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Abstract

Neurons are remarkably efficient. The human brain consumes 20 percent of the rest

metabolic rate (RMR), but expends energy at a rate of just 25 watts. This efficiency

can be explained by natural selection having forced organisms to develop more efficient

neural structures, especially during trying times. Hence we have reasons to be believe

that neurons’ energy usage is highly optimized. We hypothesize that a neuron optimizes

the mutual information between its inputs and output, given a fixed energy budget.

We propose the generalized inverse Gaussian (GIG) distribution as the pdf of the random

IPI given an input excitation intensity. A strong reason is the GIG distribution is the

hitting time of the Barndorff-Nielsen (BN) diffusion, which exhibits attraction towards

a threshold. Biological data reveal that the rate of PSP buildup increases as the PSP

approaches the threshold, hence can be modeled by the BN diffusion.

Using the GIG model, the optimal input and output marginal distributions are obtained.

In a given IPI, let the input intensity be Λ and output IPI be T . The energy costs are

the sum of the following: a constant term and terms proportional to T , T−1, log(T ),

and ΛT . The source of the energy terms are discussed. Under these assumptions,

the marginal output distribution is also GIG with parameters related to the energy

costs and the conditional GIG. The input distribution is determined as the inverse

Fourier transform of an expression involving modified Bessel functions of the second kind;

a procedure for numerically obtaining the distribution is described. The information

per IPI is plotted against average energy expended. The result is a concave curve of

bits vs. energy analogous to the familiar curves of channel capacity vs. constrained

input power in classical information theory where information increases with energy but

with diminishing return. A point of interest on the curve is the point with maximum

information per energy cost.

This neural model can be viewed as a channel with multiplicative noise that is inde-

pendent of its input. Accordingly, possible connections between the neuron model and

fading channels in communications are discussed. Also, the optimization condition can

be generalized to other channels and is discussed.
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Chapter 1

Introduction

The study of neurons is a challenging task. It requires expertise from diverse areas

such as biology, chemistry, medicine, psychology, electrical engineering, physics, among

others. Our understanding of a single neuron is far from complete, and yet there are on

the order of 1011 neurons in the human brain, forming a complex network. This network

is the basis of thoughts, feelings, and consciousness. One could be overwhelmed by the

intricacies of neural networks. This thesis will focus on the single neuron, hoping to

acquire a better understanding of the complex biological thinking machine through its

building blocks.

1.1 Energy Efficiency in Neurons

Neurons are energetically demanding. The human brain uses up to 20 percent of a

person’s rest metabolic rate (RMR)[2, 3]. Yet, the human brain only consumes energy

at a rate of only 25 watts. In comparison, modern computers use energy at a rate in

the order of 100 watts. This efficiency arises from natural selection. Energy can be a

scarce resource for which organisms must compete. Hence, natural selection has favored

organisms that are energy efficient. Evidence of energy minimization is observed in the

sensory system, even to the single neuron level [4] and is found in ion channel kinetics

in neurons [5, 6].

1.2 Information Theory in Neuroscience

Information theory has been applied to neuroscience since the early 1950s [7]. In [8], the

neuron of a fly was analyzed, assuming temporal coding of neural spikes. The resulting

1
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information rate was 64 bits per second. In [9], it was found that information increases

as time was discretized into smaller intervals, even into the sub-millisecond level. In [10],

the trade-off between energy cost and information rate of neural codes in photoreceptors

are investigated for flies in vivo.

These analyses focus on neurons and cells with a small number of inputs. Experiments

measuring the thousands of inputs of cortical neurons have not been performed due to

the numerous necessary measurements. Studies that include cortical neurons with a

large number of inputs were investigated with neural models instead. Energy efficient

neural codes for population and frequency codes were investigated in [11] and expanded

to include synaptic failures in [12]. Energy-efficiency of receiving information was in-

vestigated in [13] using a discrete set of input and output. Using a simplified model of

the neuron, energy efficiency was investigated using a continuous-time code in [14] and

expanded in [15]. The generalized inverse Gaussian distribution was first used to model

a neuron in [16]. For a history of the application of information theory in neuroscience,

see [17].

1.3 Motivation

This thesis continues the work in [16] and [18]. The thesis proposes the Barndorff-Nielsen

diffusion as a model for a neuron’s PSP buildup that takes into account the effect of the

fast Na+ channels by allowing the drift rate to increase with amplitude, which has not

yet been done. The trade-off of energy and information for a neuron is then explored.

The goal is to more accurately characterize the efficiency of the neuron and to better

understand the information-energy trade-off of a neuron.



Chapter 2

Background

Neurons1 are the computational units of the nervous system, including the brain. The

function of neurons is to convey information to other neurons or muscles regarding the

neurons’ inputs by sending a pulse called the action potential (AP). Such inputs may

originate from sensory cells or other neurons. Along with neurons, glial cells can also

be found in the brain. Glial cells perform “housekeeping” tasks, such as directing the

growth of neurons’ axons, keeping neurons insulated from other neurons, removing dead

cells, etc. Glial cells do not do any signaling, i.e. all signaling is performed strictly by

the neurons.

2.1 Parts of a Neuron

Neurons are typically composed of three parts: the dendrite, the soma, and the axon

(figure 2.1). The dendrite acts as the input device to the neuron, branching out and

connecting to other neurons’ axons. The soma is the cell body, where cellular components

such as the nucleus is found. This is where excitation occurs. The axon acts as the output

line, extending far from the neuron and connecting to other neurons’ dendrites. The axon

is modeled as a lossy transmission line. However, along the axon are essentially repeaters

to minimize distortion of the signal. The repeaters regenerate the signal passing through

the axons at certain intervals. In a cortical neuron, there are ca. 10,000 synapses.

The connection between a neuron’s axon and another neuron’s dendrite form the synapse.

This is where information is transmitted. The synapse can be classified into two types:

electrical and chemical. In electrical synapses, the axon and dendrite form a connection

that allows ions to flow through. Thus, such synapses use ion flow as a mean of com-

munication. Bidirectional communication is possible here as the ions can flow in either

1also called nerve cells

3
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Figure 2.1: The three parts of a neuron.

direction. More commonly found are chemical synapses. The axon and dendrite are not

physically in contact but form the synaptic cleft, a gap where neurotransmitters can

diffuse across. Once the AP reaches the axon terminal, neurotransmitters are released.

The neurotransmitters bind to ion channels at the dendrite. This opens the channels and

allows ions to enter or exit the cell. This in turn alters the voltage of the soma, called

the post-synaptic potential (PSP). A chemical synapse is either excitatory, where inputs

to it increase the neuron’s excitation, or inhibitory, where inputs to it decrease it. The

excitatory synapses outnumber the inhibitory ones, thereby making the net excitation of

a neuron positive. Communication here is unidirectional from the axon to the dendrite.

Since electrical synapses are found only in specialized neurons, we are only interested in

neurons with chemical synapses. Henceforth, “synapse” refer to chemical synapse.

2.2 Action Potential

The action potential (AP) is an all-or-nothing pulse. Figure 2.2 shows a recorded and

simulated AP for the giant squid axon. For any particular neuron type, the AP’s are

the same in amplitude and shape every time. There is still some controversy regarding

whether neurons use frequency or timing codes, i.e. whether neurons count the number

of pulses in an interval or measure the time between two consecutive pulses. We take the

latter view. Hence, neurons use time-continuous differential pulse position modulation

(tcdppm) where the message is encoded in the duration between two consecutive pulses.

This duration of time is the interpulse interval (IPI)2 (figure 2.3). The pulse is generated

in the initial segment of the axon and is propagated along the axon to synapses of the

target neurons. The arrival of an AP either increases or decreases the PSP in the soma,

depending on whether the synapse is excitatory or inhibitory. The PSP builds up until

it reaches a “threshold”, whereupon the neuron fires an AP. After an AP is fired, there

is an interval called the absolute refractory period during which the neuron resets itself

2The term interspike interval (ISI) is also used. However, ISI can also refer to “intersymbol interfer-
ence”. Thus, we have adopted “IPI” to minimize confusion.
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Figure 2.2: An AP measured and simulated with the Hodgkin-Huxley equations. The
top plots are the simulated result. The bottom plots are the measured results. In the
two plots on the bottom, the line above the measured the AP is the curvature of the

window screen of the measuring apparatus used by Hodgkin and Huxley [1].

Figure 2.3: The IPI is the interval between two AP’s. The reference point is the point
of highest slope in the AP. The AP’s were simulated using the equations in [1].

and cannot fire another AP. Following the absolute refractory period is a short relative

refractory period, wherein firing an AP is possible, but at a relatively large energy cost.

2.2.1 Action Potential Generation Mechanism

The AP generation mechanism involve sodium (Na+) and potassium (K+) ion channels

on the cell membrane of the neuron. The kinetics of the Na+ and K+ channels were

studied and first modeled in [1]. Pumps on the cell membrane maintain a concentration

difference of Na+ and K+ across the cell membrane. The Na+ concentration is greater

outside the cell, whereas the K+ concentration is greater inside the cell. The ion channels

have states: The Na+ channels have a closed, an open, and an inactive state; whereas

the K+ channels have a closed and an open state. The probability of a state transition

is a function of the PSP. As the PSP increases, the Na+ ion channels open, creating an

influx of Na+ current. Among the Na+ ion channels are fast Na+ ion channels that open

faster than the regular Na+ ion channels. The fast Na+ channels largely contribute a
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sharp rise in the PSP. Past a certain voltage, the Na+ channels enter the inactivated

state, i.e. the channels are closed and cannot be reopened for a time. As the PSP

increases, the K+ ion channels begin to open, creating an efflux K+ current to restore

the PSP back to the steady-state level. This change in the PSP is propagated along the

axon toward the target neurons. It is the propagated voltage that is known as the AP.

2.2.2 Jitter

It should be noted that these ion channels are subject to thermal noise, which distorts

the precise timing of the APs. This distortion is referred to as jitter. This in turn

distorts the IPI. To measure the IPI most accurately, take the point of the highest slope

on both APs as a reference point. The higher the slope, the smaller the jitter. One can

understand this by considering the AP’s as rectangular pulses. Any amount of noise at

the time of rise, which is the point of highest slope, will not affect the timing of the rise.

Therefore the higher the slope of rise for the AP, the lower the jitter. The function of

the fast Na+ channels is to increase the maximum slope of the AP in order to reduce

jitter [19]. For more background on neurons, the reader is referred to [20] and [21].



Chapter 3

Problem Formulation

3.1 Defining the Variables

We will take the viewpoint that neurons maximize mutual information for a given energy

cost. Let T̃k be the interpulse interval in interval k. Define ∆ as the absolute refractory

period and let Tk = T̃k−∆. Let us define Λ(t), the random net algebraic input intensity

at time t, as [16]

Λ(t) = lim
τ↓0

±|Q| ∗ P[arrival/departure of ion in (t, t+ τ)]

τ
, (3.1)

where |Q| is the magnitude of the charge of the ion. The ± indicates two possibilities:

the sign is positive (+) when the charge is positive and arriving or the charge is negative

and departing; otherwise, the sign is negative (−). Λ(t) is a reflection of the environment

of the organism and neural network. Though it is possible to find the mutual information

between a random function, Λ(t), and a set of random variables, {Tk}, it is far more

manageable to find the mutual information between two random variables. We define

Λk as

Λk =
1

Tk

∫ Sk

Sk−1−∆
Λ(t)dt. (3.2)

where Sk = T̃1 + . . . + T̃k. In other words Λk is the average excitation over the kth

interval sans its absolute refractory period.

7
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3.2 Information Rate

We wish to calculate the information rate between {Λk} and {Tk} for all intervals [22],

I := lim
n→∞

1

n
I(Λ1, . . . ,Λn;T1, . . . , Tn). (3.3)

This is equivalent to the information rate between {Λk} and {T̃k} because of a bijection

between {Tk} and {T̃k}. We will assume that each IPI is mutually independent of the

others1. We will also assume the neuron is memoryless because it resets after firing

an AP during the absolute refractory period. Finally, we assume the environment of

the organism is stationary so that each (Λk, Tk) pairs are identically distributed. When

unambiguous, we will drop the k index and refer to Λk and Tk as Λ and T , respectively.

The information rate is then

I = I(Λ;T ), (3.4)

i.e. the mutual information between T and Λ in one interval.

3.3 The Problem Statement

We wish to maximize I(Λ;T ) given a fixed energy budget, J . There are energy costs asso-

ciated with receiving Λ and producing T . Each cost function is denoted as gi(λ, t), for i =

1, . . . , N , where λ and t are realizations of Λ and T , respectively. We will assume a fixed

conditional probability density function (pdf) for T given Λ, fT |Λ(t|λ), as determined

by the biology and physics of the postsynaptic build up. We seek the marginal for Λ,

i.e. fΛ(λ), that solves the following problem for fixed fT |Λ(t|λ),

maximize
fΛ(λ)

I(Λ;T )

subject to E
[ N∑
i=0

gi(Λ, T )

]
= J∫ ∞

0
fΛ(λ)dλ = 1

fΛ(λ) ≥ 0, λ ≥ 0,

where the energy cost contributions are discussed in section 3.5. We will remove the

constraint, fΛ(λ) ≥ 0, λ ≥ 0, and check if the solution satisfies the constraint.

Since Λ is a product of the network, fΛ(λ) describes the behavior of the network. Even

though we are studying a single neuron, we seek the behavior of the network that would

1This is more accurate for large Tk. A short Tk is usually followed by a short Tk+1. But for optimality,
a neuron will seek to minimize the correlation even among the lengths of successive short IPI’s.
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this neuron optimal through fΛ(λ). In a sense, the network is also considered in this

study.

3.4 Modeling the PSP buildup

The PSP is often modeled as a diffusion building up towards a threshold. A studied

model is the homogeneous Poisson counting process, as in [14], which for any λ, results in

T being gamma distributed conditioned on Λ = λ. However, this model is too simplistic,

ignoring the synaptic “weights”, PSP leakage, and inhibitory synapses. Another model

is the Wiener process with drift, which for any λ, results in T being in the inverse

Gaussian (IG) family given λ [23]. However, this model assumes a constant rate of

buildup and lacks the increasing rate of PSP growth attributable to the opening of the

sodium channels. Hence, we desire a more general diffusion process that displays this

effect. These considerations motivate our adapting the the Barndorff-Nielsen diffusion

for our neuron model.

A continuous-time diffusion is governed by the equation [24]

dYt = µ(Yt)dt+ σ(Yt)dWt, (3.5)

where Yt is the position at time t, µ(x) is the drift rate at position x, σ(x) is the standard

deviation at position x, and Wt is the Wiener process. For a Barndorff-Nielsen diffusion

[25],

µ(x) = σ(x)

(
2α− 1

2φ(x)
+

√
2γKα−1(φ(x)

√
2γ)

Kα(φ(x)
√

2γ)

)
+

1

4

d

dx
[σ(x)2] (3.6)

where α and γ are parameters of the diffusion, Kν(x) is the modified Bessel function of

the second kind of degree ν, φ(x) =
∫ θ
x

1
σ(u)du and θ is the threshold. It must be that

α < 0 and γ > 0. The standard deviation σ(x) can be any function as long as φ(x) <∞
for 0 < x < ∞. For the case where σ(x) = σ is constant and α = −1

2 , the diffusion

becomes a Wiener process with a constant drift of 2γσ2 and variance σ2. For α < −1
2 ,

drift rate increases rapidly as the diffusion approaches threshold. Figures 3.1 and 3.2

shows a sample path of Barndorff-Nielsen diffusions.

In a neuron, Λ indicates the average incoming rate of the APs from the input neurons.

Suppose we fix Λ = λ. If we let α = −1
2 , then 2γ is the drift rate and 1

2β is the variance.

It is clear that if Λ were to increase k-fold in an IPI, then the drift rate becomes 2kγ

and the variance becomes k
2β because there are twice as many infinitesimal Gaussian

random variables to add. If we extend this to the Barndorff-Nielsen diffusion by letting

α < 0, then this diffusion results in a pdf for T conditional on Λ = λ that is a generalized

inverse gaussian distribution GIG(α, βλ , γλ) where λ multiplies γ and divides β, i.e.
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Figure 3.1: Three Barndorff-Nielsen diffusions with threshold θ = 100 and a fixed
variance. All parameters are kept the same except for α. The lower the value of α, the
stronger the attraction towards the threshold. The black curve is also a Wiener process

with a drift rate of 10 and a variance of 10.

Figure 3.2: Three Barndorff-Nielsen diffusions with threshold θ = 100 and a fixed
variance. The blue curve is also a Wiener process with a drift rate of 7.5 and variance

of 1.

fT |Λ(t|λ) = C−1
α λαtα−1 exp

(
− β

λt
− γλt

)
, (3.7)

where α and γ correspond to the values in the Barndorff-Nielsen diffusion and β = φ(0)2

2 ;

Cα is the normalizing term, which has value

Cα = 2

(
β

γ

)α
2

Kα(2
√
βγ), (3.8)

Figure 3.3 shows the GIG pdf for the diffusions in figure 3.2.

The GIG is selected as the conditional pdf because of several features. First, the GIG pdf

has three parameters. The power of a model increases with the number of parameters

except for beyond four parameters, where overfitting may occur [26]. Second, the GIG
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Figure 3.3: Three GIG pdfs corresponding with the diffusions in figure 3.2

pdf encompasses different subclasses of distributions, including the gamma and IG pdfs

previously mentioned. The sodium channels involved with the PSP are more likely to

open as the PSP increases, creating an attraction towards the so called threshold. A

GIG pdf with α < −1
2 indicates a crossing time of a diffusion with increasing rate. Thus

the attractiveness of the GIG pdf.

3.5 Modeling the Energy Cost

We model the costs as the following functions:

• g1(λ, t) = A, where A > 0. This is the fixed costs associated with processes that do

not change, regardless of the input or output. An example is the cost to propagate

an action potential (AP).

• g2(λ, t) = Bt, where B > 0. This is the cost associated with processes that depend

linearly with time, such as metabolic costs.

• g3(λ, t) = Cλt, where C > 0. Since ΛT is approximately the number of AP’s

that arrive, this is the cost associated with processing the AP’s that arrive at the

synapse.

• g4(λ, t) = L
t , where L > 0. This is the cost associated with the relative refractory

period where the threshold increases right after the absolute refractory period.

• g5(λ, t) = −D log(t) where D > 0. This is the cost associated with neural “clocks”.

The accuracy of the timing is more crucial for short IPI’s, so the neuron will expend

more energy ensuring the accuracy of the timing of the AP for shorter IPI’s. Note

that g5(λ, t) changes sign at t = 1 so as to decrease energy for D > 0 and t > 1.
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However this term is small compared to g2(λ, t) as long as D < B, so energy

remains positive.

The total energy cost is the sum of the above functions.



Chapter 4

Results

4.1 Optimality Condition

The optimality conditions were determined in [14] to be,

E
[

log

(
fT |Λ(t|λ)

fT (t)

)∣∣∣∣Λ = λ

]
= µ1E

[ N∑
i=1

gi(Λ, T )

∣∣∣∣Λ = λ

]
+ µ0, ∀λ ≥ 0, (4.1)

where fT (t) =
∫∞

0 fT |Λ(t|λ)fΛ(λ)dλ, and µ0 and µ1 are constants that solve the problem.

Note that µ0 and µ1 are invariant to λ. For an alternate derivation of this optimality

condition, see appendix A. Since I is concave in fΛ(λ) for a fixed fT |Λ(t|λ) [22], the

optimality condition is the condition for maximum I for fixed J .

4.2 The fT (t) Marginal

Making the substitutions in (4.1) for the conditional distribution and the cost functions

defined above, we have

(α− 1)E[log(ΛT )|Λ = λ] + log(λ)− βE
[

1

ΛT

∣∣∣∣Λ = λ

]
−γE[ΛT |Λ = λ]− log(Cα)− E[log(fT (T ))|Λ = λ] =

µ1A+ µ1BE[T |Λ = λ] + µ1CE[ΛT |Λ = λ]

+µ1LE
[

1

T

∣∣∣∣Λ = λ

]
− µ1DE[log(T )|Λ = λ] + µ0. (4.2)

13
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The following expectations are evaluated:

E[T |Λ = λ] = C−1
α

∫ ∞
0

λαtα exp

(
− β

λt
− γλt

)
dt

=

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

1

λ
; (4.3)

E
[

1

T

∣∣∣∣Λ = λ

]
= C−1

α

∫ ∞
0

λαtα−2 exp

(
− β

λt
− γλt

)
dt

=

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

λ; (4.4)

E[log(T )|Λ = λ] = C−1
α

∫ ∞
0

∂

∂α

[
λαtα−1 exp

(
− β

λt
− γλt

)]
dt− log(λ)

=
1

2
log(

β

γ
) +

∂
∂αKα(2

√
βγ)

Kα(2
√
βγ)

− log(λ). (4.5)

Next, we define the following constants,

klin :=

√
β

γ

Kα+1(2
√
βγ)

Kα(2
√
βγ)

; (4.6)

kinv :=

√
γ

β

Kα−1(2
√
βγ)

Kα(2
√
βγ)

; (4.7)

klog :=
1

2
log

(
β

γ

)
+

∂
∂αKα(2

√
βγ)

Kα(2
√
βγ)

. (4.8)

Note that E[ΛT |Λ = λ] = klin, E[ 1
ΛT |Λ = λ] = kinv, and E[log(ΛT )|Λ = λ] = klog are

constants independent on the value of λ.

Hence, (4.2) becomes

E[log(fT (T ))|Λ = λ] =

(µ1D − 1)(klog − log(λ))− µ1Lkinvλ− µ1B
klin
λ

+G− µ1Ā− µ0, (4.9)

Where G = αklog−βkinv−γklin− log(Cα) and Ā = A+Cklin are constants determined

by the parameters given in the problem. When taking the expectation of the marginal,

we get log(λ), λ, and 1
λ terms. A GIG distribution satisfies these conditions. In fact,

the marginal is GIG(µ1D,µ1L, µ1B), i.e.

fT (t) = CA(µ1)−1tµ1D−1 exp(−µ1L

t
− µ1Bt), (4.10)
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where CA(µ1) = 2(LB )
µ1D

2 Kµ1D(2µ1

√
LB). In order to satisfy (4.9), µ0 has taken the

value,

µ0 = G− µ1Ā+ log(CA(µ1)). (4.11)

The value of µ1 is determined from the energy constraint. Subsituting the energy terms,

the constraint is

J = A+BE[T ] + CE[ΛT ] + LE
[

1

T

]
−DE[log(T )]. (4.12)

Next, we define the following functions,

clin(µ1) := E[T ] =

√
L

B

Kµ1D+1(2µ1

√
LB)

Kµ1D(2µ1

√
LB)

; (4.13)

cinv(µ1) := E
[

1

T

]
=

√
B

L

Kµ1D−1(2µ1

√
LB)

Kµ1D(2µ1

√
LB)

; (4.14)

clog(µ1) := E[log(T )] =
1

2
log(

L

B
) +

∂
∂νKν(2µ1

√
LB)|ν=µ1D

Kµ1D(2µ1

√
LB)

. (4.15)

Hence,

J = Ā+Bclin(µ1) + Lcinv(µ1)−Dclog(µ1). (4.16)

Using ∂Kν(x)
∂x = −1

2(Kν−1(x) +Kν+1(x)), we can get that

J = Ā− d

dµ1
log(CA(µ1)). (4.17)

This equation may be solved numerically for µ1 or used in part of plotting information

as a function of energy as described in section 4.4.

4.3 The fΛ(λ) Marginal

First, we define U such that,

U = ΛT. (4.18)

We now derive the pdf of U . Let Λ = λ be fixed. Then the conditional cdf of U given

Λ = λ is,

FU |Λ(u|λ) = FT |Λ

(
u

λ

∣∣∣∣λ). (4.19)
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Differentiating with respect to u yields the conditional pdf of U given Λ = λ. From 3.7,

fU |Λ(u|λ) =
1

λ
fT |Λ

(
u

λ
|λ
)

= C−1
α uα−1 exp

(
− β

u
− γu

)
. (4.20)

Therefore, U is distributed as GIG(α,β,γ). Furthermore, since fU |Λ(u|λ) is not a function

of λ, U is independent of Λ. It should be noted that U is independent of Λ in this GIG

case.

Defining W = log(U), V = log(T ), and Z = − log(Λ), then,

V = W + Z. (4.21)

W is independent of Z because of a bijection between W and U , and between Z and Λ.

Hence the distribution for V is the convolution of the distributions of W and Z. The

distribution of W is fW (w) = ewfU (ew), i.e.

fW (w) = C−1
α eαw exp(−βe−w − γew). (4.22)

Similarly, fV (v) = evfT (ev). So,

fV (v) = CA(µ1)−1eµ1Dv exp(−µ1Le
−v − µ1Be

v). (4.23)

The distribution of Z is the deconvolution of the two previous distributions. This can

be done using characteristic functions (CF) of the respective random variables. Note

that,

ΦV (x) = ΦW (x)ΦZ(x). (4.24)

The CFs for W and V can be determined,

ΦW (x) = E[exp(jxW )]

= C−1
α

∫ ∞
−∞

e(α+jx)w exp(−βe−w − γew)dw

=

(
β

γ

) jx
2 Kα+jx(2

√
βγ)

Kα(2
√
βγ)

. (4.25)

Similarly,

ΦV (x) =

(
L

B

) jx
2 Kµ1D+jx(2µ1

√
LB)

Kµ1D(2µ1

√
LB)

. (4.26)
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Rearranging (4.24) and substituting (4.22) and (4.23), we have the CF for Z,

ΦZ(x) =
ΦV (x)

ΦW (x)

=

(
γL

βB

) jx
2 Kµ1D+jx(2µ1

√
LB)Kα(2

√
βγ)

Kα+jx(2
√
βγ)Kµ1D(2µ1

√
LB)

. (4.27)

Then the distribution of Z is the inverse transform,

fZ(z) =
1

2π

∫ ∞
−∞

ΦV (x)

ΦW (x)
e−jxzdx. (4.28)

Since fΛ(λ) = 1
λfZ(− log(λ)),

fΛ(λ) =
1

2πλ

∫ ∞
−∞

ΦV (x)

ΦW (x)
λjxdx

=
1

2πλ

∫ ∞
−∞

(
λ

√
γL

βB

)jxKµ1D+jx(2µ1

√
LB)Kα(2

√
βγ)

Kα+jx(2
√
βγ)Kµ1D(2µ1

√
LB)

dx. (4.29)

The values of fΛ(λ) can be calculated numerically.

Alternatively, the fast Fourier transform (FFT) algorithm can be used to acquire a

numerical representation of fZ(z). Then the distribution for fΛ(λ) can be calculated.

Note that to transform the pdf of Z to the pdf of Λ, we must divide by λ. Any error

near λ = 0 will be greatly amplified. Sample distributions are shown in figure 4.1 and

4.2.

(a) µ1 = 0.001 (b) µ1 = 0.01 (c) µ1 = 0.1

Figure 4.1: The marginal densities for Λ at different values of µ1 for α = −10,
β = 250, γ = 0.75, A = 100, B = 25, C = 23, D = 3 and L = 20. The values are (A)
µ1 = 0.001, (B) µ1 = 0.01, and (C) µ1 = 0.1. The values of µ1 depends on the the
energy J . The energies are (A) J = 710, (B) J = 484, and (C) J = 450. The unit for
energy is arbitrary. We have removed points near λ = 0 since the error at those points

are amplified.

The pdf’s of Λ produced in figures 4.1 and 4.2 actually has a minimum of roughly −10−8

to −10−7, which violates the non-negativity of probability distributions. The cause for

this is not clear: it may be machine error from the FFT algorithm or an actual result.

This can be determined by using a larger window for ΦZ(x), which should produce a
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(a) µ1 = 0.001 (b) µ1 = 0.01 (c) µ1 = 0.1

Figure 4.2: The marginal densities for Λ at different values of µ1 for α = −10,
β = 166.67, γ = 1, A = 100, B = 25, C = 23, D = 3 and L = 20. The values are (A)
µ1 = 0.001, (B) µ1 = 0.01, and (C) µ1 = 0.1. The values of µ1 depends on the the
energy J . The energies are (A) J = 618, (B) J = 392, and (C) J = 358. The unit for
energy is arbitrary. We have removed points near λ = 0 since the error at those points

are amplified.

Figure 4.3: The curve for fΛ(λ) dips below 0 near λ = 10. The parameters used were
α = −10, β = 250, γ = 0.75, B = 250, C = 23, D = 3, L = 10, and µ1 = 1

more accurate plot of fZ(z) when the FFT algorithm is performed. This in result would

produce a more accurate fΛ(λ). Nevertheless, the value is almost negligible, hence

our approximation holds. However, as µ1D approaches α or the product (µ1L)(µ1B)

approaches βγ, the drop below zero becomes more noticeable (see figure 4.3). At this

point, it is clear that the function that optimizes the information has negative values.

Therefore, it is necessary for certain, perhaps all, parameters in the problem to include

the restriction fΛ(λ) ≥ 0. This requires the Karush-Kuhn-Tucker (KKT) conditions for

a function space in order to solve the problem.

4.4 Information-Energy Function

By taking the expectation of both sides of (4.1), we have the following result,

I = µ1J + µ0. (4.30)
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Figure 4.4: Information-energy curves for A = 100, B = 25, C = 23, D = 3, and
L = 20. The energy unit is arbitrary. Note that as J becomes smaller, the curve over
predicts the actual amount of information because fΛ(λ) < 0 by a significant amount

(see section 4.3).

The variables J and µ0 were determined as functions of µ1 in (4.16) and (4.11). Hence,

I and J can be plotted parametrically by letting µ1 be the parameter. Some sample

curves are plotted in figure 4.4.

We can determine the slope of the information-energy curve,

dI

dJ
=

dI/dµ1

dJ/dµ1
=
J + µ1(dJ/dµ1) + dµ0/dµ1

dJ/dµ1
= µ1, (4.31)

using the fact that,

J +
dµ0

dµ1
= Ā− d

dµ1
log(CA(µ1)) +

d

dµ1
(G− µ1Ā+ log(CA(µ1))) = 0. (4.32)

The point of maximum bits per energy is where a line through the origin is tangent to

the curve. We have determined that the slope of the information-energy curve is µ1.

Hence, the point of maximum bits per energy is where I = µ1J , i.e. µ0 = 0. Also, the

maximum bits per energy is µ1 at that point. This point can be determined numerically.

Figure 4.5 illustrates this point for a sample curve.



Results 20

Figure 4.5: The point of maximum bits per energy unit is indicated by the black
star. This point is where J = 648 and I = 3.39. The maximum bits per energy
is µ1 = 0.0052. The black line is the line through the origin that is tangent to the
information-energy curve. The energy unit is arbitrary. The parameters are α = −75,

β = 5000, γ = 10, A = 100, B = 25, C = 23, D = 3, and L = 20.
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Discussion

The derived pdf of Λ is a unimodal function. It appears that as µ1 decreases, the mode

of Λ moves to the left towards the vertical axis. Since a lower value of µ1 means a higher

value of J , the neuron prefers to receive a lower intensity of inputs at higher energies.

This seems to suggest that lower values of Λ results in higher information. Nevertheless,

lower values of Λ is costly. This is because a low value of Λ is correlated with a high value

of T , which increases energy as it increases. Hence, for low Energy values, low values

of Λ is less desirable and the network will assign them low probabilities. The network

trades off high information from low values of Λ with the energy cost to produce them.

There are two ways to view the information-energy curves. First, the curves represent the

amount of information for a given energy that an energy-optimized neuron can convey.

Alternatively, the curves are the cost-constrained capacity of neurons, i.e. the maximum

amount of information conveyed given the neuron has an energy cost constraint. Efficient

neurons’ operating points should lie somewhere near the curve. For a given energy, it is

possible to increase information by changing fT |Λ(t|λ). However, fT |Λ(t|λ) is determined

by the biology of the neuron. Changing the parameters of the neuron requires trade-offs

beyond the scope of this paper, e.g. size, ion concentrations, temperature, etc.

The point of maximum bits per energy cost is near the large change is slope of the

information-energy curve. A neuron at rest will operate near that point because that is

where the neuron is the most efficient. In situations where more information is neces-

sary, energy can be increased, though with diminishing returns. The higher the energy

increase, the slower the increase in information. This result agrees with [10], where

photoreceptors can increase the amount of bits conveyed by increasing energy, but with

diminishing returns.

21
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Figure 5.1: The neuron as an independent multiplicative noise channel. Here Λ is the
intensity of the input of the neuron, T is the output of the neuron and U is the “noise”.

5.1 Relationship to Fading

From section 4.3, we can view the GIG conditional pdf as a multiplicative channel where
1
Λ is the input, T is the output, and U is the multiplicative noise independent of the

input (see figure 5.1). Multiplicative noise is of interest in engineering problems, one

of which is fading. Fading is relevant in wireless communications for portable receivers

[27]. An independent multiplicative noise is used to model the effect of fading on a

signal. The noise distribution is often Rayleigh or Rician instead of GIG. However, all

three distributions share a unimodal shape. In the fading channel, if the transmitted

data are encoded in the amplitude of the signal, then we have a similar phenomenon

happening in the neuron. The multiplicative noise will alter the amplitude and interfere

with the recovery of the symbols, which similar to noise corrupting the timing of the

spikes in neurons. The optimization technique developed here may be extended to the

fading channel to achieve capacity given a constraint on the expectation of functions of

the input and output. However, a major difference in fading channels is the signal is

further corrupted by additive Gaussian noise and a decision is made at the receiver to

recover a discrete alphabet, whereas the neuron receive a continuous alphabet without

quantization. We have ignored thermal noise in this neuron model. Perhaps after

incorporating thermal noise and jitter, our neuron model is even more similar to fading

channels. Further studies is required to extend the theories here to fading channels.
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Conclusion

The information-energy function for optimal neurons is an increasing concave func-

tion. Increasing the energy increases the information, but at a decreasing rate. The

Barndorff-Nielsen diffusion is an appropriate model for the PSP buildup as it captures

the increasing rate caused by the fast Na+. The resulting marginal pdf of T given Λ

is a GIG distribution. The resulting distribution of T is also GIG, but with different

parameters. The input distribution can be numerically solved. Since not all parameters

produce a valid input distribution, it is necessary to use the KKT conditions.

The primary contribution of this work is an improved model for analyzing the information-

energy trade-off of neurons. We have added a basis for adopting the GIG distribution as

the conditional of T given Λ by modeling the PSP buildup with the Barndorff-Nielsen

diffusion. In addition, the marginal distribution of the input and output of a cortical

neuron was derived and can be used as a framework in analyzing neurons. Finally, a

method for determining the constrained capacity of continuous distributions were de-

scribed. This method applies to general channels, not strictly to neurons.

A possible next step for research is to reevaluate the solution using the KKT conditions.

This would allow for a more accurate information-energy curve, as well as the marginals

of Λ and T . An alternative route to future research is to better relate the GIG distri-

bution and its associated diffusion process to the biology of the neuron. Perhaps upon

further study, we find that another distribution fit the reality better than the current

model. It is difficult for experimental neuroscientists to measure the input distribution

due to the nature of data collection. It is our belief that in order to study neurons in

their natural working conditions, experiments should be done in vivo, as opposed to

in vitro. Thus it is difficult to manipulate Λ in vivo as many factors affect the input

intensity. Hence, further studies may involve studying appropriate neuron models.

23



Appendix A

Optimal Condition Derivation

Here, we present an alternative derivation of the optimality condition. The condition

for a maximizing I[fΛ] constrained to a set of equations Gi[fΛ] = Ci, i = 0 . . . N − 1 is

[28]

δI[fΛ]

δfΛ
−
N−1∑
i=0

µi
δGi[fΛ]

δfΛ
= 0, (A.1)

where µi’s are constants. For a general functional of the form G[fΛ] =
∫∞

0 G(λ, fΛ(λ))dλ,

then its variational derivative is

δG[fΛ]

δfΛ
=

∂

∂ν
[G(λ, ν)]ν=fΛ(λ). (A.2)

For our constraint equations, it is clear what the variational derivative ought to be, i.e.

δG0[fΛ]

δfΛ
=

∂

∂ν
[ν]ν=fΛ(λ) = 1 (A.3)

and

δG1[fΛ]

δfΛ
=

∂

∂ν
[ν

∫ ∞
0

fT |Λ(t|λ)
N∑
i=0

gi(λ, t)dt]ν=fΛ(λ) =

∫ ∞
0

fT |Λ(t|λ)
N∑
i=0

gi(λ, t)dt.

(A.4)

However, the definition of mutual information cannot be written in the same form as

G[fΛ] because fΛ is nested inside another integral. Hence, another method is used to

obtain the variational derivative.

First, let I[fΛ] be the mutual information between Λ and T as a function of fΛ. Suppose

for a perturbation h in the function fΛ, the difference I[fΛ + h] − I[fΛ] can be written

as

I[fΛ + h]− I[fΛ] = δI[fΛ, h] + ε(||h||), (A.5)

24
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where ε(||h||)→ 0 as h→ 0 and δI[fΛ, h] is linear in h. Then I is said to be differentiable

and δI[fΛ, h] is the differential of I. I is maximized if δI[fΛ, h] = 0 [28].

The definition of I[fΛ] is

I[fΛ] =

∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)fΛ(λ) log

(
fT |Λ(t|λ)∫∞

0 fT |Λ(t|ν)fΛ(ν)dν

)
dtdλ. (A.6)

Then,

I[fΛ + h]− I[fΛ] =∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)(fΛ(λ) + h(λ)) log

(
fT |Λ(t|λ)∫∞

0 fT |Λ(t|ν)(fΛ(ν) + h(ν))dν

)
dtdλ

−
∫ ∞

0

∫ ∞
0

fT |Λ(t|λ)fΛ(λ) log

(
fT |Λ(t|λ)∫∞

0 fT |Λ(t|ν)fΛ(ν)dν

)
dtdλ. (A.7)

The difference becomes,

I[fΛ + h]− I[fΛ] =

∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)

[
fΛ(λ) log

(∫ ∞
0

fT |Λ(t|ν)fΛ(ν)dν

)
−fΛ(λ) log

(∫ ∞
0

fT |Λ(t|ν)(fΛ(ν) + h(ν))dν

)
+ h(λ) log(fT |Λ(t|λ))

−h(λ) log

(∫ ∞
0

fT |Λ(t|ν)(fΛ(ν) + h(ν))dν

)]
dtdλ. (A.8)

Using the Taylor polynomial for logarithms, i.e. log(c+ x) = log(c) + x
c + o(x), then

I[fΛ + h]− I[fΛ] =∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)

[
− fΛ(λ)

∫∞
0 fT |Λ(t|ν)h(ν)dν∫∞

0 fT |Λ(t|ν)fΛ(ν)dν
+ o

(∫ ∞
0

fT |Λ(t|ν)h(ν)dν

)
+h(λ) log(fT |Λ(t|λ))− h(λ) log

(∫ ∞
0

fT |Λ(t|ν)fΛ(ν)dν

)
−h(λ)

∫∞
0 fT |Λ(t|ν)h(ν)dν∫∞

0 fT |Λ(t|ν)fΛ(ν)dν
+ o

(∫ ∞
0

fT |Λ(t|ν)h(ν)dν

)]
dtdλ. (A.9)

Note that, ∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)fΛ(λ)

∫∞
0 fT |Λ(t|ν)h(ν)dν∫∞

0 fT |Λ(t|ν)fΛ(ν)dν
dλdt =∫ ∞

0

∫ ∞
0

fT |Λ(t|λ)h(λ)

∫∞
0 fT |Λ(t|ν)fΛ(ν)dν∫∞
0 fT |Λ(t|ν)fΛ(ν)dν

dλdt =∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)h(λ)dλdt. (A.10)
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Collecting the terms that are not linear in h(λ) and replacing it by o(h(λ)) yields,

I[f + h]− I[f ] =

∫ ∞
0

∫ ∞
0

fT |Λ(t|λ)

[
− h(λ) + h(λ) log(fT |Λ(t|λ))

−h(λ) log

(∫ ∞
0

fT |Λ(t|ν)f(ν)dν

)]
dtdλ+ o(h(λ)). (A.11)

We have o(h(λ)) → 0 as ||h(λ)|| → 0, hence I[fΛ] is differentiable. Henceforth, we will

drop the o(h(λ)) term. Then we have,

I[fΛ + h]− I[fΛ] =

∫ ∞
0

h(λ)

∫ ∞
0

fT |Λ(t|λ)

[
log

(
fT |Λ(t|λ)∫∞

0 fT |Λ(t|ν)fΛ(ν)dν

)
− 1

]
dtdλ

=

∫ ∞
0

h(λ)E
[

log

(
fT |Λ(T |Λ)

fT (T )

)
− 1

∣∣∣∣Λ = λ

]
dλ, (A.12)

where fT (t) =
∫∞

0 fT |Λ(t|λ)fΛ(λ)dλ. Then, δI[fΛ]
δfΛ

is defined to be [29],

δI[fΛ, h] =

∫ ∞
0

h(λ)
δI[f ]

δf
dλ. (A.13)

Therefore,
δI[fΛ]

δfΛ
= E

[
log

(
fT |Λ(T |Λ)

fT (T )

)∣∣∣∣Λ = λ

]
− 1. (A.14)

Hence, the optimality condition is

E
[

log

(
fT |Λ(t|λ)

fT (t)

)∣∣∣∣Λ = λ

]
− 1− µ1E

[ N∑
i=1

gi(Λ, T )

∣∣∣∣Λ = λ

]
− µ0 = 0. (A.15)

This must hold for all values of λ we are interested in, namely λ ≥ 0. In (4.1) We have

redefined µ0 := µ0 + 1 to simplify.
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