

Geometric Interconnection and Placement Algorithms

A Dissertation

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

Computer Science

by

Joseph Lavinus Ganley

May 1995

iii

For my wife, Cathy

Without her love, patience, and support, this dissertation would never have existed.

Acknowledgments

The �rst person to thank, of course, is my advisor, Jim Cohoon. His guidance, advice, and

support have been invaluable throughout my doctoral studies. I also thank Je� Salowe,

with whom I had many discussions on much of the material presented here. His input is

re
ected in many places in this research. Thanks also to Gabe Robins, Jim Ortega, and

Jim Aylor for serving on my dissertation committee and for many helpful comments on this

work.

In addition, I am grateful to the following people for helpful comments on various

bits and pieces of this research: Mike Alexander, Shekhar Bapat, Hans Bodlaender, Mike

DeLong, David Eppstein, Mike Fellows, Shaodi Gao, Andrew Grimshaw, Lenny Heath,

Alexander Hulpke, Andrew Kahng, John McKay, R. Ravi, Dana Richards, �Eva Tardos,

Clark Thomborson, Jim Varanelli, and the anonymous referees of our papers. My apologies

to the others who I have doubtless forgotten to mention.

Special thanks to Lenny Heath, my M.S. advisor, who taught me much about the

fundamentals of good research and good writing.

Thanks to Michel Berkelaar, Steve Brown, Matthew Saltzman, Je� Salowe, Clark Thom-

borson, and Dave Warme for providing me with various pieces of code.

During my doctoral studies, I have received �nancial support from the National Sci-

ence Foundation under grants MIP{9107717, CCR{9224789, and CDA{8922545, from the

Virginia Center for Innovative Technology under award 5{30971, and from a University of

iv

v

Virginia Dean's Fellowship and a Virginia Space Grant Fellowship. Their support is greatly

appreciated.

This document was prepared using LATEX version 2". Some �gures were prepared using

Examine [9], FrameMakerTM, and GNUPLOT.

Contents

1 Introduction 1

2 The Steiner Tree Problem 9

2.1 Notation : 9

2.2 Steiner Trees : 10

2.3 Overview : 15

3 Computing Optimal Rectilinear Steiner Trees 18

3.1 Overview : 18

3.2 Previous Work : 19

3.3 Full-set Dynamic Programming : 21

3.4 Full-set Screening : 23

3.5 Bounding the Number of Full Sets : 24

3.6 Screened Full-set Dynamic Programming : 28

3.7 Time Complexity : 30

3.8 Empirical Results : 32

3.9 Conclusions and Future Work : 34

4 Obstacle-Avoiding Rectilinear Steiner Trees 37

4.1 Terminology : 38

4.2 Two-Terminal Interconnections : 38

vi

Contents vii

4.3 Multi-Terminal Interconnections : 44

4.4 Special Cases : 58

4.5 Conclusions and Future Work : 61

5 The Power-p Steiner Tree Problem 64

5.1 Basics : 65

5.2 Computing Optimal Power-p Steiner Trees : : : : : : : : : : : : : : : : : : : 66

5.3 Approximate Power-p Steiner Trees : 84

5.4 Conclusions and Future Work : 92

6 FPGA Placement and Routing 95

6.1 Introduction : 95

6.2 Previous Work : 97

6.3 Thumbnail Partitioning : 100

6.4 The MONDRIAN System : 101

6.5 Performance-driven Placement and Routing : : : : : : : : : : : : : : : : : : 120

6.6 Postprocessing : 122

6.7 Experimental Results : 122

6.8 E�ects of Decomposition Size : 125

6.9 Other Issues : 128

6.10 Conclusions and Future Work : 138

7 Conclusion 140

List of Figures

1.1 An example minimum spanning tree and Steiner tree : : : : : : : : : : : : : 4

1.2 A rectilinear Steiner tree in the presence of obstacles : : : : : : : : : : : : : 6

2.1 An example minimum spanning tree and Steiner tree : : : : : : : : : : : : : 11

2.2 An optimal rectilinear Steiner tree for a set of 27 terminals : : : : : : : : : 13

2.3 The Hanan grid graph : 15

2.4 Possible full tree topologies according to Hwang's theorem : : : : : : : : : : 16

3.1 The Full-set Dynamic Programming (FDP) algorithm : : : : : : : : : : : : 22

3.2 The Screened Full-set Dynamic Programming (SFDP) algorithm : : : : : : 30

3.3 Running times of Smith's algorithm vs. the FDP and SFDP algorithms : : 31

3.4 Running times of exact rectilinear Steiner tree algorithms : : : : : : : : : : 33

3.5 Number of candidate full sets as a function of the number of terminals : : : 34

4.1 The result of running a maze routing algorithm : : : : : : : : : : : : : : : : 39

4.2 Constructing the escape graph : 41

4.3 Reducing the escape graph : 48

4.4 Distribution of terminals per net in the SIGDA benchmarks : : : : : : : : : 49

4.5 Possible topologies for four terminals : 50

4.6 The escape graph for a terminal-planar routing instance : : : : : : : : : : : 60

4.7 A counterexample to Hwang's theorem in the presence of obstacles : : : : : 63

viii

List of Figures ix

5.1 A topology and its corresponding linear system : : : : : : : : : : : : : : : : 69

5.2 An optimal Euclidean power-2 Steiner tree : : : : : : : : : : : : : : : : : : : 71

5.3 Rectilinear bottleneck Steiner trees : 83

6.1 A symmetrical-array FPGA : 96

6.2 An example FPGA global routing graph : 98

6.3 An illustration of a min-cut bisection technique : : : : : : : : : : : : : : : : 99

6.4 3� 3 thumbnail partitioning : 100

6.5 The operation of Mondrian : 103

6.6 The partitioning algorithm : 105

6.7 The optimal thumbnails for an example terminal set : : : : : : : : : : : : : 105

6.8 The bottom-level routing problem : 109

6.9 Labeling of cycle vertices in bottom-level routing reduction : : : : : : : : : 112

6.10 An x-net for the bottom-level routing reduction : : : : : : : : : : : : : : : : 113

6.11 A y-net for the bottom-level routing reduction : : : : : : : : : : : : : : : : 113

6.12 The augmented cycle for integer programming : : : : : : : : : : : : : : : : : 115

6.13 The optimal thumbnail arborescences for an example point set : : : : : : : 121

6.14 The placed and routed 9symml benchmark : : : : : : : : : : : : : : : : : : : 127

6.15 An optimal thumbnail rectilinear Steiner tree in a 7� 7 grid : : : : : : : : : 138

List of Tables

3.1 Summary of algorithms for computing optimal rectilinear Steiner trees : : : 21

4.1 Running times of explicit enumeration and spanning tree enumeration algo-

rithms : 51

4.2 The number of full topologies and general topologies on n terminals : : : : 52

4.3 Average iteration count for batched 3-Steinerization : : : : : : : : : : : : : 54

4.4 Average result quality and running time for the heuristics : : : : : : : : : : 56

4.5 Improvement of optimal Steiner tree over minimum spanning tree : : : : : : 56

5.1 Lower and upper bounds on the Euclidean power-p Steiner ratio : : : : : : 89

5.2 Lower and upper bounds on the rectilinear power-p Steiner ratio : : : : : : 89

6.1 Statistics on the benchmark circuits and previous results : : : : : : : : : : : 123

6.2 Channel widths computed by Mondrian : : : : : : : : : : : : : : : : : : : 124

6.3 Performance-driven placement and routing results : : : : : : : : : : : : : : 126

6.4 Comparison of 2� 2 and 3� 3 decompositions : : : : : : : : : : : : : : : : 128

6.5 Number of spanning trees in a k � k grid : : : : : : : : : : : : : : : : : : : 132

6.6 Number of possible full sets in a k � k grid : : : : : : : : : : : : : : : : : : 135

6.7 Runtimes for the thumbnail rectilinear Steiner tree algorithms : : : : : : : : 137

x

Abstract

This dissertation examines a number of geometric interconnection, partitioning, and place-

ment problems arising in the �eld of VLSI physical design automation. In particular,

many of the results concern the geometric Steiner tree problem: given a set of terminals

in the plane, �nd a minimum-length interconnection of those terminals according to some

geometric distance metric.

Two new algorithms are introduced that compute optimal rectilinear Steiner trees. Both

are provably faster than any previous algorithm for instances small enough to solve in

practice, and both are also fast in practice. The �rst algorithm is a dynamic programming

algorithm based on decomposing a rectilinear Steiner tree into full trees. A full tree is a

Steiner tree in which every terminal is a leaf. Its time complexity is O(n3n), where n is the

number of terminals. The second algorithm modi�es the �rst by the use of full-set screening,

which is a process by which some candidate full trees are eliminated from consideration.

Its time complexity is approximately O(n22:62n). We demonstrate that for instances small

enough to reasonably solve in practice, these algorithms are faster than has been proven for

any previous algorithm. Empirical evidence is also given indicating that both algorithms are

faster in practice than several other popular algorithms for computing optimal rectilinear

Steiner trees.

A new theorem is proven that allows e�cient computation of rectilinear Steiner trees

in the presence of obstacles. This theorem leads to the �rst algorithms that compute

optimal obstacle-avoiding rectilinear Steiner trees in time corresponding to the size of the

xi

Abstract xii

instance (the number of terminals and obstacle border segments) rather than the size of the

routing area. Two types of algorithms are presented. The �rst computes optimal rectilinear

Steiner trees in the presence of obstacles for small instances. The second computes heuristic

solutions to arbitrary instances. In addition, two special cases are examined: the case when

all terminals lie on obstacle perimeters and the case when all terminals lie on the perimeter

of the routing region.

The power-p Steiner tree problem is introduced, in which the weight of an edge is its

geometric length raised to the p power. A special case of the power-p Steiner tree problem

is also considered: the bottleneck Steiner tree problem, which is to �nd a geometric Steiner

tree with the length of the longest edge minimized. Algorithms are described for computing

optimal optimal Euclidean power-2 Steiner trees, rectilinear bottleneck Steiner trees, and

rectilinear Steiner trees that minimize a combination of bottleneck weight and total length.

The power-p Steiner tree problem for p > 2 is also considered, and evidence given that the

problem is essentially unsolvable for large p. In addition, bounds are given on the power-p

Steiner ratio, which measures the quality of a minimum spanning tree as an approximation

of a power-p Steiner tree. The exact value of the bottleneck Steiner ratio is also derived, and

a fully polynomial-time approximation scheme is given for computing a bottleneck Steiner

tree with a given topology in any distance metric.

Finally, a system called Mondrian is presented that performs simultaneous placement

and global routing in �eld-programmable gate arrays (FPGAs). Mondrian is a recursive

geometric partitioning strategy using optimal rectilinear Steiner trees of terminals that lie

in a small grid. Experimental results show that Mondrian produces results signi�cantly

superior to those of previous FPGA layout algorithms. In addition, we present a modi�ed

version of Mondrian that computes performance-driven placement and routing solutions,

in which more accurate estimates of electrical delay are optimized. The development of

Mondrian includes several results of independent interest, such as minimum-congestion

Abstract xiii

routing in a cycle and computing optimal rectilinear Steiner trees for terminals in a small

grid.

1

Introduction

VLSI physical design automation is the process of translating an electrical description of a

circuit into a physical layout on the surface of an integrated circuit [123, 135]. From the

physical design automation domain arises a number of di�cult algorithmic and combina-

torial problems. The ability to compute good solutions to these problems is crucial to the

production of high-performance integrated circuits at a reasonable cost.

The overall domain of VLSI design is a circuit, which is an electronic implementation of

a Boolean function. Prior to the physical design phase of the design process, the description

of a circuit consists of cells and nets. The cells are electronic devices that implement the

operators (e.g., and, or, and not) in the Boolean function being implemented. A cell is

typically a pre-packaged unit consisting of a small number of electrical components (for

example, a single cell might be an and gate or a
ip-
op). For purposes of physical design

automation, a cell can be viewed simply as a polygon (typically a rectangle) on whose

perimeter lies a number of pins. The pins are the inputs and outputs to the cell. A special

type of cell is an input/output pad, which typically must lie on the perimeter of the circuit

and connects it to the outside, e.g. to other integrated circuits.

Cell pins are connected to one another by wires, which carry digital signals between

the cells (Boolean operators) to implement the semantics of the Boolean expression. Prior

1

2

to the physical design phase of the design process, these interconnections are represented

as nets. Each net speci�es a set of cell pins that must be electrically interconnected. The

wires that implement the nets cannot, of course, intersect the interiors of the cells nor the

wires in other nets.

The portions of the physical design process with which we are concerned are the tasks of

placement and routing. The placement process assigns the cells to physical locations on the

surface of the integrated circuit. The routing process realizes the electrical interconnections

speci�ed by the nets as wires on the integrated-circuit surface.

The input to the placement and routing process consists of a number of cells (typically

hundreds or thousands) and a number of nets specifying the electrical interconnections

among them.

The
exibility allowed in the physical design process varies according to the design style

of the circuit. At one end of the spectrum|the full custom design style|the placement

and routing of the cells may be completely unrestricted. This design style allows great

exibility and very e�cient use of circuit area, but increases the di�culty of the physical

design process and the cost of producing these integrated circuits.

A slightly more restricted model is the standard cell design style, in which all cells are

rectangular and must be placed such that they abut one another in rows, with the routing

performed within the channels between the rows of cells.

A still more restricted model is the gate array design style, where identical prefabricated

logic cell templates are laid out on a circuit surface prior to physical design. The cell

templates may be laid out in rows like a standard cell design, or in a grid. The gate array

design style simpli�es the physical design process still further; now the placement process

consists simply of assigning the unplaced cells to the cell templates.

The gate array concept is taken yet another step further in the �eld-programmable gate

array (FPGA) design style [48]. In an FPGA, even the routing resources are prefabricated

3

on the circuit surface. A given design is implemented by electrically programming the wires

between the cell templates to realize the desired electrical interconnections.

Most of the results in this dissertation focus on the routing phase of the physical design

process. In the routing phase, the electrical interconnections speci�ed by the nets must

be realized as to minimize a number of objectives. These objectives typically optimize two

factors: the cost of producing the integrated circuit and the performance of the circuit. The

objective toward the minimization of production cost is typically to minimize circuit area.

For custom and standard-cell design styles, this amounts to minimizing the overall area of

the circuit. For prefabricated design styles like gate arrays, minimizing cost amounts to

minimizing the amount of prefabricated circuit resources that are required to implement

the circuit. Minimizing the amount of logic resources required is typically handled prior to

the physical design process, so the primary cost objective in physical design of gate arrays

is to minimize the amount of routing resources required to implement the circuit. The cost

of a gate array varies according to the amount of logic and routing resources it contains, so

minimizing these resource requirements minimizes the cost of implementing the integrated

circuits.

The second objective to be optimized in physical design automation is circuit perfor-

mance. Here, electrical delay|the time it takes signals to propagate through the circuit|is

of prime importance. Electrical delay in a circuit is contributed from two sources: delay

within the logic cells and interconnect delay. For all but the most fully custom design styles,

delay within the logic cells is not within the control of the physical design process. On the

other hand, interconnect delay is crucially related to the quality of placement and routing

solutions. Furthermore|one of several reasons why physical design automation is more

critical than it once was|as integrated-circuit feature sizes decrease, overall circuit delay

is increasingly governed by interconnect delay rather than delay within the logic cells [7].

Typically, integrated-circuit technology requires the use of only horizontal and vertical

wires. This restriction prescribes the use of the rectilinear distance metric that measures

4

distance in this manner [71]. (The rectilinear distance between two points is the sum of

the x-distance and the y-distance between the points.) The precise routing objectives that

minimize electrical delay vary with the particulars of the VLSI technology being used. In

most technology to date, electrical delay through a net is directly proportional to the total

length of the wires in the interconnection of that net, and thus a common routing objective

is for the total length of each net to be minimized. This objective prescribes the use of

Steiner trees for routing. Steiner trees are described further in Chapter 2, but for the

present, su�ce it to say that a Steiner tree is a minimum-length geometric interconnection

of a set of points (logic cell pins). A close relative of the Steiner tree is a minimum spanning

tree, which is a minimum-length interconnection in which the pins can only be connected to

one another. For example, Figure 1.1 shows four pins and a rectilinear minimum spanning

tree and rectilinear Steiner tree of these pins. In the �gure, as is often true, the Steiner tree

is a shorter interconnection than the minimum spanning tree, due to the use of additional

points called Steiner points (the open circle in Figure 1.1(a)).

(a) (b)

Figure 1.1: (a) A rectilinear minimum spanning tree and (b) a rectilinear Steiner

tree of an example set of pins.

5

In some design styles, multiple layers are available for routing. Often, nets whose elec-

trical delay is critical to the overall timing of the circuit will be routed �rst in their own

layer. Thus, the routing problem is exactly the Steiner tree problem: we wish to �nd a

minimum-length interconnection of the set of logic block pins, and there are no obstacles

that the interconnection must avoid. In Chapter 3, we present two new algorithms for

computing optimal rectilinear Steiner trees. As suggested by the fact that the rectilinear

Steiner tree problem is NP-complete [63], the algorithms we present require time that is

exponential in the number of pins to be interconnected. However, the instances that arise

in VLSI routing typically contain few pins (this claim is substantiated in Section 4.3.2), so

an exponential-time algorithm that is fast in practice for small instances can be practically

applied to VLSI routing problems. Our algorithms are based on a dynamic programming

approach to �nding an optimal decomposition of the set of terminals into full sets, or subsets

of terminals whose corresponding subtree in an optimal Steiner tree contains no terminals

of degree 2 or greater. The algorithms we present are faster than any other practically

applicable algorithm has been proven to be. Furthermore, we give experimental results

indicating that the algorithms are fast in practice for the small instances typical of those

arising in VLSI routing.

Nets whose electrical delay is not so critical to overall circuit performance often must

be routed in the presence of obstacles such as logic cells or wires in previously routed nets.

It is still appropriate to compute a minimum-length Steiner-tree interconnection, but the

presence of obstacles leads to a new constraint: we must compute Steiner trees that do

not intersect the obstacles. For example, Figure 1.2 illustrates a rectilinear Steiner tree in

the presence of obstacles. This problem is addressed in Chapter 4. Speci�cally, we present

results that allow, for the �rst time, computation of optimal Steiner trees in the presence

of obstacles in time that is a function of the size of the instance (the number of pins and

obstacle border segments). All previous algorithms require time that is a function of the

routing area, which is prohibitively large for small feature sizes and large circuit area. We

6

Figure 1.2: A rectilinear Steiner tree in the presence of obstacles.

present fast algorithms for computing optimal and near-optimal Steiner trees in the presence

of obstacles. We also examine two special cases that have practical signi�cance: when the

pins all lie on the borders of obstacles (as is often the case in practice) and when the pins

all lie on the perimeter of the routing region.

Advances in VLSI technology, particularly decreasing feature size, change the character

of the physical design process, in the sense that the relationship between electrical delay

and interconnect length becomes more tenuous [91]. As a result, new measures of intercon-

nect quality have been devised that more accurately re
ect their electrical delay in such

technologies.

One such measure is accomplished by minimizing a nonlinear function of the lengths of

the wires in the interconnect. For example, a �rst-order approximation of electrical delay

under many technologies is the product of the resistance and capacitance of a wire [34]. If

the width of the wire is �xed, then this product is a quadratic function in the length of

the wire. Consideration of these types of objective inspired us to introduce the power-p

7

Steiner tree problem, which is the subject of Chapter 5. The power-p Steiner tree problem

is to �nd a Steiner tree that, rather than minimizing the sum of the lengths of the wires

in the interconnect, minimizes a nonlinear function of their lengths. A special case with

practical signi�cance is also examined, where the objective is to minimize the length of the

longest wire in the interconnect [23, 133]. In Chapter 5, we present a number of results

concerning computation of optimal and approximate power-p Steiner trees. Speci�cally, we

present algorithms for computing optimal Euclidean power-2 Steiner trees, optimal recti-

linear bottleneck Steiner trees, and rectilinear Steiner trees that minimize a combination

of bottleneck weight and total length. We also present results concerning the quality of a

minimum spanning tree as an approximation of a power-p Steiner tree.

Field-programmable gate array (FPGA) technology [48] allows inexpensive prototyping

and implementation of custom integrated-circuit designs. An FPGA is a prefabricated

integrated circuit consisting of electrically reprogrammable logic and routing resources.

Once the physical design of an FPGA has been computed, it can be directly programmed

into the FPGA without the use of manufacturing or similarly expensive and time-consuming

processes. Since FPGAs can be produced quickly and inexpensively, this technology is

well on the way to revolutionizing the production of integrated circuits for custom and

rapid-prototyping applications [17]. Furthermore, the reprogrammable nature of FPGAs

shortens the design cycle considerable, making it more similar to software design than to

more traditional VLSI design processes.

Continuing the software design analogy, design automation software is analogous to

compilers for high-level programming languages. Good physical design automation software

for FPGAs can be even more crucial than for other design styles, for two reasons. The �rst

is that the high degree of
exibility o�ered by FPGAs comes at the cost of decreased

performance [3]. As FPGAs are increasingly used to actually implement integrated circuits

(rather than, for example, simply prototyping them), it becomes increasingly important to

optimize their performance as well as possible at the physical design level. The second reason

8

physical design automation software is so crucial is that the low cost and high ease of use of

FPGAs makes them accessible to a far larger user community than more custom integrated-

circuit technologies. Most users of more custom integrated-circuit technology have, or have

access to, professional layout designers who can manually compensate for the shortcomings

of their physical design automation software. FPGAs, however, are increasingly used by

people who do not have access to such resources, and thus it is vital that software exists that

can automate the entire physical design process, producing high-quality physical designs

without requiring any manual intervention.

In Chapter 6 we present a tool that simultanously computes high-quality placement and

routing solutions for FPGAs. The tool is based on a recursive partitioning strategy. In

this strategy, the FPGA is overlaid with a grid. The subproblems within each region of

the grid are solved recursively, and the solutions to these subproblems are then merged to

form a solution for the entire FPGA. We show that our tool produces higher-quality FPGA

physical designs than those produced by previous tools. Furthermore, the development of

the tool includes many algorithmic results that are of independent interest.

2

The Steiner Tree Problem

In this chapter the Steiner tree problem, to which all the results in this dissertation are

related, is formally de�ned. Some notation and terminology is presented and a number of

background results on the Steiner tree problem are given, which are used throughout the

dissertation.

2.1 Notation

If a is a point in R2, then its x and y coordinates are denoted xa and ya, respectively.

The distance in some Lp metric between points a and b is denoted ka� bkp. The subscript
indicating the distance metric is omitted when it is clear from context. Note that in the

rectilinear (L1) metric,

ka� bk1 = jxa � xbj+ jya � ybj;

and in the Euclidean (L2) metric,

ka� bk2 =
q
(xa � xb)2 + (ya � yb)2:

The length of an edge e = (a; b) is kek = ka�bk, and the length of a tree � is k�k =P
e2� kek.

9

2.2. Steiner Trees 10

2.2 Steiner Trees

All of the problems examined in this dissertation are related to the Steiner tree problem.

This section describes some concepts and terminology related to the Steiner tree problem.

As was mentioned above, a typical objective in routing is to route each net using a

minimum total length of wire. Such a routing problem can be abstracted to the following:

given a set of points in the plane, �nd a short interconnection of those points. It is easy to

see that such an interconnection will be a tree, since if it contained a cycle then some wire

could be removed and the length reduced while still maintaining electrical connectivity.

One type of short interconnection is a minimum spanning tree (MST). An MST is a

shortest interconnection that uses only wires between the given points, which are called

terminals. The MST problem in an undirected, weighted graph G is de�ned as follows: �nd

a minimum-weight subtree of G that spans all the vertices. MSTs are e�ciently computed

by algorithms such as those of Kruskal [101] and Prim [124].

An MST of a selected set of vertices in a graph G is modeled by a complete graph on

these vertices, in which each edge corresponds to a shortest path between its endpoints

in G.

While an MST is a short interconnection|typically within a constant factor of the best

possible|generally a shorter interconnection can be realized using a Steiner tree. The basic

version of the Steiner tree problem is the graph Steiner tree (GST) problem. An instance

of the GST problem consists of an undirected, weighted graph G = (V;E) and a subset of

the vertices T � V that are identi�ed as terminals (the vertices in V �T are called nonter-

minals). The GST problem is to �nd a minimum-weight subtree of G that contains all the

terminals1. Equivalently, the problem is to �nd a set S of Steiner points, where S � V �T ,
such that the length of an MST of T [S is minimized. For example, Figure 2.1 illustrates

a graph and an MST and optimal Steiner tree for that graph. As will be our convention

1If edges can have negative weight, then the word \tree" is something of a misnomer, as the minimum-

weight subgraph containing the terminals may not be a tree. However, in all the applications studied here,

edges have nonnegative weight, so we retain this nomenclature.

2.2. Steiner Trees 11

throughout this dissertation, terminals are depicted as �lled circles and nonterminals as

open circles. If T = V , then the GST problem is equivalent to the MST problem, and

2 2

2
1

1

1

(a) (b) (c)

Figure 2.1: (a) A graph, (b) an MST with weight 4, and (c) a Steiner tree with

weight 3.

if jT j = 2, then it is the shortest path problem. Both, of course, are easily solvable in

polynomial time. However, the general GST problem is NP-complete [93], indicating that a

polynomial-time algorithm to solve exactly it is unlikely to exist. Furthermore, it remains

NP-complete even if G is planar or if all edge weights are equal.

A variation on the basic Steiner tree problem is the geometric Steiner tree problem.

Here, an instance consists of a set T of n terminals in R2, and the problem is to �nd a

set S of additional points called Steiner points such that the length of an MST (in some

particular distance metric) of T [S is minimized. A geometric MST is modeled by an MST

in a complete graph in which the weight of each edge is equal to the geometric distance

between its endpoints.

The most heavily studied geometric Steiner tree problems are the Euclidean (L2) prob-

lem and the rectilinear (L1) problem. These are referred to as the Euclidean Steiner tree

(EST) problem and the rectilinear Steiner tree (RST) problem, respectively. Both of these

2.2. Steiner Trees 12

variations have been proven to be NP-complete as well (by Garey, Graham, and Johnson [62]

and Garey and Johnson [63], respectively).

2.2.1 The Steiner ratio

Much attention has been given to the quality of an MST as an approximation of an optimal

Steiner tree for various versions of the Steiner tree problem. The Steiner ratio, denoted �,

is de�ned for a particular version of the Steiner tree problem to be the maximum, over all

instances, of the ratio of the length of an MST to the length of an optimal Steiner tree.

That is, if I is a Steiner tree instance, M(I) is an MST of I , and �(I) is an optimal Steiner

tree of I , then

� = max
I

kM(I)k
k�(I)k :

For most Steiner tree problems, � is a small constant, indicating that an MST is a good

approximation of an optimal Steiner tree.

For example, for the GST problem, � = 2. The lower bound is witnessed by a \star"

graph consisting of a single nonterminal vertex of degree n connected by unit-weight edges

to n terminal vertices of degree 1. The length of an MST of this graph is 2n � 2, and the

length of an optimal Steiner tree is n. Thus, this graph witnesses � � 2� 2=n. If n is large,

then � is arbitrarily close to 2. For the upper bound, consider an optimal Steiner tree �

in any graph G. Replace each edge with a pair of parallel edges, and construct an Euler

tour of � . An Euler tour of a graph G is a tour that visits every edge in G exactly once,

returning to the vertex from which it started. An Euler tour of the augmented version of �

has length 2k�k. Removing the longest edge gives us a spanning tree, which can be no

shorter than the MST. This longest edge has length at least 2k�k=n, so the length of the

MST is at most 2k�k � 2k�k=n. Thus, � � 2� 2=n; again, � is arbitrarily close to 2 if n is

large.

For geometric Steiner tree problems, � is often smaller than 2. For the EST prob-

lem, � = 2=
p
3 (this fact was conjectured by Gilbert and Pollak in 1966 [65] and �nally

2.2. Steiner Trees 13

proven in 1992 by Du and Hwang [45]). For the RST tree problem, Hwang [82] proved

that � = 3=2.

2.2.2 Rectilinear Steiner trees

Most of the results in this dissertation concern the RST problem. The RST problem nat-

urally arises in VLSI routing applications because typically VLSI fabrication technology

requires all wires to be either horizontal or vertical. Figure 2.2 illustrates an optimal RST

for a set of 27 terminals (terminals are depicted as �lled circles and Steiner points as open

circles). The severely constrained nature of the rectilinear distance metric leads to several

Figure 2.2: An optimal RST for a set of 27 terminals.

2.2. Steiner Trees 14

important geometric results.

The �rst (and earliest) is Hanan's theorem.

Theorem 2.1 (Hanan [71]) For every set of terminals, there exists an optimal RST in

which every Steiner point shares both its x- and y-coordinates with some pair of terminals.

Hanan's theorem implies that the following graph, called the Hanan grid graph, always

contains an optimal RST. Draw horizontal and vertical grid lines through each terminal.

Construct a graph G = (V;E) in which each vertex in V corresponds to the intersection

of two grid lines (note that the intersections include the terminals). There is an edge

between two vertices if they are adjacent along a grid line, and the weight of each edge is

the rectilinear distance between its endpoints. Hanan's theorem implies that an optimal

solution to the GST problem in G is an optimal solution to the RST problem from which

it was constructed. Figure 2.3 illustrates the Hanan grid graph for the RST instance of

Figure 2.2 with the optimal RST darkened. Hanan's theorem allows computation of an

optimal RST by applying an algorithm for the GST problem to G, though as shown in

Chapter 3, more e�cient solutions are obtained by considering the problem in a more

geometric fashion.

A set T of terminals is a full set if in every optimal Steiner tree of T , every terminal in T

is a leaf (i.e., has degree 1). A Steiner tree of a full set is called a full tree. An important

result concerning full sets in the rectilinear metric is Hwang's theorem.

Theorem 2.2 (Hwang [82]) An optimal full tree can have only one of the following two

topologies. A type I topology consists of a backbone segment adjacent to one of the extreme

terminals, with segments connecting the other terminals to the backbone. (Assume without

loss of generality that the backbone is horizontal.) From left to right, these terminals must

appear on alternating sides of the backbone. A type II topology is similar to a type I topology,

but with the leftmost (or rightmost) terminal connected to the segment that connects the

second terminal from the left (or right) to the backbone.

2.3. Overview 15

Figure 2.3: The Hanan grid graph and optimal RST for a set of 27 terminals.

The two topologies are illustrated in Figure 2.4. Using Hwang's theorem, an optimal RST

of a full set is computed in linear time by examining these two topologies2.

Finally, a well-known decomposition theorem on Steiner trees is the following.

Theorem 2.3 Every Steiner tree is composed of a number of full trees that intersect at

terminals of degree 2 or greater.

(See Hwang, Richards, and Winter [84].)

2.3 Overview

The remainder of this dissertation is organized in four chapters, each of which examines a

di�erent geometric problem related to VLSI design automation.

2As an aside, we know of no other class of graph or distance metric in which an optimal full tree is

computable in polynomial time but an optimal Steiner tree is not. This is an interesting topic for future

research.

2.3. Overview 16

Type I Type II

Figure 2.4: Possible full tree topologies according to Hwang's theorem.

Chapter 3 presents two new algorithms for computing optimal RSTs. The �rst, called

Full-set Dynamic Programming, involves a bottom-up construction of an optimal RST

from its component full sets. Its time complexity is O(n3n) for n terminals. The second

algorithm, called Screened Full-set Dynamic Programming, augments the �rst algorithm

with the addition of full set screening, which eliminates many candidate full sets from

consideration. This modi�cation, in combination with a proof of an upper bound on the

number of candidate full sets, results in a time complexity of approximately O(n22:62n).

We show that these algorithms have lower time complexity than has been proven for any

practically applicable algorithm and that in practice they compare favorably with several

other popular algorithms for computing optimal RSTs.

Chapter 4 is concerned with computing optimal and heuristic RSTs in the presence of

obstacles that the RST must not intersect. Speci�cally, we prove a result analogous to

Hanan's theorem (Theorem 2.1 on page 14) that enables computation of optimal obstacle-

avoiding RSTs in time corresponding to the instance size. We then present algorithms for

computing optimal and heuristic RSTs in the presence of obstacles, and examine two special

cases of the problem.

Chapter 5 introduces the power-p Steiner tree problem, which is to compute a geometric

Steiner tree that minimizes the sum of the edge weights each raised to the p power. We

2.3. Overview 17

also examine a special case of the power-p Steiner tree problem: the bottleneck Steiner tree

problem, which is to �nd a geometric Steiner tree that minimizes the length of the longest

edge. We give algorithms for computing optimal Euclidean power-2 Steiner trees, optimal

rectilinear bottleneck Steiner trees, and rectilinear Steiner trees that minimize a combination

of bottleneck weight and total length. We also examine the power-p analogue of the Steiner

ratio, which measures the quality of an MST as an approximation of a power-p Steiner

tree. We give bounds on the general power-p Steiner ratio and we derive the exact value

of the bottleneck Steiner ratio. We also consider some other aspects of the problem, such

as computing power-p Steiner trees for p larger than 2 and computing good approximate

bottleneck Steiner trees.

Chapter 6 describes a system called Mondrian that performs simultaneous placement

and global routing of �eld-programmable gate arrays. Mondrian uses a recursive geometric

partitioning strategy based on optimal rectilinear Steiner trees of terminals that lie in a small

grid. The use of this strategy, implemented using a number of algorithmic techniques, allows

minimization of channel width, total wire length, and maximum source-sink path lengths.

Mondrian is shown to produce results superior to those of previous algorithms. The

development of Mondrian also includes some algorithmic results of independent interest,

such as minimum-congestion routing in a cycle and computing optimal rectilinear Steiner

trees for terminals in a small grid.

3

Computing Optimal Rectilinear Steiner Trees

As mentioned in Section 2.2, the rectilinear Steiner tree (RST) problem is NP-complete [63].

This suggests that a polynomial-time algorithm that computes an optimal RST is unlikely to

exist. As with most NP-complete problems, one avenue of research is to devise exponential-

time algorithms that compute optimal solutions to small instances. Such algorithms are

particularly pertinent in VLSI routing, since a typical net contains only a few terminals

(see Section 4.3.2). One objective of such research is to devise algorithms that have good

asymptotic time complexity and that can solve as large an instance as possible in practice.

3.1 Overview

This chapter presents two new algorithms for computing optimal RSTs. The �rst runs

in O(n3n) time, where n is the number of terminals. This algorithm is not only faster

than commonly used algorithms, but is very simple and easy to implement. The second

algorithm improves on the �rst by using the concept of full-set screening. This second

algorithm runs in at most O(n2(1 + �)n) time, where � = (1+
p
5)=2 � 1:62. For instances

Earlier versions of portions of this chapter appear in Ganley and Cohoon [54, 56].

18

3.2. Previous Work 19

that can reasonably be solved in practice, we show that these bounds are better than those

of any previous algorithm.

The remainder of this chapter is organized as follows. Section 3.2 surveys algorithms

for computing optimal RSTs, including a few graph-based algorithms and many geometric

algorithms. Section 3.3 then describes the �rst of our algorithms, which is called Full-

set Dynamic Programming and runs in O(n3n) time. Sections 3.4 and 3.5 introduce the

concept of full-set screening and prove upper bounds on the number of possible full sets.

Section 3.6 then describes the second, O(n22:62n) algorithm, called Screened Full-set Dy-

namic Programming. Section 3.7 discusses the relevance of asymptotic time complexity to

instances that can be solved in practice. In particular, we show that for instances small

enough to solve in practice, the running times of our algorithms are faster than the best

known time bounds of any algorithm. Section 3.8 gives experimental results comparing

our algorithms with some other popular algorithms for computing optimal RSTs. Finally,

Section 3.9 summarizes and describes directions for current and future work.

3.2 Previous Work

A number of algorithms for computing optimal RSTs have appeared in the literature. The

RST problem can be solved either by reducing it to the graph Steiner tree (GST) problem

as described in Section 2.2.2 or by solving it more directly in a geometric fashion. Here we

discuss a few algorithms for the GST problem and their performance when used to solve

the RST problem. We then survey geometric algorithms for �nding optimal RSTs.

As discussed in Section 2.2.2, one can use Hanan's theorem to construct a graph G from

an instance of the RST problem such that an optimal solution to the GST problem in G is

an optimal solution to the RST instance from which it was constructed.

An early algorithm for the GST problem is Hakimi's spanning tree enumeration al-

gorithm [70], which has time complexity O(n2n
2�n logn) when applied to G. Hakimi's

algorithm solves 8-terminal problems in less than a day on a workstation.

3.2. Previous Work 20

The most provably e�cient algorithm for solving the GST problem is the dynamic

programming algorithm of Dreyfus and Wagner [43], which has time complexity O(n23n)

when applied to G. Its time and space requirements restrict it to solving instances with 16

or fewer terminals on a workstation. Thomborson, Alpern, and Carter [145] present some

improvements to the Dreyfus-Wagner algorithm that do not change the algorithm's time

complexity, but do improve its e�ciency in practice|their algorithm solves 20-terminal

problems in a day on a workstation.

A large number of other algorithms exist for the GST problem, but they are either

provably less e�cient than the Dreyfus-Wagner algorithm, or else good bounds on their

time complexity are elusive, and there exist no investigations of their performance when

applied to G. The reader is referred to Hwang, Richards, and Winter [84] for further

discussion of algorithms for the GST problem.

A number of other algorithms have been devised that solve the RST problem in a

geometric fashion, without explicit use of the Hanan grid graph.

Yang and Wing [158] present a branch-and-bound algorithm with worst-case complexity

O(2n
2
); the largest instance on which they test their algorithm contains 9 terminals.

Wong and Pecht [154] describe an exact RST algorithm that is essentially an exhaustive

version of the edge-embedding heuristic of Ho, Vijayan, and Wong [75]. The time complexity

of the algorithm is a summation for which no closed form is given, but it grows slightly faster

than O(4n). Their algorithm solves roughly 15-terminal instances [153].

Lewis, Pong, and Van Cleave [109] use some geometric properties of optimal RSTs to

devise an algorithm with time complexity O(4n logn=n4), which solves 10-terminal instances

in a day.

Sidorenko [137] describes an exact RST algorithm. He proves some geometric and

topological properties of optimal RSTs, and uses them to devise an O(n!) algorithm. He

states that the algorithm is is applicable to instances with up to 11 terminals1.

1Thanks to Masha Sosonkina for translating the paper.

3.3. Full-set Dynamic Programming 21

Smith [139] presents an algorithm with worst-case time complexity nO(
p
n), which is

asymptotically faster than any
(cn) algorithm for constant c > 1. However, the algorithm

is not practically applicable due to tremendous constant factors in its time complexity.

Smith's algorithm is discussed further in Section 3.7.

Salowe and Warme [131] present an algorithm that works well in practice|it is applica-

ble to 35-terminal instances|but the only previously known bound on its worst-case time

complexity is O(22
n
). Our results in Section 3.5 improve this bound slightly to O(2n1:62

n
).

Authors Time nday
Dreyfus and Wagner [43] O(n23n) 16

Hakimi [70] O(n2n
2�n logn) 8

Lewis et al. [109] O(4n logn=n4) 10

Salowe and Warme [131] O(2n1:62
n
) 35

Sidorenko [137] O(n!) 11

Smith [139] nO(
p
n) |

Thomborson et al. [145] O(n23n) 20

Wong and Pecht [154] O(an); a � 4 15

Yang and Wing [158] O(2n
2
) 9

FDP O(n3n) 22

SFDP O(n22:62n) 27

Table 3.1: Summary of algorithms for computing optimal RSTs. The column

labeled nday indicates the problem size that each algorithm solves in 24 hours on

a workstation. FDP and SFDP are the algorithms described in this chapter.

3.3 Full-set Dynamic Programming

The �rst of our algorithms is called Full-set Dynamic Programming (FDP). The FDP al-

gorithm is very simple and easily implemented and runs in O(n3n) time. This improves,

3.3. Full-set Dynamic Programming 22

both theoretically and practically, on the Dreyfus-Wagner algorithm, which is often used in

practice to compute optimal RSTs [41, 42, 98, 145].

Theorem 2.3 implies that an optimal RST for every set of terminals is either a full tree

satisfying Hwang's theorem (Theorem 2.2 on page 14), or else it can be divided into two

optimal subtrees joined at a terminal. This observation leads to the FDP algorithm. Subsets

of the input set of terminals are enumerated in order of increasing cardinality. For each

subset S, the algorithm compares the length of the full tree produced by applying Hwang's

theorem to the lengths of the trees produced by joining the optimal RSTs of every pair of

subsets A and B such that A [B = S and jA \ Bj = 1. (Henceforth we write A1B = S

if A [B = S and jA \ Bj = 1.) The decomposition with minimum length is an optimal

RST for the set S of terminals. Since the subsets are enumerated in order of increasing

cardinality, at each step the optimal RSTs for the smaller subsets A and B have already

been computed and stored.

Figure 3.1 formally describes the FDP algorithm. As shown, the algorithm computes

(1) For m = 2 to jT j
(2) For all S � T such that jSj = m

(3) `[S] = kH(S)k
(4) For all A;B such that A1B = S

(5) `[S] = minf`[S]; `[A]+ `[B]g

Figure 3.1: The FDP algorithm. T is the set of input terminals, and H(S) is an

optimal full tree of a set S of terminals.

only the length of the optimal tree; a similar top-down pass computes the actual tree given

the lengths computed by the �rst pass.

The time complexity of the FDP algorithm is derived in a manner similar to that of

Dreyfus and Wagner [43]. For each value of m in loop (1) in Figure 3.1,

� Loop (2) iterates I2 =
�n
m

�
times.

3.4. Full-set Screening 23

� Loop (4) iterates I4 = m2m�1I2 times.

Thus, the time complexity of the FDP algorithm is

nX
m=2

n

m

!
m2m�1 � n3n�1:

This analysis does not include line (3) of Figure 3.1, in which a full tree is computed for every

subset of T , each in linear time, resulting in an additional O(n2n) time. However, this term is

dominated by the decomposition term, so the overall asymptotic time complexity is O(n3n).

This improves upon the Dreyfus-Wagner algorithm, which has time complexity O(n23n).

It is also noteworthy that the space complexity of the FDP algorithm is O(2n), whereas

the space complexity of the Dreyfus-Wagner algorithm is O(n22n) for the RST problem. In

practice, the space requirements of the Dreyfus-Wagner algorithm are more restrictive than

its time complexity [13], and it cannot solve problems much above 16 terminals within the

main memory of a workstation. The Thomborson, Alpern, and Carter [145] optimization

to the Dreyfus-Wagner algorithm manages memory explicitly on disk, but even so, a 23-

terminal problem requires about 400 megabytes of storage, so problems larger than this are

currently infeasible on a typical workstation.

In practice, one might wish to store the actual decompositions of each subset along with

its length. This modi�cation does not change the time complexity of the algorithm, but

speeds it up in practice by eliminating the need for computing the optimal lengths and

the actual RST in two separate passes. This modi�cation increases the space requirements

to O(n2n), which is still a signi�cant improvement over Dreyfus-Wagner.

3.4 Full-set Screening

The key concept in the Euclidean Steiner tree algorithms of Cockayne and Hewgill [28, 29]

and Winter [149] and the RST algorithm of Salowe and Warme [131] is that of full-set

screening. The idea is that relatively few subsets of the set of terminals can be full sets.

Thus, several tests are applied to each subset to potentially eliminate it from candidacy as

3.5. Bounding the Number of Full Sets 24

a possible full set. For example, the subset must be connectable according to one of the

topologies speci�ed by Hwang's theorem.

Full-set screening can be used to improve the running time of the FDP algorithm. In

the FDP algorithm, the innermost loop enumerates, for each subset S of terminals, all pairs

of subsets A and B such that A1B = S. Having identi�ed a number of candidate full sets,

one can also require that A be a candidate full set while still satisfying Theorem 2.3. Thus,

if the number of candidate full sets that are subsets of S is asymptotically smaller than the

total number of subsets of S, and if the subsets of S that are candidate full sets can be

e�ciently enumerated, then the time complexity of the FDP algorithm is improved.

Before proceeding further, we de�ne some additional notation. For every set S of ter-

minals, let F (S) denote the set of candidate full sets that are subsets of S. Note that if S

is itself a candidate full set, then F (S) includes S. The set of input terminals is T , so

the complete set of candidate full sets is F (T). Let f(n) = maxjT j=n jF (T)j denote the

maximum number of candidate full sets over all sets of n terminals.

3.5 Bounding the Number of Full Sets

An important component of our analysis is proving an upper bound on f(n) that is asymp-

totically smaller than O(2n). By using Hwang's theorem, we prove that f(n) � O(n�n),

where � = (1 +
p
5)=2 � 1:62.

We �rst prove a pair of results regarding binary strings, and then use these results to

derive the bound. These strings are described by regular expressions; readers not familiar

with regular expression notation may refer to Hopcroft and Ullman [80]. De�ne a string S to

be a sequence s1s2 � � �sm, where si 2 fa; bg, i.e. S is a string in the language (a+b)�. De�ne

a substring of a string S to be si1si2 � � �sik where 1 � i1 < i2 < � � �< ik � m. Each si in a

string S is considered distinct; e.g., given a string S = aaa, the substrings s1s2 and s1s3 are

considered distinct even though they both have value aa. An alternating string is one in the

3.5. Bounding the Number of Full Sets 25

language b(ab)�(a+ �), and an anti-alternating string is one in the language a(ba)�(b+ �).

(Note that the empty string � is both alternating and anti-alternating.)

Lemma 3.1 There are at most �m alternating (or anti-alternating) substrings of an alter-

nating string of length m, where � = (1 +
p
5)=2.

Proof : Let A(m) denote the number of alternating substrings of an alternating string

of length m. Similarly let B(m) be the number of anti-alternating substrings of an anti-

alternating string of length m. Let S = s1s2 � � �sm be an alternating string of length m.

An alternating substring of S is de�ned recursively as either

1. s1 concatenated with an anti-alternating substring of s2s3 � � �sm, or
2. An alternating substring of s3s4 � � �sm.

This observation yields the following recurrence:

A(m) = B(m � 1) +A(m� 2);

B(m) = A(m� 1) + B(m� 2);

A(1) = 1; and

B(1) = 1:

This recurrence solves to A(m) = Fm < �m (Fm is themth Fibonacci number). The number

of anti-alternating substrings in a string S is equal to number of alternating substrings in

the complement of S, so the same applies for anti-alternating substrings. 2

We now show that the number of alternating substrings of a string S is maximized if S

is itself alternating.

Lemma 3.2 The number A(m) of alternating substrings of an alternating string of lengthm

is at least as large as the number of alternating substrings of any string of length m.

Proof : The proof is by induction on m. The base case is m = 1. The alternating string b

contains one alternating substring while the string a contains none. For the inductive

3.5. Bounding the Number of Full Sets 26

hypothesis, assume that an alternating string of length less than m contains at least as

many alternating substrings as every string of equal length.

Let S be a string of length m, and assume that S is neither an alternating nor an anti-

alternating string, so that it must contain a contiguous sequence C of the form aaa� or bbb�

(without loss of generality assume that C is in bbb�). Let W be the portion of S to the left

of C, and let E be the portion of S to the right of C, like so:

S = ((a+ b)�a+ �)| {z }
W

bbb � � �bbb| {z }
C

(a(a+ b)� + �)| {z }
E

:

Let mW = jW j, let mC = jCj, and let mE = jEj, and assert that C is maximal in the sense

that if W is nonempty then wmW
= a, and if E is nonempty then e1 = a. Assume that the

number A(S) of alternating substrings of S is greater than the number A(m) of alternating

substrings of an alternating string of length m. We will show that this assumption leads to

a contradiction.

In all cases, at most one of the elements of C is present in an alternating substring. If W

is empty, then an alternating substring of S is formed by any element of C concatenated

with an anti-alternating substring of E, or by no element of C nor e1, but an alternating

substring of e2e3 � � �emE
. By the inductive hypothesis and Lemma 3.1, the number of

alternating substrings in every string of length i for i < m is at most �i. Thus,

A(S) � c�m�c + �m�c�1:

We have assumed that A(S) > A(m), implying that

�m�c + �m�c�1 > �m; i.e.,

c+
1

�
> �c;

which has no solution, contradicting our assumption. An analogous argument applies if

instead E is empty.

If neither W nor E is empty, then an alternating substring of S is formed by concatenat-

ing an alternating substring of W , an element of C, and an anti-alternating substring of E,

3.5. Bounding the Number of Full Sets 27

or by concatenating an alternating substring of W with an alternating substring of E. In

the latter case, the number of strings in which wmW
and e1 both appear must be subtracted,

since wmW
= e1 = a. Again using the inductive hypothesis and Lemma 3.1,

A(S) � c�m�c + �m�c � �m�c�2 :

Invoking the assumption that A(S) > A(m) yields

c+ 1� 1

�2
> �c;

which again has no solution, providing the desired contradiction. 2

We now use Lemmas 3.1 and 3.2 to bound the number of candidate full sets for a

given backbone. Assume that no two terminals have the same x or y value; if necessary,

this property can be ensured by perturbation (see Edelsbrunner [47]). Label the termi-

nals t1; t2; : : : ; tn such that xti < xti+1 for all 1 � i < n. We now show that if ti and tj

de�ne a backbone �, then the number of full sets inducing a type I topology with � as a

backbone is at most O(�j�i).

Lemma 3.3 The number of full sets inducing a type I topology with a backbone de�ned by

terminals ti and tj is at most O(�j�i).

Proof : Assume without loss of generality that the backbone � is horizontal, its right

endpoint is tj , its left endpoint is (xti; ytj), and yti < ytj . Let y� = ytj .

A type I topology with � as a backbone can contain only terminals tk such that i � k � j.

Build a string S of length j � i � 1 based on the positions of the terminals relative to �;

speci�cally, sk�i�1 = a if ytk > y� , and sk�i�1 = b if ytk < y� . Since yti < y� , terminal ti

corresponds to a b, and there is a one-to-one correspondence between alternating substrings

of S and sets of terminals that form a valid type I topology with � as their backbone.

From Lemmas 3.1 and 3.2, the maximum number of alternating substrings of a string

of length m is �m, so the maximum number of candidate full sets with � as a backbone

is �j�i�1. This value must be doubled to account for the case where � is vertical rather

3.6. Screened Full-set Dynamic Programming 28

than horizontal, and doubled again for the case when � is adjacent to ti rather than tj ,

giving us 4�j�i�1 = O(�j�i), as desired. 2

We now use Lemma 3.3 to show that the total number f(n) of candidate full sets on n

terminals is at most O(n�n).

Theorem 3.1 The number f(n) of candidate full sets on n terminals is at most O(n�n).

Proof : A candidate full set must satisfy Hwang's theorem, so the quantity f(n) is bounded

by the total number of candidate full sets with type I or type II topology for every possible

backbone. Lemma 3.3 gives a bound on the number of candidate full sets with type I

topology for a given backbone. Given a backbone de�ned by terminals ti and tj , a type II

topology is formed by joining a terminal to the left of ti or to the right of tj to the full tree.

In the worst case, for every type I topology, any of these terminals forms a valid type II

topology in this manner. Thus, from Lemma 3.3, the maximum number of candidate full

sets with type II topology for a backbone de�ned by ti and tj = ti+m is O((i+ n� j)�j�i).
Summing over all choices of ti and tj yields

f(n) �
nX
i=1

n�i+1X
m=0

(n�m+ 1)�m = O(n�n);

as desired. 2

3.6 Screened Full-set Dynamic Programming

Given the results above, it remains only to show that for each subset S of terminals, the set

of candidate full sets that are subsets of S, i.e. the set F (S) = fS 0 2 F (T) : S0 � Sg, can be
e�ciently computed for each S. We now show that this computation can be accomplished

in O(jF (S)j+ jSj) time.
The set F (S) consists of S itself if S 2 F (T), as well as F (S 0) for each S 0 = S�fsig such

that si 2 S. This observation dovetails with the dynamic programming algorithm: as the

3.6. Screened Full-set Dynamic Programming 29

algorithm enumerates the sets S of cardinality m, it retains F (S) for each. Each new F (S)

is then computed as follows:

F (S) = (fSg \ F (T))[
[

S0=S�fsig
F (S0):

The algorithm stores each F (S); since the subsets are enumerated in order of increasing

cardinality, each F (S 0) has been stored from the previous iteration, and this computation

is performed in O(jF (S)j+ jSj) time.
We now describe the algorithm, which we call Screened Full-set Dynamic Programming

(SFDP). The subsets of the input set T of terminals are enumerated in order of increasing

cardinality, starting with subsets of cardinality three (subsets of cardinality two cannot

be decomposed, though they are considered in the decomposition of larger subsets). For

each subset S, compute F (S) as described in the previous paragraph, and examine each

subset A in F (S). For every such A, consider each set B such that A1B = S. The length

of an optimal RST of S is the minimum of the length of a full tree on S (if S is in F (T))

or the minimum combined length of optimal RSTs of each pair of subsets A and B such

that A 2 F (S) and A 1B = S. Since the subsets are enumerated in order of increasing

cardinality, each required B has already been computed and stored. Figure 3.2 describes

the SFDP algorithm in detail.

As described above, F (S) is computed for every set S in O(jF (S)j+ jSj) time. Thus,
the time complexity of the SFDP algorithm is at most

nX
m=3

n

m

!
m(f(m) +m):

From Theorem 3.1, f(m) � m�m, so the time complexity of the SFDP algorithm is at most

nX
m=3

n

m

!
m(m�m +m) � n2(1 + �)n + n22n

= O(n2(1 + �)n)

� O(n22:62n):

3.7. Time Complexity 30

(1) For m = 3 to jT j
(2) For all S � T such that jSj = m

(3) If (S 2 F (T)) then `[S] = kH(S)k
Else `[S] =1

(4) Compute F (S)

(5) For all A;B such that A 2 F (S) and A1B = S

(6) `[S] = minf`[S]; `[A]+ `[B]g

Figure 3.2: The SFDP algorithm. T is the set of input terminals and F (T) is the

set of candidate full sets. H(S) is an optimal full tree of the set S of terminals.

The time required to compute the set F (T) of candidate full sets is O(h(n)), where h(n)

is the number of subsets that satisfy Hwang's theorem [131]; by Theorem 3.1, this time

complexity does not exceed O(n�n) and is dominated by the decomposition term.

Like the FDP algorithm, the space complexity of the SFDP algorithm is O(2n). Again,

one may wish to store the optimal decomposition of each subset along with its length,

increasing the space requirements to O(n2n) but eliminating the need for two passes.

3.7 Time Complexity

As mentioned previously, Smith's nO(
p
n) algorithm [139] is asymptotically faster than either

of our algorithms, or indeed than any
(cn) algorithm with c > 1. However, for instances

small enough to solve in practice, our algorithms are provably faster than Smith's.

The time complexity of Smith's algorithm is given by the following recurrence:

TW (n) = n
p
n � 4

p
n � 2 � TW (n=2):

This recurrence solves to nO(
p
n) for asymptotically large n, but a more accurate value for

smaller n is derived by actually expanding this recurrence. Expanding once we get

TW (n) = (4n)
p
n � 4 � (2n)

p
n=2 � TW (n=4):

3.7. Time Complexity 31

Similarly, we consider the more exact bounds for the FDP algorithm:

TF (n) = n3n + n2n;

and for the SFDP algorithm:

TS(n) = n22:62n + n22n + n21:62n:

Even if we only expand Smith's recurrence once (assume that TW (n=4) = 1), the value

of TW (n) is greater than TF (n) for n less than 61, and it is greater than TS(n) for n

less than 77. Figure 3.3 depicts the behavior of these three functions with respect to n.

Note that currently the fastest algorithms only solve 35-terminal instances in a day on a

0 20 40 60 80 100

n

Smith
FDP

SFDP

Figure 3.3: Running times of Smith's algorithm vs. the FDP and SFDP algorithms.

workstation [131], so computational technology will have to improve tremendously before

Smith's algorithm is faster than ours on practically solvable instances.

3.8. Empirical Results 32

Above we obtained a loose lower bound on the running time of Smith's algorithm by

expanding the recurrence only once; if one were to expand the recurrence further, then one

would discover that Smith's algorithm is slower than ours for even larger instances than

described above. In fact, Smith states that one would want to use a di�erent algorithm for

instances with less than 300 terminals [139].

Hwang, Chang, and Lee [85] use essentially the same techniques as Smith to solve a

number of other problems; readers interested in the technique itself are referred there as

well as to Smith [139].

3.8 Empirical Results

We have implemented the FDP and SFDP algorithms in order to compare them empirically

with Hakimi's algorithm [70], the Dreyfus-Wagner algorithm [43], and the algorithm of

Thomborson, Alpern, and Carter [145].

Figure 3.4 plots the running time of each algorithm as a function of the number n

of input terminals. Each data point results from 10 runs on each of 10 di�erent sets of

terminals generated uniformly at random from a 10000 by 10000 grid. As can be seen, the

FDP algorithm is faster than the Hakimi, Dreyfus-Wagner, and Thomborson, Alpern, and

Carter algorithms.

While the SFDP algorithm is a bit slower than the FDP algorithm for n < 10, after this

point it is faster than all four of the other algorithms, and becomes more so as n grows, due

to the asymptotic improvement in the exponential. Note that O(n22:62n) is an extremely

pessimistic bound. In practice, we apply a number of other tests for full set candidacy [131],

and f(n) is much smaller than O(n�n) in practice. In fact, we conjecture that the upper

bound on f(n) is at most O(n2) and is quite possibly O(n logn). Indeed, the slope of the

running time curve for the SFDP algorithm suggests that its time complexity in practice

is O(p(n)2n), where p(n) is a polynomial function of n. This suggests that the number of

full sets, at least in practice, is indeed polynomial, since the 2n term is incurred by the

3.8. Empirical Results 33

0.001

0.01

0.1

1

10

100

1000

10000

100000

4 6 8 10 12 14 16 18 20 22 24 26 28

R
un

ti
m

e
(s

ec
on

d
s)

n

1m

1h

1d

H
DW

TAC
FDP

SFDP

Figure 3.4: Running times of Hakimi (H), Dreyfus and Wagner (DW),

Thomborson, Alpern, and Carter (TAC), FDP, and SFDP algorithms.

outer two loops of the algorithm alone. Figure 3.5 depicts, as a function of n, our upper

bound of n�n, the observed maximum, minimum, and average numbers of candidate full

sets over 10; 000 randomly generated instances for each value of n, and the conjectured

upper bound of n2.

The Salowe and Warme algorithm [131] is still faster than the SFDP algorithm in prac-

tice. However, since they use a branch-and-bound search to examine the various full-set

decompositions, the running time of the algorithm is unpredictable, and it is di�cult to

derive a bound on the time complexity of their algorithm that is better than O(2f(n)),

where f(n) is the maximum number of candidate full sets on n terminals. The bound on

the number of full sets in Theorem 3.1 gives an upper bound of O(2n�
n
). Based on the

performance of the algorithm in practice, this bound is pessimistic, at least for randomly

3.9. Conclusions and Future Work 34

0

1

10

100

1000

10000

100000

1000000

10000000

100000000

5 10 15 20 25 30
n

Upper bound
Observed

Conjectured

Figure 3.5: Number of candidate full sets as a function of n: the proven upper

bound, empirical values for randomly generated data, and the conjectured upper

bound of n2.

generated sets of terminals. However, in the absence of good worst-case bounds, it is im-

possible to know whether there exist pathological instances for which the algorithm is much

slower than it is for randomly generated data.

3.9 Conclusions and Future Work

We have presented two new dynamic programming algorithms for computing optimal rec-

tilinear Steiner trees. The �rst is called Full-set Dynamic Programming (FDP), and runs

in O(n3n) time. The FDP algorithm is very simple and easily implemented. It is partic-

ularly well-suited to applications in which the Dreyfus-Wagner algorithm was previously

used, such as in the basis of recursive decomposition algorithms like those of Koml�os and

3.9. Conclusions and Future Work 35

Shing [98] and Deneen, Shute, and Thomborson [42]. It is at least as easily implemented as

the Dreyfus-Wagner algorithm and is faster and uses less space.

Our second algorithm is called Screened Full-set Dynamic Programming (SFDP), and

runs in at most O(n2(1 + �)n) time, where � = (1 +
p
5)=2 � 1:62. The analysis of the

SFDP algorithm includes an upper bound of O(n�n) on the maximum number of full sets

on n terminals. We have proven that both algorithms, while asymptotically slower than

that the algorithm of Smith [139], are provably faster than Smith's algorithm for instances

that can be solved in practice. Thus, for instances that can be solved in practice, the

SFDP algorithm has faster proven time complexity than that of any previous algorithm for

computing optimal RSTs.

Finally, we have demonstrated empirically that our algorithms are faster in practice

than three popular previous algorithms for computing optimal RSTs: Hakimi's spanning

tree enumeration algorithm [70], the dynamic programming algorithm of Dreyfus and Wag-

ner [43], and the improvement to the Dreyfus-Wagner algorithm devised by Thomborson,

Alpern, and Carter [145].

We note that the improvement of the SFDP algorithm over the FDP algorithm comes at

the expense of a signi�cant increase in implementation complexity. In our implementation,

in addition to Hwang's theorem, a number of other tests are applied to eliminate subsets

from full-set candidacy [131]. We are investigating how each test for full-set candidacy

a�ects the resulting number of candidate full sets. In particular, applying only Hwang's

theorem still guarantees the worst-case runtime of the SFDP algorithm, but would reduce

the code considerably. We are investigating how this change a�ects the runtime of the

SFDP algorithm in practice.

Our work continues toward further improving the running time of these algorithms.

The main source of ine�ciency in the SFDP algorithm is examining every subset of the

set of terminals. In practice, it appears that a very small portion of these subsets admits

any valid decomposition into candidate full sets|in our tests, the ratio of the number

3.9. Conclusions and Future Work 36

of subsets with valid decompositions to the total number of subsets is roughly 0:04 for

20-terminal instances, and this ratio decreases as n grows. We are currently working on a

\lazy" implementation that works in a top-down fashion, computing the optimal RSTs of

subsets of terminals only on demand. In this way, we can avoid examining many subsets

that do not admit any valid decomposition. We believe that with such a modi�cation,

the time complexity of the algorithm can be improved to O(p(n)cn) for c < 2 and that

it would become competitive with the Salowe-Warme algorithm in practice. Note that

this modi�cation requires a di�erent way to handle enumerating candidate full sets, as the

current technique is dependent on enumerating every subset of the set of terminals.

Perfection is the child of Time.

| Bishop Joseph Hall, Works

4

Obstacle-Avoiding Rectilinear Steiner Trees

In VLSI physical design automation, a fundamental task is routing a net, i.e. interconecting

a set of terminals. Often this routing is performed in the presence of obstacles that the

wires of the net must not intersect, such as logic cells and wires in previously routed nets.

A special case that has received signi�cant attention is the case in which only two

terminals need to be connected. This problem is equivalent to �nding a rectilinear shortest

path in the presence of obstacles. A more general formulation, in which more than two

terminals must be interconnected, forms a generalization of the rectilinear Steiner tree

problem. The rectilinear Steiner tree (RST) problem is described in Section 2.2.2. The

obstacle-avoiding rectilinear Steiner tree (OARST) problem is identical to the RST problem

except for the presence of rectilinear obstacles that the segments in the Steiner tree must

not intersect. The RST problem is NP-complete [63], and therefore the OARST problem is

as well. However, the two-terminal problem is e�ciently solvable.

The remainder of this chapter consists of four sections. Section 4.2 surveys some of the

literature on the special case of the OARST problem in which there are only two terminals.

Section 4.3 presents results from the literature as well as new results on the general OARST

problem. Section 4.4 discusses several special cases of the OARST problem, such as when

Earlier versions of portions of this chapter appear in Ganley and Cohoon [30, 57].

37

4.1. Terminology 38

all terminals lie on obstacle perimeters or when all terminals lie on the perimeter of the

routing region. Finally, Section 4.5 gives conclusions and some open problems.

4.1 Terminology

An instance of the OARST problem consists of a set T of terminals and a set S of obstacle

perimeter segments. We denote an instance as a pair (T; S). We let n = jT j and s = jSj,
and denote the instance size c = n+ s.

4.2 Two-Terminal Interconnections

The problem of two-terminal rectilinear interconnection in the presence of obstacles has

been well studied. We refer to this special case of the OARST problem as the obstacle-

avoiding shortest path (OASP) problem. The literature on the OASP and similar problems

is quite vast; since other surveys have been written [74, 104, 141] and since our focus is on

Steiner-tree routing of multi-terminal nets, we only overview some of the principal results

for the two-terminal case.

4.2.1 Grid-based algorithms

The earliest techniques for solving the OASP problem are so-called grid-based algorithms.

Grid-based routing techniques �nd their genesis in the maze routing algorithms of Lee [103]

and Moore [120]. In a grid-based algorithm, the routing surface is typically divided into a

grid in which each square is the size of the smallest feature that can be fabricated in the

given technology (this distance is denoted �). This grid divides the routing area into a

number of grid cells. The two terminals, a and b, are each associated with a grid cell. An

integer value vxy is associated with each grid cell (x; y). Initially vxy = 1 for all x and y.

Then va is assigned the value 0, and adjacent grid cells are visited in breadth-�rst search

order. Each time a grid cell (x; y) is visited, for each of its neighbors (x0; y0), vx0y0 is set to

4.2. Two-Terminal Interconnections 39

the minimum of its current value and vxy+ jx�x0j+ jy� y0j. When the process terminates,

each grid cell has been labeled with its distance d from terminal a, as shown in Figure 4.1.

A shortest path from a to b is then traced by moving from grid point b to the adjacent grid

0

1

1

1

2

2

2

2

2

3 3

3

3

3

3

3

3

4 4

4

4

4

4

4

4

4

4

5

5

5

5 5

5

5

5

5

56

6

6

6 6

6

6

6

6

7

7

7

7

7

7 7

7

7

78

8

8

8

8

8

8

8

8

9

9

9

9

9

9

10

10

10

10

10

10

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12 13

13

13

13

13

13

13

13

13

1313

1313

14

14

14

14

14

14

14

14

14

1414

14

14

14

15

15

15

15

15

15

15

15

1515

1515

15

16

16

16

16

16

16

16

1616

16

16 17

17

17

17

17

17

17

18

18

18

18

1817

19

19

19

20

20 21

Figure 4.1: The result of running a maze routing algorithm.

points with value d� 1, d� 2, etc., until the point a with value 0 is reached. One such path

is shown in bold in Figure 4.1.

The major drawback of grid-based techniques is that they require time and space corre-

sponding the the routing area, which can be arbitrarily large relative to the instance size c.

When grid-based techniques were �rst devised, these demands were reasonable, but cur-

rently the routing area of state-of-the-art integrated circuits is becoming prohibitively large

to use such methods.

4.2.2 Line-based algorithms

To overcome the potentially large time and space requirements of grid-based algorithms,

researchers turned to gridless or line-based algorithms. Research into line-based algorithms

4.2. Two-Terminal Interconnections 40

for rectilinear interconnection in the presence of obstacles began with the independent works

of Hightower [73] and Mikami and Tabuchi [116]. Their algorithms were innovative in that

they were the �rst line-based routing algorithms, but they su�er several disadvantages.

Primary among them is that they do not necessarily �nd a shortest path between the two

terminals, and furthermore they sometimes does not �nd any solution although one exists.

Soon after these works, other researchers devised algorithms that solve these problems.

Many of these approaches, rather than describing an algorithm per se, describe the con-

struction of a graph guaranteed to contain shortest paths between all pairs of terminals,

to which shortest-path algorithms are then applied. One such graph is the escape graph of

Cohoon and Richards [31].

4.2.2.1 The escape graph

Figure 4.2(a) depicts a set of obstacles and terminals. The escape graph is constructed

as follows. Draw a \beltway" around each obstacle at a distance of � from the obstacle,

and similarly inscribe a beltway around the interior of the routing region, as shown in Fig-

ure 4.2(b). Then extend each segment maximally, i.e. until it hits another beltway segment,

as shown in Figure 4.2(c). (Some researchers assume that � = 0, in which case step (b) is

skipped, and step (c) amounts to simply extending each obstacle perimeter segment max-

imally.) Finally, extend segments from the terminals in all unobstructed directions, again

maximally, as shown in Figure 4.2(d). The segments described by this construction are

called escape segments. From the escape segments, a graph called the escape graph is com-

puted in a straightforward manner: the vertices correspond to the intersections of escape

segments, and there is an edge between every pair of vertices that are adjacent along an

escape segment. The weight of an edge is the rectilinear distance between its endpoints. We

let Ge(T; S) denote the escape graph for an instance (T; S), and let m denote the number

of vertices in Ge(T; S). Note that m = O(c2) in the worst case and also that Ge(T; S) is

4.2. Two-Terminal Interconnections 41

(a) (b)

(c) (d)

Figure 4.2: Constructing the escape graph.

planar and thus contains O(m) edges. The escape graph is generated in O(c2) time using a

plane-sweep algorithm [31].

It has been proven [31] that the escape graph contains a shortest path between every pair

of terminals. Kanchanasut [92] describes an algorithm that computes a set of single-source

shortest paths in a rectilinear graph in linear time, which can be applied to the escape graph

to solve the OASP problem in O(m) time.

4.2. Two-Terminal Interconnections 42

4.2.2.2 Other algorithms

Wu, Widmayer, Schlag, and Wong [155] describe a graph they call a track graph, which is

identical to the escape graph de�ned in Section 4.2.2.1 except that the segments adjacent

to terminals extend only until they hit some escape segment (in the escape graph they

are extended maximally). Thus, the track graph contains O(n + s2) vertices. Note that

the track graph itself does not necessarily contain a shortest path between every pair of

terminals. However, they describe an algorithm that, using the track graph, �nds a set

of single-source shortest paths in O(n logn + s2 log s) time. Depending on the values of n

and s, this may or may not improve on the O(m) time required by the technique of applying

Kanchanasut's algorithm to the escape graph.

Several researchers [6, 31, 112] have devised techniques to �nd a shortest path between

two vertices in a rectilinear graph such as the escape graph in O(c log c) time. (Note that

this can be sublinear in the size of the escape graph!) These techniques would seem to

improve upon both the straightforward algorithm and the algorithm of Wu, Widmayer,

Schlag, and Wong, but one must keep in mind that it takes at least O(m) time to generate

the escape graph, so these algorithms require at least O(m) total time.

Mitchell [119] describes a more direct plane-sweep algorithm that does not explicitly

use any graph structures. The algorithm requires O(e log s) time, where e is the number

of \events" encountered during the plane-sweep algorithm. He proves that e � O(s log s),

making the overall time complexity of the algorithm O(s log2 s), which improves upon the

times required by the algorithms described above. Furthermore, Mitchell conjectures that in

fact e = O(s), in which case the algorithm would have the optimal running time of O(s log s).

An elegant approach to the OASP problem is due to Widmayer [148], who describes the

construction of a graph similar to the escape graph that contains O(s log s) vertices while

still containing a shortest path between every pair of terminals. Widmayer calls this graph

the shortest-paths preserving graph, or spp graph.

4.2. Two-Terminal Interconnections 43

The spp graph is de�ned recursively in the following way. Let P denote the set of

terminals and obstacle corner points. Choose a vertical line located at x = xd that divides P

into two roughly equal-sized subsets P1 and P2. Let G1 = (V1; E1) be the spp graph for the

set of points P1, and let G2 = (V2; E2) be the spp graph for the set of points P2. Initialize V
0

and E0 to ;. For each p 2 P1 [P2, let vp be a new vertex located at (xd; yp). For each vp

such that the straight line from p to vp does not intersect any obstacle, add vp to V 0 and add

the edge (p; vp) to E
0. Also, add to E0 the edge (vp1 ; vp2) for each vp1 and vp2 such that no

obstacle and no other vpi lies between vp1 and vp2 . Now, the spp graph for P is G = (V;E),

where V = V1 [V2 [V 0 and E = E1 [E2 [E0.

It can be shown that the spp graph contains a shortest path between every pair of

terminals, and that it contains O(s log s) vertices and edges. Furthermore, the spp graph

can be generated in O(s log s) time. The reader is referred to Widmayer [148] for details.

Widmayer also describes how to use the spp graph to compute a shortest path be-

tween two terminals in O(s log s log log s) time. However, we can apply Kanchanasut's

algorithm [92] to the spp graph to compute a set of single-source shortest paths in O(s log s)

total time, which is optimal [37].

Recent work by Lee, Yang, and Wong [105] gives an optimal-time plane-sweep algorithm

that also solves the OASP problem directly in O(s log s) time.

4.2.3 Multiple-net routing

The problem of routing multiple nets has received substantially less attention than the

single-net problem. The technique often used in practice is sequential routing, where the

nets are ordered in some fashion, and then they are each routed in sequence, with each

net becoming a set of obstacles for subsequently routed nets. If the instance is not entirely

routed using this technique, then often rip-up and reroute techniques are applied, where

one or more of the previously routed nets are removed and rerouted di�erently to make

room for other nets [39, 40, 136]. Clearly these techniques are heuristic in nature, but

4.3. Multi-Terminal Interconnections 44

the more elegant solution|simultaneously routing all the nets|is NP-complete even in a

planar graph if all nets contain only two terminals [126, 128].

J�aj�a and Wu [88] describe a technique for doing just that: simultaneously routing a

number r of two-terminal nets. Their approach is to modify the basic escape graph by

replacing each escape segment with O(r) parallel segments at distance � from each other.

A r-net escape graph Gr
e is constructed from these segments in the same manner as for the

single-net escape graph; it contains O(r2s2) vertices and edges. The main result proven by

J�aj�a and Wu is that the Gr
e correctly generalizes the single-net escape graph to the r-net

case. Let R denote the set of nets; each net Ri in R consists of a pair of terminals. Thus,

a problem instance is denoted (R; S), where S is the set of obstacle perimeter segments.

Theorem 4.1 (J�aj�a and Wu [88]) A r-net routing instance (R; S) has a solution if and

only if there are r vertex-disjoint paths in Gr
e(R; S).

They use algorithms by Robertson and Seymour [130] to �nd these vertex-disjoint paths

in polynomial time for any �xed r. This approach is of largely theoretical interest, as the

running time is exponential in r. However, Theorem 4.1 might instead be used in a heuristic

fashion for routing multiple nets; to our knowledge, this has not yet been tried.

4.3 Multi-Terminal Interconnections

The general OARST problem has received substantially less attention than the special case

in which there are only two terminals. Several authors [108, 155] have pointed out that if

one can solve the OASP problem, then one can construct a minimum spanning tree (MST)

of a multi-terminal instance. The MST has length not exceeding twice the length of an

optimal OARST; thus, an obstacle-avoiding MST algorithm is a 2-approximation algorithm

for the OARST problem [108].

For the standard RST problem, Hanan's theorem (Theorem 2.1 on page 14) states that

an optimal RST always exists that is a subgraph of the grid graph formed by passing a

4.3. Multi-Terminal Interconnections 45

horizontal and vertical line through each terminal. Hanan's theorem enables solution of the

RST problem by a reduction to the graph Steiner tree (GST) problem. We generalize this

result to the OARST problem by showing that the escape graph is guaranteed to contain

an optimal OARST (note that if there are no obstacles, then the Hanan grid graph and the

escape graph are identical).

Theorem 4.2 If an OARST exists for an instance (T; S), then there exists an optimal

OARST that is a subgraph of the escape graph Ge(T; S).

Proof : Suppose there exists a problem instance (T; S) with jT j > 2, such that all optimal

Steiner trees for (T; S) contain at least one segment that is not an escape segment. We

show that this supposition leads to a contradiction.

Let � be an optimal Steiner tree for (T; S) that contains a minimum number of non-

escape segments among optimal Steiner trees for (T; S). Let segment ` be a segment in �

that is not an escape segment. Without loss of generality, assume that ` is horizontal.

Obviously, ` has two endpoints a and b beyond which no further colinear segment is

incident. There may be segments incident and orthogonal to `. In fact, there must be

orthogonal segments incident to a and b. If either a or b did not have an orthogonal

segment incident to it, then it would either be a terminal, contradicting the assumption

that ` is not an escape segment, or else a portion of s could be removed, contradicting the

assumption that � is optimal.

Let u be the number of orthogonal segments incident to ` from above, and let d be the

number of orthogonal segments incident from below. Colinear segments that are incident

to ` both from above and below are considered two distinct segments separated by `.

If u is equal to d, then slide ` up until it is colinear with some escape segment. There

is room to slide since ` is not an escape segment. An escape segment above ` must exist,

since the routing region perimeter is itself inscribed by escape segments. Since the length

of the segments above ` decreases by exactly the amount that the length of the segments

below ` increases, the tree resulting from this maneuver has the same length as � ; hence,

4.3. Multi-Terminal Interconnections 46

it is optimal. In addition, every vertical segment incident to ` that was an escape segment

remains an escape segment. In fact, all segments that were escape segments before the slide

remain so. Thus, the tree resulting from this sliding maneuver contradicts our assumption

that � contains a minimum number of non-escape segments.

If instead, u is greater than (less than) d, then we may slide ` up (down), decreasing the

length of the tree and contradicting its optimality. We again know there is room to slide,

since ` is not an escape segment.

This completes the case analysis. We have shown that every solvable instance of the

OARST problem has an optimal solution composed only of escape segments, and thus an

optimal solution to the GST problem in Ge(T; S) is an optimal solution to the OARST

instance (T; S). 2

Theorem 4.2 is the �rst to allow computation of optimal OARSTs in time corresponding

to the instance size rather than the size of the routing area. In addition, since the escape

graph is guaranteed to contain an optimal OARST, applying approximation algorithms

for the graph Steiner tree problem produces equivalent approximations for the OARST

problem.

4.3.1 Escape graph reduction

Often, many of the vertices in the escape graph can be deleted, along with their adjacent

edges, while retaining the guarantee that an optimal solution exists that is constrained to

the escape graph. We now describe a few straightforward tests whose application typically

eliminates many vertices from the escape graph. We call the resulting graph the reduced

escape graph.

The �rst test is the dimension reduction test of Yang and Wing [158] for the standard

RST problem. Yang and Wing prove that if a vertex v is a corner vertex, i.e. it is incident

to exactly two orthogonal edges e1 and e2, and v is not a terminal, and edges exist that

4.3. Multi-Terminal Interconnections 47

form the other two sides of a rectangle with e1 and e2, then v, e1, and e2 can be deleted.

This con�guration is illustrated below.

e2

v e1

The proof of this theorem holds for escape graphs as well: every path that includes v

is replaced by a path of equal length that instead passes through the sides of the rectangle

opposite e1 and e2.

The dimension reduction test can be implemented to run in O(m) time. Start by storing

all vertices of degree 2 in a queue. Then repeat the following process until the queue is

empty: remove a vertex v from the front of the queue, and if it can be deleted according

to the conditions above, then delete v and its adjacent edges from the graph, and add its

neighbors to the back of the queue.

Every nonterminal vertex v of degree 2 that remains after the dimension reduction test

can be eliminated and its neighbors connected directly by an edge whose weight is the sum

of the weights of the edges adjacent to v. In addition, every nonterminal of degree 1 can be

deleted along with its adjacent edge. Finally, if any terminal has degree 1, then it can be

deleted and its neighbor designated to be a terminal, and the appropriate edge then added

back into the completed solution.

Figure 4.3 shows the escape graph, the reduced escape graph, and an optimal OARST

for a randomly generated instance with 10 terminals and 10 rectangular obstacles.

4.3.2 Exact algorithms

Typically, computing exact solutions to NP-complete problems is infeasible in practice.

However, it is often the case that small instances can be solved practically. For the OARST

4.3. Multi-Terminal Interconnections 48

0

0

0

0

0

0 0

0

0

0

(a)

0

0

0

0

0

0 0

0

0

0

(b)

0

0

0

0

0

0 0

0

0

0

(c)

Figure 4.3: (a) The escape graph, (b) the reduced escape graph, and (c) an optimal

OARST for an example instance.

problem, the escape graph model enables computation of optimal Steiner trees for three- or

four-terminal nets as e�ciently as a typical heuristic solution.

A well-known folk theorem of VLSI routing is that most nets contain four or fewer ter-

minals. In an e�ort to verify this claim, we examine the SIGDA standard-cell benchmark

suite [122]. Figure 4.4 illustrates the distribution of terminals per net in the SIGDA bench-

marks. As can be seen in the �gure, in these benchmarks three- and four-terminal nets

comprise the vast majority of the nets with more than two terminals.

For a three-terminal net, an optimal Steiner tree has one of two topologies. It is either

a simple path between the terminals, or else all three terminals are connected to a single

Steiner point. Thus, an optimal OARST for a three-terminal net is computed as follows.

The length of each of the three possible simple paths is checked, as well as the length of

every tree formed by connecting the three terminals to each candidate Steiner point, and

the tree with minimum length is optimal. The latter topology in which the tree contains a

Steiner point dominates the computation time. This topology is examined in O(m) time,

where m is the number of candidate Steiner points, if all-pairs shortest paths information is

4.3. Multi-Terminal Interconnections 49

0

20

40

60

80

P
er

ce
nt

ag
e

of
 n

et
s

2 3 4 5 6 7 8 9 >9
Number of pins

Fract Struct Primary1 Primary2
Biomed Industry1 Industry2 Industry3

Figure 4.4: Distribution of terminals per net in the SIGDA benchmarks.

available. All-pairs shortest paths can be computed in O(m2) time by applying the O(m)

single-source shortest paths algorithm of Kanchanasut [92] to each vertex in the escape

graph.

A similar observation can be made for four-terminal nets. For four terminals, the

following topologies are possible:

� A simple path through the four terminals.

� A star in which three terminals are directly connected to the fourth.

� A cross in which all four terminals are directly connected to a single Steiner point.

� A T in which three terminals are directly connected to a single Steiner point, and the

fourth terminal is connected to one of those three terminals.

� An H in which two terminals are directly connected to each of two Steiner points,

which are directly connected to each other.

These topologies are illustrated in Figure 4.5. There are twelve possible mappings of the

4.3. Multi-Terminal Interconnections 50

P
ath

S
tar

C
ross

T

H

F
igu
re
4.5:
T
h
e
p
ossib
le
top
ologies
for
fou
r
term
in
als.

term
in
als
on
to
th
e
sim
p
le
p
ath
top
ology,
fou
r
m
ap
p
in
gs
for
th
e
star,
on
e
m
ap
p
in
g
for
th
e

cross,
tw
elve
m
ap
p
in
gs
for
th
e
T
,
an
d
six
m
ap
p
in
gs
for
th
e
H
,
totalin
g
35
d
istin
ct
top
ological

in
stan
ces|
a
su
�
cien
tly
sm
all
n
u
m
b
er
to
ex
am
in
e
ex
p
licitly.
A
n
op
tim
al
S
tein
er
tree
for

a
fou
r-term
in
al
n
et
is
e�
cien
tly
com
p
u
ted
b
y
en
u
m
eratin
g
th
ese
top
ologies;
th
e
p
ath
an
d

star
top
ologies
are
ex
am
in
ed
,
th
e
cross
an
d
T

top
ologies
are
ex
am
in
ed
w
ith
resp
ect
to

every
can
d
id
ate
S
tein
er
p
oin
t,
an
d
th
e
H
top
ology
is
ex
am
in
ed
w
ith
resp
ect
to
every
p
air

of
can
d
id
ate
S
tein
er
p
oin
ts.
T
h
e
sh
ortest
tree
seen
is
retu
rn
ed
as
th
e
op
tim
al
tree.
T
h
is

com
p
u
tation
in
cu
rs
a
tim
e
com
p
lex
ity
of
O
(m
2),
d
om
in
ated
b
y
ch
eck
in
g
th
e
H
top
ology.

T
h
ese
explicit
en
u
m
eration
algorith
m
s
are
sim
ilar
to
H
ak
im
i's
sp
an
n
in
g
tree
en
u
m
er-

ation
algorith
m
[70];
h
ow
ever,
id
en
tify
in
g
an
d
ex
am
in
in
g
th
e
variou
s
top
ologies
ex
p
licitly

h
as
sign
i�
can
t
d
iv
id
en
d
s.
A
straigh
tforw
ard
im
p
lem
en
tation
of
H
ak
im
i's
sp
an
n
in
g
tree

en
u
m
eration
algorith
m
th
at
u
ses
an
M
S
T
algorith
m
is
m
an
y
tim
es
slow
er
th
an
th
e
ex
p
licit

en
u
m
eration
algorith
m
s.
F
or
ex
am
p
le,
for
ran
d
om
ly
gen
erated
in
stan
ces
w
ith
10
rectan
gu
lar

ob
stacles,
T
ab
le
4.1
sh
ow
s
th
e
average
ru
n
n
in
g
tim
e
of
th
e
ex
p
licit
en
u
m
eration
algorith
m

versu
s
th
e
average
ru
n
n
in
g
tim
e
of
a
sp
an
n
in
g
tree
en
u
m
eration
algorith
m

th
at
u
ses
an

M
S
T
rou
tin
e.

A
s
can
b
e
seen
from
th
e
tab
le,
sp
an
n
in
g
tree
en
u
m
eration
is
far
slow
er
th
an
ex
p
licit

en
u
m
eration
.

4.3. Multi-Terminal Interconnections 51

n = 3 n = 4

EE STE EE STE

0:04 1:45 0:08 9:06

Table 4.1: Average running times (in seconds) of explicit enumeration (EE) and

spanning tree enumeration (STE) algorithms.

4.3.2.1 More than four terminals

It is possible to perform the case analyses and construct similar explicit enumeration algo-

rithms for exact solution of problem instances with more than four terminals. However, the

number of possible topologies increases superexponentially, and examining them all rapidly

becomes too expensive.

As noted previously, a full topology is one in which every terminal is a leaf. Let f(n; k)

denote the number of full topologies with n terminals and k Steiner points. Since no vertex

in the escape graph has degree exceeding 4, a Steiner point has degree 3 or 4. A full topology

with n terminals and k Steiner points is formed by any pair of terminals connected to a

vertex in a full topology with n � 1 terminals and k � 1 Steiner points, or by any three

terminals connected to a vertex in a full topology with n � 2 terminals and k � 1 Steiner

points. These facts lead to the following recurrence for f(n; k):

f(n; 1) = 1

f(n; k) =

n

2

!
f(n � 1; k� 1) +

n

3

!
f(n� 2; k� 1)

A full topology has anywhere from 1 to n � 2 Steiner points, so the total number f(n) of

full topologies on n terminals is
Pn�2

i=1 f(n; i).

A general topology on n terminals has one of the following forms:

� A full topology on n terminals,

4.3. Multi-Terminal Interconnections 52

� A topology on n� 1 terminals, with the nth terminal connected by an edge to one of

the other n� 1 terminals, or

� A full topology on i terminals, 3 � i � n � 1, connected at any of its terminals to a

topology on the remaining n � i+ 1 terminals.

Thus, the total number F (n) of topologies on n terminals is given by the following recur-

rence:

F (2) = 1

F (n) = f(n) + nF (n � 1) +
n�1X
i=3

f(i)

n

i

!
iF (n� i+ 1)

The values of f(n) and F (n) for 3 � n � 8 are given in Table 4.2. As the table suggests,

n 3 4 5 6 7 8

f(n) 1 7 81 1356 31312 952673

F (n) 4 35 516 10662 285398 9496937

Table 4.2: The number f(n) of full topologies and the total number F (n) of

topologies on n terminals.

the explicit enumeration approach might be practically applicable for �ve terminals, but

almost certainly not for six. The time complexity of explicit enumeration can be improved

by examining only full topologies and allowing degenerate full topologies (i.e., allowing more

than one Steiner point to map to the same vertex and allowing Steiner points to map to

terminal vertices). However, this still requires the examination of f(n) di�erent topologies,

which rapidly becomes prohibitively large.

4.3.3 Graph-based heuristics

Since explicit enumeration is probably impractical for nets with more than four terminals,

heuristics for the graph Steiner tree problem can instead be used to quickly �nd good

4.3. Multi-Terminal Interconnections 53

solutions for such nets. Given the exact three- and four-terminal algorithms in Section 4.3.2,

a natural approach is Steinerization. In a Steinerization heuristic, portions of an MST that

contain a few adjacent terminals are replaced with an optimal Steiner subtree for those

terminals. Typically, such heuristics examine subsets of a �xed size, i.e. subsets of size N

for some small N . In light of the results in Section 4.3.2, we examine heuristics with N = 3

and N = 4.

The �rst heuristic, greedy Steinerization, starts with an MST of the terminals. It then

repeatedly examines vertex subsets of size N that are adjacent in the MST, Steinerizing

the one that improves the MST the most. The Steiner points introduced by the Steiner-

ization are candidates for further Steinerization in later iterations. For N = 3, greedy

Steinerization is an oft-repeated idea whose genesis is unclear. For the standard RST prob-

lem, Richards (see Hwang, Richards, and Winter [84]) �rst investigated 3-Steinerization

in this greedy form, and more complex variants appear in Chao and Hsu [20], Lee, Bose,

and Hwang [106] and Smith, Lee, and Liebman [138]; these and others are summarized

in Hwang, Richards, and Winter [84]. For the OARST problem, greedy 3-Steinerization

(henceforth called G3S) has time complexity O(n2m), since O(nm) time is required to

�nd each locally optimal 3-Steinerization and at most O(n) of these operations are per-

formed. For N = 4, greedy Steinerization is similar to the algorithm of Beasley [10], though

Beasley's algorithm computes a new MST at each iteration rather than locally modify-

ing the current MST. For the OARST problem, greedy 4-Steinerization (henceforth, G4S)

has time complexity O(n3m2), since O(n2m2) time is required to �nd each locally optimal

4-Steinerization and at most O(n) of these operations are performed.

The running time of Steinerization heuristics can be improved using a batching technique

similar to the heuristic of Hasan, Vijayan, and Wong [72] for the standard RST problem.

In their neighborhood Steinerization heuristic, each vertex v is assigned a weight that is

the amount of improvement that is gained by Steinerizing v and its neighbors. Since every

vertex in a rectilinear MST has at most 8 neighbors, each Steinerization is performed in

4.3. Multi-Terminal Interconnections 54

constant time. Since large neighborhoods cannot be e�ciently Steinerized in the OARST

problem, the heuristic instead sets the weight of a vertex v to the maximum improvement

resulting from 3-Steinerizing v and any two of its neighbors.

The heuristic then �nds a maximum-weight independent set (MWIS) of the tree. An

MWIS of a tree is computed in O(n) time by the following dynamic programming algorithm.

Choose an arbitrary vertex r to be the root of the tree. Associate with each vertex v in

the tree two independent sets in the subtree rooted at v. The independent set M+(v) is an

MWIS that includes v, andM�(v) is an MWIS that does not include v. ComputingM+(v)

and M�(v) is trivial when v is a leaf. When v is an internal vertex, M+(v) is the union

of M�(u) for all children u of v. Similarly, M�(v) is the union of M+(u) for all children u

of v. The sets M+(v) and M�(v) are computed for each vertex v in bottom-up fashion,

starting with the leaves. When the algorithm terminates, whichever of M+(r) and M�(r)

has maximum weight is the MWIS of the tree.

The best 3-neighborhood of each vertex in the MWIS is then Steinerized, and the process

is repeated for the new tree resulting from replacing each neighborhood with its Steiner

subtree. The time complexity of this algorithm, which we call batched 3-Steinerization

(B3S) is O(bnm), where b is the number of iterations required, which is a function of n. In

the worst case, b is O(n), so the worst-case time complexity is the same as for G3S; however,

this bound is quite pessimistic. Table 4.3 shows the average value of b for various values

n 3 5 7 9 11 13 15

b 1:0 1:5 1:8 2:0 2:1 2:2 2:3

Table 4.3: Average iteration count for B3S.

of n, for randomly generated instances containing 10 rectangular obstacles. Empirically it

appears that b is O(logn), giving B3S a time complexity of O(mn logn) in practice.

4.3. Multi-Terminal Interconnections 55

Another optimization can further reduce the running time of Steinerization heuristics.

Before computing the Steiner subtree for each subset T 0 of the terminals, perform the re-

ductions described in Section 4.3.1 on the escape graph, considering only members of T 0 to

be terminals. Since the size N of the subsets considered is small, the number of vertices

eliminated from the escape graph is typically substantial. Since the number N of termi-

nals is a �xed constant, the reductions have time complexity O(m) for each subset. For

3-Steinerization, this is equal to the time complexity of actually Steinerizing the subset,

so performing the reductions is not productive. However, for 4-Steinerization, the cost of

Steinerizing each subset is O(m2), so linear-time preprocessing is e�ective if it substantially

reducesm. ForN = 4, many of the vertices are typically eliminated, and experimentally this

approach does indeed dramatically improve the running time of G4S|for the 20-terminal

instances tested, this reduction optimization improves the average running time by a factor

of almost 2:5.

Table 4.4 shows the result quality (percent improvement over the MST) and runtime for

G3S and B3S, and for G4S with the reduction optimization described above, for randomly

generated instances containing 10 rectangular obstacles and the indicated numbers of ter-

minals. For the standard RST problem, the average improvement of optimal RSTs over

the MST is roughly 12% (see Hwang, Richards, and Winter [84]). For the instances of the

OARST problem tested here, this value is somewhat lower. An optimal Steiner tree in the

escape graph can be computed using the algorithm of Dreyfus and Wagner [43], which has

time complexity O(m3n). Table 4.5 gives the average improvement of the optimal OARST

over the MST for the instances in Table 4.4 with 10 or fewer terminals. Thus, the improve-

ment values in Table 4.4 should not be compared with those reported in the literature for

standard RST heuristics.

The reader should note that B3S produces trees roughly as good as, and sometimes

better than, those produced by G3S. In addition, note that G4S consistently produces

better trees than G3S, but that the di�erence in running times is not nearly as pronounced

4.3. Multi-Terminal Interconnections 56

G3S B3S G4S

n Qual. Time Qual. Time Qual. Time

4 7:83 0:25 7:83 0:25 8:19 0:40

5 8:58 0:48 8:59 0:46 9:21 0:97

6 8:55 0:81 8:61 0:75 9:12 1:81

7 8:81 1:26 8:82 1:10 9:35 2:94

8 8:44 1:92 8:40 1:56 9:02 4:55

9 8:74 2:75 8:72 2:10 9:33 6:61

10 9:02 4:17 9:03 2:96 9:53 9:82

12 8:72 7:59 8:69 4:78 9:14 17:64

14 8:93 13:63 8:90 7:48 9:40 31:58

16 8:99 22:66 8:95 11:51 9:48 51:33

18 9:03 34:63 9:04 16:15 9:46 78:79

20 9:02 50:21 8:99 21:53 9:43 112:9

Table 4.4: Average result quality (percent improvement over MST) and running

time (in seconds) for the heuristics.

n 4 5 6 7 8 9 10

Qual. 8:19 9:48 9:46 9:95 9:87 10:10 10:32

Table 4.5: Improvement of optimal OARST over MST for test instances.

as one would expect from their relative time complexities|in particular, the running time

of G4S decreases relative to the running time of G3S as n increases. We attribute this

phenomenon to the reduction technique described above.

Note that the worst-case ratio of the length of an MST to the length of an optimal Steiner

tree (called the Steiner ratio; see also Section 2.2.1) is 2 for the OARST problem [108]. All

three of these heuristics always produce trees at least as short as the MST, and thus produce

4.3. Multi-Terminal Interconnections 57

trees that are no more than twice the length of an optimal tree. In practice, of course, their

performance is rarely that bad.

Aside from allowing computation of optimal OARSTs, Theorem 4.2 has important im-

plications with respect to approximate OARSTs. Since the escape graph is guaranteed to

contain an optimal OARST, any approximation algorithm for the graph Steiner tree prob-

lem with an approximation bound of ~� is an approximation algorithm with the same bound

for the OARST problem. As mentioned above, an MST is an approximate solution to the

graph Steiner tree problem, and thus the OARST problem, with ~� = 2. Recently researchers

have devised approximations with better bounds for the graph Steiner tree problem: Ze-

likovsky [159] describes an algorithm with ~� = 11=6 � 1:83, and Berman and Ramaiyer [12]

improve Zelikovsky's bound to ~� = 16=9 � 1:78, with better approximations possible at

the expense of increased running time. Theorem 4.2 implies that these results provide

equivalent approximations for the OARST problem.

4.3.4 Other heuristics

It is possible to compute heuristic OARSTs without using a graph model. For example, the

standard routing techniques of global followed by detailed routing do exactly that. However,

such algorithms are designed to �nd a feasible routing of a large number of nets, rather than

a good routing of a single net. A detailed discussion of these techniques is beyond the scope

of this chapter; interested readers are referred to Preas and Lorenzetti [123].

Also, as mentioned previously, any of the two-terminal interconnection techniques de-

scribed in Section 4.2 can be used to compute heuristic OARSTs.

Chen [21] describes a somewhat di�erent technique. He describes an algorithm that,

given any heuristic OARST, performs iterative improvements that possibly reduce the

length of the OARST without changing its topological structure. If certain conditions

are met, then the algorithm computes an optimal OARST with the given topology.

4.4. Special Cases 58

4.4 Special Cases

One common solution technique when examining NP-complete problems is to �nd special

cases that might be solvable in polynomial time. In this section we examine two special

cases. In the case where all terminals lie on the perimeters of obstacles|which is often true

in practice|we observe that the problem remains NP-complete, though in some cases such

problems can be solved more e�ciently than general OARST problems. In the case where

all terminals lie on the perimeter of the routing region, forming a switchbox with obstacles,

we show that the OARST problem is solvable in polynomial time.

4.4.1 Terminals on obstacle perimeters

It is easily shown that the OARST problem remains NP-complete if all terminals lie on

obstacle perimeters. The proof is by reduction from the standard RST problem. Given

an RST instance, simply attach to each terminal a square of side length �, where � is very

small. The escape graph for such an OARST instance is equivalent to the Hanan grid graph

(see Section 4.3) with each segment replaced by two or three parallel segments at distance �

from one another. For su�ciently small � (or by scaling the original terminals), an optimal

solution to this OARST problem provides an optimal solution to the original RST instance.

Thus, the OARST problem remains NP-complete if all terminals lie on obstacle perimeters.

However, if the number of obstacles is small relative to the number of terminals, then

a result due to Bern [13] allows computation of an optimal OARST more e�ciently than

by applying the Dreyfus-Wagner algorithm to the escape graph (see Section 4.3.3). Among

the results in Bern's paper is an algorithm for computing optimal Steiner trees in a planar

graph in which all the terminals lie on the boundaries of a small number of faces. Each

obstacle forms a face in the escape graph, so if all terminals lie on obstacle perimeters, then

they all lie on the boundaries of the corresponding faces. If there are f obstacles (i.e. the

terminals lie on the boundaries of f faces), then Bern's algorithm �nds an optimal OARST

in O(mn2f+1+ (m logm)n2f) time. This improves upon the straightforward application of

4.4. Special Cases 59

the Dreyfus-Wagner algorithm if f is less than O(n= logn), i.e., if there are, on average,

more than O(logn) terminals on the perimeter of each obstacle.

4.4.2 Switchboxes with obstacles

Another special case of the OARST problem is when the terminals lie on the perimeter of the

routing region. This special case is roughly analogous to the standard RST problem when

the terminals lie on the perimeter of a convex polygon. In the standard RST problem,

this restriction renders the problem solvable in polynomial time. For example, Cohoon,

Richards, and Salowe [32] describe an algorithm to compute an optimal RST in linear time

for a set of terminals that lie on the perimeter of a rectangle. More generally, Richards

and Salowe [129] present an algorithm that computes, in O(k4n) time, an optimal RST for

terminals on the perimeter of a k-sided convex polygon. Cheng, Lim, and Wu [22] describe

an algorithm that computes an optimal RST of such an instance in O(n3) time regardless

of k (note that this is an improvement if k =
(
p
n)).

Mirayala, Hashmi, and Sherwani [118] present a linear-time algorithm that computes an

optimal OARST when the terminals lie on the perimeter of a rectangle and there is one rect-

angular obstacle. They also present an approximation algorithm for the more general case

where there is any number of rectangular obstacles. If � is an OARST computed by their ap-

proximation algorithm and �� is an optimal OARST, then they prove that k�k � k��k+w,

where w is the maximum length of any obstacle side.

Chiang, Sarrafzadeh, and Wong present algorithms that compute an optimal OARST

if the terminals lie on two parallel lines (i.e. on opposite sides of a channel) [24] and if the

terminals lie on the perimeter of a rectangle [25]. These algorithms run in time linear in

the number of terminals but exponential in the number of obstacles.

Despite these exponential-time results, the OARST problem is solvable in polynomial

time if the terminals lie on the perimeter of the routing region, regardless of the shape of

the routing region. Recall from Section 4.2.2.1 that the escape graph contains an optimal

4.4. Special Cases 60

OARST. The escape graph for every routing instance is clearly planar. Furthermore, if the

terminals lie on the perimeter of the routing region, then the terminals in the escape graph

all lie on the boundary of the in�nite face of the escape graph. A planar graph in which all

terminals lie on the boundary of the in�nite face is called 1-outerplanar. Figure 4.6 shows

an instance with the terminals on the perimeter of the routing region and its escape graph.

Erickson, Monma, and Veinott [51] (and independently Provan [125]) show that the graph

Figure 4.6: The escape graph for an instance with terminals on the perimeter of

the routing region.

Steiner tree problem is solvable in polynomial time for a 1-outerplanar graph. One way

to achieve polynomial-time solution is with a modi�cation of the Dreyfus-Wagner dynamic

programming algorithm [43]. The key to the Dreyfus-Wagner algorithm, and the source of

its exponential time complexity, is that it examines all possible subsets of the set of termi-

nals. For the case where the graph is 1-outerplanar, the Dreyfus-Wagner algorithm need

only consider those subsets of the set of terminals that are adjacent along the boundary of

the in�nite face. The resulting algorithm has time complexity O(n3m2 + n2m2 logm+m2).

Recently, Kaufmann, Gao, and Thulasiraman [94] have modi�ed this dynamic program-

ming approach, using geometric properties of grid graphs to speed up the algorithm. Their

algorithm �nds an optimal OARST in a 1-outerplanar grid graph in O(n2 �minfn2 logn;mg)

4.5. Conclusions and Future Work 61

time. However, their algorithm is not applicable to a grid graphs with \holes," such as most

escape graphs.

4.5 Conclusions and Future Work

We have proven a theorem (Theorem 4.2) that extends Hanan's theorem to the presence of

obstacles. The theorem states that a graph called the escape graph, which is constructed

from the terminals and obstacle border segments, is guaranteed to contain an optimal

OARST. This theorem allows, for the �rst time, computation of optimal OARSTs in time

that is a function of the input size rather than the routing area.

We have also presented algorithms that quickly compute optimal OARSTs for three-

and four-terminal nets and algorithms that compute good heuristic solutions for larger nets.

We have also examined a number of special cases of the OARST problem. We prove that

the OARST problem remains NP-complete when all terminals lie on obstacle perimeters,

though in some cases such problems can be solved more e�ciently than the general OARST

problem. We also prove that the OARST problem is solvable in polynomial time if all

terminals lie on the perimeter of the routing region. This result is particularly interesting

since exponential-time algorithms have appeared in the literature.

Of course, many interesting avenues of further research remain.

4.5.1 Graph reductions

One interesting open problem is whether one can devise a graph with fewer than O(c2)

vertices that is guaranteed to contain an optimal OARST (or equivalently, a graph reduction

that is proven to remove
(f(c)) vertices). Such a result would have signi�cant impact on

the standard rectilinear Steiner tree problem as well, since to our knowledge it has not been

proven that a graph with fewer than O(n2) vertices exists that is guaranteed to contain an

optimal RST.

4.5. Conclusions and Future Work 62

Winter [151] has devised a number of graph reductions intended for the standard RST

problem. These reductions appear empirically to be much more e�ective than the standard

reductions such as the dimension reduction test described in Section 4.3.1. Furthermore,

the reductions are applicable to other rectilinear graphs such as the escape graph, and

Winter [150] conjectures that they will be at least as e�ective in this domain as for the

standard RST problem. The application of Winter's reductions to escape graphs should be

empirically examined.

4.5.2 Computing optimal OARSTs

A full Steiner tree is one in which every terminal is a leaf. A full set of terminals is one

for which every optimal Steiner tree is a full Steiner tree. For the standard RST problem,

Hwang's theorem (Theorem 2.2 on page 14) indicates that an RST of a full set has only

one of two simple topologies, enabling computation of an optimal full Steiner tree in linear

time. This characterization enables the construction of algorithms that compute optimal

rectilinear Steiner trees more e�ciently than by using an algorithm for the graph Steiner

problem ([131] and Chapter 3).

Unfortunately, no such characterization is known for the OARST problem. In particular,

Hwang's theorem does not hold in the presence of obstacles. For example, Hwang's theorem

implies that the Steiner points in a full Steiner tree induce a chain. This is not the case for

the OARST problem; Figure 4.7 illustrates an instance for which the optimal OARST is a

full Steiner tree but in which the Steiner points do not induce a chain.

In Section 4.4.1 we observed that the OARST problem remains NP-complete if all

terminals lie on obstacle perimeters, in which case every optimal Steiner tree is a full

Steiner tree. This would seem to indicate that the problem of computing a full OARST is

NP-complete.

Even in the absence of characterizations as strong as Hwang's theorem, it might be pos-

sible to use the geometric structure of the escape graph to compute optimal OARSTs more

4.5. Conclusions and Future Work 63

Figure 4.7: A counterexample to Hwang's theorem.

e�ciently than by simply applying the Dreyfus-Wagner algorithm for the graph Steiner

tree problem to the escape graph. For example, Hwang's theorem does not apply in a

1-outerplanar grid graph with a non-convex boundary. However, Kaufman, Gao, and Thu-

lasiraman [94] use the geometric structure of the grid graph to implement tie-breaking rules

that eliminate from consideration many Steiner trees of equal length. The resulting algo-

rithm is faster than the 1-outerplanar version of the Dreyfus-Wagner algorithm. We believe

that such a strategy will result in faster algorithms for computing optimal OARSTs.

4.5.3 Multiple-net Steiner tree routing

An important problem is how to compute (heuristic) OARSTs simultaneously for many

nets, such that the wires in each net do not cross one another. It seems likely that the

results of J�aj�a and Wu [88] (see Theorem 4.1) can be generalized to Steiner tree routing.

However, the multiple Steiner tree problem is much more di�cult than the disjoint-paths

problem, and to our knowledge it has been minimally studied.

A fool sees not the same tree that a wise man sees.

| William Blake, The Marriage of Heaven and Hell

5

The Power-p Steiner Tree Problem

Many VLSI routing applications, such as routing to minimize estimates of electrical de-

lay [14, 34, 77, 91], involve the computation of geometric Steiner trees in which the weight

of an edge is a nonlinear function of its length. Consideration of this type of application

inspired us to introduce the power-p Steiner tree problem. The power-p Steiner tree prob-

lem is stated as follows: given a set of terminals in the plane, �nd a geometric Steiner tree

that minimizes the sum of the edge lengths each raised to the p power. In addition to the

VLSI applications mentioned above, nonlinear Steiner tree problems are often studied in

the operations research community under the name facility location [52, 78, 147].

A special case of the power-p Steiner tree problem is the bottleneck Steiner tree problem,

which is to �nd a geometric Steiner tree that minimizes the length of the longest edge. The

bottleneck Steiner tree problem is the limiting case of the power-p problem as p approaches

in�nity. Again, bottleneck Steiner trees �nd application in VLSI routing [23, 76] as well as

in facility location [38, 50, 113].

Our �rst set of results concerns computation of optimal power-p Steiner trees. We

give an algorithm for computing optimal Euclidean power-2 Steiner trees and describe the

di�culties in applying it to the rectilinear case. We give an algorithm for computing optimal

Earlier versions of portions of this chapter appear in Ganley and Salowe [61].

64

5.1. Basics 65

rectilinear bottleneck Steiner trees, and describe the di�culties encountered when trying to

generalize this algorithm to the Euclidean case. We also give an algorithm that computes

a rectilinear Steiner tree with minimum bottleneck weight and that among all trees with

minimum bottleneck weight has minimum total length. We also consider computation of

power-p Steiner trees for p > 2, giving evidence that the problem is essentially unsolvable

for large p.

Our second set of results concerns approximate power-p Steiner trees. We �rst consider

the power-p Steiner ratio. The power-p Steiner ratio is the maximum ratio of the weight of

a minimum power-p spanning tree to the weight of an optimal power-p Steiner tree. The

Steiner ratio is important in analyzing the performance of approximation algorithms for

Steiner tree problems. We prove bounds on the power-p Steiner ratio for general p, and we

give the exact value of the bottleneck Steiner ratio. We also provide a fully polynomial-time

approximation scheme for the bottleneck Steiner tree problem for a given topology.

5.1 Basics

We assert that every Steiner point has degree at least 3, since otherwise one could add a large

number of degree-2 Steiner points to reduce the weight of the tree to an arbitrarily small

value. Soukup [140] shows that given this restriction, for a class of edge weight functions

that includes the power-p weight function, the degree of every Steiner point in an optimal

power-p Steiner tree is exactly 3.

We consider power-p Steiner trees with respect to both the Euclidean and rectilinear

distance metrics. We call these problems the Euclidean power-p Steiner tree (EpST) prob-

lem and the rectilinear power-p Steiner tree (RpST) problem. Note that E1ST and R1ST,

respectively, are the standard Euclidean and rectilinear Steiner tree problems. By this no-

tation, E1ST and R1ST would denote the Euclidean and rectilinear bottleneck problems,

but for clarity we instead refer to these as the EBST and RBST problems, respectively.

5.2. Computing Optimal Power-p Steiner Trees 66

The topology of a Steiner tree is a graph � = (V;E) (for our purposes, � is always a

tree) that speci�es the graph structure of the Steiner tree. That is, the vertex set V is the

set of terminals and Steiner points, and the edge set E speci�es the interconnections of the

terminals and Steiner points. However, a topology does not specify the geometric locations

of the Steiner points nor the edge lengths.

The power-p weight !p(�) of a tree � is given by

!p(�) =
X

(a;b)2�
ka� bkp:

The weight !B(�) of a bottleneck Steiner tree � is

!B(�) = lim
p!1!p(�) = max

(a;b)2�
ka� bk:

Recall that k�k is the geometric length of the tree � , i.e. k�k = !1(�). The weight of a

Steiner tree � is abbreviated !(�) when the subscript is clear from context.

5.2 Computing Optimal Power-p Steiner Trees

This section presents a number of results concerning computation of optimal power-p Steiner

trees. Speci�cally, we present an algorithm for computing optimal E2STs and describe the

di�culties in applying it to the rectilinear metric. We present evidence that the EpST

problem is essentially unsolvable for p � 5. We then present an algorithm for computing

optimal RBSTs and RBSTs that minimize both bottleneck weight and total weight, and we

brie
y discuss the di�culties in applying these algorithms to the EBST problem. Finally,

we present a fully polynomial-time approximation scheme for the bottleneck Steiner tree

problem in any distance metric.

5.2.1 Euclidean power-2 Steiner trees

A problem similar to the E2ST problem has been considered in the operations research com-

munity under the name quadratic facility location. In that context, Eyster and White [52]

5.2. Computing Optimal Power-p Steiner Trees 67

give an iterative procedure that approximates an optimal solution to a quadratic facility

location problem, and White [147] proves a result similar to our Theorem 5.1. However,

ours is the �rst known algorithm for computing optimal E2STs.

Soukup [140] shows that for three terminals, the unique Steiner point is located at the

arithmetic mean of the coordinates of the terminals.

Lemma 5.1 (Soukup [140]) For three terminals t1, t2, and t3, the Steiner point s that

minimizes the length of the E2ST is given by

s =

�
xt1 + xt2 + xt3

3
;
yt1 + yt2 + yt3

3

�
:

We use Lemma 5.1 to devise a linear-time algorithm that produces an optimal E2ST with

a given topology.

Theorem 5.1 For n terminals in the plane and a topology �, an E2ST optimal with respect

to � can be computed in O(n) time.

Proof : For each Steiner point in the topology �, set up an equation that expresses its

optimal position relative to its neighbors. That is, if the Steiner point s has neighbors a, b,

and c, then assemble the equations

xs =
xa + xb + xc

3
and (5.1)

ys =
ya + yb + yc

3
: (5.2)

For neighbors that are terminals, the appropriate x and y values are substituted into the

equations; for Steiner points, they are left as variables. These equations are linear, so an

optimal solution to the system of linear equations can be computed using, e.g., Gaussian

elimination. The graph structure of the system is a tree, so the system can be solved

in O(n) time by Gaussian elimination on the leaves of the tree [139]. In addition, the x

and y equations are independent, so each of the two systems can be solved separately.

5.2. Computing Optimal Power-p Steiner Trees 68

To prove that this construction produces an optimal tree, consider a single quadratic

equation expressing the weight of the E2ST as a function of the Steiner point locations:

!(�) =
X

(a;b)2�
ka� bk2:

The �rst partial derivative of !(�) with respect each xs is identical to Equation (5.1), and

similarly the �rst partial derivative with respect to each ys is identical to Equation (5.2).

Thus, the system of linear equations de�ned above has the same roots as !(�).

Furthermore, since each equation has exactly one root, and the second partial derivatives

are all positive, the solution to the system of equations is the unique global minimum.

Therefore, the algorithm above minimizes the weight of the E2ST, and thus computes an

E2ST that is optimal with respect to �. 2

Theorem 5.1 allows computation of an optimal E2ST for any set of terminals in the

plane. The topology of every Steiner tree is a (possibly degenerate) full topology, i.e. a

topology in which every terminal is a leaf (see Hwang, Richards, and Winter [84]). Thus,

an optimal E2ST is computed by applying the construction from Theorem 5.1 to every

full topology and taking the shortest resulting tree as the optimum. There are O(n!) full

topologies on n terminals [139], so this algorithm computes an optimal E2ST of n terminals

in O(n � n!) time. In practice, this algorithm is too ine�cient to be applied to more than

a few terminals. However, the algorithm of Theorem 5.1 can also be used to compute

good heuristic solutions by considering a small number of likely topologies and using the

algorithm to compute an optimal E2ST for each.

5.2.1.1 Stability of the E2ST algorithm

One concern that must be addressed is the possibility that the system of linear equations

de�ned in Theorem 5.1 is ill-conditioned. Theorem 5.1 de�nes a system of linear equations

of the form Ax = b, where A is an n � 2 by n � 2 matrix and x and b are vectors of

length n � 2. Label the Steiner points in the topology � as s1; s2; : : : ; sn�2, and label the

5.2. Computing Optimal Power-p Steiner Trees 69

terminals t1; t2; : : : ; tn. The matrix A is de�ned as follows, according to Theorem 5.1:

aii = 3 for 1 � i � n� 2

aij =

8<
: �1 if (si; sj) 2 �

0 otherwise:

An example topology and its A matrix are shown in Figure 5.1.

s1

s2
s3 s4

A =

���������
3 �1 0 0

�1 3 �1 �1
0 �1 3 0

0 �1 0 3

���������

Figure 5.1: A topology and its A matrix.

The vector b is de�ned as follows:

bi =
X

(si;tj)2�
xtj

if we are solving for the x coordinates of the Steiner points, and

bi =
X

(si;tj)2�
ytj

if we are solving for the y coordinates.

The matrix A is irreducibly diagonally dominant and therefore nonsingular1. Further-

more, A is well conditioned.

Theorem 5.2 The condition number �(A) of A satis�es

�(A) � 2
p
2 + 3

3� 2
p
2
� 34:

1Unless cited otherwise, linear algebra results are found in most textbooks that cover numerical linear

algebra, such as Golub and Ortega [67].

5.2. Computing Optimal Power-p Steiner Trees 70

Proof : The matrix A is clearly symmetric. Gershgorin's theorem indicates that the

eigenvalues of A lie in the interval [0; 6]. Since A is nonsingular, none of its eigenval-

ues is 0. Therefore, A is symmetric and positive de�nite, and so its condition number

�(A) = j�n(A)=�1(A)j, where �n(A) and �1(A) are, respectively, the largest and smallest

eigenvalues of A.

The matrix A has the form A = 3I � A�, where A� is the adjacency matrix of the

topology graph � and I is the identity matrix. Since � is a tree, and all trees are bi-

partite, �1(�A�) = �1(A�) = ��n(�A�) = ��n(A�) (the entire spectrum of a bipartite

graph, considered as a set of points in R1, is symmetric with respect to re
ection about

the origin) [36]. Furthermore, since A = 3I �A�, each �i(A) = �i(A�) + 3. Thus, �(A) is

given by the following expression:

�(A) =

�����n(A�) + 3

�1(A�) + 3

����
=

�����n(A�) + 3

3� �n(A�)

���� (5.3)

If AF is a the adjacency matrix of a forest (a collection of one or more trees) with

maximum degree d, then
p
d � �n(AF) � 2

p
d� 1 [66]. The maximum degree of � is 3, so

p
3 � �n(A�) � 2

p
2. The value of �n(A�) that maximizes Equation (5.3) subject to these

bounds is the upper bound, �n(A�) = 2
p
2.

Therefore, �(A) � (2
p
2 + 3)=(3� 2

p
2) � 34, as desired. 2

A rule of thumb is that solving a linear system of equations with a given condition

number � results in a worst-case loss of approximately log10 � digits of accuracy. Thus, the

E2ST algorithm of Theorem 5.1 can be used with a loss of at most 2 digits of accuracy.

Figure 5.2 illustrates an optimal E2ST on eight randomly generated terminals.

5.2. Computing Optimal Power-p Steiner Trees 71

Figure 5.2: An optimal E2ST on eight terminals.

5.2.2 Rectilinear power-2 Steiner trees

The algorithm of Theorem 5.1 cannot be easily modi�ed to compute optimal R2STs, as the

formula for the square of rectilinear distance is not continuously di�erentiable. The formula

for the weight ! of an R2ST with three terminals t1, t2, and t3 and a single Steiner point s

is:

! =
3X

i=1

(jxti � xsj+ jyti � ysj)2

=
3X

i=1

(xti � xs)
2 + 2 � jxti � xsj � jyti � ysj+ (yti � ys)

2:

The middle term of this equation, involving absolute values, is not continuously di�eren-

tiable, and thus its minimum cannot be computed by �nding the roots of its �rst partial

derivatives as in the Euclidean case.

5.2. Computing Optimal Power-p Steiner Trees 72

One might attempt to derive a �nite (but very ine�cient) algorithm by trying each

possible value of the derivatives of the absolute values (the derivative of an absolute value

is either 1 or �1). If a speci�c value is substituted for the derivative of each absolute value,

then the remaining equations form a system of linear equations. However, the resulting

systems can be numerically unstable; for some topologies and choices of derivatives of the

absolute values, the A matrix forming the system is singular.

More direct (i.e. non-algebraic) algorithms for computing optimal R2STs might be de-

vised by considering geometric properties of the R2ST problem. We leave R2ST algorithms

as a topic for future research.

5.2.3 Power-p Steiner trees for larger p

We now consider the EpST problem for p > 2 (for the duration of this section, assume

that p is an integer). First, we note that the approach of Theorem 5.1 cannot be applied

for p > 2, as it would involve solving a general system of polynomials of degree p� 1.

We will make a stronger conjecture of unsolvability for p � 5; however, we must �rst give

some background about solvability of polynomials2 . A linear equation (i.e., a polynomial

of degree 1) can be solved using only basic arithmetic operations (addition, subtraction,

multiplication, and division). Most polynomials of degree d with 2 � d � 4 cannot be

solved using basic arithmetic operations alone but can be solved using basic arithmetic

operations and radicals (kth roots). While roots often cannot be computed exactly (since

they can be irrational), the expression of a solution using radicals allows the solution to be

easily computed to any desired �nite precision and allows further symbolic manipulation.

Most polynomials of degree d � 5 cannot be solved using basic arithmetic operations

and radicals. A degree-d polynomial is unsolvable in this sense if its Galois group is an

unsolvable group. The best approach to approximating solutions to such polynomials is

iterative numerical techniques that converge to the solutions.

2Unless cited otherwise, algebra results can be found in standard algebra texts such as Hungerford [81]

or van der Waerden [146].

5.2. Computing Optimal Power-p Steiner Trees 73

We conjecture that, in this sense, the EpST problem cannot be solved exactly if p � 5.

Conjecture 5.1 Solving the EpST problem requires solving an irreducible polynomial of

degree d = p� 1 if p is even or an irreducible polynomial of degree d = 2(p� 1) if p is odd.

The Galois group of this polynomial is an unsolvable group. Therefore, the solution to an

EpST problem cannot be expressed using basic arithmetic operations and radicals if p � 5.

Evidence: We consider a restricted 3-terminal EpST instance; clearly if the conjecture is

true for this special case, then it is true for the general EpST problem. Locate the three

terminals at (0; 0), (0; 1), and (1; 0). In an EpST, these three terminals will be connected

to a single Steiner point located at (x; x), where x minimizes the weight !p(x) of the EpST.

The function !p(x) is given by

!p(x) = (2x2)p=2 + 2[x2 + (1� x)2]p=2:

Let d!p(x) be the derivative of !p(x) with respect to x.

If p is even, then d!p(x) is a polynomial of degree d = p� 1. If p is odd, then d!p(x) is

not, strictly speaking, a polynomial at all, since it includes fractional exponents. However,

collecting appropriate terms on either side of the equation and squaring both sides results

in a true polynomial of degree d = 2(p� 1). We conjecture that this degree-d polynomial

is irreducible, and that its Galois group is an unsolvable group. If this is true, then the

polynomials are unsolvable using basic arithmetic operations and radicals.

Proving the conjecture requires proving that the general equation for d!p(x) is irre-

ducible and that its Galois group is an unsolvable group. While we have not proved this,

we provide some evidence that it is true.

We use the GAP software package [134] to verify that each polynomial is irreducible

and that its Galois group is the symmetric group Sd with d � 5, which is an unsolv-

able group. These computations indicate that, as suspected, the Galois group of d!p(x)

for p 2 f6; 8; 10; 12; 14; 16g is the symmetric group Sp�1, and the Galois group of d!p(x)

for p 2 f5; 7g is S2(p�1). Thus, for p 2 f5; 6; 7; 8; 10; 12; 14; 16g, the EpST problem is not

5.2. Computing Optimal Power-p Steiner Trees 74

solvable using basic arithmetic operations and radicals. We conjecture that this is the case

for all p � 5. 2

Note that the feasibility of computating of EpSTs for p 2 f3; 4g remains an open

problem.

The RpST problem is di�cult to examine algebraically, as discussed in Section 5.2.2, so

it is unclear whether these results apply in the rectilinear case.

5.2.4 Rectilinear bottleneck Steiner trees

As described previously, a bottleneck Steiner tree (BST) is a geometric Steiner tree in which

the length of the longest edge is minimized. The BST problem is the limiting case of the

power-p Steiner tree problem as p approaches in�nity.

In this section, we consider computation of optimal BSTs under the rectilinear distance

metric, i.e., the rectilinear bottleneck Steiner tree (RBST) problem.

Drezner and Wesolowsky [44] examine a generalization of the RBST problem where the

topology � is not necessarily a tree. They give two iterative techniques that asymptotically

converge to optimal solutions, but they do not describe the rate of convergence and the

algorithms do not produce exact solutions.

For a given topology �, a solution to the following linear program is an optimal RBST.

Minimize ! subject to

! � �xe +�ye for all e 2 �
�xe � xu � xv for all e = (u; v) 2 �
�xe � xv � xu for all e = (u; v) 2 �
�ye � yu � yv for all e = (u; v) 2 �
�ye � yv � yu for all e = (u; v) 2 �

This linear program contains 5n � 7 variables and 10n � 15 constraints. It is di�cult

5.2. Computing Optimal Power-p Steiner Trees 75

to determine the time required to solve a given linear program, but applying Khachian's

ellipsoid algorithm [95] results in an O(n6) algorithm (see Ignizio and Cavalier [87]).

Dearing and Francis [38] describe a more involved linear programming formulation that

involves solving two linear programs, each of which contains n � 1 variables and 3n2 � 5n

constraints. They state that their linear programming formulation leads to an O(n3 logn)

algorithm that computes an optimal RBST with a given topology.

Ichimori [86] describes a parametric search algorithm that computes an optimal RBST

for a given topology. However, the algorithm relies on an involved shortest-paths formulation

of the problem and has time complexity O(n4).

We now describe a geometric algorithm that computes an optimal RBST with a given

topology in O(n2) time without the use of linear programming.

Sarrafzadeh and Wong [133] describe a simple algorithm that, given a set of terminals,

a topology, and a real value �, either computes a bottleneck Steiner tree � with !(�) � �

or determines that such a tree does not exist. Since our algorithm generalizes theirs, we

brie
y describe their algorithm.

Arbitrarily choose an internal vertex r to be the root of the topology � and direct the

edges of � away from r. Note that r has three children, and every other internal vertex has

two children. Associate a region R�(s) with each vertex s in �. For each R�(s), de�ne R
+
� (s)

to be the set of points that are within distance � of some point in R�(s).

If s is a terminal, then R�(s) is simply s itself. Otherwise, s is a Steiner point, and R�(s)

is computed as follows:

R�(s) =
\

(s;t)2�
R+
� (t): (5.4)

The regions are computed in a bottom-up fashion, beginning with the leaves. If R�(s) = ;
for any vertex s, then a bottleneck Steiner tree � with !(�) � � does not exist. Otherwise,

each Steiner point s is chosen to be any point within the region R�(s), and the resulting

bottleneck Steiner tree � has !(�) � �.

5.2. Computing Optimal Power-p Steiner Trees 76

We now describe an algorithm for the more general rectilinear (L1) and L1 bottleneck

problems|namely, given a set of terminals and a topology, compute a bottleneck Steiner

tree � with minimum !(�) for the given topology. Without loss of generality, consider

the L1 metric, where the unit disk is a square (the L1 and L1 metrics are equivalent under

a 45-degree rotation)3. An isothetic rectangle is a rectangle each of whose sides is parallel

to either the x-axis or the y-axis. The �rst result is that the region R(s) for every Steiner

point is either empty or is an isothetic rectangle, and the second result characterizes the

descriptions of these rectangles.

Lemma 5.2 In the L1 metric, every R(s) is either empty or an isothetic rectangle.

Proof : The proof is by induction on the height of s in �. As a basis, if s has height 1,

then it is either empty or it is the intersection of two squares. In the latter case, this

intersection is a (possibly degenerate) isothetic rectangle. The inductive step holds because

the intersection of two isothetic rectangles is either empty or it is an isothetic rectangle. 2

The link distance between two vertices a and b in a tree is the number of edges in the

unique path from a to b. Let d�(a; b) be the link distance between vertices a and b in the

topology �. Let T�(a) be the set of terminals that are leaves of the subtree rooted at a

in �. Also, let S(a; r) be the square centered at a with radius r.

Lemma 5.3 In the L1 metric,

R�(s) =
\

t2T�(s)
S(t; � � d�(s; t)):

Proof : The proof is by induction on the height of s in the rooted topology �. If s

has height 1, then the lemma is clearly true. Now suppose that s has height greater

than 1. Let s1, s2, and s3 be the children of s (note that s has three children only if it

3The L1 distance from a to b is ka � bk1 = maxfjxa � xbj; jya � ybjg

5.2. Computing Optimal Power-p Steiner Trees 77

is the root). By the inductive hypothesis, R�(si) =
T
t2T�(si) S(t; � � d�(si; t)). By Equa-

tion (5.4), R�(s) =
T3
i=1R

+
� (si). We now show that R+

� (si) =
T
t2T�(si) S(t; �+� �d�(si; t)).

Since d�(s; x) = 1 + d�(si; t) for all terminals in the subtree rooted at si, this implies the

lemma.

Clearly R+
� (si) is contained within

T
t2T�(si) S(t; � + � � d�(si; t)). Conversely, for ev-

ery point � 2 Tt2T�(si) S(t; � + � � d�(si; t)), there must be a point � 2 R�(si) such that

k�� �k � �. These two facts are su�cient to prove the lemma. 2

Using Lemma 5.3, we devise a linear-time algorithm that decides whether there exists

an RBST with bottleneck weight �. Starting with the leaves (terminals), compute the re-

gion R�(s) for each Steiner point s according to Lemma 5.3. The construction of each R�(s)

requires constant time, so the entire procedure requires O(n) time. If any region R�(s) is

empty, then no RBST exists with bottleneck weight �; otherwise, placing each Steiner

point s anywhere within region R�(s) results in an RBST with bottleneck weight �.

We now incorporate this algorithm for computing an RBST with a given bottleneck

weight into the parametric search framework devised by Megiddo [115]. The resulting

algorithm computes the bottleneck weight �� of an optimal RBST in O(n2) time, from

which the actual RBST is easily computed by the above algorithm.

Imagine running the modi�ed Sarrafzadeh-Wong algorithm for the (unknown) bottleneck

value ��. Each step of the algorithm involves computing a region R��(s) by intersecting two

isothetic rectangles (or three, if s is the root of �). The key concept that enables the use

of the parametric search paradigm is that the actual value of �� is not needed to perform

these computations! Intersecting two isothetic rectangles involves examining each pair of

top, bottom, left, and right border segments to determine on which side of one another they

lie. These decisions can be made without knowing the value of ��.

Consider a Steiner point s and two of its children s1 and s2 in �. The descriptions of the

regions R�(s1) and R�(s2) have already been computed; they are squares S(t1; � �d�(s1; t1))
and S(t2; � � d�(s2; t2)) for two particular terminals t1 and t2. The top border of R�(s)

5.2. Computing Optimal Power-p Steiner Trees 78

is colinear with whichever of the top borders of these two squares is above the other for

bottleneck weight ��. If the top border of R�(s1) is above the top border of R�(s2), then

the top border of R�(s) is a segment of the line

y = yt1 + � � d�(s; t1): (5.5)

Similarly, if the top border of R�(s2) is above the top border of R�(s1), then the top border

of R�(s) is a segment of the line

y = yt2 + � � d�(s; t2): (5.6)

Assume without loss of generality that the top border of R�(s1) is above the top bor-

der of R�(s2). Now consider the value �0, which is the bottleneck weight value at which

the top borders of R�0(s1) and R�0(s2) are colinear. The value of �0 is found by setting

Equations (5.5) and (5.6) equal to one another:

yt1 + � � d�(s; t1) = yt2 + � � d�(s; t2):

Solving for �0 yields

�0 =
yt1 � yt2

d�(s; t2)� d�(s; t1)
:

Use the algorithm for �xed bottleneck weight to compute an RBST with bottleneck weight �0.

If no such tree exists, then �� > �0, and thus the top border of R�(s) corresponds to the top

border of R�(s1). If one of the regions R�0(s) is degenerate (i.e., either a point or a line),

then �� = �0. In this case, no further computation is necessary, as the optimal tree has been

found. Otherwise, �� < �0, implying that the top border of R�(s) corresponds to the top

border of R�(s2).

Repeat this process for the right, left, and bottom borders of R�(s). Since each region

has four borders, a constant number of these computations is required for each choice of s.

If s is the root, then it has three children instead of two, and we must consider each pair

of children. There are three such pairs, so the computation for s still requires a constant

5.2. Computing Optimal Power-p Steiner Trees 79

number of computations. Each computation involves the application of the linear-time

algorithm for computing an RBST with a given bottleneck weight. Since the algorithm

is applied a constant number of times for each Steiner point, the total time complexity

is O(n2).

When the algorithm terminates, a description of each R��(s) has been computed. This

description consists of an intersection of four squares S(ti; �
� � d�(s; ti)) for four particular

terminals ti. Given these descriptions, it is straightforward to determine the actual value

of �� for which every region is nonempty.

As discussed for the E2ST algorithm in Section 5.2.1, the algorithm described above

can be used to compute an optimal RBST by enumerating all full topologies. The resulting

algorithm has time complexity O(n2 �n!). The algorithm can also be used to compute good

heuristic solutions by applying it to a small number of likely topologies.

It is di�cult to generalize these results to the Euclidean metric. While the algorithm

of Sarrafzadeh and Wong [133] provides the required decision procedure for a given �, its

control
ow does not appear to depend on comparisons involving low-degree polynomials

in � (the degree seems to be exponential in the depth of the topology). It thus does not

meet the technical conditions necessary to apply the parametric search technique [115], so

it is unclear how to choose each new value �0 to be examined in the parametric search.

5.2.5 Minimum-length rectilinear bottleneck Steiner trees

For many applications, it is desirable to compute a Steiner tree that not only has low

bottleneck weight but also low total length. In this section, we describe a modi�ed version

of the RBST algorithm of Section 5.2.4 that computes a Steiner tree that has minimum

bottleneck weight and that among all Steiner trees with minimum bottleneck weight has

minimum total length. Such trees �nd application in VLSI routing; for example, Chiang,

Sarrafzadeh, and Wong [23] perform VLSI routing using Steiner trees that have minimum

5.2. Computing Optimal Power-p Steiner Trees 80

bottleneck weight (for a more tractable but less realistic de�nition of bottleneck weight)

and low total weight.

The linear programming formulation of the RBST problem given in Section 5.2.4 is

easily modi�ed to minimize any convex combination of bottleneck weight and total length.

However, we can modify our geometric algorithm to obtain solutions more e�ciently.

The RBST algorithm of Section 5.2.4, given a set of terminals and a topology �, com-

putes the optimal bottleneck weight �� of an RBST with topology �. Application of

the algorithm of Sarrafzadeh and Wong [133] results in a region R��(s) for each Steiner

point s such that placing each s anywhere within R��(s) produces an RBST with bot-

tleneck weight ��. We now describe an algorithm that chooses the coordinates of each

Steiner point s within R��(s) such that the resulting Steiner tree not only has bottleneck

weight ��, but that among all such trees has minimum total length. We call such a tree a

minimum-length rectilinear bottleneck Steiner tree (MLRBST).

For clarity, denote the region R��(s) for each Steiner point s simply as R(s).

Each region R(s) is an isothetic rectangle whose sides are four line segments, some of

which may have length 0. Every Steiner point s has degree 3; call its neighbors s1, s2,

and s3. Extend each of the segments that form the sides of R(s), R(s1), R(s2), and R(s3)

maximally, and let P be the set of intersection points. Let P (s) be the set of points in P

and within R(s), i.e., P (s) = P \ R(s). If s is a terminal, then P (s) = R(s) = s.

We �rst prove that there exists an MLRBST in which every Steiner point s is in P (s).

This result is analogous to Hanan's theorem (Theorem 2.1 on page 14).

Lemma 5.4 There exists an optimal MLRBST in which every Steiner point s is in P (s).

Proof : Call a point s that is in P (s) a grid point, and call a Steiner point s not in P (s) a

free Steiner point. Note that every terminal is a grid point.

Assume that every optimal MLRBST contains at least one free Steiner point, and let �

be an optimal MLRBST that contains a minimum number of free Steiner points. Let s be a

free Steiner point in � that is adjacent to two grid points. Such a point must exist, since if

5.2. Computing Optimal Power-p Steiner Trees 81

every free Steiner point was adjacent to two or more free Steiner points, then every vertex

in the subgraph induced by the free Steiner points would have degree 2 or more and the

topology would contain a cycle.

The Steiner point s has degree 3. Let s1, s2, and s3 be the neighbors of s in �. There

must not be an embedding of the edges (s; si) such that two segments adjacent to s overlap,

or else the length of � could be reduced, contradicting the assumption that it has minimum

length. Thus, the three segments adjacent to s intersect it from three di�erent directions.

Assume without loss of generality that edge (s; s1) meets s from the top, (s; s2) meets s

from below, and (s; s3) meets s from the right.

We have selected s such that two of its neighbors are grid points. We now examine two

cases.

Case 1: The point s3 is a grid point and either s1 or s2 is a grid point. Assume without

loss of generality that s1 is a grid point. Let s0 = (xs1 ; ys3); note that s
0 is a grid point. A

straightforward case analysis shows that s0 satis�es

ks1 � s0k+ ks3 � s0k � ks1 � sk+ ks3 � sk:

Thus, the MLRBST formed by replacing s with s0 has length at most k�k and has one

fewer free Steiner points, contradicting the assumption that � has a minimum number of

free Steiner points.

Case 2: The points s1 and s2 are grid points. It must be the case that either xs = xs1

or xs = xs2 , since otherwise there would be an embedding of the edges in which two overlap.

Furthermore, by the same argument, it must be the case that ys = ys3 . Since s3 is a Steiner

point, it has three neighbors, and one of its adjacent segments is orthogonal to (s; s3).

Assume without loss of generality that this segment extends downward from s3, and slide

the segment (s; s3) downward until it is colinear with either the bottom border of R(s) or

the bottom border of R(s3). In either case, the resulting tree has the same length as � and s

is now a grid point, contradicting the assumption that � contains a minimum number of

free Steiner points. 2

5.2. Computing Optimal Power-p Steiner Trees 82

We now prove a bound on the number of points in each P (s).

Lemma 5.5 For every Steiner point s in an MLRBST, jP (s)j � 64.

Proof : Let s1, s2, and s3 be the neighbors of s. There are eight vertical lines and eight

horizontal lines extending from the borders of the four regions R(s),R(s1),R(s2), and R(s3).

There can be degenerate cases where two horizontal lines or two vertical lines intersect,

in which case jP (s)j = 1, but such degeneracies can be eliminated by perturbation (see

Edelsbrunner [47]). If every horizontal line intersects every vertical line and all intersections

lie within R(s), then jP (s)j = 82 = 64. 2

This upper bound is met for four concentric rectangles, though it is unclear whether

such a con�guration can arise in the construction of an RBST.

Given these results, an MLRBST can be e�ciently constructed from the output of the

RBST algorithm of Section 5.2.4.

Theorem 5.3 Given a topology � on n terminals and a region R(s) for each Steiner point s

in �, an MLRBST can be computed in O(n) time.

Proof : By Lemma 5.4, an optimal MLRBST � is computed by letting each Steiner point s

be a point in P (s), chosen such that k�k is minimized. This computation is accomplished

in O(n) time by dynamic programming. Choose an arbitrary internal vertex r in � to be

the root, and direct the edges in � away from r. As before, let T�(s) be the set of terminals

in the subtree of � rooted at s. For each Steiner point s and each point p in P (s), let `s(p)

be the length of an optimal MLRBST for the set T�(s) of terminals, in which s is located

at the point p. The values `s(p) are computed for each s in bottom-up fashion, beginning

with the Steiner points adjacent to terminals in �. Let s1, s2, and s3 be the neighbors of s.

For each s and each p in P (s), the value of `s(p) is computed as follows:

`s(p) = min
p12P (s1)
p22P (s2)
p32P (s3)

(
3X

i=1

kp� pik+ `si(pi)

)
:

5.2. Computing Optimal Power-p Steiner Trees 83

Since the size of each P (s) is bounded by a constant, this computation is accomplished in

constant time. The operation is performed once for each Steiner point s in �, and thus the

entire computation requires O(n) time. 2

Note that like the dynamic programming algorithms described in Chapter 3, the algorithm

described in Theorem 5.3 computes only the length of an optimal MLRBST. A similar

second pass computes the actual tree given the lengths computed by the �rst pass, also

in O(n) time.

Figure 5.3 illustrates an optimal RBST, an optimal MLRBST, and an optimal R1ST on

six randomly generated terminals.

(a) (b) (c)

Figure 5.3: (a) An optimal RBST �1 with !B(�1) = 0:27 and k�1k = 2:19, (b) An

optimal MLRBST �2 with !B(�2) = 0:27 and k�2k = 2:07, and (c) An optimal

R1ST �3 with !B(�3) = 0:53 and k�3k = 1:86.

5.3. Approximate Power-p Steiner Trees 84

5.3 Approximate Power-p Steiner Trees

Though it has not been proven that the power-p Steiner tree problem is NP-complete, it

it likely that it is (see Section 5.4). Thus, we turn our attention to approximate power-p

Steiner trees.

One popular approximation for many Steiner tree problems is a minimum spanning tree

(MST). For most variants of the Steiner tree problem, the length of an MST is at most

a constant multiple of the length of an optimal Steiner tree. The maximum ratio of the

length of an MST to the length of an optimal Steiner tree is called the Steiner ratio and is

denoted � (see also Section 2.2.1).

De�ne a minimum power-p spanning tree (MpST) to be a spanning tree M that mini-

mizes !p(M). It is well known that an MST is also a minimum bottleneck spanning tree,

i.e. an M1ST (see Cormen, Leiserson, and Rivest [35]). In fact, an MST is an MpST for

every p � 0.

Theorem 5.4 An M1ST is an MpST for every p � 0.

Proof : Consider the operation of Kruskal's MST algorithm [101]. First, the edges are

sorted according to length. Now, raise the length of each edge to the p power. Since p � 0,

doing so does not change the sorted ordering of the edges. Since the edges are considered

in the same order regardless of p, an M1ST is also an MpST for all p � 0. 2

Before examining the power-p and bottleneck Steiner ratios, we prove the following

lemma concerning the number of edges in an optimal Steiner tree on a path between two

endpoints of an edge in an MST. Let fxg denote the fractional part of x, and let [P (x)]

be 1 if predicate P (x) is true and 0 if it is false.

Lemma 5.6 If (a; b) is an edge in an MST, then there is a path in every optimal Steiner

tree that contains a and b and contains at most 2blg nc � [flgng < lg(3=2)] edges.

Proof : Delete the edge (a; b) in the MST, and let Ta and Tb be the sets of terminals in

each of the resulting components. Note that if u 2 Ta and v 2 Tb, then ku� vk � ka� bk,

5.3. Approximate Power-p Steiner Trees 85

or else (a; b) would not be an edge in an MST. Choose u 2 Ta and v 2 Tb such that u and v

have minimum link distance in the optimal Steiner tree � . We claim that if

2dlgne�1 < n < 3 � 2dlgne�2

(in which case flgng < lg(3=2)), then this link distance is at most 2dlg ne � 1, and if

3 � 2dlgne�2 � n � 2dlgne

(in which case flgng � lg(3=2)), then this link distance is at most 2dlgne. In every distance
metric in which the triangle inequality holds, these facts imply the lemma.

Consider the former case. Suppose to the contrary that the minimum link distance in an

optimal Steiner tree � between a terminal u 2 Ta and a terminal v 2 Tb is at least 2dlg ne.
Remove the edge e = (c; d) on the path from u to v that is dlg ne links away from u; this

breaks � into two components �a and �b with u and c in tree �a and v and d in tree �b.

A terminal t1 is closest to a vertex t2 if the link distance from t1 to t2 is no greater

than the link distance from t2 to any other terminal ti, i 6= 1; 2. We claim that u is closest

to c. To prove this, suppose to the contrary that there was some other terminal w closer

to c than u. If w 2 Ta, then w is closer to v than u is to v. On the other hand, if w 2 Tb,

then w is closer to u than v is to u. In either case, the choice of u and v to be closest to

one another is contradicted.

Since u has minimum link distance from a and �a is a binary tree, �a contains at

least 2dlgne�1 terminals. Similarly, �b contains at least 2dlgne�2 terminals, and so � contains

at least 3 �2dlgne�2 terminals. However, this contradicts the assumption that n < 3 �2dlgne�2.

The argument for the latter case is analogous. 2

5.3. Approximate Power-p Steiner Trees 86

5.3.1 The power-p Steiner ratio

De�ne the power-p Steiner ratio �p to be the maximum ratio of the weight of an MpST to

the weight of an optimal power-p Steiner tree. That is,

�p(n) = max
T�R2

jT j=n

!p(M(T))

!p(�(T))
;

where M(T) is an MST of a set T of terminals and �(T) is an optimal power-p Steiner tree.

We now obtain bounds on �p(n); note that the bounds on �p are functions of n, rather than

constant as in the power-1 case.

Theorem 5.5 In the Euclidean metric,

�p(n) � 2[
p
3(blg(n=3)c+ 1)]p

2n� 3

for p > 0.

Proof : Consider an equilateral triangle whose corners are the points t0 = (0; 0), t1 = (1; 0),

and t2 = (1=2;
p
3=2). Each side of this triangle has length 1. Replace each of the corners ti

of the triangle with a set Si of n=3 terminals within distance � of point ti, where 0 < � � 1.

We show how to construct an EpST of S0 [S1 [S2 for which the ratio of the weight of the

MpST to the weight of the EpST is 2[
p
3(blg(n=3)c+ 1)]p=(2n� 3). Note that this EpST is

not necessarily optimal, but its weight clearly cannot be less than that of an optimal EpST,

and since we are �nding a lower bound, this is su�cient.

The coarse structure of the EpST is as though each of the sets Si of terminals were a sin-

gle terminal, as in the original triangle. Thus, there is a single Steiner point s at (1=2;
p
3=6)

that forms the root of three subtrees, each of which has one of the Si as its leaves. Note that

the Euclidean distance from s to each terminal in some Si is 1=
p
3+f(�), or essentially 1=

p
3.

The subtree for s [Si is a binary tree whose leaves are the terminals in Si, with an

additional edge connecting the root of the tree to s. All edge lengths are equal; therefore,

the length of each edge is 1=[
p
3(blg(n=3)c+ 1)]. The power-p weight of each edge is then

(1=[
p
3(blg(n=3)c+ 1)])p.

5.3. Approximate Power-p Steiner Trees 87

The EpST contains 2n� 3 edges. Thus, its weight is

! =
2n� 3

[
p
3(blg(n=3)c+ 1)]p

:

The weight of the MpST is 2 + f(�), or essentially 2. Thus,

�p(n) � 2[
p
3(blg(n=3)c+ 1)]p

2n� 3
;

as desired. 2

Applying an analogous argument under the rectilinear metric leads to the following

theorem.

Theorem 5.6 In the rectilinear metric,

�p(n) � 3[2(blg(n=4)c+ 1)]p

2n� 4

for p > 0.

Proof : The proof is completely analogous to the proof of Theorem 5.5 except for the

following changes. There are four groups of terminals, at (0; 1=2), (1=2; 0), (0;�1=2), and
(�1=2; 0). The Steiner point is at the origin and is the root of four subtrees. The RpST

contains 2n� 4 edges, each of length 1=[2(blg(n=4)c+ 1)], and the MST has weight 3. The

theorem then follows directly. 2

We also obtain an upper bound on �p(n).

Theorem 5.7 In every metric in which the triangle inequality holds,

�p(n) � 2pblg ncp�1:

Proof : Let � be an optimal power-p Steiner tree for a given p, and let M be an MST.

Replace each edge in M with two parallel edges, and construct an Euler tour CM of M .

Replace each edge in � with two parallel edges, and then construct an Euler tour C� of �

5.3. Approximate Power-p Steiner Trees 88

that visits the terminals in the same order as CM . Divide C� into n paths Pi for 1 � i � n;

the endpoints of each Pi are terminals and the paths contain no terminals other than their

endpoints. Let mi be the number of edges in path Pi, and let eij denote edge j in path Pi

for 1 � j � mi. The weight !(�) of the tree is thus:

!(�) =

Pn
i=1

Pmi
j=1 keijkp
2

:

A collection M 0 of edges si, where each si has the same endpoints as path Pi, forms a cycle

whose weight cannot be smaller than the weight !(M) of the MST M . By the triangle

inequality, the length of edge si is at most
Pmi

j=1 keijk. The weight !(M) ofM thus satis�es

!(M) �
nX
i=1

0
@miX
j=1

keijk
1
Ap

:

The power-p Steiner ratio �p(n) then satis�es

�p(n) �
2
Pn

i=1

�Pmi

j=1 keijk
�p

Pn
i=1

Pmi
j=1 keijkp

� max
1�i�n

2
�Pmi

j=1 keijk
�p

Pmi

j=1 keijkp

� 2 max
1�i�n

mp
i

mi

= 2 max
1�i�n

mp�1
i :

By Lemma 5.6, since each path Pi corresponds to an edge in the MST, mi is bounded from

above by 2blgnc. Thus,

�p(n) � 2(2p�1blg ncp�1)
= 2pblg ncp�1;

as desired. 2

We use MathematicaTM [152] to �nd the value n� that maximizes the lower bound for a

given value of p. Table 5.1 gives the value of n� and the Euclidean lower and upper bounds

5.3. Approximate Power-p Steiner Trees 89

p 1 2 3 4 5

n� 3 6 24 96 192

�p(n
�) � 1:155 2:667 14:78 123:43 1375:3

�p(n�) � 2:0 8:0 128:0 3456:0 76832

Table 5.1: Upper and lower bounds on �p(n) in the Euclidean metric.

p 1 2 3 4 5

n� 4 8 32 128 256

�p(n�) � 1:5 4:0 25:6 246:86 3176:1

�p(n�) � 2:0 12:0 200:0 5488:0 131072

Table 5.2: Upper and lower bounds on �p(n) in the rectilinear metric.

on �p(n
�) for 1 � p � 5. Table 5.2 gives the analogous results in the rectilinear metric.

As the tables indicate, an MST may be a good approximation of a power-p Steiner tree for

very small p, but its quality as an approximation rapidly deteriorates for larger p.

While our bounds are functions of n, we conjecture that the power-p Steiner ratio is a

constant, as in the power-1 case.

Conjecture 5.2 For every �xed p, the value of �p is bounded from above by a constant.

The reader should note that the lower bounds of Theorems 5.5 and 5.6 give the correct

values of the power-1 Steiner ratio in both metrics.

5.3. Approximate Power-p Steiner Trees 90

5.3.2 The bottleneck Steiner ratio

As mentioned in Section 5.3, an MST is also an optimal bottleneck spanning tree. Let �B(n)

denote the bottleneck Steiner ratio, i.e.,

�B(n) = max
T�R2

jT j=n

!B(M(T))

!B(�(T))
;

where M(T) is an MST of a set T of terminals and �(T) is an optimal bottleneck Steiner

tree. We now prove the exact value of �B(n) in every distance metric in which the triangle

inequality holds.

Theorem 5.8 �B(n) = 2blgnc � [flgng < lg(3=2)] in every distance metric in which the

triangle inequality holds.

Proof : Let f(n) = 2blgnc � [flgng < lg(3=2)]. We �rst show that �B(n) � f(n). To do

this we exhibit a set of n terminals for which the longest edge in an MST has length 1. We

then exhibit a Steiner tree in which the length of a longest edge is 1=f(n), which implies

that �B(n) � f(n).

Consider a set of n terminals divided into two groups of roughly equal size. The terminals

in the �rst group are placed within distance � of the point (0; 0), and the terminals in the

second group are placed within distance � of the point (1; 0), where 0 < � � 1. We now

examine two cases.

Case 1: 2dlgne�1 < n < 3 � 2dlgne�2. Place 2dlgne�2 terminals in one group T1 and the

remainder in the other group T2. Note that 2
dlgne�2 < jT2j < 2dlgne�1. Connect T1 with a

binary tree �1 whose height (number of edge links) is dlg ne � 1. Connect T2 by a binary

tree of minimum height, all of whose terminals are leaves. The resulting tree �2 has height

at least dlg ne � 1. Finally, connect the roots of the binary trees with an edge to form

tree � . Tree � has the property that the shortest link distance between a terminal in T1

and a terminal in T2 is at least 2dlg ne � 1, and therefore witnesses the lower bound.

Case 2: 3 � 2dlgne�2 � n � 2dlgne. Place 2dlgne�1 terminals in T1 and the remainder

in T2. Note that 2dlgne�2 < jT2j < 2dlgne�1. A similar analysis to that for Case 1 shows

5.3. Approximate Power-p Steiner Trees 91

that the shortest link distance between a terminal in T1 and a terminal in T2 is at least

2dlgne.
The upper bound, �B(n) � f(n), follows directly from Lemma 5.6. Since there are at

most f(n) edges in some path through a and b in an optimal BST, the length of the longest

edge must be at least 1=f(n). 2

5.3.3 Better approximate bottleneck Steiner trees

Elzinga, Hearn, and Randolph [50] and Love, Wesolowsky, and Kraemer [113] describe

algorithms based on nonlinear optimization that compute an �-approximation to a Euclidean

bottleneck Steiner tree for a given topology.

We obtain a simpler �-approximation algorithm for any distance metric by applying

the algorithm of Sarrafzadeh and Wong [133] in binary-search fashion (the Sarrafzadeh

and Wong algorithm is described in Section 5.2.4). Initialize a = 0 and initialize b to

the length of the longest edge in an MST. Apply the algorithm of Sarrafzadeh and Wong

for � = (b � a)=2. If a bottleneck Steiner tree � exists with !(�) � �, then set b = �;

otherwise, set a = �. Repeat this process k times. If m is the length of a longest edge in

an MST and !� is the length of a longest edge in an optimal bottleneck Steiner tree, then

this approach computes a bottleneck Steiner tree � with !(�) � !� + m=2k in O(kf(n))

time, where f(n) = O(n logn) is the time required for each execution of the Sarrafzadeh

and Wong algorithm.

A fully polynomial-time approximation scheme (FPTAS) is an algorithm that computes

a solution to an instance with input length L that is within � of optimal in time polynomial

in L and 1=� [64].

Theorem 5.9 The algorithm described above is an FPTAS for the BST problem.

Proof : For a given �, consider the number of iterations required to converge to a solution

within � of optimal. That is, we want to �nd k such that m=2k � �. Solving m=2k � �

for k yields k � lg(m=�). Thus, the approximation algorithm computes a solution that is

5.4. Conclusions and Future Work 92

within � of optimal in O(n logn log(m=�)) time, where m is the length of a longest edge in

an MST. Since log(m=�) = log(m) log(1=�), and log(m) < L, the time complexity of the

algorithm is polynomial in L and 1=�, and is therefore an FPTAS. 2

Note that the algorithm computes an approximate BST for a given topology, not one that

approximates the overall optimal BST.

5.4 Conclusions and Future Work

We have introduced the power-p Steiner tree problem, which is to �nd a geometric Steiner

tree that minimizes the sum of the edge lengths each raised to the p power.

We have described algorithms for computing optimal E2STs, optimal RBSTs, and

rectilinear Steiner trees that minimize a combination of bottleneck weight and total length.

We have provided evidence that the EpST problem cannot be solved exactly if p � 5.

We have also proven bounds on the power-p Steiner ratio, which measures the quality

of an MST as an approximation of a power-p Steiner tree, and we have proven the exact

value of the bottleneck Steiner ratio.

Several aspects of the power-p Steiner tree problem remain open, which will be addressed

in future research.

5.4.1 NP-completeness

It is not known that any power-p Steiner tree problem is NP-complete (except, of course,

for the power-1 problems). However, it seems likely, in light of the fact that many similar

problems are known to be NP-complete. Nonlinear versions of the p-center and p-median

problems (here p describes the number of Steiner points, not the edge weight function)

are analogous to the power-p and bottleneck Steiner tree problems, respectively, with the

addition of restrictions on the possible locations of the Steiner points. Hooker [78] states

that these problems are NP-complete. Additionally, it is easily shown (for example, by a

transformation from geometric connected dominating set [110]) that both the power-p and

5.4. Conclusions and Future Work 93

bottleneck Steiner tree problems are NP-complete if one imposes an upper bound (of less

than n� 2) on the number of Steiner points allowed.

The NP-completeness proofs for the power-1 problems [62, 63] do not easily generalize

to the power-p or bottleneck problems. The reason for this di�culty is the absence of

the triangle inequality. For the power-1 problems, the NP-completeness proofs exploit

the triangle inequality to construct a transformation in which the possible locations of

the Steiner points are strictly limited. The lack of the triangle inequality makes such

constructions di�cult for the power-p or bottleneck problems. It seems that a di�erent

approach is required.

5.4.2 Approximate power-p Steiner trees

Currently the best known approximation algorithms for the power-p and bottleneck Steiner

tree problems have an approximation bound of O(logn) (the former given by Theorem 5.7

and the latter given by Theorem 5.8). A topic of ongoing research is to �nd approximation

algorithms with constant bounds, if possible. For the power-p Steiner tree problem, a proof

of Conjecture 5.2 would imply that an MST is such an approximation. On the other hand,

the bounds given by Theorem 5.8 for the bottleneck Steiner ratio are tight, so a constant

approximation will require a di�erent approach.

An approach that has proved e�ective for other Steiner tree problems is k-restriction.

A k-restricted Steiner tree is one in which every full tree contains at most k terminals. The

notion of k-restriction has been applied to produce approximations for the Steiner problem

in graphs and in the rectilinear metric with approximation bounds better than the Steiner

ratio [12, 159]. This concept may prove useful for power-p Steiner tree problems as well.

5.4.3 R2ST and EBST algorithms

In Sections 5.2.2 and 5.2.4, respectively, we brie
y mention the di�culties in devising al-

gorithms for computing optimal R2STs and EBSTs. We believe that di�erent approaches

5.4. Conclusions and Future Work 94

than those examined here will be required, which exploit more fully the geometric properties

of the problems. Such algorithms are left as a topic for future research.

5.4.4 Power-p Steiner trees for larger p

In Section 5.2.3, we conjecture that the EpST problem is essentially not �nitely solvable

for p � 5, and we provide some computational evidence that the conjecture is true. An

important topic of ongoing research is to prove or disprove this conjecture and to prove or

disprove the analogous result for the RpST problem.

Another topic is to devise approaches to these problems. If the conjecture proves to be

true, then a reasonable approach is to devise iterative numerical algorithms that converge

to optimal solutions, similar to Smith's [139] for the E1ST problem.

In addition, even if the conjecture is true, computation of E3STs and E4STs remains

an open problem.

5.4.5 Multiobjective power-p Steiner trees

Many VLSI routing applications suggest the formulation of multiobjective power-p Steiner

tree problems. In Section 5.2.5 we described an algorithm for computing RBSTs with

minimum total weight, which �nd application in VLSI routing [23, 76].

Other important multiobjective power-p Steiner tree problems arise in the computation

of Steiner trees with minimum electrical delay. For example, the Elmore estimate of elec-

trical delay [49] is essentially a combination of power-2 weight and path lengths from a

designated source terminal to the remaining terminals, which are sinks.

\O look at the trees!" they cried, \O look at the trees!"

| Robert Bridges, London Snow

6

FPGA Placement and Routing

6.1 Introduction

Field-programmable gate arrays (FPGAs) are electronically recon�gurable integrated cir-

cuits that provide an inexpensive alternative to the fabrication of custom integrated circuits.

The type of FPGA considered here is a symmetrical array FPGA typical of those avail-

able from Xilinx [157]. A symmetrical-array FPGA consists of a number of identical

programmable logic blocks arranged in a grid, interconnected by programmable routing

resources. A portion of such an FPGA is illustrated in Figure 6.1. The size of an FPGA

is given by its x and y dimensions in number of logic blocks. The sets of parallel routing

segments that lie between adjacent logic blocks are called channel segments ; the number of

parallel segments in a channel is the channel width, denoted W . Logic blocks are depicted

as shaded squares. Connection blocks connect sets of logic block pins to channel segments.

A connection block has a device-speci�c topology that connects each logic block pin to Fc

di�erent channel segments (in Figure 6.1, for example, Fc = 2). Switch blocks, depicted

as white squares in Figure 6.1, connect di�erent sets of channel segments to one another.

A switch block contains an interconnect topology that connects each incoming edge to Fs

Earlier versions of portions of this chapter appear in Ganley and Cohoon [4, 55, 58, 59, 60].

95

6.1. Introduction 96

Figure 6.1: A symmetrical-array FPGA and the internal topology of a switch block

(inset).

edges exiting the other three sides of the switch block. The inset in Figure 6.1 illustrates

a switch block with Fs = 3; the darkened lines indicate the three possible exit paths for

the bottom channel segment entering from the left. FPGAs are available in various values

of W , Fc, and Fs.

The physical design phase of FPGA design takes place immediately following the tech-

nology mapping phase [17]. Technology mapping transforms an electrical description of a

circuit into logic elements suitable for mapping onto FPGA logic blocks, as well as a spec-

i�cation of the electrical interconnections among the logic blocks. Thus, the input to the

physical design (placement and routing) phase is a set of unplaced logic blocks and a set of

nets. Each net speci�es a set of logic block pins that must be interconnected.

A placement in an FPGA is an assignment of unplaced logic blocks to physical logic

blocks in the FPGA. A global routing is an assignment of nets to channels, and Steiner

tree routing is accomplished by letting the switch blocks serve as Steiner points. A detailed

routing selects a channel segment for each net whose global routing uses that channel,

6.2. Previous Work 97

and programs the wires in the connection blocks and switch blocks to realize the desired

interconnections.

Typically, the primary objective in FPGA layout is to minimize the maximum channel

width required by the layout. It may also be desirable to minimize total wire length or

maximum path length, as these are heuristically related to circuit performance.

For purposes of placement and global routing, it su�ces to consider an abstract repre-

sentation of the FPGA. Construct a global routing graph in which the vertices correspond

to logic blocks, connection blocks, and switch blocks. A single edge represents each set of

parallel channel segments. Since logic blocks to not behave as the other vertices do|the dif-

ferent pins of the logic block are not directly connected to one another|logic block vertices

are not explicitly represented. The presence of a logic block pin in a net is implemented by

setting the appropriate adjacent connection block vertex to be a terminal. A portion of a

global routing graph corresponding to the FPGA illustrated in Figure 6.1 is illustrated in

Figure 6.2. The (implicit) logic blocks and their pin edges are shaded, the connection block

vertices are �lled circles, and the switch block vertices are open circles.

6.1.1 Notation

As mentioned above, the input to the physical design phase is a number c of unplaced logic

blocks and a set R of nets. Each net Ri in R speci�es a set of vertices in the global routing

graph that must be interconnected. The number of nets is r = jRj.

6.2 Previous Work

Historically, placement research has been divided into two main camps. Partitioning-based

placement involves recursive partitioning strategies, such as that used by our system. The

other camp is local search strategies such as simulated annealing. Until recently, local search

techniques were considered inherently superior to partitioning-based methods, but recently

6.2. Previous Work 98

Figure 6.2: An example FPGA global routing graph.

some sophisticated partitioning-based algorithms such as GORDIAN [97] have provided

strong competition for local search strategies.

The origins of partitioning-based placement are represented by the min-cut bisection

algorithms of G�unther [68], Breuer [15, 16], and Lauther [102]. In these algorithms, a

vertical line is conceptually drawn down the approximate center of the circuit area. The

logic blocks are then partitioned into two groups of roughly equal size, which will be placed

on opposite sides of the line. The partitioning step typically tries to minimize the number of

nets that cross the partition. The process is then repeated using a horizontal line in each of

the two regions. The entire process is repeated recursively until the number of logic blocks

in each region is small enough to place by some other method. This process is illustrated

in Figure 6.3.

Dunlop and Kernighan [46] improved min-cut bisection techniques by adding a feature

called terminal propagation. In terminal propagation, virtual terminals are added along

6.2. Previous Work 99

=) =) =)

Figure 6.3: An illustration of a min-cut partitioning technique.

the borders between regions so that the placement within each region better re
ects its

connections to neighboring regions.

All of the min-cut bisection techniques described above perform only placement; global

and detailed routing are accomplished afterwards by di�erent methods.

An extension of the min-cut approach is the quadrisection approach of Suaris and Ke-

dem [143]. A quadrisection algorithm is similar to a min-cut bisection algorithm except

that the vertical and horizontal cuts are performed simultaneously. Suaris and Kedem later

revised this technique to simultaneously perform placement and global routing [144].

Mayrhofer and Lauther [114] extended the quadrisection technique to larger grids, and

based their partitioning strategies on (heuristic) rectilinear Steiner trees in these grids.

However, their algorithm also performs only placement; global and detailed routing are

accomplished afterward.

The most direct progenitor of our thumbnail partitioning strategy is the sharp partition-

ing technique of Bapat and Cohoon [8]. Sharp partitioning is a strategy for simultaneous

placement and global routing of standard-cell circuits. The sharp partitioning methodology

pioneered many of the ideas used in our thumbnail partitioning technique: partitioning

based on optimal rectilinear Steiner trees in a small grid (their algorithm uses a 3� 3 grid),
selection of di�erent optimal Steiner trees to optimize congestion, and a type of terminal

propagation.

We further generalize and enhance the sharp partitioning methodology to form the

paradigm of thumbnail partitioning. We emphasize that though thumbnail partitioning is

6.3. Thumbnail Partitioning 100

a direct generalization of sharp partitioning, we apply the technique to a di�erent design

domain (FPGAs instead of standard-cell designs), and nearly all of the speci�cs of the

algorithm di�er from those of Bapat and Cohoon.

6.3 Thumbnail Partitioning

Thumbnail partitioning involves a recursive decomposition of the circuit area into a kx�ky
grid called the partitioning template. The dimensions kx and ky of the template are small

and �xed. In all our work, the grid is square, so we let k = kx = ky ; thus, we consider a k�k
partitioning template. The reader should note, however, that all our results generalize to

rectangular grids.

When the partitioning template is overlaid on the circuit, each logic block lies in one of

the k2 regions of the template. For each net, construct a set of terminals in a k� k grid, in

which each terminal is present if some logic block in the net lies in the corresponding region

of the partitioning template. We then consider optimal rectilinear Steiner trees in the k�k
grid, which we call thumbnail rectilinear Steiner trees, or simply thumbnails. Figure 6.4

illustrates a 3 � 3 partitioning template, an example terminal set in it, and a thumbnail

for that point set. Let s(k) = 2k(k � 1) denote the number of di�erent edges that can be

Figure 6.4: The 3� 3 partitioning template, an example terminal set in it, and a

thumbnail for that terminal set.

6.4. The MONDRIAN System 101

present in a thumbnail on a k � k grid.

In a thumbnail partitioning algorithm, both partitioning-based placement and global

routing are based on these thumbnails.

6.4 The MONDRIAN System

We now describe the speci�cs of our thumbnail partitioning algorithm for FPGA placement

and global routing. We call our algorithm Mondrian because of the uncanny resemblance

between circuit layouts and the works of the artist Piet Mondrian [19, 117].

A crucial aspect of thumbnail partitioning is the computation of optimal thumbnails. In

our implementation, k = 3, and thus all optimal thumbnails for every possible terminal set

are precomputed and stored, and simply looked up during the execution of the algorithm.

The extension of the thumbnail partitioning technique to larger values of k is discussed in

Sections 6.4.5, 6.8, and 6.9.2.

In overlaying the partitioning template onto the FPGA circuit area, the positions of the

cut lines in the partitioning template are chosen to pass through switch blocks, so that the

connection blocks adjacent to each logic block all lie in the same region of the template as

the logic block itself (see Figure 6.5(a)).

After the circuit area is conceptually divided according to the partitioning template, a

partitioning step assigns each logic block to one of the regions in the partitioning template.

The partitioning step optimizes objective functions based on the thumbnails for the nets.

After the logic blocks are partitioned among the regions in the partitioning template,

one of a number of alternate optimal thumbnails is assigned to each net. The assignment of

thumbnails to nets is made as to balance the congestion at the intersections of thumbnail

edges and cut lines in the partitioning template. Performing this congestion balancing step

leads to lower congestion in the �nal global routing.

Once the logic blocks have been assigned to regions in the partitioning template and

each net has been assigned a thumbnail, the virtual terminal assignment step performs a

6.4. The MONDRIAN System 102

type of terminal propagation. At each point where an edge in the thumbnail for a net crosses

a cut line in the partitioning template, one of the switch blocks along the corresponding

portion of the cut line is chosen to be a virtual terminal for the net. This virtual terminal is

added as a terminal in the net, and then the partitioning, congestion balancing, and virtual-

terminal assignment steps are repeated recursively for the portion of the circuit that lies

within each region of the partitioning template. The addition of the virtual terminals allows

the placement and global routing problem within each region to be solved independently

of the other regions, such that the union of the solutions for each of the regions is a valid

and high-quality solution for the entire FPGA, and such that the global routing of each net

corresponds to the topology of its thumbnails.

The recursion stops when a region contains only one logic block. In this bottom-level

routing phase, the nets that have terminals in the region are routed in the cycle of edges

surrounding the logic block.

The steps in the Mondrian algorithm are illustrated in Figure 6.5 and are described

in detail in the next four sections.

6.4.1 Partitioning

The purpose of the partitioning step is to assign logic blocks to regions in the partition-

ing template such that the total length of the thumbnails of all nets is minimized. For

performance-driven placement, the partitioning algorithm also minimizes source-sink path

lengths (see Section 6.5).

In our implementation, the algorithm begins with an arbitrary partition and then

improves the partition using simulated annealing. Simulated annealing [96] is a general

local search strategy that produces high-quality solutions to a wide range of combinatorial

optimization problems.

The key concept in local search algorithms is the neighborhood of a solution. The

neighborhood �(S) of a solution S is the set of solutions that can be obtained from S by a

6.4. The MONDRIAN System 103

(a) (b) (c)

(d) (e) (f)

Figure 6.5: The steps in the Mondrian algorithm, illustrated for a single net.

(a) The FPGA is overlaid with the partitioning template. (b) The logic blocks

are assigned to regions. (c) A thumbnail is assigned to the net. (d) Virtual

terminals are assigned at intersections of thumbnail edges and region borders.

(e) The subproblem for each region is solved recursively. (f) The union of the

subproblem solutions is the �nal solution.

6.4. The MONDRIAN System 104

small perturbation called a move. In our algorithm, a move is to swap the positions of two

logic blocks that lie in di�erent regions of the partitioning template. The logic blocks on

the border of the FPGA are used for input and output, and thus cannot be moved.

A simulated annealing algorithm maintains a current solution S and a temperature t.

The temperature is initialized to value t0. Let �(S) denote the value, for a solution S, of the

objective function being optimized; note that in our case, the goal is always to minimize the

objective function. Randomly chosen neighbors S 0 of S are examined, and the di�erence �

in the objective function is computed: � = �(S 0) � �(S). If � < 0, then the solution S 0

has lower cost than S, and S 0 becomes the new current solution. Otherwise, S 0 becomes

the new current solution with probability e��=t (where e has its conventional meaning as

the base of the natural logarithm); thus, a move that increases the value of the objective

function is accepted with probability directly proportional to the temperature and inversely

proportional to the magnitude of the change in the objective function. The algorithm also

maintains SB, the best solution seen so far. This process is repeated c times. Then the

temperature is decreased according to a cooling schedule and the entire loop is repeated.

When some stop criterion is met, the algorithm halts and returns SB. Figure 6.6 describes

the simulated annealing algorithm in detail.

We use the cooling schedule and stop criterion of Aarts and van Laarhoven [1]. The

time complexity of the resulting algorithm is O(fm(n)c log jS�j), where fm(n) is the time
complexity of computing a single move, c is the number of iterations in the inner loop of

the algorithm, and S� is the set of all possible partitioning solutions. For the thumbnail

partitioning problem, fm(n) = d, where d is the maximum number of nets that contain any

single logic block (i.e., the maximum degree of any logic block). In Xilinx FPGAs, logic

blocks have eight pins, and with the exception of the input/output blocks on the border of

the FPGA, no two nets can share a logic block pin. Since the input/output blocks cannot be

moved, d = 8. The value of c, as prescribed by Aarts and van Laarhoven, is the maximum

neighborhood size maxS j�(S)j, which for the thumbnail partitioning problem is O(n2).

6.4. The MONDRIAN System 105

(1) Let S = SB be a random partitioning solution

(2) t t0
(3) While the stop criterion is not met:

(4) Repeat c times:

(5) Choose a random neighbor S 0 of S
(6) � = �(S0)� �(S)

(7) If (� < 0) or (Rand[0; 1] < e��=t) then
(8) S S 0

(9) If (�(S) < �(SB)) then

(10) SB S

(11) Decrease t according to cooling schedule

(12) Return SB

Figure 6.6: The simulated annealing algorithm for thumbnail partitioning. The

function Rand[0; 1] returns a uniform random value in the interval [0; 1].

There are at most k2n possible partitioning solutions, so jS�j = k2n and log jS�j = O(n log k).

Thus, the time complexity of the thumbnail partitioning algorithm is O(dn3 log k). Since d

and k are constants, the time complexity is essentially O(n3).

6.4.2 Congestion balancing

For most terminal sets in the partitioning template, there are several di�erent optimal

thumbnails. For example, Figure 6.7 illustrates the eight optimal thumbnails for an example

terminal set.

Figure 6.7: The eight optimal thumbnails for the terminal set shown.

6.4. The MONDRIAN System 106

After the partitioning process is complete, the algorithm may assign any one of these

alternate optimal thumbnails to each net. The thumbnails are chosen to minimize congestion

across the edges in the partitioning template, which tends to minimize congestion in the

�nal global routing.

The congestion balancing problem is formally de�ned as follows. Each net Ri is to be

assigned a thumbnail �(Ri). For a given assignment of thumbnails to nets, congestion is

measured in the following way: compute a vector s of length s(k) in which each entry b[e]

is given by

b[e] = jfRi : e 2 �(Ri)gj:

The congestion
 of a given assignment of thumbnails is proportional to the variance of the

entries in b:

 =
s(k)X
e=1

(b[e]� b)2;

where b is the mean of the entries in b.

If k is speci�ed as part of the problem instance, then congestion balancing is NP-

complete. Even if all nets have only two terminals, the congestion balancing problem

with k as a parameter can be reduced from �nding edge-disjoint paths of minimum total

length in a grid graph, which has been proven NP-complete [99, 111, 126, 128].

For each �xed k, the congestion balancing problem can be solved exactly in polynomial

time. For r nets, the vector s has at most rs(k) di�erent possible values. Thus, an optimal

solution to the congestion balancing subproblem is computed in a manner similar to the

well-known dynamic programming algorithm for the partition problem [64]. Let B(i) denote

a set of possible values of b for nets R1 through Ri. The set B
(i+1) is computed by adding

each possible thumbnail for net Ri+1 to each entry b(i) 2 B(i). When the process completes,

the set B(r) contains all vectors s that correspond to possible solutions to the current

instance, of which there are at most rs(k), and the one with minimum
 is then chosen as

the solution.

6.4. The MONDRIAN System 107

There are at most 2s(k) di�erent thumbnails for each net, so this algorithm has time

complexity at most O(2s(k)rs(k)+1). While this time complexity is polynomial for every

�xed k, even for k = 2 the resulting time complexity is O(r5), which is too ine�cient to be

used in practice.

Instead, we use the following heuristic, similar to the �rst-�t decreasing algorithm for

bin packing [89]:

1. Sort the nets in ascending order according to the number of di�erent optimal thumb-

nails for each net. Let R�i denote the i
th net in this sorted ordering, for 1 � i � r.

2. For i = 1 to n:

� Choose the thumbnail for net R�i that minimizes the congestion value
 for

nets R�1 to R�i .

Intuitively, the algorithm saves the nets for which there are more choices until later in the

algorithm, where they are chosen to compensate for the less avoidable congestion incurred

by nets with fewer choices.

While there are clearly at most 2s(k) di�erent optimal thumbnails for each net, there are

actually far fewer. For k = 3, there are at most 192 di�erent optimal thumbnails for each

net (see also Section 6.9.2.1), whereas 2s(3) = 4096. Since the sorting keys can have only

a constant number of di�erent values, the congestion balancing step is performed in O(r)

time.

6.4.3 Virtual-terminal assignment

Once a thumbnail has been assigned to each net, for each edge e in the thumbnail of each

net, the net is assigned a switch block on the template border corresponding to e. This

switch block becomes a virtual terminal for the net in each of the neighboring regions

of the partitioning template, in a similar manner to Bapat and Cohoon [8] and Dunlop

and Kernighan [46]. Virtual terminals allow the subproblems within each region of the

template to be solved independently of the rest of the circuit, such that the union of the

6.4. The MONDRIAN System 108

solutions to the subproblems is a solution for the entire circuit area within the current

template. The choice of virtual terminals for each edge in the thumbnail of each net is

called virtual-terminal assignment.

Consider a pair of adjacent regions in the partitioning template, and let e be the cor-

responding edge in the template. Let R(e) be the set of nets whose thumbnails contain

edge e. The virtual-terminal assignment problem is to assign each of the nets in R(e) to a

switch block on the cut line corresponding to e. Let S(e) be the set of switch blocks on the

cut line corresponding to e.

Virtual terminal assignment is accomplished in a manner similar to the �route algo-

rithm of Spruth, Johannes, and Antreich [142]. Associate a cost with the assignment of

each net in R(e) to each switch block in S(e). Initially the cost of assigning net Ri to

switchblock s is equal to the sum of the minimum distances from s to the nearest terminals

in net Ri in each of the two regions. The cost is increased if s lies at the intersection of two

or more regions, as otherwise such s become congestion hot spots.

Now, build a complete bipartite graphB in which the vertices in one partition correspond

to nets in R(e) and the vertices in the other partition correspond to switch blocks in S(e).

The weight of each edge is the cost of assigning its corresponding net to its corresponding

switch block.

Replace each switch block vertex vs in B with djR(e)j=jS(e)je vertices, whose adjacent
edges have the same weights as the edges adjacent to vs. This constrains the assignment

such that at most djR(e)j=jS(e)je nets are assigned to each switch block, thus minimizing

global routing congestion.

The virtual-terminal assignment problem is now solved by �nding a minimum-cost per-

fect matching in B, which is computed in O(jR(e)j5=2) time by the algorithm of Hopcroft

and Karp [79]. Note that this time complexity is at most O(r5=2). Once the assignment of

switch blocks to nets is accomplished, each switch block is added as a virtual terminal to

the corresponding net. The Mondrian algorithm is then called recursively for the portion

6.4. The MONDRIAN System 109

of the circuit within each region of the partitioning template. The presence of the virtual

terminals allows each of these subproblems to be solved independently of the rest of the

circuit, such that the union of the solutions to the subproblems for each region is a valid

solution for the portion of the circuit within the current partitioning template area, and

such that the topology of each net corresponds to its thumbnails.

The recursion stops when each region contains one logic block, at which time the

remaining routing is computed directly.

6.4.4 Bottom-level routing

The basis of the Mondrian recursion occurs when a region contains su�ciently few logic

blocks that it can be placed and routed directly. In the current implementation, the bottom-

level regions contain only one logic block, along with its neighboring channel edges and

connection and switch blocks. This con�guration is depicted in Figure 6.8. At this point in

Figure 6.8: The bottom-level routing problem.

the algorithm, each net may contain some of the connection blocks (pins of the logic block)

as real terminals, and/or some of the switch blocks as virtual terminals. Recall that logic

blocks are not explicitly represented in the global routing graph, so the subgraph at the

bottom level is a cycle on eight vertices. For each net Ri, the algorithm must add a path

6.4. The MONDRIAN System 110

in the cycle that spans the terminals in Ri, such that congestion|the maximum number

of nets that use any one of the cycle edges|is minimized. Obtaining good solutions to the

bottom-level routing problem is crucial to computing good overall global routing solutions,

since it is here that all actual routing is performed.

We now de�ne a more general version of the bottom-level routing problem, where the

cycle in which the nets are to be routed contains an arbitrary number of vertices. We call

this the minimum-congestion routing in a cycle (MCRC) problem. We then prove that the

MCRC problem is NP-complete when the cycle contains a variable number m of vertices.

We then proceed to describe an integer programming formulation that produces optimal

solutions to the MCRC problem, algorithms that compute a solution with congestion C (if

one exists) for any �xed C, a heuristic algorithm, and an approximation algorithm that

computes a solution with congestion at most four times optimal.

The MCRC problem is de�ned formally as follows (all index arithmetic on cycle vertex

indices is taken to be modulo the length m of the cycle; thus, a < b is understood to imply

that vertex va is counterclockwise of vertex vb in the cycle):

Minimum-Congestion Routing in a Cycle

Instance: A graph G = (V;E), where jV j = m and E = f(vi; vi+1) : 0 � i < mg (i.e., G is

a cycle onm vertices), a set R of nets where each Ri 2 R satis�es Ri � V , and an integer C.

Question: Is there a set of paths Pi in G such that each Pi spans all v 2 Ri and such that

maxe2E jfPi : e 2 Pigj � C?

6.4.4.1 NP-Completeness

Frank, Nishizeki, Saito, Suzuki, and Tardos [53] show that the MCRC problem is solvable

in polynomial time if every net contains 2 vertices. However, their algorithm relies on

the planar multicommodity
ow theorem of Okamura and Seymour [121], which does not

apply if nets can contain more than 2 vertices. We now show that the MCRC problem is

NP-complete if nets can contain more than 2 vertices.

6.4. The MONDRIAN System 111

We rephrase the MCRC problem as the following equivalent problem:

Cycle Cover by Multiple Choice Paths (CCMCP)

Instance: Same as for MCRC, except denote the congestion bound by C 0.

Question: Is there a set of paths Pi in G such that each Pi spans two vertices va; vb 2 Ri,

there is no vc 2 Ri such that a < c < b, and mine2E jfPi : e 2 Pigj � C0?

The MCRC problem is transformed to the CCMCP problem by setting C 0 = jRj�C. If
every edge in the cycle is used by at least C 0 paths in a solution to the CCMCP problem, then

a solution to the MCRC problem is constructed by setting each path to be the complement

of the path in the CCMCP solution, thus producing an MCRC solution in which each edge

is used by at most jRj � C 0 paths.

We now prove that the CCMCP problem, and thus the MCRC problem, is NP-complete.

Theorem 6.1 The MCRC problem is NP-complete.

Proof : Inclusion in NP is obvious.

To prove NP-hardness, we perform a transformation from numerical matching with target

sums (NMTS) [64] to CCMCP. The NMTS problem is de�ned as follows:

Numerical Matching with Target Sums (NMTS)

Instance: Disjoint sets X and Y , each containing q elements, a size s(a) 2 Z+ for each

element a 2 X [Y , and a target vector < B1; B2; : : : ; Bq > with positive integer entries.

Question: Can X [Y be partitioned into q disjoint sets A1; A2; : : : ; Aq, each containing

exactly one element from each of X and Y , such that for 1 � i � q,
P

a2Ai s(a) = Bi?

Note that it must be the case that

X
a2X[Y

s(a) =
X

1�i�q
Bi (6.1)

and also that s(a) < Bi for all a 2 X [Y and 1 � i � q [64].

6.4. The MONDRIAN System 112

We now prove that CCMCP is NP-hard by giving a transformation from every instance

of NMTS to an instance of CCMCP, such that the answer to the CCMCP problem is \yes"

if and only if the answer to the NMTS problem from which it was constructed is \yes."

Let m (the number of vertices in the cycle) be 2q+
P

1�i�q Bi. Thus, we are performing

a pseudo-polynomial-time transformation. However, the NMTS problem is NP-complete in

the strong sense, meaning that it remains NP-complete even if its input is represented in

unary notation. Thus, the pseudo-polynomial-time transformation is acceptable.

We label certain vertices ai, bi, and ci, 1 � i � q, as follows:

ai = 2(i� 1) +
X

1�j<i
Bi;

bi = ai + 1; and

ci = bi +Bi:

This labeling is illustrated in Figure 6.9. Note that there is an edge from cq to a1.

r

a1

r

b1

� -

B1

r

c1

r

a2

r

b2

� -

B2

r

c2

r

a3

r

b3

� -

B3

r

c3

r

Figure 6.9: Labeling of vertices.

Now, for each element x 2 X we construct an x-net Rx, and similarly for each y 2 Y ,

we construct a y-net Ry. For x 2 X ,

Rx = fa1; b1+ s(x); c1; a2; b2 + s(x); c2; : : : ; aq; bq + s(x); cqg:

These vertices are depicted as double circles in Figure 6.10.

Similarly, for y 2 Y ,

Ry = fa1; b1; c1 � s(y); a2; b2; c2 � s(y); : : : ; aq; bq; cq � s(y)g:

6.4. The MONDRIAN System 113

r

a1

r

b1

� -

s(x)

r

c1

r

a2

r

b2

� -

s(x)

r

c2

r

a3

r

b3

� -

s(x)

r

c3

re er e e er e e r e e e

Figure 6.10: An x-net Rx.

r

a1

r

b1

� -

s(y)

r

c1

r

a2

r

b2

� -

s(y)

r

c2

r

a3

r

b3

� -

s(y)

r

c3

re e er e e er e e er e

Figure 6.11: A y-net Ry.

These vertices are depicted as double circles in Figure 6.11.

We claim that an instance of CCMCP constructed as described above has a solution

with C0 = 1 if and only if the instance of NMTS from which it was constructed has a

solution.

()) If an instance of NMTS has a solution, then an instance of CCMCP constructed from

it as described above has a solution with C 0 = 1. For 1 � i � q, if x 2 Ai, then let

the path for net Rx cover the interval [ai; bi + s(x)]. Similarly, if y 2 Ai, then let the

path for net Ry covers the interval [ci � s(y); ai+1]. The claim follows directly.

(() If an instance of CCMCP, constructed from an instance of NMTS as described above,

has a solution with C 0 = 1, then the instance of NMTS from which it was constructed

has a solution. Suppose we have a solution to the CCMCP problem with C 0 = 1. The

cycle must be covered exactly; if some edge in the cycle were covered by more than one

path, then by Equation (6.1), some other edge would not be covered, contradicting the

assumption that we have a solution with C0 = 1. Thus, all that remains to be proven

is that the x- and y-nets cover the appropriate intervals. Consider the edge (ai; bi)

6.4. The MONDRIAN System 114

for any i. We claim that each such edge must be covered by the path [ai; bi+ s(x)] in

some x-net. If an edge (ai; bi) were covered by a y-net Ry , then this edge would be

the entire path for net Ry, as both ai and bi are in every y-net for every i. If the path

for Ry were the edge (ai; bi), then there would be a portion of the cycle s(y) edges

long that would be uncovered, and by Equation (6.1), solution would be impossible,

forming a contradiction. A similar argument requires that the path for each Ry

cover an interval [ci � s(y); ai+1] for some i. We construct a solution to NMTS by

setting Ai = fx; yg for the Rx and Ry that together cover the interval [ai; ai+1].

We have proven that our constructed instance of CCMCP has a solution if and only if

the instance of NMTS from which it was constructed has a solution. Therefore, CCMCP is

NP-complete, and thus so is MCRC. 2

Since the number m of vertices in the cycle is eight for the bottom-level routing problem

in Mondrian, NP-completeness does not hold. Indeed, since there are at most O(r8)

possible solutions, the bottom-level routing problem is solvable in polynomial time by a

dynamic programming algorithm similar to the one described for congestion balancing in

Section 6.4.2. Unfortunately, this O(r9) algorithm is the best known for the problem, and

its time complexity is too high to use in practice. Furthermore, the NP-completeness of the

general MCRC problem suggests that there is probably no algorithm that is signi�cantly

more e�cient than this one.

6.4.4.2 Integer programming formulation

We can construct an integer programming formulation of the MCRC problem that quickly

computes optimal solutions for most instances that arise in the execution of Mondrian.

Direct the edges in the cycle clockwise. Associate a
ow value fi(vj ; vj+1) with each net Ri

and each edge (vj ; vj+1) in the cycle. For each net Ri, add a shortcut edge (vj ; vk) for

each vj ; vk 2 Ri for which there exists no vq such that j < q < k. The directed cycle with

example shortcut edges is illustrated in Figure 6.12. Associate a
ow value si(vj ; vk) with

6.4. The MONDRIAN System 115

Figure 6.12: The augmented cycle used in the integer program..

each net Ri and each shortcut edge (vj ; vk). De�ne fmax to be the maximum
ow along

any cycle (non-shortcut) edge:

fmax = max
0�j<m

X
1�i�n

fij ;

and fsum to be the total
ow along all cycle edges:

fsum =
X

1�i�n

X
0�j<m

fij :

The integer program is now formulated as follows (each constraint applies to all i such that

1 � i � n):

Minimize nmfmax + fsum subject to

fi(vj�1; vj) + si(v�; vj) = fi(vj ; vj+1) + si(vj ; v�) for all vj 2 Ri (6.2)

fi(vj�1; vj) = fi(vj ; vj+1) for all vj 62 Ri (6.3)

fi(vj�1; vj) + si(v�; vj) = 1 for all vj 2 Ri (6.4)X
vj ;vk2Ri

si(vj ; vk) = 1 (6.5)

integer si(vj ; vk) for all vj ; vk 2 Ri (6.6)

6.4. The MONDRIAN System 116

Equations (6.2) and (6.3) are
ow conservation constraints, which assert that the
ow into

a vertex v must equal the
ow out of v. Equation (6.4) asserts that for each net, the
ow

into the vertices in that net must be 1; this constraint ensures that all vertices in the net

are spanned. Equation (6.5) asserts that the
ows on the shortcut edges must total 1, and

Equation (6.6) asserts that the
ows on the shortcut edges must be integers. These two

constraints together force one shortcut edge in each net to have
ow 1 and all other shortcut

edges in the net to have
ow 0. Since the graph is directed, setting the
ow along a shortcut

edge to 1 and the rest to 0 completely determines the rest of the
ow. The routing of net Ri

is then the path containing every edge (vj ; vj+1) for which fi(vj ; vj+1) = 1.

It is di�cult to determine the time complexity of a given integer program, but in general

it is roughly exponential in the number of variables that are constrained to be integers.

While this may seem alarming, the number of integer variables in the problems that arise

in the execution ofMondrian is typically small enough that the program is quickly solved.

This subject is discussed further in Section 6.7.

A strength of this integer programming approach is that it �nds a solution with minimum

congestion, and among all solutions with minimum congestion, it �nds a solution with

minimum total wire length. Indeed, we make the surprising empirical observation that

optimizing total wire length drastically decreases the time required to solve the integer

program, since it eliminates from consideration large portions of the solution space that

have equal congestion but di�ering total wire length.

6.4.4.3 Polynomial-Time Solution for Fixed Congestion

We can determine in polynomial time whether an instance of the MCRC problem has

a solution with C = 1. We do so by transforming the MCRC problem to a maximum

independent set problem in a circular arc graph. A circular arc graph is a graph in which

the vertices in the graph correspond to arcs on a circle and in which there is an edge between

two vertices if their corresponding arcs intersect.

6.4. The MONDRIAN System 117

Let the vertices in the cycle correspond to equally spaced points on a circle. We will

now construct from the nets in R a circular arc graph GR. For each net Ri, denote

the vertices in Ri as u0; u1; : : : ; ujRij�1, in clockwise order. For each Ri, add to GR the

arcs [u(j+1)mod jRij; uj] for all 0 � j < jRij. Note that each arc includes all the vertices

in Ri. Note also that if jRij > 2, then the arcs constructed from Ri are all pairwise

intersecting.

Now �nd a maximum independent set (MIS) in GR. This is accomplished in O(a2) time,

where a is the number of arcs in GR [69]. The number a of arcs is at most O(rm). Thus,

an MIS in GR is computed in at most O((rm)2) time. Since all intervals in a net with 3 or

more vertices are pairwise intersecting, the MIS cannot contain more than one arc from a

net Ri unless jRij = 2. If it contains both arcs from a net Ri with jRij = 2, then the size

of the MIS is 2, and we can �nd an MIS that does not contain two arcs from the same net

exhaustively in O(r2) time. Thus, an MIS that does not contain 2 arcs from the same net

is computed in O((rm)2) time.

The instance of MCRC from which GR was constructed has a solution with C = 1 if

and only if the MIS contains an arc from every net in R. It requires at most O(rm) time

to construct GR. Thus, the algorithm computes a solution with C = 1, or determines that

no such solution exists, in O((rm)2) time.

These ideas can also be used to devise a heuristic for the general MCRC problem.

Construct GR as described above, and �nd an MIS in GR. For each net with one of its arcs

in the MIS, route the net as the path corresponding to that arc. Repeat for the remaining

nets. We call this heuristic the iterated maximum independent set (IMIS) heuristic. Since

each pass requires O((rm)2) time, and at mostO(r) passes are performed, the IMIS heuristic

runs in O(r(rm)2) time.

For any �xed C, a solution with congestion at most C can be computed in O((rm)C+1)

time, or it can be determined that such a solution does not exist. Select an edge e in the

cycle. Examine every possible routing of each set S of C nets, and for each S, examine each

6.4. The MONDRIAN System 118

routing of the nets in S such that the routing uses edge e. For each choice of S and each

routing of the nets in S, route the nets not in S according to the unique routing that does

not use edge e. If the algorithm terminates without computing an routing with congestion

at most C, then no such routing exists.

Each of the r nets has at most m possible routings. Thus, the total number of distinct

sets S that must be examined is
PC

i=1

�rm
i

�
= O((rm)C). Routing the nets not in S requires

an additional O(rm) time, so the algorithm has time complexity O((rm)C+1).

6.4.4.4 An Approximation Algorithm

Any pair of edges e1 = (va; vb) and e2 = (vc; vd) in the cycle G forms a cut, i.e., the

removal of e1 and e2 disconnects G into two components. Call fe1; e2g a cut set. If a

net Ri includes vertices in both the interval [vb; vc] and the interval [vd; va], then Ri is

cut by fe1; e2g; otherwise, it is uncut . Choose a cut set fe1; e2g such that the number of

nets cut by fe1; e2g is maximum. Let N denote the number of cut nets. Having chosen a

maximum cut fe1; e2g, call [vb; vc] the right interval and call [vd; va] the left interval. Now

route every net that is uncut by fe1; e2g within the interval that contains its vertices. Such

a routing is unique and is easily computed in linear time. We now obtain the following

lemma concerning the congestion incurred by this routing.

Lemma 6.1 If fe1; e2g is a maximum cut that cuts N nets, then the congestion incurred

by routing all uncut nets within their corresponding intervals is at most N .

Proof : The right and left intervals are considered independently; without loss of general-

ity consider the left interval. Suppose that routing all nets contained in the left interval

completely within the left interval results in a congestion exceeding N . Let e be an edge

whose congestion exceeds N . There is another cut in G consisting of e and any edge e0 from

the right interval, such that the number of nets that cross the cut fe; e0g exceeds N . This

contradicts the assumption that fe1; e2g was a maximum cut, thus proving the lemma. 2

6.4. The MONDRIAN System 119

Having routed the uncut nets within their corresponding intervals, now route the cut

nets arbitrarily. Since there are N cut nets, routing them increases the congestion by at

mostN . (Note that in practice one would not want to route the cut nets arbitrarily; instead,

one might use some heuristic such as the IMIS heuristic described in Section 6.4.4.3.) Thus,

the congestion in the routing is at most 2N . Since N nets must cross the cut fe1; e2g,
the optimal congestion is at least dN=2e. Thus, this algorithm computes a solution with

congestion at most 2N=dN=2e � 4 times optimal.

The time complexity of the approximation algorithm is determined as follows. The

maximum cut is found in at most O(rm3) time, as there are O(m2) cuts to be checked and

each is checked in at mostO(rm) time. The routings of the uncut nets is computed in O(rm)

time. If the cut nets are routed arbitrarily, then they are also routed in O(rm) time, and

the total time complexity of the algorithm is O(rm3). If instead the IMIS heuristic is used

to route the cut nets, then routing the cut nets requires at most O(r(rm)2) time, and the

total time complexity of the algorithm is O(rm3 + r(rm)2).

6.4.5 Time complexity

The time complexity of Mondrian is derived by examining the time complexity of each

of its constituent steps (assume for the present that k is a small constant, as in our

implementation):

� The partitioning step requires O(n3) time.

� The congestion balancing step requires O(r) time.

� The virtual-terminal assignment step requires O(r5=2) time.

These separate time complexities result in the following recurrence for the total time

complexity of the Mondrian algorithm:

T (n; r) = n3 + r + r5=2 + k2T (n=k2; r)

= n3 + nr + nr5=2

= O(n3 + nr5=2):

6.5. Performance-driven Placement and Routing 120

In addition, the bottom-level routing step is applied once for every logic block, resulting in

an additional O(nf(r)) time, where f(r) is the time required for the particular bottom-level

routing algorithm chosen. If the integer programming algorithm of Section 6.4.4.2 is used,

then the exact value of f(r) is di�cult to determine since it depends heavily on the number

of pins in the bottom-level routing instances. If the IMIS heuristic of Section 6.4.4.3 or the

approximation algorithm of Section 6.4.4.4 is used, then f(r) = O(r3). Thus, the total time

complexity of the Mondrian algorithm, using the IMIS heuristic or the approximation

algorithm for bottom-level routing, is O(n3 + nr5=2 + nr3) = O(n3 + nr3).

In future work, we intend to examine the e�ect of extending Mondrian to k � k de-

compositions for larger k. If k is considered to be variable rather than constant as in the

above computations, then the time compelxity of each step is:

� The partitioning step requires O(n3 log k) time.

� The congestion balancing step requires at most O(r2k
2
) time.

� The virtual-terminal assignment step requires O(k2r5=2) time.

It is in the congestion balancing step that the choice of k most drastically a�ects the time

complexity of the algorithm, since the time complexity of congestion balancing as it is

currently implemented is exponential in the value of k. To extend Mondrian to large k, it

will be necessary to perform congestion balancing by some other means than enumerating

every optimal thumbnail for each net.

The a�ects of k in practice are discussed further in Section 6.8.

6.5 Performance-driven Placement and Routing

Since the cost of an FPGA is a function of its channel width, optimizing maximum channel

width serves to optimize the cost of implementing a particular design. Optimizing total

wire length heuristically optimizes both channel width and circuit performance. However,

to overcome the slow speed of FPGAs, it may be desirable to optimize more precise measures

of circuit performance.

6.5. Performance-driven Placement and Routing 121

Every net has a source and a number of sinks. Signals propagate from the source

through the routed net to the sinks. The description performance-driven is applied to

placement and routing algorithms that optimize maximum source-sink delay. Mondrian

is easily modi�ed for performance-driven routing and placement in which maximum source-

sink path lengths are optimized along with maximum channel width and total wire length.

For many technologies, maximum source-sink path lengths model electrical delay more

accurately than total wire length [33].

First, the thumbnail rectilinear Steiner trees are replaced with rectilinear Steiner ar-

borescences (RSAs) [127]. An RSA is a minimum-length Steiner tree that contains a shortest

path from the source to every sink. For performance-driven placement and routing, thumb-

nail arborescences subsume the purpose of thumbnail Steiner trees. Like thumbnail Steiner

trees, there are su�ciently few thumbnail arborescences that every optimal thumbnail ar-

borescence for every possible 3� 3 terminal set can be precomputed and stored. Also like

thumbnail Steiner trees, for most terminal sets there are several optimal thumbnail arbores-

cences, allowing the choosing of alternate arborescences to balance congestion as before.

Figure 6.13 shows an example terminal set and its eight optimal thumbnail arborescences.

Figure 6.13: The eight optimal thumbnail arborescences for the terminal set shown.

The source is the upper-left terminal.

After replacing the thumbnail Steiner trees with thumbnail arborescences, the objective

function in the partitioning step (see Section 6.4.1) is modi�ed to optimize primarily the

sum of the maximum source-sink path lengths of each net, and secondarily their total length.

Section 6.7.1 gives experimental results comparing this performance-driven version of

Mondrian with the standard Steiner-tree-based version.

6.6. Postprocessing 122

6.6 Postprocessing

After implementing the algorithm, we observed that often every edge with maximum con-

gestion is contained in a single net. Thus, we add a postprocessing step to the algorithm

that reroutes such nets.

Suppose the maximum congestion is C. The postprocessing algorithm �nds a net that

contains every edge with congestion C, and reroutes it using the iterated 1-Steiner heuristic

of Kahng and Robins [90]. The graph is modi�ed so that the new route does not use any

edge with congestion C or C� 1. The maximum congestion is recomputed, and the process

is repeated until there does not exist a net that contains every maximum-congestion edge.

Experimentally, the postprocessing step typically reduces the channel width by several

units.

6.7 Experimental Results

We have implemented Mondrian in order to compare it against previous FPGA layout

tools. We use code written by Saltzman [132] to solve the matching problem in the virtual-

terminal assignment step (see Section 6.4.3) and we use Berkelaar's lp solve code [11] to

solve the integer programs in the bottom-level routing step (see Section 6.4.4).

For testing purposes we use two sets of benchmarks, one for each of the Xilinx 3000-series

and 4000-series FPGAs. The 3000-series benchmarks are those used by Brown, Rose, and

Vranesic to test their FPGA router, which is called CGE [18]. The 4000-series benchmarks

are those used by Lemieux and Brown to test their SEGA router [107] and by Wu and

Marek-Sadowska to test their GPB router [156]. We use the same suggested parameters

used by these previous works. For the 3000-series benchmarks, Fc = d0:6We and Fs = 6.

For the 4000-series benchmarks, Fc = W and Fs = 3. Details on Xilinx FPGAs are found

in the Xilinx data book [157].

6.7. Experimental Results 123

Table 6.1 summarizes the name, size, and number of nets for each of these benchmarks.

The table also gives the channel widths computed by CGE [18] for the 3000-series bench-

marks and the channel widths computed by SEGA [107] and GPB [156] for the 4000-series

benchmarks.

Name Size Nets CGE SEGA GPB

busc 13� 12 151 10 | |

dma 18� 16 213 10 | |

bnre 22� 21 352 12 | |

dfsm 23� 22 420 10 | |

z03 27� 26 608 13 | |

9symml 11� 10 79 | 10 9

term1 10� 9 88 | 10 10

apex7 12� 10 115 | 13 11

alu2 15� 13 153 | 11 11

too large 14� 14 186 | 12 12

example2 14� 12 205 | 17 13

vda 17� 16 225 | 13 13

alu4 19� 17 255 | 15 14

k2 22� 20 404 | 17 17

Table 6.1: Statistics on the benchmark circuits and channel widths computed by

previous tools. The �rst �ve benchmarks are Xilinx 3000-series circuits and the

last nine are 4000-series circuits.

We have testedMondrian on the benchmark circuits using three di�erent algorithms for

bottom-level routing: the integer programming (IP) formulation of Section 6.4.4.2, the IMIS

heuristic of Section 6.4.4.3, and the approximation algorithm of Section 6.4.4.4. Detailed

routing is performed using the algorithm of Alexander, Cohoon, Ganley, and Robins [3,

4], which developed out of the work of Alexander and Robins [5]. The channel widths

resulting from these tests are given in Table 6.2, along with the best channel width computed

by previous tools for each benchmark. The most noteworthy feature of these results is

6.7. Experimental Results 124

IP IMIS Approx.

Name WP W Time (s) W Time (s) W Time (s)

busc 10 9 77:5 9 47:7 9 47:5

dma 10 9 196:8 11 64:0 10 63:3

bnre 12 11 645:4 12 149:2 11 142:8

dfsm 10 11 528:6 11 220:4 11 224:8

z03 13 13 1042:3 13 371:6 13 358:7

9symml 9 10 56:1 10 35:6 10 36:3

term1 10 7 30:9 7 32:4 7 32:1

apex7 11 9 48:0 9 40:6 9 40:2

alu2 11 10 154:4 11 52:7 11 52:3

too large 12 11 216:5 11 55:8 11 55:2

example2 13 11 139:7 12 54:8 13 55:5

vda 13 13 1019:3 13 67:7 13 67:9

alu4 14 13 1105:8 13 85:9 13 84:5

k2 17 17 12198:8 17 133:3 17 130:3

Table 6.2: Channel widths computed by Mondrian for the benchmark circuits.

W is the channel width of the actual detailed routing for the Mondrian solution

and WP is the best value computed by previous tools (see Table 6.1).

that they compare quite favorably to those of previous tools. Using integer programming

for the bottom-level routing, the channel widths computed by Mondrian are superior to

those computed by previous tools for 9 of the 14 benchmarks, and are the same as those

computed by previous tools for 3 of the remaining benchmarks. The channel widths of the

solutions produced by Mondrian improve those computed by previous tools by an average

of roughly 6:8%.

However, the integer programming formulation, while typically quite fast, can require a

great deal of computation time. In particular, the benchmark k2 appears to be somewhat

pathological, in that it requires over 3 hours to place and route while the other benchmarks

require less than 20 minutes.

6.8. E�ects of Decomposition Size 125

Fortunately, the IMIS heuristic and the approximation algorithm compare well with the

integer programming formulation for bottom-level routing. For 11 of the 14 benchmarks,

using either the IMIS heuristic or the approximation algorithm results in the same channel

width as using the integer programming formulation. The di�erences in channel width and

running time between the IMIS heuristic and the approximation algorithm do not appear

statistically signi�cant.

6.7.1 Performance-driven placement and routing results

This section reports experimental results for the performance-driven version of Mondrian

described in Section 6.5. Unfortunately, the previous works against which we compare

ourselves in Section 6.7 do not report total wire length or source-sink path lengths. Thus,

we compare the performance-driven version of Mondrian, which we call Mondrian-PD,

against the standard Steiner-tree-based version of Mondrian.

These results are summarized in Table 6.3, where we observe that a modest (1:0%)

increase in wirelength yields a signi�cant (6:7%) decrease in average maximum source-

sink path length. The channel widths computed by the two versions of Mondrian are

comparable. For one benchmark (9symml),Mondrian-PD computes a channel width of 9

while Mondrian computes a channel width of 10. For another (term1), Mondrian-PD

computes a channel width of 8 whileMondrian computes a channel width of 7. The channel

widths for all other benchmarks are the same. We do not believe that the di�erence in the

two algorithms in terms of channel width is statistically signi�cant.

Figure 6.14 illustrates the placed and routed 9symml benchmark.

6.8 E�ects of Decomposition Size

Implicit in this and previous work is the idea that performing a k�k decomposition becomes
more e�ective as k grows. This premise has never been tested in practice.

6.8. E�ects of Decomposition Size 126

Average Wirelength Average Max Radius

Name ST PD �% ST PD �%

busc 9:3 9:1 �2:2 6:6 6:0 �9:1
dma 13:2 13:0 �1:5 8:6 7:7 �10:5
bnre 14:0 14:0 0:0 9:0 7:9 �12:2
dfsm 12:0 12:7 5:8 7:3 7:1 �2:7
z03 13:7 14:1 2:9 8:9 8:7 �2:2
9symml 11:4 10:9 �4:4 7:1 6:1 �14:1
term1 7:0 7:4 5:7 5:2 5:2 0:0

apex7 9:1 9:5 4:4 6:3 6:7 6:3

alu2 12:2 12:5 2:5 7:5 7:2 �4:0
too large 11:9 11:5 �3:4 8:5 7:2 �15:3
example2 9:3 9:4 1:1 7:2 6:8 �5:6
vda 15:0 15:0 0:0 10:6 9:4 �11:3
alu4 14:5 14:9 2:8 9:5 9:0 �5:3
k2 17:7 17:7 0:0 13:1 12:1 �7:6
Overall 12:2 12:3 1:0 8:2 7:6 �6:7

Table 6.3: Comparison of performance-oriented Mondrian-PD against Steiner-

tree-based Mondrian (ST). The column labeled �% gives the percentage change

from Mondrian to Mondrian-PD.

Our implementation of Mondrian is parameterized such that the identical algorithm

can be run for a 2�2 decomposition rather than a 3�3 decomposition. Table 6.4 compares
the channel widths and running times of Mondrian using these two values of k, using the

approximation algorithm for bottom-level routing. As can be seen in the table, the standard

version of Mondrian using k = 3 substantially outperforms the version with k = 2 for

almost all the benchmarks.

The time complexity of Mondrian increases with larger k. Surprisingly, however, the

version ofMondrian using a 2�2 decomposition often requires more running time than the
standard 3�3 version. This e�ect is caused by the bottom-level routing algorithm: since the

6.8. E�ects of Decomposition Size 127

Figure 6.14: The placed and routed 9symml benchmark

channel widths produced by the 2� 2 version are larger, the bottom-level routing instances

that must be solved during the execution of Mondrian are correspondingly larger.

We conjecture that extending Mondrian to k > 3 will result in even higher-quality

solutions. The computation of optimal rectilinear Steiner trees in a k � k grid is discussed

further in Section 6.9.2.

6.9. Other Issues 128

k = 3 k = 2

Name W Time W Time

busc 9 47:5 10 42:2

dma 10 63:3 12 130:7

bnre 11 142:8 13 249:0

dfsm 11 224:8 12 390:3

z03 13 358:7 15 423:8

9symml 10 36:3 10 16:8

term1 7 32:1 11 11:7

apex7 9 40:2 11 35:8

alu2 11 52:3 13 69:1

too large 11 55:2 11 54:3

example2 13 55:5 14 121:0

vda 13 67:9 15 132:6

alu4 13 84:5 16 161:7

k2 17 130:3 19 397:3

Table 6.4: Comparison of 2� 2 and standard 3� 3 decompositions.

6.9 Other Issues

This section addresses a pair of other issues that arise within the thumbnail partitioning

framework. The �rst is the quality of Steiner trees generated by a thumbnail partitioning

algorithm. The second is the computation of optimal thumbnails for larger k, which will be

used in future work to extend the thumbnail partitioning strategy to larger grids.

6.9.1 Quality of thumbnail-generated Steiner trees

6.9.1.1 Expected quality on random terminal sets

We now show that if the terminals in a net are distributed uniformly at random, then with

probability 1� o(1), the ratio of the length of a tree � produced by thumbnail partitioning

6.9. Other Issues 129

to the length of an optimal tree �� is O(1). This result is similar to that of Koml�os and

Shing [98] for a di�erent recursive partitioning algorithm.

Theorem 6.2 Let � be a Steiner tree produced by thumbnail partitioning for any set of

terminals, and let �� be an optimal Steiner tree for the same set of terminals. If the

terminals are distributed uniformly at random, then with probability 1� o(1),

k�k
k��k = O(1):

Proof : Assume without loss of generality that the terminals are contained in the unit

square. It is easily shown that for a region whose length on a side is s, the maximum total

length of the edges added (not including those added lower in the recursion) is O(s). If

the terminals are uniformly distributed, then the depth of the recursion is roughly logk2 n.

Thus, the total length of the edges added by the thumbnail partitioning algorithm is given

by

logk2 nX
i=0

ki = O(klogk2 n+1)

= O(
p
n)

Koml�os and Shing show that for terminals distributed uniformly at random, k��k � O(
p
n)

with probability 1� o(1). Thus, with probability 1� o(1), k�k=k��k = O(
p
n=
p
n) = O(1).

2

6.9.1.2 Worst-case length

Let ~� denote the maximum ratio of the length of an RST produced by thumbnail partitioning

to the length of an optimal RST.

Theorem 6.3 ~� � 3.

Proof : Suppose that all the logic blocks are in a net, and that in the bottom-level routing

step, all 4 corner pins surrounding each logic block are present. The total length of the

6.9. Other Issues 130

edges added for each logic block is 6, and for c logic blocks, the total length of the edges

added by a thumbnail partitioning algorithm is 6c. An optimal routing is a spanning tree

of the pins, and has length approximately 2c. Thus, ~� � 3. 2

We have been unable to derive an upper bound on ~� that is better than O(
p
n) (see the

previous section), but we conjecture that in fact, ~� is a constant.

Conjecture 6.1 ~� is bounded from above by a constant.

6.9.2 Computing thumbnail rectilinear Steiner trees

One interesting topic for future research is to extend the thumbnail partitioning paradigm

to a k � k grid for k > 3. We now consider the general version of the thumbnail rectilinear

Steiner tree (TRST) problem: compute an optimal RST of a set of terminals drawn from

a k � k grid, for small k.

Researchers have previously investigated Euclidean Steiner trees of terminal sets from

small grids [26, 27, 28] and triangular and hexagonal grids [83], but this is the �rst known

study of the rectilinear problem. Note that the Euclidean problem is very di�erent from

the rectilinear one. For the Euclidean case, most previous work [26, 27] focuses on sim-

ple, mechanical constructions that are conjectured but not proven to be optimal. In the

rectilinear case there seem to be no such simple constructions for which optimality can

be reasonably conjectured. In particular, the Euclidean constructions largely focus on the

complete k � k terminal set, which is uninteresting in the rectilinear case since a minimum

spanning tree (MST) is an optimal TRST for such an instance. Cockayne and Hewgill [28]

use their exact algorithm for the general Euclidean Steiner tree problem to compute optimal

Euclidean Steiner trees for a number of terminal sets on a small integer grid. They point

out their algorithm performs far less e�ciently on such instances than on instances from

large grids, due to the large number of degeneracies|a phenomenon that is likely to occur

in the rectilinear case as well.

6.9. Other Issues 131

Our goal in this section is to exploit the special nature of the inputs to devise algorithms

that are more e�cient than simply applying existing algorithms to these terminal sets.

The reader should note that the conventional measures of time complexity as a function

of input size are not particularly meaningful here; since no input size exceeds k2, by the

standard measures any reasonable algorithm runs in constant time for every �xed k. Since k2

is an upper bound on both the number of terminals and the number of candidate Steiner

points, our measures of time complexity are functions of k, in much the same way that the

exact time complexity of linear-time sorting algorithms such as radix sort depends on the

size of the numbers to be sorted.

We now present some preliminary results on the TRST problem. We devise a full-set

decomposition algorithm for computing optimal TRSTs, which uses the special nature of

the inputs to improve the screening of candidate full sets. We then present experimental

results comparing this algorithm with two existing algorithms for computing optimal rec-

tilinear Steiner trees: Hakimi's spanning tree enumeration algorithm [70] and the dynamic

programming algorithm of Aho, Garey, and Hwang [2] for terminals that lie on a small

number of parallel lines. As before, the reader should note that all results presented here

are easily generalized to rectangular, rather than square, grids.

6.9.2.1 Simple Approaches

VLSI placement algorithms that use TRSTs, such as Mondrian, typically do so by pre-

computing the optimal TRST for every possible terminal set and simply looking them up

at runtime. This is obviously quite time-e�cient, but requires O(2k
2
) space, which is pro-

hibitive for k larger than 4. By exploiting the fact that the grid is symmetrical under a

90-degree rotation, one can save a factor of four in the space requirements by sacri�cing

the O(1) table lookup for an O(k2) binary search1. Even with this reduction, however, stor-

ing a TRST for each possible terminal set for k = 5 requires approximately 40 megabytes

1A practical note: if the terminals are represented as a bit vector and labeled in a spiral fashion, then a

90-degree rotation of a terminal set can be accomplished using bk=2c bit vector operations (shift, and, or).

6.9. Other Issues 132

of storage. While this might be feasible on some machines, for k = 6, storage would require

roughly 120 gigabytes of space, which is currently impractical.

Another simple approach is to enumerate all TRSTs for a given terminal set, and choose

the one with minimum length. The question here is: how many TRSTs can there be for a

given terminal set? This question is also interesting since many of the placement algorithms

that use TRSTs enumerate all optimal TRSTs.

The number of TRSTs is clearly bounded by the number of MSTs for the complete k � k

grid graph Gk�k , since every TRST is a subgraph of some such MST. Since every edge

in Gk�k has length 1, every spanning tree is an MST; thus we are interested in the spanning

tree number ofGk�k , denoted t(Gk�k). Kreweras [100] proves that the spanning tree number

of Gk�k is

t(Gk�k) =
Y

1�x<k
1�y<k

�
4 sin2

x�

2k
+ 4 sin2

y�

2k

�
:

The value of this quantity for a few small values of k is shown in Table 6.5. There is no

k 2 3 4 5 6

t 4 192 100352 5:6� 108 3:3� 1013

Table 6.5: Number t of spanning trees in Gk�k .

known closed form for this product, but it is easily shown that it grows faster than O(k22k
2
),

and therefore enumerating all spanning trees is slower than the spanning tree enumeration

algorithm described in the next section.

6.9.2.2 Spanning Tree Enumeration

Another approach is to apply an existing algorithm for the RST problem to thumbnail-sized

inputs. One such algorithm is Hakimi's spanning tree enumeration algorithm for the graph

Steiner tree problem [70]. Hakimi's algorithm has time complexity O(n2n) in a graph with

6.9. Other Issues 133

equally weighted edges, where n is the number of candidate Steiner points. Applied to the

grid graph Gk�k, an upper bound on the time complexity of Hakimi's algorithm is O(k22k
2
).

For the standard RST problem, Hakimi's algorithm is less e�cient than dynamic pro-

gramming algorithms such as that of Dreyfus and Wagner [43] and those described in

Chapter 3. However, these algorithms examine every subset of the set of terminals, so

when applied to thumbnail-sized inputs, they have time complexity
(2k
2
). The best time

complexity among these is our screened full-set dynamic programming algorithm (see Chap-

ter 3), whose time complexity is O(n22:62n), where n is the number of terminals. For

thumbnail-sized inputs, this can be as large as O(k42:62k
2
), which is worse than Hakimi's

algorithm.

6.9.2.3 A Dynamic Programming Algorithm

Another natural approach is to apply the Aho, Garey, and Hwang (AGH) algorithm for

terminals on a small number of parallel lines [2]. For TRSTs, the terminals lie on a set of

at most k parallel lines.

The AGH algorithm proceeds as follows. Imagine sweeping a vertical line from x = 0

to x = k � 1 through the set of terminals. Let Gx�k denote the portion of the k � k grid to

the left of x. For each x, optimal solutions are built from the optimal solutions in G(x�1)�k.

The reader is referred to Aho, Garey, and Hwang [2] for details.

The AGH algorithm has time complexity O(k16k). This is clearly asymptotically supe-

rior to the other two algorithms described above. However, as will be shown empirically

below, for the small values of k considered here, the AGH algorithm is slower than the

others described earlier. In addition, the AGH algorithm requires O(k8k) space, and thus

it is currently inapplicable to the TRST problem with k > 7.

6.9. Other Issues 134

6.9.2.4 Full-Set Decomposition

As in the algorithms of Chapter 3, we use full set screening to produce a set of candi-

date full sets. The fact that inputs are drawn from a small grid allows us some screening

improvements beyond those for the standard RST problem. As in many previous full-set

decomposition algorithms [28, 29, 131, 149], we then use a branch and bound algorithm

to �nd a set of candidate full sets of minimum total length, whose union spans all the

terminals.

Let M(T) denote an MST of a set T of terminals. A set T of terminals is compact if

kM(T)k = jT j � 1 (i.e., if an MST of T contains only unit-length edges).

Theorem 6.4 There exists an optimal TRST � in which every compact subset T of the set

of terminals induces a connected component in � .

Proof : Suppose to the contrary that in every optimal TRST, some compact subset S in-

duces two or more connected components C1; : : : ; Cq. Let � be an optimal TRST. Since S is

compact, there is edge e between two components Ci and Cj that has unit length. Adding e

to � creates a cycle, some of whose edges are outside S, or else Ci and Cj would be con-

nected. Furthermore, at least one edge e0 in the cycle must have length at least 2, or else

the entire cycle would be within S, and Ci and Cj would be connected. Thus, we can

add edge e and delete edge e0, creating a TRST that is shorter than � , contradicting the

assumption that � is optimal. 2

Corollary 6.4.1 If terminals a and b are in a candidate full set, then ka� bk > 1. 2

These results allow us to eliminate many full sets from candidacy. For every compact

subset S of the terminals, every full set containing more than two terminals in S is eliminated

from candidacy. The subset S is then added to the set of candidate full sets. While it is

not technically a full set, it behaves as one in the decomposition since no other candidate

full set intersects it at more than one terminal.

We can also eliminate candidate full sets of cardinality exceeding k.

6.9. Other Issues 135

Theorem 6.5 For k � 4, every candidate full set contains at most k terminals.

Proof : Suppose that S is a full set on k + 1 or more terminals in a k � k grid, and assume

without loss of generality that the backbone segment of the full tree is horizontal. By the

pigeonhole principle, some pair of terminals a and b must share the same x coordinate;

assume without loss of generality that ya > yb. Let c be a terminal nearest to a and b

on the x-axis that is not extremal, i.e., that does not have maximum or minimum x value

among all terminals. Since k > 4, such a terminal must exist. If yc < ya, then the segment s

of the backbone in the range xa to xc can be slid so that ys = yc, giving c degree 2 and

contradicting the assumption that S is a full set. Similarly, if yc > ya, then s can be slid so

that ys = ya, giving a degree 2 and contradicting the assumption that S is a full set. 2

In our implementation, we precompute every possible full tree on a k � k grid. The

algorithm then reads in those full sets that are subsets of the input set T of terminals.

Since no two terminals in a full set share an x or y coordinate, the total number of full sets

is at most O(kk), and consequently the time complexity of the algorithm is at most O(2k
k
).

Note that O(kk) = O(ck logk) for constant c, which is an improvement on the best known

bound of O(n1:62n) = O(k21:62k
2
) on the number of full sets in an unrestricted terminal

set (see Section 3.5). Table 6.6 shows the total number of possible full sets of cardinality 3

k 3 4 5 6 7

Full sets 17 196 1258 5368 20157

kk 27 256 3125 46656 823543

Table 6.6: Number of possible full sets in a k � k grid.

or greater on a k � k grid, along with the value of the upper bound kk , for small values of k.

We also apply a number of other tests from the Salowe-Warme algorithm [131] to eliminate

full sets from candidacy; these tests eliminate many more full sets, accounting for the gap

between kk and the actual number of possible full sets.

6.9. Other Issues 136

If an edge in a full tree of a full set S intersects a terminal in T � S, then that termi-

nal would have degree greater than 1, and thus the full set is eliminated from candidacy.

Thus, the number of full sets that must be considered for a given instance is typically far

smaller than the total number of possible full sets. Empirical results on the total number

of candidate full sets are given below.

6.9.2.5 Experimental Results

We have implemented the spanning tree enumeration, dynamic programming, and full set

decomposition algorithms in order to compare them experimentally. The results of these

experiments are shown in Table 6.7. For k � 4, the values shown result from one run on

each of the
�k2
n

�
possible terminal sets. For k � 5, the values shown result from one run on

each of 1000 di�erent randomly generated terminal sets. There are a number of noteworthy

features of these results.

First, note that the running time of the dynamic programming algorithm is essentially

the same regardless of n. This is not surprising, as the algorithm performs essentially the

same computations regardless of the number and positions of the terminals. In spite of

its asymptotic superiority, the dynamic programming algorithm is too slow to be used on

instances with k � 7. (Also, recall that the space requirements of the algorithm prohibit its

use on instances with k > 7.)

Second, note that the spanning tree enumeration and full-set decomposition algorithms

are quite fast on very sparse or very dense instances. This is not surprising: for sparse

instances, there are few terminals, and for dense instances, there are few candidate Steiner

points (for Hakimi's algorithm) or candidate full sets (for the FSD algorithm).

For all but the smallest instances, the FSD algorithm is faster than both the STE and

DP algorithms. In addition, the current branch and bound algorithm for �nding the optimal

full-set decomposition it quite simple. We believe that its e�ciency can be considerably

improved by using more elaborate strategies to prune the search space [131].

6.9. Other Issues 137

k n STE DP FSD %MST f

3 3 0:001 0:627 0:011 81:0 3

3 6 0:001 0:629 0:013 95:2 4

4 4 0:002 0:682 0:013 66:0 8

4 8 0:009 0:823 0:020 72:2 37

4 12 0:002 0:695 0:014 98:2 5

5 5 0:020 2:020 0:020 47:7 14

5 10 0:737 2:010 0:055 51:3 52

5 15 0:120 2:007 0:051 72:0 41

5 20 0:004 2:030 0:023 99:0 8

6 6 0:450 25:33 0:030 34:1 28

6 12 152:5 25:97 1:639 31:9 91

6 18 23:01 26:19 9:616 44:8 78

6 24 1:048 25:91 0:213 77:7 35

6 30 0:007 26:67 0:040 99:2 7

7 7 13:55 830:7 0:079 21:0 35

7 14 18632 889:8 55:69 17:3 173

7 21 15867 862:6 205:2 29:1 144

7 28 455:0 901:0 74:69 46:6 74

7 35 6:317 907:8 0:223 84:1 32

7 42 0:014 906:6 0:109 99:5 8

Table 6.7: Average runtimes (in seconds) for the spanning tree enumeration (STE),

dynamic programming (DP), and full-set decomposition (FSD) algorithms. %MST

indicates the percentage of the instances for which the TRST has the same length

as the MST. The value of f is the maximum number of candidate full sets.

Lastly, note that often an MST is an optimal TRST. Clearly a TRST cannot have

length less than n� 1, so the algorithms �rst compute an MST, and if it has length n� 1,

then it is returned as the optimal TRST. However, in many cases the MST has length

exceeding n� 1, but is nonetheless an optimal TRST.

Figure 6.15 illustrates an optimal TRST on 14 terminals in a 7 � 7 grid, computed by

the FSD algorithm.

6.10. Conclusions and Future Work 138

Figure 6.15: An optimal TRST on 14 terminals in a 7� 7 grid.

6.10 Conclusions and Future Work

We have described a system called Mondrian that performs simultaneous placement and

global routing in FPGAs. Mondrian compares favorably to several previous tools, pro-

ducing superior results for a number of industrial benchmarks. In addition, Mondrian can

be modi�ed for performance-driven placement and global routing, and the resulting layouts

exhibit decreased source-sink path lengths with comparable channel widths and a modest

increase in total wire length.

We foresee a number of enhancements to Mondrian that we believe will improve the

quality of its layout solutions and/or decrease its running time.

6.10.1 Partitioning

The partitioning algorithm used inMondrian (see Section 6.4.1) is quite general. While the

solutions produced by simulated annealing for partitioning problems are di�cult to beat

6.10. Conclusions and Future Work 139

in practice, a geometric algorithm tailored to the thumbnail partitioning problem might

produce comparable results more quickly than the simulated annealing algorithm.

6.10.2 Virtual terminal assignment

We intend to try replacing the minimum-cost perfect matching algorithm used for vir-

tual terminal assignment (see Section 6.4.3), which computes optimal matching solutions

in O(r5=2) time, with a heuristic algorithm. A greedy matching can be computed in O(rs)

time, where r is the number of nets and s is the number of switch blocks on a cut line.

If the greedy algorithm produces solutions comparable to those using the exact algorithm,

then a substantial savings in running time may be realized.

6.10.3 Bottom-level routing

Another modi�cation that may improve the quality of solutions computed byMondrian is

to extend the algorithm at the basis of the recursion to handle regions containing more than

one logic block. The restricted nature of the current bottom-level routing problem makes it

possible to e�ciently compute high-quality bottom-level routing solutions, but with some

e�ort, comparable algorithms might be devised for larger numbers of logic blocks.

A place for everything, and everything in its place.

| Samuel Smiles, Thrift

7

Conclusion

In this dissertation, we have examined a number of geometric interconnection, partitioning,

and placement problems that arise in the �eld of electronic physical design automation.

We have presented two new dynamic programming algorithms for computing optimal

rectilinear Steiner trees (RSTs). The �rst algorithm, called Full-set Dynamic Programming

(FDP), has time complexity O(n3n). The FDP algorithm is very simple and easily imple-

mented. The second algorithm, called Screened Full-set Dynamic Programming (SFDP)

uses full-set screening to improve the time complexity and the running time in practice

of the FDP algorithm. These algorithms improve upon the time complexity of previous

popular algorithms for computing optimal RSTs, and we have presented empirical evidence

that they are also superior in terms of running time in practice.

We have examined the problem of multi-terminal routing in the presence of obstacles,

which we formulate as the obstacle-avoiding rectilinear Steiner tree (OARST) problem. We

proved a theorem, analogous to Hanan's theorem [71] for the standard RST problem, that

enables the �rst algorithms that compute optimal OARSTs in time corresponding to the

size of the instance rather than the size of the routing area. We have also shown that this

theorem can be used to devise e�ective heuristics for computing good OARST solutions.

We have also examined two important special cases of the OARST problem, showing that

140

141

the problem remains NP-complete if all terminals lie on obstacle perimeters but is solvable

in polynomial time if all terminals lie on the perimeter of the routing region.

We have introduced the power-p Steiner tree problem, which is to �nd a geometric

Steiner tree that minimizes the sum of the individual edge lengths each raised to the p

power. The power-p Steiner tree problem �nds applications in VLSI routing as well as

facility location and other network design applications. We also examine a special case

of the power-p Steiner tree problem called the bottleneck Steiner tree problem, which is

to �nd a geometric Steiner tree in which the length of the longest edge is minimized.

We have given algorithms for computing optimal Euclidean power-2 Steiner trees, optimal

rectilinear bottleneck Steiner trees, and rectilinear Steiner trees that minimize a combination

of bottleneck weight and total length. We have given evidence that power-p Steiner trees

cannot be exactly computed for p � 5. In addition, we have given bounds on the power-p

Steiner ratio, which measures the quality of a minimum spanning tree as an approximation

of a power-p Steiner tree. We have also derived the exact value of the bottleneck Steiner

ratio and given a fully polynomial-time approximation scheme for computing bottleneck

Steiner trees.

Finally, we have described a system called Mondrian for performing simultaneous

placement and global routing in �eld-programmable gate arrays (FPGAs). Mondrian is a

recursive partitioning strategy that uses optimal rectilinear Steiner trees for sets of terminals

from a small grid. We have presented experimental results indicating that Mondrian

produces results superior to those of previous FPGA layout tools. In addition, we describe

a modi�ed version of Mondrian that computes performance-driven placement and global

routing solutions. The development of Mondrian includes several results of independent

interest, such as minimum-congestion routing in a cycle and computing optimal rectilinear

Steiner trees for terminals in a small grid.

Bibliography

[1] E. H. L. Aarts and P. J. M. van Laarhoven. A new polynomial-time cooling sched-

ule. In Proceedings of the International Conference on Computer-Aided Design, pages

206{208, 1985.

[2] A. V. Aho, M. R. Garey, and F. K. Hwang. Rectilinear Steiner trees: E�cient

special-case algorithms. Networks, 7:37{58, 1977.

[3] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins. An architecture-

independent approach to FPGA routing based on multi-weighted graphs. In

Proceedings of the European Design Automation Conference, pages 259{264, 1994.

[4] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins. Performance-oriented

placement and routing for �eld-programmable gate arrays. In Proceedings of the

European Design Automation Conference, 1995. (To appear).

[5] M. J. Alexander and G. Robins. A new approach to FPGA routing based

on multi-weighted graphs. In Proceedings of the International Workshop on

Field-Programmable Gate Arrays, 1994.

[6] T. Asano. Generalized Manhattan path algorithm with applications. IEEE

Transactions on Computer-Aided Design, 7:797{804, 1988.

[7] H. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley,

Reading, Massachusetts, 1990.

142

Bibliography143

[8] S. Bapat and J. P. Cohoon. A parallel VLSI circuit layout methodology. In Proceedings

of the Sixth International Conference on VLSI Design, pages 236{241, 1993.

[9] S. Bapat, J. P. Cohoon, P. L. Heck, A. Ju, and L. J. Randall. Examining routing

solutions. In Proceedings of the Second Great Lakes Symposium on VLSI, February

1992.

[10] J. E. Beasley. A heuristic for Euclidean and rectilinear Steiner problems. European

Journal of Operational Research, 58:284{292, 1992.

[11] M. R. C. M. Berkelaar. lp solve user's manual (version 1.5). 1994.

[12] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem.

Journal of Algorithms, 17:381{408, 1994.

[13] M. Bern. Faster exact algorithms for Steiner trees in planar networks. Networks,

20:109{120, 1990.

[14] K. D. Boese, A. B. Kahng, and G. Robins. High-performance routing trees with

identi�ed critical sinks. In Proceedings of the Thirtieth Design Automation Conference,

pages 182{187, 1993.

[15] M. A. Breuer. A class of min-cut placement algorithms. In Proceedings of the

Fourteenth Design Automation Conference, pages 284{290, 1977.

[16] M. A. Breuer. Min-cut placement. Journal of Design Automation and Fault-Tolerant

Computing, 1:343{362, 1977.

[17] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field-Programmable Gate

Arrays. Kluwer Academic Publishers, Boston, Massachusetts, 1992.

[18] S. D. Brown, J. S. Rose, and Z. G. Vranesic. A detailed router for �eld-programmable

gate arrays. In Proceedings of the International Conference on Computer-Aided

Design, pages 382{385, 1990.

Bibliography144

[19] J. Burgess. Completing the circuit of science and art. The Washington Post, pages

H1,H6{H7, October 4, 1992.

[20] T. Chao and Y. Hsu. Rectilinear Steiner tree construction by local and global re-

�nement. In Proceedings of the International Conference on Computer-Aided Design,

pages 432{435, 1990.

[21] D. S. Chen. Constrained wirelength minimization of a Steiner tree. Technical re-

port, Department of Electrical Engineering and Computer Science, Northwestern

University, Evanston, Illinois, 1994.

[22] S. Cheng, A. Lim, and C. Wu. Optimal rectilinear Steiner tree for extremal point

sets. In Proceedings of the International Symposium on Algorithms and Computation,

volume 762 of Lecture Notes in Computer Science, pages 523{532. Springer-Verlag,

Berlin, Germany, 1993.

[23] C. Chiang, M. Sarrafzadeh, and C. K. Wong. Global routing based on Steiner min-max

trees. IEEE Transactions on Computer-Aided Design, 9:1318{1325, 1990.

[24] C. Chiang, M. Sarrafzadeh, and C. K. Wong. An optimal algorithm for rectilinear

Steiner trees for channels with obstacles. International Journal of Circuit Theory and

Applications, 19:551{563, 1991.

[25] C. Chiang, M. Sarrafzadeh, and C. K. Wong. An algorithm for exact rectilinear Steiner

trees for switchbox with obstacles. IEEE Transactions on Circuits and Systems,

39:446{455, 1992.

[26] F. R. K. Chung, M. Gardner, and R. L. Graham. Steiner trees on a checkerboard.

Mathematics Magazine, 62:83{96, 1989.

[27] F. R. K. Chung and R. L. Graham. Steiner trees for ladders. Annals of Discrete

Mathematics, 2:173{200, 1978.

Bibliography145

[28] E. J. Cockayne and D. E. Hewgill. Exact computation of Steiner minimal trees in the

plane. Information Processing Letters, 22:151{156, 1986.

[29] E. J. Cockayne and D. E. Hewgill. Improved computation of plane Steiner minimal

trees. Algorithmica, 7:219{229, 1992.

[30] J. P. Cohoon and J. L. Ganley. Rectilinear interconnections in the presence of obsta-

cles. In Y. T. Wong and M. Pecht, editors, Advanced Routing in Electronic Modules.

CRC Press, Boca Raton, Florida. (To appear).

[31] J. P. Cohoon and D. S. Richards. Optimal two-terminal �-� wire routing. Integration:

the VLSI Journal, 6:35{57, 1988.

[32] J. P. Cohoon, D. S. Richards, and J. S. Salowe. An optimal Steiner tree algorithm

for a net whose terminals lie on the perimeter of a rectangle. IEEE Transactions on

Computer-Aided Design, 9:398{407, 1990.

[33] J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Probably good

performance-driven global routing. IEEE Transactions on Computer-Aided Design,

11:739{752, 1992.

[34] J. Cong, K. S. Leung, and D. Zhou. Performance-driven interconnect design based

on distributed RC delay model. In Proceedings of the Thirtieth Design Automation

Conference, pages 606{611, 1993.

[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, Massachusetts, 1990.

[36] D. M. Cvetkovi�c, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Applications.

Academic Press, New York, New York, 1979.

Bibliography146

[37] P. J. de Rezende, D. T. Lee, and Y. F. Wu. Rectilinear shortest paths with rectangular

barriers. In Proceedings of the Seventeenth Symposium on Computational Geometry,

pages 204{213, 1985.

[38] P. M. Dearing and R. L. Francis. A network
ow solution to a multifacility location

problem involving rectilinear distances. Transportation Science, 8:126{141, 1974.

[39] W. A. Dees and P. G. Karger. Automated rip-up and reroute techniques. In

Proceedings of the Nineteenth Design Automation Conference, pages 432{439, 1982.

[40] W. A. Dees and R. J. Smith II. Performance of interconnection rip-up and reroute

strategies. In Proceedings of the Eighteenth Design Automation Conference, pages

382{390, 1981.

[41] L. L. Deneen and J. B. Dezell. Using partitioning and clustering techniques to gen-

erate rectilinear Steiner trees. In Proceedings of the Second Canadian Conference on

Computational Geometry, pages 315{318, 1990.

[42] L. L. Deneen, G. M. Shute, and C. D. Thomborson. A probably fast, provably optimal

algorithm for rectilinear Steiner trees. Random Structures and Algorithms, 5:535{557,

1994.

[43] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195{207,

1972.

[44] Z. Drezner and G. O. Wesolowsky. Layout of facilities with some �xed points.

Computers and Operations Research, 12:603{610, 1985.

[45] D. Z. Du and F. K. Hwang. A proof of the Gilbert-Pollak conjecture on the Steiner

ratio. Algorithmica, 7:121{135, 1992.

[46] A. E. Dunlop and B. W. Kernighan. A procedure for placement of standard-cell VLSI

circuits. IEEE Transactions on Computer-Aided Design, 4:92{98, 1985.

Bibliography147

[47] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin,

Germany, 1987.

[48] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat, and A. Mohsen. An

architecture for electrically con�gurable gate arrays. IEEE Journal of Solid State

Circuits, 24:394{398, 1988.

[49] W. C. Elmore. The transient response of damped linear network with particular

regard to wideband ampli�ers. Journal of Applied Physics, 19:55{63, 1948.

[50] J. Elzinga, D. Hearn, and W. D. Randolph. Minimax multifacility location with

Euclidean distances. Transportation Science, 10:321{336, 1976.

[51] R. E. Erickson, C. L. Monma, and A. F. Veinott Jr. Send-and-split method

for minimum-concave-cost network
ows. Mathematics of Operations Research,

12:634{664, 1987.

[52] J. W. Eyster and J. A. White. Some properties of the squared Euclidean distance

location problem. AIIE Transactions, 5:275{280, 1973.

[53] A. Frank, T. Nishizeki, N. Saito, H. Suzuki, and �E. Tardos. Algorithms for routing

around a rectangle. Discrete Applied Mathematics, 40:363{378, 1992.

[54] J. L. Ganley and J. P. Cohoon. A faster dynamic programming algorithm for exact

rectilinear Steiner minimal trees. In Proceedings of the Fourth Great Lakes Symposium

on VLSI, pages 238{241, 1994.

[55] J. L. Ganley and J. P. Cohoon. FPGA layout by congestion-driven simultaneous place-

ment and routing. Technical Report CS{94{47, Department of Computer Science,

University of Virginia, Charlottesville, Virginia, 1994.

Bibliography148

[56] J. L. Ganley and J. P. Cohoon. Optimal rectilinear Steiner minimal trees in O(n22:62n)

time. In Proceedings of the Sixth Canadian Conference on Computational Geometry,

pages 308{313, 1994.

[57] J. L. Ganley and J. P. Cohoon. Routing a multi-terminal critical net: Steiner tree con-

struction in the presence of obstacles. In Proceedings of the International Symposium

on Circuits and Systems, pages 113{116, 1994.

[58] J. L. Ganley and J. P. Cohoon. Minimum-congestion hypergraph embedding in a

cycle. Technical Report CS{95{04, Department of Computer Science, University of

Virginia, Charlottesville, Virginia, 1995.

[59] J. L. Ganley and J. P. Cohoon. Provably good moat routing. Technical Report

CS{95{13, Department of Computer Science, University of Virginia, Charlottesville,

Virginia, 1995.

[60] J. L. Ganley and J. P. Cohoon. Thumbnail rectilinear Steiner trees. In Proceedings

of the Fifth Great Lakes Symposium on VLSI, pages 46{49, 1995.

[61] J. L. Ganley and J. S. Salowe. Optimal and approximate bottleneck Steiner trees.

manuscript, 1994.

[62] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner

minimal trees. SIAM Journal on Applied Mathematics, 32:835{859, 1977.

[63] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.

SIAM Journal on Applied Mathematics, 32:826{834, 1977.

[64] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-completeness. W. H. Freeman and Company, New York, New York, 1979.

[65] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied

Mathematics, 16:1{29, 1966.

Bibliography149

[66] C. D. Godsil. Spectra of trees. In M. Rosenfeld and J. Zaks, editors, Convexity

and Graph Theory, volume 20 of Annals of Discrete Mathematics, pages 151{159.

North-Holland, Amsterdam, Netherlands, 1983.

[67] G. Golub and J. M. Ortega. Scienti�c Computing: An Introduction with Parallel

Computing. Academic Press, San Diego, California, 1993.

[68] T. G�unther. Die r�aumliche Anordnung von Einheiten mit Wechselbeziehungen.

Elektronische Datenverarbeitung, 11:209{211, 1969.

[69] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. E�cient algorithms for interval graphs

and circular arc graphs. Networks, 12:459{467, 1982.

[70] S. L. Hakimi. Steiner's problem in graphs and its implications. Networks, 1:113{133,

1971.

[71] M. Hanan. On Steiner's problem with rectilinear distance. SIAM Journal on Applied

Mathematics, 14:255{265, 1966.

[72] N. Hasan, G. Vijayan, and C. K. Wong. A neighborhood improvement algorithm for

rectilinear Steiner trees. In Proceedings of the International Symposium on Circuits

and Systems, pages 2869{2872, 1990.

[73] D. W. Hightower. A solution to the line-routing problem on the continuous plane. In

Proceedings of the Sixth Design Automation Workshop, pages 1{24, 1969.

[74] D. W. Hightower. The interconnection problem|a tutorial. In Proceedings of the

Tenth Design Automation Workshop, pages 1{21, 1973.

[75] J. Ho, G. Vijayan, and C. K. Wong. New algorithms for the rectilinear Steiner tree

problem. IEEE Transactions on Computer-Aided Design, 9:185{193, 1990.

Bibliography150

[76] N. D. Holmes, N. A. Sherwani, and M. Sarrafzadeh. Utilization of vacant terminals

for improved over-the-cell channel routing. IEEE Transactions on Computer-Aided

Design, 12:780{792, 1993.

[77] X. Hong, T. Xue, E. S. Kuh, C.-K. Cheng, and J. Huang. Performance-driven Steiner

tree algorithms for global routing. In Proceedings of the Thirtieth Design Automation

Conference, pages 177{181, 1993.

[78] J. N. Hooker. Solving nonlinear multiple-facility network location problems. Networks,

19:117{133, 1989.

[79] J. E. Hopcroft and R. M. Karp. An n5=2 algorithm for maximummatchings in bipartite

graphs. SIAM Journal on Computing, 2:225{231, 1973.

[80] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[81] T. W. Hungerford. Algebra. Springer-Verlag, New York, New York, 1974.

[82] F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM Journal on

Applied Mathematics, 30:104{114, 1976.

[83] F. K. Hwang and D. Z. Du. Steiner minimal trees on the Chinese checkerboard.

Mathematics Magazine, 64:332{339, 1991.

[84] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53

of Annals of Discrete Mathematics. North-Holland, Amsterdam, Netherlands, 1992.

[85] R. Z. Hwang, R. C. Chang, and R. C. T. Lee. The searching over separators strategy

to solve some NP-hard problems in subexponential time. Algorithmica, 9:398{423,

1993.

Bibliography151

[86] T. Ichimori. A shortest path approach to a multifacility minimax location prob-

lem with rectilinear distances. Journal of the Operations Research Society of Japan,

28:269{284, 1985.

[87] J. P. Ignizio and T. M. Cavalier. Linear Programming. Prentice Hall, Englewood

Cli�s, New Jersey, 1994.

[88] J. J�aJ�a and S. A. Wu. On routing two-terminal nets in the presence of obstacles.

IEEE Transactions on Computers, 8:563{570, 1989.

[89] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-

cast performance bounds for simple one-dimensional bin packing algorithms. SIAM

Journal on Computing, 3:299{325, 1974.

[90] A. B. Kahng and G. Robins. A new class of iterative Steiner tree heuristics with good

performance. IEEE Transactions on Computer-Aided Design, 11:893{902, 1992.

[91] A. B. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer Academic

Publishers, Norwell, Massachusetts, 1995.

[92] K. Kanchanasut. A shortest-path algorithm for Manhattan graphs. Information

Processing Letters, 49:21{25, 1994.

[93] R. M. Karp. On the computational complexity of combinatorial problems. Networks,

5:45{68, 1975.

[94] M. Kaufmann, S. Gao, and K. Thulasiraman. On Steiner minimal trees in grid graphs

and its application to VLSI layout. In Proceedings of the International Symposium

on Algorithms and Computation, volume 834 of Lecture Notes in Computer Science,

pages 351{359. Springer-Verlag, Berlin, Germany, 1994.

[95] L. G. Khachian. A polynomial algorithm in linear programming. Soviet Mathematics

Doklady, 20:191{194, 1979.

Bibliography152

[96] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated

annealing. Science, 220:671{679, 1983.

[97] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. GORDIAN: VLSI

placement by quadratic programming and slicing optimization. IEEE Transactions

on Computer-Aided Design, 10:356{365, 1991.

[98] J. Koml�os and M. T. Shing. Probabilistic partitioning algorithms for the rectilinear

Steiner problem. Networks, 15:413{423, 1985.

[99] M. R. Kramer and J. van Leeuwen. Wire-routing is NP-complete. Technical Re-

port RUU-CS-82-4, Department of Computer Science, University of Utrecht, Utrecht,

Netherlands, 1982.

[100] G. Kreweras. Complexit�e et circuits Eul�eriens dan les sommes tensorielles de graphes.

Journal of Combinatorial Theory, Series B, 24:202{212, 1978.

[101] J. B. Kruskal. On the shortest spanning tree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 7:48{50, 1956.

[102] U. Lauther. A min-cut placement algorithm for general cell assemblies based on a

graph representation. Journal of Digital Systems, 4:21{34, 1979.

[103] C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions

on Electronic Computers, 10:346{365, 1961.

[104] D. T. Lee, C. D. Yang, and C. K. Wong. Rectilinear paths among rectilinear obstacles.

Technical Report 92-AC-123, Department of Electrical Engineering and Computer

Science, Northwestern University, Evanston, Illinois, September 1992.

[105] D. T. Lee, C. D. Yang, and C. K.Wong. On bends and distances of paths among obsta-

cles in 2-layer interconnection model. IEEE Transactions on Computers, 43:711{724,

1994.

Bibliography153

[106] J. H. Lee, N. K. Bose, and F. K. Hwang. Use of Steiner's problem in suboptimal

routing in rectilinear metric. IEEE Transactions on Circuits and Systems, pages

470{476, 1976.

[107] G. G. Lemieux and S. D. Brown. A detailed routing algorithm for allocating wire

segments in �eld-programmable gate arrays. In Proceedings of the Fourth Physical

Design Workshop, pages 215{226, 1993.

[108] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley

and Sons, Chichester, England, 1990.

[109] F. D. Lewis, W. C. Pong, and N. Van Cleave. Optimum Steiner tree generation. In

Proceedings of the Second Great Lakes Symposium on VLSI, pages 207{212, 1992.

[110] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,

11:329{343, 1982.

[111] W. W.-L. Lin. Wire length minimization in a simple single-layer circuit. Bachelor's

thesis, Department of Electrical Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts, 1983.

[112] W. Lipski Jr. An O(n logn) Manhattan path algorithm. Information Processing

Letters, 19:99{102, 1984.

[113] R. F. Love, G. O. Wesolowsky, and S. A. Kraemer. A multifacility minimax loca-

tion method for Euclidean distances. International Journal of Production Research,

11:37{45, 1973.

[114] S. Mayrhofer and U. Lauther. Congestion-driven placement using a new

multi-partitioning heuristic. In Proceedings of the International Conference on

Computer-Aided Design, pages 332{335, 1990.

Bibliography154

[115] N. Megiddo. Combinatorial optimization with rational objective functions.

Mathematics of Operations Research, 4:414{424, 1979.

[116] K. Mikami and K. Tabuchi. A computer program for optimal routing of printed circuit

connectors. IFIPS Proceedings, H47:1475{1478, 1968.

[117] J. Milner. Mondrian. Abbeville, New York, New York, 1992.

[118] S. Mirayala, J. Hashmi, and N. Sherwani. Switchbox Steiner tree problem in pres-

ence of obstacles. In Proceedings of the International Conference on Computer-Aided

Design, pages 536{539, 1991.

[119] J. S. B. Mitchell. L1 shortest paths among polygonal obstacles in the plane.

Algorithmica, 8:55{88, 1992.

[120] E. F. Moore. Shortest path through a maze. Annals of the Computational Laboratory

of Harvard University, 30:285{292, 1959.

[121] H. Okamura and P. D. Seymour. Multicommodity
ows in planar graphs. Journal of

Combinatorial Theory, Series B, 31:75{81, 1981.

[122] B. T. Preas. Benchmarks for cell-based layout systems. In Proceedings of the

Twenty-fourth Design Automation Conference, pages 319{320, 1987.

[123] B. T. Preas and M. J. Lorenzetti, editors. Physical Design Automation of VLSI

Systems. Benjamin/Cumming Publishing Company, Menlo Park, California, 1988.

[124] R. C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389{1401, 1957.

[125] J. S. Provan. A polynomial algorithm for the Steiner tree problem on terminal-planar

graphs. Technical Report 83/10, Department of Operations Research, University of

North Carolina, Chapel Hill, North Carolina, 1983.

Bibliography155

[126] R. Raghavan, J. P. Cohoon, and S. Sahni. Single bend wiring. Journal of Algorithms,

7:232{257, 1986.

[127] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor. The rectilinear Steiner

arborescence problem. Algorithmica, 7:277{288, 1992.

[128] D. S. Richards. Complexity of single-layer routing. IEEE Transactions on Computers,

33:286{288, 1984.

[129] D. S. Richards and J. S. Salowe. A linear-time algorithm to construct a rectilinear

Steiner minimal tree for k-extremal point sets. Algorithmica, 7:247{276, 1992.

[130] N. Robertson and P. D. Seymour. Graph minors XIII: The disjoint paths problem.

Journal of Combinatorial Theory, Series B, 63:65{110, 1995.

[131] J. S. Salowe and D. M. Warme. 35-point rectilinear Steiner minimal trees in a day.

Networks, 25:69{87, 1995.

[132] M. J. Saltzman. Personal communication. 1994.

[133] M. Sarrafzadeh and C. K. Wong. Bottleneck Steiner trees in the plane. IEEE

Transactions on Computers, 41:370{374, 1992.

[134] M. Sch�onert et al. GAP: Groups, algorithms, and programming (version 3 release 4).

1994.

[135] N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic

Publishers, Boston, Massachusetts, 1993.

[136] H. Shin and A. Sangiovanni-Vincentelli. A detailed router based on incremental rout-

ing modi�cations: Mighty. IEEE Transactions on Computer-Aided Design, 6:942{955,

1987.

Bibliography156

[137] A. F. Sidorenko. On minimal rectilinear Steiner trees. Diskretnaya Matematika,

1:28{37, 1989. (In Russian).

[138] J. M. Smith, D. T. Lee, and J. S. Liebman. An O(n logn) heuristic algorithm for the

rectilinear Steiner minimal tree problem. Engineering Optimization, 4:179{192, 1980.

[139] W. D. Smith. How to �nd Steiner minimal trees in Euclidean d-space. Algorithmica,

7:137{177, 1992.

[140] J. Soukup. On minimum cost networks with nonlinear costs. SIAM Journal on Applied

Mathematics, 29:571{581, 1975.

[141] J. Soukup. Circuit layout. Proceedings of the IEEE, 69:1281{1304, 1981.

[142] H. Spruth, F. Johannes, and K. Antreich. PHIroute: A parallel hierarchical sea-of-

gates router. In Proceedings of the International Symposium on Circuits and Systems,

pages 487{490, 1994.

[143] P. R. Suaris and G. Kedem. An e�cient algorithm for quadrisection and its ap-

plications to standard cell placement. IEEE Transactions on Circuits and Systems,

35:294{303, 1988.

[144] P. R. Suaris and G. Kedem. A quadrisection-based place and route scheme for

standard cells. IEEE Transactions on Computer-Aided Design, 8:234{244, 1989.

[145] C. D. Thomborson, B. Alpern, and L. Carter. Rectilinear Steiner tree minimization

on a workstation. In N. Dean and G. E. Shannon, editors, Computational Support

for Discrete Mathematics, volume 15 of DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, pages 119{136. American Mathematical Society,

Providence, Rhode Island, 1994.

[146] B. L. van der Waerden. Modern Algebra. Frederick Ungar Publishing Company, New

York, New York, 1949.

Bibliography157

[147] J. A. White. A quadratic facility location problem. AIIE Transactions, 3:156{157,

1971.

[148] P. Widmayer. On graphs preserving rectilinear shortest paths in the presence of

obstacles. Annals of Operations Research, 33:557{575, 1991.

[149] P. Winter. An algorithm for the Steiner problem in the Euclidean plane. Networks,

15:323{345, 1985.

[150] P. Winter. Personal communication. 1994.

[151] P. Winter. Reductions for the rectilinear Steiner tree problem. manuscript, 1994.

[152] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer.

Addison-Wesley, Redwood City, California, 1988.

[153] Y. T. Wong. Personal communication. 1993.

[154] Y. T. Wong and M. Pecht. A solution for Steiner's problem. In M. Pecht, editor,

Placement and Routing of Electronic Modules, pages 261{304. Marcel Dekker, New

York, New York, 1993.

[155] Y. Wu, P. Widmayer, M. D. F. Schlag, and C. K.Wong. Rectilinear shortest paths and

minimum spanning trees in the presence of rectilinear obstacles. IEEE Transactions

on Computers, 36:321{331, 1987.

[156] Y. L. Wu and M. Marek-Sadowska. An e�cient router for 2-D �eld programmable gate

arrays. In Proceedings of the European Design and Test Conference, pages 412{416,

1994.

[157] Xilinx. The Programmable Gate Array Data Book. Xilinx, San Jose, California, 1992.

Bibliography158

[158] Y. Y. Yang and O. Wing. Optimal and suboptimal solution algorithms for the wiring

problem. In Proceedings of the International Symposium on Circuit Theory, pages

154{158, 1972.

[159] A. Z. Zelikovsky. An 11=6-approximation algorithm for the network Steiner problem.

Algorithmica, 9:463{470, 1993.

Vita

Joseph Lavinus Ganley was born in 1968 in Arlington, Virginia. He received the Bachelor

of Science in Computer Science from Virginia Tech in 1990, and the Master of Science in

Computer Science from Virginia Tech in 1992.

159

