௤ , 𝑑𝜎       (1.18) 
into the data file, else discard the pair and start over. 
The only parameter needs to be determined here is 𝑑𝜎௠௔௫, which is any value that is larger than 
the upper bound of 𝑑𝜎 in the phase space considered.  Since the dimension of phase space is 5, 
and as mentioned before the ratio of 𝑑𝜎 values can be as large as 10଺ between two different 
regions of the phase space, 𝑑𝜎௠௔௫ is hard to determined.  However, from the previous resulting 
energy and angle distributions shown in the figures, instinct tells us the largest 𝑑𝜎 should be near 
this setting: 𝐸௣ ≅ 𝐸௤, 𝜃௣ ≅ 𝜃௤ ≅ 𝜃௠௜௡ and 𝜑௤ି௣ ≅ 180°.  In our practice, the 𝑑𝜎௠௔௫ value is 
determined by searching: comparing millions of random generated pair with relatively small 𝜃 
values and record the maximum value 𝑑𝜎′௠௔௫, which by no means will be the maximum 𝑑𝜎 in 
the phase space, but it will be close.  Then, set 𝑑𝜎௠௔௫ = 𝛼𝑑𝜎′௠௔௫ with a scaling factor 𝛼 > 1. 
There could be case that after assigned 𝑑𝜎௠௔௫ be less than the 𝑑𝜎௠௔௫ value during a simulation. 
However, the chance is very small and we can update the value for future runs, the factor 𝛼 
compensates for this issue, and due to the interpolation nature [52] of look-up tables of the 
numerical code calculating 𝑑𝜎 using current 𝑑𝜎௠௔௫ is very dependable. 

1.2.5 Pair generation results, and asymmetry 

The result of pair generation is input to the Geant 4 simulation.  Since the phase space dimension 
is 5, the distributions can only be shown with respect to one or two components while others are 
integrated out. 
The pair data file shown is generated under setting: 
Energy cut: 
10𝑀𝑒𝑉 ≤ 𝐸௣, 𝐸௤ ≤ 50𝑀𝑒𝑉 
Spherical angle cut: 

 𝜃௠௜௡ = 4° ≤ 𝜃 ≤ 𝜃௠௔௫ = 15° 
 𝜑௣ ∈ [180° − 𝜑଴, 180° + 𝜑଴], 𝜑௤ ∈ [−𝜑଴, 𝜑଴],    𝜑଴ = 28° 

Projection angle cut: 
 𝜃ᇱ ≤ 𝜃ᇱ

௠௔௫ = 15°,  𝜑ᇱ ≤ 𝜑ᇱ
௠௔௫ = 4° 

The electron (kinetic) energy distribution figure has been shown (In Fig 1.1).  Counts are high 
near 30 MeV, while decreasing when either energy increases or decreases.  The peak count has 
about 5 times count as lowest/highest energy count.  It is obvious that the energy asymmetry 
shown in the histogram, asymmetries between low/high energy pairs are much larger while 
counts are much less and wire chamber efficiency is low in the extreme regions.  According to 
Lee [20], the asymmetry is 0 at an electron energy of 30 MeV or when energy difference 𝛿 
between electron and positron is 0 MeV.  Only when particle energies are not close to 30MeV, 
and not too low or high, is the asymmetry is measurable. 
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IV Fig 1. 4 Polar angle 𝜃 distribution of all generated events at target. Ordinate: counts, abscissa: 
polar angle 𝜃 at primary vertex in degrees. Top for positrons and bottom for electrons. 

The Upper histogram is for the positron 𝜃௤, the Lower for electron 𝜃௣. The distributions are 
almost identical, and it is also seen that the cross-section dependence on 𝜃 is a lot more sensitive 
than the dependence on 𝐸.  

 

IV Fig 1. 5 Difference of the polar angle 𝜃௣ − 𝜃௤. Ordinate: counts, abscissa: polar angle 
difference between the two particles in BH pair 𝜃௣ − 𝜃௤ at primary vertex, in degrees. 

The kink at 𝜃ௗ௜௙௙ = 0° comes from the cut 𝜃௠௜௡ = 4° ≤ 𝜃.   
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IV Fig 1. 6 𝜑௤ି௣ distribution. Ordinate: counts, abscissa: polar angle difference between the two 
particles in BH pair𝜑௤ି௣ at primary vertex, in degrees. 

Unit degrees. The peak at 180° is expected.  We constrained our 
 𝜑௣ ∈ [180° − 𝜑଴, 180° + 𝜑଴], 𝜑௤ ∈ [−𝜑଴, 𝜑଴],    𝜑଴ = 28° 

And 𝜑௤ି௣೘ೌೣ/௠௜௡ reaches 180° + 2𝜑଴ = 236° and 180° − 2𝜑଴ = 124°, respectively.  If we 
loosen the 𝜑௣, 𝜑௤ range, 𝜑௤ି௣ could be even larger. 
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1.3 Modifications on pair generator code 
 

1.3.1 Solving 2nd particle energy 𝐸௤  
 
As noted in previous sections, the recoil nucleus kinetic energy is ignored (or equivalently the rest 
mass of the recoil nucleus is approximated to be infinite), or 𝐸௤ = 𝐸ఊ − 𝐸௣.  To confirm if this is 
the case, this energy is included in the calculation and compared with simple result 
𝐸௤ = 𝐸ఊ − 𝐸௣. 
First, we derive formula for the recoil nucleus kinetic energy 𝐾𝐸௥, without loss of generality set 
𝜑௣ = 0°, using energy-momentum relation: 

𝑝௣ = ට𝐸௣
ଶ − 𝑚௘

ଶ 

𝑝௤ = ට𝐸௤
ଶ − 𝑚௘

ଶ 

𝒑௣ = ൫𝑝௣𝑠𝑖𝑛𝜃௣, 0, 𝑝௣𝑐𝑜𝑠𝜃௣൯ = (𝑝௣௫ , 𝑝௣௬, 𝑝௣௭) 
𝒑௤ = (𝑝௤𝑠𝑖𝑛𝜃௤𝑐𝑜𝑠𝜑௤ , 𝑝௤𝑠𝑖𝑛𝜃௤𝑠𝑖𝑛𝜑௤ , 𝑝௣𝑐𝑜𝑠𝜃௤) = (𝑝௤௫ , 𝑝௤௬, 𝑝௤௭) 

Here z is the beam direction.  From momentum conservation: 
𝒑௥ = (−൫𝑝௣௫ + 𝑝௤௫൯, −൫𝑝௣௬ + 𝑝௤௬൯, 𝐸ఊ − 𝑝௣௭ − 𝑝௤௭) 
And recoil nucleus kinetic energy will be: 

 𝐾𝐸௥ = 𝐸௥ − 𝑚௥ = ඥ𝑝௥
ଶ + 𝑚௥

ଶ − 𝑚௥ 
The notations above are consistent with previous ones, while 𝒑′𝑠 are momentum vectors, 𝑚௘ is 
electron rest mass, 𝑚௥ is recoil nucleus rest mass. 𝑚௘ = 0.511𝑀𝑒𝑉, 𝑚௥ ≅ 238 × 931.5𝑀𝑒𝑉 ≅
4.34 × 10ହ𝑚௘ for 𝑈ଶଷ଼, thus 𝐾𝐸௥ must be small. From the above formulas 𝐾𝐸௥ is analytically 
represent as a function: 

 𝐾𝐸௥൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤൯    (1.19) 
with 𝐸ఊ, 𝑚௘, 𝑚௥ as parameters.  Next 𝐸௤ is solved using the 𝐾𝐸௥ formula by a step searching 
method: 
First, we set initial value of 𝐾𝐸௥(଴) , and step size ∆𝐸(଴). Then using energy conservation: 

 𝐸௤(௜) = 𝐸ఊ − 𝐸௣ − 𝐾𝐸௥(௜)                                           (1.20) 
We estimated 𝐸௤ with known 𝐸௣.  Using formula (1.19) to calculate 𝐾𝐸௥ using this estimated 𝐸௤ 
value. Or: 

 𝐾𝐸௥_௖௔௟(௜) = 𝐾𝐸௥൫𝐸௣, 𝐸௤(௜), 𝜃௣, 𝜃௤ , 𝜑௤൯                 (1.21) 
Here 𝑖 is the index of iteration. For each iteration, 𝐾𝐸௥(௜) = 𝐾𝐸௥(௜ିଵ) + ∆𝐸(௜). ∆𝐸(௜) is the set step 
size.  Next compare difference of 𝐾𝐸௥(௜) and 𝐾𝐸௥_௖௔௟(௜) with result of previous iteration, that is 
compare ∆(௜)= 𝐾𝐸௥_௖௔௟(௜) − 𝐾𝐸௥(௜) and ∆(௜ିଵ)= 𝐾𝐸௥_௖௔௟(௜ିଵ) − 𝐾𝐸௥(௜ିଵ). 

1) If ∆(௜)∆(௜ିଵ)> 0: If |∆(௜)| < |∆(௜ିଵ)|, means searching is in the correct direction, don’t 
change ∆𝐸(௜ାଵ) = ∆𝐸(௜) and continue. If |∆(௜)| > |∆(௜ିଵ)|, means searching is in the 
wrong direction, set ∆𝐸(௜ାଵ) = −∆𝐸(௜) 

2) Else if ∆(௜)∆(௜ିଵ)< 0, it means the solution lies in between 𝐾𝐸௥(௜)and 𝐾𝐸௥(௜ିଵ), set 
∆𝐸(௜ାଵ) = −∆𝐸(௜)/2 and continue. 

The solution search continues until |∆(௜)| is lower than the preset threshold.  The current set of 
values are 𝐾𝐸௥(଴) = 0.1(𝑀𝑒𝑉), ∆𝐸(଴) = 10ିଶ(𝑀𝑒𝑉), and its typically takes about 30 iterations 
to reach the preset threshold value 10ି଻𝑀𝑒𝑉.  The final 𝐾𝐸௥ result is at 10ିସ~10ିହ𝑀𝑒𝑉 range. 
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For this much of 𝐾𝐸௥ or the discrepancy of 𝐸௤, there is hardy noticeable change in differential 
cross section 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯.  Thus, using simple formula 𝐸௤ = 𝐸ఊ − 𝐸௣ is justifiable. 
 
1.3.2 Monte-Carlo simulation improvement 
 
One big drawback of the pair generation code lies in the efficiency.  As mentioned before, it takes 
about 1 week to generate 1 million events on a local machine, and it varies based on the cuts on 
the phase space described on section 1.2.3.  The main reason of this inefficiency is the very low 
selection rate of random pairs from the Monte-Carlo simulation: the differential cross section 𝑑𝜎 
is highly sensitive on the point in the phase space, and there are about 6 orders of magnitude 
variation in the phase space under current cut.  It means a huge amount of time is used to compute 
𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯ but few of the pairs will be selected after the computation.  The Monte-
Carlo selection probability is based on a point in phase space, the lower the 𝑑𝜎 corresponds to 
point൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤, 𝜑௤ି௣൯ the lower the probability.  Thus, the looser the cut, the larger the phase 
space region scrutinized by the Monte-Carlo simulation, and the slower the computation speed. 
Thus, the choice of cut in section 1.2.3 requires a balance of containing as large a phase space 
region as we are interested in to measure the asymmetry from and the pair generation computing 
speed.  In order to tackle this special situation, a new version was written and the computation 
speed of pair generation was increased by about a factor of 50. 
 
1) Basic idea 
To be precise, the notation 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯ should be 

ௗఙ(ா೛,ா೜,ఏ೛,ఏ೜,ఝ೜ష೛)

ௗఏ೛ௗఏ೜ௗఝ೛ௗఝ೜ௗா೛ௗா೜
.  In this 

section we just write it simply as 𝑑𝜎 (See Fig 1.7 below for illustration of 1D case).  Recall from 
the simple 1-dimensional case of Monte-Carlo simulation for computing the area under curve 
𝑓(𝑥) from limits 𝑥௠௜௡ to 𝑥௠௔௫.  We first generate a uniform random number 𝑥௠௜௡ < 𝑥 < 𝑥௠௔௫, 
then generate a second uniform random number 0 < 𝑦 < 𝑓(𝑥)௠௔௫, and pick if 𝑦 < 𝑓(𝑥). So, the 
Monte-Carlo simulation efficiency in the entire region is the ratio of the area under curve 𝑓(𝑥) to 
area of the rectangle below 𝑓(𝑥)௠௔௫: 

𝐸𝑓𝑓 =
∫ ௙(௫)ௗ௫

ೣ೘ೌೣ
ೣ೘೔೙

∫ ௙(௫)೘ೌೣௗ௫
ೣ೘ೌೣ

ೣ೘೔೙

=
∫ ௙(௫)ௗ௫

ೣ೘ೌೣ
ೣ೘೔೙

௙(௫)೘ೌೣ(௫೘ೌೣି௫೘೔೙)
                 (1.22)

 
IV Fig 1. 7 1-dimension illustration of generating events satisfying certain distribution 𝑓(𝑥). 
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Left: standard procedure described in the paragraph above. Right: modified procedure.  Divide 
interval [𝑥௠௜௡, 𝑥௠௔௫] into smaller subintervals, set individual upper bound 𝑓(𝑥)୫ୟ୶ (௜) for each 
subinterval, the random number 𝑦 is generated 0 < 𝑦 < 𝑓(𝑥)୫ୟ୶ (௜) instead of 𝑓(𝑥)୫ୟ୶ , if 
𝑓(𝑥)୫ୟ୶ (௜) ≪ 𝑓(𝑥)୫ୟ୶  the efficiency is greatly increased. 
And for our case 𝑓(𝑥) → 𝑑𝜎, 𝑑𝑥 → 𝑑𝑉 = 𝑠𝑖𝑛𝜃௣𝑑𝜃௣𝑠𝑖𝑛𝜃௤𝑑𝜃௤𝑑𝜑௣𝑑𝜑௤𝑑𝐸௣ as an infinitesimal 
volume of the phase space.  Then, the efficiency of our Monte-Carlo simulation is: 

 𝐸𝑓𝑓 =
∬ ௗఙௗ௏

∬ ௗఙ೘ೌೣௗ௏
=

∬ ௗఙௗ௏

ௗఙ೘ೌೣ௏
=

ழௗఙவ

ௗఙ೘ೌೣ
                (1.23) 

Where 𝑑𝜎௠௔௫ is the maximum value of 𝑑𝜎 in the phase space region, 𝑉 is the total volume of the 
region, and < 𝑑𝜎 > is the average value of 𝑑𝜎 in the region.  Since the value of 𝑑𝜎 drops 
drastically as 𝐸௣ deviates from ~30 MeV and as 𝜃௣ or 𝜃௤ increases, the < 𝑑𝜎 > is very small in 
most regions of the phase space and so is 𝐸𝑓𝑓 in eq. (1.23). 
The idea to increase computation speed is to improve the efficiency in (1.23).  We cannot change 
< 𝑑𝜎 > once the phase space region is specified but we can modify the denominator in the 
formula. To do this, we split the region into smaller regions, indexed by 𝑖.  For each region we 
search for the largest value 𝑑𝜎௠௔௫(𝑖) in the region.  Thus, the denominator of (3.5) turns into: 

 ∑ ∬ 𝑑𝜎௠௔௫(𝑖)𝑑𝑉௜௜ = ∑ 𝑑𝜎௠௔௫(𝑖) ∙ 𝑉௜௜     (1.24) 
In most regions 𝑑𝜎௠௔௫(𝑖) ≪ 𝑑𝜎௠௔௫ so ∑ ∬ 𝑑𝜎௠௔௫(𝑖)𝑑𝑉௜௜ ≪ ∬ 𝑑𝜎௠௔௫𝑑𝑉 and the efficiency 
improves. 
 
2) Practical procedure of improved implementation 
 
Now we use modified formula (3.5) for Monte-Carlo simulation with higher efficiency: 

 𝐸𝑓𝑓 =
∬ ௗఙௗ௏

∑ ∬ ௗఙ೘ೌೣ(௜)ௗ௏೔೔
=

∑ ∬ ௗఙௗ௏೔೔

∑ ∬ ௗఙ೘ೌೣ(௜)ௗ௏೔೔
  (1.25) 

Thus, two quantities are to be determined: 
1. Maximum differential cross section 𝑑𝜎௠௔௫(𝑖) for each sub-region.  The method to determine 
𝑑𝜎௠௔௫(𝑖) is the same as 𝑑𝜎௠௔௫, described in section 2.4.  That is, generate random  
𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣, compute the corresponding 𝑑𝜎’s, and take the largest value.  This process 
can be very time consuming since each 𝑑𝜎௠௔௫(𝑖) costs about the same time as determining 
𝑑𝜎௠௔௫.  The only change here is that it’s found that if both 𝜃 are selected to be the 𝜃௠௜௡(𝑖) for 
the subregion, the 𝑑𝜎௠௔௫(𝑖) are almost taken in these setting while only 𝐸௣, 𝐸௤ 𝜑௤ି௣ are 
subjected to change. It significantly reduced time for 𝑑𝜎௠௔௫(𝑖) searching. 
2. Total cross section 𝜎௜ = ∬ 𝑑𝜎𝑑𝑉௜ of each region.  While for the standard one region procedure, 
this is not a problem.  Here, if we split into small regions, how many pairs need to be generated 
inside each region is proportional to the total cross section of the region.  Monte-Carlo integration 
is a way to do it.  Denote 𝜎௜ = ∬ 𝑑𝜎𝑑𝑉௜, and 𝜎 = ∬ 𝑑𝜎𝑑𝑉 = ∑ ∬ 𝑑𝜎𝑑𝑉௜௜ .  If we want to 
generate 𝑁 total number of events, then for each sub-region the number of events needs to be 
generated is: 

 𝑁௜ =
ேఙ೔

ఙ
     (1.26) 

To compute 𝜎௜, Monte-Carlo integration is used. First rewrite  
 𝜎௜ = ∬ 𝑑𝜎𝑑𝑉௜ =< 𝑑𝜎௜ > 𝑉௜     (1.27) 

where < 𝑑𝜎௜ >is the average differential cross section in the sub-region 𝑉௜.  This is very similar 
to calculating mass of a volume by substitution 𝜎௜ → 𝑀, 𝑑𝜎 → 𝜌, and < 𝑑𝜎௜ >→< 𝜌 > in the 
formula, or total mass of the volume 𝑀 equals average density < 𝜌 > times the volume 𝑉.  Thus, 
we generate 𝑛 uniformly distributed pairs in phase space sub-region 𝑉௜ of the phase space, by 
using exactly the same method in section 2.2 (Uniform random pairs generation). We compute 
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𝑑𝜎 at each random point, and then the sample average < 𝑑𝜎௜ > of all 𝑛 points, calculate 𝑉௜ by 
converting integral into sum.  Use (3.8) to get result of each 𝜎௜. 
Remarks: 
1) If we split one of the sub-regions into smaller ones and apply the same method, that is finding 
the 𝑗th sub-sub-region maximum differential cross section 𝑑𝜎௠௔௫(𝑖, 𝑗),etc.,  Then 
∬ 𝑑𝜎௠௔௫(𝑖)𝑑𝑉௜ ≤ ∑ ∬ 𝑑𝜎௠௔௫(𝑖, 𝑗)𝑑𝑉௜,௝, and the result with finer partitioning is always better. 
The only issue is finding 𝑑𝜎௠௔௫(𝑖, 𝑗) is time consuming, so we cannot make smaller sub-regions 
indefinitely. 
2) 𝑁 and 𝑁௜ in formula (1.26) are integers, while 𝜎௜ and 𝜎 are real numbers. Thus, there is some 
roundoff error after turning 𝑁௜ from (1.26) into integer, the sum of 𝑁௜′𝑠 will not be exactly equal 
to 𝑁.  In addition, the greater number of subregions the more the discrepancies. 
3) In order to use this improved code to Geant 4 simulation to simulate any number of events 
other than total number of events stored in the generated data file ∑ 𝑁௜, it’s necessary to shuffle 
the events in the generated pair data file before conducting Geant 4 simulation.  The issue is that 
in the current setup, pairs are generated by sub-region, i.e., until all pairs in one sub-region is 
generated, then starts for the next sub-region.  If the number of events in the Geant 4 simulation is 
set smaller than ∑ 𝑁௜, then any events in higher indexed sub-regions will not be generated and the 
Geant 4 simulation input will not satisfy the distribution by the calculated cross section. 
The current setup is: the cross section is most sensitive to change of polar angle 𝜃, so divide both 
𝜃௣, 𝜃௤ into 44 regions from 𝜃௠௜௡ = 4° to 𝜃௠௔௫ = 15°.  Each sub-region contains (𝜃௠௔௫ −

𝜃௠௜௡)/44 = 0.25° spans, giving a total of 44ଶ = 1936 sub-regions.  Other cuts are the same as a 
standard generator.  A pre-run file has been generated to store subregion bounds, 𝑑𝜎௠௔௫(𝑖, 𝑗) , 
ఙ೔,ೕ

ఙ
 information. 𝑖, 𝑗 are indices of subregions for 𝜃௣, 𝜃௤ respectively.  As a example of 

improvement of using 𝑑𝜎௠௔௫(𝑖, 𝑗) instead of 𝑑𝜎௠௔௫: 
𝑑𝜎௠௔௫(1,1) = 1232.3 
𝑑𝜎௠௔௫(1,44) = 13.22 
𝑑𝜎௠௔௫(44,44) = 0.0578 

There is a quick comparison between the pair distributions generated by standard and the 
improved method as seen in Fig 1.8 below. Two root files are generated from different methods, 
with same cut, but different total number of events.  Energy distributions are compared by taking 
the ratios of respective bins.  To the accepted error, the ratios are the same. 
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IV Fig 1. 8 Result and comparison between modified and standard pair generation code. Ordinate: 
ratio of corresponding energy bin counts from electron energy distribution from ROOT files 
using different methods, no unit, abscissa: electron energy in MeV. 

1.4 Applications 
There are some very useful applications of the pair generation code.  The most important one is 
for input to Geant4 simulations. The other applications include computing the ratio between total 
cross section that can be detected to total cross section, this will help us to improve the estimates 
of event rates and run times. 
 
1.4.1 For Geant 4 simulation input 
As mentioned before, each line (event) stored in the pair data file is of format (see formula 
(1.18)): 

 𝐾𝐸௣, 𝐾𝐸௤ , 𝜃′௣, 𝜑′௣𝜃′௤ , 𝜑′௤ , 𝑑𝜎 
Primary vertices are generated in Geant 4 by specifying particle type, initial position, initial 
kinetic energy, and momentum direction.  Kinetic energies are provided by 𝐾𝐸௣, 𝐾𝐸௤, and 
momentum direction is converted from 𝜃′௣, 𝜑′௣𝜃′௤ , 𝜑′௤ by (see (1.14)): 

 𝒅 = (1,  𝑡𝑎𝑛𝜃ᇱ, 𝑡𝑎𝑛𝜑ᇱ) 
Based on the purpose of Geant 4 simulation, if any of the settings, cuts during pair generation and 
number of events are altered, new pair data files have to been generated from the beginning.  
What are subjected to change for pair generation include beam energy, target material, particles’ 
energy range, solid angles cut, etc.  The goal is to find which setup is the best for having the most 
detector acceptance and efficiency in the phase space range in which we are interested measuring 
the asymmetry. 
 
1.4.2 Cross section within detector acceptance and estimation of experiment run 
time 
Although this subsection doesn’t have much relation to the generated pair data file, the numerical 
cross section 𝑑𝜎 calculation and the same cut for phase space in section 1.2.3 is heavily used.  
These are closely related to pair generation. 
The experiment run time 𝑡 is calculated by total number of events to be measured 𝑁௠௘௔ divided 
by the data rate 𝑅: 

 𝑡 =
ே೘೐ೌ

ோ
          (1.28) 

where 𝑁௠௘௔  is some number we can estimate from checking the statistics of pairs used to 
calculate asymmetry we want to measure.  At the moment, 𝑁௠௘௔ = 10଺ is a reasonable number 
for asymmetry calculation; we will elaborate on this in later chapters.  
The data rate 𝑅 is number of data can be detected per unit time, it is related to the total pair 
generation rate 𝑅௧௔௥௚௘௧ at the target by: 

 𝑅 = 𝑅௧௔௥௚௘௧ ∙
ఙ

ఙ೟೚೟
∙

ே೏೐೟

ே
  (1.29) 

where 𝜎 is the total cross section within the cuts on phase space used in pair generation, 𝜎௧௢௧ is 
the total cross section for the BH process.  This includes all possible energies (𝑚௘ to 𝐸ఊ − 𝑚௘ for 

both particles) and solid angles (whole 4𝜋 range) for both particles of the pair.   
ఙ

ఙ೟೚೟
  gives an 

artificial acceptance.  It is a compromise since we cannot reasonably generate pairs over the entire 
phase space.  However, it’s reasonable to use 

ఙ

ఙ೟೚೟
 to simplify our calculation as long as the cut 

used in the calculation of 𝜎 covers acceptance of the magnet.  𝑁ௗ௘௧ is the number of BH pairs 
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detected in the Geant 4 simulation, while 𝑁 is the number of events from the Geant4 simulation, 
usually being the number of pairs in the pair data file. 
If we replace 𝜎 and 𝜎௧௢௧ by 𝑁 and 𝑁௧௢௧, respectively, (4.2) is changed to: 

 𝑅 = 𝑅௧௔௥௚௘௧ ∙
ே

ே೟೚೟
∙

ே೏೐೟

ே
= 𝑅௧௔௥௚ ∙

ே೏೐೟

ே೟೚೟
    (1.30) 

where 
ே೏೐೟

ே೟೚೟
 is the ratio of the number of events detected to the total number of Bethe-Heitler 

events at the target, which could only indirectly be computed from (1.29). 
 
Calculating 𝑅௧௔௥௚௘௧ 
The beam rate 𝑅௕௘௔௠ = 1.2 × 10଻ 𝛾

𝑠ൗ ), the theoretical cross section 𝜎௧௢௧ = 33 (𝑏𝑎𝑟𝑛) = 3.3 ×

10ିଶ଻𝑚ଶ [38], the 𝑈ଶଷ଼  target number density 𝜌௡ = 4.8 × 10ଶ଼𝑚ିଷ, and the target thickness 
ℎ = 2.5 × 10ିହ𝑚.  Thus, the total Bethe-Heitler pair production rate is: 

 𝑅௧௔௥௚௘௧ = 𝑅௕௘௔௠ × 𝜎௧௢௧ × 𝜌௡ × ℎ = 4.77 × 10ସHz   (1.31) 
 

Calculate the ratio 
ఙ

ఙ೟೚೟
 

We calculate total cross section 𝜎௧௢௧ and cross section for events surviving the cuts 𝜎 separately. 
Both use the same numerical integration formula: 

𝜎 = ∑
ௗఙ൫ா೛,ா೜,ఏ೛,ఏ೜,ఝ೜ష೛൯

ௗఏ೛ௗఏ೜ௗఝ೛ௗఝ೜ௗா೛ௗா೜
𝑠𝑖𝑛𝜃௣∆𝜃௣𝑠𝑖𝑛𝜃௤∆𝜃௤ ∆𝜑௣∆𝜑௤∆𝐸௣ (barn)   (1.32) 

The formula approximates integration by a sum. For the 𝜎௧௢௧ calculation, the summation includes 
all possible energies (𝑚௘ to 𝐸ఊ − 𝑚௘ for both particles) and solid angles (whole 4𝜋 range) for 
both particles.  For the 𝜎 calculation, the summation only includes phase space for events 
surviving the cuts described in section 1.2.3. 
Remarks: 

1. Although in the numerical code to calculate 
ௗఙ൫ா೛,ா೜,ఏ೛,ఏ೜,ఝ೜ష೛൯

ௗఏ೛ௗఏ೜ௗఝ೛ௗఝ೜ௗா೛ௗா೜
 includes both 𝐸௣, 𝐸௤ as 

arguments, the summation is only over 𝐸௣ alone since the numerical code itself does not have any 
units.  Dimensional analysis is used to determine the multiplicity of the sum.  Since 𝐸௤ can be 
represented as either 𝐸௤ = 𝐸ఊ − 𝐸௣ , or be solved through solving recoil nucleus kinetic energy 
and be represented as a function 𝐸௤(𝐸௣, 𝜃௣, 𝜃௤ , 𝜑௤ି௣), sum of 𝐸௤ is redundant.  On the other 
hand, 𝜑௤ି௣ = 𝜑௤ − 𝜑௣ and the summation over both 𝜑௣ and 𝜑௤ is needed. 
 
2. 𝜎௧௢௧ = 33 𝑏𝑎𝑟𝑛 is the official value, and has been used to calculate 𝑅௧௔௥௚௘௧.  The numerically 
integrated 𝜎௧௢௧ from the code provided by R. Lee does not need to be exactly the same as the 
rigorously obtained value due to certain approximations that been made and the look-up table 
which will not have perfect interpolation precision.   Nevertheless, too much discrepancy will 
raise the question of the validity of (1.32) or the code computing 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯. 
3. Indeed, the computation of (1.32) is time consuming since 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯ is not 
simple and summing over 5 dimensions still requires a lot of sample points.  To apply (1.32), 
instead of summing over (4𝜋)ଶ, cuts are put to only contain points where 𝑑𝜎 is reasonably large, 
which has been observed to be the case when: 1) one of 𝜃௣, 𝜃௤ has a small value and 2) 𝜃௣ × 𝜃௤ 
has a small value. 
4. Mixing energy and angles in divisions in (1.32) can make some dimensions over or under-
divided.  Using Monte-Carlo integration can circumvent this issue.  Because majority of the 𝑑𝜎 
range has very small values, Monte-Carlo integration could still lack efficiency.  The 𝜎 and 𝜎௧௢௧ 
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result is shown below in table 1.1. different 𝜃௠௜௡ (minimum polar angle in during summing 
(1.32), see section 1.2.3) are tried, while all other cuts are unchanged from section 1.2.3. 

Angle cut 𝜎(barn) Raw data rate 𝑅௧௔௥௚௘௧ ∙
ఙ

ఙ೟೚೟
 

(Hz) 

None 𝜎௧௢௧ =39.82 4.8 × 10ସ 

𝜃௠௜௡ = 4°  1.510 × 10ିଶ 18.2 

𝜃௠௜௡ = 5°  5.838 × 10ିଷ 7.03 

𝜃௠௜௡ = 6°  2.425 × 10ିଷ 2.92 

𝜃௠௜௡ = 7°  1.072 × 10ିଷ 1.29 

Table 1.1 Raw data rate dependency on minimum polar angle 𝜃௠௜௡ cut during pair generation. 
It can be seen above that 𝜎௧௢௧ from (1.32) is 39.82 barns, and there’s obvious discrepancy to 33 
barns.  However, for rate estimation purposes, it is close enough to let us get a reasonable idea of 
the raw data rate. 
 

Calculating  
ே೏೐೟

ே
 

Due to the complexity of the magnet and detector acceptances, the number of events in which 
both particles reach their corresponding wire chambers are hard to determine by any analytic 
method.  Geant 4 simulation has been used to find both 𝑁ௗ௘௧   and 𝑁 values. 
For 𝑁, the number of events in the root file with same cut as 𝜎 as in the table above is used.  If we 
have a simulated ROOT file with 𝜃௠௜௡ = 4°, we can put additional cut on 𝜃௠௜௡ to count cases 
with 𝜃௠௜௡ = 5°, 6°, 7°, 8° above.  For 𝑁ௗ௘௧, in addition to cuts on counting 𝑁, we require that 
both particles reach their corresponding wire chambers in the simulation. 

Table 1.2 below shows the values of 𝑁, 𝑁ௗ௘௧, 
ே೏೐೟

ே
 and the final data rate 𝑅 (still an overestimate, 

since wire chamber efficiency is assumed to be 100% here). 
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Angle cut 𝑵 𝑵𝒅𝒆𝒕 𝑵𝒅𝒆𝒕

𝑵
  𝑹 = 𝑅௧௔௥௚௘௧ ∙

𝝈

𝝈೟೚೟

𝑵𝒅𝒆𝒕

𝑵
 

(Hz) 

𝜃௠௜௡ = 4°  1129990 679989 0.6918 12.6 

𝜃௠௜௡ = 5°  551123 283891 0.5151 3.62 

𝜃௠௜௡ = 6°  288464 120117 0.4164 1.21 

𝜃௠௜௡ = 7°  157184 52996 0.3372  0.428 

Table 1.2 Detectable data rate estimation, with minimum polar angle 𝜃௠௜௡ dependence. 
Thus, if we want total 1 million events for asymmetry calculation, total time it will take for 
𝜃௠௜௡ = 4° case will be:  

 𝑡 =
ே೘೐ೌ

ோ
=

ଵ଴ల

12.6 
= 7.94 × 10ସ𝑠 = 0.92 𝑑𝑎𝑦𝑠 
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2 Geant 4 simulation 
 

2.1 Introduction 
 
The Geant 4 simulation of the Bethe-Heitler pair generation, largely written by Prof.  Pywell 
(available at nucleus.usask.ca), serves the main purpose in the design of the experiment and 
estimating the result we could achieve in the experiment.  The Geant 4 simulation is a tool to give 
us an approximated result of the experiment to guide us in setting up the actual experiment.   
The process of the Geant 4 simulation is to propagate the BH pairs generated through Monte-
Carlo simulation following a theoretical calculation from primary vertex.  The particles are sent 
through the magnetic field and the detection apparatus as well as the atmosphere.  
The setup of the Geant 4 simulation involves: Setting the particle kinematics at the primary 
vertex. Setting the magnetic field profile.  Specifying the dimensions and placements of 
apparatus. Setting materials in each volume. Specifying certain volumes to be “sensitive 
detectors” for collecting intermediate particle kinematics information. The next part of the setup 
is storing the simulation results.  This involves picking data either from user defined quantities 
(e.g., BH pair kinematics at primary vertex), to particle information at any point inside any 
sensitive detector.  After some simple calculation such as coordinate transformations, these data 
are then stored in ROOT files. 
To analyze the simulation data, an independent program is written.  It reads data from ROOT 
files, making additional calculations utilizing these data to produce desired results.  Those 
analyzed results include particle kinematics information, asymmetries, a detector hit map and 
acceptance information, particle track information, etc.  They provide a preliminary estimate of 
experiment result.  In addition, the results may suggest new changes in the simulation setup to 
improve detector acceptance, efficiency, resolution and reducing errors in the asymmetry 
extraction. 
For the rest of this chapter, Geant 4 simulation has been introduced in the following order: a brief 
explanation of setup of the Geant 4 simulation (section 2.2), followed by basic results from 
analyzing data in ROOT file (section 2.3). Then two major applications of the Geant 4 simulation 
are shown: First, to simulate Jlab Hall A analyzer treatment of wire chamber track finding and 
fitting process, a counterpart is introduced to render wire chamber track fitting result from 
simulation data (section 2.4). Second, the additional transformation of wire chambers is added in 
order to optimized detector resolution with multiple scatter taking into account (section 2.5). 
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2.2 Setup of Geant 4 simulation 
 

2.2.1 Introduction 
 
In the general introduction, the setup of Geant 4 simulation involves defining the basic 
components of the experimental apparatus.  The format/structure of the generated data to be 
stored in ROOT file should also be set up. 
The data in the ROOT file will be read and analyzed using programs independent of the Geant 4 
simulation so any change of data structure in the Geant 4 setup could result in problems if one is 
utilizing old versions of programs to analyze the data.  Also, old ROOT files could become 
obsolete.  Thus, data storage plan should be handled with care. 
Since the setup of the geometry and data in the ROOT file are the most complicated, they are 
explained in separated sections, while all other setup is combined.  Once the Geant 4 simulation is 
set, the simulation is run to produce a ROOT file storing raw simulation results.  Analyzing these 
results is the content for the next section of the chapter. 
 
2.2.2 Basic setup 
 
1) Set the magnetic field 
 
The magnetic field of the dipole magnet is well measured and the field map is well understood. 
The magnetic field in the Geant 4 simulation takes the expansion of a dipole field to 4th order of z 
for z components and 3rd order of z for x and y components (z is the vertical coordinate off the 
horizontal plane), with field map measurements used for computing coefficients. 
The only parameter left to be changed is the 0th order, which has been nominally set to 
𝐵଴=0.4536T but other values may be used later.  𝐵଴ is also the value of magnetic field to 
approximately make 30 MeV electrons or positrons along beam direction bend 90° and reach the 
wire chambers in the horizontal plane along a line from the center of the magnet perpendicular to 
beam direction. 
For certain simulation runs the magnetic field strength value is set lower, since 𝐵଴ in the last 
paragraph is the largest the magnet can comfortably reach.  The benefit of a lower field strength 
could be the larger angle between higher energy particles to wire chambers and closer to 
perpendicular to wire chambers for low energy particles results from the reduced bend of the all 
tracks.  For this setup the track length of lower energy particles to the wire chambers is less, 
resulting in a reduced effect from multiple scatter in the air, while the larger angle for higher 
energy particles, which are less susceptible to multiple scattering, will have larger spread of track 
intersections with the wire chambers, resulting in better resolution.  The downside of this is that 
the detector acceptance should be carefully investigated to prevent loss of efficiency.   In 
addition, larger incident angle (𝛼௨ or 𝛼௩ in Part III Chapter 3,4,5) between high energy particles 
to wire chamber will result in less wire span for one of the wire planes thus lower efficiency. This 
effect will be elaborate in later sections (section 2.5.3 Figure 2.35(1) and the table below Fig 2.35 
for the result). 
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2) Set the particle kinematics at primary vertex 
 
The Geant 4 simulation physics package do not include the calculation of BH cross section.  
Thus, the BH pairs are generated using a theoretical calculation of the BH cross section and 
Monte-Carlo simulation (see last chapter “Generate BH pairs”). 
Geant 4 simulation reads BH pair file, convert energies and the projection angles in the file to 
kinetic energy and momentum direction at primary vertex.  For the volume of target, some 
different specification is used. It could be vacuum, air, or Uranium with 25𝜇𝑚 thickness. The 
location of primary vertices includes: at center of target, parallel to beam line with 0 radius with 
25𝜇𝑚 long inside target, or within 0.5 cm radius as that is the estimated actual beam radius. After 
setting up the particle type, their kinetic energy and momentum direction, and location, the 
primary vertex is set. 
Remark: the BH pair file has been generated such that the electron is bent to the right and 
positron to the left for all pairs, it is planned for the experiment that a tungsten cone shaped baffle 
will block electrons (positrons) generated to the left (right) from bending back to right (left) side 
of the beam by magnetic field. The purpose of the cone baffle is also to block any particles with 
polar angle less than 4° or 5°.  Particles with polar angles less than the cone angle have a very 
high cross section and electrons and positrons coming from these angles have negligible 
asymmetries. 
 
3) Set materials of each volume 
 
The only meaningful materials that need to be set are those covering all the possible paths of the 
electron-positron pairs. These include target, background, windows of the wire chambers, gas 
inside the wire chambers and all metal frames.  
There is a two-step procedure for defining materials: 

(1) Define the element composed of the material, specifying atomic number and mass per 
mole. 

(2) Define the density, number of components (elements), and the fraction of each element, 
either by number of atoms in the molecule or by fraction of mass. 

For the most common simulation, the background has been set to air (30% mass by O, and 70% 
mass of N), while wire chamber window is set to mylar, and gas layer using ethane-argon. For the 
frames, the choise of metal is immaterial, however iron is chosen for magnet pole as well as 
magnet frames, while VDC frames are set to aluminum. 
 
4) Set sensitive detectors 
 
Certain physical volumes are set to “sensitive detectors.” These are “imaginary” detectors whose 
sole purpose is to allow particle information to be extracted.  This includes (1) its type, (2) 
kinematics, (3) energy deposited, (4) time of flight, etc. at any step of the Geant 4 simulation.  All 
sensitive detectors store selected data in ROOT files.  It should be noted that inside a volume the 
number of steps of integration during simulation is unknown, while for some thin volume there 
would be usually one step, making handling of these data easier.  In addition, any boundary of the 
physical volume will be a bound of the integral no matter how thin the volume is.  Thus, if we 
want to monitor particle tracking information anywhere other than in the actual detectors to be 
used in the experiment, we add a thin physical volume with the same material as originally placed 
and set it to sensitive detector. 
 



205 
 

 

2.2.3 Geometry setup 

1) Basics of Geant 4 geometry [53]  

In order to completely specify a volume, there are three steps: 
(1) Specify its shape and dimensions. Geant 4 includes a wide set of common shapes, such as 

box, cone, cylinder etc.  Different shapes have different sets of parameters to specify their 
dimensions. In addition, some binary operations can be done to generate new shapes, 
including unions, intersections and subtraction, etc. All shapes in our simulation are 
determined by one of the methods above. 

(2) Specify its material.  By adding this attribute, the volumes are now called 
G4LogicalVolumes.  There is only one material for each logical volume. 

(3) Specify its relative placement inside its mother volume.  The basic information that must 
be provided here are the transformation of the daughter volume from the origin of the 
mother volume, the daughter volume in form as a logical volume, the mother volume, 
and copy number. There are rules to follow: (1) Since any normal motion is the 
combination of rotation and translation, the transformation is specified by them. (2) The 
daughter volume must be completely included inside mother volume. (3) There can be 
different types of logical volumes inside mother volume, for same type with different 
placement (transformation) they need to be specified by the copy number. (4) Overlap of 
volumes is not allowed. (5) This provides a hierarchy structure and method to specify a 
single volume, the copy number, along with a sequence of mother volumes are specified 
until reaches the world volume (an event will end of the primary particle kinetic energies 
drop below threshold, or reaches boundary of world volume). 

There are two additional attributes are assigned under specific conditions: 
(1) Sensitive detectors, which are briefly explained in 2.2.2 4).  They provide a snapshot as a 

particle track reaches the volume and particle information can be extracted. 
(2) Visual attributes, which only matters when visualization of the simulation is required.  

For this, visibility, color, and visual types can be set. 
 
2) Specifics of dimension and placements of apparatus 
 
The dimensions of each apparatus are explained in Chapters in hardware.  Thus, we only describe 
the placement of the apparatus here: 

(1) Coordinate system: By the symmetry of the wire chamber placement, we set center of 
magnet as origin of the simulation. 𝑥 is beam direction, 𝑧 is vertical up direction 
perpendicular to beam, 𝑦 is horizontal point from magnet center to the left perpendicular 
to beam to make right hand coordinate system. 

(2) Target: The orientation of the target is placed perpendicular to the beam, and is located 
just outside the magnet so that the polar angle spanned from target center to yoke hole is 
about 14.7°. 

(3) Magnet: Align the magnet to make center at origin, and yoke holes are aligned with 
beam. 

(4) Cone baffle inside magnet: The baffle is used to block electron positron pairs with small 
polar angle.  The apex of the cone will be at center of the target, its center axis will be 
aligned with the beam.  Holes with radius 0.75 cm in the magnet frame are aligned with 
the beam along the path to the beam dump.  This radius constrains on how close the front 
(upstream side) surface of the cone can be located, since we need front surface with a 
larger radius compared to the inner hole radius of the cone to prevent a “kink” which 
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could scatter particles in too randomly.  The upper and lower sides of the cone have also 
been “subtracted” by upper and lower magnet pole surface. It’s confirmed from Geant 4 
simulation results that the cone will serve its purpose.  Meanwhile we will lose some data 
rate but since the electron directed to the left will always be blocked by the cone when 
bent by magnet to the right side (same effect applies for positrons).  Such events would 
be unusable anyway as their trajectories would be too complex to analyze. 

(5) Monitors: Since the Geant 4 simulation is not real, we can set as many additional virtual 
detectors as we want to track particle at different key positions. The first monitor was 
placed just behind the target, with same cross sectional area as the target to track particles 
immediately after the target volume.  Another two monitors are placed on each side of the 
magnet. They are set either parallel to side opening surfaces of the magnet, or parallel to 
the wire planes. 

(6) Wire chambers: since the nature of the complexity of the wire chambers as detectors 
compared to other volumes, there are three hierarchies of their volume placements: (1) 
one volume holds both wire chambers on one side of magnet, called wire chamber holder, 
(2) one volume holds individual wire chamber, (3) one volume of holds each individual 
wire, or volumes of other gas layers or Mylar sheets. 
The reason for using a volume to hold both wire chambers is that z plates are used to fix 
the two chambers together.  Thus, any transformation of the chambers involves rigid 
body motion for both chambers.  This makes it simpler to transform two chambers as a 
unit.  And, there will be two copies of individual chambers in the volume. 
For each wire chamber, there are 6 layers of ethane-argon gas, the 4 outer layers with 
thickness 0.5 inch, while the center two layers with thickness 1 inch and active layers 
with sense wires, called wire planes. 
For individual wire plane, there are 279 parallel wires, each occuping a single wire 
volume. 
Fig 2.1 below illustrates the geometry of the setup of the right half of the space of the 
simulation.  The construction and placement of the wire chambers are illustrated in the 
next two figures (Fig 2.2, 2.3). 
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IV Fig 2. 1 Geant 4 global coordinate system y-z projection. 

Only right half of the space (electron side) is drawn; the left side magnet is a mirror image of the 
right, while wire chambers on the left are 180° rotations about z axis of right chambers.  In the 
middle is the right half of the magnet. Shaded areas are the magnet poles, the right two rectangles 
represent the pair of wire chambers tilted 45° from vertical. The target, monitors, and tungsten 
cone along the beam (x axis) are not drawn. 
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IV Fig 2. 2 Transformations of holder of two wire chambers. 

Shows transformations from origin to configuration of experiment setup. Only center planes of 
each wire chamber are drawn.  The order of rotations is followed by arrows, all lengths are in 
inches.  It starts with all three coordinate axes 𝑥, 𝑦, 𝑧 from the Geant 4 global coordinate system 
and 𝑥′, 𝑦′, 𝑧ᇱ from local coordinate system coinciding. Shift in direction along wire chamber short 
axis and in direction perpendicular to chambers are the same, 15.5 inches.  Thus, when the wire 
chambers are properly placed the holder is rotated by 45°,  ensuring that the centers of both wire 
chambers are in the same horizontal plane. 
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IV Fig 2. 3 Construction of one wire plane. 

𝑥′, 𝑦′, 𝑧′ are in the same local coordinate system as Fig. 2.2.  Total 279 wires lie in each wire 
plane, each occupies volume with gas layer thickness 1 inch, with vertical spacing 0.493cm to 
adjacent one.  The 𝑢 axis through the local coordinate system origin and perpendicular to 𝑢 wires 
is drawn, along with the center 𝑢 wire.  The 𝑣 axis and 𝑣 wires are mirror images of the 𝑢 axis 
and 𝑢 wires about 𝑧ᇱ axis.  Wires are translated from the origin to their corresponding locations 
according to the wire spacing and assigned ordered copy number.  Next, since wires are at an 
angle of atan(1/2) to the long axis of the wire chamber, many of them are not equal in length 
due to the constraint of the wire plane boundary.  Thus, it is best to use the intersection volume of 
longest wire volume and wire plane active area to construct these wires in the Geant 4 simulation. 
 
2.2.4 Setup data to store in ROOT file 
 
Data to be stored in the ROOT file are aimed to be closely related to real experiment data.  Data 
in the ROOT file is either an approximate representation of experiment data or snapshot at certain 
point in simulation for credibility checks.  A user defined class is written, then converted into a 
ROOT class through ClassImp() function [54] ].  Data for each event has been set to the class 
then written into the ROOT file. 
Data are either coming from variables set as input, or extracted from volumes set as sensitive 
detectors.  All of these locations contain tracking information; i.e., position and direction of track 
intersection with a surface, and may have undergone coordinate transformations before they are 
written into the ROOT file.  For sensitive detectors to represent real detectors in the experiment, 
additional information is extracted related to real detector characteristics, such as channel 
mapping information and energy deposited, etc. 
Since the resulting data stored in the ROOT file is closely related to how data are set up, i.e., how 
they’re processed before been written in the ROOT file, the coordinate system conventions etc., it 
is better to explain the setup along with plots of results, in next section 2.3. 
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2.3 Geant 4 simulation Results 
 
2.3.1 Introduction 
 
The results of the simulations are divided into two types: data stored during simulation and results 
after analyzing the data.  Data are stored in ROOT files during simulation, and for those, we 
simply read the file and, using tools from ROOT, placed cuts on variables, plotted histogram, etc. 
For analysis of the data, additional calculations had to be made. Some of them were easy to 
implement, such as the charge asymmetry computation.  There are several important applications 
for the analyzed data: (1) We need simulation result presented as close as possible for real 
detectors in the BH experiment, especially the wire chambers.  Thus, an analog procedure of 
using simulation data to fulfil track finding and track fitting procedure in the Hall A analyzer was 
devised. The track result is then compared with results from the “monitor” (see next section 2.4) 
Track finding and fitting using Geant 4 results. (2) Additional change in Geant 4 simulation is 
made for optimizing the experiment setup, including change of magnetic field and wire chamber 
placement.  For this new setup, see chapter 2.5 Additional transformation of wire chambers. 
We start with simple results which can be almost directly deduced from ROOT file data, in next 
section 2.3.2 Data stored in ROOT files. Then we show the result that need some simple analysis; 
see section 2.3.3 Additional results with simple analyzation. 
 
2.3.2 Data stored in ROOT file 
 
1) Introduction 
In following sections the meaning of data to be stored in the ROOT file and the conversion 
operations applied by them are explained for each individual detector.  All the plots of results in 
this section were either directly drawn through clicking a TBrowser or using TTree::Draw() 
function after opening the ROOT file [55] 
 

2) Data by location 

1. Input: 

These are data from BH pair data file specifying the kinematics of the pair before they are set as a 
primary vertex in the simulation. Includes: 
(1) Kinetic energy 𝐾𝐸. 
(2) Local position 𝑥, 𝑦 in the plane perpendicular to the beam; that is, the view from upstream 
looking at the target,  with the local 𝑥 is the horizontal right direction, local 𝑦 is the vertical up 
direction.  At this point they’re both set to 0. 
(3) Projection angle 𝜃, 𝜑 which makes the particle momentum direction vector to be 
(1, 𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑) in the global coordinate system.  Thus, particles goes in straight lines, the 
projection in plane perpendicular to beam should be proportional to (𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑). 
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IV Fig 2. 4 Input electron kinetic energy distribution. Ordinate: counts, no unit, abscissa: input 
(primary vertex) electron kinetic energy in MeV. 

And the mean of positron kinetic energy (not drawn) is 29.05 MeV, so 𝐸௘
തതത + 𝐸௣

തതത = 58.98𝑀𝑒𝑉 =

𝐸ఊ − 2𝑚௘.

 

IV Fig 2. 5 Input (primary vertex) 𝑡𝑎𝑛𝜃 vs 𝑡𝑎𝑛𝜑 distribution. Ordinate: tangents of input 
(primary vertex) electron vertical projection angle 𝑡𝑎𝑛𝜑, no unit, abscissa: tangents of input 
(primary vertex) electron horizontal projection angle 𝑡𝑎𝑛𝜃, no unit. 

This will be proportional to projection perpendicular to beam.  Note the angles are stored in 
𝑚𝑟𝑎𝑑. 
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2 Monitor 

Monitors are the virtual detectors that only appear in the simulation to provide additional tracking 
information from primary particles.  There are two sets of monitors, one placed directly after the 
target volume to provide information for effects of multiple scattering inside the target; two 
placed on left and right sides of the magnet in front of the front wire chamber, providing tracking 
information on the effects of the magnetic field and multiple scattering from the first monitor. 
Thus, the coordinate system of the two sets of monitors is quite different and will be explained 
separately.  
Monitor 0, 1, placed behind target, touching the target: 

(1) Kinetic energy. 
(2) Position: specified by 𝑥, 𝑦 coordinate.  Same convention as input data. 
(3) Spherical angles 𝜃, 𝜑 of the particle, relative to beam direction. 

(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) is unit direction vector. 
(4) Charge of particle to identify positron, electron. Charge -1 particle electrons are stored in 

monitor 0, +1 particle positrons are stored in monitor 1. 
Remarks: (1) There is only one monitor volume behind target, and it extracts data for both 
positron and electron. (2) For this monitor volume we want the electron and positron kinematics 
info where they just entered the monitor volume (or just exited the target volume).  As we know 
when a new volume is constructed, the 1st step of a Geant 4 simulation inside the volume will be 
exactly at the boundary. (3) To find which hit is from the 1st step when particles just enter 
monitor volume, we order hits by time and the 1st in time with corresponding charge (or particle 
type) is the hit we are looking for. 
Monitors 2,3, placed in between magnet and wire chambers:  
There are changes to positions and angles for these two monitors. 
(1) For positions: The local 𝑥, 𝑦, 𝑧 coordinates convention is visualized by placing your eye at the 

center of magnet and look towards detectors; 𝑥 is horizon right, 𝑦 is vertical up, 𝑧 is 
perpendicular to beam from center of magnet to detectors, so it is a left-handed coordinate 
system.  Then tilt each by 45° to be parallel to wire chambers. 

(2) For angle 𝜃, 𝜑: global coordinate system projection angles for momentum direction  𝜃 =

atan (
௩ೣ

௩೥
), 𝜑 = atan (

௩೤

௩೥
). 

 

IV Fig 2. 6 Monitor 1 electron energy distribution. Ordinate: counts, no unit, abscissa: monitor 1 
(behind target volume) electron kinetic energy in MeV. 

There’s almost no change from input energy when target material is set to air here. 
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IV Fig 2. 7 Monitor 1 electron 𝑥 vs 𝑦 distribution. Ordinate: electron vertical projection at 
monitor 1 in mm, abscissa: electron vertical projection at monitor 1 in mm. 

This is almost proportional to Fig 2.5 since all primary vertex positions are set to center of target 
in this simulation. 

 

IV Fig 2. 8 Monitor 3 (electron detectors side) electron energy distribution. Ordinate: counts, no 
unit, abscissa: monitor 3 (between electron side wire chamber and magnet) electron kinetic 
energy in MeV. 

There are several observations to be made here: (1) there are electrons blocked at the yoke hole, 
cone baffle, magnet poles, and even magnet side frame. Thus, events are dropped from 1130000 
at target to 971627, a loss of about 14%.  (2) Due to multiple scattering, the average energy drops, 
and a tail of low energy electrons is seen in the histogram. (3) Although the hit stored for the 
monitor is from the 1st hit in time, there is no way to tell if it’s from the primary particle.  
Although it’s the 1st electron entering the monitor volume, but it can be a secondary particle with 
shorter track. etc. The only way the simulation could indicate it is by giving a secondary particle a 
new track ID, but during the experiment wire chambers cannot identify them. (4) Lower energy 



214 
 

 

electrons are more susceptible to multiple scattering.  In addition, their direction ranges are much 
wider and thus their counts are generally less in lower energy region. This will affect statistics in 
the asymmetry computation. 

 

IV Fig 2. 9 Monitor 3 (electron detectors side) 𝑥 vs 𝑦/𝑐𝑜𝑠45°. Ordinate: monitor 3 vertical 
coordinate 𝑦/𝑐𝑜𝑠45° in cm, abscissa: monitor 3 horizontal coordinate x in cm. 

In cm. The monitor is parallel to the wire planes which are tilted 45°, placed just in front of front 
wire chamber, and negligibly thin.  Since 𝑦 is stored in the monitor here its global 𝑧 coordinate 
must accommodate the different tilt angle of monitor, thus the 𝑦/𝑐𝑜𝑠45° is the coordinate of the 
track intersection on monitor local coordinate, and should be close to the result at the 1st wire 
chamber local 𝑥 vs 𝑦 distribution. Also, by constraining hits on the monitor they will also hit 
detectors behind (cut B.D1.@W.size() here) within wire chamber active area in this plot.  Counts 
are reduced to 874908. 

 
IV Fig 2. 10 tan 𝜃 vs tan 𝜑 distribution of electrons hit monitor 3. Ordinate: tangent of monitor 3 
electron track vertical projection angle tan 𝜑 , no unit, abscissa: tangent of monitor 3 electron 
track horizontal projection angle tan 𝜃 , no unit. 

Based on the density of the hits, higher energy particles, with hits having much less spread, are on 
the left side.  Thus, the particles will in general go in the downstream direction towards the back 
detectors.  However, there will be low energy particles (purple region on the right side) covering 
the upstream side of the wire plane. 
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3. Wire chamber 
 
From the complexity of the structure of wire chamber, its data are a lot more complicated. If we 
consider the detector on one side of the beam, there are two wire chambers.  Each wire chamber 
consists of two wire planes oriented in different directions.  Each wire plane has 279 wires. Thus, 
the smallest unit with data is a single wire, and the information being stored in ROOT files is a bit 
different from previous virtual detectors, either input or monitor.  In addition, for each electron or 
positron track intersecting the chambers, on average there are about 16.4 wires hit per event.  
Thus, there are a lot more raw data for wire chamber hits compared with other sensitive detectors. 
Chamber data include: 
(1) A pair of numbers (wire plane, wire number) to identify a single wire. 
(2) The local coordinate of hit inside the wire: 𝑥, 𝑦 is the coordinate in the wire plane, while 𝑧 is 
the depth of the hit in the sense wire gas layer. While this is totally different than wire chamber 
data from hardware, which includes location of each wire (through hit wire indices) and drift time 
of the hit. We can use 𝑥, 𝑦 to emulate the location of a wire, and the 𝑧 as drift distance.  And, 
tracking information can be extracted from these. 
The overall direction of the particle (away from or towards the magnet) at each wire is omitted in 
the ROOT file data.  The reason is that the wire chambers use intersections of tracks and wire 
planes to fit track and determine direction so there is no direct way to obtain the overall particle 
direction. 
Other data: kinetic energy, energy deposit, time of flight, charge, and particle type. Time of flight 
and kinetic energy give hints on the order of wires been hit, if the particle is from a primary 
vertex, and also if wire hits are coming from the same particle. 
 
Storing wire chamber data: 
We take data generating process in Geant 4 carefully: for an event where there are multiple wires 
hit, for each wire there could be multiple tracks (particles) propagating through it.  In addition, 
due to the integration algorithm of Geant 4, a single track could have multiple steps of hits inside 
a single wire. Thus, we need a systematic way to deal with the entire hit collection.  Below is a 
step by step introduction to how to store data on wire chamber hits in a ROOT file. Since the 
information between different wire planes can be regarded as completely independent, we only 
consider all hits in a single wire plane of an event. An example is given parallel to the 
explanation. 
(1) Extract all hit wire labels (copy number of wires from sensitive detector), repetitively.  For 
example, after this step all wires that have been hit in this wire plane are ordered as: 
100, 50, 51, 51, 51, 50 
(2) Sort wire numbers in decrement order. Now the hits in the vector storing wire numbers look 
like: 
100, 51, 51, 51, 50, 50 
(3) Remove repetition, for each hit wire, associate number of hit counts to it. Two vectors, one 
storing hit wire numbers, one stores number of hit counts: 
Wire number vector: 100, 51, 50 
Hit count vector: 1, 3, 2 
(4) Loop over all hits in each single wire, store the data with cut: 
(4.1) Find the largest kinetic energy hits in the wire, call it max KE.  If the kinetic energy is larger 
than input kinetic energy minus 1 MeV, it means it’s coming from primary particle, continue to 
next step. 
(4.2) If the other hits in the wire have kinetic energy larger than max KE minus 0.1 MeV, it 
means they’re also from the same particle, this is a candidate step. 



216 
 

 

(4.3) Store hits of the wire in ROOT file in this order: (1) The wire chamber, wire plane, and the 
wire number. (2) Position of the hit is the average position of all candidate steps, with position of 
each step as average of local pre-step and post-step position. (3) Energy deposited, sum of energy 
deposited in all candidate steps. (3) Kinetic energy, use max KE. (4) Time of flight, charge, 
particle type, use the hit data of step with max KE. 
(4.3) Store hits of the wire in ROOT file in such order: (1) The wire chamber, wire plane, and the 
wire number. (2) Position of the hit is the average position of all candidate steps, with position of 
each step as average of local pre-step and post-step position. (3) Energy deposited, sum of energy 
deposited in all candidate steps. (3) Kinetic energy, use max KE. (4) Time of flight, charge, 
particle type, use the hit data of step with max KE. 
 

 

IV Fig 2. 11 Electron side wire plane distribution of all wire hits. Ordinate: counts, no unit, 
abscissa: wire plane number (0 2nd frontmost, 1 frontmost, 4 2nd backmost, 3 backmost wire plane 
to magnet). 

abscissa is wire plane indices, ordinate are hit counts. The total number of events is 1,130,000, so 
in each wire plane, there are multiple wires hit in (almost) every event, making the counts much 
larger than 1,130,000.  General observation: front wire chamber planes (0,1) have more hit wires 
than corresponding back chamber planes (2,3); for the same wire chamber, front planes (1,3) have 
less hits than back planes (0,2). 
Purely from geometry, the orientation of wires in wire planes 0 and 2 (back wire planes of the 
chambers) are paired, so are wires in wire planes 1 and 3. The loss from wire plane 0 to 2 is due 
to both multiple scattering and the acceptance of the back wire chamber is less than that of the 
front one, making more electron miss the active area of the back chambers. 
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IV Fig 2. 12 Electron side wire plane time of flights (TOF) plot. Ordinate: counts, no unit, 
abscissa: time of flight, unit ns. 

Upper histogram wire plane 0 hits time of flight, lower histogram time of flight plots from all 
wire planes.  The time of flight from primary particles should be directly proportional to path 
length from target, which depends on both the track (which depends on initial direction and 
energy) and location of the wire plane.  The two peaks in the lower plot result from adjacent 
volumes of wire planes in the same chamber, two wire planes in the same wire chamber TOFs are 
mingled together to a single peak. There is large distance between front and back chambers, so 
peaks from different wire chamber separates.

 

IV Fig 2. 13 Electron side wire plane 0 and 2 𝑥 𝑣𝑠 𝑦 distribution. Ordinate: wire plane vertical 
coordinate 𝑦 in cm, abscissa: wire plane horizontal coordinate x in cm. 

Units on both axes are cm. These are the wire chamber local coordinates, 𝑥 as long axis and 𝑦 as 
short axis of wire chamber.  Since the tracks are dispersed at the target and through magnet, the 
wire plane 2 on the back chamber has a much larger area covered by hits.  Although the hit 
distribution is similar to the Fig 2.9 monitor hits, the hit counts here are much larger than the 
monitor 𝑥 𝑣𝑠 𝑦 distribution, since there are on average 5.96 and 5.53 wires hit per event on wire 
chambers 0 and 2, respectively.  It can also be seen here that the distance from the wire chambers 
to the magnet is as large as possible to have better resolution, with not much loss in acceptance. 
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IV Fig 2. 14 Electron side wire plane 0 z coordinate (perpendicular to wire plane) distribution. 
Ordinate: counts, no unit, abscissa: z coordinate (perpendicular to wire plane) at wire plane 0 in 
cm. 

Remarks: (1) Local z-coordinates bounded at -1.27cm and 1.27cm, as wire plane 0 thickness is 1 
inch. (2) Since the tracks are almost straight lines through the wire plane, for each track, there is 
the same shift of z from one wire to the adjacent wire, due to the randomness of track, z 
distribution should be uniform. The deviation of z distributions on each side (edge) of the wire 
plane results from wire hits from end points of each track usually entering and leaving a single 
wire volume without cross the entire wire spacing. Those z’s are measured as the average 
coordinate of a hit inside the wire volume, which are not directly above and below corresponding 
wires.  This results in more hits. 

 

IV Fig 2. 15 Hit wire number distribution of wire plane 0 and 1. Ordinate: counts, no unit, 
abscissa: hit wire number at wire plane 0 and 1 in cm. 
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Even though the wire planes are adjacent to each other, the orientation is different, resulting in 
different wire hits.  Also, the number of wires hit from same track and the average for all tracks 
are different.  It’s easy to see here we don’t have to implement all wires in the front wire chamber 
to detect all primary electrons.  However, the back wire chamber wire planes are more occupied.

 

IV Fig 2. 16 Kinetic energy distribution of wire plane 0 and 2. Ordinate: count, no unit, abscissa: 
electron kinetic energy at wire plane 0 and 1 in MeV. 

Note that pairs are generated between 10 and 50 MeV (total energy).  On average, particles 
generating wire plane 2 events have 0.39 MeV more energy than do those generating front wire 
plane 0 energy.  The cause can be at least two-fold: (1) Fewer counts in wire plane 2, mean some 
lower energy electrons missed the back chamber but hit the front. (2) The lower energy electrons 
are more susceptible to multiple scattering effect, as cut requires kinetic energy of particles to be 
more than the energy at the target minus 1 MeV as the cut for storing the hit in the ROOT file.  
Electrons lose more energy to reach back chamber than to front and missed the cut. 

 

IV Fig 2. 17 Energy deposited of hits in wire plane 0 Ordinate: count, no unit, abscissa: electron 
deposit energy at wire plane 0 in MeV. 

The estimate is 1.51 keV average loss in the wire plane with 1 inch thickness.  On average, the 
electron time of flight of 5.85 ns or about 175.4 cm to reach back wire plane, so we can estimate 
the average energy loss until electron reaches back chamber to be 104.3 keV ~ 0.1 MeV. 
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Charge and particle distributions on wire chambers are not explained here.  For the electron side 
211 positron hits versus 18.5 million electron hits from the simulation; 374 electrons versus 18.5 
million positrons on positron side wire chambers.  Particles on the wrong side of the magnet are 
extremely rare.  Thus, the cone baffle placed along the beam and the separation by magnetic field 
are effective. 
 
4. Hodoscopes 
 
The data for the hodoscopes are not discussed here.  The choice of hodoscopes is not the original 
ones planned to be used in the BH experiment.  The main reason that they were discarded is that 
the areas covered (especially their span in the horizontal, longer direction) is too small compared 
to wire chambers, which seriously limited their acceptances.  In addition, our asymmetry 
measurement is not concerned much with BH pairs where both energies are similar, each nearly 
half the beam energy.  Given the short lengths of the original hodoscopes those pairs occupied a 
large portion of the old hodoscope setup. 
 
2.3.3 Additional results with simple analysis 
 
In addition to the simple analysis using ROOT directly, code was written to render further results 
relative to the experiment. 
Those scripts, compared to direct analysis in last section have the following advantages: 

(1) They can carry out more complicated calculations. 
(2) Multiple results are computed at the same time.  Changes can be made in certain cuts so 

that all these related results are rendered simultaneously. 
(3) All ROOT files with same data structure and similar simulation conditions can be 

analyzed using the same code. 
In the following sections, some of the most important results calculated from scripts are shown. 
Most of them are from the simulation with pairs generated obeying cross section calculation from 
theorists. Efforts are put into issues concerning the experiment, for example, asymmetry 
calculation, wire chamber hit data, track fitting, detector resolution estimation etc. Contents in 
this section: 
Asymmetry calculation is presented in 1). 
Some obvious differences between data obtained from simulation and from real wire chambers 
are posting new challenges for analyzing the simulation wire chamber hit data and using them as 
a mock track fitting regime.  This issue will emerge in subsection 2) and will be further developed 
in 2.4 “Track finding and fitting using Geant 4 results”. 
One of the calculations uses a customized simulation setup to check detector resolution, and will 
be explained in subsection 3).  
For the last, another group of simple simulations are used to give some results on the dependence 
of detector data on the initial conditions of the primary particles.  They are related to the 
reconstruction of those initial conditions using fitted tracks, see subsection 4). 
1) Charge asymmetry 
The experiment is dedicated to determination of charge asymmetry of the BH pairs.  Thus, 
obtaining an estimated asymmetry from a simulated result is useful for predicting experiment 
results.  Asymmetries reflect the cross section of the BH process, since the cross section from 
theory provided is in the form: 

 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃௣, 𝜃௤ , 𝜑௤ି௣൯        (2.1) 
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The asymmetry can be defined on different levels based on which of the arguments in (2.1) are 
integrated out.  Here, the asymmetry is still defined in terms of this complete form of differential 
cross section without any integrations, but with special constraints on points inside phase space to 
simplify the calculations.  The asymmetry is defined as (Eq. (45) from [20]): 

 𝐴(𝒑, 𝒒) =
ௗఙ(𝒑,𝒒)ିௗ (𝒒,𝒑)

ௗఙ(𝒑,𝒒)ାௗ (𝒒,𝒑)
     (2.2) 

Under the constraint that both polar angles are the same 𝜃௣ = 𝜃௤ = 𝜃 and 𝜑௤ି௣ = 180°, since 
sum of energies of both particles equals beam energy 𝐸௣ + 𝐸௤ = 𝐸ఊ, we denote the energy 
difference between the two particles 𝛿 = 𝐸௣ − 𝐸௤, which uniquely determines the pair 𝐸௣, 𝐸௤ : 

𝑑𝜎(𝒑, 𝒒) = 𝑑𝜎൫𝐸௣, 𝐸௤ , 𝜃, 𝜃, 𝜋൯ = 𝑑𝜎(𝛿, 𝜃) 
𝑑𝜎(𝒒, 𝒑) = 𝑑𝜎൫𝐸௤ , 𝐸௣, 𝜃, 𝜃, 𝜋൯ = 𝑑𝜎(−𝛿, 𝜃) 

 
And asymmetry: 

 𝐴(𝒑, 𝒒) = 𝐴(𝛿, 𝜃) =
ௗఙ(ఋ,ఏ)ିௗ (ିఋ,ఏ)

ௗఙ(ఋ,ఏ)ାௗ (ିఋ,ఏ)
=

ே(ఋ,ఏ)ିே(ିఋ,ఏ)

ே(ఋ,ఏ)ାே(ିఋ,ఏ)
      (2.3) 

From (2.3) we can see the usual property of asymmetry, 𝐴(𝛿, 𝜃) = −𝐴(−𝛿, 𝜃).  For different 
fixed 𝜃 value and varying 𝛿 we obtain asymmetry curves of fixed 𝜃.  For a Geant 4 simulation 
asymmetry calculation, we obtain counts 𝑁(𝛿, 𝜃) for various values of 𝛿 for a specific polar angle 
𝜃.  Then, we use formula (2.3) to compute the asymmetry.  In order to find 𝑁(𝛿, 𝜃) properly the 
following should be noted: 

(1) Due to the definition, all quantities 𝛿, 𝜃௣, 𝜃௤ ,𝜑௣, 𝜑௤ are the values at primary vertex 
inside target.  During the experiment we only have track information measured at the 
wire chambers so we must rely on the algorithm to fit 𝛿, 𝜃௣, 𝜃௤ ,𝜑௣ , 𝜑௤ from tracks, 
which is quite a complicated process.  For simplicity here, we assume the fitting 
algorithm has full efficiency and no errors at the moment.  We use the data at input or 
monitor behind target in the ROOT file in the asymmetry calculation. The only condition 
we impose here is that both sides of the wire chambers have wire hit data. 

(2) [50] Due to the finite nature of our simulation, the count 𝑁(𝛿, 𝜃) are counted within a 
finite bin; that is, for each bin the energy difference, 𝛿௕௜௡ , for the bin center pairs satisfies 

(1)  𝛿 = 𝐸௣ − 𝐸௤ ∈ ቂ𝛿௕௜௡ −
∆ఋ್೔೙

ଶ
, 𝛿௕௜௡ +

∆ఋ್೔೙

ଶ
ቃ ,   𝑜𝑟 |𝛿௕௜௡ − 𝛿| < ∆𝛿௕௜௡/2   (2.4) 

is accepted.  In a real calculation 𝛿 is calculated from 𝛿 = 𝐾𝐸௣ − 𝐾𝐸௤  
(3) For spherical angles 𝜃 = 𝜃௣ = 𝜃௤ and 𝜑௤ି௣ = 180° cannot be exactly satisfied and 

following conditions are applied for selecting qualified BH pairs to contribute to 𝑁(𝛿, 𝜃): 
(1) The difference of 𝜃௣, 𝜃௤ is allowed within constraint |𝜃௣ − 𝜃௤| < ∆𝜃௧௢௟, (2.5) 

 ∆𝜃௧௢௟ is the tolerance of difference between 𝜃௣, 𝜃௤. 
(2) The difference of 𝜑௣, 𝜑௤ is allowed within constraint |𝜑௣ − 𝜑௤| < ∆𝜑௧௢௟ ,  (2.6) 

 ∆𝜑௧௢௟ is the tolerance of difference between 𝜃௣, 𝜃௤. 

(3) The measured 𝜃 =
ଵ

ଶ
(𝜃௣ + 𝜃௤) is ቚ𝜃௕௜௡ −

ଵ

ଶ
൫𝜃௣ + 𝜃௤൯ቚ < ∆𝜃௕௜௡/2 (2.7) 

(4) During the asymmetry calculation, cut (2.5) and (2.6) must be applied before 
(2.4) and (2.7), while the order of cut between (2.5) and (2.6), or the order of cut 
between (2.4) and (2.7) is immaterial. 

Setting ∆𝛿௕௜௡ = 2𝑀𝑒𝑉, ∆𝜃௕௜௡ = 2°, ∆𝜃௧௢௟ = 2.6°, ∆𝜑௧௢௟ = 9°, and performing the cuts in (1), 
(2),  and (3) above, and then counting 𝑁(𝛿, 𝜃), we reach the asymmetry results 𝐴(𝛿, 𝜃) for 
varying 𝛿 with fixed 𝜃 below: 
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IV Fig 2. 18 Charge asymmetry at 𝜃௕௜௡ = 5°, 6°, 7°, 8°. Ordinate: asymmetry, no unit, abscissa: 
energy difference between electrons and positrons in BH pairs in MeV. 

Abscissa is energy difference 𝛿 = 𝐸௣ − 𝐸௤ in MeV, and ordinate is asymmetry 𝐴(𝛿, 𝜃) from eq. 

(2.3). The red line is the result from theory, calculated from 𝐴(𝛿, 𝜃) =
ௗఙ(ఋ,ఏ)ିௗ (ିఋ,ఏ)

ௗఙ(ఋ,ఏ)ାௗఙ(ିఋ,ఏ)
 .  The 

uncertainties of the asymmetry are computed by error propagation (also see [56]): 

 𝜎஺ = ට
ସே(ఋ,ఏ)ே(ିఋ,ఏ)

(ே(ఋ,ఏ)ାே(ିఋ,ఏ))య  (2.8) 

 

IV Fig 2. 19 Input 𝜃 difference (left), and input 𝜑 difference (right). Ordinate: count, no unit, left 
figure abscissa: input (primary vertex) polar angle difference between particles in BH pair 𝜃௣ −

𝜃௤ in degrees, right figure abscissa: input (primary vertex) azimuthal angle difference between 
particles in BH pair 𝜑௣ − 𝜑௤ in degrees. 
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In degrees. There were 1million events in this simulation, about 876k events having pairs 
reaching wire chambers on both sides. Only pairs satisfies both |𝜃௣ − 𝜃௤| < ∆𝜃௧௢௟ = 2.6° and 
|𝜑௣ − 𝜑௤| < ∆𝜑௧௢௟ = 9° are candidates for pairs contributing to the asymmetry. 
 
Remarks on the asymmetry result: 

(1) The setup of the simulation here is different from the real experiment: besides minor 
geometric and magnetic field differences, the primary vertex is a point instead of being 
within a cylindrical volume of beam, the BH pair data input file does not fully cover the 
acceptance, the target material is set to air thus multiple scatter is almost omitted within 
target, and kinematics reconstructed from detector tracks is assumed to be fully accurate 
and efficient. 

(2) It should be noted that due to the largeness of bin sizes ∆𝛿௕௜௡ and  ∆𝜃௕௜௡ and to the fact 
that the differential cross section 𝑑𝜎 depends sensitively on 𝛿, 𝜃௣, and 𝜃௤, and 𝑑𝜎 falls 
rapidly as 𝛿 or 𝜃௣, 𝜃௤ increases.  Thus, the calculated asymmetry is not a fully faithful 
representation of the asymmetry at the bin center, and it can be quite different from the 
value obtained from theory.  From the results seen in the Fig 2.18, we can see this effect: 

1) Within the small 𝛿 region where the theoretical asymmetry varies rapidly from 0 
to a maximum near 1, and back to value of about 0.2. The weighted average of 
the counts within a bin in rapidly changing differential cross section section, 
especially when 𝛿 ≅ 0 with 0 asymmetry and cross section value high. Making 
asymmetry value small and way lower than theory curve. In these regions, we 
can hardly measure any asymmetry based on the parameter bin sizes and 
tolerance values ∆𝜃௧௢௟, ∆𝜑௧௢௟ set. The asymmetry in this region is immeasurable 
due to the detector resolution. 

2) When 𝛿 is relatively large 𝛿~ > 10𝑀𝑒𝑉, the theory asymmetry is change much 
less dramatically and simulation asymmetry is consistently larger than the theory 
result at relatively large value. This is the region we are seeking to measure in the 
experiment. The asymmetry is biased to lower 𝛿 and 𝜃௣, 𝜃௤ values in the region 
where both asymmetry and cross section falls as 𝛿 or 𝜃௣, 𝜃௤ increases. 

(3) When particles within the phase space of a bin are not within acceptance, the pairs will 
not be added in counts 𝑁(𝛿, 𝜃), giving another bias in asymmetry calculation. Typically, 
it happens on two occasions: 

1) At low values of 𝜃, when one of 𝜃௣ and 𝜃௤ is less than the cone baffle polar 
angle. 

2) When particles miss the back wire chamber on one side at high |𝛿| value, one of 
the particle energies is too low or high, and misses the detector. 

Nevertheless, we are expecting the binned asymmetry value to be quite different compared to 
both theory and experiment result.  But it gives us an idea of designing the experiment that when 
measuring asymmetry (2.3) with constraints (2.4) to (2.7), we should check region 𝛿~ > 10𝑀𝑒𝑉 
for measurable asymmetry. 

2) Wire chamber wire hit coordinates and wire spans. 

Assume the track of a particle within each wire plane’s wire volume (or drift cell volume of a 
wire) has minimum multiple scattering, which means it is close to a straight line track.  By the 
way the Geant 4 simulation stores particle coordinates inside a wire, that is the average position 
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of all “steps” within the wire volume, the (𝑥, 𝑦) coordinate in a simulation result in a ROOT file 
is approximated to be the value of one of the following cases (See Fig 2.20 in next page): 

(1) If the track transverses the entire wire volume, that is the particle exits an adjacent wire 
volume, then enters the wire volume we’ve set for measuring (𝑥, 𝑦) coordinate, exits 
from its side and enters an adjacent wire volume, then the (𝑥, 𝑦) stored in the ROOT file 
is taken to be the average (𝑥, 𝑦) position of the track within wire, and should be 
approximately at the location of the sense wire. 

(2) If the wire we’re checking is where the wire enters or exits the wire plane gas layer, then 
only traverses part of the wire volume, by which (𝑥, 𝑦) will be off sense wire location. 
(𝑥଴ and 𝑥ହ in Fig 2.20 below) 

The number of wires of the cluster in the wire plane in cases (1) or (2) depends on the direction of 
track and orientation or placement of wire chambers.  Because of the effect of (1), the (𝑥, 𝑦) 
coordinates of the wire distribution should be peaked at sense wire locations (or precisely, the 
sense wire location projection in 𝑥𝑦 plane).  The effect shows up again in Fig. 2.21 and Fig. 2.22. 

 

IV Fig 2. 20 Illustration: a straight track through 6 wire volumes of a wire plane. 

The average location of all integration “steps” in the simulation of each wire: 1) The wires 1,2,3,4 
in the middle are fully traversed through the wire volume, and the (𝑥, 𝑦) is the location of the 
track projection on the sense wire. 2) The wires 0 and 5 are the wire volumes where the track 
enters and exits the wire plane, but does not traverse the entire wire volume; (𝑥, 𝑦) is not a sense 
wire location projection. 
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IV Fig 2. 21 Electron side detector hit (𝑥, 𝑦) coordinates distribution. Ordinate: vertical 
coordinate of hit electron position on wire plane in cm, abscissa: horizontal coordinate of hit 
electron position on wire plane in cm. 

For wire plane 0 (𝑣 wire plane), and wire plane 1 (𝑢 wire plane) of front wire chambers.  We can 
see the pattern of the distribution; hits (𝑥, 𝑦) are highlighted at where the sense wires located for 
wire plane 0 (sense wires are in upper-left to lower-right orientation), and the opposite is true for 
wire plane 1. 
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IV Fig 2. 22 Projected coordinate 𝑥௣ on 𝑣 axis. Ordinate: count, no unit, abscissa: projected 
coordinate 𝑥௣ defined in equation (2.9) below in cm. 

(𝑣 axis direction is perpendicular to 𝑣 wires) from (𝑥, 𝑦) of the wire plane 0 (𝑣 wire plane, upper 
plot), and wire plane 1 (𝑢 wire plane, lower plot). 𝑥௣ in the plots is simply the scalar product of 
(𝑥, 𝑦) and unit vector 𝑣ො: 

𝑥௣ = 𝑥𝑐𝑜𝑠𝛼 + 𝑦𝑠𝑖𝑛𝛼                             (2.9) 
where 𝛼 ≅ 𝑎𝑡𝑎𝑛(0.5) is the angle between 𝑣 axis and 𝑦 axis. 
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IV Fig 2. 23 Electron track wire spans. Ordinate: count, no unit, abscissa: number of hit wires in 
the event, no unit. 

Or number of hit wires in an event of all wire planes on electron side wire chamber. The “mean” 
is inaccurate since a considerably large portion of the results are 0; a track missing the wire plane.  
Both left plots show wire spans of 𝑣 planes, and distributions are similar since the projection 
angles between the tracks and the 𝑣 planes inside the 𝑣𝑧 plane are the same for both 𝑣 planes; the 
same applies for the right plots from 𝑢 planes. 
 
The results above in this section are not precise and might not be used as final wire chamber hit 
results and wire span results: 

(1) For tracking, the ROOT files stores values of (𝑥, 𝑦) for all wires hit in the wire plane. 
However, for track finding and fitting, we need to find all clusters in the wire plane, then 
find the matched pairs of clusters from wire planes with the same orientation, fit their 
crossover points at the wire planes.  Then the only useful (𝑥, 𝑦) value is of the crossover 
points.  Linking the one in the front wire chamber and the one in the back wire chamber 
we get the track of the particle, just as JLAB Hall A analyzer does. Figs. 2.21 and 2.22 
above show the coordinates of all hit wires in a ROOT file with no further analysis 
conducted (no crossover point coordinate computed). 

(2) For the wire spans, they are only the result of counting the number of wires in the event 
for the wire plane having been hit without repetition.  However, for the case when 
multiple clusters are presented in the wire plane, the numbers will be combined to the 
wire spans plotted, resulting in failure. 

For a systematic way of cluster finding and track fitting using algorithms similar to JLAB Hall A 
analyzer, see section 2.4. 
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3) Simple monochrome electron simulation and track intersections on wire planes 
 
What follows is an attempt to check the resolution of detectors in the Geant4 simulation for 
particle energy 𝐸 and polar angle 𝜃 at the primary vertex.  A simulation which shoots isolated 
monochrome electron or positron in same direction repetitively is run.  Then, we check the 
projection on each surface with a sensitive detector. 
As for the initial condition of the simulation: polar angle 𝜃 = 9°, azimuthal angle 𝜑 = 0°, particle 
kinetic energy 𝐾𝐸 = 18, 20, … , and 56 𝑀𝑒𝑉, 10k events per energy.  As we expect, the energy 
resolution (or polar angle resolution) is composed of two parts: 

(1) How much the magnet separates tracks of electrons with different energies. 
(2) How much of the effect of multiple scattering is for electrons with a specific energy. 

Since the initial particle direction is fixed in this simulation, it estimates energy resolution only 
for the direction, comparing the shift in the 𝑥 coordinate from change of energy 𝐸, we can get 

estimated value  
ௗ௫

ௗா
.  From the Geant 4 simulation, we get the multiple scattering effect on the 

wire or 𝜎௫(𝐸).  From 

 𝜎௫(𝐸) ≅
ௗ௫

ௗா
𝜎ா 

                      or 𝜎ா ≅ 𝜎௫(𝐸)/(
ௗ௫

ௗா
)    (2.10) 

we estimate the energy resolution as in eq. (2.10).  See an example in Fig 2.24 below. 

 

IV Fig 2. 24 Projection of intersection of 56 MeV electron track on monitor, front wire chamber 
plane, back wire chamber plane. Ordinate: vertical coordinate of hit electron in cm, abscissa: 
horizontal coordinate of hit electron in cm. From top left to lower right, in electron side monitor, 
front wire chamber, back wire chamber respectively,  

In vertical plane parallel to beam, in cm.  For coordinates of wire chambers, they’re the average 
of all wires hit (𝑥, 𝑦) coordinates in the wire plane.  For the back chamber wire plane (in lower 
left plot), at 𝐾𝐸 = 56𝑀𝑒𝑉, 𝑥̅ = −85.2𝑐𝑚, 𝜎௫(𝐸) = 2.49𝑐𝑚. At 𝐾𝐸 = 54𝑀𝑒𝑉 (Not shown 
here), 𝑥̅ = −80.8𝑐𝑚, 𝜎௫(𝐸) = 2.495 𝑐𝑚. Then using formula (3.10) 

 𝜎ா|ாୀହସெ ≅
ఙೣ(ா)

೏ೣ

೏ಶ

≅
ଶ.ସଽ௖௠

ర.ర೎೘

మಾ೐ೇ

= 1.13 (𝑀𝑒𝑉) 
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It should be noted that this value is overestimated, since it is not guaranteed that for the event 
there is only one track reaching the wire chamber.  In addition, even if there is only one track, the 
average of all wire hit coordinates is not the intersection in the plane of sense wires, since the 
entering and exiting hits should be weighted less. 

 
 
4) Energy vs horizontal coordinates of detectors 
 
Continuing the method used above, we have for each particle energy 𝐸, coordinates on a monitor 
or one of the two wire planes: 𝑥(𝐸)തതതതതത  and 𝜎௫(𝐸), making this plot for the 3 surfaces.  In addition, 
we also check the energy dependence of the track horizontal projection angle 𝜃௢ after exiting the 
magnet (at input polar angle 𝜃 = 9°, azimuthal angle 𝜑 = 0°). Which is defined by: 

 𝜃௢ = atan ቀ
௫మି௫భ

∆௬
ቁ         (2.11) 

Here, 𝑥ଵ and 𝑥ଶ are horizontal coordinates of track intersections on front and back wire 
chambers, while ∆𝑦 ≅ 55.7𝑐𝑚 is the distance between front and back wire chambers in the 
horizontal plane.  From error propagation: 

 𝜎ఏ೚
=

ටఙೣమ
మ ାఙೣభ

మ

∆௬ටଵାቀ
ೣమషೣభ

∆೤
ቁ

మ
  (2.12) 

where 𝜎௫భ
 and 𝜎௫మ

 come from the multiple scattering effect and are obtained by Geant 4 
simulation. 

 

IV Fig 2. 25 Track horizontal projection coordinate 𝑥 on monitor (black), front (red) and back 
(green) chambers. Ordinate: track horizontal projection coordinate 𝑥 in cm, abscissa: electron 
kinetic energy in MeV. 
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After particles exits magnet, with dependence on electron kinetic energy. At some value between 
23 and 24MeV, the out-electron track is almost perpendicular to beam and detectors where the 3 
curves intersect. 

 

IV Fig 2. 26 Track horizontal projection angle 𝜃௢ when particles exit magnet. Ordinate: track 
horizontal projection angle 𝜃௢ in degrees, abscissa: electron kinetic energy in MeV. 

Dependence on electron energy (abscissa, in MeV). 

 

2.4 Track finding and fitting using Geant 4 results 
 
As seen in 2.3.3 2), treating all hit wires in a wire plane as a single cluster is faulty.  It didn’t 
consider cases like noise and multi-track situations.  A cluster finding and fitting routine has been 
written to imitate real wire chamber analyses.  It starts with the hit collection of an event, finding 
cluster(s) and then fitting a cluster by linking track intersections on the wire plane from front and 
back chambers. 
There is a big difference in data structure between Geant 4 simulations and Hall A analyzer wire 
chamber classes.  The Geant 4 simulation can retrieve 𝒓 = (𝑥, 𝑦) projection coordinates of tracks 
for all hit wires on a wire plane, while 𝑧 has not been used for most of the simulations.  The 
analyzer utilizes 𝑢 and 𝑣 coordinates of the wire plane based on wire plane orientation, and raw 
drift time which will eventually be converted into drift distance 𝑑 = |𝑧|.  Thus, the Geant 4 
simulation has complete information of wire plane projection for each wire plane, while for 
analyzer (see formula (2.9)) only 𝑢 or 𝑣 projection coordinates are given from the exact geometry 
of wires in the wire planes: 

𝑢 = 𝒓 ∙ 𝑢ො = 𝑥𝑐𝑜𝑠𝛼 − 𝑦𝑠𝑖𝑛𝛼 
𝑣 = 𝒓 ∙ 𝑣ො = 𝑥𝑐𝑜𝑠𝛼 + 𝑦𝑠𝑖𝑛𝛼     (2.13) 
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and for drift distance 𝑑 to determine sign of 𝑧 needs additional treatment.  However, for Geant 4 
simulations, not knowing 𝑧 also requires some special method to acquire thedesired intermediate 
fit result:  

 (𝑥ଵ, 𝑦ଵ) (𝑥ଶ, 𝑦ଶ) 
that is, the intersection of the track and wire planes with local 𝑧 = 0, one on the front chamber 
and one on the back chamber.  Then these two pairs are converted into: 

(𝑥ଵ, 𝑦ଵ) (𝑥ଶ, 𝑦ଶ) ⇒ (𝑥ଵ, 𝑦ଵ), (𝜃, 𝜑)                 (2.14) 
as data specifying a single track.  In addition, by exploiting the track geometry in the wire 
chamber (analyzer) coordinate system, we can get from (𝜃, 𝜑) (projection angles of tracks in the 
analyzer coordinate system) to angles between tracks and wires, which eventually can be 

converted into wire spans (using formula (3.3) 𝑛௨/௩ =
௛

|௦×௧௔௡ఋೠ/ೡ|
 in section 3.4 of Part III) of the 

track inside each wire chamber: 
(𝜃, 𝜑) ⇒ (𝛼௨, 𝛼௩) 𝑜𝑟 (𝛿௨, 𝛿௩) ⇒ (𝑛௨, 𝑛௩)   (2.15) 

where 𝑛௨, 𝑛௩ are cluster spans directly related to geometric effects of wire chamber track finding 
efficiency. 
Prior to getting crossover point coordinates (𝑥ଵ, 𝑦ଵ) (𝑥ଶ, 𝑦ଶ), we have to identify groups of wire 
hits as clusters, which is a set of all hit wires with adjacent indices from the same particle track, 
along with their location information (for the analyzer, it is drift time).  The routine for 
identifying clusters for individual wire planes is called cluster finding.  Once a cluster is found, 
fitting straight line to all hit wires yields the local track.  This local (within each wire plane) 
fitting is different between analyzer and Geant 4 simulation.  For the analyzer, we fit cluster data 
(𝑢௜, 𝑧௜) or (𝑣௜, 𝑧௜) from hit wires at locations 𝑢௜ or 𝑣௜, and signed drift distance 𝑧௜ after 
disambiguation.  For Geant 4 simulations, we fit cluster of data (𝑥௜, 𝑦௜).  The next step includes 
sorting clusters from different wire planes to find clusters, one from each wire plane belonging to 
the same particle track.  This procedure involves comparing the local fitted track slopes from both 
U planes or both V planes, or checking the distance between the location of one cluster’s 
intersection in the wire plane and the fitted track projection from cluster intersection from clusters 
belonging to the other wire chamber. This procedure can be called matching clusters, or U-V 
association. 
The local fits provide track crossover point coordinates.  For the analyzer, they are 𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ. 
For a Geant 4 simulation, they are (𝑥ଵ, 𝑦ଵ) (𝑥ଶ, 𝑦ଶ), with (𝑥ଵ, 𝑦ଵ) from one wire plane in the front 
chamber and (𝑥ଶ, 𝑦ଶ) from one wire plane in back chamber (Two wire plane data are enough).  
By combining all 4 wire planes (or can be simplified by 2 wire planes for the Geant 4 simulation), 
we can solve for (𝑥ଵ, 𝑦ଵ) (𝑥ଶ, 𝑦ଶ) or equivalently (𝑥ଵ, 𝑦ଵ), (𝜃, 𝜑) as representing the track. 
In summary, for track finding and fitting, we handle the data in the following steps: 

(1) Cluster finding: Find all clusters in each wire plane. 
(2) (Local) Cluster fitting: Fit clusters locally to find slope and coordinate of crossover 

points. 
(3) Track finding: Matching clusters from all wire planes that belong to the same track. 
(4) Track fitting: Use coordinate of crossover points from matched clusters to compute track 

data (𝑥ଵ, 𝑦ଵ), (𝜃, 𝜑). 
In this next chapter, we’ll discuss the implementation of these steps in 2.4.1 and 2.4.2, then show 
the track fitting results (𝑥ଵ, 𝑦ଵ) (𝑥ଶ, 𝑦ଶ), and (𝑛௨, 𝑛௩) in 2.4.3. 
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2.4.1 Cluster finding 
 
The main implementation of the cluster finding process is grouping hit wires in the same wire 
plane into an event with either adjacent wire indices, or close in distances.  For the analyzer, the 
main criteria for regarding a set of wires to be cluster include: (1) It has at least 3 wires. (2) The 
drift time vs wire location or wire indices graph has a V shape, which means the track indeed 
crossed the wire plane by approaching sense wires first then moving away from the sense wire 
and leaving the wire plane. 
The drift time is converted into a drift distance 𝑑 which is the absolute value of the 𝑧 coordinate.  
Since the Geant 4 simulation does not have 𝑑 or 𝑧 data, the criterion 2) is discarded, and other 
cuts ensure the validity of cluster. The following is a brief explanation of steps for cluster finding: 

(1) Read the data from the ROOT file, each wire plane with all hit wires along with array of 
data (wire number, 𝑥, 𝑦). 

(2) Sort wire number in increasing order. 
(3) Separate the hit collection into cluster candidates by continuity of wires (allow gap of one 

wire): 
    For example: hit wires for the wire plane (index in the hit collection) are 

85(0), 86(1), 87(2), 89(3),     
110(4), 111(5), 112(6), 112(7), 113(8), 113(9), 114(10), 115(11), 
119(12),120(13), 
125(14),126(15),127(16),128(17), 129(18) 

     Gaps exist from 89 to 110, 115 to 119, and 120 to 125, all larger than 2. Then cluster 
candidates are: 
     (85 - 89), (110-115), (119-120), and (125-129). 
(4) Remove clusters with less than 3 wires, thus the left candidates are: 
     (85 - 89), (110-115), and (125-129). 
(5) We can see here the cluster candidate (110-115) could be a combination of two clusters.  
Starting from one side and checking the (𝑥, 𝑦) distance between the wire and its adjacent wire hit, 
we compute following quantities: 

sum of distance squared: 

𝑆 = ∑ [(𝑥௜ − 𝑥௜ାଵ)ଶ + (𝑦௜ − 𝑦௜ାଵ)ଶ]
௝
௜ୀ଴       (2.16) 

 and the average distance squared: 
𝑑ଶതതത = 𝑆/𝑗                                                     (2.17) 

 and current distance squared: 
𝑑௝

ଶ = [(𝑥௜ − 𝑥௜ାଵ)ଶ + (𝑦௜ − 𝑦௜ାଵ)ଶ              (2.18) 

If 𝑑௝
ଶ > 9𝑑ଶതതത, or approximately 𝑑௝ > 3𝑑, the current cluster candidate is regarded as separated, 

and a new cluster candidate starts at wire 𝑗 of the old cluster candidate. 
(6) Check if any cluster candidates after separation in step (5) have number of wires less than 3.  
Remove any that do. 
What’s left are identified as clusters. 
Remark: Although there are systematic ways of finding clusters they use clustering which 

minimizes the sum ∑ ∑ ห𝑥పఫሬሬሬሬሬ⃗ − 𝜇పሬሬሬ⃗ ห௝௜
ଶ
 [57] where, 𝑥పఫሬሬሬሬሬ⃗  are points in 𝑖th cluster, 𝜇పሬሬሬ⃗  is the average 

coordinate of 𝑖th cluster if we know the number of clusters.  It is not implemented here for 
simplificity. 
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2.4.2 Cluster fitting and track fitting 
 
1) Local cluster fitting 
 
It’s very easy to fit data (𝑥௜, 𝑦௜) in the form: 

𝑦 = 𝐴 + 𝐵𝑥              (2.19) 
for the coordinate ൫𝑥௔௩௚, 𝑦௔௩௚൯ as the intersection on a sense wire plane, which requires drift 
distance 𝑧 = 0.  Due to the lack of information about z coordinates, we have to circumvent it by 
the following approximation method: if the track fully traverses the hit wire, we assume the 
(𝑥௜, 𝑦௜) as average coordinate inside the wire volume is vertically projected on the sense wire. 
When the track traverses the wire partially, it must be that the wire track enters or exits the wire 
plane, and (𝑥௜, 𝑦௜) still denotes an average coordinate of the track inside the wire.  However, 
they’re not vertically above sense wire anymore.  Below in Fig. 2.27 is an illustration of a 6-wire 
cluster case: 

 

IV Fig 2. 27 Illustration of a 6-wire cluster. 

The track traverses the wire plane with 𝑥଴ to 𝑥ହ as the coordinate of each wire.  The total span of 
the track in length should be ∆଴ + (6 − 2)∆ + ∆௡ିଵ as illustrated. 
 
Computing track crossover point coordinate ൫𝑥௔௩௚, 𝑦௔௩௚൯: 
(1) Number of wires in the cluster is denoted by 𝑛.  If  𝑛 ≥ 4, by use symbols ∆,  ∆଴, ∆௡ିଵ as 
previously.  Then, 

𝑠𝑝𝑎𝑛 = ∆଴ + (𝑛 − 2)∆ + ∆௡ିଵ                          (2.20) 
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By noticing relations: 

 𝑥ଵ − 𝑥଴ =
∆బା∆

ଶ
,    𝑥௡ିଵ − 𝑥௡ିଶ =

∆೙షభା∆

ଶ
 

the span becomes 
𝑠𝑝𝑎𝑛 = 2[(𝑥ଵ − 𝑥଴) + (𝑥௡ିଵ − 𝑥௡ିଶ)] + (𝑛 − 4)∆              (2.21) 

Where ∆ is calculated from 
∆= (𝑥௡ିଶ − 𝑥ଵ)/(𝑛 − 3)                                                         (2.22) 

Thus, ൫𝑥௔௩௚, 𝑦௔௩௚൯ is computed from: 

𝑥௔௩௚ = ቀ𝑥଴ −
∆బ

ଶ
ቁ +

௦௣௔௡

ଶ
= (2𝑥଴ − 𝑥ଵ) + (∆ + 𝑠𝑝𝑎𝑛)/2         

 𝑦௔௩௚ = 𝐴 + 𝐵𝑥௔௩௚ (2.23) 
Knowing 𝑥଴, 𝑥ଵ, and ∆ from (2.22), and 𝑠𝑝𝑎𝑛 from (2.21), we can compute ൫𝑥௔௩௚, 𝑦௔௩௚൯. 
(2) If 𝑛 = 3, the way to compute 𝑥௔௩௚ cannot be represented by the illustration, formula is 
altered:  (2.23) still applies, thus: 

 𝑥௔௩௚ = ቀ𝑥଴ −
∆బ

ଶ
ቁ +

௦௣௔௡

ଶ
= 𝑥଴ +

௦௣௔௡ି∆బ

ଶ
= 𝑥଴ +

∆ା∆మା∆బି∆బ

ଶ
 

          = 𝑥଴ + (
∆ା∆మ

ଶ
) = 𝑥଴ + 𝑥ଶ − 𝑥ଵ  (2.24) 

Remark: When the slope 𝐵 in (2.19) is large (this happens quite often, since wire chambers are 
designed to have better efficiency when the tracks hit the chambers almost vertically), then the 
“intercept” 𝐴 has huge error. To compensate for this, we exchange 𝑥௔௩௚ and 𝑦௔௩௚ in the formula 
(2.20) to (2.23). 
 
2) Track finding and track fitting 
 
For track finding there are two major steps: 

(1) Find the clusters from the same track. 
(2) Apply cuts to select tracks which have fit clusters (represented by (2.19)) from both 

chambers sufficiently aligned. 
For matching clusters from the corresponding wire planes (matching 𝑢ଵ, 𝑢ଶ planes or 𝑣ଵ, 𝑣ଶ 
planes), loop over all the combinations of pairs of wire chambers clusters, and minimize the angle 
differences of the two: 

∆𝛽(𝑖, 𝑗) = 𝑚𝑖𝑛 ቊ
𝑎𝑟𝑐𝑡𝑎𝑛(𝐵଴௜) − 𝑎𝑟𝑐𝑡𝑎𝑛൫𝐵ଶ௝൯,

𝑎𝑟𝑐𝑡𝑎𝑛(𝐵଴௜) − 𝑎𝑟𝑐𝑡𝑎𝑛൫𝐵ଶ௝൯ ± 𝜋
ቋ   (2.25) 

Here 𝑎𝑟𝑐𝑡𝑎𝑛𝐵 is the track angle being compared. Indices 𝑖 and 𝑗 mean the 𝑖th cluster of wire 
plane 0 (wire plane 𝑣ଵ), and 𝑗th cluster of wire plane 2 (wire plane 𝑣ଶ).  Eq. (2.25) can be applied 
to wire planes 𝑢ଵ and 𝑢ଶ by replacing subscripts 0, 2 to 1, 3.  Thus, using the ൫𝑥௔௩௚, 𝑦௔௩௚൯′s from 
the matched cluster, we can fit the global track by linking the ൫𝑥௔௩௚, 𝑦௔௩௚൯ of 𝑖th cluster of wire 
plane 0 and 𝑗th cluster of wire plane 2.  The slope (with suffix 𝑎𝑣𝑔 and 𝑖, 𝑗 omitted) equals: 

𝐵 =
௬మି௬బ

௫మି௫బ
                                                                                        (2.26) 

Two cuts have been applied after (2.25) and (2.26) to ensure the clusters are from the same track: 
(1) Angular difference ∆𝛽(𝑖, 𝑗) , and also the one from global fit (arctan𝐵 in (2.26) replacing 

one of 𝑎𝑟𝑐𝑡𝑎𝑛(𝐵଴௜) 𝑜𝑟 𝑎𝑟𝑐𝑡𝑎𝑛൫𝐵ଶ௝൯ in (2.25)) if it is less than 0.5°. 
(2) For difference between fit (2.19) intercepts on 𝑦 axis |𝐴଴௜ + 15.5′′ − 𝐴ଶ௝| < 1𝑐𝑚, here 

15.5′′ is the vertical distance between centers of wire chambers, and it’s also the shift in 
origin of 𝑦 axis between front and back chambers since the shift is 45°.  Remark: when 
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atan𝐵~90° the error of 𝐴′s are large, and instead intercepts on 𝑥 axis are compared, the 
cut is: |(𝐴଴௜ + 15.5′′)/𝐵଴௜ − 𝐴ଶ௝/𝐵ଶ௝| < 1𝑐𝑚. 

 
Till now, using the ൫𝑥௔௩௚, 𝑦௔௩௚൯′s from the matched cluster, we uniquely specified the track we’re 
looking for. They are: 

 (𝑥଴, 𝑦଴) (𝑥ଶ, 𝑦ଶ) 
where (𝑥଴, 𝑦଴) is abbreviated for the matched cluster’s ൫𝑥௔௩௚, 𝑦௔௩௚൯ in 0th wire plane; so is 
(𝑥ଶ, 𝑦ଶ).  We can also convert the data above to analyzer format to specify projection angles of 
the track.  So, the track data will be represented as (𝑥଴, 𝑦଴) (𝜃, 𝜑), by using the conversion 
formula: 

𝑡𝑎𝑛𝜃 =
(௬బା∆௭)ି௬మ

∆௭
    , 𝑡𝑎𝑛𝜑 = −

௫బି௫మ

∆௭
        (2.27) 

Here ∆𝑧 = 15.5′′ is the vertical distance between center planes of two chambers, and (𝑥, 𝑦) the 
direction from the analyzer corresponding to (𝑦, −𝑥) of the Geant 4 simulation data convention 
results in formula (2.27).  Also, choosing a pair of wire planes 1, 3: (𝑥ଵ, 𝑦ଵ) (𝑥ଷ, 𝑦ଷ) is also an 
alternative for the representing the track data when using the Geant 4 simulation. 
 
2.4.3 Results 
 
In this section results of track finding and fitting through procedure in last section is shown, 
they’re representing the final results of analyzing wire chamber data of Geant 4 simulation. To 
some extent, they can be compared with results in section 2.3.3 2).  
All the results shown here were analyzed from ROOT files from the same Geant 4 simulation as 
in the last chapter.  The only difference is that only the first 500k events were analyzed instead of 
the 1 million events in the last chapter. 
There are two different categories of results shown here: 

(1) Result of track, which includes the fit track crossover point in each wire plane, cluster 
spans, number of clusters etc. 

(2) Results reflecting the quality and efficiency of track finding and fitting, which include the 
differences between cluster angles defined in (2.25), the differences of cluster fit 
intercepts between fits of front and back chambers defined in (2.26), and the differences 
of projection coordinates between fit tracks on wire planes (𝑥௜ , 𝑦௜)s and tracks propagated 
from the monitor using monitor track data. 

1) Fit track intersection coordinates (𝑥, 𝑦) 

 

IV Fig 2. 28 Fit track intersection coordinates (𝑥, 𝑦) distribution. Ordinate: vertical coordinate y 
in cm, abscissa: horizontal coordinate x in cm. On wire plane 0 to 3. 

Plots distributions on all electron side wire planes, in cm. 
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It is quite obvious there is a quite straight strip parallel to 𝑦 axis (at 𝑥 ≅ 2𝑐𝑚) in Fig 2.28, which 
has lower density compared to its neighbor region.  It is an inevitable effect of the fitting 𝑦 = 𝐴 +
𝐵𝑥 or 𝑥 = 𝐴ᇱ + 𝐵ᇱ𝑦, the issue is that when 𝐵 ≅ 0 𝑜𝑟 𝐵 is 𝑙𝑎𝑟𝑔𝑒 the intercept error become large 
and it is hard for tracks in this region to pass cuts on the intercept difference in section 2.4.2 2), 
cut (2) below formula (2.26).  This issue only originates with Geant 4 simulations, which didn’t 
store 𝑧 at each step of the simulation.  Compared with the JLAB Hall A analyzer, which fits either 
𝑢, 𝑧 or 𝑣, 𝑧 relation, 𝑧 coordinate display good behavior since only tracks intersecting both front 
and back wire chamber will always have enough change in the 𝑧 coordinate.  Meanwhile, the 𝑢 
and 𝑣 also have good behavior since we require a minimum number of wires in the cluster, which 
is equivalent to demanding a decent amount of change in the 𝑢 or 𝑣 coordinate.  For fitting 𝑥, 𝑦 in 
Geant 4 simulation, when change in 𝑥 is near 0 then the track traverses the wire planes and the 
fitting of  𝑦 = 𝐴 + 𝐵𝑥 or 𝑥 = 𝐴ᇱ + 𝐵ᇱ𝑦 will result in ill behavior.  In order to resolve this issue in 
the future, we can transform 𝑥, 𝑦 into 𝑢 , 𝑣 coordinates before track fitting.  Or, we can store the 𝑧 
coordinate in the ROOT file and use it as one of the variables for fitting. 
 
2) Number of clusters in each wire plane 
 
The cluster finding results have shown that all wire planes have only 1 or 2 clusters, while the 
probability of 2 clusters is very low, see the table below.  Thus, the error in Fig 2.23 is small. 
Remark: We see in the table that the probability of events with 2 clusters in wire planes 0 and 2 
are similar (0.295% and 0.291%).  This also applies to wire planes 1 and 3 (0.380% and 0.379%). 
Here the larger probability of 2 cluster events in wire plane 1 and 3 might not mean there are 
actually more tracks in wire plane 1 and 3 than in 0 and 2.  Given the geometry of the wire planes 
and the higher probable of abnormal angles of those track originating from scattering, the track in 
wire plane 0 and 2 might intersect fewer than 3 wires, and the cluster finding algorithm would 
have omitted them. 

Wire plane Total events with 
clusters 

Events with 2 
clusters 

Probability of 
events with 2 
clusters 

0 467491 1381 0.295% 

1 465943 1771 0.380% 

2 445922 1298 0.291% 

3 441712 1672 0.379% 
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3) Cluster spans 
There are two definitions for a cluster span: 

(1) In the analyzer it is defined as the largest hit wire index in the cluster minus the smallest 
plus 1.   If there is no gap between wires in the cluster (due to bad sense wires for 
example), it equals number of wires in the cluster. 

(2) The span of track in length within the wire plane thickness divided by wire spacing. They 

can be computed by formula (3.3) 𝑛௨/௩ =
௛

|௦×௧௔௡൫ఋೠ/ೡ൯|
 in section 3.4 of Part III. 

There is obviously a difference between the definitions (1) and (2); while the span in (1) can only 
have an integer value, the span in (2) is not so constrained.  The two definition are related as 
following: for example, a cluster with 5 wires hit 110, 111, 112, 114, 115 (Note wire 113 hit is 
missing here).  By definition (1), 𝑠𝑝𝑎𝑛 = 115 − 110 + 1 = 6.  By definition (2) based on how 
much the track occupies space in wire 110 and 115, the span could be just 4 full wire spans from 
wire 111 to 114, up to 6 fully wire spans from wire 110 to 115; thus 4 < 𝑠𝑝𝑎𝑛 ≤ 6.  The span of 
definition (2) can be at most 2 wire spans less than definition (1). 
Fig. 2.29 and Fig. 2.30 below show the cluster spans distribution from both definitions, only 
spans of matched clusters with minimum angle difference are filled.  In addition, the cluster span 
of definition (1) helps to determine the corresponding parameters in the Hall A analyzer, which 
includes the minimum and maximum cluster span.  However, the minimum cluster span has been 
set to 3 no matter the distribution below. 

 

IV Fig 2. 29 Cluster span distribution of each wire plane on electron side wire chambers, using 
definition (1). Ordinate: count, no unit, abscissa: cluster span, no unit. 
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IV Fig 2. 30 Cluster span distribution of each wire plane on electron side wire chambers, using 
definition (2). Ordinate: count, no unit, abscissa: cluster span, no unit. 

Remarks: 
(1) Since the wire chambers are parallel, the angle between the track and both u wire planes 

𝛿௨ଵ and 𝛿௨ଶ are the same, so are the 𝛿௩′s.  Thus, for cluster spans using definition (2) are 
the same for both u wire planes if they correspond to the same track.  This rule also 
applies for both v wire planes.  For cluster spans by definition (1) for a specific event, 
since the location of wires are discrete and the location where track enters front and back 
chamber are different, it may be different for a single event.  However, this randomness 
of entering location is uniformly distributed and have much affect on the distribution of 
spans. 

(2) Comparing Fig. 2.29 and Fig. 2.23, we see that they are very similar.  However, one 
noticeable difference in Fig. 2.23 is that the probability of larger span values (for 
example, clusters with a span 8) is larger than the counterparts in Fig. 2.29.  The reason is 
that for the distribution in Fig. 2.23 the total number of hit wires are counted, even while 
it is possible that they are wire hits from multiple clusters. 

(3) From the distribution in Fig. 2.29 we can safely set maximum size for cluster spans in the 
analyzer database file to 8, which coincides with the design of the wire chambers (see 
section 4.2.2 in Part II). (Here we use pairs with energy range from 10 to 50 MeV as in 
this simulation) 
 

4) Difference between fit track and monitor track extrapolation 
 
Here we show some results reflecting the quality and efficiency of track finding and fitting.  We 
have two sets of fitted track results, one from linking (𝑥଴, 𝑦଴) and (𝑥ଶ, 𝑦ଶ), the other from linking 
(𝑥ଵ, 𝑦ଵ) and (𝑥ଷ, 𝑦ଷ).  These tracks are compared with tracks from the monitor, which uses the 
location and direction of the track intersection as the monitor.  From the result we can see the 
combined effect of both multiple scattering of track starts from the monitor and the precision of 
track finding and fitting. 
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IV Fig 2. 31 Difference between fit track and Geant 4 monitor track 𝑥 projection (𝑥 is the beam 
axis) angles. Ordinate: count, no unit, abscissa: angular difference between fit track and Geant 4 
monitor track extrapolation in 𝑥 projection (𝑥 is the beam axis) direction in degrees. 

The horizontal projection angle is defined as 𝑡𝑎𝑛𝜃 =
(௬బା∆௭)ି௬మ

∆௭
 from formula (2.27), there are 

𝑦′s because it uses wire chamber local coordinates), in degrees. Left: compare fit of track from 
linking intersections between wire plane 0 and 2: (𝑥଴, 𝑦଴) and (𝑥ଶ, 𝑦ଶ).  Right: compare the fit of 
tracks from linking intersections between wire plane 1 and 3: (𝑥ଵ, 𝑦ଵ) and (𝑥ଷ, 𝑦ଷ).  The mean is 
almost 0, while the RMS is about 0.9° due to the random fluctuations from the effects explained 
above. 

 

IV Fig 2. 32 Difference between fit track and Geant 4 monitor track 𝑥 projection. Ordinate: count, 
no unit, abscissa: coordinate difference between fit track and Geant 4 monitor track extrapolation 
in 𝑥 projection (𝑥 is the beam axis) direction in degrees. 

Plotted at the vertical plane 1 meter away from beam, in cm. Left: compare fit of track from 
linking intersections between wire plane 0 and 2: (𝑥଴, 𝑦଴) 𝑎𝑛𝑑 (𝑥ଶ, 𝑦ଶ). Right: compare the fit of 
track from linking intersections between wire plane 1 and 3: (𝑥ଵ, 𝑦ଵ) 𝑎𝑛𝑑 (𝑥ଷ, 𝑦ଷ) . The mean is 
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almost 0, while the RMS is about 0.9° due to the random fluctuations from multiple scattering 
and the track finding and fitting process. 

 

IV Fig 2. 33 Difference between fit tracks and tracks extrapolate from monitor data. Ordinate: 
vertical coordinate difference in cm, abscissa: horizontal coordinate difference in cm. 

Intersections on the plane which is vertical and parallel to beam and 100 cm from the beam.  The 
fitted track results are from linking track intersections on wire planes 0 and 2.  The monitor track 
means the straight line through intersection at the monitor, with particle direction at monitor. This 
result uses same Geant 4 simulation ROOT file, 500k events.  Thus, when applying the two cuts 
in section 2.4.2 2) the efficiency is 433590/500000=86.7% and we can get a fitted track with 
𝜎௫ = 0.48 𝑐𝑚, 𝜎௬ = 0.46 𝑐𝑚. The uncertainty is due to a combination of cluster finding and 
track fitting algorithm errors, and the multiple scatter effects after monitor. 
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2.5 Additional transformations of wire chambers 
 

2.5.1 Motivation 
 
The results of Geant 4 simulations show the track projections on wire planes with different initial 
kinematics.  In order to successfully measure this kinematics, we need to investigate the position 
and direction resolution from wire chamber data.  In section 2.3.3 3) and Fig. 2.24, there are some 
preliminary results. As mentioned before, the resolution of energy (or polar angle) are composed 
of two parts: 

(1) How much magnet separates track of electron or positron with different energy. 
(2) How much is the effect of multiple scattering of electron or positron with a certain 

energy. 
 
After investigating the distributions of hits on wire chambers in different mono-energy beam 
simulations (same format as Fig 2.24), we found effects reducing the energy resolution: 

(1) Low energy particles with the same initial angles, have large deviation on intersection on 
wire chamber due to multiple scattering. 

(2) High energy particles with the same initial angles, under small change in energy, while 
being less susceptible to multiple scattering effects, have much less separation from 
magnetic field. 

 
Thus, we’re trying to adjust some of the simulation settings to achieve the following goal, reduce 
both multiple scatter effect of low energy particles and the focusing effect on higher energy 
particles. There are two major parameters we can make change: 

(1) The magnitude of the magnetic field. 
(2) The locations of wire chambers. 

 
As for how can we change these: 

(1) For magnetic field, 0.45 T is about the maximum our magnet can get (see Part II, Fig 
3.2), thus a smaller magnetic field is possible but not a higher one. 

(2) For the location of wire chamber, either their distance to magnet center and orientation 
can be changed, or both. 

1) The further the distance, the larger the separation at the wire chamber, the better 
the resolution. However, we cannot indefinitely increase the distance by the 
constraint of wire chamber and hodoscope acceptance.  Since the current setting 
is a balance between multiple scatter and acceptance, we keep the default value. 

2) For orientation of the wire chambers, we can rotate them about a vertical axis to 
make low energy intersection side of wire chamber closer to magnet to reduce 
multiple scattering while increase high energy track distance to wire chamber to 
increase spatial separation at the same time. 

(3) An additional freedom, that is to change the beam energy. It requires rerun of the BH pair 
generation. 

The rotation of wire chambers is about vertical axis through center of front wire chamber, not 
rotate about magnet center (Geant 4 simulation global coordinate system origin). Care should be 
taken for this, and the math prerequisite is in Appendix 2.5. For choices of simulation runs with 
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different setups, we chose beam energies of 60 MeV or 80 MeV, magnetic field strength 0.35T or 
0.45T, and rotation angle of wire chambers about vertical axis within −30° 𝑡𝑜 15°. 
2.5.2 Determine transformation of electron side wire chambers in Geant 4 
simulation 
 
As Geant 4 simulation required, we need to provide the combined rotation and translation to 
specify transformation of the wire chamber.  The illustration on the next page shows how the wire 
chamber holder (see Fig. 2.2 and section 2.2.3 2) (6)) has been transformed from its initial 
location and orientation.  Using the same convention in Appendix 2.5, we denote all 
transformations below (all in Geant 4 global coordinate system, see Fig. 2.1) as: 
Rotations (All rotation are about axis through origin, or the center of magnet): 
(1) 𝐴଴ rotate about 𝑧 axis by 180° (rotate wire chamber holder from e+ configuration to e- 
configuration) 
(2) 𝐴ଵ rotate about 𝑥 axis by −45° (rotate to make chamber holder tilt 45°, to e+ configuration) 
(3) 𝐵 rotate 𝑧 axis by 𝜑. (This is the additional rotation of wire chambers discussed in section 
2.5.1) 
Translations: 

(1)  𝜉 translates from center of the magnet to the center of wire chambers holder in e- side 
𝜉 = (0,  − 𝑦଴ − ∆𝑦/2,  0). 𝑦଴ = 85𝑐𝑚 is the distance between magnet center and center 
of front wire plane. 

(2)  ∆𝑦: distance between front wire plane center to back wire plane centered in horizontal 
plane. ∆𝑦 = √2 × 15.5ᇱᇱ ≅ 55.68𝑐𝑚. 

(3)  𝜂: the translation that makes 𝑟 → 𝐵𝑟 + 𝜂 the rotation about vertical axis through center 
of front chamber 𝜂଴ = (0,  − 𝑦଴,  0). Here 𝑟 = (𝑥, 𝑦, 𝑧) is any point in wire chamber 
holder volume of the simulation.  

(4)  𝜍: Additional translation vector along wire chamber long axis, after rotation 𝑟 → 𝐵𝑟 + 𝜂. 
It makes back chamber centered at middle point of max and min range of e- tracks. 
(Which should be determined by simulation result) 

Combination of all transformations in following steps (see Fig 5.1 in next page): 
1. Making transformations equivalent to default transformation (making wire chambers 

tilted in desired orientation, then translate the wire chamber holder to default location), 
by applying formula (A5.2): 

(1, 𝜉) ∙ (𝐴ଵ, 0) ∙ (𝐴଴, 0) = (𝐴ଵ𝐴଴, 𝜉) = (𝐴, 𝜉)           𝐴 = 𝐴ଵ𝐴଴                 (2.28) 
2.   (see remark at the end of Appendix A5.2.2 and eq. (A5.15)).  Set 𝜂଴ = (0, −𝑦଴, 0) to be 

the coordinate of center of the front wire chamber and as the fixed point of rotation 𝐵𝑟 +
𝜂, then: 

𝜂଴ = 𝐵𝜂଴ + 𝜂 

 𝜂 = (1 − 𝐵)𝜂଴ = ൭
1 − 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 0

−𝑠𝑖𝑛𝜑 1 − 𝑐𝑜𝑠𝜑 0
0 0 0

൱ ൭
0

−𝑦଴

0
൱ 

    = ൭
−𝑦଴𝑠𝑖𝑛𝜑

−𝑦଴(1 − 𝑐𝑜𝑠𝜑)
0

൱                      (2.29) 

3. Combine steps 1 and 2: 
(𝐵, 𝜂) ∙ (𝐴, 𝜉) = (𝐵𝐴, 𝜂 + 𝐵𝜉)                                                            (2.30) 

4. Combine the last translation, 𝜍: 
(1, 𝜍) ∙ (𝐵𝐴, 𝜂 + 𝐵𝜉) = (𝐵𝐴, 𝜍 + 𝜂 + 𝐵𝜉)                                              (2.31) 

Explicit forms of translations and rotations: 
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𝐵 = ൭
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑 0
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0

0 0 1

൱ 

𝜂 = (−𝑦଴𝑠𝑖𝑛𝜑, −𝑦଴(1 − 𝑐𝑜𝑠𝜑), 0)் 

𝐵𝜉 = (൬𝑦଴ +
∆𝑦

2
൰ 𝑠𝑖𝑛𝜑, − ൬𝑦଴ +

∆𝑦

2
൰ , 𝑐𝑜𝑠𝜑)் 

𝜍 = 𝑙(𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜑, 0)் 
Let 𝑙 be the length of the final translation along long axis of wire chambers with the convention: 
𝑙 > 0 and |𝜑| < 90° means moving downstream. So the combined translation is: 

𝜍 + 𝜂 + 𝐵𝜉 = ( 𝑙𝑐𝑜𝑠𝜑 +
∆௬

ଶ
𝑠𝑖𝑛𝜑,   𝑙𝑠𝑖𝑛𝜑 − ቀ𝑦଴ +

∆௬

ଶ
𝑐𝑜𝑠𝜑ቁ , 0)்                 (2.32) 

Formula (2.31) is the transformation we are using in the Geant4 simulation, instead of default 
transformation (2.28). 

 

IV Fig 2. 34 All transformations in sequence and transformation (𝐵, 𝜂). 

(1) (Updated Fig 2.2) All transformations in the sequence of making wire chambers till the 
placement in formula (2.28) in 𝑦𝑧 projection, only the active area of the center plane of each wire 
plane is drawn as line segment in the illustration. The notations of the transforms are as  (𝐴଴, 0) 
(𝐴ଵ, 0) (1, 𝜉) are indicated in the plot. 
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Fig 2.34 (2) Transformation (𝐵, 𝜂) in (2.30) moving the wire chambers from the placement in 
formula (2.28) to formula (2.30) or the placement of wire chambers before final translation (1, 𝜍), 
in 𝑥𝑦 horizontal projection.  Note the graph is in xy projection rather than yz projection in Fig. 
2.34(1).  Scaler 𝑦଴, ∆𝑦, angle 𝜑, and vector 𝜂଴, 𝜂 are marked.  In this illustration, the convention 
is 𝜑 > 0; if back chamber rotates to the other side of 𝑦 axis, 𝜑 < 0. 
Remark: 

Remarks: 
1) Extract track info from Geant 4 simulation ROOT file: 
We are still aiming to compare the fitted track and monitor track results in Geant 4 global 
coordinate system, just as in section 2.4 Track finding and fitting using Geant 4 results. The wire 
chamber positions data in the ROOT file stored as local coordinate in each wire plane, but 
monitor position data are in global coordinate system.  In order to compare them in the same 
frame, the global coordinate system has been chosen.  We first convert wire chamber position 
data in the ROOT file from wire plane local coordinates, into the chamber holder coordinate 
system.  Then we use the coordinate transformations in eq. (2.30) to transform all the coordinates 
of wire hits to positions in global coordinate system.  To compare the fit track and monitor track, 
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we can check their angle and position differences in 𝑥, 𝑦 projections on the wire chamber, which 
is the same as in section 2.4.3 4). 
 
2.5.3 Results 
 
There are some results which are counterparts to those in Section 2.4.  Since our goal is to get 
better resolution for both high and low energy particles, we adjust the simulation settings (in 
2.5.1) to achieve it.  To reduce multiple scattering, there are two ways: either increase particle 
energies, or reduce distance from the magnet to the wire chambers.  For the latter, it will reduce 
wire chamber track angular resolution, so it’s not optimal.  In order to increase particle energies, 
all we have to do is to increase beam energy. Besides the reduction of multiple scattering, there’re 
some major change if we alter the beam energy: 

(1) The cross section of the BH process is changed, and the asymmetry changed accordingly. 
In addition, the BH pair data file obeying the cross section must be re-generated, with the 
new beam energy setting. The new measurable asymmetry must be recalculated in order 
to find the energy range in which we can measure the asymmetry (see Fig. 2.18) 

(2) The bending effect of the magnetic field is reduced so the radius of particle trajectories 
are increased (Proportional to total energy of the particle, see formula (3.5) in next 
chapter).  The particles in general will hit the wire chamber towards the downstream 
direction, thus the orientation of wire chambers must be changed accordingly.  This is the 
reason we introduced the additional rotation (𝐵(𝜑), 𝜂) and translation (1, 𝜍) earlier to 
make tracks go through the center area of the chambers. 

(3) As for magnetic field, since the beam energy is increased, we need to keep the current 
maximum magnetic field strength (0.45 T) to prevent higher energy particles from hitting 
the magnet pole or side frame. 

Every time we change the beam energy 𝐸ఊ, the magnetic field strength |𝑩|, or the additional 
chamber rotation angle 𝜑 we need to rerun the Geant 4 simulation, so there are many ROOT files 
and results.  Due to the limited space, we only show results of simulations with the following 
conditions: 

(1) electron energy ranges from 24 to 56 MeV (or 30% to 70% the 80MeV beam energy), 
with discrete energy values 24, 26, …, 56 MeV.  With fixed initial spherical angles 𝜃଴ =
5°, 𝜑଴ = 0°. 1000 events per energy, a total of 17k events. 

(2) 0.45 T Magnetic field. 
(3) Wire chamber rotation angles 𝜑 = −15°,  0°, 15°, 30°.  This is the only factor changed 

between different simulations. 
1) Track intersections on wire chambers. 
These are the results which are counterparts of those in Fig. 2.28. We found and fitted tracks 
using the same procedure as in Section 2.4 and applied the same cuts as described in 2.4.2 2) 
below formula (2.26). We also required both 𝑢, 𝑣 wire planes have matched clusters. 
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(4)  

IV Fig 2. 35 Fitted track intersections on wire chambers with rotation angle 𝜑 = −15°, 0°, 15°. 
Ordinate: vertical coordinate in cm, abscissa: horizontal coordinate in cm. 

(1) Fitted track intersections on wire chambers with rotation angle 𝜑 = −15° (convention of sign 
of 𝜑 in Fig 2.34 (2)), in cm.  We also translate the wire chambers downstream along the long axis 
of the wire chambers after the rotation, to keep the center of back wire plane coincident with the 
average of 24 and 56 MeV particle track intersections. 

 

IV Fig 2.35(2) Fitted track intersections on wire chambers with rotation angle 𝜑 = 0°. Ordinate: 
vertical coordinate in cm, abscissa: horizontal coordinate in cm. 
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IV Fig 2.35(3) Fitted track intersections on wire chambers with rotation angle 𝜑 = 15°. Ordinate: 
vertical coordinate in cm, abscissa: horizontal coordinate in cm. 
Observations: 

(1) As 𝜑 increases (Fig 2.35(3)), the lower energy particles tracks will travel through longer 
distances to reach the wire chamber, and the effect of multiple scattering makes 
resolution worse. 

(2) For lower 𝜑 the first benefit is reduced multiple scattering for lower energy particles, also 
their tracks are more perpendicular to wire chambers, making much less spread on the 
wire chamber. 

(3) Second benefits for lower 𝜑 is that higher energy particles now make larger angles with 
the wire chamber, which means their intersections are more separated for smaller 
increments of energy (2 MeV change in these histograms). This improves the resolution. 

(4) However, there’s a major defect of lower 𝜑 (Fig 2.35(1)): the angle between high energy 
track and wire chamber increased accordingly, which makes tracks through one of the 
𝑢, 𝑣 wire planes to not have enough wires to be identified as a cluster.  This results in no 
tracks being found for such events.  Out of 17k events, the total number of events with 
found tracks at 𝜑 = −15° is much less than the other two 𝜑 values, with the most 
efficiency loss being suffered by high energy tracks. 

𝝋 Events have track Total  track reconstruction 
efficiency 

−15°  11316 66.6% 

0°  15533 91.4% 

15°  15594 91.7% 

We also ran simulations with fixed energy but changed 𝜃଴.  The resolution was much worse, 
especially for low energy electrons.  Bad angular resolution was observed in Fig 4.8 and Fig 4.9.  
Due to space, it won’t be shown here.  Also, 60 MeV beam simulations with 0.45T or 0.35T were 
conducted. 
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3 Simple acceptance simulation 
 

3.1 Introduction 
 

The Geant 4 simulation provides us results on detectors response of Bethe-Heitler electron, 
positron pairs through the magnet. However, there are some drawbacks for this simulation. It 
takes quite a long time to simulate the large number of events the experiment estimated to gather, 
so any changes in setup lead to a delay in getting results. The ROOT files storing the resulting 
data need customized code to analyze. Any change in the data structure in ROOT files results in 
changes to the analyzing code, usually making the old version obsolete. In addition, the 
simulation result is lacking reference, thus mistakes sometimes are very hard to be identified by 
checking the resulting data alone. 

A simple simulation code was written to overcome some of the shortcomings of the Geant 4 
simulation. It exploits the fact that our experimental setup has a very simple spectrometer; only 
one dipole magnet is used. Thus, under some plausible approximations, the tracks of electrons 
and positrons are also very easy to calculate. This code calculates particle tracks, applies cuts on 
each place which is not air and can block particles. The position and direction of particles at any 
time can be analytically solved and corresponding numerical results solved. Almost all data in the 
Geant 4 simulation regarding track info and acceptance of detectors have their correspondence in 
this code. 

The code is very fast: it simulates 1 million events in about 10 seconds. Desired analysis results 
show up on each run, so there is no data storage issue and handling of ROOT files. Although it 
contains some approximation, the simulation results are reasonably close to Geant 4 simulation 
results. It can be used as a half quantitative prediction before running a full Geant 4 simulation, 
and a cross check of most Geant 4 simulation tracking results. 

The next sections include following contents: 

In section 3.2 calculation of tracks: it explained the approximation been used in the calculation, 
and how main analytic formulas obtained. There are also a few parameters are calibrated by 
comparing Geant 4 simulation results. 

In section 3.3 basic results: it shows the basic distribution of energy, momentum directions, and 
particle local positions on detectors results from the simple simulation.  

In section 3.4 application: The most direct application of the code is to compare results with 
Geant 4 simulation. Besides the basic results, some results need additional computation are also 
been compared, such as asymmetry. 
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3.2 Calculation of tracks 
 

Topics are discussed in following order in this section: the approximations used, calculation of 
track: three segments and calculation of each one, the calibration of parameters. 

3.2.1 Approximations 

A few approximations have been used to make analytic form formula available, fast computing 
speed while keeping the result as close to Geant 4 simulation result as possible. 

1) The background materials are vacuum, thus there is no multiple scattering effect. Multiple 
scatter affects tracks in following manner: It randomize direction of the particle. Particles loses 
energy, and will be bent more inside magnetic field. This effect is energy dependent, lower 
energy particles are more susceptible. 

To justify the approximation, we compare Geant 4 simulation results. We found that by changing 
vacuum into air (approximated as 70% N and 30% O) in Geant 4 simulation as background the 
detector response are close. In simulation with about 1 million Bethe-Heitler pairs from theory 
calculation, the distribution of interactions of track on wire planes are very similar: average of 
horizontal intersection coordinates on front wire chamber only has about 1 mm difference 
between air and vacuum simulation, while root mean square difference is about 0.1 mm. The air 
simulation has 6.4% less counts, due to the multiple scatter of particles near the boundary of 
spectrometer acceptance, which is acceptable. 

It should note that losing energy always result in smaller radius in magnetic field, and average of 
all tracks using air as background will be bent more than case in vacuum, results in shift of 
horizontal coordinate of intersection on wire chamber to opposite beam direction. 

2) The magnetic field of the dipole magnet is approximated to be a uniform field within a 
cylinder. The magnet to be used in experiment has close to uniform magnetic field in between 
poles. 

It has two main consequences, first the track under uniform magnetic field is a helix, which 
makes track very easy to compute. Second is that the fringe field is not completely described in 
this simple simulation, which is replaced by an effective radius of the uniform field other than 
pole radius. This effective radius has to be calibrated by comparing results of this simulation to 
Geant 4’s vacuum simulation, which will be explained later in this section. In addition, the effect 
of fringe field on track making it different from helix cannot be simulated in this simulation. 

3) If the particle hits any solid material, it will be considered unable to reach any object behind. 
Since if the particle has reached solid material, it requires a large change of direction to reach 
objects behind, and track reconstruction of these tracks will result in violation of energy 
conservation to make two particles trace back to target. 

Another small approximation is when calculate time of flight, the speed of particles is 
approximated to speed of light. Since the lowest energy electron or positron in simulation will be 
over 10 MeV, or about 20 rest mass, this is plausible. 
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3.2.2 Calculation of track 

Combining these approximations, we now can compute the track by divide it into 3 segments: (1) 
Straight line before particles enters uniform magnetic field. (2) Helix inside the uniform magnetic 
field. (3) Straight line after particle exits the field. All of which can be calculated using analytic 
formula, we will describe them below. 

1) Position and velocity at a few key points on the track: 

Points along the track have been denoted in alphabetic order: 

A: target center, primary vertex. 

B: particle enters uniform magnetic field 

C: particle exits magnetic field 

CP: particle horizontal projection reaches the edge of poles of magnet 

D, E,F,G: particle at side frame of magnet, 1st wire chamber, 2nd wire chamber, and hodoscope. 

3 segments of the track are (1) A to B, straight line. (2) B to C, helix. (3) C and beyond, straight 
line. The acceptance of the spectrometer has been checked at point CP, D, E, F, and G. Since the 
effective radius of magnetic field is different from radius of pole, C and CP are different point. It 
can be deduced that radius of magnetic field is larger than the radius of the pole by the existence 
of fringe field, and CP is the intersection of the helix and edge circle of the pole in horizontal 
projection. In addition, position of the center of helix H is also been used. 

 

IV Fig 3. 1 Coordinate system of the simple simulation. 
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Location of the magnet, wire chambers (y-z projection). (Xy axes were wrong here.) 

 

2) Coordinate system 

See Fig 3.1 above. Due to the symmetry of the magnetic field, origin is placed at its center. 𝑥 
direction is opposite beam direction. 𝑦 direction is horizontal right direction, perpendicular to 𝑥. 𝑧 
direction is vertical up. So 𝑥 and 𝑦 directions are opposite to Geant 4 global coordinate system 
counterparts. 

 

3) Calculation of each key point of the track 

For reference, the track from point A to C is illustrated in Fig 3.2. 

A: Target center. Denote 𝐷 = 42.26 𝑐𝑚, the distance between target center and magnet center. 
𝑅஻ the radius of the uniform magnetic field. 𝜃 initial polar angle of the track, 𝜑 initial azimuthal 
angle of the track. Thus, the direction vector of the track at A is 𝒅 (scaled that x component is 1): 

𝒅 = (−1,  𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑, 𝑡𝑎𝑛𝜃𝑠𝑖𝑛𝜑) = (−1, 𝐾, 𝐾𝑡𝑎𝑛𝜑)   (3.1) 

𝐾 = 𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑 is the y component of 𝒅, which makes representation of point B simpler. 

𝒓஺, the target center: 

𝒓஺ = (𝐷,  0,  0)                                                                        (3.2) 

B: where particle enters magnetic field. Before the calculation of point B, a cut is made to block 
any particle hits the magnet yoke hole. The particle direction at B is the same as A. Denote 𝒓஻ =

(𝑅஻𝑐𝑜𝑠𝜗,  𝑅஻𝑠𝑖𝑛𝜗,  𝑧) (here 𝑅஻ is the radius of the uniform magnetic field) and solve equation: 

𝒓஺ + 𝒅𝑡 = 𝒓஻ 

We have (solved parameter 𝑡 here is not time): 

𝑡 =
𝐷 − ට𝑅஻

ଶ(1 + 𝐾ଶ) − 𝐾ଶ𝐷ଶ

1 + 𝐾ଶ
                                   (3.3) 

 𝒓஻ = (𝑥஻ ,  𝑦஻ ,  𝑧஻) = (𝐷 − 𝑡,  𝐾𝑡,  𝑦஻𝑡𝑎𝑛𝜑) = ቌ
஽௄మାටோಳ

మ(ଵା௄మ)ି௄మ஽మ

ଵା௄మ , 𝐾(𝐷 −

𝑥஻),  𝑦஻𝑡𝑎𝑛𝜑ቍ   (3.4) 

Since 𝐾 is not depend on particle energy 𝐸, 𝒓஻ is only 𝜃, 𝜑 dependent, and with 𝑅஻ ,𝐷 as 
parameters. 
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C: Where particle exits magnetic field. From B to C, particle track is helix, and this is the most 
complicated part of calculation. Only results are shown here, the main part of the calculation 
includes: finding the projected radius of helix in horizontal plane, find circle center of projected 
helix, and solve intersections of magnetic field circle and circle of projected helix. More details in 
appendix. 

Radius of the helix projection (circle in horizontal plane): 

𝑅ு = 10଺𝐸ඥ1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)ଶ/(𝑐𝐵)                                                                (3.5) 

See the appendix at the end of this chapter for the derivation of 𝑅ு. Here 𝐸 is particle (denotes 
either electron or positron energy here) total energy, in unit MeV, the electron charge 𝑒 has be 
canceled by e in MeV. 𝜃, 𝜑 are initial polar and azimuthal angle of particle at target as in 

calculation of point A and B. ඥ1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)ଶ is the amplitude of the projection of unit 

direction vector 𝒅෡ = (−𝑐𝑜𝑠𝜃,  𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) on to horizontal plane (𝑥𝑦 plane). 𝑐 =

299792458 (𝑚/𝑠) as speed of light, 𝐵 = 0.45𝑇 the magnetic field strength. Result 𝑅ு in (3.5) 
has unit cm. Electron/positron charge 𝑒 is already canceled by using MeV included in this 
formula. Note, this result is computed by solving equations of motion of 4-vector under Lorenz 
force using special relativity. 

 

 

 

Center of the circle of projected helix when particles enter magnetic field: 

𝒓ு = (𝑥ு ,  𝑦ு ,  𝑧ு) = (𝑥஻ + 𝑅ு𝑠𝑖𝑛𝛼,  𝑦஻ + 𝑅ு𝑐𝑜𝑠𝛼,  𝑧஻)                              (3.6) 

The angle 𝛼 = atan(𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑) = atan (𝐾), 𝐾 defined below (3.1). 𝛼 is the angle between initial 
track projected direction 𝒅 to 𝑥 axis in 𝑥𝑦 plane. 

Exit point C: Using the assumption that the particles traveled near speed of light when computing 
time of flight, solve intersection of magnetic field circle and circle of projected helix to get point 
C. The angular velocity: 

𝜔 =
𝑐ଶ𝐵

10଺𝐸
 (𝑟𝑎𝑑/𝑠)                                                                                                (3.7) 

Total angle bent in 𝑥𝑦 plane by uniform magnetic field is (by laws of cosines): 

𝜔𝑡௖ = 2𝛽 ≡ 2 ∙ 𝑎𝑐𝑜𝑠 ቆ
𝑥ு

ଶ + 𝑦ு
ଶ + 𝑅ு

ଶ − 𝑅஻
ଶ

2𝑅ுඥ𝑥ு
ଶ + 𝑦ு

ଶ
ቇ = 2 ∙ 𝑎𝑐𝑜𝑠 ቆ

𝑑ு
ଶ + 𝑅ு

ଶ − 𝑅஻
ଶ

2𝑅ு𝑑ு
ቇ         (3.8) 

𝑑ு is the distance between center of helix and center of magnetic field in 𝑥𝑦 plane projection. 

Finally, the solution of point C: 

𝒓௖ = (𝑥ு − 𝑅ு sin(𝜔𝑡௖ + 𝛼) , 𝑦ு − 𝑅ு cos(𝜔𝑡௖ + 𝛼), 𝑧ு + (𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) 𝑡௖)                (3.9) 
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Here 𝑅ு can be found in (3.5), 𝑥ு , 𝑦ு , 𝑧ு can be found in (3.6), 𝜔𝑡௖ in (3.8), 𝑡௖ = 𝜔𝑡௖/𝜔 from 
(3.7), (3.8). And 𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 is the 𝑧 component of particle velocity (by approximating particle 
velocity as speed of light). Since the 𝑥𝑦 plane projection velocity at point C is the derivative of 𝑡 
for formula (3.9) at 𝑡௖, it’s easy: 

𝒗௖ = (−𝜔𝑅ு cos(𝜔𝑡௖ + 𝛼), 𝜔𝑅ு 𝑠𝑖𝑛(𝜔𝑡௖ + 𝛼), 𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)

= 𝑐(−ඥ1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)ଶ cos(𝜔𝑡௖

+ 𝛼), ඥ1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)ଶ𝑠𝑖𝑛(𝜔𝑡௖ + 𝛼), 𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) (3.10) 

The identity 𝜔𝑅ு = 𝑣௫௬ = 𝑐ඥ1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)ଶ the particle projected speed in 𝑥𝑦 plane is 
intuitive, also can be deduced from (3.5) and (3.7). 

CP: Where the particle reaches boundary of projected circle in 𝑥𝑦 plane of magnet pole. As seen 

before the angle bent inside magnetic field is (3.8) 𝜔𝑡௖ = 2𝛽 = 2 ∙ 𝑎𝑐𝑜𝑠 ቀ
ௗಹ

మ ାோಹ
మ ିோಳ

మ

ଶோಹௗಹ
ቁ, now the 

later side of the track till reach CP is bent with angle 𝛾 ≡ 𝑎𝑐𝑜𝑠 ቀ
ௗಹ

మ ାோಹ
మ ିோು

మ

ଶோಹௗಹ
ቁ (by replacing 𝑅஻ by 

𝑅௉ for the 2nd triangle). Then time it takes from point B (particle enters  

magnetic field) to CP is: 

𝑡஼௉ =
𝛽 + 𝛾

𝜔
=

൤𝑎𝑐𝑜𝑠 ൬
𝑑ு

ଶ + 𝑅ு
ଶ − 𝑅஻

ଶ

2𝑅ு𝑑ு
൰ + 𝑎𝑐𝑜𝑠 ൬

𝑑ு
ଶ + 𝑅ு

ଶ − 𝑅௉
ଶ

2𝑅ு𝑑ு
൰൨

𝜔
                                (3.11) 

And thus, in order to check if particle hits magnet pole, compute position of CP by replacing 𝑡௖ to 
𝑡஼௉: 

𝒓஼௉ = (𝑥ு − 𝑅ு sin(𝜔𝑡஼௉ + 𝛼) , 𝑦ு − 𝑅ு cos(𝜔𝑡஼௉ + 𝛼), 𝑧ு + (𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) 𝑡஼௉) 

= (𝑥ு − 𝑅ு sin(𝛼 + 𝛽 + 𝛾) , 𝑦ு − 𝑅ு cos(𝛼 + 𝛽 + 𝛾), 𝑧ு + (𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) 𝑡஼௉)    (3.12) 

Here 𝛼 is defined below (3.6). Check condition: 

| 𝑧ு + (𝑐𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑) 𝑡஼௉| < 𝑃𝑜𝑙𝑒𝐺𝑎𝑝/2                                                                                    (3.13) 

Will give cut if particle pass point CP. 
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IV Fig 3. 2 Geometry of particle tracks till it exits uniform magnetic field, in 𝑥𝑦 projection. 

Point A,B,C,CP are defined in previous pages. 𝑅஻ as effective magnetic field radius, 𝑅௉ as radius 
of magnet pole, 𝑅ு as radius of projected helix circle in 𝑥𝑦 plane, 𝑑ு is the projected distance 
between center of helix to origin (center of magnet). Angle 𝛼 is the acute xy projected angle 
between track and 𝑥 axis, 𝛽 is half arc angle of projected helix circle from B (particle enters 
magnetic field) to C (particle exits magnetic field), 𝛾 is arc angle of projected helix circle from 
half way of BC to point CP (where particle 𝑥𝑦 projection exits magnet pole circle) 

Remark: (1) The computation of CP above is based on assumption that Point CP is inside circle 
of magnetic field, or 𝑅௉ < 𝑅஻. This is true since magnetic field radius is larger than pole radius. 
However, the code also calculates 𝑅௉ > 𝑅஻ case, here particle already exits magnetic field and 
travel as a straight line, the problem of finding CP turns to solve intersection of straight-line track 
from point C to circle centered at origin with radius 𝑅௉. 

(2) If the radius 𝑅௉ is small enough till triangle cannot be formed from 𝑅ு , 𝑑ு , 𝑅௉ anymore, then 
particle simply misses the whole magnet pole and travel onward, (3.11) to (3.13) becomes 
invalid. However, since particle enters magnetic field with maximum polar angle about 15°, this 
won’t happen since our pole radius is 𝑅௉ = 15.25"/2. 
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(3) Angle in formula (3.8) and (3.11): 

𝛽 = 𝑎𝑐𝑜𝑠 ቆ
𝑑ு

ଶ + 𝑅ு
ଶ − 𝑅஻

ଶ

2𝑅ு𝑑ு
ቇ                                                     (3.14) 

It can be shown that 𝛽 is also equals to (or use this as replacement in (3.8) and (3.11)): 

𝛽 = 𝑎𝑡𝑎𝑛 ൬
𝑥ு

𝑦ு
൰ − atan(𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑) = 𝑎𝑡𝑎𝑛 ൬

𝑥ு

𝑦ு
൰ − 𝛼   (3.15) 

While 𝛼 = atan(𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜑) = atan (𝐾). All these geometry relations are shown in Fig 3.2. 

(4) The value of 𝑅஻ is still left to be calibrated. Since the calibration needs comparison between 
this result and Geant 4 simulation result, it’s left to be solved in next section. 

 

Point D,E,F,G: particle reaches side frame of magnet, 1st wire chamber, 2nd wire chamber, and 
hodoscope. 

For the rest of the points, it’s easy to compute since they’re all intersections of a straight line and 
a plane. The condition of particle passing the frame of the detectors are checking if local 
coordinate of the particle inside those planes are within the rectangular window (i.e., side frame 
of magnet, wire chamber’s wire plane active area … are all as rectangle in shape) Thus a unified 
formula is used to compute those intersections, only difference is the location of those planes and 
the angle of how much they tilt. Solve linear equations: 

𝒓௖ + 𝒗௖𝑡௜ = 𝒓௜                                                     (3.16) 

𝑖 can be any of D,E,F,G. 𝒓௖ and 𝒗௖ are position and velocity of particle exiting magnetic field. 
The equation of planes is: 

𝒓௜ = (𝑥௜ , 𝑦௜ , 𝑧௜) = ൬𝑥௜ , 𝑑௜ + 𝛿𝑦௜ ,  −
𝛿𝑦௜

𝑡𝑎𝑛𝜃௜
൰    (3.17) 

It’s parameterized by two parameters 𝑥௜ global and also local 𝑥 coordinate of the intersection 
inside the plane, and 𝑑௜ + 𝛿𝑦௜ the global 𝑦 coordinate. 𝜃௜ is the tilt angle of plane 𝑖. Solving 
equation (3.16) we get: 

𝑡௜ =
𝑑௜ − (𝑦௖ + 𝑧௖𝑡𝑎𝑛𝜃௜)

𝑣௖௬ + 𝑣௖௭𝑡𝑎𝑛𝜃௜
                                   (3.18) 

Global coordinate 𝒓௜ is consequentially computed by (3.16) and (3.18). While if the local 
coordinate is the goal, following is the conversion from global coordinate to local coordinate in 
the planes: 

𝑥′௜ = 𝑥௜

𝑦′௜ = −(𝑦௜ − 𝑑௜)/𝑠𝑖𝑛𝜃௜
                                       (3.19) 

All above formula works for electron, and in order to apply all these formula for positron only 
one modification needs to be made: the only difference in all the discussion above for positron is 
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the sign of its charge, and we only need to change initial azimuthal angle 𝜑 for positron to make 
it mirror image to 𝑥𝑧 plane. Then all formulas in this chapter for electron can be applied for 
positron. 

 

IV Fig 3. 3 𝑦𝑧 projection view of track after it exits magnetic field. 

𝒓௖, 𝒗௖, 𝒓௜  , 𝑑௜, 𝜃௜ are defined last page, solve the time needed from point C to intersections of 
later planes to get 𝒓௜ s.  
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3.3 Basic results 
 

The simple acceptance code is initially written for cross check Geant 4 simulation result, and 
checking acceptance of each physical boundary of magnet and detectors. The information we get 
from the simple simulation includes energy of the particles, position, velocity of particles at each 
surface been checked (can be represented in both global or local coordinate), and if the particles 
pass cut that they’re inside boundaries of surfaces been checked. 

In this chapter all of this basic information has been shown, and some of them has been compared 
with Geant 4 simulation. It’s been shown that the main difference of the result of this code to 
Geant 4 simulation is z coordinate component (or local y coordinate) on detectors. The reason 
will be explained in 3.3.3. 

 

3.3.1 Results 

1) Energy distribution and counts at each check point. There’re 6 points in the simulation can 
cause loss of particle counts: 1) downstream side of yoke hole, 2) where particle horizonal 
projection reaches magnet pole boundary or point CP computed at last chapter, 3) where particle 
reaches magnet side frame or point D, 4) intersection of track and the center plane of front wire 
chamber or point E, 5) intersection of track and the center plane of back wire chamber or point F, 
6) intersection of track and hodoscope point G. 

The energy distribution has been plotted at each of those points, it serves two main purposes: 1) 
Counts at each energy and its complement of photon energy will be used in asymmetry 
calculation, thus we know how many events can we used for asymmetry measurement. 2) Total 
counts at each check point give us idea of which geometry constraint block particle the most, and 
guidance of any change of individual component location of the spectrometer improving 
acceptance. 
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IV Fig 3. 4 Electron energy distribution at each check point. Ordinate: counts, no unit, abscissa: 
electron energy in MeV. 

(c.f. last page) There’re 1131114 events at primary vertex, the pairs obey BH process cross 
section distribution. Cuts used to generate pairs are described in Chapter 1 “Generate BH Pairs”, 
including polar angle 𝜃 in range [4°, 15°], electron azimuthal angle 𝜑௘ in range [−28°, 28°], 
positron azimuthal angle 𝜑௣ in range [180° − 28°, 180° + 28°]. While horizontal projection 
angle 𝜃′ in range [0°, 15°] or electron and [−15°, 0°], vertical projection angle 𝜑′ in range 
[−4°, 4°]. Except the last one, cut at old hodoscope dimension all distribution till back wire 
chamber retains most of electrons. In Geant 4 simulation, the results will be worse, since the 
effect of fringe field that we will discuss later. Note: 1) the geometry cut applied only on electron 
side, regardless how many positrons been blocked on the other side of the magnet. 2) a small 
effect but can be seen from the distributions is: detectors on the back blocks more particles with 
lower energies, this results from lower energy particle are more susceptible to change direction 
from magnetic field. Since a measurable event requires the pair of particles detected from both 
sides, those pairs will be lost. Thus, pure geometry acceptance leads to lower efficiency of 
detecting pairs with one low energy particle. 
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2) Target solid angle (𝜃, 𝜑) distribution after wire chamber acceptance cut. 

 

IV Fig 3. 5 Electron primary vertex polar angle vs azimuthal angle (𝜃, 𝜑) distribution. Ordinate: 
azimuthal angle 𝜑 in degrees, abscissa: polar angle 𝜃 in degrees. 

Unit degrees. Distribution of all events both particles of the pair reach back wire chamber. The 𝜃 
is cut off at 4° on the lower side, since it’s the minimum value for generation of pair data file. On 
the higher side, the particles with 𝜃 larger than ~14.67° degrees are blocked by yoke hole. The 
silhouette of the distribution “shrinks” on larger 𝜃 describes mainly the effect of magnet pole 
blocking particles. The 𝜃 distribution counts drop quickly as 𝜃 value increase, due to the BH 
cross section drops quickly. 𝜑 distribution remains largely uniform, while too large or small 𝜑 
has lower counts, due to both larger 𝜑 particle is more prone to be blocked by magnet pole and a 
artificial effect of pair generation. That is for example 𝜑௘ generated at 28°, and 𝜑௣ will be 
generated with peak probability at 180° + 28° (which is the set upper bound in pair generation), 
but only lower than 180° + 28° side will be generated since the other side do not pass cut for 𝜑௣. 
Meanwhile if 𝜑௘ generated at 0°, 𝜑௣ will be generated with peak probability at 180°, but it can be 
generated freely on either side 𝜑௣ > 180° or 𝜑௣ < 180°. 
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3) Energy 𝐸 vs detectors local horizontal coordinate 𝑥′ distribution. 

The reason we choose this relation is because 𝑥′ has the most correlation to energy, and this 
relation somehow relates to reconstruct energy of particles at primary vertex using the measured 
particle positions on wire chambers. This distribution will give us idea of range of 𝑥′ under 
certain energy 𝐸, and sanity check for the simulation results. There are some effects we can see 
from the results: 

(1) Since the 𝑥′ is not only depend on energy, but also polar angle 𝜃 and azimuthal angle 𝜑 at 
primary vertex, the correspondence is not 1 to 1 and each energy 𝐸 will have a range of 
𝑥′ distributed. 

(2) If we fix 𝜃 and 𝜑, the higher the energy 𝐸, the larger the helix circle radius will be 
(Formula (3.5), 𝑅ு ∝ 𝐸), and 𝑥′ will shift to downstream coordinates. This will result in 
certain measured 𝑥′ can only possibly from certain range of 𝐸. This is the basics for 
initial attempt to fit 𝐸 from only 𝑥′ using Bayes’ theorem. 

(3) Because of the relation 𝑅ு ∝ 𝐸, the total (absolute) angle of the track deviate from 𝑥 axis 

in 𝑥𝑦 plane is (combine Fig 3.2, and formula (3.15)): 𝛿 = 2𝛽 + 𝛼 = 2 ቂ𝑎𝑡𝑎𝑛 ቀ
௫ಹ

௬ಹ
ቁ −

𝛼ቃ + 𝛼 (3.20), while 𝑥ு , 𝑦ு can be represented by (3.4), (3.5) and (3.6). Even at 𝜑 = 0 

and thus 𝛼 = 𝜃 the angle is quite complicated, while as observed low fixed 𝐸 results in 
monotonic dependence of 𝛿 on 𝜃, but high 𝐸 is not. Results in less deviation of 𝛿 and 𝑥′ 
at higher energy. 

Effect (2), (3) are clearly shown on Fig 3.6 below. 

 

IV Fig 3. 6 Energy 𝐸 vs detectors local horizontal coordinate 𝑥′ distribution. Ordinate: electron 
energy 𝐸, abscissa: local horizontal coordinate in cm. 

𝐸 uses 0.5 MeV per bin, 𝑥′ 1cm per bin. 
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3.3.2 𝑥𝑦 distribution at front chamber, and calibration of 𝑅஻ 

𝑥𝑦 distribution histograms show the local 𝑥𝑦 2D distribution on front wire chamber, its 
application includes: 

1) It will give us an estimation of the actual area particles intersects the wire chamber. 

2) Front wire chamber is significantly closer to the magnet compared to the back chamber, 
there will be a large area of the front chamber won’t needed to be activated to collect data 
from the same electron or positron as the back chamber. This will reduce the amount of 
electronics and thus easier analyzation of real experiment data. 

3) The effect of tilted detectors: the detectors are all tilted 45 degrees, upper side of them are 
closer to magnet. It will make upper side detector hits distributed in a smaller region, 
since any tracks which are not perpendicular to beam direction will travel shorter distance 
to upper side of the detectors, resulting in less shift in beam direction (or coordinate 𝑥′). 

4) Calibration of 𝑅஻, the effective radius of magnetic field is the only parameter in this 
simple simulation requires calibration. The process is simple, run a Geant 4 simulation 
with vacuum background and at same location (using front wire chamber) and compare 
the horizontal coordinate between its result and the result from simple simulation, change 
𝑅஻ value to match Geant 4 simulation result. Remarks: (1) Due to the approximation 
made, there is always difference, due to the fringe field is not uniform. (2) It’s easier to 
check horizontal (beam or 𝑥) coordinate for a few certain energies. And since higher 
energy particle tracks are more focused for varying angles. (3) To prevent effect in 3), it’s 
even better to constraint 𝜑 near 0 when calibrate. 

Condition 2𝑅஻ (𝑖𝑛𝑐ℎ) 𝒙ഥ (29<E< 31MeV) 
(cm) 

𝒙ഥ (48<E< 50MeV) 
(cm) 

Geant 4 N/A -3.34 -35.04 

 
17.35 -3.354 -35.55 

 
17.40 -3.13 -35.32 

 
17.46 -3.09 -35.27 

Table 3.1. Average 𝑥 value for different 𝑅஻ in simulation and Geant 4 simulation, cut under two 
different energies. It’s seen that the sum of absolute difference between Geant 4 and simple 
simulation for these two energies is about 0.4 cm, while the separation is about 30 cm. Thus, 
using uniform 𝑅஻ is a good approximation to represent 𝑥 distribution. 2𝑅஻ = 17.35 inches makes 
closest 𝑥̅ near 30 MeV, 2𝑅஻ = 17.46 inches make closest 𝑥̅ at 49 MeV, while 2𝑅஻ =

17.40 inches make balance of differences on both energies, and will be applied. 
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Next page shows the distribution of 𝑥𝑦 distribution at front chamber from both simulations, it’s 
found that 𝑦 distribution for Geant 4 simulation has a lot more spread than this. Will be explained 
in the next section. 

 

       

 

IV Fig 3. 7 Comparison of 𝑥𝑦 distribution of electron intersection at front chamber between 
simple and Geant4 simulation. Both figures ordinate: short axis coordinate of wire plane in m, 
abscissa: long axis coordinate of wire plane in m. 

Upper, from simple simulation, unit m. Lower, from Geant 4 simulation, unit cm. √2 of y 
coordinate in Geant 4 simulation plot come from changing the global coordinate to local 
coordinate of the wire plane. 

 

3.3.3 Effect of fringe field 

The effect of fringe field is twofold: 

1) The varying amplitude of the field cannot make a uniform magnetic field approximation 
having precise horizontal intersection coordinate for all different target energy and angle. 
However, as seen from Table 3.1 and Fig 3.7, this approximation is very close to the 
Geant 4 vacuum simulation result. 
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2) When compare the two 𝑥𝑦 distribution at front chamber, the Geant 4 simulation has 
much larger deviation on 𝑦 coordinate distribution. The reason is the horizontal 
component of the fringe field, it will make the particle track bending more, away from 
the center horizontal plane. As illustrated below in Fig 3.8. 

 

IV Fig 3. 8 Effect of Fringe field on tracks. 

Left figure, we assume magnetic field majorly directed upward, so positive charged particles are 
bent clockwise when look from above. Assume we have a positive charged particle has upward 
component 𝒗௭, and its horizontal component 𝒗∥, which is the major part of the velocity. For 
magnetic field, its major part is upward 𝑩௭ and horizontal part 𝑩∥, which is along pole radius 
direction. 

Right figure: The Lorentz force on the positive charge has the same direction of: 

𝒗 × 𝑩 = (𝒗௭ + 𝒗∥) × (𝑩௭ + 𝑩∥) = 𝟎 + 𝒗௭ × 𝑩∥ + 𝒗∥ × 𝑩௭ + 𝒗∥ × 𝑩∥ 

The component 𝒗∥ × 𝑩∥ has upward direction, as long as angle between 𝒗∥ 𝑎𝑛𝑑 𝑩∥ is less than 
180°. This will always be the case, (c.f. Fig 3.2) two circles in the figure are symmetric about line 
OH, and by symmetry of the particle track, the angle between 𝒗∥ 𝑎𝑛𝑑 𝑩∥ is equal to: 

180° − 𝛼 − ∠𝐴𝑂𝐵 < 180° 

At point C (where particle exits magnetic field). 
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3.4 Applications 
 

3.4.1 Energy asymmetry (for all angles, and 𝜑௣ି௤ near 180°) 

The cross sections are depended on energies 𝐸௘ , 𝐸௣ or 𝛿 = 𝐸௘ − 𝐸௣ since 𝐸௘ + 𝐸௣ = 𝐸ఊ, polar 
angles 𝜃௘ , 𝜃௣ and difference of azimuthal angles 𝜑௘ି௣, the energy asymmetry is defined as: 

𝜀(𝛿) =
ௗఙ(ఋ)ିௗఙ(ିఋ)

ௗఙ(ఋ)ାௗఙ(ିఋ)
     (3.21) 

While all 𝜃௘ , 𝜃௣ and 𝜑௘ି௣ are integrated out. For asymmetry extracted from this simulation, 
counts are used instead of differential cross sections: 

𝜀(𝛿) =
ே(ఋ)ିே(ିఋ)

ே(ఋ)ାே(ିఋ)
        (3.22) 

Because the finite nature of the simulation, 𝑁(𝛿) are counts of pairs when 𝛿 = 𝐸௘ − 𝐸௣ as bin 
center and a specified width (1 MeV is used). The result we can measure is not only depends on 
the pairs generated from Monte-Carlo selection using 𝑑𝜎 from theory and binning, but also 
depends on the acceptance of the pairs. For certain angles 𝜃௘ , 𝜃௣ 𝜑௘ ,𝜑௣ will be blocked till they 

reach detectors, and the part of the differential cross sections 𝑑𝜎൫𝛿, 𝜃௘ , 𝜃௣, 𝜑௘ି௣൯ will be omitted 
from the 𝜀(𝛿) calculation. So 𝜀(𝛿) measured is not 𝜀(𝛿) at primary vertex directly from theory. 
One other issue needs to be noted is this result is only an approximation to Geant 4 simulation 
since it’s lacking effect of fringe field and multiple scatter. 

 

IV Fig 3. 9 Energy asymmetry as a function of 𝐸௘ − 𝐸௣ summing over all solid angles. Ordinate: 
asymmetry, no unit, abscissa: energy difference 𝐸௘ − 𝐸௣ in MeV. 

From all pairs reaches both sides wire chambers. 
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3.4.2 Wire span (𝑛௨, 𝑛௩) distribution 

Wire span 𝑛௨, 𝑛௩ are defined as the number of intervals of wires the particle tracks inside gas 
layer of wire chamber, they’re closely related to number of hit wires for the wire plane, which is 
used for track fitting in analyzer. The number of wires hit should be equal or larger than 3 so the 
analyzer can identify a cluster for track fitting. The wire spans calculated here are purely from 
geometry follow the steps: 

(1) Converting track direction into wire chamber coordinate system in analyzer. 

(2) Projecting track in analyzer coordinate system into plane perpendicular to sense wires. 

(3) Calculate wire span using angle between line linking wires and track inside the projected 
plane. Step (1) is a rotation, result of step (2) (3) are explained in Part III section 3.4 
cluster fitting and Appendix. 

 

IV Fig 3. 10 Conversion of e- direction in simulation coordinates (𝑥, 𝑦, 𝑧) to analyzer VDC 
coordinates (𝑥ᇱ, 𝑦ᇱ, 𝑧′). 

𝑥ᇱ direction is the short axis direction of wire chamber, 𝑧′ direction is perpendicular to wire 
chamber from front to back, 𝑦ᇱmakes 𝑥ᇱ𝑦ᇱ𝑧′ right hand coordinate system. 𝜃 is the tilt angle of 
wire chambers. Note: since the offset on 𝑥ᇱ direction from front wire chamber to back, 𝜃 = 45° is 
used as default setting. At 𝜃 = 45° the line linking centers of both wire chamber is horizontal. 𝜃 
can be changed in the simple simulation and the line will no longer be horizontal. The track 
direction will only depend on rotation about y axis with single parameter 𝜃. 
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Step (1): From the coordinate system shown in Fig 3.10, once we calculated velocity of particles 
when they exit magnetic field 𝒗௖ = (𝑣௫ , 𝑣௬ , 𝑣௭), rotate its unit vector to get 𝒗௖′ in local 
coordinate: 

                𝑣௫
ᇱ = 𝑣௬𝑠𝑖𝑛𝜃 − 𝑣௭ 𝑐𝑜𝑠𝜃 

𝑣௬
ᇱ = −𝑣௫                                 (3.23) 

                𝑣௭
ᇱ = 𝑣௬𝑐𝑜𝑠𝜃 + 𝑣௭ 𝑠𝑖𝑛𝜃 

Step (2): The projection angles in VDC coordinate system 𝜃′, 𝜑′ are defined as shift in 𝑥ᇱ, 𝑦ᇱ 
direction over shifts in 𝑧ᇱ direction. Thus: 

𝑡𝑎𝑛𝜃ᇱ =
௩ೣ

ᇲ

௩೥
ᇲ,   𝑡𝑎𝑛𝜑′ =

௩೤
ᇲ

௩೥
ᇲ                (3.24) 

Step (3): Then after finding e- velocity direction in VDC coordinate (𝑡𝑎𝑛𝜃′, 𝑡𝑎𝑛𝜑′,1), see 
Appendix A1.3 in Part III formula (4)(5): 

              𝑡𝑎𝑛𝛼௨ =
ଵ

√ହ
(2𝑡𝑎𝑛𝜃 + 𝑡𝑎𝑛𝜑) 

𝑡𝑎𝑛𝛼௩ =
ଵ

√ହ
(2𝑡𝑎𝑛𝜃 − 𝑡𝑎𝑛𝜑)            (3.25) 

Where 𝛼௨, 𝛼௩ are the angles between track and line linking wires in the projected plane 

perpendicular to all wires. Then apply formula (3.3) 𝑛௨/௩ =
௛

|௦×௧௔௡ఋೠ/ೡ|
 in section 3.4 of Part III: 

𝑛௨/௩ = 𝑡𝑎𝑛𝛼௨/௩
௪௜௥௘ ௣௟௔௡௘ ௧௛௜௖௞௡௘௦௦

௪௜௥௘ ௦௣௔௖௜௡௚
= 𝑡𝑎𝑛𝛼௨/௩

ଶ.ହସ௖௠

଴.ସଽଷ௖௠
  (3.26) 

To get wire spans. The result of all electron tracks is shown in below Fig 3.11. 
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IV Fig 3. 11 Wire span (𝑛௨, 𝑛௩) distribution with tilt angle 45°.. Ordinate: wire span 𝑛௩, no unit, 
abscissa: wire span 𝑛௨, no unit. 

Under cut: particle pairs reach both sides front wire chambers. 

 

3.4.3 Results from different wire chamber tilt angle 

The wire chambers are default to tilt at 45 degrees from vertical position, the reason is wire 
chambers on each side are bolted together with z plates on sides of wire chambers, with the same 
amount of shift along short axis of wire chamber and along direction perpendicular to wire 
chamber (Part III Fig 2.4 side view). Thus 45 degrees tilt will make both centers of wire 
chambers in the same horizontal plane. 

As we can see Fig 3.7, active area of wire chambers is not fully utilized, especially in short axis 
(local y axis) direction, so we can choose different tilt angle than 45 degrees if it has the benefit 
for measurement. One of the big benefits is the both larger wire span 𝑛௨ and 𝑛௩ values, we need 
both 𝑛௨ and 𝑛௩ of track larger that some track with smaller wire spans will improve (since track 
cross wire chambers with shallower angle, which decreases both 𝛿௨ and 𝛿௩, and by 𝑛௨/௩ =

௛

|௦×௧௔௡ఋೠ/ೡ|
, cluster span increases) and thus the cluster finding and track fitting efficiency while 

using analyzer will improve. For track already with large enough wire spans on both u and v wire 
planes, the increase 𝑛௨ and 𝑛௩ values will not have big benefit since track fitting result of 
intersection between track and wire plane will not improve by much. We will check the result of 
wire spans with different wire chamber tilt angle next. 

There are some constraints prohibiting we increasing the wire chamber tilt angle from vertical 
position indefinitely 

(1) As the tilt angle increases, the wire chambers will have less area in vertical projection 
(area ∝ 𝑐𝑜𝑠𝜃), while the same set of tracks will occupy larger area on wire chamber. 

(2) Since wire chambers are bolted together with z plates and relative angle fixed at 45 
degrees. Increasing tilt angle will rotate front chamber down and back chamber up, tracks 
projected on lower side of back chamber will start to miss the chamber. 

(3) Possibly less efficiency on sides of wire chambers since the filling gas having less flow 
near the edges. 

The additional shift to make the center of mass of both wire chambers at the same horizontal 
plane as the beam is illustrated below in Fig 3.12 and Fig 3.13. 
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IV Fig 3. 12 Intersection of e- track with wire planes. 

𝑥𝑦𝑧 is global coordinate system, 𝑥′𝑦′𝑧′ is analyzer wire chamber coordinate system. Rotate about 
center of front wire chamber to increase tilt angle 𝜃 we see 2nd wire chamber tilted up, and the 
acceptance loses on the lower part of the 2nd chamber. We need to translate both wire chambers 
along +𝑥′ direction to make center of mass of both wire chambers to the same horizontal plane as 
magnet center to increase acceptance. 

 

IV Fig 3. 13 Calculation of amount of translation in +𝑥′ direction. 
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Using laws of cosine, the amount of translation 𝑙 along 𝑥′ axis is: 

𝑙ଶ = ℎଶ(
ଵ

௖௢௦మഏ

ర

+
ଵ

௖௢௦మఏ
− 2

ୡ୭ୱ (ఏି
ഏ

ర
)

ୡ୭ୱ ఏୡ୭ୱ
ഏ

ర
 
)        (3.27) 

ℎ = 15.5𝑖𝑛𝑐ℎ𝑒𝑠 is the distance between wire chambers. Effectively front wire plane 𝑥′ 
coordinate add by amount −𝑙/2, and back wire plane 𝑥′ add by amount 𝑙/2. 

For determining track direction and wire spans 𝑛௨ and 𝑛௩ we can still use formula (3.23) to (3.26) 
with any chamber tilt angle 𝜃 from vertical position. 

For determining track intersections on wire chambers local coordinate system: 

1) Find intersections of tracks and wire planes by formula (3.16) to (3.18), that is the global 
coordinate system result. 

2) Rotate global coordinate to local, similar to (3.23), but has shift since the origin of local 
coordinate system is shift to intersection of wire planes and global y axis: 

               𝑥ᇱ = (𝑦 − 𝑑௜)𝑠𝑖𝑛𝜃 − 𝑧𝑐𝑜𝑠𝜃    

                                                    𝑦ᇱ = −𝑥                                     (3.28) 

               𝑧ᇱ = (𝑦 − 𝑑௜)𝑐𝑜𝑠𝜃 + 𝑧𝑠𝑖𝑛𝜃 

Here 𝑑ଵ = 85 𝑐𝑚 is distance from center of magnet to horizontal intersection of front wire 
chamber to back, unchanged from 45 degrees case, from Fig 3.12 distance to back chamber 𝑑ଶ =

𝑑ଵ + ℎ/𝑐𝑜𝑠𝜃 has changed if 𝜃 ≠ 45°. 

3) Change 𝑥ᇱ value by the description in Fig 3.13, with front chamber by −𝑙/2, and back for 
𝑙/2. 

4) For plots, interchange axis: 𝑥ᇱᇱ = −𝑦ᇱ, 𝑦ᇱᇱ = −𝑥ᇱ 

Result of tilt angle 𝜃 = 60° is shown below: 

 

IV Fig 3. 14 Wire span (𝑛௨, 𝑛௩) distribution with tilt angle 60°. Ordinate: wire span 𝑛௩, no unit, 
abscissa: wire span 𝑛௨, no unit. 
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Only when electron positron pairs hits both sides back wire chamber the back (𝑛௨, 𝑛௩) values are 
filled. Compared to 45° case (Fig 3.11), the wire spans on both wire planes are increased by 
significant amount and much better cluster finding efficiency for tracks with either 𝑛௨ or 𝑛௩ low. 
If analyzer is used to find and fit tracks if 100% hardware efficiency is assumed. The acceptance 
of wire chamber starts to drop when track hits outside of upper, lower side of the wire chamber 
(as shown on the straight upper right boundary in Fig 3.14, also see Fig 3.15 below). 

 

IV Fig 3. 15 Electron track intersections on wire chambers at 60° tilt angle. Ordinate: short axis 
coordinate, unit m, abscissa: long axis coordinate, unit m. 

Upper figure: front chamber, lower figure: back chamber. Tracks miss the wire chambers on 
upper side of front chamber and lower side of back chamber. 

 

As we can see above, following effects comes from increasing tilt angle: 

(1) For wire spans, both 𝑛௨, 𝑛௩ values increase and will result in better cluster finding and 
local (for each wire plane) track fitting result. 

(2) For wire chamber acceptance, after solving global coordinate of intersection of track and 
wire planes, the chamber short axis coordinate will be stretched (increased absolute value 
of 𝑥ᇱ) because of increased 𝜃 value in (3.28) then translated to the upper side for front 
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chamber and lower side for back chamber. While the local x (horizontal) coordinate 
remains the same. 

(3) For track finding and fitting efficiency if we use analyzer track fitting code, the increased 
𝑛௨, 𝑛௩ values will make cluster finding easier and local track fitting more accurate, thus 
improve efficiency. Meanwhile, as tilt angle increases, the intersection of track on wire 
planes will eventually hits upper or lower bound of wire plane, thus reduce acceptance. 
The optimum value should be between 45 degrees and 60 degrees.  

 

3.4.4. Detector resolution on 𝐸, 𝜃, 𝜑 

Here we trying to answer the question: for small change of energy 𝐸, or change of initial 
spherical angle 𝜃, 𝜑, how much shift in coordinates on wire chamber? 

This can be answered easily using the simulation: in addition to the base simulation result, for 
each initial condition, change energy 𝐸, or initial spherical angle 𝜃, 𝜑 by a small amount and 
compare the change in track intersection coordinates on wire chamber with base result. It should 
be expected that change of 𝐸 and 𝜃 will mainly change horizontal coordinate. Change of 𝜑 (note 
it’s azimuthal angle at target) will change mainly local vertical coordinate especially for larger 𝜃. 

The real resolution of these quantities is much worse because multiple scatter. For wire chambers 
as hardware, the resolution is expressed in terms of wire plane u or v coordinate, which according 
to HallA NIM paper (( [38] p. 334), the value is 225𝜇𝑚 or 0.0225cm. It’s expected be much 
better for the change of 𝐸, 𝜃, 𝜑 values 𝛿𝐸, 𝛿𝜃, 𝛿𝜑 we set for the check. 

Using the resolution of wire coordinates in NIM paper 0.0225 cm in u or v direction, expressing 
unit vectors 𝑥ො, 𝑦ො in terms of unit vectors 𝑢ො, 𝑣ො: 

𝑥ො = (𝑢ො − 𝑣ො)/2𝑠𝑖𝑛𝛼 

𝑦ො = (𝑢ො + 𝑣ො)/2𝑐𝑜𝑠𝛼     (3.29) 

𝛼 is the angle between wires and long axis of wire plane, with 𝑡𝑎𝑛𝛼 = 1/2, 𝑠𝑖𝑛𝛼 = 1/√5, and 

𝑐𝑜𝑠𝛼 = 2/√5. 

For example, in Fig 3.16 below, change energy 𝐸 by 0.1 MeV, average change in 𝑥 is 0.416cm, 
while change in 𝑦 is negligible. then from (3.29), set 𝛿𝑥 = 0.416cm, 𝛿𝑦 = 0: 

ቀ
𝛿𝑢
𝛿𝑣

ቁ = ൬
1/2𝑠𝑖𝑛𝛼 1/2𝑐𝑜𝑠𝛼

−1/2𝑠𝑖𝑛𝛼 1/2𝑐𝑜𝑠𝛼
൰ ൬

𝛿𝑥
𝛿𝑦

൰ = ቀ
0.465𝑐𝑚

−0.465𝑐𝑚
ቁ 

Change in u v coordinates is about 0.465𝑐𝑚 which is much larger than 0.0225cm. Thus, without 
multiple scatter, wire chambers is having much better resolution than 0.1MeV. 
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IV Fig 3. 16 Difference of 𝑥𝑦 coordinates of track on back chamber by changing 𝐸 by 0.1MeV. 
Ordinate: vertical change in track coordinate, in unit cm, abscissa: horizontal change in track 
coordinate, in unit cm. 

 

IV Fig 3. 17 Difference of 𝑥𝑦 coordinates of track on back chamber by changing 𝜃by 0.1°. 
Ordinate: vertical change in track coordinate, in unit cm, abscissa: horizontal change in track 
coordinate, in unit cm.  
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IV Fig 3. 18 Difference of 𝑥𝑦 coordinates of track on back chamber by changing 𝜑 by 0.1°. 
Ordinate: vertical change in track coordinate, in unit cm, abscissa: horizontal change in track 
coordinate, in unit cm.  
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4 Reduce data dimension by principal component analysis 
 

4.1 Introduction 
As we already applied Bayes' theorem to infer probability of target energy distribution under 
condition of horizontal coordinate 𝑥 measured at detector (or monitor in the Geant 4 simulation). 
By the following formula: 

𝑃(𝐸|𝑥) =
𝑃(𝑥|𝐸)𝑃(𝐸)

𝑃(𝑥)
 

That’s for one side (either e- or e+) data. 𝑃(𝑥|𝐸) could be measured from calibration process, 
𝑃(𝐸) could use theory prediction, 𝑃(𝑥) could also be measured through wire chamber. None the 
less, all terms on the left can be initially set by simulation result as starting point to compute the 
left side, which 𝑃(𝐸|𝑥) can be computed from. Thus, an iteration algorithm can be used to 
determine energy distribution 𝑃(𝐸). 

However, even 𝐸 and 𝑥 has strong correlation, at lower energy side the 𝑥 distribution under fixed 
𝐸 has large standard deviation since 𝑥 is also largely depend on 𝜃௧ (horizontal projection angle of 
particle direction at target). The fully formulated the conditional probability of target kinematics 
under the condition of certain measured position and angle value at wire chamber will be: 

𝑃൫𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧ห𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ , 𝑥௣, 𝑦௣, 𝑡𝑎𝑛𝜃௣ௗ, 𝑡𝑎𝑛𝜑௣ௗ൯ 

=
𝑃(𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧)𝑃(𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧)

𝑃(𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ)
 

×
𝑃൫𝑥௣, 𝑦௣, 𝑡𝑎𝑛𝜃௣ௗ, 𝑡𝑎𝑛𝜑௣ௗห𝐸ఊ − 𝐸௘ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧൯𝑃൫𝐸ఊ − 𝐸௘ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧൯

𝑃൫𝑥௣, 𝑦௣, 𝑡𝑎𝑛𝜃௣ௗ , 𝑡𝑎𝑛𝜑௣ௗ൯
   (4.1) 

In above formula: 𝐸௘ is the electron energy at target. 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧ are tangents 
of electron and positron track projection angles (horizontal and vertical change of coordinates 
over beam direction change of coordinates of electron) out of target. 𝑥௘ , 𝑦௘ and 𝑥௣, 𝑦௣ are 
positions of electron and positron tracks intersection coordinates at front wire chamber. 
𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ and 𝑡𝑎𝑛𝜃௣ௗ, 𝑡𝑎𝑛𝜑௣ௗ are tangents of electron and positron track horizontal (𝜃) 
and vertical (𝜑) projection angles with respect to horizontal right (for electron) and left (for 
positron) perpendicular to beam direction. 

Some simplifications of the terms are already been made: We utilized the constraint that 𝐸௘ +

𝐸௣ = 𝐸ఊ so only one energy needs to be determined. In addition, after primary vertex, the e- e+ 
trajectory is independent, and results in probability independence of above formula on the right 
side. 

Although with the simplification, we could already see the issue here: there’re too many 
dimensions in the formula. A term like 

 𝑃(𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧) 
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Needs to be specified by 7-dimension data points, which makes: (1) computation like 
normalization (multiple sums, or multiple integral) difficult (2) hard to interpret and visualize 
data (3) storage (for example, tabulation) of data expensive. 

However, high-dimensional data often has properties we can exploit. (1) In most case, they’re 
overcomplete, i.e., many dimensions can be represented as combination of other dimensions. (2) 
Certain dimensions are correlated and data possess a lower-dimension structure. By using 
structure and correlations between dimensions of the data we can reduce dimension, and allow us 
to work with more compact data, ideally without losing information. The method we choose to 
reduce data dimension is principal component analysis, an algorithm for linear dimensionality 
reduction. 

 

4.2 Principal component analysis (PCA) 
4.2.1 Introduction 

The purpose of PCA is to find projections 𝒙௡෦ of data point 𝒙௡ (data from 𝑛th event), 𝑛 = 1, … , 𝑁 
that is similar to 𝒙௡ as possible, while might have significantly lower intrinsic dimensions. [58] 

To be more precise, suppose we have dataset {𝒙ଵ, … , 𝒙ே}, 𝒙௡ ∈ ℝ஽, 𝑁 is the total number of data, 
𝐷 is the dimension of each data point. In our context 𝒙 = (𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ, 𝑡𝑎𝑛𝜑௘ௗ)் (the 
transverse means 𝒙 is represented as a column vector/matrix) is the data, so 𝐷 = 4 (Also there is 
𝒙 for the positron side, will be computed independently). We have covariance matrix: 

𝑆 =
ଵ

ே
∑ 𝒙௡𝒙௡

𝑻ே
௡ୀଵ =

ଵ

ே
𝑋𝑋𝑻 ∈ ℝ஽×஽           (4.2) 

Matrix 𝑋 = [𝒙ଵ, … , 𝒙ே] ∈ ℝே×஽ represents entire dataset, with each individual data point as its 
column. First, we use a set of orthonormal vectors {𝒃ଵ, … , 𝒃ெ}, 𝒃௜ ∈ ℝ஽ as basis of a 𝑀 
dimensional subspace inside the vector space ℝ஽,to construct a matrix 𝐵 = [𝒃ଵ, … , 𝒃ெ] ∈

ℝ஽×ெthat represent point 𝒙௡ in the 𝑀 dimensional space: 

𝒛௡ = 𝐵்𝒙௡ ∈ ℝெ                                                (4.3)  

While projection matrix 𝐵𝐵்  projects each data point 𝒙௡ to 𝑀 dimensional subspace 𝑈 of ℝ஽: 

𝒙௡෦ = 𝐵𝒛௡ = 𝐵𝐵்𝒙௡ ∈ 𝑈                                   (4.4) 

Where 𝑈 ⊂ ℝ஽ and dim(𝑈) = 𝑀 < 𝐷, so from (4.3) and (4.4) we can see 𝒛௡ is the intrinsic 
coordinates of projected data, with dimension 𝑀. 

To make 𝒙𝒏෦ similar to 𝒙𝒏 as possible we require: (1) variance of projected data 𝒛 (or equivalently 
variance 𝒙෥ ) to be as large as possible, to retain as much information as possible. Or equivalently 

(2) the average squared Euclidean distance (reconstruction error) 𝐽ெ ≡ 
ଵ

ே
∑ ||𝒙௡ − 𝒙௡෦||ଶே

௡ୀଵ  is 

minimized. The goal of PCA is to find a set of orthonormal vectors {𝒃ଵ, … , 𝒃ெ}  that satisfy 
condition (1) or (2), then intrinsic coordinate vector under basis 𝒃ଵ, … , 𝒃ெ is 𝒛௡ = 𝐵்𝒙௡ and 
projected coordinate with essentially 𝑀 dimension is 𝒙௡෦ = 𝐵𝒛௡ = 𝐵𝐵்𝒙௡. 
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4.2.2 Derivation of PCA 

As the purpose of PCA, to retain as much information as possible when we project our data into 
an intrinsic lower dimension space we choose to maximize the variance of projected intrinsic 
coordinates 𝒛 since variance is an indicator of spread of the data. 

Before the derivation there are two subjects to be clarified: 

1) We assume the mean of data 𝒙 is 𝟎, without loss of generality: 

( [58] p. 289) Let’s assume the mean of data 𝒙 is 𝝁 instead of 𝟎, using the property of variance we 
have the variance for 𝒛: 

𝑉(𝒛) = 𝑉൫𝐵்(𝒙 − 𝝁)൯ = 𝑉(𝐵்𝒙 − 𝐵்𝝁) = 𝑉(𝐵்𝒙)     (4.5) 

i.e., the variance of the low-dimensional data 𝒛 does not depend on the mean of the data 𝝁. With 
the assumption, the expectation value of 𝒛 is also 𝟎: 

𝐸(𝒛) = 𝐸(𝐵்𝒙) = 𝐵்𝐸(𝒙) = 𝟎                                            (4.6) 

Note: each individual coordinate component of data is indicated by index of its component and 
the index of amount of data. Random variable 𝒙 has 𝑁 number of data and the 𝑛th data is indicate 
as 𝒙௡ = (𝑥ଵ௡, 𝑥ଶ௡ , … , 𝑥஽௡)் (column vector), where the projected coordinate 𝒛𝒏 =

(𝑧ଵ௡ , 𝑧ଶ௡ , … , 𝑧ெ௡)் 

 

2) Review of (orthogonal) projection as linear transformation 

(Many linear algebra literatures have derivation of projection transformation, here is a video [59]) 

Discarding the index of number of data, in formula (4.3) and (4.4) we use 𝒛 = 𝐵்𝒙 and 𝒙෥ =

𝐵𝐵்𝒛 without confirming they’re indeed the projection of 𝒙 onto the subspace 𝑈 ⊂ ℝ஽ spanned 
by orthonormal vectors 𝒃ଵ, … , 𝒃ெ. A projection 𝑃 is defined as a linear transformation that 𝑃ଶ =

𝑃.Below is a quick recap. 

(1) For simplest case, project vector 𝒙 onto a straight line (1D subspace) specified by vector 𝒃 ∈

ℝ஽. Since the projection has the same direction as 𝒃, we can denote it as 𝑃𝒙 = 𝜆𝒃. In addition, 
𝒙 − 𝜆𝒃 is perpendicular to 𝒃 (see Fig 4.1): 

(𝒙 − 𝜆𝒃) ∙ 𝒃 = 0 

Solve 𝜆, we have: 

                                                                         𝜆 =
𝒃∙𝒙

𝒃∙𝒃
=

𝒃𝑻𝒙

𝒃𝑻𝒃
                                           (4.7) 

For the 2nd equal sign, we notice 𝒃 = (𝑏ଵ, … , 𝑏஽)்and 𝒙 = (𝑥ଵ, … , 𝑥஽)் are column vectors, and 
uses definition of scaler product 𝒃 ∙ 𝒙 = ∑ 𝑏௜𝑥௜

஽
௜ୀଵ = 𝒃𝑻𝒙. Thus, the projection of vector 𝒙 onto 𝒃 

is: 
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 𝑃𝒙 = 𝜆𝒃 =
𝒃𝑻𝒙

𝒃𝑻𝒃
𝒃 = 𝒃

𝒃𝑻𝒙

𝒃𝑻𝒃
=

𝒃𝒃𝑻

𝒃𝑻𝒃
𝒙 = 𝒃(𝒃𝑻𝒃)ି𝟏𝒃𝑻𝒙     (4.8) 

Since 𝒃𝑻𝒃 = ∑ 𝑏௜
ଶ஽

௜ୀଵ  is a number, (𝒃𝑻𝒃)ି𝟏 can be placed in between 𝒃 and 𝒃𝑻. 

 

IV Fig 4. 1 Projection 𝑃𝒙 of vector 𝒙 onto 1D subspace spanned by vector 𝒃. 

It’s easy to see the relation (𝒙 − 𝜆𝒃) ∙ 𝒃 = 0. 

(2) For general case, project vector 𝒙 onto a subspace 𝑈 ∈ ℝ஽, dim(𝑈) = 𝑀 spanned by vectors 
𝒃ଵ, … , 𝒃ெ , 𝒃௜ ∈ 𝑈 ⊂ ℝ஽(Note: here we do not require 𝒃ଵ, … , 𝒃ெ to be orthonormal). We denote 
matrix 𝐵 = [𝒃ଵ, … , 𝒃ெ] with each vector 𝒃௜ as its column vector. Since the projection is in 
subspace 𝑈, it can be denoted as linear combination of vectors 𝒃ଵ, … , 𝒃ெ: 

𝑃𝒙 = ෍ 𝜆௜𝒃௜

ெ

௜ୀଵ
= 𝐵𝝀                                         (4.9) 

Where 𝝀 = (𝜆ଵ, 𝜆ଶ, … , 𝜆ெ)்.Similar to 1 dimensional projection, 𝒙 − 𝑃𝒙 is perpendicular to the 
subspace 𝑈, or any vector 𝒃௜ ∈ 𝑈: 

(𝒙 − 𝑃𝒙) ∙ 𝒃௜ = (𝒙 − 𝐵𝝀) ∙ 𝒃௜ = 𝒃௜
𝑻(𝒙 − 𝐵𝝀) = 0, 𝑖 = 1…, M 

Concatenate all M equations above: 

𝐵𝑻(𝒙 − 𝐵𝝀) = 𝟎, or 𝐵𝑻𝒙 = 𝐵𝑻𝐵𝝀 
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Solve vector 𝝀: 

𝝀 = (𝐵்𝐵)ିଵ𝐵்𝒙                                                      (4.10) 

Back to equation (4.9) (2.8) we have: 

𝑃𝒙 = 𝐵𝝀 = 𝐵(𝐵்𝐵)ିଵ𝐵்𝒙                                      (4.11) 

Note: (1) For 1 dimensional case 𝑃𝒙 = 𝒃(𝒃𝑻𝒃)ି𝟏𝒃𝑻𝒙 , which is a special case above. (2) 
𝑃ଶ = 𝐵(𝐵்𝐵)ିଵ𝐵் ∙ 𝐵(𝐵்𝐵)ିଵ𝐵் = 𝐵(𝐵்𝐵)ିଵ𝐵் = 𝑃, so 𝑃 is a projection. 

Now back to our problem setting of PCA, which require 𝒃ଵ, … , 𝒃ெ orthonormal, or 𝒃௜ ∙ 𝒃௝ =

𝛿௜௝ = (𝐵்𝐵)௜௝ , we have 𝐵்𝐵 = 𝐼 the identity matrix in (4.10)(2.9) and (4.11)(2.10), change 

notation 𝝀 by 𝒛 and (𝐵்𝐵)ିଵ = 𝐼, we have: 

                                                       𝒛 = 𝐵்𝒙                                                             (4.12) 

𝒙෥ = 𝑃𝒙 = 𝐵𝒛 = 𝐵𝐵்𝒙 = ෍ 𝒃௜𝒃௜
𝑻

𝑴

𝒊ୀ𝟏
𝒙                        (4.13) 

These are the formulas (4.3) and (4.4) once the subscript 𝑛 is added. 

 

3) Derivation of PCA 

[58] pp. 289-293. We project all data points 𝒙ଵ, … , 𝒙ே onto a subspace 𝑈 spanned by orthonormal 
basis 𝒃ଵ, … , 𝒃ெ. Under basis 𝒃ଵ, … , 𝒃ெ the projection coordinate vector is 𝒛௡ = 𝐵்𝒙௡ ∈ ℝெ, and 
projected data is 𝒙௡෦ = 𝐵𝒛௡ = 𝐵𝐵்𝒙௡ ∈ 𝑈 ⊂ ℝ஽. Our goal is to maximize variance of intrinsic 
coordinates 𝒛(𝑧ଵ, … , 𝑧ெ)்: 𝑉(𝒛) = 𝑉(𝐵்𝒙). Since we require the lower dimension projection 
subspace 𝑈 spanned by orthonormal basis 𝒃ଵ, … , 𝒃ெ, this property of 𝒃௜will simplify our 
derivation by sequentially finding 𝒃ଵ, … , 𝒃ெ and corresponding variance 𝑉(𝑧ଵ),…, 𝑉(𝑧ெ).We 
start with finding the 1st unit vector 𝒃ଵ, or the principal component in 1 dimensional case: 

1. Finding 𝒃ଵ and variance of 𝑧ଵ: The definition of variance of 𝑧ଵ is 

𝑉(𝑧ଵ) = 𝑉൫𝒃ଵ
்𝒙൯ =

1

𝑁
෍(𝒃ଵ

்𝒙௡)(𝒃𝟏
𝑻𝒙𝒏)𝑻

ே

௡ୀଵ

=
1

𝑁
෍ 𝒃ଵ

்𝒙௡𝒙௡
𝑻𝒃ଵ = 𝒃ଵ

்𝑆𝒃ଵ

ே

௡ୀଵ

    (4.14) 

Where 𝑆 =
ଵ

ே
∑ 𝒙௡𝒙௡

𝑻ே
௡ୀଵ  is the covariance matrix of data. Under constraint ||𝒃ଵ||ଶ = 𝒃ଵ

்𝒃ଵ =

1 we solve the maximum value problem by applying Lagrange multiplier, the problem is 
equivalent to solve the un-constraint maximum value of function: 

𝐿(𝒃ଵ, 𝝀ଵ) = 𝒃ଵ
்𝑆𝒃ଵ + 𝜆ଵ൫1 − 𝒃ଵ

்𝒃ଵ൯                                         (4.15) 

Solve (4.15) by taking partial derivatives with respect to 𝒃ଵ, 𝜆ଵ: 

𝜕𝐿

𝜕𝒃ଵ
≡ ൬

𝜕𝐿

𝜕𝑏ଵଵ
,

𝜕𝐿

𝜕𝑏ଵଶ
, … ,

𝜕𝐿

𝜕𝑏ଵ஽
൰ = 2൫𝒃ଵ

்𝑆 − 𝜆ଵ𝒃ଵ
்൯ = 0          (4.16) 
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𝜕𝐿

𝜕𝜆ଵ
= 1 − 𝒃ଵ

்𝒃ଵ = 0                                                                        (4.17) 

We have the solution: 𝒃ଵ
்𝑆 = 𝜆ଵ𝒃ଵ

், taking transpose and note covariance matrix 𝑆 is 
symmetric. We have: 

                                                                    𝑆𝒃ଵ = 𝜆ଵ𝒃ଵ                                        (4.18) 

Thus 𝒃ଵ is an eigen vector of 𝑆 and 𝝀ଵ is the corresponding eigen value. In order to maximize 
variance of coordinate 𝑧ଵ, we rewrite (4.14) using (4.18): 

𝑉(𝑧ଵ) = 𝒃ଵ
்𝑆𝒃ଵ = 𝒃ଵ

்𝜆ଵ𝒃ଵ = 𝜆ଵ       (4.19) 

If we choose 𝝀ଵ to be the largest eigen value of data covariance matrix 𝑆, we solve the 1-
dimension PCA problem. Eigen vector 𝒃ଵ is called the 1st principal component. The coordinate of 
projected subspace 𝑈 = 𝑠𝑝𝑎𝑛(𝒃ଵ) is 𝑧ଵ௡ = 𝒃ଵ

்𝒙௡ by (4.3), and representation of original data 
𝒙𝒏,  𝑛 = 1, … , 𝑁 is 𝒙𝒏෦ = 𝐵𝒛𝒏 = 𝐵𝐵்𝒙𝒏 by (4.4). 

2. We generalize the problem to finding the 𝑚 dimensions principal subspace by induction: 

Assume we have already found the first m-1 principal components 𝒃௜,  𝑖 = 1, … , 𝑚 − 1. Recall 
the original data matrix 𝑋 = [𝒙ଵ, … , 𝒙ே], we subtract each data point by its projection onto 
subspace spanned by 𝒃ଵ, 𝒃ଶ, … , 𝒃௠ିଵ to get the reduced data matrix 𝑋෠: 

𝑋෠ = 𝑋 − 𝑃௠ିଵ𝑋 = 𝑋 − ෍ 𝒃௜𝒃௜
𝑻

௠ିଵ

௜ୀଵ
𝑋     (4.20) 

From 𝑋෠, we can construct the reduced covariance matrix 𝑆መ as in (4.2): 

                                                                             𝑆መ =
ଵ

ே
𝑋෠𝑋෠𝑻                            (4.21) 

Following the same procedure as in 1 dimensional case, we find the largest eigen value of 𝑆መ, 
denote by 𝝀௠ and its eigen vector 𝒃௠, which is the 1-dimension solution of PCA for reduced data 
𝑋෠. If 𝝀௠ and its eigen vector 𝒃௠ also be the eigen value and eigen vector of original covariance 
matrix 𝑆, then maximizes the variance of 𝑧௠ and will be the next solution for original data 𝑋 in 
our iteration. Proof is shown below: 

We need to shown 𝑆 =
ଵ

ே
𝑋𝑋𝑻 and 𝑆መ =

ଵ

ே
𝑋෠𝑋෠𝑻 has same eigen vectors: assume 𝒃௜ is the eigen 

vector correspond to 𝑚 th largest eigen value of 𝑆: 𝑆𝒃௜ = 𝝀௜𝒃௜ consider 𝑆መ𝒃௜: 

𝑆መ𝒃௜ =
1

𝑁
𝑋෠𝑋෠𝑻 =

1

𝑁
(𝑋 − 𝑃௠ିଵ𝑋)(𝑋 − 𝑃௠ିଵ𝑋)்𝒃௜ 

=
1

𝑁
൫𝑋𝑋𝑻 − 𝑋𝑋𝑻𝑃௠ିଵ

் − 𝑃௠ିଵ𝑋𝑋𝑻 − 𝑃௠ିଵ𝑋𝑋𝑻𝑃௠ିଵ
்൯𝒃௜ 

                                               = (𝑆 − 𝑆𝑃௠ିଵ − 𝑃௠ିଵ𝑆 − 𝑃௠ିଵ𝑆𝑃௠ିଵ)𝒃௜                           (4.22) 

Since 𝑃௠ିଵ𝒃௜ = ∑ 𝒃௝𝒃௝
𝑻𝒃௜ = ∑ 𝒃௝𝛿௜௝ = 𝒃௜

௠ିଵ
௝ୀଵ

௠ିଵ
௝ୀଵ  if 𝑖 < 𝑚;      𝑃௠ିଵ𝒃௜ = 𝟎 if 𝑖 ≥ 𝑚. So:  
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𝑆መ𝒃௜ = 𝟎                                                                     if 𝑖 < 𝑚 

𝑆መ𝒃௜ = (𝑆 − 𝑃௠ିଵ𝑆)𝒃௜ = 𝝀௜𝒃௜ − 𝑃௠ିଵ𝝀௜𝒃௜ = 𝝀௜𝒃௜  if 𝑖 ≥ 𝑚    (4.23) 

Thus, for any 𝑖 = 1, … , 𝐷, eigen vector 𝒃௜ of 𝑆 is also eigen vector of 𝑆መ. If 𝑖 < 𝑚, eigen value of 
𝑆መ is 0; if 𝑖 ≥ 𝑚, the eigen value is 𝜆௜, the same as 𝑆. 

 

3. Captured variance (information) after dimension reduction 

Similar to the case of 𝑧ଵ, the variance of 𝑧௠ is: 

𝑉(𝑧௠) = 𝒃௠
்𝑆𝒃௠ = 𝒃௠

்𝜆௠𝒃௠ = 𝜆௠                                                                            (4.24) 

If we reduce dimension 𝐷 of data using PCA to 𝑀, we pick the 𝑀 eigen vectors with the largest 
eigen values of the variance matrix 𝑆. Variance of 𝒛 from (4.5) is: 

𝑉(𝒛) = 𝑉(𝐵்𝒙) =
1

𝑁
(𝐵்𝑋)(𝐵்𝑋)𝑻 = 𝐵்𝑆𝐵 = 𝐵்𝑆[𝒃ଵ, 𝒃ଶ, … , 𝒃ெ] 

= 𝐵்[𝜆ଵ𝒃ଵ, 𝜆ଶ𝒃ଶ, … , 𝜆ெ𝒃ெ] = ቎
𝒃ଵ

𝑻

⋮

𝒃ெ
𝑻

቏ [𝜆ଵ𝒃ଵ, 𝜆ଶ𝒃ଶ, … , 𝜆ெ𝒃ெ] = ൥
𝜆ଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆ெ

൩    (4.25) 

We denote 𝑉ெ = ∑ 𝜆௜
ெ
௜ୀଵ = 𝑡𝑟(𝑉(𝒛)) (trace of variance matrix 𝑉(𝒛)) as captured variance by 

PCA, and 𝑉஽ = ∑ 𝜆௜ = 𝑡𝑟(𝑆)஽
௜ୀଵ  is the total variance dataset contains. And relative variance 

captured is 𝑉ெ/𝑉஽. 

 

4.2.3 Summary 

Overall, to apply PCA for a given set of data {𝒙𝟏, … , 𝒙𝑵}, follow steps: 

(1) From data matrix 𝑋 = [𝒙ଵ, … , 𝒙ே] calculate covariance matrix 𝑆 =
ଵ

ே
𝑋𝑋𝑻 

(2) To reduce dimension from 𝐷 to 𝑀. Find the 𝑀 largest eigen values of 𝑆: 𝝀௜,  𝑖 = 1, … , 𝑀 
and corresponding eigen vectors 𝒃௜. 

(3) The intrinsic coordinate under basis 𝒃ଵ, 𝒃ଶ, … , 𝒃ெ is 𝒛௡ = 𝐵்𝒙௡ ∈ ℝெ and reduced 
(compressed) data point under the original basis is 𝒙௡෦ = 𝐵𝒛௡ = 𝐵𝐵்𝒙௡. 
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4.3 Application of PCA to Geant 4 simulation data 
 

4.3.1 Introduction 

( [58] pp. 303-305) There is a change of convention since computer use indices from 0, all the 
discussion is this chapter uses the same convention. Our plan is to reduce the dimension of 
measured data 𝒙 = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் = (𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ)்from 4 to 2 or 3, since the 
obvious correlation between 𝑥௘ and 𝑡𝑎𝑛𝜃௘ௗ, or 𝑦௘ and 𝑡𝑎𝑛𝜑௘ௗ to reduce dimension to 1 is not a 
option. 

In addition to the standard PCA procedure discussed in last chapter. There is a few modifications 
needs to be made to reduce computation error: 

1) Before applying PCA directly to data 𝒙, instead we change 𝒙 to 𝒙′ by both mean subtraction, 
that is subtract each component 𝑥௜ by its mean 𝜇௜. Since the variance matrix 𝑆 is independent of 
mean 𝝁, this won’t change the variance of 𝑆, but can reduce the risk of numerical problems. Then 
standardize the data by dividing standard deviation 𝜎௜. Summarized as below: 

𝑥௜
ᇱ =

𝑥௜ − 𝜇௜

𝜎௜
                                (4.26) 

This makes standardize coordinate 𝑥௜
ᇱ with mean 0, dimensionless, with standard deviation 1. The 

variance matrix 𝑆′ of data 𝒙′ is essentially the correlation matrix of data 𝒙: 

𝑆′௜௝ =
1

𝑁
(𝑋′𝑋′்)௜௝ =

1

𝑁
෍(𝒙௡′𝒙௡′𝑻)௜௝ = 𝐶𝑜𝑣(

𝑥௜ − 𝜇௜

𝜎௜
,
𝑥௝ − 𝜇௝

𝜎௝
)

ே

௡ୀଵ

=
𝐶𝑜𝑣(𝑥௜, 𝑥௝)

ඥ𝑉(𝑥௜)𝑉(𝑥௝)

= 𝐶𝑜𝑟𝑟൫𝑥௜ , 𝑥௝൯ (4.27) 

2) Apply PCA on 𝑆′, i.e., find the first 𝑀 largest eigen values 𝜆௜ and their eigen vectors 𝒃௜ of 𝑆′. 
Construct matrix 𝑩 = [𝒃ଵ, 𝒃ଶ, … , 𝒃ெ], then coordinate under basis 𝒃 is 𝒛௡ = 𝐵்𝒙௡′ ∈ ℝெ and 

reduced (compressed) data point 𝒙௡′෪ = 𝐵𝒛௡ = 𝐵𝐵்𝒙௡′. 

3) Transform compressed data 𝒙௡′෪  back to 𝒙௡෦ using the relation (4.26): 

𝑥ప௡෦ = 𝜎௜𝑥ప௡′෪ + 𝜇௜                            (4.28) 

 

4.3.2 Application 

In this section, we apply PCA to one of our Geant 4 simulation. The settings of the simulation 
are: 

(1) We generate Bethe-Heitler pair, which has been specified by 

 𝐸௘ , 𝐸௣ = 𝐸ఊ − 𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧ 
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at each event. We want to include energies and solid angles that a bit beyond what we want to 
measure since the pairs from these energies and solid angles will also have probability to render 
similar e+ e- position and angle data measured at wire chambers. 

For projection angles 𝜃௘௧, 𝜑௘௧ , 𝜃௣௧, 𝜑௣௧ the constraints are: (1) since the maximum polar angle 
from target center to edge of yoke hole of the magnet is about 14.7°, we choose maximum 
𝜃௘௧, 𝜑௘௧ , 𝜃௣௧, 𝜑௣௧ to 15° , that is a “square” with side length 2𝑡𝑎𝑛15°covers the “circle” with 
radius 𝑡𝑎𝑛14.7°. (2) pairs (𝜃௘௧, 𝜑௘௧) and (𝜃௣௧, 𝜑௣௧) are randomized so that the polar angle is 
between 4° (a little less than cone shaped baffle between pole of the magnets) to 15°. In addition, 
they’re chosen that the azimuthal angle is in range [−28°, 28°] for e- and [(180 − 28)°, 
(180+28)°] for e+ since beyond this region e- or e+ will obviously hit either poles of the magnet, 
or its side frame. Total number of events is more than 1.13 million. 

(2) Geant 4 simulation setup, all geometry is the same as previous simulations. It should be noted 
that for choice of material: All backgrounds include target has been set to air. The measured 
position and angle at wire chambers 𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ are replaced by values at monitor just 
in front of front wire chamber. It’s a valid approximation at the moment since multiple scattering 
effect is much larger than the wire chamber resolution, which is ~100 𝜇𝑚 . In addition, 
𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ are measured projection angles along horizontal axis perpendicular to beam 
direction. Although the wire chambers are tilted and Jlab Hall A analyzer will produce track 
projection angle tangents in local frame of wire chamber at front wire plane, it’s a easy rotation to 
transform these angles to 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ. Same procedure is applied for positron side wire 
chambers. 

The following shows the result of each PCA step. They’re either represented in table or 
histogram, and since the original data 𝒙 = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் = (𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ, 𝑡𝑎𝑛𝜑௘ௗ)் at wire 
chamber has dimension 4, it’s impossible to visualize, instead we can select 2 of the 4 dimensions 
for visualization. As for the projected coordinate vector 𝒛, in addition to histogram of each of 4 
principal component coordinates, the 2D histogram of the largest two component (𝑧଴, 𝑧ଵ) is a 
good choice since most information are contained in these 2 dimensions. 

All the following histograms and tables are subjected to two cuts: 

(1) Require both sides monitor have hits (thus front wire chamber will be hit assuming 
efficiency 100%). In other word, if there is only one side has signal during experiment, 
there will be no coincidence detected from hodoscopes and those events will be 
discarded. In addition, the simulation require case the hit on left be e+ and hit on right be 
e-. 

(2) Since air is background, and the simulation has probability that the hits on monitor has 
unreasonably large projection angle 𝜃௘ௗ and/or 𝜑௘ௗ. As seen from next page the variance 
of 𝑡𝑎𝑛𝜑௘ௗ is 0.01139, while its value was over 80 due to an event with 𝜃, 𝜑 very close to 
90°. These isolated data can have huge impact on variance of 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ, thus a cut 
is made to ensure track reaches back wire chamber. 
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Out of 1.13 million simulated events 823,290 events pass the cuts and shown below. 

 
𝜇௜  (𝑐𝑚) 𝑉(𝒙𝒊) (𝑐𝑚ଶ) 

𝑥଴ = 𝑥௘ -1.91 344.8 

𝑥ଵ = 𝑦௘ -0.207 40.11 

𝑥ଶ = 𝑡𝑎𝑛𝜃௘ௗ -0.0859 0.06151 

𝑥ଷ = 𝑡𝑎𝑛𝜑௘ௗ 0.00794 0.01139 

Table 4.1 Mean and variance of original data 𝒙 = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் = (𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ)் 

Which are computed by formula 𝜇௜ =
ଵ

ே
∑ 𝑥௜

ே
௜ୀ଴ , 𝑉(𝑥𝒊) =

ଵ

ே
∑ 𝑥௜

ଶே
௜ୀ଴ − 𝜇௜

ଶ. 

𝑆ᇱ = ൮

1 −0.0398 0.974 0.0494
−0.0398 1 0.00437 0.894

0.974 0.00437 1 0.0970
0.0494 0.894 0.0970 1

൲ 

Covariance matrix 𝑆′ of data 𝒙′ of e-, with 𝑥௜
ᇱ =

௫೔ିఓ೔

ఙ೔
 and 𝒙 = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் =

(𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ)் be the data measured from monitor. The diagonal terms are all 1, since 

the covariance matrix is essentially correlation matrix of 𝒙, from (4.27) 𝑆′௜௜ =
஼௢௩(௫೔,௫೔)

ඥ௏(௫೔)௏(௫೔)
=

௏(௫೔)

௏(௫೔)
= 1. The largest off diagonal terms indications strong correlation between corresponding 

dimensions: 

(1) 𝑆′଴ଶ = 𝑆′ଶ଴ = 0.974 correspond to 𝑥௘ and 𝑡𝑎𝑛𝜃௘ௗ, which are horizontal wire plane 
coordinate and horizontal projection angle. (See illustration below, check, 𝑥௘ 𝑦௘ are local 
coordinates at monitor parallel to chambers? 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ are projection angles in 
global coordinate system.) 

(2) 𝑆′ଵଷ = 0.894 correspond to 𝑦௘ and 𝑡𝑎𝑛𝜑௘ௗ, which are local coordinate perpendicular to 
horizontal axis (with 45° tilt) and vertical projection angle. 

𝐵ସ = (𝒃଴, 𝒃ଵ, 𝒃ଶ, 𝒃ଷ) = ൮

0.625 0.331 −0.0508 −0.705
0.285 −0.649 −0.705 0.000976
0.639 0.300 −0.0178 0.708
0.346 −0.616 0.707 −0.0338

൲ 

Above, full eigen vector matrix includes all 4 dimensions on e- side. If we want to reduce 
dimension to 1,2, or 3, use first 1,2, or 3 columns of this matrix. 

(𝜆଴, 𝜆ଵ, 𝜆ଶ, 𝜆ଷ) = (2.006 1.868 0.1013 0.02445) 
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𝑉ெ

𝑉஽
=

∑ 𝜆௜
ெିଵ
௜ୀ଴

∑ 𝜆௜
஽ିଵ
௜ୀ଴

,   ൬
𝑉ଵ

𝑉ସ
,
𝑉ଶ

𝑉ସ
,
𝑉ଷ

𝑉ସ
,
𝑉ସ

𝑉ସ
൰ = (50.16%, 96.86%, 99.39%, 100%) 

Above, eigen values of each principal component and percentage of information (variance) 
captured from 1,2,3,4 principal components. It’s easy to see that the variance is mainly 
contributed by the first 2 principal components. This is understandable since from original data 
due to (1) 𝑥௘ and 𝑡𝑎𝑛𝜃௘ௗ, 𝑦௘ and 𝑡𝑎𝑛𝜑௘ௗ are strongly correlated, while (2) 𝑥௘ and 𝑦௘ both has 
significant spread (variance). 

Remark: Instead of each component 𝑥௜′, 𝑖 = 0,1,2,3 of 𝒙′ has variance exactly be 1, variance of 
𝑧଴, 𝑧ଵ are larger than 1. As we can see from formula in paragraph below (4.25): 

𝑉஽ = ෍ 𝜆௜ = 𝑡𝑟(𝑆)
஽ିଵ

௜ୀ଴
 

Replace dimension 𝐷 by 4 and 𝑆 by 𝑆′, since 𝑡𝑟(𝑆ᇱ) = 1 + 1 + 1 + 1 = 4 = ∑ 𝜆௜
ଷ
௜ୀ଴ = 2.006 +

1.868 + 0.1013 + 0.02445, when all 𝜆௜ s are unequal, we must have sum of 1st two eigen 
values > 2. 

 

IV Fig 4. 2 Intrinsic projection coordinates (on standardized data 𝒙′) (𝑧଴, 𝑧ଵ) distribution by PCA. 
Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, no unit. 

Left plots distribution of e+, right e-. The mirror image in plot between each 2D histogram is due 
to the opposite sign of horizontal coordinate 𝑥௘ and 𝑥௣. Since the standardized data 𝒙′ is 
dimensionless, so does 𝒛 = 𝐵்𝒙′. The range of axis 𝑧௜ in above plots are [−2𝜎௜, 2𝜎௜]. 
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IV Fig 4. 3 Distribution of 𝑧଴, 𝑧ଵ, 𝑧ଶ of e+. Ordinate: count, no unit, abscissa: 𝑧଴, 𝑧ଵ, or 𝑧ଶ, no unit. 

 

IV Fig 4. 4 Distribution of 𝑧଴, 𝑧ଵ, 𝑧ଶ of e-. Ordinate: count, no unit, abscissa: 𝑧଴, 𝑧ଵ, or 𝑧ଶ, no unit. 

 

Data 𝒙 and standardized data 𝒙′ before and after projection has shown in the following pages. We 
recall the flow of data through PCA: 

𝒙 → 𝒙ᇱ, 𝑥௜
ᇱ =

𝑥௜ − 𝜇௜

𝜎௜
→ 𝒛 = 𝐵்𝒙ᇱ → 𝒙′෩ = 𝐵𝒛 = 𝐵𝐵்𝒙ᇱ → 𝒙෥, 𝑥ప෥ = 𝜎௜𝑥ప′෪ + 𝜇௜,  𝑖

= 0, … , 𝑀 − 1 (4.29) 

The subscript 𝑛 (index of event) is omitted above. The matrix 𝐵 = [𝒃଴, 𝒃ଵ, … , 𝒃ெିଵ] is also 
depends on number of principle components 𝑀 we choose. The larger the 𝑀, the more 
information is captured, and the resulting 𝒙෥′ or 𝒙෥ will be closer to 𝒙ᇱ or 𝒙. Since issue of 
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visualization, only (𝑥଴, 𝑥ଵ)் = (𝑥௘ , 𝑦௘)் 2D histograms have been plotted in the next pages. For 
positron the distributions are similar and will be omitted here. 

Remark: RMS of 𝑥௘′, 𝑦௘′ (before projection) should be 1, however the following plots are not due 
to the axes range of the histograms. If we expand the range of plot in either direction from [-3,3] 
to [5,5] those RMS will be larger than 0.996. 

Number of PC equals 1: 4-dimension data has been projected onto 1 dimension subspace, so in 
(𝑥௘ , 𝑦௘) plot it also shows a straight line containing projected data. Even (𝑥௘ , 𝑦௘) before 
projection has significant spread on either 𝑥௘ 𝑜𝑟 𝑦௘ dimension and 1 dimension is not enough. 

Number of PC equals 2: as we see from previous page, 96.86% of the information is retained 
when 2 principal components are chosen. The (𝑥௘ , 𝑦௘) distribution after projection looks a lot 
more similar to original data, albeit there is some obvious change in distribution. 
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IV Fig 4. 5 Data 𝒙 before and after projection with number of principal components 1,2,3. For all 
4.5 figures, ordinate: vertical coordiante of electron intersection on detector in cm, abscissa: 
horizontal coordiante of electron intersection on detector in cm. 

Fig 4.5 (1) Data 𝒙 before and after projection. Only (𝑥଴, 𝑥ଵ)் = (𝑥௘ , 𝑦௘)் has been plot, number 
of principal components equals 1. 

 

IV Fig 4. 6 Standardized data 𝒙′ before and after projection with number of principal components 
1,2,3. ordinate: standarized vertical coordiante of electron intersection on detector, no unit, 
abscissa: standarized horizontal coordiante of electron intersection on detector, no unit. 

(1) Standardized data 𝒙′ before and after projection. Only (𝑥଴′, 𝑥ଵ′)் = (𝑥௘′, 𝑦௘′)் has been plot, 
number of principal components equals 1. 
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IV Fig 4.5 (2) Data 𝒙 before and after projection. Only (𝑥଴, 𝑥ଵ)் = (𝑥௘ , 𝑦௘)் has been plot, 
number of principal components equals 2. 

 

IV Fig 4.6 (2) Standardized data 𝒙′ before and after projection. Only (𝑥଴′, 𝑥ଵ′)் = (𝑥௘′, 𝑦௘′)் has 
been plot, number of principal components equals 2. 
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Iv Fig 4.5 (3) Data 𝒙 before and after projection. Only (𝑥଴, 𝑥ଵ)் = (𝑥௘ , 𝑦௘)் has been plot, 
number of principal components equals 3. 

 

IV Fig 4.6(3) Standardized data 𝒙′ before and after projection. Only (𝑥଴′, 𝑥ଵ′)் = (𝑥௘′, 𝑦௘′)் has 
been plot, number of principal components equals 3. 
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4.3.3 Additional discussion and modifications 

1) Scheme of fitting Bethe-Heitler pair distribution 

From formula (4.1), originally our way to fit Bethe-Heitler pair energy and angles distribution 
under the condition of certain measurement 𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ , 𝑥௣, 𝑦௣, 𝑡𝑎𝑛𝜃௣ௗ , 𝑡𝑎𝑛𝜑௣ௗ at 
wire chambers includes conditional probability of these measurements under the condition of 
certain measurement of the Bethe-Heitler pair energy and angles 
𝑃(𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧) and 
𝑃൫𝑥௣, 𝑦௣, 𝑡𝑎𝑛𝜃௣ௗ, 𝑡𝑎𝑛𝜑௣ௗห𝐸ఊ − 𝐸௘ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧൯, which can be estimated from Geant 4 
simulation. 

Through dimension reduction, we transform data point 𝒙 = (𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ)் to 𝒛 =

𝐵்𝒙 with arbitrary lower dimension. Ideally, we want 𝒛 has significantly lower dimension than 𝒙 
to facilitate analysis, while lose as little information as possible. Once we have distribution of 𝒙, 
we transform it into distribution of 𝒛, then instead of consider terms 
𝑃(𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧) on the right side of formula (4.1), we extract 
𝑃(𝒛|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧) from Geant 4 simulation. Formula (4.1) turns into: 

𝑃൫𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧ห𝒛௘ , 𝒛௣൯ 

=
𝑃(𝒛𝒆|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧)𝑃(𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧)

𝑃(𝒛௘)
 

×
𝑃൫𝒛𝒑ห𝐸ఊ − 𝐸௘ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧൯𝑃൫𝐸ఊ − 𝐸௘ , 𝑡𝑎𝑛𝜃௣௧, 𝑡𝑎𝑛𝜑௣௧൯

𝑃൫𝒛௣൯
 (4.30) 

Which simplifies the computation a lot. In this section, we will develop the scheme to properly 
getting 𝑃(𝒛|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧). 

 

2) Conditional probability of 𝑃(𝒛௘|𝐸௘) and 𝑃(𝒛௘|𝑡𝑎𝑛𝜃௘௧) 

We consider 𝑃(𝒛௘|𝐸௘) and 𝑃(𝒛௘|𝑡𝑎𝑛𝜃௘௧) as starting point. Before showing the probability 
distributions, there are things to be noted: 

(1)𝜑 is ignored at the moment. Since (1) Only 𝜑௘௧ − 𝜑௣௧ has physical significance. However, 
without detector acceptance, 𝜑௘௧ distribution would be uniform and 𝜑௘௧ − 𝜑௣௧ cannot be 
extracted from single side data. (2) 𝜑௘௧ only has strong correlation with 𝑦௘ and 𝑡𝑎𝑛𝜑௘௣, it doesn’t 
play a big role of finding energy 𝐸௘, which are mainly correlated 𝑥௘ and 𝑡𝑎𝑛𝜃௘௣. 

(2) 𝐸௘ and 𝜃௘௧ affects the e- track in different way. For energy 𝐸௘, if 𝜃௘௧ and 𝜑௘௧ unchanged, the 
larger the 𝐸௘ the more 𝑥௘ value shift to downstream direction (or the mapping from 𝐸௘ to 𝑥௘ 
without considering multiple scatter should be monotonic). This results from e- track inside 
magnet is helix, and its radius is proportional to 𝐸௘, it also means change same amount of 𝐸௘ will 
change e- track direction more in low energy range. 



291 
 

 

On the other hand, e- horizontal projection angle 𝜃௘௧ alters e- track by changing the angle and 
position of the intersection of e- track enters the magnetic field. To first approximation, the 
magnetic field is uniform and shaped as a circle, under special relativity, e- track is a helix inside 
magnetic field with radius proportional to 𝐸௘. For this approximation, the angle between e- track 
exiting magnetic field and beam direction (total bent angle) is  

𝜃௘௧ + 𝜔𝑡 

Here 𝜔 is the angular velocity, 𝜔 ∝ 1/𝐸௘ and do not depend on 𝜃௘௧; while 𝑡 is the time of e- 
inside magnetic field, which depends on both 𝜃௘௧ and 𝐸௘. 𝜃௘௧ and 𝜔𝑡 contributions are competing 
each other, results in different total bent angle. 

The lower 𝐸௘ with much smaller circle intersect with circle of magnetic field in such manner: the 
smaller 𝜃௘௧ would have much larger 𝜔𝑡 since the e- track enters magnetic field in direction close 
to magnetic circle’s radius direction, having longer track inside magnetic field due to small 
radius. 𝜔𝑡 overwhelms 𝜃௘௧ and 𝜃௘௧ + 𝜔𝑡 is monotonic decreasing function of 𝜃௘௧. While in 𝐸௘ →

∞ limit 𝜔 → 0, 𝜔𝑡 → 0 and 𝜃௘௧ + 𝜔𝑡 is monotonic increasing function of 𝜃௘௧, which is also the 
case of high 𝐸௘ end of our experiment setting. In 𝐸௘ somewhere in between 𝜃௘௧ + 𝜔𝑡 first 
decreasing then increasing, result in a lot more focused group of e- tracks. In summary, with low 
𝐸௘ change of 𝜃௘௧ will result in large change of total bent angle 𝜃௘௧ + 𝜔𝑡 and thus large variance 
in 𝒛𝒆, while the variance of 𝒛𝒆 is a lot smaller due to 𝜃௘௧ change with higher 𝐸௘ . 

Below histogram that reflects the conditional probability of 𝑃(𝒛௘|𝐸௘) and 𝑃(𝒛௘|𝑡𝑎𝑛𝜃௘௧) are 
shown. 

 

IV Fig 4. 7 (𝑧଴, 𝑧ଵ) of e+ distribution, under 𝐸௘ cut. Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, no unit. 

(𝑧଴, 𝑧ଵ) of e+ distribution, under cut 10𝑀𝑒𝑉 < 𝐸௘ < 11𝑀𝑒𝑉, 14𝑀𝑒𝑉 < 𝐸௘ <
15𝑀𝑒𝑉, … , 46𝑀𝑒𝑉 < 𝐸௘ < 47𝑀𝑒𝑉 i.e., 1MeV bin width, with 4MeV change between bin 
centers. Strips of (𝑧଴, 𝑧ଵ) are clearly separated. 
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As we can see from the histogram above, strips of (𝑧଴, 𝑧ଵ) are clearly separated under cut of 𝐸௘. 
In other word 𝑃(𝑧଴, 𝑧ଵ|𝐸௘) conditional probability distribution won’t have much overlap on 𝑧଴, 𝑧ଵ 
for different 𝐸௘. This makes 𝐸௘ clearly identifiable by using equation (4.30) under the condition 
of certain 𝑧଴, 𝑧ଵ value. In addition, all these strips are almost parallel to each other, thus 
perpendicular to the parallel direction, 𝐸௘ can almost be identified under coordinate under this 
direction. 

The strips of (𝑧଴, 𝑧ଵ) under cut of 𝐸௘ is not parallel to any of the 𝑧଴, 𝑧ଵ axis can be explained: 
when we applying PCA to find eigen vectors of covariance matrix of measured data. All those 
data are measured from detectors, which are 𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ. As we seen from the values 
of covariance matrix 𝑆′ in 4.3.2, there are strong correlation between 𝑥௘ and 𝑡𝑎𝑛𝜃௘ௗ, also 
between 𝑦௘ and 𝑡𝑎𝑛𝜑௘ௗ. PCA projects the detector data mainly onto 𝑧଴, 𝑧ଵ to maximize their 
variance from information of (𝑥௘ , 𝑡𝑎𝑛𝜃௘ௗ) pair (to 𝑧଴) and (𝑦௘ , 𝑡𝑎𝑛𝜑௘ௗ) pair (to 𝑧ଵ) (as we can 
see from 𝑥 𝑣𝑒𝑟𝑠𝑒𝑠 𝑦 distribution, it’s insufficient to use only one principle component projection 
to describe detector data, two dimensional subspace is minimum). This entire procedure (finding 
principal components of data at detectors) does not reflect any information (variance) of data 
from energy 𝐸௘, which carries information at target, nor correlation between 𝐸௘ and detector data 
such as 𝑥௘ and 𝑡𝑎𝑛𝜃௘ௗ. 

The very good property of 𝑧଴, 𝑧ଵ is as described above, 𝑃(𝑧଴, 𝑧ଵ|𝐸௘) conditional probability 
distribution are strips which are separated by different 𝐸௘ and almost parallel to each other. 
Which means the correlation between 𝐸௘ and a linear combination of 𝑧଴, 𝑧ଵ is very strong, 
intuitively the correlation is mainly between 𝐸௘ and (𝑥௘ , 𝑡𝑎𝑛𝜃௘ௗ) pair. In next section 4.3.3 3) we 
rotate 𝑧଴, 𝑧ଵ to 𝑧଴′, 𝑧ଵ′ to make strips of 𝑃(𝑧଴, 𝑧ଵ|𝐸௘) distribution parallel to one of the 𝑧଴′, 𝑧ଵ′ 
coordinate axis to simplify 𝑃(𝑧଴, 𝑧ଵ|𝐸௘) fitting further. 

In order to see the correlation between 𝐸௘ and (𝑥௘ , 𝑡𝑎𝑛𝜃௘ௗ) pair, we approximate correlation 1 
between 𝐸௘  and (𝑥௘ , 𝑡𝑎𝑛𝜃௘ௗ) pair, which also has correlation 1 between 𝑥௘ and 𝑡𝑎𝑛𝜃௘ௗ: 

(1) Also, assuming correlation 1 between 𝑦௘ and 𝑡𝑎𝑛𝜑௘ௗ and from previous result 

𝐵ସ = (𝒃଴, 𝒃ଵ, 𝒃ଶ, 𝒃ଷ) = ൮

0.625 0.331 −0.0508 −0.705
0.285 −0.649 −0.705 0.000976
0.639 0.300 −0.0178 0.708
0.346 −0.616 0.707 −0.0338

൲ 

𝒛 = 𝐵்𝒙ᇱ 

We see 𝑧଴ ≅ 0.632((𝑥௘
ᇱ + (𝑡𝑎𝑛𝜃௘ௗ)′) + 0.316(𝑦௘′ + (𝑡𝑎𝑛𝜑௘ௗ)′), 𝑧ଵ ≅ 0.315(𝑥௘

ᇱ +

(𝑡𝑎𝑛𝜃௘ௗ)′) − 0.633(𝑦௘′ + (𝑡𝑎𝑛𝜑௘ௗ)′). (Here 0.632= (0.625+0.639)/2 to approximate 𝑥௘
ᇱ  

and(𝑡𝑎𝑛𝜃௘ௗ)′ components of 𝒃଴, 0.316 = (0.285 + 0.346)/2 to to approximate 𝑦௘
ᇱ and 

(𝑡𝑎𝑛𝜑௘ௗ)′ components of 𝒃଴. Similar treatment for 𝒃ଵ) 

Try to cancel out (𝑦௘
ᇱ + (𝑡𝑎𝑛𝜑௘ௗ)′) in linear combination of 𝑧଴ and 𝑧ଵ.We find  

𝐸௘ ≅ 1.41(0.633𝑧଴ + 0.316𝑧ଵ) = 0.895𝑧଴ + 0.456𝑧ଵ 

We will see later (section 4.3.3 3)) after a rotation in (𝑧଴, 𝑧ଵ) plane, 𝑧ଵ′ coordinate for e- which 
correspond to 𝐸௘ dependence, is 
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𝑧ଵ
ᇱ = −(0.861𝑧଴ + 0.508𝑧ଵ) 

Which is quite close to the 𝐸௘ expression. 

(2) If we apply PCA for data 𝒙 = (𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ)் = (𝐸௘ , 𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ, 𝑡𝑎𝑛𝜑௘ௗ)் instead of 
(𝑥଴, 𝑥ଵ, 𝑥ଶ, 𝑥ଷ)் = (𝑥௘ , 𝑦௘ , 𝑡𝑎𝑛𝜃௘ௗ , 𝑡𝑎𝑛𝜑௘ௗ)், the first principle component is 𝑧଴ =

−0.567𝐸௘
ᇱ + 0.5834𝑥௘′ + 0.0174𝑦௘′ + 0.577𝑡𝑎𝑛𝜃௘ௗ′ + 0.0700𝑡𝑎𝑛𝜑௘ௗ′ again reflects the 

correlation between 𝐸௘ and (𝑥௘ , 𝑡𝑎𝑛𝜃௘ௗ) pair . 

𝑃(𝒛𝒆|𝑡𝑎𝑛𝜃௘௧) results are less promising to be used: 

 

IV Fig 4. 8 (𝑧଴, 𝑧ଵ) of e+ distribution, under 𝑡𝑎𝑛𝜃௘௧ cut. Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, no 
unit. 

0.06 < 𝑡𝑎𝑛𝜃௘௧ <0.065 (6.84° < 𝜃௘௧ < 7.13°), 0.26 < 𝑡𝑎𝑛𝜃௘௧ <0.265 (14.57° < 𝜃௘௧ < 14.84°). 
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IV Fig 4. 9 (1) (𝑧଴, 𝑧ଵ) of e+ distribution, under 𝑡𝑎𝑛𝜃௘௧cut, vacuum background. Ordinate: 𝑧ଵ, no 
unit, abscissa: 𝑧଴, no unit. 

0.06 < 𝑡𝑎𝑛𝜃௘௧ <0.065 (3.43° < 𝜃௘௧ < 3.72°), 0.26 < 𝑡𝑎𝑛𝜃௘௧ <0.265 (14.57° < 𝜃௘௧ < 14.84°). 
From analyzing vacuum background simulation result. 

 

IV Fig 4.9(2) (𝑧଴, 𝑧ଵ) of e+ distribution, under cut 0.12 < 𝑡𝑎𝑛𝜃௘௧ <0.125 (6.84° < 𝜃௘௧ < 7.13°). 
From analyzing vacuum background simulation result. Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, no unit. 
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As seen above, the conditional probability 𝑃(𝒛௘|𝑡𝑎𝑛𝜃௘௧) results are less promising to be used. 
Unlike 𝑃(𝒛௘|𝐸௘) distribution the 𝑃(𝒛௘|𝐸௘) with separate 𝐸௘ results in separate 𝒛௘ distribution, 
which makes 𝐸௘ fit result reliable when applying Bayes’ theorem to find 𝑃(𝐸௘|𝒛௘). 

Even in vacuum background, the 𝑃(𝑧଴, 𝑧ଵ|𝑡𝑎𝑛𝜃௘௧) value are hard to be determined in certain 
𝑡𝑎𝑛𝜃௘௧ region: at low or high 𝑡𝑎𝑛𝜃௘௧ value, 𝑃(𝑧଴, 𝑧ଵ|𝑡𝑎𝑛𝜃௘௧) has distinct strip distribution, while 
at 𝑡𝑎𝑛𝜃௘௧ somewhere in between 𝑃(𝑧଴, 𝑧ଵ|𝑡𝑎𝑛𝜃௘௧) will be spread throughout major region of 
(𝑧଴, 𝑧ଵ) distribution. 

 

3) Additional modification 

As discussed in last section, the 𝑃(𝑧଴, 𝑧ଵ|𝐸௘) has good behavior so that we can rely on 
distributions 𝑃(𝑧଴, 𝑧ଵ|𝐸௘) under various 𝐸௘ to construct 𝑃(𝐸௘|𝑧଴, 𝑧ଵ) distribution from Bayes' 
theorem. In other word, term in (4.30) such as 

𝑃(𝒛௘|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧)𝑃(𝐸௘ , 𝑡𝑎𝑛𝜃௘௧, 𝑡𝑎𝑛𝜑௘௧)

𝑃(𝒛௘)
 

Will be simplified to: 

𝑃(𝒛௘|𝐸௘)𝑃(𝐸௘)

𝑃(𝒛௘)
 

Remark: c.f. (4.30) we need full distribution terms like 𝑃(𝒛௘|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧ , 𝑡𝑎𝑛𝜑௘௧) instead of 
𝑃(𝑧଴, 𝑧ଵ|𝐸௘) for applying Bayes' theorem, even if we choose 𝒛௘ = (𝑧଴, 𝑧ଵ) and drop 𝑡𝑎𝑛𝜑௘௧ as 
discussed, it still has 4 dimensions. There is an assumption to make, that if: 

𝑃(𝒛௘|𝐸௘ , 𝑡𝑎𝑛𝜃௘௧) = 𝑃(𝒛௘|𝐸௘)          (4.31) 

Then additional 1 dimension drop and numerical tabulation and fitting became much easier. This 
property is called conditional independence, which means choosing different value of 𝑡𝑎𝑛𝜃௘௧ 
won’t affect 𝑃(𝒛𝒆|𝐸௘) distribution. 

If we denote 𝒛௘ → 𝒙, 𝑡𝑎𝑛𝜃௘௧ → 𝑦, 𝐸௘ → 𝑧, (4.31)(3.6) is rewrite as: 

𝑃(𝒙|𝑦, 𝑧) = 𝑃(𝒙|𝑧)                              (4.31)′ 

In order to understand the meaning of (4.31)′, from chain rule of conditional probability (page 
173 in [60]): 

𝑃(𝒙, 𝑦, 𝑧) = 𝑃(𝒙|𝑦, 𝑧)𝑃(𝑦, 𝑧) = 𝑃(𝒙|𝑦, 𝑧)𝑃(𝑦|𝑧)𝑃(𝑧) 

Divide both sides by 𝑃(𝑧): 

𝑃(𝒙, 𝑦|𝑧) = 𝑃(𝒙|𝑦, 𝑧)𝑃(𝑦|𝑧) 

Apply (4.31)′ to right side: 
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𝑃(𝒙, 𝑦|𝑧) = 𝑃(𝒙|𝑧)𝑃(𝑦|𝑧)                (4.32) 

The equivalent form (4.32) of (4.31)′ is similar to unconditioned probability independence: 
𝑃(𝒙, 𝑦) = 𝑃(𝒙)𝑃(𝑦) 

Thus, the flow of data now become: 

𝒙 → 𝒙′ → 𝒛௘ → 𝒛௘′ 

𝒛௘ = 𝐵்𝒙′ 

𝒛௘′ = 𝑅𝒛𝒆 

The purpose of the additional rotation 𝑅 is to make strips of 𝑃(𝑧௘଴′, 𝑧௘ଵ′|𝐸௘) parallel to one of 
𝒛௘′ = (𝑧௘଴′, 𝑧௘ଵ′) coordinate axis. The condition for computing 𝑅 is that its column vectors are 
the orthonormal eigen vectors of the covariance matrix of random variable 𝒛௘ under cut 
29𝑀𝑒𝑉 < 𝐸௘ < 31𝑀𝑒𝑉. Note strips with other e- energy cut will be parallel to this cut to a good 
approximation, we choose this cut since it has more data at 30MeV than other energies. In 

addition, we rotate 𝒛௘ = (𝑧଴, 𝑧ଵ) by matrix 𝑅 rather than standardize 𝒛௘ (that is 𝑧௘௜ →
௭೐೔ିఓ೐೔

ఙ೐೔
) 

before the rotation. 

Remark: This rotation also keeps total variance in 𝑧଴, 𝑧ଵ plane unchanged as from definition of 
variance captured in first 𝑀 principal components 𝑉ெ = ∑ 𝝀௜

ெ
௜ୀଵ = 𝑡𝑟(𝑉(𝒛)), and now: 

𝑉(𝑅𝒛) =
1

𝑁
෍ (𝑅𝒛)(𝑅𝒛)் = 𝑅𝑆𝑅்

ே

௡ୀଵ
 

𝑆 =
ଵ

ே
∑ (𝒛)(𝒛)்ே

௡ୀଵ  is the covariance matrix of 𝒛, using the property of trace of matrix? 

𝑡𝑟൫𝑉(𝑅𝒛)൯ = 𝑡𝑟(𝑅𝑆𝑅்) = 𝑡𝑟(𝑆𝑅்𝑅) = 𝑡𝑟(𝑆) = 𝑡𝑟൫𝑉(𝒛)൯ = 𝑉ெ 

The procedure of fitting energy becomes: 𝒙 → 𝒙′ → 𝒛௘ → 𝒛௘′ = (𝑧଴′, 𝑧ଵ′), then filling histograms 
to approximate 𝑃(𝒛௘′|𝐸௘). This discussion will be elaborated in next section 4.4. 
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4.4 Energy reconstruction results via applying PCA to data   
4.4.1 Additional rotation 

Continuing the discussion in 4.3.3 3), we rotate 𝒛௘ by the rotation 𝑅 which column vectors are 
eigen vectors of covariance matrix of𝒛௘ = (𝑧௘଴, 𝑧௘ଵ) under conditional distribution 
𝑃(𝑧௘଴, 𝑧௘ଵ|29𝑀𝑒𝑉 < 𝐸௘ < 31𝑀𝑒𝑉). 

Convention of notation: 

1.Since we are analyzing data after rotation 𝑅 in this whole chapter, we drop  𝑓ᇱ 𝑟𝑜𝑚 𝑧௘଴′, 𝑧௘ଵ′ to 
make formulas cleaner to read. 

2. Since all algorithms applied to e- is also applicable to e+, thus if only discuss results on one 
side of the detectors, the subscript 𝑒 or 𝑝 is dropped. 

 

IV Fig 4. 10 Conditional distribution of e- 𝑃(𝑧଴, 𝑧ଵ|29𝑀𝑒𝑉 < 𝐸 < 31𝑀𝑒𝑉). Ordinate: 𝑧ଵ, no 
unit, abscissa: 𝑧଴, no unit. 
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IV Fig 4. 11 𝑃(𝑧଴, 𝑧ଵ), after rotation 𝑅. Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, no unit. 

 

Left e+ distribution, right e- distribution. Unit free. 

Note: the rotation 𝑅 for e+ and e- are different, since distribution 
𝑃൫𝑧௣଴, 𝑧௣ଵห29𝑀𝑒𝑉 < 𝐸௣ < 31𝑀𝑒𝑉൯ and 𝑃(𝑧௘଴, 𝑧௘ଵ|29𝑀𝑒𝑉 < 𝐸௘ < 31𝑀𝑒𝑉) are different. 
Rotation matrices 𝑅 are computed separately for different sides. 

 

IV Fig 4. 12 𝑃(𝑧଴, 𝑧ଵ|𝐸), after rotation 𝑅, under energy 𝐸 cut. Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, 
no unit. 

Left figure e+ distribution under cut 𝐸௣ ∈∪ ([10,11]𝑀𝑒𝑉,  [14,15]𝑀𝑒𝑉, … ), right figure e- 
distribution 𝐸௘ ∈∪ ([10,11]𝑀𝑒𝑉,  [14,15]𝑀𝑒𝑉, … ). By checking figures above, it’s easy to see: 
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1. The separation between (𝑧଴, 𝑧ଵ) probability distributions under different energy cuts, thus 
the resulting 𝑃(𝐸௘|𝑧௘଴, 𝑧௘ଵ) distribution computed from Bayes’ theorem should also be 
well separated by different 𝑧଴, 𝑧ଵ value. 

2. In addition, the energy 𝐸 is majorly depended on coordinate 𝑧ଵ, and the dependence is 
monotonic.  The lower the 𝑧ଵ, the higher the energy 𝐸. 

 

4.4.2 Analyzing and fitting 𝑃(𝑧௘଴, 𝑧௘ଵ|𝐸௘) 

We want to apply following formula derived from Bayes’ theorem (as a simpler version of 
(4.30)): 

𝑃൫𝐸௘ห𝒛௘ , 𝒛௣൯ =
𝑃(𝒛௘|𝐸௘)𝑃(𝐸௘)

𝑃(𝒛௘)

𝑃൫𝒛௣ห𝐸௣ = 𝐸ఊ − 𝐸௘ ൯𝑃൫𝐸௣ = 𝐸ఊ − 𝐸௘ ൯

𝑃൫𝒛௣൯
     (4.33) 

Here 𝒛௘/௣ = ൫𝑧௘/௣଴, 𝑧௘/௣ଵ൯ are dimensionally reduced measured data by PCA. Find the energy 𝐸௘ 

to maximize 𝑃൫𝐸௘ห𝒛௘ , 𝒛௣൯ when the measurement on wire chamber correspond to 𝒛௘ , 𝒛௣, and use 
it as input for Bethe-Heitler asymmetry computation. 

For terms 𝑃(𝐸) (c.f. convention of notation in 4.4.1, 𝑃(𝐸) means either 𝑃(𝐸௘) or 𝑃(𝐸௣) ), they 
can be estimated by Geant 4 simulation. Applying BH pairs generated from theoretic calculation 
which has uncut energy distribution 𝑃ᇱ(𝐸௘) 𝑎𝑛𝑑 𝑃′(𝐸௣), run the Geant 4 simulation, applying cut 
that requires both sides detectors having data 𝒙௘ , 𝒙௣ (and thus both 𝒛௘ , 𝒛௣ are measured) and 
corresponding 𝐸௘ , 𝐸௣ distribution are the terms 𝑃(𝐸௘), 𝑃(𝐸௣). We already obtained the rotated 
post-PCA distributions 𝑃(𝒛|𝐸) in last section, now fit each 𝑃(𝒛|𝐸) then maximize (4.33). 

Based on 𝑃(𝑧଴, 𝑧ଵ|𝐸) plots Fig 4.12, for single energy cut, the shape of the 
𝑃(𝑧଴, 𝑧ଵ|𝐸) distribution is close to a strip parallel to 𝑧଴ axis. If we make assumption 
𝑃(𝑧଴, 𝑧ଵ|𝐸) ≅ 𝑃(𝑧଴|𝐸)𝑃(𝑧ଵ|𝐸) (c.f. (4.32) it means random variables 𝑧଴ and 𝑧ଵ are conditional 
independent) and note that terms in denominator of (4.33) is independent of 𝐸௘. (4.33) is 
simplified to: 

𝑃൫𝐸௘ห𝒛௘ , 𝒛௣൯ ∝ 𝑃௘(𝑧௘଴|𝐸௘)𝑃௘(𝑧௘ଵ|𝐸௘)𝑃௘(𝐸௘)𝑃௣൫𝑧௣଴ห𝐸ఊ − 𝐸௘൯𝑃௣൫𝑧௣ଵห𝐸ఊ − 𝐸௘൯𝑃௣൫𝐸ఊ

− 𝐸௘൯   (4.34) 

All 𝑃(𝑧௜|𝐸) terms in (4.34) is then approximated by fitted functions 𝐹(𝑧௜|𝐸) and each function 
(specified by particle e+ or e- and energy) has been represented by its entire fit parameters. 
Suffixes 𝑒 𝑎𝑛𝑑 𝑝 are added in (4.34) since 𝑃௘ are distribution for electrons, and 𝑃௣ are distribution 
for positrons. The 𝐸௘ which maximizes right side of (4.34) is the reconstructed energy. 

Before applying (4.34) for the energy 𝐸௘ reconstruction, we have terms on the right-hand side to 
be calculated: 

(1) 𝑃௘(𝑧௘଴|𝐸௘), 𝑃௘(𝑧௘ଵ|𝐸௘), 𝑃௣൫𝑧௣଴ห𝐸௣൯𝑃௣൫𝑧௣ଵห𝐸௣൯ are represented by normalized fit function 
𝐹(𝑧௜|𝐸), for example 𝑃௘(𝑧௘଴|35𝑀𝑒𝑉 < 𝐸௘ < 36𝑀𝑒𝑉) will taken value 𝐹௘(𝑧௘଴; 𝑝଴,  … , 𝑝ସ), 
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where 𝑝଴,  … , 𝑝ସ are fit parameters for the function and all depend on the energy cut 
35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉. 

(2) 𝑃௘(𝐸௘), 𝑃௣൫𝐸௣൯ are replaced by counts 𝐶௘(𝐸௘), 𝐶௣൫𝐸௣൯, instead of probability under the cut 
with the energy for reason will be discussed later, below Fig 4.14. Since, 𝐶௘(𝐸௘) ∝

𝑃௘(𝐸௘), 𝐶௣൫𝐸௣൯ ∝ 𝑃௣൫𝐸௣൯ now maximizing right side of: 

𝑃൫𝐸௘ห𝒛௘ , 𝒛௣൯ ∝ 𝑃௘(𝑧௘଴|𝐸௘)𝑃௘(𝑧௘ଵ|𝐸௘)𝐶௘(𝐸௘)𝑃௣൫𝑧௣଴ห𝐸ఊ − 𝐸௘൯𝑃௣൫𝑧௣ଵห𝐸ఊ − 𝐸௘൯𝐶௣൫𝐸ఊ

− 𝐸௘൯(4.35) 

will not change the value of reconstructed energy 𝐸௘. Procedure of computing (1), (2) are 
discussed below: 

 

1) Finding 𝑧௜ bounds for each 𝐸 and particle type. Finding 𝐶௘(𝐸௘), 𝐶௣൫𝐸௣൯ 

For single energy cut, e.g., 35𝑀𝑒𝑉 < 𝐸 ≤ 36𝑀𝑒𝑉, lower and upper bounds 𝑍𝐿 and 𝑍𝑈 for each 
component of 𝒛 = (𝑧଴, 𝑧ଵ) in distribution 𝑃(𝒛|𝐸) = 𝑃(𝑧଴|𝐸)𝑃(𝑧ଵ|𝐸) are calculated. Reasons to 
apply bounds for 𝑧௜ are: 

(1) Better and more believable fitting result, since most abnormal 𝒛𝒆 or 𝒛𝒑 data points are out 
of bounds and discarded. 

(2) Normalization result could be more accurate. Since bounded instead of unbounded range 
while computing normalization integration, divergent behavior can be avoided. 

(3) Faster energy reconstruction, since for a given 𝒛௘ data, only 𝐸௘s with associated 𝒛௘ 
bounds 𝑍𝐿௘଴, 𝑍𝑈௘଴ and 𝑍𝐿௘ଵ, 𝑍𝑈௘ଵ satisfying 𝑍𝐿௘଴ ≤ 𝑧௘଴ ≤ 𝑍𝑈௘଴ and 𝑍𝐿௘ଵ ≤ 𝑧௘ଵ ≤

𝑍𝑈௘ଵ are the possible reconstruction energies. 

Bounds are determined as follow, for example: 

(1) For electron, under energy cut 35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉, reduced data 𝒛௘ are stored in 
histograms: 𝐻(𝑧௘଴|35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉, 𝑒−) and 𝐻(𝑧௘ଵ|35𝑀𝑒𝑉 < 𝐸௘ ≤

36𝑀𝑒𝑉, 𝑒−) (these histograms can be simply denoted by 𝐻଴, 𝐻ଵ). 

(2) Finding the bin with maximum number of counts for each histogram 𝐻଴௠௔௫, 𝐻ଵ௠௔௫, and 
bin indices. 

(3) Set a percentage limit 𝛼, searching from the max valued bins 𝐻଴௠௔௫ , 𝐻ଵ௠௔௫ to left and 
right, the 1st bins reach value below 𝛼𝐻଴௠௔௫ or 𝛼𝐻ଵ௠௔௫ are bounds 𝑍𝐿௘଴, 𝑍𝑈௘଴ and 
𝑍𝐿௘ଵ, 𝑍𝑈௘ଵ. 
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IV Fig 4. 13 (𝑧଴, 𝑧ଵ) distribution under energy cut. Ordinate: 𝑧ଵ, no unit, abscissa: 𝑧଴, no unit. 

Left figure plots positron, under cut 24𝑀𝑒𝑉 < 𝐸௣ ≤ 25𝑀𝑒𝑉, right for electron, under cut 
35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉. Note both histograms have same number of entries, since for the 
specified cuts 𝐸௘ + 𝐸௣ = 60𝑀𝑒𝑉. 

 

IV Fig 4. 14 (𝑧଴, 𝑧ଵ) distribution under energy cut and cut (𝑍𝐿௘଴ ≤ 𝑧௘଴ ≤ 𝑍𝑈௘଴ AND 𝑍𝐿௘ଵ ≤
𝑧௘ଵ ≤ 𝑍𝑈௘ଵ AND 𝑍𝐿௣଴ ≤ 𝑧௣଴ ≤ 𝑍𝑈௣଴ AND 𝑍𝐿௣ଵ ≤ 𝑧௣ଵ ≤ 𝑍𝑈௣ଵ). Ordinate: 𝑧ଵ, no unit, 
abscissa: 𝑧଴, no unit. 

AND inside () means logical AND, calling this cut as z cut. Left histogram is for positron, 
24𝑀𝑒𝑉 < 𝐸௣ ≤ 25𝑀𝑒𝑉, right histogram for electron, 35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉. z cut is applied 
to both electron and positron side, while bounds 𝑍𝐿௘௜, 𝑍𝑈௘௜for electron is bound for 
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35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉 and bounds 𝑍𝐿௣௜, 𝑍𝑈௣௜for electron is bound for 24𝑀𝑒𝑉 < 𝐸௘ ≤

35𝑀𝑒𝑉. Note both histograms have same number of entries. 

For these energy cuts, 𝐶௘(35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉) = 𝐶௣(24𝑀𝑒𝑉 < 𝐸௘ ≤ 35𝑀𝑒𝑉) = 22721 in 
(4.35) are found by checking the entries of above histograms. The reason that counts instead of 
probability (to be precise, frequency) being stored is that there are overlaps in energy cuts during 
the whole tabulation of terms for formula (4.35): 1st cut 10𝑀𝑒𝑉 < 𝐸௘ ≤ 11𝑀𝑒𝑉, 2nd cut 
10.1𝑀𝑒𝑉 < 𝐸௘ ≤ 11.1𝑀𝑒𝑉 and so on. This procedure essentially improves the resolution of 𝐸௘, 
without the hassle of interpolation or fitting to find 𝐸௘ maximizing the right-hand side of (4.35). 
Thus, the sum of counts from all energy cuts are mostly multi-counted, which prevents proper 
probability definition by dividing this sum. 

 

2) Fit 𝑃(𝑧௜|𝐸) 

Based on the shapes of 𝑃(𝑧଴|𝐸) and 𝑃(𝑧ଵ|𝐸) (Fig 4.15 4.6), following function forms are used in 
fitting: 

𝑃(𝑧଴|𝐸) ≅ 𝐹(𝑧଴|𝐸) = 𝑝଴ exp[−𝑝ଶ(𝑧଴ − 𝑝ଵ)ଶ − 𝑝ଷ(𝑧଴ − 𝑝ଵ)ଶ − 𝑝ସ(𝑧଴ − 𝑝ଵ)ଶ]       (4.36) 

𝑃(𝑧ଵ|𝐸) ≅ 𝐹(𝑧ଵ|𝐸) = 𝑝଴ exp ቈ−
0.5(𝑧ଵ − 𝑝ଵ)ଶ

𝑝ଶ
ଶ

− 𝑝ଷ(𝑧ଵ − 𝑝ଵ)ଶ቉                                  (4.37) 

For 𝐹(𝑧଴|𝐸), 3rd order term reflects the asymmetry of the distribution, 4th order term deal with 
fast drop of probability on each side 𝑧଴. Choosing the same “most probable” location 𝑝ଵ for all 
orders to deal with overfitting. For 𝐹(𝑧ଵ|𝐸), it’s very close to Gaussian with small asymmetry, 
thus 3rd order term is added. 

The initial parameters are essential finding the correct fitting result and should be set. Finding 
those parameters are very situational, viable choices being used: 

For 𝐹(𝑧଴|𝐸), initial 𝑝଴ = 0.9𝐻଴௠௔௫, other parameters are using the result from previous 𝐸 cut 
fitting result. 

For 𝐹(𝑧ଵ|𝐸), 𝑝଴ = 𝐻ଵ௠௔ , 𝑝ଵ = {𝑏𝑖𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 𝐻ଵ௠௔௫}, 𝑝ଶ =

{𝑅𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑜𝑓 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝐻ଵ}. 𝑝ଵ, 𝑝ଶ values are taken after histogram 𝐻ଵ removed 
data points outside the z cuts (as shown in Fig 4.14) since root mean squared are overestimated if 
those data points are kept in calculation. 

Additional requirements for the fit functions 𝐹(𝑧௜|𝐸) ≅ 𝑃(𝑧௜|𝐸): 

(1) The 𝑃(𝑧௜|𝐸) with too small or large 𝑧 values should not be fitted, since most of those 𝑧 
values are results from abnormal events, e.g., with large multiple scatter, and low counts 
(thus low error) of those data points will distort the shape of fit curve in 𝑧 region we 
interested in. Thus, for each 𝐸 and particle type, lower and higher bound of each 𝑧௜ 
𝑍𝐿 and 𝑍𝑈 are used to limit 𝑧௘଴, 𝑧௘ଵ range need to be determined before fit. 
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(2) The curves we fit is 𝐶(𝑧௜|𝐸), thus additional normalization is needed. In addition, the 
difference between continuous function and discrete nature of numerical integration will 
appear in the normalization result. The normalization is conducted after initial fitting. The 
normalization condition is, while fixing all parameters except 𝑝଴ : 

1 = න 𝐹(𝑧௜|𝐸)𝑑𝑧 ≅ ෍ 𝐹(𝑧௜|𝐸)∆𝑧௜

௭೔ஸ௓ ೐೔

௓௅೐೔ழ௭೔

௓ு೐೔

௓௅೐೔

                 (4.38) 

The sum is summing at bin centers of 𝑧௜ only in range [𝑍𝐿௘௜ , 𝑍𝐻௘௜] of the histogram 𝐻௜, solving 
equation (4.38) will determine 𝑝଴ in either (4.36) or (4.37). 

Tabulated data file stores fit function data in such format (electron and positron data stored in 
separate file): 

𝐸,    𝑝଴,  … , 𝑝ସ for𝐹(𝑧଴|𝐸) 𝑎𝑛𝑑 𝑍𝐿଴, 𝑍𝑈଴,   𝑝଴,  … , 𝑝ଷ for𝐹(𝑧ଵ|𝐸)𝑍𝐿ଵ, 𝑍𝑈ଵ 

 

IV Fig 4. 15 Electron’s P(𝑧଴|𝐸) (upper left) and 𝑃(𝑧ଵ|𝐸) distribution (upper right), and fit 
function 𝐹(𝑧଴|𝐸) (lower left) and 𝐹(𝑧ଵ|𝐸) (lower right). Ordinate: count, no unit, abscissa: 𝑧଴ for 
left figures 𝑧ଵ for right figures, no unit. 

The energy cut is 35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉, the z cut 𝑍𝐿௘଴ ≤ 𝑧௘଴ ≤ 𝑍𝑈௘଴ and 𝑍𝐿௘ଵ ≤ 𝑧௘ଵ ≤ 𝑍𝑈௘ଵ 
for this 𝐸௘ cut range, and 𝑍𝐿௣଴ ≤ 𝑧௣଴ ≤ 𝑍𝑈௣଴ and 𝑍𝐿௣ଵ ≤ 𝑧௣ଵ ≤ 𝑍𝑈௣ଵ for 24𝑀𝑒𝑉 < 𝐸௣ ≤

25𝑀𝑒𝑉 is applied. (Or the cuts are exactly the same as Fig 4.14) After this, normalization for 
both fits are conducted to find 𝑝଴. 
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4.4.3 Reconstruct energy 𝐸௘ 

Maximizing right hand side of equation (4.35): 𝑃൫𝐸௘ห𝒛௘ , 𝒛௣൯ ∝

𝑃௘(𝑧௘଴|𝐸௘)𝑃௘(𝑧௘ଵ|𝐸௘)𝐶௘(𝐸௘)𝑃௣൫𝑧௣଴ห𝐸ఊ − 𝐸௘൯𝑃௣൫𝑧௣ଵห𝐸ఊ − 𝐸௘൯𝐶௣൫𝐸ఊ − 𝐸௘൯ to find reconstructed 
𝐸௘. Procedure is below: 

(1) Convert detector measured data 𝒙௘ → 𝒛௘, 𝒙௣ → 𝒛௣(𝒛 refer to dimension reduced data 
after additional rotation) 

(2) (c.f. 4.4.2 2)) Finding all possible 𝐸௘ values. 

Read the table storing electron fit function: 

𝐸௘ ,   𝑝଴,  … , 𝑝ସ for𝐹(𝑧௘଴|𝐸௘) 𝑎𝑛𝑑 𝑍𝐿௘଴, 𝑍𝑈௘଴,   𝑝଴,  … , 𝑝ଷ for𝐹(𝑧௘ଵ|𝐸௘)𝑍𝐿௘ଵ, 𝑍𝑈௘ଵ 

Check if the data for the event (𝑧௘଴, 𝑧௘ଵ) satisfy 𝑍𝐿௘଴ ≤ 𝑧௘଴ ≤ 𝑍𝑈௘଴ and 𝑍𝐿௘ଵ ≤ 𝑧௘ଵ ≤ 𝑍𝑈௘ଵ for 
the energy 𝐸௘ in the current iteration (Note 𝑧 lower and upper bounds 𝑍𝐿, 𝑍𝑈 are energy 
dependent). If is, check positron fit function corresponding line satisfying condition 𝐸௣ = 
𝐸ఊ − 𝐸௘: 

𝐸ఊ − 𝐸௘ ,    𝑝଴,  … , 𝑝ସ for𝐹൫𝑧௣଴|𝐸ఊ − 𝐸௘൯ 𝑎𝑛𝑑 𝑍𝐿௘଴, 𝑍𝑈௘଴,   𝑝଴,  … , 𝑝ଷ for𝐹൫𝑧௣ଵ|𝐸ఊ −

𝐸௘൯𝑍𝐿௣ଵ, 𝑍𝑈௣ଵ 

Check if 𝑍𝐿௣଴ ≤ 𝑧௣଴ ≤ 𝑍𝑈௣଴ and 𝑍𝐿௣ଵ ≤ 𝑧௣ଵ ≤ 𝑍𝑈௣ଵ is also satisfied. If is, this 𝐸௘ is one of the 
possible values. 

(3) Find 𝐸௘ maximizing 𝑃′൫𝐸௘ห𝒛௘ , 𝒛௣൯ =

𝑃௘(𝑧௘଴|𝐸௘)𝑃௘(𝑧௘ଵ|𝐸௘)𝐶௘(𝐸௘)𝑃௣൫𝑧௣଴ห𝐸ఊ − 𝐸௘൯𝑃௣൫𝑧௣ଵห𝐸ఊ − 𝐸௘൯𝐶௣൫𝐸ఊ − 𝐸௘൯:  

For each possible value of 𝐸௘ found in (2). Retrieve 𝐶௘(𝐸௘) = 𝐶௣൫𝐸ఊ − 𝐸௘൯ from corresponding 

data file (last paragraph of 4.4.21), below Fig 4.14, described how 𝐶௘(𝐸௘), 𝐶௣൫𝐸ఊ − 𝐸௘൯ are 

found). And 𝑃௘(𝑧௘଴|𝐸௘), 𝑃௘(𝑧௘ଵ|𝐸௘), 𝑃௣൫𝑧௣଴ห𝐸ఊ − 𝐸௘൯, 𝑃௣൫𝑧௣ଵห𝐸ఊ − 𝐸௘൯ are calculated by 

replacing them by fit functions 𝐹௘(𝑧௘଴|𝐸௘), 𝐹௘(𝑧௘ଵ|𝐸௘), 𝐹௣൫𝑧௣଴ห𝐸ఊ − 𝐸௘൯, 𝐹௣൫𝑧௣ଵห𝐸ఊ − 𝐸௘൯ using 
the fit parameters in (2). Direct search within all the possible 𝐸௘s found in step (2) to find the 𝐸௘ 
that maximize 𝑃′൫𝐸௘ห𝒛௘ , 𝒛௣൯. 

Remarks: 

(1) Above step (3) shows the benefits of overlapping 𝐸 cut (e.g. 35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉, 
then next entry in data file stores 35.1𝑀𝑒𝑉 < 𝐸௘ ≤ 36.1𝑀𝑒𝑉 in current setup) It makes a 
lot more possible 𝐸௘ value satisfying cuts in step (2), thus much better energy resolution 
than storing data with not overlapped energy cut (e.g. 35𝑀𝑒𝑉 < 𝐸௘ ≤ 36𝑀𝑒𝑉, then next 
entry in data file stores 36𝑀𝑒𝑉 < 𝐸௘ ≤ 37𝑀𝑒𝑉). 

(2) Another effect of overlapping 𝐸 is more possible 𝐸௘, and thus more computation time of 
search, evaluating fit function values, and maximizing. 



305 
 

 

(3) The efficiency (ratio of number of events with 𝐸௘ reconstructed to total number of 
events) is affected by the choice of percentage limit 𝛼 determining 𝑧 bounds 𝑍𝐿 and 𝑍𝑈s. 
The smaller the 𝛼, the larger the range [𝑍𝐿, 𝑍𝑈], and more 𝐸௘ values as candidates. 

 

IV Fig 4. 16 Electron energy 𝐸௘ at primary vertex (from generated pair data file as input for 
Geant4 simulation) vs reconstructed 𝐸௘. Ordinate: reconstructed 𝐸௘ in MeV, abscissa: electron 
energy 𝐸௘ at primary vertex in MeV. 

This result is obtained by applying last page procedure. Using data from the same simulation data 
file as the plots in section 4.4.2, but only for 1st 10k events. 

 

IV Fig 4. 17 Electron energy 𝐸௘ at primary vertex (from generated pair data file as input for 
Geant4 simulation) minus reconstructed 𝐸௘. Ordinate: count, no unit, abscissa: difference 
between electron energy 𝐸௘ at primary vertex and reconstructed 𝐸௘, in MeV. 

Using data from the same simulation data file as the plots in section 4.4.2, but only for 1st 10k 
events. Thus, the energy reconstruction result has error about 0.7MeV by current fitting 
procedure. Multiple scattering and bending of magnet effects were taken into account. 
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Part V Conclusion 
 

Different aspects of the BH experiment have been prepared, besides scintillators all others are 
tested and experiment ready. Completed preparations are listed below: 

For hardware, the photon beam is provided by HI𝛾⃗S at Duke Univ. The spectrometer we will use 
is constructed at Saskatchewan Accelerator Laboratory, and the field has been mapped at 
Jefferson Lab, while a tungsten cone shaped baffle is yet to be built for blocking small scattering 
angle pairs. Two pairs of vertical drift chambers from Q-weak experiment will be used to detect 
BH pairs’ track out of magnet. The data acquisition code is provided by Brad Sawatzky at JLAB. 
Discriminator cards are installed, gas and voltage supplies for the chambers are provided, and 
scintillators has setup as telescope trigger for cosmic ray test runs. Efficiency plateaus of high 
voltage and threshold voltage are measured. The drift time data for track reconstruction were 
analyzed using modified JLAB Hall A analyzer. We have the scintillators, but need PMTs and 
light guide to prepare hodoscopes for the experiment. 

JLAB Hall A analyzer wire chamber classes are used for track reconstruction from wire chamber 
drift time data. Database file entries are modified mainly for our wire chamber geometry, 
parameters of drift process, and channel mapping. Two most important sets of parameters: TDC 
time offset and time to distance conversion parameters are refitted based on the test run data. The 
analyzer track results are compared with the geometry constraints from the scintillator telescope 
setup of the test runs for single track events, resulting phase space region are matched with a 
simple simulation based on the trigger geometry. The track reconstruction efficiency is calculated 
for these geometrically constraint events, including multi-track events the efficiency is about 
80%, different gas mixture will be used to achieve higher efficiency for the experiment. Misc. 
topics like track reconstruction resolution and effect of bad wire are also investigated. 

For simulation, the theorists provided the program for numerical differential cross section 
calculation of BH process. A Monte-Carlo simulation written by Rob Pywell is used to generate 
BH pairs as primary particles for Geant 4 simulation. Since the differential cross section has very 
sensitive dependence on energy and directions, efficiency of pair generation is very low and 
modifications are made to improve about 20 times in rate. Units of the cross-section code are 
confirmed by comparing numerically integrated total cross section and standard values. In 
addition, data rate at detectors in real experiment is estimated by considering beam rate, 
(calculated) cross section at front window and detector acceptance. 

The Geant 4 simulation has been setup for the geometry of the experiment. Distributions of 
variables in phase space are obtained at each (sensitive) detectors. The charge asymmetries as 
function of energy difference are computed through binning, from pairs within detector 
acceptance, with close polar angles, near 180° difference between azimuthal angles. The 
asymmetry with polar angle around 5° to 8°, energy difference ~9MeV to 15MeV is above 10%. 
Following investigations are conducted: (1) Effect of placing a tungsten cone baffle inside the 
magnet at beam line, which is used for blocking high rate BH pairs at small polar angle, along 
with other constraints affecting acceptance. (2) Resolution, accuracy and efficiency of track 
reconstruction. (3) Optimization of magnetic field strength and placement of wire chambers in 
order to balance multiple scattering effect on BH pairs with different energies. A simple but much 
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faster simulation with the same geometry setup as Geant 4, with approximation of vacuum as 
background and uniform circle shaped magnetic field was written for crosscheck of the Geant 4 
results. 

The main goal of Geant 4 simulation is to reconstruct the kinematics of BH pairs at primary 
vertices by detector data, Bayes’ theorem is applied. Due to the high dimensions of detector data 
(4 for each side representing position and direction, dimension of 8 in total), principal component 
analysis is used to reduce dimension of the data by half. With the help of assuming conditional 
independence of the other dimensions at primary vertex to simplify calculation, the reduced data 
has good energy resolution and the difference between reconstructed energy and initial energy 
has near 0 MeV mean, and 0.7 MeV standard deviation. 
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Appendices 
 

Part III Appendix A 4.3.1 Determine number of divisions for each iteration 
 
Once all the data from a test run has been fixed, each drift distance 𝑑 is dependent on 

parameter 𝐶 in (4.5), and the statistics of 𝑑 are also 𝐶 dependent.  We devised an algorithm to 
find minimum of single variable function below: 
1. Assumption: The function is convex and continuous, thus having only one minimum. 
2. Algorithm: 
 

1) Assume we locate the upper and lower bound for each iteration, divide the interval of 
minimum searching into 2𝑛 equal divisions. Compute the function value at end points of each 
division 𝑓(𝑥଴), 𝑓(𝑥ଵ), … , 𝑓(𝑥ଶ௡).  Here we don’t have to compute all values, the search of current 
sets of divisions will end when: 
 

𝑓 (𝑥௜) ≥ 𝑓(𝑥௜ାଵ) 𝑎𝑛𝑑 𝑓(𝑥௜ାଶ) ≥ 𝑓(𝑥௜ାଵ)                 (1) 
 

2) Since the function can only have one minimum, then the minimum point of the 
function 𝑔 (below) will lie in interval [𝑥௜ , 𝑥௜ାଶ].  We choose the new interval [𝑥௜, 𝑥௜ାଶ] above, 
divide it again into into 2𝑛 equal divisions, and search for the numerical solution of the 
minimum. Thus after each iteration, the interval size for the solution is shrunk into 1/𝑛 of 
previous iteration. 

3. Find optimum number of divisions 𝑛: 
1) Assuming on average we can find end points 𝑥௜, 𝑥௜ାଵ, 𝑥௜ାଶ after 𝑛 + 1 function 

evaluations out of 2𝑛 + 1 that satisfies inequality (1). 

2) After 𝑁(𝑛 + 1) evaluation, the interval will shrink to (
ଵ

௡
)ே of initial size. Thus, the 

rate of convergence (average shrink in interval over number of function evaluation) 
is: 

3) 𝑔(𝑛; 𝑁) =
(

భ

೙
)ಿ

ே(௡ାଵ)
                                                           (2) 

 4) We want to minimize expression (2) which means faster rate of convergence. For 
convenience now we treat number 𝑛 and 𝑁 as real number, and thus 𝑓(𝑛; 𝑁) is a 
continuous function. 

5) The function 𝑓(𝑛; 𝑁) is of two variables. We change variable 𝑁 into 𝜀 = (
ଵ

௡
)ே, here 

𝜀 is a small fixed number that is the ratio between the length final interval and 
initial interval, which depends on the final precision we want to achieve. 

6) 𝑁 = − ln 𝜀 / ln 𝑛 

7) 𝑔(𝑛; 𝑁) =
(

భ

೙
)ಿ

ே(௡ାଵ)
= −

ఌ

୪୬
∙

୪୬ ௡

(௡ାଵ)
  (3) 

8) Take derivative and minimize (3), the result is:  

𝑛 =  
ଵ

ௐ(
భ

೐
)

≈ 3.59                                                                                     (4) 

where 𝑊 is product log function. We revert 𝑛 to an integer, set 𝑛 = 4, and 2𝑛 = 8 
is number of divisions for each iteration. 
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Part III Appendix A 4.6 Quick sort algorithm 
A 4.6.1 Introduction 

 
As introduced in Section 4.6.3, given a drift time distribution, we want to find a sequence 

of times 𝑡଴, 𝑡ଵ, 𝑡ଶ, … , 𝑡௡ that have equal integration values: 

∫ 𝑓(𝑡)𝑑𝑡
௧భ

௧బ
= ⋯ = ∫ 𝑓(𝑡)𝑑𝑡

௧೔

௧೔శభ
= ⋯ = ∫ 𝑓(𝑡)𝑑𝑡

௧೙

௧೙షభ
.  

Note that Prob(𝑡௜ < 𝑡 < 𝑡௜ାଵ) = ∫ 𝑓(𝑡)𝑑𝑡
௧೔

௧೔శభ
, which will be proportional to the counts from the 

drift time histogram within interval [𝑡௜ , 𝑡௜ାଵ].  For example, for certain numbers of events, we 
measured 1 million drift times.  If then we divide the distribution into 𝑛 = 100 equal sets of 
counts with the last drift time in each identified as 𝑡௜, it forms a sequence 𝑡଴ < 𝑡ଵ < 𝑡ଶ, … < 𝑡ଵ଴଴, 
and for the 𝑖 th set the time data 𝑡 satisfies 𝑡௜ ≤ 𝑡 ≤ 𝑡௜ାଵ.  In order words, the time sequence 

𝑡଴, 𝑡ଵ, 𝑡ଶ, … , 𝑡௡ is the 
ଵ଴ల

ଵ଴଴
= 10000௧௛ smallest time and 10଺ × ቀ

ଶ

ଵ଴଴
ቁ = 20,000 ௧௛ smallest 

time ….  A good analogy is finding median of a set of data which in this example is 
ଵ଴ల

ଶ
=

500,000௧௛ smallest number in the time data set, but here it is arbitrary rather than the midpoint of 
the bin. Thus, the question is about specifying an index, and find corresponding value in a set of 
data. 
 

Although the ordinary sorting algorithm can fill the role of finding the time sequence 
required, it’s too time consuming based on the number of comparisons needed to be conducted 
for a large number of time data.  For example, in Fig. 4.20 there’re about 4.69 million drift time 
data in the wire plane 𝑢ଵ for this test run.  On the other hand, the quick sort algorithm does not 
require the sorting of numbers within each subset, which greatly improve the efficiency. 

 

A 4.6.2 The algorithm 
 

The goal of the algorithm is to find the pivot value corresponding to the pivot index (the 
index of order of the pivot value, counting from smallest value in the set) from a data set. The 
scheme we applied here is attributed to Nico Lomuto, in his book Programming Pearls.  [61] It 
includes two steps: 1) Find the pivot index corresponding to a pivot value. 2) Use recursion of the 
1st function to find pivot value corresponding to the pivot index. 
 
Step 1): (1) Iterate through all data in the data set, if the value from data is less than the pivot 
value, the index count is increased by 1. (2) In addition, all numbers less than the pivot value are 
stored in “left” set, the rest are stored in the “right” set. (3) The final index count after iterating 
through all data is the pivot index corresponding to the specified value. 
Step 2): (1) Randomly pick a value from the data set, use function 1) to find its pivot index. (2) If 
the found index is less than the inquired pivot index, search in “right” set.  If found index is equal 
to the inquired pivot index, the pivot value is found and end the recursion. If the found index is 
larger than the inquired pivot index, search the “left” set. 
A simple graphic illustration below shows the algorithm. Fig 4.24. 
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III Fig 4. 24 Quick sort algorithm 

Illustration of function 1). 

Left illustration: a set of data is represented by a curve before quick sorting, with the abscissa 
being index of data set, and the ordinate being values of each datum.  A horizontal dashed line 
shows the pivot value.  Right illustration: after quick sorting by step 1) the original data set has 
been separated by the pivot index into a “Left” set and a “Right” set, with all values in the left set 
less than pivot value, and vice versa for the right set. The difference to ordinary sorting algorithm 
is that the quick sort didn’t sort numbers inside Left set and Right set.  There is also a hint for the 
step 2). If we generated a random pivot value, then found its pivot index and the found pivot 
index (Right illustration) is less than inquired pivot index, it indicates that the random pivot value 
is also less than the inquired pivot value. This means we should search for the inquired pivot 
value in the Right set. 
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Part III Appendix A5.2.1 Track reconstruction derivation from geometry 
point of view 
 

The track propagates through all 4 wire planes and has a set of coordinates 
(𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) on each wire plane.  In order to reconstruct the track, we investigate the 
measurements of 𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ.  The measurement 𝑢ଵ,  𝑢ଶ indicates that the track is inside the 
plane containing a straight line, parallel to 𝑢 wires with coordinate 𝑢ଵ in 𝑢ଵ plane and another 
straight line, parallel to 𝑢 wires with coordinate 𝑢ଶ in 𝑢ଶ plane. The same argument also applies 
to measurement 𝑣ଵ,  𝑣ଶ. Thus, we have two planes containing the track, so the track must be the 
intersection of two planes.  We only need to solve two linear equations to find the track as 
intersection of these two planes. First, from the standard plane equation: 

𝑛ො ∙ 𝒓 = 𝑛ො ∙ 𝒓𝟎                   (1) 
Where 𝑛ො is the unit vector normal to the plane, 𝒓 = (𝑥, 𝑦, 𝑧) is an arbitrary point on the plane, 𝒓𝟎 
is a fixed point in the plane.  For the plane contains straight lines parallel to 𝑢 wires with 𝑢ଵ,  𝑢ଶ 
coordinate and the plane contains straight lines parallel to 𝑣 wires with 𝑣ଵ,  𝑣ଶ coordinate 
respectively, normal vector  

 𝑛ො௨ = (𝑠𝑖𝑛(𝛼௨)𝑢ො + 𝑐𝑜𝑠(𝛼௨)𝑧̂) × (𝑢ො × 𝑧̂) 
       = (𝑐𝑜𝑠(𝛼௨)𝑢ො − 𝑠𝑖𝑛(𝛼௨)𝑧̂) = (𝑐𝑜𝑠(𝛼௨)𝑐𝑜𝑠𝛼, 𝑐𝑜𝑠(𝛼௨)𝑠𝑖𝑛𝛼, −𝑠𝑖𝑛(𝛼௨)) (2) 
𝑛ො௩ = (𝑠𝑖𝑛(𝛼௩)𝑢ො + 𝑐𝑜𝑠(𝛼௩)𝑧̂) × (𝑣ො × 𝑧̂)   
     = (𝑐𝑜𝑠(𝛼௩)𝑣ො − 𝑠𝑖𝑛(𝛼௩)𝑧̂) = ൫𝑐𝑜𝑠(𝛼௩)𝑐𝑜𝑠𝛼, −𝑐𝑜𝑠(𝛼௩)𝑠𝑖𝑛𝛼, −𝑠𝑖𝑛(𝛼௩)൯     (3) 

Here (𝑢ො × 𝑧̂) is unit vector parallel to wires, 𝑠𝑖𝑛(𝛼௨)𝑢ො + 𝑐𝑜𝑠(𝛼௨)𝑧̂ is unit vector perpendicular to 
wires inside these planes. The last equation in each line uses 𝑢ො = (𝑐𝑜𝑠𝛼,  𝑠𝑖𝑛𝛼, 0), 𝑣ො = (𝑐𝑜𝑠𝛼,  −
𝑠𝑖𝑛𝛼, 0), and 𝑧̂ = (0,0,1). 

Next we find fixed points 𝒓𝟎𝒖 and 𝒓𝟎𝒗.  We choose 𝒓𝟎𝒖 as the point inside the 𝑢ଵ plane 
with coordinate 𝑢ଵ, on 𝑢 axis: 

𝒓𝟎𝒖 = 𝑢ଵ𝑢ො                                     (4) 
𝒓𝟎𝒗 = 𝑣ଵ𝑣ො + 𝑑௨௩𝑧̂                        (5) 

Similarly, for 𝒓𝟎𝒗 as 𝒓𝟎𝒖, but note 𝑣ଵ is distance 𝑑௨௩ above 𝑢ଵ plane. Combining eqs. 2-5: 
𝑛ො௨ ∙ 𝒓𝟎𝒖 = 𝑢ଵ𝑐𝑜𝑠(𝛼௨)                      (6) 
𝑛ො௩ ∙ 𝒓𝟎𝒗 = 𝑣ଵ𝑐𝑜𝑠(𝛼௩) − 𝑑௨௩𝑠𝑖𝑛𝛼௩  (7) 

Replacing the terms in (1) by eqs. 2, 3, 6, 7, the equation to solve the track as intersection of two 
planes is: 

൬
𝑐𝑜𝑠(𝛼௨)𝑐𝑜𝑠𝛼 𝑐𝑜𝑠(𝛼௨)𝑠𝑖𝑛𝛼 −𝑠𝑖𝑛(𝛼௨)

𝑐𝑜𝑠(𝛼௩)𝑐𝑜𝑠𝛼 −𝑐𝑜𝑠(𝛼௩)𝑠𝑖𝑛𝛼 −𝑠𝑖𝑛(𝛼௩)
൰ ቆ

𝑥
𝑦
𝑧

ቇ = ൬
𝑢ଵ𝑐𝑜𝑠(𝛼௨)

𝑣ଵ𝑐𝑜𝑠(𝛼௩) − 𝑑௨௩𝑠𝑖𝑛(𝛼௩)
൰         (8) 

The solution for the homogenous equation is: 

𝒕 = ൮

ଵ

ଶ௖௢௦
 ൫𝑡𝑎𝑛(𝛼௨) + 𝑡𝑎𝑛(𝛼௩)൯

ଵ

ଶ௦௜௡ఈ
 ൫𝑡𝑎𝑛(𝛼௨) − 𝑡𝑎𝑛(𝛼௩)൯

1

൲ = ൭
𝑡𝑎𝑛𝜃
𝑡𝑎𝑛𝜑

1
൱                                             (9) 

𝒕 is the track direction vector, and 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑 the same as (5.3) and (5.4).  The special solution in 
the 𝑢ଵ plane (by set 𝑧 =0 in equation (8)) is: 

ቆ
𝑥
𝑦
𝑧

ቇ = ൮

ଵ

ଶ௖௢௦ఈ
 (𝑢 + 𝑣)

ଵ

ଶ௦௜௡ఈ
(𝑢 − 𝑣)

0

൲                                                                                (10) 
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where 𝑢 = 𝑢ଵ, 𝑣 = 𝑣ଵ − 𝑑௨௩𝑡𝑎𝑛(𝛼௩) (see (5.7) and (5.8)) is the 𝑢𝑣 coordinate of the track 
intersection in 𝑢ଵ plane.  Thus, the track info (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) to be stored in ROOT file is 
calculated from (9) and (10).  Remark: It’s also easy to check that 𝒕 can be derived from 
normalizing z-component of 

𝑛ො௨ × 𝑛ො௩ = (− sin(𝛼௨ + 𝛼௩) 𝑠𝑖𝑛𝛼, 
                       −sin(𝛼௨ − 𝛼௩) 𝑐𝑜𝑠𝛼, 
                       −2𝑐𝑜𝑠𝛼௨𝑐𝑜𝑠𝛼௩𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛼)     (11) 

to 1.  It is easy to understand since 𝑛ො௨ × 𝑛ො௩ is the only vector parallel to both planes under 
consideration (it’s perpendicular to both 𝑛ො௨ and 𝑛ො௩).  The illustration of the geometry is in Fig. 
5.1. 
 

 

III Fig 5. 30 𝑥𝑦 projection illustration of track reconstruction. 

All notations comply with Appendix 5.5.1.  The upper solid black-line rectangle represents the 
active area of wire planes in the upper chamber, and the lower black half-dash half-solid line 
rectangle represents the active area of the wire planes in the lower chamber. The track can be 
computed from the fact that it’s the intersection of two planes, one through both 𝑢ଵ, 𝑢ଶ lines (in 
the 𝑢ଵ, 𝑢ଶ planes respectively, parallel to the 𝑢 wires), and the other through both 𝑣ଵ, 𝑣ଶ lines as 
marked with red solid lines. 
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Part III Appendix A5.2.2 Calculation of track (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) from 
crossover point coordinates (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ). 
 

Once we fit the associated clusters of each wire plane, we acquire a fit crossover point 
with coordinates (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ).  The track should be represented in a more explicit form 
(𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑), but here (𝑥, 𝑦) is the 𝑥, 𝑦 coordinate of crossover points in the lowest wire 
plane 𝑢ଵ, and 𝑡 = (𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑, 1) is the direction vector of the track in the analyzer coordinate 
system.  Since 𝑢ଵ, 𝑣ଵ and 𝑢ଶ, 𝑣ଶ are not simply coplanar, we will establish a set of linear 
equations that solve (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) from (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ) below: 
1. Geometry: the track is represented by a parameterized straight line, as do all 4 lines parallel to 
wire in each wire plane through each crossover point. Noting the track will intersect all 4 lines, 
this gives 4 equations to solve 4 coordinates 𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑.  The track is represented by 
parameter 𝑝: 

𝑝𝑡 + 𝑟                                             (1) 
Where 𝑡 = (𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑, 1) is track direction vector, and 𝑟 = (𝑥, 𝑦, 0) is the intersection of track 
and bottom most wire plane. 
For A point on intersected line through crossover points and parallel to wires of 𝑖th wire plane 
can be represented by: 

𝑡௜𝑤ෝ௜ + 𝑟௜                                             (2) 
where 𝑤ෝ௜ is the unit vector with direction parallel to wire direction of 𝑖th wire plane. 

𝑤ෝ௜ = 𝑢ො = (𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼, 0) 𝑓𝑜𝑟 𝑖 = 0,2 (𝑢 𝑤𝑖𝑟𝑒 𝑝𝑙𝑎𝑛𝑒𝑠)       (3) 
𝑤ෝ௜ = 𝑣ො = (𝑐𝑜𝑠𝛼, −𝑠𝑖𝑛𝛼, 0) 𝑓𝑜𝑟 𝑖 = 1,3 (𝑣 𝑤𝑖𝑟𝑒 𝑝𝑙𝑎𝑛𝑒𝑠)    (4) 

𝑡௜is the parameter of the line, 𝑟௜ is any point on the intersected line through crossover point.  The 
most convenient representation is: 

𝑟௜ = 𝑧௜ + (
(ேିଵ)

ଶ
− 𝑛௜)𝑠௜                                             (5) 

where 𝑧௜ = (0,0, 𝑧௜) indicates distance of the wire plane to bottommost wire plane, 𝑧௜=0, 2.54 𝑐𝑚 

39.4 𝑐𝑚, 41.9 𝑐𝑚, respectively, 𝑁 = 279 is total number of wires in each wire plane, 
(ேିଵ)

ଶ
𝑠௜ =

139𝑠௜ is the location of wire with index 0 in each wire plane, 𝑠௜ = 𝑠𝑤ෝ௜, 𝑠 is the wire spacing, 𝑛௜ 
is the fit crossover point wire index (see equation (3.4)) 
2) Equations to solve: 
(௧⃗×௪ෝ ೔)

ห௧⃗×௪ෝ ೔ห
 is the unit vector perpendicular to both track direction 𝑡 and wire direction 𝑤ෝ௜, so the 

distance between line 𝑝𝑡 + 𝑟 and 𝑡௜𝑤ෝ௜ + 𝑟௜ is: 

ฬ
(௧⃗×௪ෝ೔)

ห௧⃗×௪ෝ೔ห
∙ (𝑟 − 𝑟௜)ฬ               (6) 

For 𝑖 = 0,1,2,3, the four wire planes from bottom to top, the distances are 0; or in other words the 
following three vectors 𝑡, 𝑤ෝ௜, 𝑟 − 𝑟௜ are coplanar.  This gives 4 equations: 

൫𝑡 × 𝑤ෝ௜൯ ∙ (𝑟 − 𝑟௜) = 0     (7) 
If indexing the 4 wire planes from bottom to top as 𝑖 =0, 1, 2, 3, then the equations are: 

𝑐𝑜𝑠𝛼(𝑥 − 𝑥௜) + (−1)௜𝑠𝑖𝑛𝛼(𝑦 − 𝑦௜) 
                          +൫𝑐𝑜𝑠𝛼 ∙ 𝑡𝑎𝑛𝜃 + (−1)௜𝑠𝑖𝑛𝛼 ∙ 𝑡𝑎𝑛𝜑൯𝑧௜ = 0         (8) 
(𝑥௜, 𝑦௜) = (𝑐𝑜𝑠𝛼, 𝑠𝑖𝑛𝛼)𝑤௜                                                                (9) 

where 𝑟௜ = (𝑥௜ , 𝑦௜ , 𝑧௜) is the selected location of 𝑛௜ th wire on 𝑖th wire plane in equation (5). And 
(𝑤଴, 𝑤ଵ, 𝑤ଶ, 𝑤ଷ) = (𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ).  
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Thus, 4 unknowns 𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑 will be uniquely determined by these 4 simultaneous linear 
equations with known local cluster fit results 𝑛௜. 
3) Summarized procedure: 

(1) Determine crossover point wire index 𝑛௜ of each wire plane from cluster fitting. (see 
formulas (3.1) and (3.4)) 

(2) Compute 𝑤௜ = (
(ேିଵ)

ଶ
− 𝑛௜) ∙ 𝑠 in equations (8) and (9). 

(3) Solve 4 simultaneous linear equations to determine (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑). 
It is expected that the solution (𝑥, 𝑦, 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑) should be the same as the one from Appendix 
A5.2.1 (9)(10).  
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Part III Appendix A1 Angles in track reconstruction 
A1.1 Coordinate system used in Hall A analyzer  
Coordinate axes (Fig A1.1): 
The XY plane is parallel to the wire planes.  The X-axis is parallel to the short axis of the wire 
chamber; in a top view it is pointed from the center of the bottom wire chamber to the center of 
the top chamber.  (In the HRS setup X is the primary dispersion axis of the wire chamber, but in 
the BH experiment the Y axis is the primary dispersion axis.  However, since in the HRS setup 
the pair of wire chambers are also parallel, with a shift along X axis, our coordinate system 
matches in this way.)  The Z axis is perpendicular to wire planes pointing from bottom to top.  
The Y axis makes the coordinate system right-handed. 
 
Wire axes (Fig A1.2): 
Wire axes U, V are inside wire planes and perpendicular to wires in the corresponding wire plane 
(i.e. U/V axis perpendicular to U/V wires).  Their positive direction is chosen such that the acute 
angle is between U (or V) axis to both X axis and Y axis. 

 

III Fig A1. 1 (Left) x, y, z, u, and v axis. 

The angle between u, v to the axis is 𝛼 = 26.57° = 𝑎𝑡𝑎 𝑛(0.5).  In the database file the wire 
angle for the u plane is 26.57° and for the v plane is −26.57° since the positive direction of 
increasing angle is counter-clockwise from x-axis. 
 
III Fig A1. 2 (Right) Direction relation between u axis and u wires. 

They’re perpendicular to each other. 
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A1.2 Definitions of angles related to track reconstruction. 

 

III Fig A1. 3 Definition of 𝛿௨ or 𝛿௩. 

 

III Fig A1. 4 Relation between drift distance ∆𝑑  and track projection angle 𝛿௨. 

u plane has shown and ∆𝑑 is suffixed as ∆𝑑௨. 
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A1.3 Deriving relation from (𝜃, 𝜑) to (𝛿௨, 𝛿௩). 
We directly compute (𝛿௨, 𝛿௩) in terms of (𝜃, 𝜑) from their definitions in A1.2: (Fig. A1.5 shows 
all vectors) 
The track direction is represented by the vector 𝑡 = (𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑, 1), and 𝛿௨ or 𝛿௩ can be 

computed by 𝑐𝑜𝑠(𝛿௨) =
௧⃗ೠ∥∙௨ෝ

|௧⃗ೠ∥|∙|௨|෢  and 𝑐𝑜𝑠(𝛿௩) =
௧⃗ೡ∥∙௩ො

|௧⃗ೡ∥|∙|௩|෢ .  Here 𝑡௨∥ is the parallel component of 𝑡 in 

the uz plane, if we also define 𝑡௨ୄ as the component of 𝑡 that is orthogonal to uz plane.  Then we 
can simplify the equation by: 

 𝑐𝑜𝑠(𝛿௨) =
௧⃗ೠ∥∙௨ෝ

|௧⃗ೠ∥|∙|௨|෢ =
(௧⃗ೠ∥ା௧⃗ೠ఼)∙௨ෝ

|௧⃗ೠ∥|
=

௧⃗∙௨ෝ

|௧⃗ೠ∥|
  (1) 

Note 𝑡௨ୄ ∙ 𝑢ො = 0 and |𝑢|෢ =1. The easiest way to continue our computation is to decompose 𝑡 by 
𝑡 = (𝑡 ∙ 𝑢ො)𝑢ො+(𝑡 ∙ 𝑧̂)𝑧̂ + [𝑡 ∙ (𝑢ො × 𝑧̂)](𝑢ො × 𝑧̂) (2) 

And it’s easy to see 
𝑡௨∥ = (𝑡 ∙ 𝑢ො)𝑢ො+(𝑡 ∙ 𝑧̂)𝑧̂ and 𝑡௨ୄ = [𝑡 ∙ (𝑢ො × 𝑧̂)](𝑢ො × 𝑧̂) 

Note: 𝑡 = (𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑, 1), 𝑢ො = (𝑐𝑜𝑠𝛼,  𝑠𝑖𝑛𝛼,  0), and 𝛼 = 𝑎𝑡𝑎𝑛1/2 is the angle between the u-
axis and the x-axis, and 𝑧̂ = (0,0,1). We have 𝑡 ∙ 𝑧̂ = 1 and |𝑧|෢=1. Then 

𝑐𝑜𝑠(𝛿௨) =
௧⃗∙௨ෝ

|௧⃗ೠ∥|
= 

௧⃗∙௨ෝ

ට(௧⃗∙௨ෝ)మାଵ

=
௞(ఈ) 

ඥ(௞(ఈ) )మାଵ
 (3) 

where 𝑡 ∙ 𝑢ො = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 ≡ 𝑘(𝛼), and a simpler way to express 𝛿௨ is 

𝑐𝑜𝑡(𝛿௨) = 𝑘(𝛼)=𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 + 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 =
ଵ

√ହ
(2𝑡𝑎𝑛𝜃 + 𝑡𝑎𝑛𝜑)               (4) 

𝑐𝑜𝑡(𝛿௩) = 𝑘(−𝛼) = 𝑡𝑎𝑛𝜃 ∙ 𝑐𝑜𝑠𝛼 − 𝑡𝑎𝑛𝜑 ∙ 𝑠𝑖𝑛𝛼 =
ଵ

√ହ
(2𝑡𝑎𝑛𝜃 − 𝑡𝑎𝑛𝜑) (5) 

(𝑡𝑎𝑛𝛼 = 1/2 applied in last equality in (4) and (5)) If we notice 𝑣ො = (cos (−𝛼),  sin (−𝛼),  0) =
(𝑐𝑜𝑠𝛼,  − 𝑠𝑖𝑛𝛼,  0). 

 

III Fig A1. 5 All vectors in section A1.3 computation. 
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A1.4 Deriving relation from (𝛿௨, 𝛿௩) to (𝜃, 𝜑) 
Knowing 𝛿௨, the track is spanned by two vectors: 𝑐𝑜𝑠𝛿௨𝑢ො + 𝑠𝑖𝑛𝛿௨𝑧̂ and 𝑢ො × 𝑧̂, the first vector is 
the unit projection of track vector in u-z plane (it is parallel to 𝑡௨∥), and the second vector is the 
unit vector orthogonal to u-z plane (it parallels 𝑡௨ୄ).  Tracks through the v plane are also in the 
plane spanned by two vectors: 𝑐𝑜𝑠(𝛿௩)𝑢ො + 𝑠𝑖𝑛(𝛿௩)𝑧̂ and 𝑣ො × 𝑧̂. 
The direction of track 𝑡 = (𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑, 1), and 𝑡 is parallel to the intersection of the two planes 
(each spanned by two vectors) defined above.  By establishing the equation of this relationship 
we can find 𝑡𝑎𝑛𝜃 and 𝑡𝑎𝑛𝜑 in terms of 𝛿௨, 𝛿௩: 𝑢ො = (𝑐𝑜𝑠𝛼,  𝑠𝑖𝑛𝛼,  0), and 𝑧̂ = (0,0,1). Then 

 𝑐𝑜𝑠𝛿௨𝑢ො + 𝑠𝑖𝑛𝛿௨𝑧̂ = (𝑐𝑜𝑠𝛿௨𝑐𝑜𝑠𝛼, 𝑐𝑜𝑠𝛿௨𝑠𝑖𝑛𝛼, 𝑠𝑖𝑛𝛿௨) 
 𝑢ො × 𝑧̂ = (𝑠𝑖𝑛𝛼, −𝑐𝑜𝑠𝛼, 0) 

Since only 𝑐𝑜𝑠(𝛿௨)𝑢ො + 𝑠𝑖𝑛(𝛿௨)𝑧̂ = 𝑐𝑜𝑠(𝛿௨)(𝑐𝑜𝑡(𝛿௨)𝑢ො + 𝑧̂) has a non-zero z component, we can 
write: 

 𝑡 = (𝑐𝑜𝑡(𝛿௨)𝑢ො + 𝑧̂) + 𝑎(𝑢ො × 𝑧̂) 
    = (𝑐𝑜𝑡(𝛿௨)𝑐𝑜𝑠𝛼, 𝑐𝑜𝑡(𝛿௨)𝑠𝑖𝑛𝛼, 1) + 𝑎(𝑠𝑖𝑛𝛼, −𝑐𝑜𝑠𝛼, 0) (1) 

For the v plane: 
 𝑡 = (𝑐𝑜𝑡(𝛿௨)𝑣ො + 𝑧̂) + 𝑏(𝑣ො × 𝑧̂) 
    = (𝑐𝑜𝑡(𝛿௨)𝑐𝑜𝑠𝛼, −𝑐𝑜𝑡(𝛿௨)𝑠𝑖𝑛𝛼, 1) + 𝑏(−𝑠𝑖𝑛𝛼, −𝑐𝑜𝑠𝛼, 0) (2) 

Where 𝑎, 𝑏 in (1), (2) are to be solved for. Equate (1), (2) 𝑥, 𝑦 components with 𝑡 =
(𝑡𝑎𝑛𝜃,  𝑡𝑎𝑛𝜑, 1) and we have equations: 

𝑡𝑎𝑛𝜃 = 𝑐𝑜𝑡(𝛿௨)𝑐𝑜𝑠𝛼 + 𝑎𝑠𝑖𝑛𝛼 = 𝑐𝑜𝑡(𝛿௨)𝑐𝑜𝑠𝛼 − 𝑏𝑠𝑖𝑛𝛼    (3) 
𝑡𝑎𝑛𝜑 = 𝑐𝑜𝑡(𝛿௨)𝑠𝑖𝑛𝛼 − 𝑎𝑐𝑜𝑠𝛼 = −𝑐𝑜𝑡(𝛿௨)𝑠𝑖𝑛𝛼 − 𝑏𝑐𝑜𝑠𝛼                 (4) 

Solve (3)(4) we get values for 𝑎, 𝑏 and then 𝑡𝑎𝑛𝜃, 𝑡𝑎𝑛𝜑 in terms of 𝛿௨, 𝛿௩ : 

𝑡𝑎𝑛𝜃 =
ଵ

ଶ௖௢௦
 ൫𝑐𝑜𝑡(𝛿௨) + 𝑐𝑜𝑡(𝛿௩)൯ =

√ହ

ସ
 ൫𝑐𝑜𝑡(𝛿௨) + 𝑐𝑜𝑡(𝛿௩)൯                  (5) 

𝑡𝑎𝑛𝜑 =
ଵ

ଶ௦௜௡ఈ
 ൫𝑐𝑜𝑡(𝛿௨) − 𝑐𝑜𝑡(𝛿௩)൯ =

√ହ

ଶ
 ൫𝑐𝑜𝑡(𝛿௨) − 𝑐𝑜𝑡(𝛿௩)൯                  (6) 

where 𝑡𝑎𝑛𝛼 = 1/2 was used to obtain the last equations in each line. When solved for 
𝑐𝑜𝑡𝛿௨ 𝑎𝑛𝑑 𝑐𝑜𝑡𝛿௩ in above equations, we can get result (4) (5) in A1.3. 
 

A1.5 Applications 
A1.5.1 Finding range of 𝜑 when 𝜃 = 45°  

(In this case, track is horizontal, when chambers are tilted 45° in BH experiment setup.) 
Combining formulas: 
 

𝑡𝑎𝑛𝜃 =
√ହ

ସ
 ൫𝑐𝑜𝑡(𝛿௨) + 𝑐𝑜𝑡(𝛿௩)൯ 

𝑡𝑎𝑛𝜑 =
√ହ

ଶ
 ൫𝑐𝑜𝑡(𝛿௨) − 𝑐𝑜𝑡(𝛿௩)൯ 

From A 1.4. 
 𝑐𝑜𝑡(𝛿௨) =

௦

∆ௗೠ
 

 𝑐𝑜𝑡(𝛿௩) =
௦

∆ௗೡ
 

From A 1.2. 
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See Fig A1.4.  𝑠 is wire spacing (distance between two adjacent wires) and ∆𝑑௨, ∆𝑑௩ are drift 

distance difference between adjacent wires.  If in addition we denote ∆𝑑௨ =
௛

௡ೠ
, ∆𝑑௩ =

௛

௡ೡ
, where 

ℎ is thickness of gas volume in a wire plane, 𝑛௨ and 𝑛௩ are number of wire span of a cluster used 
for fit the track defined in Fig A1.4. For the wire chamber we’re using 𝑠 = 0.497cm, ℎ = 2.54 cm. 
We have (choosing 𝜃 = 45°): 

9.14 𝑡𝑎𝑛𝜃 = 9.14𝑡𝑎𝑛45° =  𝑛௨ + 𝑛௩ (1) 
4.57 𝑡𝑎𝑛𝜑 =  𝑛௨ − 𝑛௩                            (2) 

where 𝑛௨ and 𝑛௩ are not necessarily integers, and are signed (the convention is if 𝑐𝑜𝑡(𝛿௨) > 0, or 
the projection of a track in u-z plane and +u direction has an acute angle, then 𝑛௨ is positive.  If 
the angle is obtuse, 𝑐𝑜𝑡(𝛿௨) < 0 then 𝑛௨ < 0.) 
In order to obtain the range of 𝜑 𝑜𝑟 tan𝜑, we notice 𝑛௠௔௫ ≥ |𝑛௨|, |𝑛௩| ≥ 𝑛௠௜௡, where 𝑛௠௔௫ and 
𝑛௠௜௡ are maximum and minimum spans of wires for a cluster (They’re set in VDC database file, 
see section 2.2 VDC database file setup).  For example, if we choose 𝑛௠௜௡ = 3, 𝑛௠௔௫ = 12. Then 
(𝑛௨, 𝑛௩) pair will range from (3.00, 6.14) to (6.14, 3.00) which corresponds to (from equation (2) 
above) 

|𝜑| < 34.5° 
Or, the (𝑛௨, 𝑛௩) pair can choose (-3.00, 12.00) and (12.00, -3.00) and 𝜑 = ±73.1°.  We discard 
the solution with 𝜑 = ±73.1°  since the angle subtended from the center of magnet to the wire 
chamber further away from magnet in our experiment setup is about 36°, which is much less than 
73.1°. 
 
A1.5.2 Number of wires hit when 𝜃 = 45° 
From the range of (𝑛௨, 𝑛௩) pair in A1.5.1, we choose possible integer values: (𝑛௨, 𝑛௩) =
(3,6), (4,5), (5,4), (6,3) which span the wire clusters.  The actual hit wires could be either 
𝑛௨/௩  or 𝑛௨/௩ + 1. Then, for a single cluster from each wire plane, all from the same track, the 
pair of integers (number of hit wires in u plane, the number of hit wires in v plane) can be 
(3,6),(4,6),(3,7),(4,7),(4,5),(5,5),(4,6),(5,6) and also pairs with the 1st and 2nd numbers swapped. 
(Assuming there is no broken wires with no signals or low efficiency issues in any of the clusters 
for each wire plane). Any other combination number of wires hits in u,v planes is invalid for 𝜃 =
45°. 
 
A1.5.3 up/down ambiguity and it’s relation to (𝑛௨, 𝑛௩) 
Since the following three conditions are met for  

1) the speed of charged particles (almost the speed of light) are about 4 orders of magnitude 
higher than drift speed of ions in wire chamber, which make negligible offsets in drift 
time between wires. 

2) the distance between wires to both sides of the anode planes from the wire planes are the 
same. 

3) the drift time, which is always positive, contains no information of which side of wire 
plane the track is coming from. 

Even if we know a particle propagates from one side of the wire plane, for a cluster of (hit wire, 
drift time) pairs, the track could still be coming from the side corresponding to either wire with 
highest or lowest index of the cluster.  The two possible track candidates are mirror images of 
each other about the plane where the wires lie.  This is known as the “up/down ambiguity”. 
Thus, we cannot determine track direction solely from drift time info. In the previous context, the 
drift time could only determine 𝛿௨ or 𝛿௩ to the degree that a possible angle between a track 
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projection and wires is either 𝛿 or 180° − 𝛿.  By the combination of 2 possible 𝛿′s in each wire 
plane, we can determine the 4 possible directions from a pair of u-v planes (or a wire chamber). 
To resolve this ambiguity: the analyzer takes clusters in both wire chambers, and finds the best 
matching clusters with closest fitted absolute track slopes (but still contains a sign ambiguity) 
from u planes and v planes (that a pair of clusters of u1 plane and u2 plane with closest slope, and 
same for v planes).  Use the absolute slope to draw the four possible tracks described above, from 
fitted the intersection of track in the first wire chamber to the second wire chamber, only the real 
track will intersect escond wire chamber within acceptable error to the fitted intersection in the 
second wire chamber. 

 

III Fig A1. 6 “Up/down” ambiguity of a wire plane. 

Two possible tracks can be extracted from one set of TDC time data since they have same drift 
distances. 
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Part IV Appendix 2.5 Coordinate transformations 
 

In this appendix we derive the form of transformations used in section 2.5.2.  The transformations 
of wire chambers are combinations of translation and rotation, whose properties have been stated 
in A 2.5.1.  Eq. (A2.2) has been repeatedly used to get analytic forms of the composite 
transformations.  Their categorization is discussed in A 2.5.2, and eq. (A2.18) is used to find the 
translational component (feq. (2.29)) of the additional rotation. [62]  

A 2.5.1 Coordinate transformations with translations 
Conventions on notations: Denote non-degenerate linear transformations by upper case letters 
𝐴, 𝐵, …. Denote translations by contravariant vectors (not bold Greek letters) 𝜉,  𝜂, 𝜁 etc.  The 
vectors are transformed by a combination of a linear transformation 𝐴 prior to translation 𝜉.  The 
transformation is represented as (𝐴, 𝜉), and corresponding coordinate transformation of the vector 
𝑧 (here 𝑧 is a vector, not z component of the vector) is: 

𝑧 → 𝐴𝑧 + 𝜉                                          (A2.1) 
1. Product rule of (A2.1) can be verified as 

(𝐴, 𝜉)∙(𝐵, 𝜂) = (𝐴𝐵, 𝜉 + 𝐴𝜂)              (A2.2) 

(1) Product can also be represented by matrix ቀ𝐴 𝜉
0  1

ቁ, and it can be verified that: 

 ቀ𝐴 𝜉
0  1

ቁ ∙ ቀ
𝐵 𝜂
0  1

ቁ = ቀ
𝐴𝐵 𝜉 + 𝐴𝜂
0  1

ቁ 

(1) The transformation (𝐴, 𝜉) represents a rotation 𝐴 first, then a translation 𝜉 .  If translation 
first then rotation, should regard as product of two transformations (as (𝐴, 𝐴𝜉) below). 

(𝐴, 0)∙(1, 𝜉) = (𝐴, 𝐴𝜉) ≠ (1, 𝜉)∙(𝐴, 0) = (𝐴, 𝜉)   (A2.3) 
2. The totality of these transformations form a group (Affine transformation group). With identity 
(1,0), and inverse 

(𝐴, 𝜉)ିଵ = (𝐴ିଵ, −𝐴ିଵ𝜉)                                      (A2.4) 
3. We are only considering “normal motion”, where 𝐴 is rotation:  

𝐴்𝐴 = 1,  𝑑𝑒𝑡𝐴 = 1                                                (A2.5) 
Thus, (𝐴, 𝜉) forms a subgroup of affine transformation group. 
 
4. Pure rotation is of the form (𝐴, 0).  All pure rotations form a subgroup of “normal motion” 
group, it is non-Abelian.  Pure translation is of form (1, 𝜉).  All pure translations also form a 
subgroup of the “normal motion” group and is Abelian.  In addition, the conjugate of translation 
is still translation: 

(𝐴, 𝜉)∙(1, 𝜂)∙(𝐴, 𝜉)ିଵ = (1, 𝐴𝜂)                          (A2.6) 
Thus, all translations form a normal subgroup of “normal motion”. And the quotient group of 
“normal motion” to translation group is isomorphic to the rotation group. 
 
Remark: The reason that normal motion group discussed right here is that it’s implemented in 
Geant 4 simulation to represent the transformation of a daughter volume inside a mother volume 
as G4Tranform3D(G4RotationMatrix, G4ThreeVector). 

A 2.5.2 Categorize normal motion in 2D and 3D cases 
1) Normal motion in 2D: 
1. By (A2.5) 𝐴 ∈ 𝑆𝑂(2), has the form: 

 𝐴 = ቀ
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃  𝑐𝑜𝑠𝜃

ቁ 
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2. Any planar “normal motion” is a rotation about some point or translation: 

𝑧 → 𝐴𝑧 + 𝜉 , 𝐴 = ቀ
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃  𝑐𝑜𝑠𝜃

ቁ                        (A2.7) 

To confirm the statement: 
(1) 𝐴 = 1, 𝑧 → 𝐴𝑧 + 𝜉 = 𝑧 + 𝜉 is translation. 
(2) 𝐴 ≠ 1, suppose the rotation center 𝑧଴ is the fixed point of above transformation: 
𝑧଴ = 𝐴𝑧଴ + 𝜉 
(1 − 𝐴)𝑧଴ = 𝜉                                                          (A2.8) 
Since 𝐴 ≠ 1, (1 − 𝐴) is non-degenerate and there is a unique solution 𝑧଴ as the center of rotation. 
3. In the case of rotation, change coordinate system to make 𝑧଴ as the new origin, under this 
coordinate system vector transformed under pure rotation is denote as 𝑦 (coordinate which use 
the fixed point 𝑧଴ as its origin): 

𝑦 = 𝑧 − 𝑧଴                                                                                     (A2.9) 
𝑧 → 𝐴𝑧 + 𝜉 is equivalent to 𝑦 + 𝑧଴ → 𝐴(𝑦 + 𝑧଴) + 𝜉 = 𝐴𝑦 + (𝐴𝑧଴ + 𝜉) = 𝐴𝑦 + 𝑧଴,  
or transformation in 𝑦: 𝑦 → 𝐴𝑦                                                                                         (A2.10) 
  
2) Normal motion in 3D: 
We 1st consider only rotations: 

1. Consider pure rotation first.  Transformation 𝐴 ∈ 𝑆𝑂(3) has a fixed axis, which is not 
moving under transformation of 𝐴. Solving the eigen equation: 

𝐴𝑣 = 𝜆𝑣, 𝜆 real number, is the root of equation det(𝐴 − 𝜆∙1) =0  (A2.11) 
(A2.11) is equation of order 𝜆 being 3, it has one at least real solution 𝜆଴. Computing the inner 
product: 

⟨𝑣଴, 𝑣଴⟩ = ⟨𝐴𝑣଴, 𝐴𝑣଴⟩ = 𝜆଴
ଶ⟨𝑣଴, 𝑣଴⟩                                              (A2.12) 

We find 𝜆଴ = ±1, for rotation 𝜆଴ = 1. 
2. If a vector 𝑤 is perpendicular to 𝑣଴, then 𝐴𝑤 also perpendicular to 𝑣଴: 

⟨𝑣଴, 𝐴𝑤⟩ = ±⟨𝐴𝑣଴, 𝐴𝑤⟩ = ±⟨𝑣଴, 𝑤⟩ = 0. 
Equivalently, we can say that the plane through origin and perpendicular to 𝑣଴ is invariant under 
rotation 𝐴. 
3. 𝐴 ∈ 𝑆𝑂(3) explicit form: set 𝑣଴ along coordinate axis 𝑥ଷ, 𝐴 has form 

𝐴 = ൭
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
൱                                                               (A2.13) 

𝑆𝑂(3) consists of all rotation with axis through the origin. 
Now add translation and consider “Normal motion” in 3D: 
1. It has form: 𝑧 → 𝐴𝑧 + 𝜉.  If origin is translated by 𝑧 = 𝑦 + 𝑦଴, that is the origin of the 
coordinate system 𝑦 being translated from the origin of the coordinate system 𝑧 by 𝑦଴. Then 
“motion” in 𝑦 coordinate is 𝑦 + 𝑦଴ → 𝐴(𝑦 + 𝑦଴) + 𝜉, or equivalently: 

𝑦 → 𝐴𝑦 + (𝐴 − 1)𝑦଴ + 𝜉                                                                           (A2.14) 
2. To reduce the translation (𝐴 − 1)𝑦଴ + 𝜉 as much as possible, such that the transformation is as 
close to 𝑦 → 𝐴𝑦 as possible. Here: 

𝐴 = ൭
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
൱ and 𝜉 = ቌ

𝜉ଵ

𝜉ଶ

𝜉ଷ

ቍ 

Suppose 𝐴(𝜃) with non-zero 𝜃, then transformation (𝐴 − 1) is degenerate. Equation: 
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(1 − 𝐴)𝑦଴ = 𝜉 with explicit form ቐ

(1 − 𝑐𝑜𝑠𝜃)𝑦଴
ଵ − 𝑠𝑖𝑛𝜃𝑦଴

ଶ = 𝜉ଵ

𝑠𝑖𝑛𝜃𝑦଴
ଵ + (1 − 𝑐𝑜𝑠𝜃)𝑦଴

ଶ = 𝜉ଶ

0 = 𝜉ଷ

            (A2.15) 

Note: the first two equations of (A2.15) are exactly same as the 2D case with (1 − 𝐴)𝑧଴ = 𝜉. 
If 𝜉ଷ ≠ 0, the above equation has no solution.  But the first two equations have unique solutions. 
Substitute 𝑦଴ = (𝑦଴

ଵ, 𝑦଴
ଶ, 𝑦଴

ଷ) with 𝑦଴
ଵ, 𝑦଴

ଶ as the unique solution, 𝑦଴
ଷ arbitrary number. Then: 

                          (1 − 𝐴)𝑦଴ = (𝜉ଵ, 𝜉ଶ, 0) 
(𝐴 − 1)𝑦଴ + 𝜉 = (0,0, 𝜉ଷ)                           (A2.16) 

Transformation of 𝑦 has the form (inserting (A2.16) into (A2.14)): 
𝑦 → 𝐴𝑦 + (𝐴 − 1)𝑦଴ + 𝜉 = 𝐴𝑦 + (0,0, 𝜉ଷ) = 𝐴𝑦 + 𝜂                              (A2.17) 
𝜂 = (0,0, 𝜉ଷ) , and 𝐴𝜂 = 𝜂. 

Thus, after coordinate transformation 𝑧 = 𝑦 + 𝑦଴, 𝑦଴ = (𝑦଴
ଵ, 𝑦଴

ଶ, 𝑦଴
ଷ) with 𝑦଴

ଵ, 𝑦଴
ଶ as the unique 

solution of the first two equations of (A2.15) and 𝑦଴
ଷ an arbitrary number: 

(1) if 𝜉ଷ = 0 the normal motion is rotation 𝑦 → 𝐴𝑦; 
(2) if 𝜉ଷ ≠ 0 the normal motion is helix motion 𝑦 → 𝐴𝑦 + 𝜂 (Rotate 1st, then translate along 

rotation axis by 𝜉ଷ). 
This completes the Categorization of normal motion in 3D case. 
To end this appendix, here are two remarks: 

(1) In Geant 4 simulation wire chamber placement, we have a sequence of transformations of 
rotation and translation.  In order to calculate the composite transformation in form 
(𝐴, 𝜉), formula (A2.2) is repeatedly used. 

(2) In order to calculate the form of (𝐴, 𝜉) of the rotation about vertical axis through front 
wire chamber center, which is not the origin (magnet center) of the Geant 4 simulation. 
This is categorized as case (1) if 𝜉ଷ = 0 the normal motion is rotation 𝑦 → 𝐴𝑦 above, 
since the translation 𝜉 here has no 0 component in vertical axis or the rotation axis of 𝐴. 
In this case we want to do the reverse in (A2.15), that is instead of solving the fixed point 
𝑦଴, we know 𝑦଴ but want to find the translation 𝜉 in the normal motion (𝐴, 𝜉). This is 
complete by directly applying (A2.15): 𝜉 = (1 − 𝐴)𝑦଴  (A2.18). This is used in (2.29). 
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Part IV Appendix 3.2: Derivation of projected radius 𝑅ு 
The derivation can be found in most field theory books, here the reference is [63]. Different unit 
system is used here. 

Constant magnetic field: 

𝐹଴௜ = 0 

𝐹௜௝ = 𝜀௜௝௞𝐵௞ ,     𝑖 = 1,2,3 

Time component of equation of motion is: 

𝑑𝐸

𝑐𝑑𝜏
= 𝑞𝐹଴௜𝑢௜ = 0 

Energy of the particle is constant. Spatial components: 

𝛾
𝑑𝑝௜

𝑑𝑡
= 𝑞𝜀௜௝௞𝐵௞𝛾𝑣௝ 

Or in 3-vector form: 

ௗ𝒑

ௗ௧
= 𝑚𝛾

ௗ𝒗

ௗ௧
= 𝑞𝒗 × 𝑩  (A1) 

The 1st equality results from constant energy and thus 
ௗఊ

ௗ௧
= 0. Reorder    (𝐴1) 

ௗ𝒗

ௗ௧
=

௤𝒗×𝑩

௠ఊ
= 𝒗 × 𝝎஻          (A2)    

If we denote 𝝎஻ = 𝜔𝒌෡ , where 𝜔 =
௤஻

௠ఊ
, as in non-relativistic case, solution of equation (𝐴2) 

turns into helix motion of the particle. It has constant speed circular motion in 𝑥𝑦 plane, direction 
changed by 𝑩. 𝑧 direction motion is constant speed motion. And the radius of the circle in 𝑥𝑦 
plane is: 

𝑅ு =
௩ೣ೤

ఠ
=

௠ఊ௖ඥଵି(௦௜௡ఏ௦௜௡ఝ)మ

௤஻
=

ாඥଵି(௦௜௡ఏ௦௜௡ఝ)మ

௘௖஻
  (A3) 

When energy unit using MeV, cancel out 𝑒 and turns M into 10଺: 

𝑅ு = 10଺𝐸ඥ1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)ଶ/(𝑐𝐵)  (A4) 

That is the formula (3.5) 
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