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Abstract 

The role of positive selection in molecular evolution has long been debated since the 

proposal of the neutral theory. With the explosive growth of genomic sequence data and 

aided by statistical methods such as Phylogenetic Analysis by Maximum Likelihood 

(PAML), recent years witnessed a flurry of reports of positive selection in protein-coding 

genes. However, with a few exceptions, the reported positively selected sites generally 

lacked functional data to support them. Restriction enzymes in bacteria are under 

constant selective pressure from the bacteria-phage arms race, and in some enzymes 

amino acids responsible for the specificity changes are known. Here I tested the 

performance of PAML using the functionally well characterized type IIL restriction 

enzymes as the model system. The result showed that PAML was highly consistent in 

detecting positive selection in the sequence data. However, in terms of identifying 

positively selected sites, PAML was very sensitive to the sampling bias in the dataset and 

had a high false negative rate and also possibly a high false positive rate. The result 

suggests positively selected sites identified by PAML should be treated with caution and 

validated by functional studies. 
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Introduction 

Positive selection is defined as the process where variants in a population provide higher 

fitness and thus are favored by selection. The importance of positive selection has long 

been accepted at the morphological trait level. However, whether it is important at the 

molecular level is still debated. The neutral theory proposed that instead of natural 

selection, most evolutionary changes at the molecular level are caused by random 

fixation of neutral mutations (Kimura, 1983). Although it does not totally exclude 

positive selection, it does assume that positive selection is rare and thus does not play a 

major role in evolution at the molecular level. Ever since the proposal of neutral theory, 

there has been ongoing debate about the role of positive selection in molecular evolution.  

 

Recent or ongoing positive selection 

The advent of molecular biology made it possible to study molecular evolution using 

DNA and protein sequences. With accumulated sequence data, statistical methods have 

been developed for studying evolution at the molecular level. For recent or ongoing 

positive selection, mainly three tests are used by researchers. The first is the McDonald-

Kreitman (MK) test that compares the nonsynonymous/synonymous substitution rate 

ratio within species (pN/pS) and between species (dN/dS) (McDonald & Kreitman, 

1991). Because positive selection has a larger impact on increasing dN than pN, dN/dS 

significantly higher than pN/pS indicates positive selection. The second is linkage 

disequilibrium (LD). LD refers to non-random association of alleles at different loci. 

Under neutral evolution, recombination causes LD around a new allele to decay 

substantially because it takes the allele a long time to reach high frequency. However, 

positive selection raises allele frequency too rapidly for recombination to break up the 

LD. Based on this principle, long-range LD is used as an indicator of positive selection 

(Sabeti et al., 2002). The third method is Fixation Index (FST) test (Lewontin & Krakauer, 

1973). Recent positive selection can generate differentiation between populations. FST is 

a measure of population difference and significantly different distribution of FST among 

loci from the neutral expectation can be used to infer positive selection (Akey et al., 

2002).  
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Using above methods, researchers started to find evidence of positive selection at the 

molecular level. Researchers not only can conduct MK test but also can calculate α (1 - 

dSpN/dNpS), which indicates the proportion of adaptive substitutions. Using the MK test, 

studies on various Drosophila species found substantial proportions of amino acid 

substitutions driven by positive selection (~45% - Smith & Eyre-Walker, 2002; ~25% - 

Bierne & Eyre-Walker, 2004, ~54% - Begun et al., 2007). Besides Drosophila, another 

study surveyed animals from all phyla (e.g. insects, molluscs, annelids, echinoderms, 

reptiles, birds, and mammals) and concluded that for the majority of animals, more than 

50% of amino acid substitutions were driven by positive selection (Galtier N, 2016). 

Similar result (more than 50% adaptive substitutions) was also reported in enteric 

bacteria (Charlesworth & Eyre-Walker, 2006). After reviewing such studies, Hahn 

proposed a ‘Selection Theory’ in which he argued that positive selection is more 

prevalent and should serve as the null model for population genetics studies (Hahn, 

2008). Besides MK test, positive selection was also detected by the other two methods. 

By long-range LD, widespread signals for recent positive selection were found in the 

human genome (Voight et al., 2006; Sabeti et al., 2007; Williamson et al., 2007). 

Positively selected genes in various organisms (e.g., fishes, plants and human) were also 

identified by high FST by various studies (Nielsen et al., 2009; Hohenlohe et al., 2010; 

Strasburg et al., 2009; Namroud et al., 2008; Akey et al., 2002; Barreiro et al., 2008; 

Myles et al., 2008). 

 

However, analyses in several model systems found no evidence of positive selection. No 

positive selection was detected in 330 human genes by the MK test comparing human, 

chimpanzees and Old World monkeys (Zhang & Li, 2005). Similarly, no positive 

selection was found in Arabidopsis or yeast (Foxe et al., 2008; Doniger et al., 2008). In 

addition these population genetics-based methods often do not have power to determine 

whether departure from the neutral model is due to positive selection or changes in 

population size. For example, for MK test, Eyre-Walker found that increase of effective 

population size can produce artificial evidence of positive selection when there were 

slightly deleterious amino acid substitutions (Eyre-Walker, 2002). For the other two 

methods, high false-positive problem has been reported. Akey reviewed several genome-
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wide positive selection studies in humans and found only 14.1% positive selected regions 

were identified by multiple studies (Akey, 2009). 

 

Past positive selection 

For past positive selection, the dN/dS (nonsynonymous/synonymous substitution rate 

ratio, also called ω) is the most widely used metric for detecting positive selection. 

Assuming selection mostly acts only on nonsynonymous substitutions, ω can be used as a 

measure for selective pressure. In principle, ω can be binned into three categories: 1) ω 

close to 1 - neutral substitution. In this case nonsynonymous and synonymous 

substitutions are fixed at the same rate, which indicates no selection. 2) ω < 1 - purifying 

selection. In this case nonsynonymous substitutions are deleterious and thus are removed 

by selection. ω close to 0 indicates strong purifying selection that removes almost all 

nonsynonymous substitutions. 3) ω > 1 - positive selection. In this case, nonsynonymous 

substitutions provide selective benefits and are fixed at a higher rate than synonymous 

ones (Yang & Bielawski, 2000).  

 

Traditional methods calculate an average dN/dS ratio for the entire protein sequence. 

This is highly conservative, because most sites of the protein may be under strong 

purifying selection (with dN/dS close to 0) and therefore the average dN/dS will be well 

under 1 even when some sites are under positive selection. Yang’s group developed a ML 

method (PAML) that allowed ω to vary among sites. Two steps are involved: 1) a 

likelihood-ratio test (LRT) between the null model (ω <= 1) and the alternative positive 

selection model (ω <= 1 & ω > 1) is conducted. If LRT suggests positive selection, then 

2) sites with high posterior probability to have ω > 1 are identified using a Bayes 

approach (Yang & Bielawski, 2000; Yang, 2007). Later, a branch-site model was 

developed to detect positive selection that only affects sites in specific lineages by 

allowing ω to vary both among sites and among lineages (Goldman & Yang, 1994).  

 

Using dN/dS, various genes have been studied and showed evidence of positive selection 

(Ford, 2002). Among those genes, one classical example was the Major 

Histocompatibility Complex (MHC) gene in vertebrates (Hughes & Yeager, 1998) whose 
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protein products present antigen peptides to T cells in the immune system. Hughes and 

Yeager tested the hypothesis that positive selection acting on peptide-binding region 

(PBR) maintains the polymorphisms of MHC by calculating dN and dS of PBR and non-

PBR. They found significant higher dN relative to dS only in PBR, indicative of positive 

selection. Besides MHC, many immune-related genes have been shown to be under 

positive selection. Positively selected sites were identified in various members of Toll-

like receptor gene family in mammals (TLR2 - Tschirren et al., 2011; TLR9 - Park et al., 

2010; TLR22 – Sundaram et al., 2012), as well as in the CC chemokine receptor genes of 

mammalian immune system (Metzger & Thomas, 2010). Ford surveyed over 100 

published studies and found 119 genes with statistical evidence of positive selection and 

found the largest group (47 genes) was involved in either host defense or parasite 

response (Ford, 2002). Similarly, a study that surveyed all genes in the Drosophila 

genomes also found that immune response genes contained extremely high proportion of 

positively selected codons (Heger & Ponting, 2007). This makes sense because immune 

system genes are thought to be under strong positive selection due to ongoing arms races 

between hosts and pathogens (Heger & Ponting, 2007; Aguileta et al., 2009; Ford, 2002).  

 

Despite all these findings, multiple studies have also challenged PAML. False-positive 

problems have been reported by several papers. Suzuki and Nei found that PAML 

produced an unacceptably high false-positive rate in a simulation study (Suzuki & Nei, 

2002). Hughes and Friedman showed that due to the stochastic nature of substitutions, 

dN/dS > 1 can happen just by chance and the chance was higher for short branches 

(Hughes & Friedman, 2008). By calculating the number of nonsynonymous and 

synonymous substitutions, they also found that sites identified by the branch-site model 

were largely due to lack of synonymous substitutions (Hughes & Friedman, 2008). One 

of the more convincing cases against PAML was presented by Yokoyama et al. using 

dim-light vision proteins in vertebrates as their model system (Yokoyama et al., 2008). 

Using phylogenetic methods, they inferred ancestral states of the protein and then 

engineered 11 ancestral proteins by mutagenesis. After comparing the phenotypes of 

ancestral proteins and extant proteins, they identified 15 adaptive changes at 12 amino 

acid sites. However, PAML identified 8 totally different sites under positive selection 



 

 

 

5 

(with ω > 1) but none of those sites were associated with any functional change. 

Disagreement between the experimental results and PAML predictions demonstrated that 

detecting positive selection purely by statistical methods can be problematic. Using a 

similar approach, Zhuang et al. studied odorant receptor genes in primates and found 

little overlap between sites predicted by PAML and those with experimental support 

(Zhuang et al., 2009).  

 

PAML has been widely used and become influential to our understanding of the role of 

the positive selection in molecular evolution. However, there is still an ongoing debate 

about whether findings from PAML analysis are reliable and biologically meaningful. 

Due to the lack of model systems with functional data, PAML’s performance was mostly 

evaluated by simulation studies (Anisimova et al., 2001, 2002; Wong et al., 2004; Yang 

& dos Reis, 2011). There is a clear need for more studies in real systems to test how well 

PAML works. Using type IIL restriction enzymes in bacteria as the model system, I will 

try to answer two questions: 1) Can PAML detect positive selection? 2) Does PAML 

correctly identify positively selected sites?  

 

The model system 

Bacteria in the natural environment are constantly attacked by phages, which outnumber 

the bacterial cells by a ratio of 10:1. In response, bacteria have evolved immune systems 

such as the restriction-modification system (RM system) to protect against phage 

infections, leading to a pronounced evolutionary arms race (Stern & Sorek, 2010). All 

RM systems consist of two functional modules, a methyltransferase to protect the host 

DNA by methylating specific nucleotide bases within the recognition sequence and an 

endonuclease to cleave unprotected foreign DNA at or near the recognition sequence 

(i.e., restriction site). The enormous selective pressure from the rapid turnover and 

evolution of phage particles has driven rapid evolution and diversification of the RM 

genes, particularly those involved in recognizing the restriction sites (Sharp et al., 1992; 

Murray et al., 1993; Zheng et al., 2004). There are 4,596 known restriction enzymes from 

more than 900 species that recognize 729 restriction sites 

(http://rebase.neb.com/rebase/rebase.html).  
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Unlike most genes studied for positive selection, the precise functions including the 

recognition sequence are known for most RM genes (Roberts et al., 2015). The type II 

RM system is the most common type with high specificity in both methylation and 

cleavage. For most type II RM systems, the methyltransferase and endonuclease are 

encoded by two separate genes and also act independently. However, both proteins need 

to recognize the same target DNA sequence (i.e., restriction site) for normal function. 

Specificity change in merely one module or non-synchronous change in two modules will 

cause the host DNA to be cleaved by its own endonuclease. For this reason, there is 

strong constraint for evolutionary changes for type II RM, since synchronous changes are 

rare. However, in one family of type II RM proteins (type IIL REs), the two functional 

modules are merged into one protein and they share one target DNA recognition domain 

(TRD) (Callahan et al., 2016). As a result, the TRD of type IIL REs should be more 

tolerant to specificity changes and amenable to positive selection.  

 

In support of this idea, evolutionary changes of type IIL RE specificity are frequent and 

labile. Among 21 type IIL REs compared in a study, each had its unique specificity 

(Morgan & Luyten, 2009). With a few exceptions, type IIL REs recognize 6-base 

restriction sites. Most bases in the recognition sequence are free to change with the 

exception of the 5th base, which is highly conserved. The molecular basis of sequence 

recognition in type IIL RE has been elucidated. Amino acids that correlated with the 

specificity changes were identified and 7 of them (corresponding to positions 645, 751, 

773, 774, 806, 808, 810 in MmeI, Figure 1) were confirmed to cause specificity change at 

base 2, 3, 4 and 6 by mutagenesis experiment and the structure of enzyme-DNA complex 

(Morgan & Luyten, 2009; Callahan et al., 2016). Because those specificity changes 

correspond to functional changes in nature, the 7 sites are expected to be under positive 

selection to match the rapid evolution of the restriction sites in phages. As such, type IIL 

REs represent an excellent model system for studying adaptive molecular evolution. 

 

Materials and Methods 

Sequence datasets 
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The nucleotide, protein and recognition sequences of 47 type IIL REs (referred to as 

‘original sequences’ hereafter) were downloaded from REBASE. Homologs of the 47 

original sequences were downloaded from NCBI as follows. NCBI tblastn search with 6 

representative original sequences (the seed sequences) as the query was used to identify 

DNA sequences of type IIL RE homologs (E-value cutoff 1e-30). However, since there is 

no option to download matched CDS (coding DNA sequence) directly from NCBI, I 

chose to download genomes of all bacterial species that had a match in the blastp search. 

Because downloading all genomes for each species (~1,300 species, ~63,000 genomes in 

total) is impractical, and also because many homologs in different strain genomes of the 

same species are identical, I chose to download 2 genomes for each species. CDS were 

extracted from the download genomes and searched against by local tblastn to retrieve 

type IIL RE homologs. After excluding identical sequences, partial sequences and 

homologs that formed an outgroup, 274 homologs were retained. The entire dataset 

consisted of 321 sequences (47 original sequences and 274 homologs). 

 

Simulation studies showed that sequence divergence affected the accuracy and power of 

PAML analysis (Anisimova et al., 2001, 2002; Wong et al., 2004; Yang & dos Reis, 

2011). Accuracy was defined as the probability that a site predicted to be under positive 

selection was truly under positive selection, and power was defined as the probability that 

a site truly under positive selection was predicted to be under positive selection. To test 

the effect of sequence divergence on PAML analysis, I downloaded additional sequences 

that are close to the 6 seed sequences. Homologs were downloaded as above with one 

difference: all genomes of species in the top 50 hits of the blastp search were 

downloaded. I selected four subtrees that contained the seed sequences to assess the 

effect of sequence divergence on PAML analysis (Figure 2). Within each subtree, 

different levels of sequence divergence were achieved by iteratively extracting smaller 

subclades using the original sequences as anchors till about 10 sequences were left. 

Sequence divergence was measured in two different ways. The max dS measures the 

synonymous substitution rate (dS) between the two most distantly related sequences in 

the dataset, and the average dS is the average synonymous substitution rate between all 

pairs of sequences in the dataset. 
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To further expand the range of sequence divergence for PAML analysis, I also compiled 

a dataset consisting of homologs from a single species, Corynebacterium diphtheriae. 

This species was chosen because in the original dataset, there was one pair of highly 

similar sequences from this species with different specificities, suggesting possible recent 

positive selection. I downloaded 180 C. diphtheriae genomes from NCBI from which I 

identified 28 unique homolog sequences. 

 

Phylogenetic analysis 

For all analyses in this study, protein sequences were aligned using MAFFT (version 

7.205, Katoh & Standley, 2013) and the alignment was trimmed by ZORRO (Wu et al., 

2012) with the cutoff 4 to remove low-quality aligned columns. The protein alignments 

were used to guide the alignment of corresponding nucleotide sequences using an in-

house perl script. RAxML (version 8.2.4, Stamatakis, 2014) was used in all phylogeny 

reconstruction. Substitution models used for protein and nucleotide alignment were 

PROTCATWAG and GTRCAT respectively. The topology of phylogenetic tree was 

based on the trimmed protein alignment and the branch lengths estimated using the 

nucleotide alignment were multiplied by 3 to get codon-based branch lengths for the 

following dN/dS ratio analyses. 

 

Ancestral state/sequence reconstruction 

Using the phylogeny of the 47 original sequences, the ancestral states of recognition site 

were reconstructed by parsimony using Mesquite (version 3.31, Maddison WP & DR 

Maddison, 2017). The ancestral sequences of the enzymes were reconstructed by 

maximum likelihood method using CODEML in PAML (version 4.9e, Yang, 2007). 

 

PAML analysis 

Two models of CODEML in PAML (version 4.9e, Yang, 2007) were used. The site 

model that allowed ω ratio to vary across all codons was used unless otherwise noted. I 

compared the recommended model pair M7 (beta) and M8 (beta&ω). M7 assumes a beta 

distribution (in the interval [0, 1]) for all ω among sites and serves as the null model. M8 
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adds one more class of ω that allows ω to be higher than 1 and serves as the alternative 

model. The likelihood ratio test was conducted for the pair of models first and if the 

difference was statistically significant, a Bayesian approach was then used to calculate 

the posterior probability of ω > 1 for each site and sites with a probability higher than 

0.95 were identified as positively selected sites. To avoid likelihood being trapped in a 

local optimum, for each analysis I tried two initial ω values (0.4 and 1.5) as the starting 

points and only included the result with the higher likelihood. In all analyses except one 

case (the whole dataset), starting with different initial values always resulted in 

convergence to the same likelihood.  

 

Because the 6th base in the recognition sequence is partially conserved (G or C), the 

branch-site model was applied to detect positive selection that might only act on a few 

branches (branches involving changes between G and C). The branch-site model was 

only applied on the original sequences because functional information was required to bin 

the branches into two different categories. I applied the branch-site model on the 47 

original sequences and the 10 original sequences from subtree 2. 

 

Bootstrap analysis 

To investigate the consistency of PAML, I conducted a bootstrap analysis with 100 

pseudoreplicates. I used subclade 2 dataset of subtree 2 for bootstrap analysis because 

PAML identified the largest number of sites under positive selection in this dataset. For 

each pseudoreplication, I randomly selected 50 sequences without replacement from the 

82 sequences of the subclade 2 and carried out a PAML analysis as described above. The 

bootstrap support of a site was calculated as the number of times it was identified as 

positively selected sites in the 100 pseudoreplicates. 

 

Results 

Evolution of type IIL RE specificity  

As expected, the evolution of recognition sequences of type IIL REs was rapid (Figure 3). 

Among the 6 bases of the recognition site, only the 5th base was highly conserved (A). 

The 6th base changed with some constraint (G/C) while the remaining four bases all 
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changed frequently. Using parsimony, I reconstructed the evolutionary history of type IIL 

RE specificity. The number of specificity change events inferred from the tree in Figure 3 

was 20 for the 1st base, 19 for the 2nd base, 19 for the 3rd base, 20 for the 4th base and 

11 for the 6th base (Figure 4). 

 

Next I reconstructed the ancestral states of the 7 amino acids that conferred restriction 

site specificity. In particular, I was interested in whether the amino acid substitutions that 

cause specificity changes in the mutagenesis experiment actually occurred during the 

history of evolution. Table 1 lists the specific amino acid substitution at each site (from 

the mutagenesis experiment), the number of substitution events of that particular 

substitution, and the total number of substitution events reconstructed using the 

phylogeny of 47 original sequences. My results showed that these substitutions not only 

happened during evolution but were the most prevalent substitution types at positions 

645, 773, 806, 808 and 810. Remarkably, all the substitution events at positions 806 (K-

>E) and 808 (D->R) happened in perfect synchrony with specificity changes from G->C 

at base 6 (Figure 4). Moreover, the amino acid substitutions and specificity change 

happened multiples in parallel in the tree (Figure 4).  

 

PAML analysis of the whole dataset 

When the whole dataset was used (47 original sequences + 274 homologs), the likelihood 

ratio test indicated the existence of positive selection (p < 0.01, Table 2). However, the 

Bayesian approach did not identify any site with ω>1. The overall distribution of ω is 

shown in Figure 5A. Relatively high ω values were mostly found within the 

methyltransferase domain and TRD, but no ω exceeded 1.  

 

The Max dS in the whole dataset was 9.02 synonymous substitution per synonymous site 

(Table 2), which meant on average 9 synonymous substitutions per codon had occurred 

since the divergence of the sequence pair. It was quite possible that the sequences in the 

whole dataset were too divergent for PAML to work. To reduce the sequence divergence, 

I carried out PAML analyses in subclades of the tree.  
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Effect of sequence divergence 

Among the 22 subclades of sequences that I tested, PAML detected positive selection in 

20 subclades (likelihood ratio test, Table 2). However, only the subtree 2 consistently 

identified positively selected sites at different sequence divergence levels. The 

distributions of ω from the subtree datasets were similar to that of the whole dataset in 

that relative high ω appeared in the methyltransferase and TRD (Figure 5B).  

 

The number of positive sites identified by PAML was sensitive to the sequence 

divergence. For subtree 2, PAML identified more sites as the sequences divergence 

decreased from max dS of 8.46 synonymous substitutions per synonymous site, peaking 

at max dS of 7.43 synonymous substitutions per synonymous site. Further decrease in the 

max sequence divergence resulted in fewer sites being identified, until finally no site was 

identified when max dS reached 1.91 synonymous substitutions per synonymous site. In 

general, sites identified at lower sequence divergence were subsets of sites identified at 

higher sequence divergence. 

 

For the third subtree, although likelihood ratio tests were always significant along 

different sequence divergence, only the highest and the lowest divergent datasets 

identified sites. However, the sites were not consistent with each other (Table 2). 

 

For 28 close sequences from C. diphtheriae, sequence divergence was substantially lower 

(max dS = 0.4 synonymous substitutions per synonymous site). I found no evidence of 

positive selection as there was no significant different likelihoods between the null and 

alternative models. 

 

Consistency of PAML analysis 

To explicitly test the consistency of PAML analysis, I carried out a bootstrap analysis 

with 100 pseudoreplicate datasets that were derived from 82 sequences in the subclade 2 

of subtree 2. Each of the 100 pseudoreplicate datasets contained 50 sequences of similar 

sequence divergence (max dS, mean: 6.56 synonymous substitutions per synonymous 

site, standard deviation: 0.82 synonymous substitutions per synonymous site). PAML 
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detected positive selection in each of the 100 pseudoreplicates (likelihood ratio test, 

p<0.01). The number of positively selected sites identified by PAML in each dataset 

ranged from 3 to 26. In total, 55 sites were identified and the average bootstrap support 

value was 20.5%. Among all the identified sites, 8 sites (594, 631, 656, 669, 708, 745, 

767, 774) appeared in more than half of the 100 datasets (bootstrap > 50, Figure 6) and 

their locations in the structure of the enzyme were shown in Figure 7.  

 

Results from the branch-site model 

For the branch-site model, no matter which dataset (the 47 original sequences or the 10 

original sequences, Table 2) was used, no positive selection was detected as there was no 

significant difference in the likelihood between the null and the alternative model. 

 

Discussion 

Evidence for positive selection in type IIL REs 

My ancestral reconstruction of the restriction sites of type IIL REs showed there had been 

extensive changes of functions (i.e., specificity) during the history of evolution. Given the 

clear fitness benefit of changing specificity in response to evolving phages, these 

functional changes are most likely adaptive. Accordingly, using the likelihood ratio test, 

PAML consistently detected positive selection in the entire dataset and the subclades of 

sequences. However, PAML was less consistent in identifying sites under positive 

selection. Among 4 subtrees analyzed, PAML was able to identify sites only in two of 

them. Variation in sites detected by PAML among the 4 subtrees might be biological, i.e., 

in different bacterial lineages, different sites were under positive selection in response to 

different foreign DNAs in the environment. Alternatively, it suggests PAML is sensitive 

to the sampling bias in the dataset as discussed below.  

 

Impact of sequence divergence 

Sequence divergence had a large impact on positively selected sites identified by PAML. 

PAML identified no positively selected sites in datasets containing the most and least 

divergent sequences (i.e., the whole dataset and sequences from C. diphtheriae). Within 

subtree 2, zero and two sites were found in the least and most divergent datasets 
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respectively, while more sites were identified in the medium divergent datasets. This was 

expected because neither too divergent sequences nor too similar sequences are 

informative. Simulation study by Yang’s group has shown that PAML’s accuracy and 

power were higher when analyzing medium and high divergent datasets (Anisimova et 

al., 2002).  

 

It has also been shown that adding more sequences largely increased both the accuracy 

and power of PAML (Anisimova et al., 2002). As a result, larger datasets were more 

tolerant of higher sequence divergence than smaller datasets and there was no one cutoff 

for sequence divergence in PAML analyses. As seen in this study, the effect of sequence 

divergence in the more divergent datasets was mitigated by the increasing number of 

sequences, as the average dS increased at a lower rate than the max dS. For reference, I 

surveyed some of the previous studies in which positively selected sites had been 

identified. The sequence divergence used in those studies measured by max dS ranged 

from 0.15 to 4.45 synonymous substitutions per synonymous site, and measured by 

average dS ranged from 0.067 to 1.52 (Yang, 1998; Yang et al., 2000; Yang, Swanson & 

Vacquier, 2000; Yang & Swanson, 2002; Viljakainen & Pamilo, 2008; Areal et al., 

2011). The divergence of the datasets in this study overlapped with previous studies but 

spanned a larger range (max dS ranged from 0.4 to 9.66, and average dS ranged from 

0.21 to 2.79 synonymous substitutions per synonymous site). The more divergent datasets 

in my study were compensated by including many more (>50) sequences than the 

previous studies. 

  

False positives and negatives 

7 sites responsible for specificity changes at bases 2, 3, 4, 6 in type IIL restriction 

enzymes have been identified by mutagenesis experiments. Most of mutants at these sites 

retained comparable activities (Morgan & Luyten, 2009; Callahan et al., 2016), 

suggesting few if any sites other than these 7 amino acids contributed to sequence 

recognition. The 7 sites were all located within the TRD and close to DNA (Figure 1B). 

Moreover, extensive parallel changes at sites (645, 773, 806, 808, 810) strongly 

implicated the importance of the amino acid replacement in the functional adaptation. As 
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such, they represented the best candidates for positively selected sites in this enzyme and 

therefore were used as true positives to benchmark the performance of PAML. 

 

Among the 17 sites identified by PAML, only one site (774) belonged to the set of true 

positive sites. All the other sites were either in the TRD or methyltransferase domain. 

None of them were located close to DNA in the structure or correlated significantly with 

specificity changes (Morgan & Luyten, 2009; Callahan et al., 2016). Because amino acids 

not making direct contact with DNA can also influence specificity (Lukacs et al., 2000), I 

cannot exclude the possibility that other positively selected sites exist. On the other hand, 

for the reason I discussed above, I think it is unlikely many more such sites exist, except 

for the unidentified sites responsible for specificity changes at the 1st base. One possible 

reason why only site 774 has been identified by PAML is that site 774 was under 

diversifying selection, while other 5 sites with functional support were mostly under 

directional selection (Table 1). Yang’s group also proposed the possibility that PAML is 

better at detecting recurrent diversifying selection, but lack the power in directional 

selection detection (Anisimova et al., 2002). The little overlap between sites identified by 

PAML and the 7 true positive sites showed that PAML had clearly a high false negative 

rate and also quite possible a high false positive rate. The same problem has been 

reported in previous studies that tested PAML in systems with functional data 

(Yokoyama et al., 2008; Zhuang et al., 2009).  

 

My results also suggest that neither the posterior probability nor bootstrap value is a good 

metric of confidence that can be placed on the sites identified by PAML. All the 

identified sites had a posterior probability of >0.95 to have ω>1. Two of them (sites 708 

and 656) also had very high bootstrap support values (> 80%).  

 

Consistency of PAML 

PAML was very consistent in detecting positive selection in type IIL REs. However, it 

was not so consistent in identifying positively selected sites. The average bootstrap value 

of the 55 identified sites was 20.5% and only 8 of them received a bootstrap support 

greater than 50%. The low bootstrap support suggested that signal used by PAML to 
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identify positively selected sites was weak and PAML was very sensitive to the sampling 

bias in the dataset. Similarly, study using HA1 gene of human H3N2 influenza virus as 

the system also found similar inconsistency problem of PAML. They showed large 

variation among identified sites from seven highly overlapped datasets (Chen & Sun, 

2011).  

 

Conclusion 

Using Type IIL as the model system, my results showed that PAML was very consistent 

at detecting positive selection in molecular sequences, but performed poorly in 

identifying positively selected sites. PAML failed to identify the vast majority of sites 

that were presumably under positive selection and instead identified many possible false 

positive sites, resulting in both low sensitivity and specificity. Given the likely high false 

positive rate, we should treat sites identified by PAML with caution and validate them 

with functional data whenever possible.   
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Tables 

Table 1. Evolutionary changes of the 7 amino acid sites conferring specificity. 

Recognition site 

base 
Amino acid 

Amino acid 

substitution 
# of change/# of total change 

2nd 645 K <--> M 11/21 

3rd 
751 E <--> R 1/28 

773 N <--> D 15/19 

4th 
774 A <--> K 0/31 

810 R <--> S 7/12 

6th 
806 E <--> K 10/12 

808 R <--> D 10/11 

 

 

 

Table 2. Evidence for positive selection and positively selected sites identified by PAML 

Dataset 

Total # 

(original 

sequence # + 

homolog #) 

2ΔlnL 

M7 vs. M8 
Sites by M8 

Max dS 

(synonymous 

substitution 

per 

synonymous 

site) 

Average dS 

(synonymous 

substitution 

per 

synonymous 

site) 

Whole dataset:  321 (47+274) 50.70** None 9.02 2.76 

Sequence divergence analysis 

Subtree 

1 

Subclade 1 90 (5+85) 0 Not applicable 9.66 2.51 

Subclade 2 69 (4+65) 28.60** None  7.45 2.51 

Subclade 3 55 (4+51) 245.84** None 6.99 2.43 

Subclade 4 42 (2+40) 550.88** None 5.81 2.58 

Subclade 5 19 (2+17) 173.31** None 4.64 2.06 

Subclade 6 13 (1+12) 338.59** None 4.21 2.04 

Subtree 

2 

Subclade 1 186 (10+176) 303.97** 656, 745 8.46 2.47 

Subclade 2 82 (7+75) 114.18** 
594, 631, 656, 666, 669, 

706, 708, 745, 767, 774 
7.43 2.37 

Subclade 3 57 (6+51) 81.59** 
594, 630, 656, 669, 708, 

745, 774 
6.79 2.34 

Subclade 4 47 (4+43) 90.85** 
594, 630, 631, 632, 669, 

709, 745, 774 
6.79 2.05 
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Subclade 5 29 (3+26) 116.56** 630, 632, 709, 745 4.69 1.51 

Subclade 6 22 (1+21) 154.75** 557, 630, 632, 745 2.17 1.22 

Subclade 7 14 (1+13) 2371.86** None  1.91 1.20 

Subtree 

3 

Subclade 1 71 (8+63) 447.39** 713 7.76 2.76 

Subclade 2 46 (6+40) 409.99** None  8.73 2.51 

Subclade 3 32 (2+30) 581.24** None  6.91 2.38 

Subclade 4 20 (1+19) 38.06** None  5.34 2.26 

Subclade 5 9 (1+8) 478.69** 591, 635 4.76 2.62 

Subtree 

4 

Subclade 1 55 (4+51) 25.39** None  6.04 2.60 

Subclade 2 48 (3+45) 0 Not applicable 6.87 2.66 

Subclade 3 31 (2+29) 32.52** None  5.41 2.66 

Subclade 4 12 (2+10) 290.46** None  4.44 2.66 

 

Sequences from C. 

diphtheriae 
30 (2+28) 0.53 Not applicable 0.40 0.21 

Branch-site model analysis 

Whole dataset 47 0 Not applicable 6.90 2.79 

Subtree dataset 10 0 Not applicable 3.00 2.58 

2ΔlnL (twice the log likelihood difference between models) is compared to a χ2 

distribution with 2 degrees of freedom (critical values 5.99, 9.21 at 5% and 1% 

significance respectively, ‘**’ means p<0.01). Only sites with probability higher than 

0.95 to be with ω > 1 are included (sites with probability higher than 0.99 are 

underlined).  
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Figure Legend 

Figure 1. The structure of MmeI enzyme-DNA complex. A) side view with the 6 bases 

of the recognition site labeled. B) top view. 7 amino acids that recognize the 6 bases are 

labeled in black. The endonuclease domain of the enzyme is not shown. 

 

Figure 2. Phylogeny of Type IIL RE 796 sequences (47 original sequence + 749 

homologs from genomes of 189 bacterial species). The original sequences are labeled 

along with the four subtrees used in the sequence divergence analysis. 

 

Figure 3. Rapid evolution of recognition sites in type IIL restriction enzymes. The left is 

the phylogeny of 47 original sequences. The right is the alignment of recognition sites, 

with different nucleotides highlighted in different colors. The number of evolutionary 

changes in every base of recognition site is summarized in the first row. 10 original 

sequences used for branch-site model analysis are in red. 

 

Figure 4. Evolutionary changes of amino acid sites (806, 808) and 6th base of the 

recognition site. Change (G->C) at 6th base and amino acid changes at 806 (K->E), 808 

(D->R) were concurrent and were labeled in green on the phylogeny of the 47 original 

sequences. Other type of amino acid substitutions were labeled in red. No changes were 

inferred on unlabeled branches. 

 

Figure 5. Overall distribution of ω among all sites in the sequence alignment with five 

domains differently colored. A) the whole dataset containing the 47 original sequences 

and 274 homologs. B) Subclade 2 of subtree 2 (7 original sequences and 75 homologs). 

10 sites identified to be under positive selection are circled in red. 

 

Figure 6. Result of PAML bootstrap analysis with 100 pseudoreplicates. Amino acid 

positions (sites) of MmeI enzyme are shown on the X-axis. Y-axis shows the number of 

times a site was identified under positive selection by PAML. Sites with greater than 50% 

bootstrap support are labeled in red. 

 

Figure 7. Positions of the 8 most frequently identified positively selected sites (labeled in 

red) from the bootstrap analysis. 
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Figure 1. 
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Figure 2. 
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Figure 3. 

 
 

 

 

  1 2 3 4 5 6 

# of changes  20 19 19 20 0 11 

Cma23826I  C G G A A G 

Yps3606I  C G G A A G 

SplRp8I  C C C A A G 

Exi27195I  G C C G A C 

NpeUS61II G A T C G A C 

Pst273I G A T C G A G 

Cba4G11III  C A C G A G 

Nbr128II  A C C G A C 

Eli8509II  C C G G A G 

Pse18267I R C C G A A G 

HbaII  G C C C A G 

Pdu1735I  C A C C A C 

Gba708II  A T G C A C 

Asu14238IV  C G T R A C 

Jma19592I G T A T N A C 

Mspl7II  A C G R A G 

LfuRB21I  A A G G A G 

Lmo11AII  T A G R A G 

Bsu7003I  G A C G A G 

NmeAIII  G C C G A G 

NflHI  G C G G A G 

NlaCI  C A T C A C 

PspPRI  C C Y C A G 

PlaDI  C A T C A G 

MchCM4I  G A G G A G 

WviI  C A C R A G 

SdeAI  C A G R A G 

AquIII  G A G G A G 

Pme5II  G A C G A G 

MmeI  T C C R A C 

EsaSSI  G A C C A C 

RlaII  A C A C A G 

CcoMI  C A G C A G 

Bsp3004IV  C C G C A T 

Awo1030IV  G C C R A G 

RflFIII  C G C C A G 

AteTI  G G G R A G 

Esp3007I  C A G A A G 

Lpl116III  C A G R A G 

Rba2021I  C A C G A G 

CdpI  G C G G A G 

Cdi11397I  G C G C A G 

BloAII  G A G G A C 

CstMI  A A G G A G 

ApyPI  A T C G A C 

Rsp008IV  A C G C A G 

AchA6III  A G C C A G 
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Figure 4. 
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Figure 5. 
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Figure 7. 

 

 

 


