
Enhanced Communication for ALS Patients 

 

A Technical Report submitted to the Department of Biomedical Engineering 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Deyan Saleem 

Spring, 2025 

Technical Project Team Members 

Kunal Bahl 

Ishaan Shah 

Ali Nilforoush 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 
assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

Timothy E. Allen, Department of Biomedical Engineering 

Alec Bateman, Barron Associates, Inc. 

Michael DeVore, Barron Associates, Inc. 

 

 

 

 



Bahl et al., 06 May 2025 

Enhanced Communication for ALS Patients 
 

Kunal D. Bahla, Ishaan Shaha, Deyan Saleema, Ali R. Nilforousha 
 
a Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904 
 

Abstract 
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease causing a loss of motor 
function, including breathing and speaking impairment. Late-stage ALS patients lose the ability to 
communicate entirely. To aid in speaking,  Augmentative/Alternative Communication (AAC) devices 
have been developed that use eye gaze and gesture devices to form signals. However, while AACs that 
rely on eye tracking provide a valuable communication tool for ALS patients, the use of BiPAP masks for 
breathing support often obstructs the eyes, hindering their ability to interact with these systems 
effectively. In addition to visual occlusion, current tablet-based AAC systems are often impractical for 
continuous use, especially when the patient is sleeping or lying down, limiting their reliability in 
spontaneous communication scenarios. A blink-detecting camera attachment was designed to BiPAP 
masks to enable continued communication despite obstructions. The device integrated a wired camera, 
camera mount for BiPAP masks, Arduino board, and eye-state detection algorithm. For the algorithm, a 
convolutional neural network (CNN) was utilized and trained to classify between open and closed eyes on 
open-source eye image data ( >95% validation accuracy). The CNN detects eye-states real-time and 
triggers a virtual button press (VBP) when a closed eye state is detected >2 seconds. Preset combinations 
of VBPs will be programmed to generate communication signals (i.e., “Yes,” “No,” “Hello”). Prototype is 
currently being finalized, and testing on healthy and ALS subjects will be conducted in the future. 
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Introduction 
What would you do if you were in the hospital with an 
emergency and physically couldn’t ask for help? How 
would that make you feel? Aside from emergency 
scenarios, the ability to communicate is paramount to the 
livelihood of every person and has been shown to directly 
correlate with a patients quality of life (QoL) (Felgoise et 
al., 2016). Amyotrophic lateral sclerosis (ALS) is a 
progressive neurodegenerative disease involving motor 
neuron degeneration resulting in muscle weakness, 
respiratory failure, and loss of the ability to communicate. 
While the cause is exactly unknown, current possible 
mechanisms include genetic mutations resulting in an 
aggregation of the SOD1 protein, oxidative stress, 
glutamate excitotoxicity, and hereditary involvement 
(Brotman et al., 2024). The respiratory weakness of 
patients inhibits proper breathing and contributes to 
hypercapnia, which can result in sleep disturbance, fatigue, 
and depression. Non-invasive ventilation (NIV) was 
developed to treat this issue by providing ventilatory 
support through the use of a bilevel positive airway 
pressure (BiPAP) mask (Dorst & Ludolph, 2019). 

     Augmentative Alternative Communication (AAC) 
devices have been developed to enable ALS patients to 
communicate with their physicians and caregivers. For 
example, some AAC devices translate eye tracking  into 
letters and numbers on a control board (Ezzat et al., 2023). 
AAC systems that rely on eye tracking provide a valuable 
communication tool for ALS patients; however, the use of 
BiPAP masks often obstructs the eyes, hindering their 
ability to interact with these systems effectively. 
     Current AACs focused around blink/eye tracking have 
a strong backbone within the literature in terms of 
algorithm development. Work done by Dewi et al. (2022) 
classifies blinks based upon a novel modified eye aspect 
ratio (EAR) and is able to achieve accuracies between 81% 
to 98% depending on the dataset and EAR used. Park et al. 
used a stacked hourglass convolutional neural network 
(CNN) to learn landmarks for gaze estimation, achieving 
among the lowest error rates at the time (2018). In total, 
the use of computer vision to classify the position or state 
of a human eye in real time is yielding great success and 
continuing to grow. 
     Developments in this field are important not only for 
restoring the communication to patients with ALS or who 
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are otherwise unable to communicate, but also for the 
caregivers of the patient. Informal caregivers, untrained 
people taking care of a person with ALS (family member 
or friend), have been shown to experience a greater burden 
as ALS progresses (de Wit et al., 2018). This burden is in 
large part due to physical changes and depressive moods 
that may become onset throughout ALS. 

However, a limitation that exists for many of the 
current eye-based AACs is that the patient must be looking 
directly into them. This makes sense when the patient is 
actively looking to communicate; however, if there is a 
situation in which the patient is unexpectedly met with a 
need for communication, current AACs don’t have the 
omniscience to react to all situations. This concern is 
further compounded when the patient is wearing a BiPAP 
mask due to eye occlusion and camera field of view (FOV)  
impedance. 

Current technology does not adequately address this 
limitation, particularly during nighttime use, leading to a 
loss of communication capabilities and an increased 
burden on caregivers. This product aims to integrate 
open-source blink detection algorithms, with an Arduino 
camera, and 3D-printed mask mounts with the end goal of 
converting a sequence of blinks into a form of 
communication. The combination of these technologies 
will allow for blink detection as a form of communication 
to be available to the patient wearing the BiPAP mask for 
as long as they have the mask on. Instead of the patient 
having to be presented with their AAC, it will always be 
readily available and positioned to a working angle. 
Therefore, in events of emergencies or times in which the 
need for communication cannot be predicted, the patient 
will still have a method for communication. As a 
secondary effect to having this AAC be readily available, 
caregiver burden is also partially mitigated. Caregivers 
will be able to grant patients with ALS privacy with the 
knowledge that should they need help, they have a 
consistent manner of asking for it. 

Results 

Product Aided Communication 
The primary goal of this product is to serve as a primary 
communication tool for patients with ALS to use when 
they are unable to or inconvenienced to use their 
traditional AACs. The overall structure of the algorithm is 
depicted in Figure 1 and demonstrates a sample sequence 
of virtual button presses (VBPs) to signal ‘I need help!’ to 
a caregiver. A VBP is defined as a blink that takes at least 
2 seconds. That is to say a period of at least two seconds in 
which the eyes are closed. 

 

 

Figure 1. A high-level illustration of the algorithm’s mechanism. 
The algorithm is a binary classifier and will either determine the eye 
as open or closed. When the eye is closed the algorithm will keep 
track of how long the eye has been closed for. If the eye is closed for 
longer than 2 seconds, that will count as a single virtual button press 
(VBP). The eye must be reopened before the next VBP is recorded. 
Different sequences of VBPs will indicate different predetermined 
phrases. 

     This timing was chosen because the activation of a 
VBP is intended to be intentional. If the system were to 
simply be based off of blinks then simply going about your 
day to day life would set off many undesired signals, and 
would likely cause the caregiver to be unable to distinguish 
between undesired signals and intended ones. Therefore 
the VBP, which requires a more intentional blinking 
pattern, is more resilient to this sort of mis-signal. 
Furthermore, a set of VBPs can be strung together to form 
a predetermined phrase. Two consecutive VBPs would 
bring up a YES or NO prompt to ask if a signal truly is 
intended to be sent, for which 1 VBP would indicate NO 
and 0 VBPs would indicate YES within a 10 second time 
period. Figure 1 demonstrates that a sequence of three 
consecutive VBPs would send a predetermined signal of ‘I 
need help!’ (which would also be confirmed by a similar  
YES or NO screen). The decision to afford only 
predetermined signals is reminiscent of a standard call 
light within a hospital. The call light is not itself a method 
of comprehensive communication, but rather a 
pre-communicative tool or an indication of a desire to 
communicate. Likewise this AAC is meant to simply 
communicate an emergency or sudden message that can 
then be handled more complexly by a caregiver or a more 
advanced AAC. 

Blink Detection 
The blink detection algorithm developed within this 
project drew inspiration from the software architecture of 
Dewi et al., 2022 and Park et al., 2018. The predominant 
structure is a loop between VBPs that will manually 
terminate (i.e. the patient chooses the NO prompt). Once 
the ArduCam starts recording the eye region, it will 
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attempt to classify the eye as either open or closed, as 
informed by the CNN model. Once it is able to detect 
whether the eye is closed or open, it will continuously look 
for any moment in which the eye is closed for >2 seconds. 
This will then count as a VBP and once the eye is 
reopened, the cycle will repeat (Fig. 2). In this manner, the 
eye is being constantly monitored for a VBP. 
 
CNN 
The 2-dimensional convolutional neural network (CNN) 
trained to classify whether the eye was open or closed 
utilized a three layer network and an input of 128 x 128 
pixel black and white images. These images were sourced 
from the Media Research Lab and featured open and 
closed pictures of both the left and right eye (Fig. 3) (Jahan 
et al., 2023). In total, the initial training and validation 
dataset consisted of 2,372 images of each of the four  
types, 9,488 total images. From this data, a training and 
validation split of 90/10 (90% training and 10% validation) 
was used. 
     Each layer consisted of three main processes: filtering, 
max pooling, and batch normalization. The TensorFlow 
Keras module library was used for the construction of the 
CNN and each of the three layers had an increasing filter 
count– 32, 64, and 128 – filters representing the first, 
second, and third layers. Max pooling was conducted to 
downsample the spatial data for each of the inputted 
images based upon the maximum value within a sector of 
the 128 x 128 image space. Batch normalization finally 
normalized the output space.  
     However, the predominant task required from this CNN 
is the classification of whether the eye is open or closed 
when the patient is wearing a BiPAP mask. In lieu of a 
dataset collected via an IRB, a method of transfer learning 
from which the previous 9,488 images were used as a basic 
dataset was implemented. A dataset of 94 additional 
images with a more representative field of view (FOV) 
were then used to fine tune the previously trained model to 
utilize what the model already knew and further expand it 
to a FOV when the patient was wearing a BiPAP mask. 
This was done in a separate file to update the weights of 
the neural network with a much smaller learning rate.  
(Fig. 4). 

 

Figure 2. Flowchart overview of the blink detection algorithm used. 

     The model was trained and validated over the course of 
50 epochs and eventually achieved a validation accuracy 
rate of roughly 96% (Fig. 5). The validation accuracy 
curve (seen in red) experiences early fluctuations in 
accuracy which eventually peeters out in magnitude. This 
behavior is likely due to model overfitting to the training 
data set as well as the validation data not being 
representative of the whole dataset, which incurs errors 
that must be mitigated through updating weights. 
Consequently, the model was able to predict with between 
90% to 96% accuracy after 50 epochs which is 
approximately where the desired outcome would be. 

4 



Bahl et al., 06 May 2025 

 

 

Figure 3. depicts sample images from Jahan et al. of open right (a), 
open left (b), closed right (c), and closed left eyes (d) used to train 
and validate the CNN (2023). 

 

 

Figure 4. depicts a sample of the new data added post initial model 
training. Left image is of an open right eye. Right image is of a 
closed left eye. 

 
 
 

 

Figure 5. graphs depicting the training and validation accuracy of 
the 3 layer, 2-dimensional CNN model over the course of 50 epochs. 

ArduCam Software 
The functionality of the device is predicated upon the 
delivery of image data of the eye region to a processing 
unit. This task was achieved through the use of an 
ArduCam Mini 2MP Plus SPI camera module. The 
ArduCAM was programmed such that it was able to take 
photos at a rate of approximately 8 frames per second 
(fps). Then through the serial peripheral interface (SPI), 
the image data is transferred into a Python program that 
runs the calculations and actively attempts to predict 
whether or not the eye is open or closed (Fig. 6). 

 

Figure 6. The blink detection algorithm classifies an eye as ‘Open’ 
(left image) and ‘Closed’ (right image) depending on the state of the 
eye. The image on the right was taken just as the eye was closed, so 
the proper > 2 second window needed to increment the VBP Count 
was not in effect yet. 

Physical Apparatus 
The physical apparatus for this project consists of a 
custom-designed camera mounting system integrated onto 
a BiPAP mask. This mount was specifically designed to 
facilitate precise eye-tracking for ALS patients who 
require respiratory support. To accomplish accurate 
eye-blink detection, we mounted two ArduCAM 2MP Plus 
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cameras directly onto a BiPAP mask using 3D-printed 
mounts (Fig. 7).  
     The mount was designed using Autodesk Fusion 360 
CAD Software, as this allowed for iterative refinement on 
the design to ensure that there was optimal camera 
alignment with patients' eyes. The CAD design focused on 
stability, accuracy, and patient comfort. Each ArduCAM 

camera was positioned to capture one eye individually, 
enabling precise blink detection without requiring facial 
landmark tracking.. This will help overcome the traditional 
issues associated with existing eye-tracking devices that 
rely on capturing the full face, often compromised by the 
occlusion of the eyes when the patients are wearing 
respiratory masks.  
     Once designed, the mounts were 3D printed with PLA 
filament. The mounts were secured to the BiPAP mask 
using adjustable Velcro strips, which provided stability 
while maintaining comfort and ease of removal for 
maintenance or adjustments. The cameras were attached to 
these mounts to ensure minimal vibration or shifting 
during use, which allowed for a stable video stream.  

The ArduCAM cameras are connected via wired 
connection to a laptop which is running the CNN 
algorithm. These cameras deliver video feeds at 
approximately 8 fps, a rate sufficient to detect intentional 
long blinks (VBPs); however, it may not reliably capture 
spontaneous blinks. Future improvements could involve 
optimizing camera settings or hardware to achieve higher 
frame rates for enhanced algorithm performance. 
     Ultimately, this camera and mount design provides a 
stable and unobstructed view of the patient’s eyes. This 
product is a step towards improving ALS patient 
communication via eye blinks, allowing for greater patient 
autonomy and a reduction in caregiver dependence.  

IRB 
An IRB full board review study is currently in the approval 
process. The review process will resume next academic 
year (September 2025). The planned protocol is detailed in 
the Materials and Methods section. 

Discussion 

General Findings 
The result of this project was the development of a high 
accuracy (90-96%) blink detection algorithm that is able to 
interface with an ArduCam that is mounted onto a BiPAP 
mask for an easy-to-use emergency communication device. 
This device, while not a replacement for more advanced 
AACs, slots in as an option for patients to use when access 
to their standard AACs is limited or otherwise untenable. 
Furthermore, the device's attachment to the patient’s 
BiPAP mask makes for a ubiquitous communication 
potential. 

Limitations and Improvements 
Despite its lightweight frame and extensive 
documentation, the ArduCam Mini 2MP Plus chosen for 
this project did come with significant drawbacks primarily 
in the form of its achievable fps. In total and maximum of 
8 fps were able to be recorded when the device was 
running and while this is a serviceable number, it does 
engender an amount of uncertainty. The camera is able to 
pick up upon VBPs as they occur in real time, but with 
only 8 fps there is a risk of missing out on crucial 
information between frames and increasing the latency of 
the overall process. Furthermore, as a result of the 
ArduCam interfacing directly with an Arduino UNO, there 
was a concern for the connectivity of the wires. Especially 
when the wires were short, they would often have an 
incomplete connection with the microcontroller and result 
in a glitchy/unparsable video stream. 
     As mentioned previously, switching to 0.5 meter wires 
incurred a noticeable change in image quality as it allowed 
the ArduCam a greater range of motion which much less 
frequently caused the wires to partially disconnect from 
the microcontroller. However, in total a new hardware 
setup is likely the answer. An fps of 8 is not worth settling 
for especially when the ability to reach frames per second 
on the order of 20-60 is feasible. These two changes 
together would likely drastically reduce any issues with the 
device during runtime and improve its overall 
performance. Additionally, soldering the wires to the board 
and camera would allow for higher stability to the 
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Figure 7. This is the front and back of the physical apparatus with 
the mounts seen in the front and the wired camera seen on the left 
side in the image from the back. 
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connection between the wires and camera, as the instability 
caused corruption with the image transfer.  
     Furthermore, obtaining a wide variety of image data for 
training was made impossible through the lack of an IRB 
for this project. The intended dataset process was to 
acquire an IRB-HSR and use both subjects without ALS 
and subjects with ALS to build a dataset of right and left 
eye images, both closed and open, to conduct training and 
validation on. This would afford the dataset a wide variety 
of RGB images from which it could learn over different 
skin tones, eye colors, and real world data; as opposed to a 
dataset based on black and white images with a smaller 
and less diverse dataset learned via transfer learning. 
     Collecting image data from real subjects, both without 
and with ALS, on the order of thousands would further 
help to bolster the predictive capabilities of its device. 
Furthermore, receiving feedback from subjects with ALS 
would help to drive the development of the device in a 
direction which is informed by the people who it is 
ultimately intended for. 
     Finally, considering alternative methods for classifying 
the state of the eye via CNN is worth investigating. This 
project utilized a CNN trained for binary classification, 
however papers within the literature use EAR as a matter 
of thresholding the distance between landmarks around the 
eyes to determine whether a blink has occurred or not 
(Dewi et al., 2022). CNNs trained on recognizing 
landmarks around the eye, as opposed to recognizing 
whether the eye is closed or open wholesale, have reported 
similar accuracy results to the ones achieved via this 
model. As such, it is unclear whether one method of 
identification would be better suited for this task and 
experimentation would be necessary. 
 
Materials and Methods 

ArduCam 
The specific camera used within this device was the 
ArduCam Mini 2MP Plus OV2640 SPI Camera Module. 
This camera was chosen primarily for its ease of use and 
size. Serial Peripheral Interface (SPI) is a communication 
protocol used within embedded systems to facilitate data 
communication between a module and its microcontroller, 
in this case camera and Arduino. This data can then be sent 
through the Arduino and into a computer and used for 
image processing. Furthermore, ArduCam has a library of 
functions which integrate with its hardware streamlining 
the process of programming the camera and connecting it 
to the processing unit. Finally, the size of the ArduCam 
Mini 2MP is 5.08 x 4.34 x 4.01 cm and it weighed roughly 
22.96 grams. The camera is necessary to fix onto the 

BiPAP mask worn by the patient and as such it being small 
enough to not impede vision and light enough to not affect 
the fit or function of the mask is imperative to the designs 
success. 
     Furthermore, 0.5 meter long M/F wires were used to 
connect the ArduCam to the Arduino UNO used as its 
microcontroller. Wires of this length were required to give 
enough space between the ArduCam and the 
microcontroller. Thus, letting the microcontroller set a 
comfortable distance away from the BiPAP mask, instead 
of needing to be very close to it to accommodate the short 
wiring distance. 
 
Attachable Mounts 
The camera mounts were made with polylactic acid, a 
biodegradable plastic, at 15% infill and are visualized 
within Figure 8. The mounts have a 22mm x 24mm x 4mm 
base with a 34mm straight extension block into a 25 mm 
curved extension at a 45° angle. They have further been 
made small for similar reasons to the camera. A 
lightweight, un-obstructive design is paramount. 
Furthermore, the mounts are angled inward to provide the 
camera with an optimal angle to capture footage of the eye 
region.  
 
 

 

Figure 8. STL file of the 3D printed mount with a platform that was 
attached to the BiPAP mask with double sided velcro and has an 
extruded curved piece to allow for camera adjustments to the eye 
position on the user.  

 
IRB 
Subject testing will first occur with healthy individuals, 
and after some iteration, on ALS patients to minimize 
burden. Each experiment will start with the subject sitting 
down on a chair or laying back on a bed and wearing a 
BiPAP mask that is fitted with the camera apparatus. Each 
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experiment will last 5 to 10 minutes and will be split up 
into 30 second experimental periods where the subject will 
either attempt to trigger a VBP or be asked to blink 
normally. Once the subject has completed the allotted 
blinking trials, subjects will complete a short questionnaire 
providing feedback on the device’s usability and comfort, 
administered either verbally or by paper based on subject 
preference and/or ability. 
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