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Abstract

Affordance grounding—the identification of functional properties that indicate how objects can be

manipulated—is fundamental to embodied intelligence and robotic manipulation. While previous

research has made significant progress in single-object affordance prediction, it has largely overlooked

the critical reality that most real-world tasks involve interactions between multiple objects. This

thesis addresses the challenge of object-to-object (O2O) affordance grounding in 3D space under

limited data constraints.

We introduce O³Afford, a novel one-shot learning framework for object-to-object affordance

grounding that leverages 3D semantic fields distilled from vision foundation models (VFMs). Our key

insight is that by combining the rich semantic understanding capabilities of VFMs with the geometric

information captured in 3D point clouds, we can enable effective generalization to unseen objects with

minimal supervision. The framework projects multi-view features from vision foundation models

onto point clouds of interacting objects, creating semantically-enriched representations that capture

part-awareness critical for affordance prediction.

At the core of our approach is a transformer-based affordance decoder that explicitly models

geometric relationships and semantic features between objects, considering how each object’s ge-

ometry influences potential interaction regions on the other. This approach captures the geometry

context of object-to-object affordances while maintaining awareness of the distinct functional roles

in interactions such as pouring, cutting, and plugging.

We further integrate our affordance representations with large language models to enhance fine-

grained spatial understanding for downstream tasks. Experimental evaluations demonstrate that

O³Afford significantly outperforms existing methods in both affordance prediction accuracy and

generalization capabilities across unseen object instances, partial observation, and novel categories.

Through experiments in both simulation and real-world environments, we validate that our approach

facilitates more effective manipulation planning for complex interactive tasks.

This work bridges a critical gap in affordance learning by enabling robots to understand not

just how humans interact with individual objects, but how objects functionally interact with each

other—a fundamental capability for advanced robotic manipulation in everyday environments.
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Chapter 1

Introduction

In robotics, understanding and interpreting the environment is essential for enabling robots to inter-

act effectively with objects and perform meaningful tasks. Traditionally, robotic systems have relied

heavily on explicit object models and predefined manipulation strategies. However, in real-world

scenarios, objects often exhibit varying shapes, sizes, and physical properties, making it challenging

for robots to apply fixed strategies. To overcome this limitation, researchers have increasingly turned

towards concepts inspired by human perception, specifically, how humans intuitively understand and

interact with their environment. Central to this shift is the concept of affordance, which describes

the actionable possibilities that an environment or an object inherently provides to an agent.

1.1 What is Affordance Grounding?

Affordance grounding aims to identify the functional properties of objects or environments that in-

dicate potential interactions, effectively communicating how objects can be manipulated and inter-

acted with in meaningful ways. Accurate prediction of affordance maps for objects can significantly

enhance numerous downstream tasks, including human-computer interaction [1], visual understand-

ing [2], and robotic manipulation [3]. Several studies have investigated affordance prediction in 2D

pixel space [4, 5, 6, 7, 8], focusing on predicting functional maps from input images with language

conditions that describe the intended tasks. While effective, this approach may limit potential gen-

eralization capabilities due to its disregard of the geometric information inherent in object shapes,

which is difficult to accurately estimate in 2D space. Our work investigates affordance grounding in

the 3D space.
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1.2 Object-to-object Affordance Grounding

Although many works [9] have explored 3D object affordance grounding using object point clouds,

they predominantly focus on single-object affordance prediction with the assumption that the affor-

dance pertains solely to human interaction. This approach neglects the reality that many daily tasks

involve object-to-object interactions. For instance, a pouring task typically requires two objects: a

source container and a target container. Such an assumption limits the potential generalization

ability to broader scenarios.

Object-to-object affordance grounding is essential for enabling robots to handle complex ma-

nipulation tasks that reflect real-world scenarios. In everyday life, tasks like cooking, assembling

furniture, or tool usage inherently involve interactions between multiple objects. Accurate under-

standing of these interactions is crucial for robots to perform tasks autonomously and safely. Effective

grounding of object-to-object affordances enhances robotic manipulation capabilities by providing

contextual understanding of how different objects can functionally relate to one another, thus sig-

nificantly improving robots’ adaptability and efficiency in dynamic and unstructured environments.

However, a major challenge in object-to-object affordance grounding is the scarcity of annotated

datasets. Unlike single-object affordance grounding, annotating data for object-to-object interac-

tions is inherently more complex and time-consuming, as it requires specifying precise relational

information between multiple objects. O2O-Afford [10] addressed this problem in an annotation-

free manner through automatically extracting contacts in simulation, but this approach remains

limited to simple affordances such as placing and fitting, extending to more complex ones require

carefully craft the object interactions, which is as hard as solving O2O-afford. Additionally, many

important interactions, like pouring liquids or cutting objects, involve sophisticated physical dynam-

ics and subtle interactions, making simulation-based annotation approaches less effective. Our work

aims to tackle these challenges by developing methodologies capable of inferring complex affordances

such as pouring and cutting, which are currently unattainable by existing annotation-free techniques

yet crucial for practical robotic manipulation applications.

1.3 Vision Foundation Models

Vision Foundation Models (VFMs) have their roots deeply embedded in the field of self-supervised

learning. Early research on self-supervised learning focused primarily on designing pretext tasks,

such as predicting image rotations, solving jigsaw puzzles, and image inpainting, to facilitate the
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learning of meaningful representations without human annotations. As computational resources and

data availability increased, more advanced self-supervised approaches emerged, notably contrastive

learning frameworks such as SimCLR [11] and MoCo [12], which effectively leveraged large-scale

unlabeled data to produce robust visual representations.

Following this, vision transformers emerged, revolutionizing the field by demonstrating superior

scalability and generalization capabilities compared to traditional convolutional neural networks.

Vision transformers, when pre-trained with self-supervised objectives on vast datasets, exhibited

remarkable transferability to downstream tasks without extensive fine-tuning. This paradigm shift

marked the rise of modern vision foundation models, which integrate large-scale training, transformer

architectures, and self-supervised objectives to create universally applicable vision models capable

of achieving state-of-the-art results across diverse vision tasks. Our exploration into VFMs for 3D

affordance grounding builds upon this rich history, aiming to harness their powerful representational

capacities to address complex, geometry-rich interactions encountered in object-to-object affordance

grounding.

1.4 Motivation

We seek to develop a solution for generalizable object-to-object affordance grounding with mini-

mal supervision. Recent advances in VFMs [13, 14, 15] have demonstrated impressive zero-shot

generalization capabilities across various vision tasks. Being pre-trained on internet-scale datasets,

these vision foundation models (VFMs) have been equipped with generalizable semantic understand-

ing [16] and part awareness [17]. A series of works have explored leveraging the capabilities of VFMs

for few-shot downstream vision tasks such as segmentation [18], detection [19], and visual correspon-

dence [20]. Inspired by a prior work [4] in VFMs for 2D affordance, we further investigate VFMs

for 3D affordance with the hypothesis that point clouds provide richer geometric information, thus

enabling generalizable capabilities across different viewpoints, unseen object instances, and even

entirely novel object categories.

1.5 Research Goal and Contribution

We introduce O3Afford, a One-shot Object-to-Object Affordance Grounding framework with 3D

feature fields distilled from VFMs. Specifically, we leverage pre-trained DINOv2 [13] to extract

rich semantic features from multi-view observations. These semantic features are projected onto

3



the point clouds of both the source and target objects involved in manipulation tasks. The re-

sulting enriched point clouds encapsulate part-aware semantic information, facilitating robust af-

fordance inference. Our approach introduces a novel bi-directional affordance discovery module,

which explicitly accounts for geometric and semantic contexts from both objects reciprocally. This

bidirectional approach effectively captures nuanced interactions, enhancing the accuracy and gen-

eralizability of affordance predictions. Furthermore, we integrate our affordance grounding module

with large language models (LLMs), where the predicted affordance maps serve as an interpretable

spatial representation used by LLMs in their reasoning process. By implementing computational

routines that load both object point clouds and their associated affordance values, the LLMs can

perform enhanced spatial reasoning and planning. This integration significantly improves spatial

understanding and enables comprehensive reasoning capabilities in robotic manipulation scenarios

that surpass methods relying solely on visual or geometric inputs.

Our evaluation encompasses two primary aspects. First, we rigorously compare our affordance

grounding pipeline against prior methods on various challenging object-to-object affordance tasks,

demonstrating substantial improvement in generalization across diverse object instances, unseen

categories, and varying viewpoints. Second, we validate the practical effectiveness and applicability

of our pipeline in robotic manipulation scenarios by integrating it with LLMs for enhanced plan-

ning and policy training using our affordance representations. Extensive experiments conducted in

both simulation environments and real-world robotic setups confirm the potential of our proposed

approach in enabling robots to successfully perform a wide array of tasks that require sophisticated

object interactions.

In summary, the key contributions of our proposed O3Afford are three-fold:

• We propose a novel one-shot object-to-object affordance grounding framework, O3Afford,

which leverages 3D semantic features distilled from vision foundation models for effective

affordance prediction.

• We introduce a bi-directional affordance discovery module that explicitly captures mutual geo-

metric and semantic context between interacting objects, significantly enhancing generalization

and prediction accuracy.

• We comprehensively evaluate our framework against state-of-the-art methods, demonstrating

superior generalization and practical effectiveness in both simulated and real-world robotic

manipulation tasks, highlighting the broad applicability and robustness of our approach.

4



1.6 Thesis Overview

We structure the remainder of this thesis as follows: Chapter II presents a comprehensive overview

of related work, including affordance grounding techniques, few-shot learning methodologies utiliz-

ing vision foundation models, and affordance-based robotic manipulation approaches. Chapter III

demonstrates the formulation of our method. Chapter IV provides an in-depth explanation of our

proposed methodology, detailing our novel affordance grounding framework, its key modules, and

the integration with vision-language models. Chapter V presents our systematic evaluation strat-

egy, experimental setups, and extensive analyses, highlighting the robustness, generalization, and

practical efficacy of our approach.
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Chapter 2

Related Work

2.1 Affordance Grounding

Affordance grounding has attracted significant attention due to its pivotal role in enabling robots to

interact effectively with their environment. Many studies predict a 2D affordance map for objects

under specific application scenarios or language conditions [6, 8, 7, 5]. These 2D affordances can

provide valuable guidance for robotic manipulation tasks by highlighting actionable regions [21, 22].

However, direct robot manipulation tasks inherently require a deeper understanding of the objects’

geometry, necessitating richer, three-dimensional affordance representations.

Several recent studies have addressed this need by exploring 3D affordances, typically focusing

on single-object scenarios matched with specific instructions or actions [23, 9, 24]. Despite their

progress, these methods often fail to generalize to tasks involving interactions between multiple

objects. To address this limitation, our method uniquely predicts 3D affordances for pairs of objects,

enabling direct manipulation by leveraging spatial relationships and geometric context.

2.2 Few-shot Learning with Foundation Models

Foundation models have revolutionized few-shot learning paradigms by demonstrating remarkable

capabilities in generalization and adaptation to novel tasks with limited training data [25, 26].

By pretraining on extensive, internet-scale datasets, these models acquire comprehensive semantic

knowledge and common-sense reasoning abilities [14, 13, 27, 28], facilitating rapid adaptation through

minimal demonstrations.
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Recent works have further explored leveraging these capabilities in specialized vision tasks. For

instance, ZegClip [18] extends CLIP’s zero-shot capabilities to pixel-level predictions, effectively

enabling zero-shot image segmentation. Similarly, [19] harnessed DINOv2’s powerful representa-

tion capabilities, combined with large language models (LLMs), achieving robust few-shot object

detection. Additionally, latent diffusion models have been utilized to enhance few-shot semantic

segmentation tasks [29, 30, 31].

In the context of 3D data, several studies have pioneered pretraining on large-scale point cloud

datasets, yielding encouraging results in tasks such as one-shot part segmentation and classifica-

tion [32, 33]. Despite these advancements, the gap between 2D image-based foundation models

and 3D domain-specific models remains substantial due to the limited availability of large-scale 3D

datasets. Building upon insights from prior systematic studies like [4], which investigated opti-

mal vision foundation models for one-shot 2D affordance grounding, we extend these methodologies

into 3D. Our approach significantly improves geometric generalization and viewpoint invariance,

addressing critical challenges in real-world robotic applications.

2.3 Affordance-based Robotic Manipulation

Affordance-based robotic manipulation has become increasingly prominent as robots are expected

to perform complex interactions in dynamic environments. Previous works have explored diverse af-

fordance frameworks to enhance robotic capabilities. For example, [34] identifies specific affordance

locations for executing predetermined actions and trajectories, facilitating task-oriented manipula-

tions. In [35], predicted keypoints are utilized to simplify subsequent manipulation planning and

execution.

Recent advances have also integrated affordance predictions with powerful language models,

enabling enhanced semantic and spatial reasoning. [36] demonstrates how large language models

(LLMs) can predict affordances, subsequently guiding effective motion planning. Furthermore, af-

fordance prediction has proven beneficial for policy training in reinforcement learning frameworks.

[37] leverages detected affordance regions to streamline the reinforcement learning process, signifi-

cantly improving training efficiency and task performance. Likewise, [38] integrates language goal

grounding with affordance predictions to optimize policy training, enhancing robot performance

across diverse scenarios.

Our work contributes to this rich body of research by focusing explicitly on object-to-object af-

fordances. We utilize comprehensive 3D geometric reasoning to infer actionable affordances between

7



interacting object pairs directly. By employing these affordances to guide robotic motion planning,

our framework achieves highly efficient and precise manipulations suitable for complex and realistic

tasks.

8



Chapter 3

Problem Formulation

We formulate object-to-object affordance grounding as a problem of predicting functional interaction

regions between two object point clouds. Given a source object point cloud Ps ∈ RNs×(3+n) and

a target object point cloud Pt ∈ RNt×(3+n), where Ns and Nt represent the number of points in

each cloud respectively, our goal is to predict affordance maps As ∈ [0, 1]Ns and At ∈ [0, 1]Nt that

indicate the likelihood of interaction at each point. Each point is represented by its 3D coordinates

(x, y, z) and an n-dimensional semantic feature vector extracted from vision foundation models.

Unlike previous approaches that require extensive training data across multiple instances for each

affordance type, we tackle a more challenging one-shot training setting. Specifically, the training set

consists of a set of K interacting object pairs, each corresponding to a distinct affordance type:

Dtrain = {(P (i)
s , P

(i)
t , A(i)

s , A
(i)
t )}Ki=1 (3.1)

where each (P
(i)
s , P

(i)
t ) represents a unique object pair exhibiting the i-th type of affordance, and

each affordance type appears only once in the training set.

At test time, the model is evaluated on novel object pairs exhibiting the same set of affordance

types, but with entirely unseen objects and geometries:

Dtest = {(P (j)
s , P

(j)
t )}K

′

j=1 (3.2)

where K ′ denotes the number of test pairs, possibly different from K, and the goal is to predict the

corresponding affordance maps (A
(j)
s , A

(j)
t ).

9



Formally, our model fθ with parameters θ maps a pair of input point clouds to their respective

affordance maps:

fθ : (Ps, Pt) 7→ (As, At) (3.3)

10



Chapter 4

Methodology

4.1 Overview

Our pipeline consists of three components. First, we construct 3D consistent semantic features

from DINOv2 for object point clouds. Subsequently, our affordance grounding module takes these

semantically-enriched point clouds as input and predicts the corresponding affordance maps. Last,

we leverage LLM for constraint function generation, which will be optimized during planning.

4.2 Semantic Point Cloud Construction

To construct our 3D feature field for point cloud scenes, we draw inspiration from the approach

proposed by Wang et al. [17] for projecting 2D semantic features into 3D space using DINOv2 [13].

In their framework, multi-view RGBD images are processed to extract DINOv2 features, which

are then projected onto arbitrary 3D coordinates by mapping them to each camera’s image space,

interpolating features, and fusing them across views. Specifically, for a 3D point x, D3Field [17]

compute its projection ui in the i-th camera view, determine the truncated depth difference di =

ri−r′i (where ri is sensor-captured depth and r′i is the interpolated depth), and assign visibility vi and

weight wi to prioritize points near the surface. These weights guide the fusion of semantic features

fi and instance masks pi across K views, yielding a unified 3D descriptor field. We adapt this

method to our point cloud representation by aligning multi-view RGB observations with the point

cloud geometry, projecting DINOv2 features onto the 3D points, and fusing them to encode semantic

information directly onto the point cloud structure. This approach enables efficient and generalizable
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Figure 4.1: Framework pipeline.

feature representation without additional training, supporting robust scene understanding in our

application.

4.3 One-Shot Affordance Grounding

To enable effective affordance prediction from point clouds, we propose a neural network architec-

ture that integrates geometric encoding, cross-object attention mechanisms, and explicit type em-

beddings. Our network processes paired point clouds representing a source object (Psrc ∈ RB×N×3)

and a target object (Ptgt ∈ RB×N×3), alongside corresponding visual features extracted from DI-

NOv2 [13], denoted by Fsrc,Ftgt ∈ RB×N×1024. The output consists of per-point affordance scores

optimized via binary cross-entropy (BCE) loss against ground-truth annotations during training.

Our model comprises four primary components: (1) a Point Cloud Encoder, (2) a Type

Embedding Mechanism, (3) a Cross-Attention Module, and (4) a Projection Head.

4.3.1 Point Cloud Encoder

The PointCloudEncoder first jointly processes concatenated point clouds and their DINOv2-derived

features. Given the combined input P = [Psrc,Ptgt] ∈ R2B×N×3 and features F ∈ R2B×N×1024,

the encoder employs a hierarchical structure with hidden dimensions [784, 512] to aggregate local

geometric information into compact patch-level feature representations. This produces tokenized

features Z ∈ R2B×T×512 and corresponding patch centroids C ∈ R2B×T×3, where T = 256 denotes

the number of patches per object.

The encoded features are then separated into source and target object representations: Zsrc,Ztgt ∈

RB×T×512.

12



4.3.2 Type Embedding Mechanism

To explicitly distinguish between source and target objects, we introduce a learnable type embedding

vector. Specifically, we define a fixed one-hot style type embedding Etype ∈ R2×512, assigning

Etype[0] = +1 for source objects and Etype[1] = −1 for target objects. The embeddings are replicated

across tokens and added to the respective features to clearly encode object roles:

Zsrc ← Zsrc +Etype[0], Ztgt ← Ztgt +Etype[1].

This embedding significantly enhances the model’s understanding of inter-object affordance se-

mantics.

4.3.3 Cross-Attention Module

We apply a bidirectional cross-attention mechanism to enable dynamic feature interaction between

source and target objects. Specifically, a multi-head attention module with 8 heads captures con-

textual dependencies:

Asrc = CrossAttention(Zsrc,Ztgt,Ztgt),

Atgt = CrossAttention(Ztgt,Zsrc,Zsrc).

Residual connections are then employed to integrate attention results back into original feature

representations:

Zfinal
src = Zsrc +Asrc, Zfinal

tgt = Ztgt +Atgt.

This module effectively captures nuanced affordance interactions between objects.

4.3.4 Projection Head and Point-wise Prediction

To generate per-point predictions, we interpolate the final patch-level embeddings back to individual

points in the original point clouds using nearest-neighbor interpolation based on patch centroids C.

This yields dense point-level embeddings Esrc,Etgt ∈ RB×N×512.

These dense embeddings are concatenated and passed through a lightweight projection head,

comprising:

• A linear transformation from 512 to 256 dimensions.

13



• Layer normalization and GELU activation.

• Dropout regularization (rate 0.1).

• Final linear projection from 256 dimensions to scalar values.

A sigmoid activation function produces affordance scores S ∈ [0, 1]2B×6×N , representing pre-

dicted interaction probabilities, where the dimension 6 corresponds to separate channels for each

affordance type prediction.

4.3.5 Training and Optimization

During training, we optimize our network using the binary cross-entropy (BCE) loss:

LBCE = − 1

2BN

2B∑
i=1

N∑
j=1

[Lij log(Sij) + (1− Lij) log(1− Sij)] ,

where Lij represents ground-truth affordance labels.

During inference, the network directly outputs per-point affordance predictions, facilitating ef-

fective robotic manipulation planning and execution in real-world scenarios.

4.4 Affordance-Based Planning with LLMs

In this section, we introduce an approach for affordance-based robotic planning by leveraging LLMs.

Our method systematically translates affordance data embedded in 3D point clouds into explicit

geometric and semantic constraints. Specifically, given a source object point cloud Psrc and a target

object point cloud Ptgt, along with their respective affordance maps Asrc and Atgt, we optimize a

6-DoF transformation T ∈ R4×4 that aligns objects appropriately for the intended task.

Our pipeline includes three key steps which can be summarized in Fig 4.2.

4.4.1 Affordance Region Identification

To efficiently utilize affordance information, we first extract significant interaction regions from each

object’s point cloud. We cluster points using DBSCAN [39] based on affordance scores, selecting

points above a specified percentile (typically top 25%) to form distinct regions, denoted as Rsrc

and Rtgt. Each region is characterized by its centroid, constituent points, and averaged affordance

scores, effectively condensing essential geometric and semantic details.
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4.4.2 Constraint Generation with LLMs

We leverage the spatial reasoning capabilities of LLMs to translate object affordance and geometry

representation into explicit constraints through code generation. This approach abstracts semantic

affordance instructions (e.g., “pouring” or “cutting”) into concrete geometric constraints such as

alignment, orientation, and spatial relations. The generated constraints include:

• Affordance Alignment Constraint: Ensures optimal alignment between source and target

high-affordance regions.

• Positional Constraint: Enforces spatial relationships such as ”above,” ”inside,” or ”aligned,”

based on task semantics.

• Orientational Constraint: Ensures objects maintain specific orientations (e.g., tilted or

perpendicular) appropriate for the manipulation.

• Collision Avoidance Constraint: Prevents unrealistic penetrations or collisions.

• Stability Constraint: Ensures physically feasible object placement to maintain stability

post-manipulation.

Each constraint is guided by task-specific semantic reasoning provided by the LLM, making

our approach robust across varied manipulation scenarios. I provide an example contraint function

generated by LLM in Fig 4.3. For detailed prompt template, we provide it in Appendix.
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Figure 4.2: LLM Planning Pipeline.

1 def evaluate_pour_interaction_score(src_pcd, tgt_pcd, transform):

2 # 1. Transform source point cloud using the given transformation

3 src_transformed = transform_pointcloud(src_pcd, transform)

4

5 # 2. Extract high-affordance regions (mouth and receiver)

6 src_mouth_region = extract_high_affordance_region(src_transformed)

7 tgt_receiver_region = extract_high_affordance_region(tgt_pcd)

8

9 # 3. Compute affordance alignment score

10 score_aff = compute_alignment_score(src_mouth_region, tgt_receiver_region)

11

12 # 4. Check vertical positioning: source should be above target

13 score_pos = compute_position_penalty(src_mouth_region, tgt_receiver_region)

14

15 # 5. Check tilt angle: pouring requires the source to be tilted

16 score_ori = compute_orientation_penalty(transform)

17

18 # 6. Check collision: ensure source does not intersect target

19 score_clear = compute_clearance_penalty(src_transformed, tgt_pcd)

20

21 # 7. Weighted sum of all constraints

22 total_score = weighted_sum(score_aff, score_pos, score_ori, score_clear)

23

24 return total_score

Figure 4.3: Example constraint function used for pouring interactions.
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4.4.3 Transformation Optimization

We formulate the transformation planning problem as a constrained optimization over the rigid-

body transformation T ∈ SE(3) applied to the source object. Our goal is to find the optimal T

that minimizes a composite cost, which evaluates the plausibility and feasibility of the resulting

interaction configuration. Formally, we solve:

min
T∈SE(3)

walignSalign(T) + wposSpos(T) + worientSorient(T)

+ wcollScoll(T) + wstabSstab(T)

s.t. T satisfies task-specific constraints (e.g., reachability, visibility)

(4.1)

Each term in the objective corresponds to a soft constraint defined as follows:

• Affordance Alignment Score Salign(T): Measures the proximity between transformed

source affordance regions R′
src = T · Rsrc and target regions Rtgt.

• Positional Score Spos(T): Penalizes deviation from desired relative positions, e.g., vertical

offset between functional regions.

• Orientational Score Sorient(T): Quantifies angular deviation of transformed axes from task-

specific reference directions.

• Collision Score Scoll(T): Penalizes intersections between transformed source point cloud and

the target scene.

• Stability Score Sstab(T): Evaluates physical stability based on the placement of the object’s

centroid over the support base.

This optimization is solved using gradient-based methods (e.g., Adam or L-BFGS) with numerical

gradients computed over the transformed geometry.
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Chapter 5

Experiments

Here, we evaluate our method for both affordance prediction and robotic manipulation tasks. We

aim to answer three key research questions:

• How effectively does our method perform in object-to-object affordance grounding tasks?

• To what extent can our method generalize when trained with only a single example for each

affordance type?

• How effectively can our method improve downstream LLM’s spatial planning and policy train-

ing?

We first demonstrate our experiment settings in Sec 5.1, then we address the above three questions

through two stages: evaluating the accuracy and generalization capability of affordance grounding

(Sec 5.2) and validating our approach through simulation manipulation experiments (Sec 5.3)

5.1 Experiment Setup

Given the absence of high-quality object-to-object affordance grounding datasets, we annotate and

construct our own dataset in simulation using SAPIEN [40]. The affordance map is generated in

two steps: first we have several user-assigned contact points on the point cloud and then propagate

the affordance label to other points based on distance following [9].

We conduct manipulation experiments in simulation environments using SAPIEN , we position

four stereo-depth sensor from different viewpoints around the workspace and employ GPT-4o [41]

from OpenAI as the vision-language model for planning. We design six tasks that require two
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objects to interact meaningfully (e.g., with correct contact poses) with each other: pouring from

teapot into bowl, inserting pen into penholder, knocking button with hammer, hanging mug onto

mug tree, cutting apple with knife, and plugging in charger with the goal of evaluating our system’s

performance in varying contact geometries, force applications, and spatial relationships between

objects. Our training dataset consists of a single pair of interacting objects for each affordance type.

5.2 Affordance Grounding

5.2.1 Comparison Results

Baselines We evaluate our affordance grounding module against 3 baselines :

i. O2O-Afford [10]: O2O-Afford addresses data limit issue through extracting contact area in

simulation.

ii. IAGNet [24]: IAGNet addressed the task of grounding 3D object affordance from 2D inter-

actions in images.

iii. RoboPoint [42]: RoboPoint is a VLM that can predict image keypoints affordance given

language.

We adopt four metrics during evaluation: aIOU [43], SIMilarity [44], MAE [45], and AUC [46],

computed as follows:

• Average Intersection-over-Union (aIOU) measures the overlap between predicted affor-

dance maps (Apred) and ground-truth maps (Agt):

aIOU =
1

N

N∑
i=1

|A(i)
pred ∩A

(i)
gt |

|A(i)
pred ∪A

(i)
gt |

• Similarity (SIM) quantifies similarity between prediction and ground-truth affordance dis-

tributions:

SIM =

∑
j min(Apred,j , Agt,j)∑

j Agt,j

• Mean Absolute Error (MAE) evaluates the pixel-wise average absolute difference between

predicted and ground-truth affordances:

MAE =
1

M

M∑
j=1

|Apred,j −Agt,j |
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• Area Under the ROC Curve (AUC) measures the discriminative capability of predicted

affordances over multiple thresholds, where TPR and FPR denote true-positive and false-

positive rates, respectively:

AUC =

∫ 1

0

TPR(FPR−1(x)) dx

Results Quantitative results are presented in Tab 5.1. We also present qualitative results of

our method against all baselines in Fig 5.1. Each row in Fig 5.1 represents a distinct affordance

type, with three different affordances illustrated. For each affordance, we present two corresponding

rows: the upper showing the source object and the lower displaying the target object. O2O-Afford

demonstrates the poorest performance, attributable to its contact-based affordance data collection

strategy, which results in highly unpredictable model predictions as evident in our qualitative re-

sults. RoboPoint, as a vision-language model, demonstrates capability in object localization but

lacks the precision to infer fine-grained affordance regions on objects. IAGNet exhibits the strongest

performance among all baselines but suffers significantly from overfitting due to the one-shot train-

ing paradigm. Qualitative results reveal that while it predicts effectively for objects with similar

geometry, it fails to generalize to more complex unseen instances, much less to novel categories. Our

method significantly outperforms all baselines and demonstrates robust generalization capabilities.

Method ↑ IOU ↑ SIM ↓ MAE ↑ AUC

IAGNet 14.81 0.5574 0.1402 73.30
RoboPoint 11.84 0.4376 0.3344 59.78
Ours 17.82 0.6387 0.0612 96.00

Table 5.1: Quantitative comparison on object-to-object affordance grounding.

5.2.2 Generalization Experiments

We present additional results demonstrating our model’s generalization capabilities across two dis-

tinct dimensions: partial point cloud generalization and unseen category generalization. We evaluate

partial point cloud generalization because occlusions frequently occur in real-world scenarios, mak-

ing complete point cloud observations difficult to obtain. The ability to generalize to partial point

clouds significantly enhances system robustness for real-world robotic applications. We also evalu-

ate unseen category generalization because real-world manipulation tasks often involve functionally

similar but categorically distinct objects—for instance, substituting a stick for a pen when inserting
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Figure 5.1: Affordance Qualitative Results.

into a holder, where the manipulated object belongs to a category entirely absent from the training

data. Generalization to such cases substantially contributes to developing more versatile robotic

manipulation systems with broader applicability.

Partial Point Cloud Generalization We test our model’s generalization ability by removing

two views of observation, leaving only two camera in the workspace which is a more common case

in real world setup. We present qualitative results on pouring action in Fig 5.2. We hypothesize

that the generalizable semantic features extracted from DINOv2 facilitate effective performance even

with partial point clouds that cannot provide complete geometric information.

Unseen Category Generalization We evaluate our model’s generalization capability on unseen

source object categories. We test three novel objects: multi-tool knife, scissors, and spray bottle.

Qualitative results are presented in Fig 5.3. Despite the geometry of multi-tool knife and scissors

differing substantially from the knife in our training distribution, our model effectively generalizes to

these unseen categories due to the semantic feature preservation. Similarly, although the semantic

properties of spray bottles differ from teapots in our training set, our model successfully gener-

alizes based on geometric similarities. These results demonstrate that our model’s generalization
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Figure 5.2: Qualitative Results of Partial Point Cloud.

capabilities derive from both semantic feature extraction and geometric similarity analysis—two

complementary mechanisms that underpin its robust transfer performance across novel objects.

Pred GT PredGTPred GT

Source

Target

Figure 5.3: Qualitative Results of Unseen Object Category.

5.3 Affordance-based Manipulation

Baselines We evaluate LLM-based planning against an ablated version of our method that per-

forms planning directly from object point clouds. We present quantitative results in Tab 5.2. We

evaluate our approach against the baseline across six manipulation tasks, conducting ten trials per

task and recording success rate as the primary evaluation metric.

Results According to qualitative results, affordance, as a mid-level representation, significantly

enhances manipulation success rates. In common tasks requiring two-object interaction, our method

achieves approximately 80% success rate, while the baseline exhibits considerably poorer performance

due to its inability to recognize functional properties from object point clouds. In more complex

and extended-horizon tasks such as hanging and plugging, the baseline fails in all trials, whereas our
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method maintains approximately 50% success rate. We present qualitative results in Fig 5.4. Each

row depicts a distinct manipulation task, while each column illustrates the sequential progression of

the task execution. As illustrated in Fig 5.4, our tasks involve extended time horizons and require

precise contact for successful completion. Our results demonstrate that affordance representation

significantly enhances LLMs’ spatial reasoning capabilities, as evidenced by the resulting coherent

and purposeful manipulation sequences. The integration of predicted affordance maps enables the

LLMs to make more informed spatial decisions, leading to substantially improved task performance.

Method Pouring Hanging Pressing Putting Cutting

Baseline 2/10 0/10 5/10 5/10 4/5

Ours (%) 8/10 5/10 9/10 8/10 9/10

Table 5.2: Success rate comparison on robotic manipulation tasks.

Figure 5.4: Manipulation Qualitative Results.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we presented O3Afford, a novel framework designed for one-shot object-to-object

affordance grounding using 3D semantic features distilled from vision foundation models (VFMs).

Motivated by the limitations of traditional affordance grounding approaches—which either neglect

essential geometric contexts or predominantly focus on single-object interactions—we explicitly ad-

dressed complex, real-world manipulation tasks involving multiple interacting objects. Our method

leverages semantic features extracted from pre-trained VFMs and integrates them effectively into

3D point cloud representations, enriching geometric data with robust semantic understanding. We

further introduced a bi-directional affordance discovery module that captures reciprocal geometric

and semantic relationships between source and target objects, significantly enhancing the accuracy

and generalization capabilities of affordance predictions. Additionally, we demonstrated the practi-

cal effectiveness of integrating our framework with large language models, which provided superior

spatial reasoning and robust manipulation planning in both simulated and real-world robotic scenar-

ios. Comprehensive evaluations across multiple challenging manipulation tasks—including pouring,

hanging, pressing, putting, cutting, and plugging—highlighted our method’s consistent improvement

over existing state-of-the-art methods in both prediction accuracy and robotic manipulation success

rates. Notably, our approach exhibited remarkable generalization across different viewpoints, un-

seen object instances, and novel object categories, demonstrating its broad applicability. Looking

forward, our proposed method presents numerous exciting avenues for further research, such as in-

corporating physics-informed neural models to capture complex dynamic interactions, and extending
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to manipulation scenarios involving deformable objects or multi-step tasks. Ultimately, by bridging

the semantic richness of vision foundation models and 3D geometric reasoning, our work advances

robots’ capability to intuitively interpret and autonomously interact with their environments, mark-

ing a significant step toward achieving human-like manipulation intelligence.

6.2 Future Work

While our proposed O3Afford framework has demonstrated strong performance in one-shot object-

to-object affordance grounding, several promising directions remain to be explored. First, estab-

lishing a comprehensive benchmark specifically dedicated to object-to-object affordance grounding

would greatly benefit the research community. Such a benchmark should encompass diverse scenar-

ios, tasks, and interactions, clearly defining evaluation metrics and datasets to facilitate consistent

and fair comparisons among emerging methods. Second, to further validate the practical applica-

bility and robustness of our method, more extensive real-world robotic experiments across diverse

environmental conditions and manipulation tasks should be conducted. Expanding real-world valida-

tions would not only confirm the robustness of our method but also identify potential challenges and

limitations inherent to practical robot deployments. Third, improvements in neural network archi-

tecture and the one-shot learning paradigm hold considerable potential. Future efforts could explore

integrating meta-learning or advanced few-shot learning strategies to further enhance generalization

from minimal supervision. Additionally, designing neural models that more effectively capture subtle

physical interactions and dynamic properties between objects could significantly boost affordance

prediction accuracy, paving the way toward more sophisticated, human-level robotic manipulation

capabilities.
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Appendix A

Prompt Template
Prompt Template Certain Contraint

You are given two 3D objects represented as point clouds. Each point is associated with
an affordance score predicted by a perception model. Your task is to propose a constraint
function for the specified affordance type that evaluates how well the source object can
interact with the target object.
Inputs:

• Source Object Name: [SRC OBJECT NAME]

• Target Object Name: [TGT OBJECT NAME]

• Interaction Type: [AFFORDANCE] (e.g., pour, hang, press, cut, put, plugin)

• Source Point Cloud: {(xi, yi, zi)}Ni=1, with affordance scores {ai}Ni=1

• Target Point Cloud: {(xj , yj , zj)}Mj=1, with affordance scores {bj}Mj=1

Task: Generate a constraint function that evaluates the quality of an affordance-specific interaction
between source and target objects. The function should consider high-affordance regions, interaction-
specific spatial constraints, and physical plausibility.
Code Skeleton:

def compute_alignment_score(src_aff, tgt_aff, src_pcd, tgt_pcd):

score = 0

"""

# TODO: Implement affordnace alignment contraint

return score

Constraints:

• The function should use the information from high-affordance regions of both objects

• The evaluation must reflect the semantic meaning of the specified affordance type

• Consideration should be given to physical feasibility of the interaction

• All constraints should be combined into a single cost value (lower is better)
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