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Abstract 
Automatic cardiac image segmentation has the potential to extract information from large amounts of 
medical image data. Previously developed methods using deep-learning models have been used to classify 
heart failure based on ejection fraction, but these have a significant error rate and do not use all relevant 
physiological metrics. Thus, this project aims to develop a deep learning model for left ventricle (LV) image 
segmentation. The model will be optimized and applied to quantify heart dysfunction post myocardial 
infarction (MI) in mice. Previously collected mice ultrasound images were transformed to meet model 
requirements. U-net architecture with Pytorch framework was used for development, and this process 
included data loading, training, optimization, and testing to make predictions. Accuracy, area under the 
curve, and F1 score was calculated to assess model performance. The results show an average .90 accuracy, 
0.83 F1 score, and 0.96 area under the curve. Model and researcher segmented images were utilized to 
calculate area and volume and quantify the LV. After comparison, statistically significant differences were 
observed between model and researcher segmented images which can be attributed to interobserver 
variability in annotations. Compared to previously developed segmentation models for human 
echocardiography, our model performed moderately well. The human model had a F1 score of 92% 
compared to our 83%. The developed model may be applicable for researchers conducting image 
segmentation on mice echocardiograms and the segmentation can be used to quantify other metrics of heart 
function quickly and accurately for classification. 

 
Keywords: Segmentation, Deep Learning, Murine Echocardiography 

 

Introduction 
Cardiovascular diseases (CVDs) are the leading cause of 
death globally according to the World Health Organization. 
In the United States, a heart attack occurs every 40 seconds, 
with about 1.5 million heart attacks and strokes occurring 
every year¹,². Imaging techniques such as magnetic 
resonance imaging (MRI), computed tomography (CT), and 
ultrasound are widely used to non-invasively assess cardiac 
structures and functions³. Cardiac image segmentation is an 
important step in image analysis and involves the 
partitioning of image data into specific regions of interest³. 
Numerous image segmentation methods have been 
developed in the past, including manual (slice by slice) and 
semi-automatic segmentation⁴. Manual segmentation is 
often performed by a radiologist or specialized clinician 
annotating the region of interest in a slice-by-slice manner. 

Although expert knowledge is utilized, this method is very 
time consuming, labor intensive, and prone to intra and 
interobserver variability⁵. Manual cardiac segmentation is 
challenging since the structural characteristics of the 
ventricles make it difficult to segment compared to other 
organs, such as the liver or kidney⁶. Semi-automatic 
segmentation uses algorithms to assist the process and 
eliminates   the   need   for   slice-by-slice   segmentation⁷. 
Although the time and effort required from the user can be 
reduced, semi-automatic segmentation is still highly 
variable⁵. 

 
Automated cardiac image segmentation using deep learning 
is becoming increasingly prevalent because it is more 
reliable, accurate, and quicker compared to previously used 
methods. Previously developed deep learning models have 
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achieved dice similarity coefficients between 82-92% when 
segmenting  the  LV⁸.  This  represents  an  82-92%  overlap 
between automatic and manual segmentation results. 
Certain deep learning models have also been developed to 
classify heart failure in humans based on ejection fraction⁹. 
The proposed project will develop a deep learning model to 
automate image segmentation of the LV from murine 
echocardiography videos. Analyzing the LV using 2D 
echocardiographic images is a common medical procedure 
for patients with cardiac issues and is used to distinguish 
between diseased and non-diseased states. 
Echocardiography is the gold standard in diagnostic 
imaging of the heart since it is a non-invasive and low-cost 
technique⁶. Thus, the analysis of murine echocardiography 
videos prior to and after induction of a MI may be relevant 
to clinically used imaging modalities. Ultimately, the 
proposed project is seeking to overcome current limitations 
in the robustness of deep learning-based models for LV 
quantification. To this end, we propose to develop a deep 
learning model for automated image segmentation of left 
ventricle heart ultrasound images (Aim 1). We will then 
optimize and apply the model to quantify heart dysfunction 
post myocardial MI in mice (Aim 2). 

 
Results 

Model Performance 
This project aimed to develop a deep learning model for LV 
image segmentation. After development, the model was 
assessed both quantitatively and qualitatively. Figure 1 
shows the model segmentation output, comparing a model 
prediction   output   to   the   segmentation   target¹⁰.   The 
prediction output indicates that the model learned the 
features of the LV. 

 
 

 
Fig. 1. Model Segmentation Output Results. The input (top left) was put 
into the model and the prediction output (top right) was compared to the 
corresponding target image (bottom right). 

Accuracy, F1 score, and area under the curve (AUC) 
metrics were calculated to evaluate performance. 356 

images from the validation dataset were used for analysis as 
shown in Table 1 below. 
Table. 1. Validation data was run through the model and performance 
metrics comparing the model predictions and target images were calculated 
for the entire dataset. 

 

Metric 
# of Images 

Accuracy F1 Score Area Under 
the Curve 

356 0.8971 0.8313 0.9582 

 
Training and validation loss values were also found after 
each epoch and average values are presented in Figure 2. 
Validation loss decreased by 40% to 0.297 and training loss 
decreased by 20% to 0.076. Learning rate was also 
calculated, and it stayed constant at 0.1 throughout training 
as seen in Figure S1. 

 

Fig. 2. Training and validation loss curve after training. 
 

LV Quantification 
This project aimed to quantify and classify heart 
dysfunction post MI in mice. LV area and volume metrics 
were calculated for model and researcher segmented images 
to identify differences between the LV pre and post MI. 
Average LV area for 3 baseline videos and 3 post iNOS 
videos are shown in Table 2. 

Table. 2. Comparison of average LV area from researcher and model 
segmented images from 3 baseline and 3 post iNOS videos. 

 

Metric 
Image Type 

Model Segmented 
Area (mm²) 

Researcher 
Segmented Area 

(mm²) 
Baseline 8.889 +/- 5.255 7.030 +/- 3.127 

28 Days Post iNOS 20.976 +/- 4.902 11.216 +/- 2.365 

 
Average LV volume for 6 videos is shown in Table 3. 
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Table. 3. Comparison of average LV volume pre and post MI for 6 videos. 
 

Metric 
Image Type 

Model 
Segmented 

Volume (𝜇𝐿) 

Researcher 
Segmented Volume 

(𝜇𝐿) 
Baseline 1 139.347 +/- 

126.894 
49.710 +/- 38.393 

Baseline 2 142.537 +/- 
122.560 

56.831 +/- 44.600 

Baseline 3 84.650 +/- 
86.576 

97.857 +/- 64.655 

28 Days Post MI 1 474.402 +/- 
223.250 

188.030 +/- 59.666 

28 Days Post MI 2 618.218 +/- 
222.202 

185.447 +/- 64.838 

28 Days Post MI 3 629.946 +/- 
318.860 

171.945 +/- 49.791 

 
Model versus researcher segmented values for all area and 
volume measurements were found to be significantly 
different based on t-tests run, with p-values less than 0.05 
as shown in Table S1. The null hypothesis, which stated that 
the researcher and model values for area and volume were 
similar, was rejected. Statistically significant differences 
were also found between all area and volume 
measurements for baseline versus iNOS mice. This leads to 
the rejection of the null hypothesis, that baseline and iNOS 
mice would have similar area and volume measurements. P- 
values are all less than 0.05 and are presented in Table S2. 
Since model and researcher segmented images were based 
on different annotation labels, the differences between 
annotations were calculated to find interobserver 
variability. Differences between researcher and model- 
trained annotations were significant for both baseline and 
iNOS mice, with p-values less than 0.05. P-values are 
shown in Table S3. Due to time constraints and unexpected 
setbacks, the rest of aim 2, classification of heart 
dysfunction post MI, was not completed. 

 
Discussion 

Based on the two aims presented at the beginning of this 
project, Aim 1’s results demonstrated that our developed 
model performed moderately well compared to previously 
developed segmentation models for human 
echocardiography⁹. Table 4 compares F1 score, accuracy, 
and AUC for the developed mice model and existing human 
model. The differences most notably for F1 score and 
accuracy may be attributed to the size of the training dataset. 
The human model utilized a large dataset of 10,030 
annotated echocardiogram videos while the mice model 
used 2841 images for training. Larger training datasets 
allow the model to identify correlations and trends more 
effectively  than  a  smaller  sample⁹.  Future  work  should 
include annotating the remaining mice ultrasound videos to 
use for training and validation. In addition, further 

 
optimizations such as modifying the loss function or data 
augmentation could be implemented to improve model 
performance. 

Table. 4. Comparison of model performance metrics between an existing human 
model and the developed mice model. 

 

 Accuracy F1 Score Area Under 
the Curve 

Human 
Model 

0.96 0.92 0.96 

Mice Model 0.90 0.83 0.96 

 
Based on the results seen in Figure 3 the developed model 
demonstrated no signs of overfitting or underfitting. 
Overfitting occurs when the model gives accurate 
predictions for the training data, but not for new data. This 
characteristic is seen when the validation loss curve 
increases during the end of training¹¹. Underfitting occurs 
when the model cannot accurately predict both training and 
new data. This characteristic is represented on the graph 
when the validation curve does not decrease throughout 
training¹¹. As seen in the training and validation loss curve, 
overfitting and underfitting is not present, resulting in a 
model that is able to learn LV features. It can also be 
observed from this graph that training loss is lower than 
validation loss. This behavior is expected since the model is 
learning from the training data and should be able to predict 
it better than the validation set¹². 

 
Figure S1 shows that the learning rate stayed constant 
throughout training. The learning rate was set to decrease if 
validation loss stayed constant for 10 epochs, however this 
was not observed in the model. If this was observed, the 
learning rate would increase resulting in faster training once 
loss is low and stable. Further optimizations could be made 
to train the model for more than 40 epochs to achieve stable 
validation loss values and learning rate decay. 

 
Aim 2’s results demonstrated that LV area and volume 
based on model and researcher segmentation were 
significantly different, when they were expected to be 
similar. These values were used to compare the model 
segmentation output to images not trained on the model. 
The metrics were calculated based on the assumption that 
researcher segmented area and volume is the expected 
value. In this case, the researcher refers to our capstone 
graduate advisors. These differences were due to significant 
interobserver variability in annotations since the model was 
trained on annotations we made. Overall, the differences 
between researcher and model segmented area and volume 
may not correlate with model accuracy. The discrepancy 
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could be attributed to differences in annotations and the low 
sample utilized for the calculations. Taking the average 
across each condition may have also contributed to the large 
differences. Volume measurements may be more accurate if 
end diastolic and end diastolic values are calculated based 
on the smallest and largest area instead of average area. 
These discrepancies suggest that researcher annotated 
segmentations are better suited for model training. A model 
with increased accuracy may also reduce differences in the 
results presented. 

 
Calculating metrics of LV area and volume can also be used 
to classify images pre and post MI. Based on the results, 
both of these metrics were significantly larger post MI since 
an enlarged heart can be caused by damage to the heart 
muscle. The iNOS knockout in mice post MI slows down 
the healing process which contributes to the larger area and 
volume values. This trend is evident in both Tables 2 and 3. 
There is no standard range for the area and volume of a mice 
LV, however the calculated values can be used to compare 
between the same mouse. Future work should include 
defining thresholds for the LV area and volume to classify 
ultrasound images into pre or post MI groups. 

 
Currently, this model may be applicable for researchers to 
conduct image segmentation on mice echocardiograms. 
Future work should involve optimizing model performance 
to improve accuracy. The segmentation should also be used 
to quantify other metrics of heart dysfunction such as 
ejection fraction, wall thickness, and cardiac contractility. 
These measurements can be utilized for classification of 
heart dysfunction. Then a GUI software should be 
developed to improve the accessibility of the model. Lastly, 
the viability of this model for human echocardiography 
should be explored in order to apply the developed model 
in a clinical setting. 

 
Materials and Methods 
This project involved various steps that were completed in 
parallel to develop a deep learning model for LV 
segmentation and quantification as laid out in the two aims 
previously mentioned. Each step is described in the 
following sections and laid out in Figure 3 below. 

 

Fig. 3. High-level overview of the steps 
taken to achieve our project aims. 

Data Collection 
2D B-mode videos of murine echocardiography were 
previously collected by Dr. Brent French’s lab for baseline 
and iNOS knockout mice pre and post MI. The baseline 
mice were treated as the healthy control group, while iNOS 
mice were the experimental group. The iNOS gene 
knockout negatively impacts and slows down the healing 
process post MI, resulting in larger differences in LV 
characteristics after a heart attack. The data was collected 
with a Vevo 2100 scanner using a MS 400 transducer and 
center frequency of 30 MHz and exported in DICOM 
format. There were 5 mice at 5 different imaging sessions: 
baseline (pre-MI), 7-, 14-, 21-, and 28-days post MI. Each 
video had approximately 120 frames. 

 
Model Development 
Prior to working with the mice ultrasound data, a framework 
for the model was developed using a publicly available 
dataset of liver CT images. A pre-trained U-Net model for 
abnormality segmentation of brain MRI volumes was 
utilized in Pytorch for training. The pre-trained model 
requires 3 input channels, 1 output channel, and 32 features 
in the first layer. The U-Net is a convolution neural network 
architecture which is commonly used for fast and precise 
segmentation of images¹³. While the framework was being 
developed, data preparation of the murine 
echocardiography videos was also completed. This 
involved manual ground truth labeling of the videos to 
identify the LV using 3D slicer software. Ground truth 
labeling refers to the actual model target or segmentation 
maps and can be used as a comparison to model predictions 
made on unlabeled, input data¹⁴. 

 
Transformation and Data Loading 
The videos and corresponding labels were then loaded into 
the model using a data loader, which batches the data into 
input-target pairs as seen in Figure 4, and performs 
transformations. This included resizing and reshaping the 
data into tensors to meet model requirements. A batch size 
of 16 was utilized for training as models trained with small 
batch sizes generalize well on the validation dataset used for 
testing. However, larger batch sizes take less time to train 
but are less accurate, thus 16 provided higher accuracy with 
reasonable    training    time¹⁵.    Augmentations    including 
rotating the training images were implemented in the data 
loader for more robust training. The probability of a rotated 
image was p = 0.5 which eventually resulted in batches with 
rotated input-target pairs¹⁵. 
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Fig. 4. Input (left) and target (right) pairs were transformed to meet model 
requirements and loaded for training. 

 
Training 
The loaded data was split 80:20 for training and validation 
respectively which resulted in 2841 images for training and 
356 images for validation. The model was trained for 40 
epochs using Rivanna, UVA’s high performance computing 
system. A total of 16 videos of a mouse taken at baseline 
(14 B-mode from the short axis and 2 B-mode from the long 
axis) and a total of 12 videos of 4 mice taken 28 days post 
MI were used for training. The implemented train function 
iterated through the training data loader and sent the batches 
through the network. The output, along with the 
corresponding target, was used to compute the loss using a 
Binary Cross Entropy (BCE) loss function. BCE tracks 
incorrect labeling of the data which contributes to increased 
accuracy¹⁶. Based on the computed gradients, a backward 
pass and step with the stochastic gradient descent (SGD) 
optimizer is performed to update the model parameters. 
Learning rate decay was also implemented as an 
optimization technique. The initial learning rate was kept as 
the default, 0.1, which means that the weights in the 
network are by 0.1 * estimated weight error. 0.1 was picked 
since a very low learning rate results in slow training, while 
a high learning rate causes divergent behavior in the loss 
function¹⁷.   The   learning   rate   scheduler   in   the   model 
increased the learning rate by 0.01 if the validation loss 
stays constant for 10 epochs. This allows for faster training 
without affecting loss values. 

 
Testing 
Input images from the validation data were run through the 
model to assess overall performance qualitatively and 
quantitatively. This resulted in predictions that can be 
compared to the corresponding targets from the validation 
dataset. To quantitatively assess performance, accuracy, F1 
score, and area under the curve (AUC) metrics were 
calculated using the torchmetrics function to assess model 
performance. Accuracy refers to the images correctly 
predicted across the entire dataset, F1 score measures 
accuracy through a combination of precision and recall, and 
AUC calculates the probability of making a correct 
prediction¹⁸. 
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LV Quantification 
Area and volume metrics on model and researcher 
segmented images were used to quantify the LV. 3 baseline 
and 3 iNOS videos were separately loaded into the model 
and prediction images were found using the trained model. 
The model segmented area was calculated by multiplying 
the sum of all the elements in the input image tensor by the 
area of one pixel. The area of one pixel was about 0.001 
mm² for videos taken in all imaging sessions. The average 
area across all slices of all 3 videos for baseline and iNOS 
was separately calculated for the final areas based on model 
segmentation. A similar process was used to find the areas 
for researcher segmented images. Our capstone advisors 
provided us with segmentation for the same 3 baseline and 
iNOS videos. The same formula was utilized to find the 
researcher's segmented areas. 

 
LV volume was calculated based on the area values found 
for each video slice from the process described previously. 
LV volume was calculated using Equation 1 shown below, 
where A is the LV area, and L is the long axis length 
measured from the LV apex to mitral valve¹⁹. The long axis 
lengths were measured for each video by taking the average 
of about 20 frames per video around the minimum and 
maximum areas, which represent end diastolic and end 
systolic volume. The long axis lengths ranged from about 
6.73 mm to 7.58 mm depending on the imaging session. The 
values of volume per video slice were average for each 
video, resulting in the table previously presented. 

 
8 𝜋 𝑥 𝐴2 

𝑉 = 3  
𝐿 

[1] 

 
 

Statistical analysis was done to compare between area and 
volume values for model and researcher segmented images. 
A two tailed type 1 t-test was used to determine if there 
were no significant differences between the values. 
Additional analysis was performed to compare area and 
volume measurements pre and post MI. A two tailed type 1 
t-test was run to determine if there were significant 
differences between the values. To account for the large 
differences observed between model and researcher 
segmented image, interobserver variability was calculated. 
This refers to the difference in annotations between us and 
our capstone advisors. Interobserver variability was 
calculated using Equation 2, where A is student annotation 
and B is researcher annotation20. A two tailed type 1 t-test 
was run to determine if differences between the two 
annotations were significant. 

 
|𝐴 − 𝐵| [2] 
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Fig. S1. Learning rate graph after training was run for 40 
epochs. The value stayed constant at 0.1. 

 
 

Table. S1. P-values were less than 0.05 signifying that the difference between 
researcher and model segmented areas are significant. 

Baseline Area T-Test 5.92E-19 

Segmented Area T-Test 5.23E-116 

 
Table. S2. P-values were less than 0.05 signifying that the difference between 
researcher and model segmented volumes are significant.. 

Baseline 1 T-Test 2.07E-18 
Baseline 2 T-Test 1.89E-19 
Baseline 3 T-Test 1.80E-02 

Segmented 1 T-Test 3.95E-25 
Segmented 2 T-Test 5.28E-40 
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Segmented 3 T-Test 2.41E-35 
 
 

Table. S3. P-values were less than 0.05 signifying that the difference between 
researcher and model-trained annotations are significant. 

Baseline T-Test 6.47E-41 

Segmented T-Test 2.77E-11 
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