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A Bose-condensate atom interferometer is used to measure vector tune-out
wavelengths in 87Rb. These are the polarization dependent wavelengths at which
the ac electric polarizability equals zero. Precision control of the rotating magnetic
bias field is demonstrated. This field is then used to vary the optical polarization
in a controlled manner at the 10−5 level. This shifts the tune-out wavelength
and the measured polarization dependence of the tune-out wavelengths is used to
determine the various contributions to the polarizability including that of the core
electrons, and notably the higher-lying dipole matrix element “tail” components.
These tails are of importance to the theoretical analysis of atomic parity violation
and other fundamental physics measurements. We report the first experimental
measurement of tail components of the electric polarizability. These are |t1/2|2 =

5(4) au and |t3/2|2 = −4(4) au for the n′J1/2 and n′J3/2 components respectively.
Within the experimental uncertainty they are in agreement with the best current
estimates of these contributions |t1/2|2 = 0.022(22) au and |t3/2|2 = 0.075(75) au.
Improvements to the experimental design to improve the experimental precision
and place a better constraint on the tail values are discussed.
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Chapter 1

Introduction

Advances in atomic physics over the last century have led to the development of

robust theoretical predictive techniques. Until quite recently, much of our knowl-

edge of atomic structure informing these theoretical predictions has primarily been

derived from precise spectroscopic measurements of atomic energy levels. While

these measurements have lead to significant advances in our understanding of the

physical world and to numerous technologies upon which the modern world relies

heavily, atomic energy levels are just part of the picture. A complimentary and

necessary additional consideration is the atomic response to applied fields, in par-

ticular electric fields. This response is characterized by the electric polarizability.

The polarizability is fundamental to a number of physical phenomena. Exam-

ples include optical trapping [1], van der Waals interactions [2], and decoherence

of quantum logic gates [3]. Additionally dipole matrix elements show up in far-

reaching analyses such as atomic parity violation [4], which I will describe shortly.
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In each of the cases, insufficient knowledge of either the polarizability or the dipole

matrix elements included in calculation thereof is an important limitation on the-

oretical advancement. The work presented in this thesis outlines an experimental

effort to make direct measurement of these difficult to access components of the

polarizability possible.

This thesis is organized as follows: the remainder of this chapter continues the

general motivation and introduces the polarizability in detail. Chapter 2 describes

the experimental apparatus. Though it is described elsewhere [5–7], specific as-

pects of its design are relevant here. Chapter 3 goes over several tools necessary

for the successful implementation of the general experimental method, specifically

precision measurement and control of optical polarization. Chapter 4 presents the

detailed theory of the polarization dependence of the polarizability and discusses

the experimental results and several important challenges. It ends in Chapter 5

with the blueprints for several key improvements to the current experimental de-

sign and a roadmap for the next steps in the continuing experimental process to

measure the higher-lying dipole matrix elements.

1.1 Dipole matrix elements

Dipole matrix elements characterize transition strengths between atomic states

via an electromagnetic field and are thus vital when dealing with atom-light in-

teractions as in the examples above. They are defined as dif = 〈i|d|f〉 and show

up in many different but related atomic phenomena such as in the polarizability
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α, atomic lifetimes τ , the Einstein coefficients, the C3 coefficient, and the oscilla-

tor strengths fif . In general, the dipole matrix elements are not all well known

and typically cannot easily be dealt with in broader, precision calculations and

analyses.

The lowest-lying, principal ground state dipole matrix elements however are

straightforward to measure in the alkalis. In 87Rb, these are [8]

|d1/2| = 〈5S1/2||d||5P1/2〉 = 4.233(2) au (1.1)

and

|d3/2| = 〈5S1/2||d||5P3/2〉 = 5.978(4) au. (1.2)

These principal matrix elements can be measured in a number of ways: through

lifetime measurements [9], fluorescence [10], and photo-association spectroscopy

[11]. Combined, these results give a reasonable part per thousand accuracy, while

leaving significant room for improvement. Unfortunately in many cases, such

as those mentioned previously, an infinite sum over all dipole matrix elements is

typically present in the theoretical calculations of interest, and higher-lying matrix

elements, such as n′ > 5 for 87Rb, are much more difficult to measure directly with

any reasonable precision due to the introduction of multiple potential decay paths.

It is however possible to calculate an individual dipole matrix element with

reasonable precision [12]. The lower-lying matrix elements which tend to dominate

typical applications are the most straightforward, and reasonable numbers exist for
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Figure 1.1: 87Rb ground state dipole matrix element values. The points show
measurements of the |dJ | = 〈5PJ ||d||5S1/2〉 dipole matrix elements, for
J ′ = 1/2 (squares) and J ′ = 3/2 (circles). The first three points are
measurements by Volz et al. [9], Simsarian et al. [10], and Gutterres et al. [11].
The fourth point is the error-weighted average from the three groups.

87Rb up to n′ = 12 [8]. The infinite remaining higher-lying dipole matrix elements

(e.g. n′ > 12 in 87Rb) though do not fall off sufficiently fast to be neglected

in any calculation with a sum over all states, and become harder to calculate

at higher energy as the volume encompassed by the wave function grows. They

are commonly lumped into a single term referred to as the “tail” in theoretical

calculations. Any value given for this term is typically just an estimate of the

contribution of these uncalculated terms. As this is a difficult task, these estimates

tend to have 100% uncertainty [13–15].

Through several novel advances in the relatively new measurement technique

of tune-out wavelength spectroscopy, the work presented in this thesis describes

a push towards the first experimental measurement of these difficult to measure

high-lying matrix elements. We expect that the full results to serve as a benchmark

for theorists on which to test their calculations techniques to better predict the

infinite manifold of dipole matrix elements, not just in 87Rb but also the other
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alkalis and beyond.

1.2 Atomic parity violation

I want to briefly touch on atomic parity violation (APV) as an example to better

put into context how dipole matrix elements appear in theoretical calculations.

Atomic parity violation is a low-energy atomic physics measurement which can

place a useful constraint on the Standard Model. By measuring the asymmetry

in a dipole-forbidden S → S transition, it is possible to extract the weak charge

of the neutron. This can be used to find the weak mixing angle θW [16], which is

one of the free parameters in the Standard Model. The value of the weak mixing

angle depends on energy, with different regimes in its running dependent on the

mass of various fundamental particles. Its energy dependence and the numerous

measurements to constrain it is shown in Fig. 1.2. We can see that θW varies little

below roughly 100 GeV. In this regime, several fundamentally different experiments

can constrain this value at energies spanning two orders of magnitude [17–19].

Atomic parity violation is one of those experiments. The best APV mea-

surement to date was performed in 1997 using a Cs atomic beam apparatus at

JILA. The experiment was able to achieve a 0.35% experimental uncertainty [17].

Relating the transition amplitude of this dipole-forbidden transition to the weak

mixing angle involves an infinite sum over states of the following form

ATheory
PNC =

∞∑

n′=6

( 〈7S|d|n′P1/2〉〈n′P1/2|HPNC |6S〉
E6S − En′P1/2

+
〈7S|HPNC |n′P1/2〉〈n′P1/2|d|6S〉

E7S − En′P1/2

)
. (1.3)
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Figure 1.2: Shown here is the running of the weak mixing angle θW . Of
particular interest are the three lowest energy measurements, APV, Qweak,
and SLAC-E158, which constrain θW at low energies, but currently are in some
disagreement. Better understanding of high-lying dipole matrix elements can
help reduce the APV uncertainty. The figure is taken from the 2018 Particle
Data Group’s update [20].

APNC is the parity nonconservation amplitude. The parity non-conserving

terms in the sum, 〈n′P1/2|HPNC |6S〉, are straightforward to calculate directly. The

difficulty in this analysis lies instead in the dipole matrix elements |dif | = 〈i||d||f〉

where there is insufficient theoretical or experimental constraint on the values as

the sum tends to infinity. As of this writing, the best theoretical values for this

sum introduces an uncertainty on the order of the experimental uncertainty, at

0.4%, and even through significant refinement of the calculation techniques, actual

reduction in this analysis-derived uncertainty has progressed slowly over the past

decade [13–15]. This is a testament to the difficulty inherent in this problem. As

much as 80% of the uncertainty from the analysis is from the higher-lying tail

contribution, which have effectively preempted any motivation for a new APV
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measurement using recent advances in the field.

Recent measurements including Möller at SLAC [18] and QWeak [19] at

JLAB, have driven down uncertainties on θW in the intermediate energy regime.

Since these experiments constrain the weak mixing angle in a similar region to

APV where the running of the weak mixing angle is flat, it is worthwhile to con-

sider how to improve upon the APV number to continue giving a competitive

independent measurement, particularly as the other experiments in the low en-

ergy regime have thus far been unable to reach their design precisions leaving

further room for improvement across the low energy regime. It is worth noting

also that these measurements show some disagreement.

Reducing the various uncertainties might help give insight into why this dis-

agreement is present. Without even the need for a new experimental measurement,

there is nearly a factor of two to gain through driving down the theoretical uncer-

tainty introduced by the APV analysis. The bulk of this dissertation lays out a

roadmap to doing just that through the use of precision measurements of dipole

matrix elements using the ac Stark effect and related tune-out wavelengths. We

further hope to motivate new APV measurements once the uncertainty in the anal-

ysis is reduced to take advantage of improvements in atomic physics techniques

that have emerged in the past two decades.
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1.3 Tune-out wavelengths

A significant motivation for the work presented in this thesis is in the need for ei-

ther experimental measurements or improved theoretical calculations of the dipole

matrix elements. We seek to develop and implement an experimental program to

measure the matrix elements needed for the atomic parity violation and other

analyses using our 87Rb Bose-condensate atom-interferometer. Though the APV

measurement of Wood et. al. [17] was done using Cs for improved sensitivity, we

hope that our work will serve as a benchmark for theoretical calculation techniques

needed to estimate the higher-lying and tail contributions.

One way to measure the dipole matrix elements is through measurements of

the Stark effect [21], an energy shift due to an applied electric field. This shift is

expressed as

U = −1

2
α(ω)〈E2〉. (1.4)

This energy shift is proportional to the electric polarizability α, and the square of

the electric field 〈E2〉. Notably, the matrix elements of interest are contained in α.

Being a second order perturbative effect, α takes the form

αi(ω) =
1

~
∑

f

2ωif
ω2
if − ω2

|dif |2. (1.5)

The sum is over all final states with the subscripts i and f denoting the ini-

tial and final states respectively. The matrix elements are defined as usual as

|dif | = 〈i|d|f〉. Through the choice of initial state i, the matrix elements needed
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in the APV analysis can be represented in the sum, though our initial imple-

mentation will focus on the ground state matrix elements |df | = 〈5S1/2||d||f〉.

The transition frequencies between states i and f are given by ωif , and ω is the

oscillation frequency of the electric field.

Precision measurements of the dc Stark effect have been done [22, 23], but

they lack the ability to fully separate out the individual matrix elements of interest.

The use of an oscillating electric field E = E(t) makes use of the ac Stark effect

and allows taking advantage of the different frequency dependences of the various

terms in α. This separation of terms is crucial in being able to determine the

individual dipole matrix elements, though there are significant drawbacks to ac

Stark measurements that must be overcome. Unlike in a dc Stark measurement

where an electric field constant in time can readily be calibrated, in situ intensity

calibration of an oscillating electric field such as from a laser is difficult to do with

any reasonable precision making direct ac Stark shift measurements ill-suited for

measuring dipole matrix elements [24]. Fortunately an alternative experimental

technique exists.

If we look at Fig. 1.3 showing the polarizability between the D1 and D2 lines,

we can see that there is a frequency ω where α(ω) = 0. As long as U ∝ I, then

if α(ω0) = 0 for some ω0, it follows that U(ω0) = 0 for any intensity I, thereby

getting around the intensity calibration issue in direct measurements of the Stark

shift. Zeroes in the ac electric polarizability are known as tune-out wavelengths.

The locations of tune-out wavelengths are dependent essentially upon ratios of the

dipole matrix elements for the relevant states. This can be seen for example if one
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Figure 1.3: Pictured here is the scalar polarizability near the 5S1/2 to 5P1/2

and 5P3/2 transitions. The tune-out wavelength near 790 nm is marked as λ0.

only considers the lowest lying contributions in Eq. (1.5). If it were possible then

to measure all tune-out wavelengths, we could relate the higher-lying dipole matrix

elements to the better known principal matrix elements. This is not feasible in

practice, but a finite number of tune-out wavelength measurements can still give

useful constraints. This thesis will develop this idea further and work through

some of the specific information about the various contributions we eventually

hope to extract from these measurements.

We can rewrite α to separate contributions from the core and valence elec-

trons. Equation (1.5) contains a sum over all possible excitations, including those

of the core electrons, which we can be combined into a single term for the core

polarizability αc because the core excitations happen at much higher frequencies

deep in the ultra-violet [25]. There is a slight overestimate in doing this due to

the presence of the valence electron preventing some excitations through the Pauli

exclusion principal, therefore a correction to αc is needed. This is referred to
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as the core-valence interaction and is denoted by αcv. These are both calculable

in the random-phase approximation [26] to give reasonable values, and there is

a recent experimental measurement of the core polarizability in 87Rb [27]. The

polarizability becomes

αi(ω) =
1

~
∑

n′,J ′

2ωif
ω2
if − ω2

|dif |2 + αc + αcv (1.6)

where i and f now denote the valence states with the sum over n′ ≥ 5 and J ′ = 1/2

and 3/2. The frequency dependence of αc + αcv is not explicitly shown here but

it can be determined to reasonable precision [28].

Tune-out wavelengths have significant dependence on the optical polarization

of the applied light field in spin-polarized systems such as ours. This dependence

introduces complexity into our tune-out wavelength measurements as we need to

precisely characterize the polarization to account for its effect. We can see this

dependence by decomposing the polarizability, α, into its spherical irreducible

tensor components. We can then re-express the interaction energy using Eq. 1.4

as

U = −〈E
2〉

2

{
α(0) − 1

2
S3 cos θ

mF

F
α(1) +

(
3 cos2 ξ − 1

2

)
3m2

F − F (F + 1)

F (2F + 1)
α(2)

}
. (1.7)

Here, α(0) is the polarization independent scalar polarizability. The vector

polarizability α(1) depends on the amount of circular polarization with S3 = 〈E2
l 〉−

〈E2
r 〉 being the fourth Stokes parameter. It varies from ±1 for left and right

hand circular polarization respectively and is 0 for linearly polarized light. The

orientation of the Stark laser comes in through cos θ = k̂ · b̂ which accounts for the
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Figure 1.4: Pictured are the extreme examples of how the tune-out
wavelength varies with the amount of vector polarizability using atoms spin
polarized in the |F,mF 〉 = |2, 2〉 state. (a) shows the case with fully σ− light
(S3 = 1). The tune-out wavelength is shifted to near 785 nm. (b) has fully σ+

light (S3 = −1) where the zero crossing occurs on resonance.

alignment of the Stark beam with respect to the quantization axis pointing in b̂.

The tensor polarizability α(2) characterizes the response to the orientation of the

light’s polarization vector ε̂ through cos ξ = ε̂ · b̂. Additionally, Eq. (1.7) depends

on the atomic hyperfine structure through the hyperfine level F and magnetic

sub-level mF terms in the coefficient and in the spherical tensor components α(i)

themselves.

The scalar and vector components are of similar magnitude and are both large

compared to the tensor component. We can see in Fig. 1.4(b) that in our spin-

polarized atomic system the vector polarizability is sufficiently large to eliminate

the tune-out wavelength altogether for a particular optical polarization. This

occurs because there is no coupling to the D1 manifold for σ+-polarized light and

thus no cancellation of terms.
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The tensor component on the other hand is small. Its contribution accounts

for the difference in the polarizability of linearly polarized light made up of either

equal parts σ+ and σ− or π and is smaller than the scalar polarizability by a factor

of roughly ∆ωHF/∆ωF ≈ 10−4 for the hyperfine and fine structure splittings re-

spectively. This is due to the three polarization components coupling to different

magnetic sub-levels. While it appears in the analysis of our scalar polarizability

measurement [8], the tensor polarizability α(2) will be absent in the rest of this

section and in the discussion and analysis to come due to its small overall contribu-

tion and our neglecting most of the hyperfine structure in this initial measurement

involving a nonzero vector polarizability. As the experimental uncertainty of the

vector tune-out wavelength measurement presented here is reduced, it will be nec-

essary to bring α(2) and hyperfine structure back into the full analysis. Fortunately

the framework for doing so is already well established [29, 30].

The scalar tune-out wavelength where α(0) = 0 has been measured previously

in several atomic species. Our previous measurement is currently the most precise

[8]. The methods we will develop through the course of this thesis are similar

to what was employed in that measurement. Other measurements typically use

either m = 0 atoms [32] or a thermal mixture [33] to avoid the difficulty of care-

fully controlling the optical polarization by removing any dependence on α(1) and

α(2) leaving just the polarization independent scalar term. Table 1.1 shows the

individual contributions to the scalar polarizability which cancel at the tune-out

wavelength.

The scalar tune-out wavelengths near the 6P states have also been measured
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Figure 1.5: Dipole matrix elements expressed as multiples of
30× 〈J = 1/2||d||J = 1/2〉 [31]. This figure gives a sense of the polarization
dependence of the tune-out wavelength, where the polarization components
couple differently to the available states. For our spin-polarized atoms, where
α(ω0) = 0 depends on the specific optical polarization. We will put this to use
in measuring α(1).

in 87Rb [34]. They improved the experimental precision of the dipole matrix

elements for those states to an order of magnitude better than the best theoretical

values [12]. Beyond just a new way to measure dipole matrix elements, tune-out

wavelengths have also proven useful in applications such as state or species specific

optical trapping and manipulation [36–39] and rotation sensing [40].

Of particular interest in this work is α(1), the vector polarizability, which has

a different frequency response and its inclusion allows the separation of n′P1/2 and

n′P3/2 contributions. Tune-out wavelength measurements involving this compo-

nent are only possible in spin-polarized systems such as ours, and our apparatus

is well suited for these measurements. The frequency dependence of the scalar

and vector polarizabilities are seen in Fig. 1.6. Written explicitly and neglecting
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Source Matrix value α(0)

5P1/2 4.233(2) -8233.6
5P3/2 5.978(4) 8222.9
6P1/2 0.3235(9) 0.451(3)
6P3/2 0.5230(8) 1.173(4)
7P1/2 0.115(3) 0.044(2)
7P3/2 0.202(4) 0.135(6)
8P1/2 0.060(2) 0.011(1)
8P3/2 0.111(3) 0.037(2)
9P1/2 0.037(3) 0.004(1)
9P3/2 0.073(5) 0.015(2)
10P1/2 0.026(2) 0.002
10P3/2 0.053(4) 0.008(1)
11P1/2 0.020(1) 0.001
11P3/2 0.040(3) 0.004(1)
12P1/2 0.016(1) 0.001
12P3/2 0.033(2) 0.003
αc - 9.063(7)
α

(0)
cv - -0.37(4)
α

(1)
cv - -0.04(4)

|t1/2|2 - 0.022(22)
|t3/2|2 - 0.075(75)
Total - 0.001

Table 1.1: Scalar polarizability components calculated at 790.02568 nm to
show the scalar tune-out wavelength. The 6P matrix elements are taken from
Ref. [34]. All other discrete matrix elements including the tails |tJ ′ |2 are
described in Refs. [8, 35]. The core contributions are taken from
Refs. [12, 27, 28].

hyperfine structure, α(0) and α(1) take the forms

α(0) =
1

3~
∑

n′,J ′

|dif |2
ωif

ω2
if − ω2

+ αc + α(0)
cv (1.8)

and

α(1) =
1

3~
∑

n′,J ′

(3J ′ − 7/2)|dif |2
ω

ω2
if − ω2

+ α(1)
cv . (1.9)

The sums are over n′ and J ′ as before. The contribution from the core, αc, has
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Figure 1.6: Comparison of scalar and vector polarizabilities near the the D1

and D2 lines. The vector polarizability has no zero crossing. The introduction
of a non-zero vector polarizability results in a shifted tune-out wavelength.
Both are in atomic units.

no vector component due to its spin-less, spherically symmetric nature. The core-

valence correction, αcv = α
(0)
cv +α

(1)
cv , can have both scalar and vector components.

No direct experimental evidence yet exists for α(1)
cv , but by combining measure-

ments of the scalar and vector polarizabilities, this term as well as the currently

inaccessible higher-lying dipole matrix elements will be accessible via tune-out

wavelength spectroscopy [28].

From Eq. (1.3), we can see that only the n′P1/2 higher-lying tail contributions

specifically are needed for the APV analysis, and from Eqs. (1.8) and (1.9) it is

evident that the contributions to the scalar polarizability from the matrix elements

of the n′P1/2 and n′P3/2 states come in together via a sum. So while allowing a

potentially useful estimate of the two tail contributions together, scalar tune-out

wavelength measurements alone do not remove the need for an imprecise estimate

of the higher-lying states in the APV analysis. What measurements involving
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the vector polarizability contribute is the ability to separate out the n′P1/2 and

n′P3/2 tail contributions due to the J ′ contributions having different coefficients.

Therefore, by combining measurements of scalar and vector tune-out wavelengths

it should be possible to determine the n′P1/2 and n′P3/2 tail contributions individ-

ually.

The basic premise for making a measurement of α(1) involves precisely con-

trolling optical polarization of the Stark light, particularly the fourth Stokes pa-

rameter S3, and measuring the shifted tune-out wavelength. Much of the work in

this thesis is focused on developing the polarization control techniques. Figure 1.4

shows the two extremes of the available tuning range between the D1 and D2 lines,

taking the tune-out wavelength from near 785 nm to the D1 resonance at 795 nm.

We will work through a more complete model of the tune-out wavelength’s

polarization dependence in Chapter 4 which we will use to extract information on

the higher-lying dipole matrix elements. It is worth specifically mentioning here

though that the tail contributions have not been measured experimentally before,

so the work presented here will give the first experimental constraint on these

terms. We will see that numerous improvements will be necessary, but that this

general method of tune-out wavelength spectroscopy shows promise.

Additional measurements near the 6P and 7P resonances however will be re-

quired to fully extract the tail contributions as uncertainties on the core-valence

terms are of similar size to those of the tails. Measurements at different wave-

lengths will allow separation of the core-valence and tail terms and drive down
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uncertainties on all of them. It is then that we expect this work to have an impact

as a benchmark for theoretical calculations and possibly begin to drive down the

analysis-derived uncertainty in the APV results.



Chapter 2

Experimental apparatus

In this chapter I will outline the procedures we use to create a Bose-condensate

atom interferometer. At this point in time these procedures are quite well defined

and have been put into practice in this lab relatively unchanged for more than a

decade. We start with the main workhorse of many atomic physics laboratories,

the magneto-optical trap. We then load the atoms into a tightly confining purely

magnetic trap where the condensate is produced. Through the use of an off-

resonant standing wave, we can split the condensate into multiple packets traveling

along different trajectories, the “arms” of our interferometer. The packets achieve

macroscopic separations allowing us to probe them independently. This results

in a controllable differential phase shift between the packets which we can read

out upon recombination. We will use this interferometer to measure the tune-out

wavelengths described in Chapter 4.

19
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We will start this discussion with a brief overview of the various stages in

Bose-Einstein condensate (BEC) production. A more detailed discussion can be

found in Ref. [5].

2.1 Magneto-optical trap

Our experiments are done in a vacuum chamber. A rubidium vapor is supplied

by a pair of getter-dispensers run in series at 2.6 A. We have two separate sets of

these getters to limit how often we need to break vacuum in order to replace them.

With conservative usage, they can last for several years. Rubidium atoms in this

thermal background vapor are initially trapped and cooled by a magneto-optical

trap (MOT). Let us build up just the rough mechanism for cooling as MOTs

have been a mainstay in atomic physics laboratories for many years now and the

techniques involved are well-developed and described in more detail elsewhere [41].

There is a straightforward multi-tiered approach to the basic cooling mech-

anism in a MOT. We will start with the optical component of a magneto-optical

trap. In the reference frame of a moving atom, a laser’s frequency will be shifted

due to the Doppler effect. If the atom is moving towards the source, the laser will

be blue-shifted, i.e. the atom will see the light as having a higher frequency than

if it was at rest with respect to the laser source. A red-detuned laser will therefore

be shifted closer to resonance for reasonably low velocities. The atom will then

be more likely to absorb and scatter photons. As the atom absorbs a photon in

the direction of the laser beam and emits it in a random direction, the net force
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on the atom is in the opposite direction of the beam. The laser thus exerts a

force opposing the atom’s movement and acts to slow down the atom. This effect

is called Doppler laser cooling [42]. By using three pairs of counter-propagating

red-detuned lasers overlapped in space, the atomic motion in all directions can be

effectively arrested.

There is a limit to purely optical Doppler cooling. The atoms are eventually

cooled enough that the Doppler cooling and recoil heating balance out. The atoms

then simply pass through the beam overlap region unimpeded. To overcome this

limit and ultimately trap the atoms for further long term study and manipulation,

we add a magnetic field. A pair of coils in an anti-Helmholtz configuration creates

a dc magnetic spherical quadrupole field with a field zero aligned within the overlap

region of the beams. As the atoms move away from the field zero, their energy

levels undergo magnetic field-dependent Zeeman shifts. With the correct choice

of polarization in each counter-propagating beam, the beam tending to push the

atoms back towards the field zero is preferentially brought into resonance. Left-

and right-hand circular polarizations are typically used.

We cool on the usual 5S1/2 F = 2 → 5P3/2 F
′ = 3 cycling transition with a

detuning of 25 MHz. Roughly 1 out of every 250 photons excite the atoms to the

5S1/2 F = 2→ 5P3/2 F
′ = 2 state which has a 50% chance to decay into the F = 1

ground state. Since this is dark to the cooling light, the atoms need to be brought

back in resonance by additional light on the 5S1/2 F = 1 → 5P3/2 F
′ = 2 line.

This light is typically referred to as the “repump”. Little repump light is needed.

We typically use up to 5 % of the total optical power. Instead of having a separate
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laser locked to the appropriate atomic transition to produce the repump light as

is common elsewhere and was previously used on this experiment, the method

we use now involves adding sidebands at the repump detuning to the main MOT

laser before injecting it into a tapered amplifier (TA). We add the sidebands with

a fiber-coupled electro-optic (EO) modulator [43].

One drawback of the specific EO we are using is that it has a relatively low

optical power limit. Damage to the EO material begins around 5 mW for near

infrared light, and though this damage is not permanent, we need to stay below

this power limit for stable operation. Most TAs need more than 10 mW seed

light to saturate. To ensure proper saturation of our chip, we devised a way to

achieve two passes through the amplifying medium. This allows the use of very

low initial seed light well below the damage threshold of the EO, but with enough

gain through the first pass to fully saturate the TA on the second pass. The initial

idea and feasibility of this method has been shown elsewhere [44–46].

We inject roughly 50 µW of light into the output facet of the TA by coupling

the light in through the auxiliary port on the output side of the optical isolator.

An isolator with access to all the ports is obviously necessary. The one in this

setup uses polarizing beam splitting cubes on both sides of the Faraday rotator.

The isolator is aligned such that the usual output port is horizontally polarized for

easy access. By sending light vertically polarized into the output rejection port,

we are able to send light through the isolator to seed the laser. A half-wave plate

is necessary as the input port of the isolator is at 45◦. Care is taken to avoid any

reflections from reaching the amplifier chip.
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To experiment

Optical Isolator (30dB) λ/2 Tapered Amplifier Grating

at blaze angleλ/2

Seed: from fiber EO

Figure 2.1: Optics setup for double pass tapered amplifier system. The seed
beam is coupled through output auxiliary port of optical isolator. A grating is
aligned at its blaze angle to supply 1st order for feedback for a second pass
through the gain medium. This setup allows the use of a low damage threshold
electro-optic modulator to generate the repump sidebands on the MOT seed
beam.

The first pass through the TA yields around 30 mW optical power. This

light is primarily amplified seed light, but some amplified spontaneous emission

(ASE) light remains because the first pass is well below saturation. When initially

running with just a retro reflection mirror, we found that roughly 1/3 of the light

was made up of ASE. This only caused issues during imaging as the our probe

light was not fully resonant and thus not fully absorbed. We had no issues creating

a MOT or getting a reasonable atom number in the condensate. By replacing the

retro mirror with a grating aligned at the blaze angle, we were able to suppress

unwanted ASE light to below a few percent, which is a much more reasonable and

easily tolerated background level in imaging. Further discussion of the EO and

other components in the MOT optical setup can be seen in Appendix A. We can
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now continue with the discussion of cooling.

As the atoms are cooled and trapped, the atomic density in the MOT rises.

Eventually this makes the center optically thick where the cooling light is un-

able to penetrate. The central atoms instead begin experiencing multiple photon

scattering events where the subsequent photon emissions likely have the wrong

polarization. Cooling ceases to be effective. In our trap this occurs at just below

1 mK. To allow the cooling light back into the dense center, we do two things.

First, we reduce the amount of repump light so that the atoms spend more time

in the dark 5S1/2 F = 1 ground state. Additionally, we increase the detuning from

25 MHz to 50 MHz over 10 ms. With more cooling light penetrating the MOT,

the atoms cool to around 400 µK. Further detuning results in colder atoms, but

this is as far as we can detune using our double-pass AOM while ensuring enough

light gets through to saturate the TA. This stage is called a compressed-MOT

(CMOT). Additionally, atoms cease loading into the trap during this stage, so we

can only briefly apply the CMOT. The use of these two configurations in tandem

gives us the benefit of both: the quick loading time of the MOT, and the cooler

temperature of the CMOT. We cannot remain in the CMOT for too long though

as the losses due to background collisions will eventually negate any benefits.

We do one final cooling stage involving the lasers, where we turn off the

magnetic field entirely while turning the repump light back up for 10 ms. This

creates an optical molasses, a sub-Doppler cooling technique also known by the

mechanism causing the cooling, polarization gradient cooling. This will not be

discussed in detail here as more thorough descriptions can be found elsewhere
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[47]. At the end of these laser cooling stages, we have roughly 2 billion atoms at

around 250 µK.

We need to further cool and compress the atoms to create the BEC. After all

of these optical cooling stages we’re still 8 orders of magnitude from the necessary

phase-space density for condensation to occur. We continue the cooling process by

switching to a purely magnetic trap to greatly increase the density and transport

the atoms into a lower pressure science cell.

2.2 Magnetic trap loading

Neutral atoms were first magnetically trapped in 1985 [48]. This method works

when the neutral atom, 87Rb in our case, has a nonzero magnetic moment which

interacts with a magnetic field. This interaction energy can be expressed as

U = −~µ · ~B. (2.1)

The magnetic field is a dc spherical quadrupole field described by

BQ = B′Q(2zẑ − xx̂− yŷ). (2.2)

Additionally, the magnetic moment is µ = gFmFµB given the Landé g-factor

gF , the magnetic hyperfine sub-level mF , and the Bohr magneton µB. The force
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due to the magnetic field is then given by

F = gFmFµB∇|B|. (2.3)

This informs our decision about which m sub-level to use. Three ground state

m-sublevels are weak field seeking in 87Rb making them magnetically trappable

using BQ due to the field zero at its center. These are 5S1/2 |F,mF 〉 = |2, 2〉,

|2, 1〉, and |1,−1〉. The other states are strong field seeking with the exception

of the m = 0 states which are insensitive to the magnetic field. A design choice

in our experimental apparatus pushes us to use |2, 2〉. This introduces a slight

difficulty in that the MOT does not favorably populate this state. If we assume an

equal population among the m-sublevels, the 20% population in the correct state

would be insufficient. We must then optically pump the atoms into the correct

m-sublevel to trap a large enough population to later create the condensate.

To implement optical pumping, we apply σ+ polarized light to the atoms for

0.5 ms with the large dc quadrupole field turned off. An additional bias coil is

turned on during this time to better define the polarization and overcome any

background fields which may affect its purity. We choose to optically pump on

the non-cycling 5S1/2F = 2 to 5P3/2F
′ = 2 transition, so that when atoms end up

in the desired 5S1/2 |F,mF 〉 = |2, 2〉 ground state, they no longer scatter photons.

This reduces the optical thickness for the remaining atoms being pumped. At the

end of the 0.5 ms we have roughly 60% of the atoms in the desired state.

We then turn on the magnetic trapping field. This is done quickly and the
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Cooling/trapping step Duration (ms)
MOT loading 60000
CMOT (ramp) 10
Molasses 5
Optical pumping 0.5
Magnetic trap capture (ramp) 15
Magnetic trap to full (ramp) 100

Table 2.1: Timings of individual steps in cooling from the MOT to being
magnetically trapped in the dc spherical quadrupole. Not listed are additional
delays necessary for switching bias fields and lasers. The long MOT loading
time is primarily for thermal considerations in the dc quadrupole coils and
waveguide to ensure run-to-run stability. The MOT is typically fully loaded in
5 to 10 s. The full timing sequences can be seen in Appendix B.

gradient is chosen such that the size of the magnetic trap matches closely the

spatial distribution of the atoms after the laser cooling and pumping stages. This

was previously determined to be when the gradient is roughly 60 G/cm. The field

is then adiabatically ramped to its maximum of 400 G/cm. The field is generated

by the same coils used in the MOT, and the increase in field strength increases

the atomic density. The process is adiabatic, so the atoms are still 8 orders of

magnitude below the necessary phase-space density to create a condensate. Once

the atoms are loaded into this purely magnetic trap, we physically transfer the

atoms into our lower background pressure science cell by translating the coil as-

sembly on a Parker Motion precision stage. This process takes about 2 s, with

time to accelerate and decelerate in a manner to minimize the introduction any of

center-of-mass motion.

The MOT chamber and science cell are separated by a roughly 30 cm long

tube with a 1 cm diameter with the total distance traversed being approximately

60 cm. This transfer allows the science cell, which is pumped by both an ion
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pump and titanium sublimation pump, to maintain a much lower background

pressure on the order of 5 × 10−11 torr as compared to the roughly 10−9 torr in

the MOT chamber. As 3 body collisions with the background thermal vapor are

the dominant loss mechanism from the trap, this nearly two orders of magnitude

reduction in background pressure greatly increases the atomic lifetime within the

traps from three to four seconds in the MOT chamber to > 1 min in the science

cell. This is advantageous as the later stages of cooling take roughly 30 s to

complete. Longer possible experimental times after the creation of the condensate

is also beneficial.

2.3 Evaporative cooling

Once on the science chamber side we begin cooling once again. Loading the atoms

into the magnetic trap warmed them to roughly 1 mK. In our trap the critical

temperature where the BEC begins to form is around 200 nK. We use evaporative

cooling to cool the atoms the rest of the way. Evaporative cooling works by

removing hotter than average atoms. The timescale at which these atoms are

selectively removed is chosen to allow those that remain to rethermalize at a lower

temperature [49]. This process is continued until just a small fraction of atoms

remain and the condensate has formed.

We start cooling on the science side with radio-frequency (rf) evaporation.

We apply an rf field which drives a ∆mF = 1 transition for atoms at a particular

magnetic field magnitude. The frequency is chosen to be resonant with atoms far
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Figure 2.2: Cartoon of rf evaporation. By selectively removing the hot atoms
and allowing the remaining atoms to rethermalize, the temperature of the
remaining atoms is reduced. The avoided crossing at the field zero is achieved
by the use of a rotating bias field as outlined in Section 2.4. (a) shows the
potential with several rf cuts. (b) shows the normalized Maxwell-Boltzmann
distributions following those cuts.

from the trap center where Zeeman shifts are larger. These atoms tend to be the

hottest atoms as they are highest in the potential. A snapshot of this process can

be seen in Fig. 2.2 where atoms higher in the potential experience a larger Zeeman

shift. As atoms are removed and the remaining atoms are subsequently cooled,

the rf frequency is swept downward to continue evaporating the hottest remaining

atoms. This process works because the dc spherical quadrupole traps only the

mF ≥ 1 atoms in the F = 2 manifold, so after absorbing several rf photons, it

is likely that those hot atoms are now in either an untrapped or anti-trapped

state. One problem that arises as the atoms cool and begin to spend more time

near the trap center is that the m-sublevels are degenerate at the field zero. This

degeneracy will need to be dealt with else it becomes a large loss mechanism.
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2.4 Time-orbiting potential trap

The atoms’ quantization axes are defined by the magnetic field, and only certain

m-sublevels are trapped. When coming too close to the field zero, the m-sublevels

become degenerate, and the atoms can undergo a spin flip. If the atom ends up in

an untrapped or anti-trapped state, it can be lost from the trap without removing

excess energy. This becomes the dominant loss mechanism quite quickly and needs

to be addressed. This effect is referred to as a Majorana spin-flip [50].

To avoid this loss mechanism, we can move the trap center by applying a

separate magnetic bias field. If the applied field is dc, the atoms will simply follow

the zero and the Majorana losses will continue at the new, shifted trap center.

If however an ac bias is applied at sufficiently high frequency the field zero can

be made to move in such a way that the atoms’ spins can follow the direction of

the bias field but the atoms themselves remain stationary. The range of available

frequencies falls between the Larmor frequency of tens of MHz and their center-

of-mass motion hundreds of Hz. It is necessary though to use two ac bias fields

with a π/2 phase shift between them to move the field zero in a circle around the

atoms. Otherwise, with just a single bias field, the field zero would pass through

the atoms every half period and atoms would still undergo the unwanted Majorana

spin-flips. This is the foundation of a time-orbiting potential (TOP) trap [51].

There are other ways to remove the field zero, including through the use of

field geometry that creates a non-zero field minimum from the beginning [52], or

by plugging the hole at the center with a laser tuned to where the atoms are low
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field seeking [53]. Our use of the TOP trap solution has additional implications

in affecting the optical polarization used in tune-out wavelength measurements,

so while a more complicated technique for mitigating Majorana losses, the use of

TOP trap is important for our atom interferometry measurements. This will be

discussed in detail in Chapter 3.

Let’s now take a look at the specifics of this TOP trap and develop a math-

ematical model for the potential before continuing our discussion on cooling. We

use the same dc spherical quadrupole BQ as in Eq. (2.2). The full field is

BTOP = B0 + BQ, (2.4)

where B0 is the ideal rotating magnetic bias field given by

B0 = B0(sin Ωtx̂+ cos Ω1tẑ). (2.5)

We choose Ω1 = 2π×12.8 kHz to fall in the region the atoms cannot physically

follow the moving trap minimum but their spins can. ẑ is the direction opposing

gravity and ŷ is the direction in which we do interferometry. We want to calculate

the potential created by these fields. This is given simply by the Zeeman effect

with the potential UTOP = gFmFµB〈|BTOP |〉. Before time averaging, start with

the field magnitude.

|BTOP | =
{
B2

0

[
1 +

B′Q
B0

(−2x sin Ω1t+ 4z cos Ω1t) +
B′ 2Q
B2

0

(x2 + y2 + 4z2)

]}1/2

(2.6)
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Factoring out a factor of B0 and Taylor expanding up to 2nd order in the coordi-

nates yields the following

|BTOP | ≈ B0

{
1 +

B′Q
B0

(−x sin Ω1t+ 2z cos Ω1t)

+
B′ 2Q
2B2

0

(
x2(1− sin Ω1t

2) + y2 + 4z2(1− cos Ω1t
2)− 2xz sin Ω1t cos Ω1t

)}
. (2.7)

Taking the time-average of Eq. (2.7) is straightforward. Because our atoms are

in 5S1/2|2, 2〉, the potential simplifies to UTOP = µB〈|BTOP |〉. Adding in the

gravitational potential, we then arrive at

UTOP = µBB0 −mgz + µB
B′ 2Q
B0

{
1

4
x2 +

1

2
y2 + z2

}
. (2.8)

We are left with a harmonic potential with trap frequencies given by

ωx =

√
µBB′2Q
2mB0

; ωy =

√
µBB′2Q
mB0

; ωz =

√
2µBB′2Q
mB0

. (2.9)

The rotating bias field is turned on rapidly to prevent losses as the field zero

traverses the atoms. With the atoms now in a field with a nonzero minimum, we

can continue our discussion on evaporation. We use an additional method along-

side the radio-frequency method described in the previous section to evaporate the

hot atoms. By ramping down the ac bias magnitudes, we can selectively allow the

hot atoms near the edge of the trap to undergo Majorana spin flips. This method

is commonly referred to as the “circle of death”. We lower the bias magnitudes

using a series of quasi-exponential linear ramps from a maximum of 21.5 G to 3 G.
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rf Stage fStart (MHz) fStop (MHz) Time Constant (s) fBottom (MHz)
1 90 30 6 0
2 30 15 3 0
3 15 12 1.5 0
4 8 2.12 2.75 2.075

Table 2.2: rf evaporation timings and frequency ramps. Stages 1 through 3
happen sequentially. The TOP trap is then quickly turned on to 21.5 G before
being ramped down to 3 G. Evaporation concludes with stage 4. The
discontinuity in rf frequencies between stages 3 and 4 is due to the change in
potential from the rotating bias field.

Stage Time (ms) Start B0 (G) Stop B0 (G)
TOP On 500 21.5 -
Ramp 1 3000 21.5 15
Ramp 2 6000 15 3

Table 2.3: Circle of death bias field ramps. The TOP trap is turned on
quickly and left at its maximum 21.5 G for 500 ms. It is then ramped down to
3 G over 9 s in two linear ramps.

We conclude the evaporation stages with a final rf ramp to create the conden-

sate. To summarize the full evaporation process, we started with roughly 2 billion

atoms nearly 1 mK and end up with 20000 atoms near 200 nK using a combination

of rf and circle of death evaporation stages. The rf evaporation ramps are listed

in Table 2.2 and circle of death stages are in Table 2.3. The final rf evaporation

stage goes down to 2.12 MHz which is just above the Zeeman splitting between

the m = 1 and 2 magnetic sublevels.
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2.5 Waveguide

After creating the condensate we load the atoms into a much weaker modified

TOP trap which reduces atom-atom interactions and improves interferometer per-

formance. This weaker trap will henceforth referred to as the waveguide. We

reduce the strength of the dc spherical quadrupole trap adiabatically to avoid un-

wanted excitations of the BEC in the trap. As our trap is initially > 100 Hz and

it is reduced to just a few Hz, the atoms necessarily pass through 60 Hz. There

is a trade off between ensuring adiabaticity and avoiding excitations from being

resonant with 60 Hz background fields. The trap frequencies are ramped through

60 Hz at close to 100 Hz/s, so they are reasonably adiabatic and we do not see

excessive residual oscillations at the end of the waveguide loading procedure. The

crossings occur at different quadrupole magnitudes B′Q for the trap frequencies in

x, y, and z due to their differing dependences on the trap parameters as seen in

Eqs. (2.9). Furthermore, we sync the experiment to a 60 Hz signal derived from

the AC line in the wall to make any remaining residual oscillations coherent run

to run. Residual oscillations in the tighter trap directions are typically difficult to

measure due to being quite small, and the oscillation along the weak direction is

typically less than the condensate size.

It is in this weaker trap in which we do interferometry. It uses the same ro-

tating bias as in the stronger TOP trap, but a much weaker ac linear quadrupole

field to support the atoms against gravity. The coils are contained in a 30 cm
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long structure outside the vacuum chamber making the linear quadrupole approx-

imately independent of y; therefore, the trap is very weak in the y direction. Being

independent of y leads to a flat potential along which we can do interferometry

with reduced sensitivity to the potential itself [54].

We introduce a small amount of additional confinement in the y direction

presently to overcome several limitations of the flat waveguide potential and make

interferometric measurements easier. When loaded adiabatically into the flat po-

tential, the atoms are stretched out significantly. This makes imaging more difficult

and prone to signal-to-noise issues, and the interferometer becomes more sensitive

to misalignment of the optics which can cause the atoms to miss each other when

brought back together. The current experiments are not limited by noise in the

potential, so simplifying the experimental implementation is desirable.

The waveguide potential is described in detail elsewhere [51, 54] but some of

the specifics are necessary within the scope of this work. The potential is generated

by the following fields

B0 = B0

(
sin Ω1tx̂+ cos Ω1tẑ

)
(2.10)

B1 = B′1
(
zẑ − xx̂

)
cos Ω1t (2.11)

B2 = B′2
(
2yŷ − xx̂− zẑ

)
cos Ω2t. (2.12)

B0 is again the rotating magnetic bias field. The ac linear quadrupole B1 supports

the atoms against gravity, and B2 provides a small amount of additional confine-

ment in the weak direction of the trap. We choose Ω1 6= Ω2 to avoid unwanted
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cross terms, with Ω1 = 2π × 12.8 kHz and Ω2 = 2π × 1 kHz. The potential is

derived in the same manner as the tighter TOP trap from Section 2.4 by taking

the time-average of the magnitude and multiplying by the Bohr magneton µB. A

reasonable approximation can be found by Taylor expanding the magnitude |B|

and taking the time-average of the result.

〈|B|〉 ≈ B0 −
1

2
B′1z +

(
3B′ 21

16B0

+
B′ 22

4B0

)
x2 +

B′ 22

B0

y2 +

(
B′ 21

16B0

+
B′ 22

4B0

)
z2 (2.13)

The result is again a harmonic potential. The trap frequencies are easily found

in terms of the individual fields. The fields magnitudes are B0 = 21.5 G, B′1 =

30.7 G/cm, and B′2 = 2.5 G/cm giving trap frequencies of (ωx, ωy, ωz) = 2π ×

(5.2, 1.0, 3.0) Hz, which are in good agreement with the empirically measured trap

frequencies (ωx, ωy, ωz) = 2π × (5.1, 1.1, 3.3) Hz. The small discrepancies are

likely due to edge effects form the coils and other non-uniformities in the fields.

At B′1 = 30.7 G/cm, the linear quadrupole is set to support only the m = 2 atoms

against gravity. This ensures a high condensate fraction and will have further

implications for the tune-out wavelength measurements which will be discussed in

Chapter 3.



Experimental apparatus 37

2.6 Interferometry

The atomic analogy to an optical beamsplitter is implemented in our interfer-

ometer using a series of light pulses which couples via Bragg scattering [55] the

zero momentum state |0〉 with the symmetric superposition of atom packets in the

| ± 2~k〉 momentum states moving in opposite directions. These pulses are gener-

ated by an off-resonant laser which is retro-reflected to form a standing wave that

acts as a diffraction grating for the atoms. The atomic beamsplitter is a two pho-

ton process with each photon imparting a velocity kick equal to the recoil velocity

vR, which near the D2 line is vR = 5.88 mm/s. The details of the pulse sequences

which generate the atomic beamsplitter can be found in Ref. [56]. I will briefly

describe the general process. We start by defining the symmetric superposition of

the two momentum states as

|S〉 =
1√
2

(|2~k〉+ | − 2~k〉) . (2.14)

We can then define a unitary operator Usplit to represent the splitting pulse se-

quence mathematically.

Usplit|0〉 ↔ |S〉 (2.15)

Using a different sequence of light pulses, it is also possible to create an operation

analogous to a mirror.

Ureflect| ± 2~k〉 = | ∓ 2~k〉 (2.16)

While the atoms traverse the interferometer path, a phase difference φ can
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develop between the two packets which we want to measure at the output of the

interferometer.

|S〉 → |φ〉 =
1√
2

(
|2~k〉+ eiφ| − 2~k〉

)
, (2.17)

Typically we want the phase difference to be due to some intentional interaction,

for example with an external ac electric field applied to just one of the packets as

in our tune-out wavelength measurements. Phase noise can be introduced through

unwanted variations in either the trapping fields or laser. If the latter are large

enough they can wash out the desired interferometer signal.

It is necessary to introduce the antisymmetric superposition of the | ± 2~k〉

momentum states to account for this differential phase.

|A〉 =
1√
2

(|2~k〉 − | − 2~k〉) (2.18)

It is now possible to rewrite |φ〉 in terms of |S〉 and |A〉.

|φ〉 = ei
φ
2

(
cos

φ

2
|S〉 − i sin

φ

2
|A〉
)

(2.19)

We recombine using the same splitting operator Usplit, which transforms |S〉

to |0〉 and leaves |A〉 unchanged.

Usplit|φ〉 = cos
φ

2
|0〉 − i sin

φ

2
|A〉 (2.20)
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Figure 2.3: Here is the timing sequence for the implementation of the
interferometer. Splitting and reflection pulses are denoted as π/2 and π pulses
respectively. We use a symmetric trajectory to avoid phase gradients from the
magnetic potential degrading interferometer performance.

Here we neglect an overall phase from recombination as it does not affect the in-

terferometer output. We measure the differential interferometric phase by looking

at the fraction of atoms that come to rest upon recombination. We refer to this

value as N0/N .

N0

N
= |〈0|Usplit|φ〉|2 = cos2 φ

2
(2.21)

The full interferometer is implemented symmetrically. We split the conden-

sate and allow the atoms to propagate for some time T/4. We then use the reflect

sequence to reverse their velocities. The atoms propagate for T/2, with the packets

passing through each other. The relatively weak trap limits atom-atom interac-

tions. At time 3T/4, we again reflect the atoms, and at T we reapply the split

sequence to recombine the arms of the interferometer. Finally, we let the pack-

ets which did not come back to rest upon recombination separate for 20 ms and

measure the output phase via N0/N .
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Figure 2.4: Pictured is the timing diagram for the tune-out wavelength
measurements. The beam is aligned on one packet and turned on for half the
interferometer period. The packet traverses the beam twice to double the
signal.

We allow the atoms to follow this symmetric path through the interferometer

to avoid having unwanted phase gradients develop across the individual packets. If

we instead only split, reflected, then recombined the atoms, one side of each packet

would spend time higher in the potential as it is not perfectly flat. Additionally,

though the atom-atom interactions are low, a phase due to their interactions does

accumulate, and atoms on one side of each packet spend more time in the presence

of the other packet. Both of these phenomena lead to a nonuniform phase buildup

across the packets which will not cancel out upon recombination. As the phase

gradient increases, interferometer performance decreases, eventually leading to a

fixed output of N0/N = 0.5 regardless of any induced differential phase [54].

Fluctuations during the interferometer, including vibrations in the Bragg

retro-reflection mirror affecting the standing wave and variations in the magnetic
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Figure 2.5: Phase offset at recombination. We are able to introduce an
arbitrary phase difference between the packets upon recombination by
adjusting the frequency of the Bragg beam. We typically run with a frequency
offset at recombination that gives us N0/N = 0.5 for maximum phase
sensitivity. This offset has the added benefit of making the sign of the
accumulated phase difference detectable. The offset voltage is applied to the
frequency modulation input of the Bragg beam.

potential, also lead to a degradation in interferometer performance as T is in-

creased. Based on empirically measuring the output phase visibility, we have

settled on T = 40 ms for our typical interferometer. This has the benefit of near

unity visibility and a large enough packet separation for use to be able to separately

address the two atom packets. Given the recoil velocity of 87Rb, vR = 5.88 mm/s.

At 10 ms the packets’ maximum separation is 235 µm. This is roughly five times

the size of the condensate. We typically introduce whatever external parameter

we seek to measure during the first half of the interferometer and allow the packets

to propagate unimpeded during the second half.

Finally, it is possible to write an arbitrary output phase onto the interfer-

ometer by changing the location of the nodes and antinodes of the off-resonant

standing wave used to create the atomic beamsplitter and mirror analogs. We do
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Figure 2.6: Selected data from Fig 2.5 showing our ability to add an
arbitrary phase shift to the interferometer upon recombination.

this by making small changes to the frequency of the laser generating this standing

wave before recombination. The standing wave is created by retro-reflecting the

beam after it passes through the chamber. The mirror is roughly 300 mm from

the atoms, so given the node spacing of λ/2 = 390 nm, there are roughly 7.5×105

nodes between the atoms and the mirror. That means a fractional change of one

part in 7.5 × 105 in frequency between the split and recombination operations is

sufficient to cause a 2π change in the interferometric phase. Near 780 nm this is

change in laser frequency just 500 MHz. The Toptica DL 100 has a mode-hop

free tuning range of 15 GHz, so we can easily sweep out an arbitrary phase. We

typically add a π/2 phase shift to maximize the sensitivity of the interferometer.

Additionally this gives us information about the sign of the differential phase,

which will prove quite useful in our tune-out wavelength measurements.
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2.7 Absorption imaging

We use absorption imaging to detect the number of atoms in the condensate. This

works by applying resonant light on the atoms. They absorb some of the probe

light and leave a shadow which we image onto a CCD. The spatial extent of this

shadow as well as its darkness is used alongside the trap parameters to determine

the atom number and temperature. Images of the probe beam’s intensity profile

are taken with the atoms present and again shortly after the atoms are gone.

By normalizing the image with the atoms present to the no atoms image, spatial

intensity fluctuations in the probe beam can be removed leaving a clean image.

The time between the two images is crucial in determining how clean the resultant

image can be.

Our two imaging setups along x and z use different cameras, and the difference

in times between images has a noticeable affect on image quality. We use a Prince-

ton Instruments PIXIS 1024 for imaging in the x direction and an Apogee Alta

U 8300 in the z direction. Both have been configured for kinetics imaging, which

allows for images taken in quick succession. Kinetics imaging works by masking

half the CCD. The first image is taken on the open side then it is shifted to the

masked side. The second image is subsequently taken and then the full image,

containing both images, is read out to the computer. This removes the relatively

long download time between images that is necessary when not in kinetics mode.

The PI camera can take images with only a 6 ms delay between them when in

kinetics mode, whereas the Apogee has a much longer 80 ms delay. The PI camera
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Figure 2.7: Pictured is a schematic of the imaging optics for both imaging
axes. The black dots are the atoms. The red shaded regions are the probe
beam and the black lines are show the atoms’ shadow as it passes through the
imaging optics. The cameras are quite large and need to be far from the
experiment, so multiple telescopes are used to get the image to them. The
telescopes are also able to add magnification as necessary. The calibrations are
166 px/mm in the x (side) imaging system and 324 px/mm in the z (vertical)
imaging system.

acts as our main camera taking the interferometric data. The Apogee camera is

primarily used for alignment of the Stark beam onto the interferometer, so its

moderately worse performance is easily tolerated. We take an additional image

with the imaging AOM off but the shutter open to account for any leakage light

which will affect the images. This background image is subtracted off from both

the atoms and no atoms images prior to making the normalized divided image.

The image math for this is

Divided Image =
Atoms Image - Background

No Atoms Image - Background
. (2.22)
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Polarization control

This chapter focuses on developing the techniques necessary for making a mea-

surement of the vector polarizability between the D1 and D2 lines in 87Rb. As was

detailed in Chapter 1, tune-out measurements are sensitive to the optical polar-

ization of the Stark beam, and in the coming sections we will discuss the specifics

of how we both measure and control the optical polarization, a nontrivial task due

to the atoms being within a vacuum chamber. Because the atoms are subjected

to a continuously rotating magnetic bias field, we must also demonstrate a de-

tailed understanding of the bias field dynamics and our ability to control the field

without the benefit of a magnetometer near the atoms.

The techniques presented here should prove useful in other applications as

well, particularly in ones that can benefit from the rapid bias field reversal and

reduced dependence on environmental fields inherent in TOP traps. Measure-

ments such as parity violation [57], electric dipole moment searches [58], and other

45
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searches for new physics [59] might stand to benefit, and TOP traps have been

considered for various types of precision measurements [51, 60–62].

Much of the work presented here appears in Ref. [63] which summarizes our

methodologies, but details of the technique which apply specifically to our tune-

out wavelength work are expanded here. Sections 3.1 and 3.2 go over the the

magnetic field characterization and control. Sections 3.3 through 3.5 go over the

measurement of the optical polarization, and finally, Sections 3.6 and 3.7 discuss

several current limitations to the polarization control technique.

3.1 Non-ideal magnetic waveguide

As we touched on in Section 2.5, our apparatus uses a modified TOP configuration.

As a reminder, the basic trap is formed by a rotating bias fieldB0 and an oscillating

linear quadrupole B1. These support the atoms against gravity in the vertical z

direction, and they provide approximately harmonic confinement in z and the

transverse direction x. An additional spherical quadrupole B2 is applied which

oscillates at a different frequency and provides adjustable weak confinement in the

longitudinal direction y. Again, the trapping potential is given by µ〈|Btot|〉, where

the angle brackets denote a time average and µ is the magnetic moment of the spin

state. Our experiments use the |F,mF 〉 = |2, 2〉 hyperfine state of 87Rb, so that µ

is approximately equal to the Bohr magneton µB. In general the time average

must be calculated numerically, but if the atoms remain close to the origin, it is

accurate to Taylor expand |Btot| to second order and perform the time average
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analytically. Recall Eq. (2.13) where we found

〈|B|〉 ≈ B0 −
1

2
B′1z +

(
3B′ 21

16B0

+
B′ 22

4B0

)
x2 +

B′ 22

B0

y2 +

(
B′ 21

16B0

+
B′ 22

4B0

)
z2. (3.1)

Here we assume that Ω1 and Ω2 are approximately incommensurate, so that

no cross terms survive the time average. Experimentally we use Ω1 = 2π×12.8 kHz

and Ω2 = 2π × 1 kHz. Typically we use B0 ≈ 21.5 G and we set B′1 ≈ 30.7 G/cm

such that the linear term in the TOP potential cancels the gravitational potential

mgz. In previous iterations of this experimental apparatus the rotating bias field

was as high as 24 G, but instabilities due to running the drive electronics near

their limits led us to reduce the amplitude. We set B′2 ≈ 2.5 G/cm to provide

an oscillation frequency ωy ≈ 2π × 1 Hz. The measured ωx and ωz confinement

frequencies are then approximately 2π × 5.1 Hz and 2π × 3.3 Hz, respectively. In

comparison, Eq. (2.13) predicts values of 5.2 and 3 Hz. The difference is due to

non-uniformity of the bias field B0, but this has negligible impact on the work

discussed here since it alters the spatial variations of the field but not the field

itself at the potential minimum.

A number of other non-idealities do impact the field experienced by the atoms.

The rotating bias field components are produced by two separate coils. These coils

may not be perfectly orthogonal, their fields may have different amplitudes, and

their phase difference may differ from π/2. In addition a dc background field may

be present. All of these effects can introduce time-dependent variations in the
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field magnitude and direction at the position of the atoms. The goal here is to

characterize and control these effects.

The two components of the bias field are produced by long rectangular coils

oriented near ±45◦ from vertical. We express the ideal field components as

B0a =
B0√

2
(x̂− ẑ) sin

(
Ω1t−

π

4

)
(3.2)

and

B0b =
B0√

2
(x̂+ ẑ) sin

(
Ω1t+

π

4

)
(3.3)

where they have the same magnitude B0 and are π
2
out of phase with one another.

In reality, the two fields can have different amplitudes which we’ll call B0a and B0b.

They might have additional phase offsets ξ1 and ξ2, and their alignment might not

be perpendicular. The latter can be dealt with by applying the rotation matrix

to their alignment vectors.

R(ψi) =




cosψi − sinψi

sinψi cosψi


 ≈




1 −ψi

ψi 1


 (3.4)

for ψi � 1. These complicated but more realistic fields become

B0a ≈
B0a√

2
R (ψ1)

(
x̂− ẑ

)
sin
(

Ω1t+
π

4
− ξ1

)
(3.5)

and

B0b ≈
B0b√

2
R (ψ2)

(
x̂+ ẑ

)
sin
(

Ω1t−
π

4
+ ξ2

)
. (3.6)
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We expand the sines to separate the dependence on the small variables. The

following trigonometric identities are useful.

sin (u± v) = sinu cos v ∓ cosu sin v (3.7)

cos (u± v) = cos u cos v ∓ sinu sin v (3.8)

which results in

sin
(

Ω1t−
π

4
+ ξ1

)
≈ 1√

2

((
1 + ξ1

)
sin Ω1at−

(
1− ξ1

)
cos Ω1t

)
(3.9)

and

sin
(

Ω1t+
π

4
+ ξ2

)
≈ 1√

2

((
1− ξ2

)
sin Ω1t+

(
1 + ξ2

)
cos Ω1t

)
. (3.10)

We’ve dropped the 2nd order in ξi because ξi � 1. We combine this with the full

expressions for the individual bias fields including a small rotation from the ideal

orientation to get

B0a =
B0a

2

((
1 + ψ1

)
x̂−

(
1− ψ1

)
ẑ

)((
1 + ξ1

)
sin Ω1t−

(
1− ξ1

)
cos Ω1t

)
(3.11)

and

B0b =
B0b

2

((
1− ψ2

)
x̂+

(
1 + ψ2

)
ẑ

)((
1− ξ2

)
sin Ω1t+

(
1 + ξ2

)
cos Ω1t

)
. (3.12)
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Now we combine the two individual bias fields for the full bias field again

dropping the small 2nd order terms.

B0 = B0a + B0b =

=

{(
B0a

2
+
B0b

2

)
sin Ω1t−

(
B0a

2
− B0b

2

)
cos Ω1t

+

(
B0aξ1

2
− B0bξ2

2

)
sin Ω1t+

(
B0aξ1

2
+
B0bξ2

2

)
cos Ω1t

+

(
B0aψ1

2
− B0bψ2

2

)
sin Ω1t−

(
B0aψ1

2
+
B0bξ2

2

)
cos Ω1t

}
x̂

+

{
−
(
B1

2
− B0b

2

)
sin Ω1t+

(
B0a

2
+
B0b

2

)
cos Ω1t

−
(
B0aξ1

2
+
B0bξ2

2

)
sin Ω1t−

(
B0aξ1

2
− B0bξ2

2

)
cos Ω1t

+

(
B0aψ1

2
+
B0bψ2

2

)
sin Ω1t−

(
B0aψ1

2
− B0bψ2

2

)
cos Ω1t

}
ẑ

(3.13)

Here are a few useful definitions to condense the above expression.

B0 ≡
B0a +B0b

2
(3.14)

∆ ≡ B0a −B0b

2B0

(3.15)

We can rewrite B0a and B0b using these.

B0a = B0(1 + ∆) (3.16)

B0b = B0(1−∆) (3.17)
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We can make further simplifications taking into account that ∆, ξi, and ψi are all

small compared to B0.

ξ0 ≡
B0aξ1 +B0bξ2

2B0

≈ ξ1 + ξ2

2
(3.18)

ξ′0 ≡
B0aξ1 −B0bξ2

2B0

≈ ξ1 − ξ2

2
(3.19)

ψ0 ≡
B0aψ1 +B0bψ2

2B0

≈ ψ1 + ψ2

2
(3.20)

ψ′0 ≡
B0aψ1 −B0bψ2

2B0

≈ ψ1 − ψ2

2
(3.21)

Combined these result in

B0

B0

=
[(

1 + ξ′ + ψ′
)

sin Ω1t−
(
∆− ξ + ψ

)
cos Ω1t

]
x̂

+
[(

1− ξ′ − ψ′
)

cos Ω1t−
(
∆ + ξ − ψ

)
sin Ω1t

]
ẑ. (3.22)

To this we add the B1 quadrupole field from (2.11) and an environmental

field BE = BExx̂ + BEyŷ + BEz ẑ with |BEi| � B0. We then calculate the TOP

potential using the same time-averaging procedure as before. We omit the B2 field

since it is an order of magnitude smaller than the B1 quadrupole. The result is

〈|Btot|〉 = B0

{
1+

1

4

(
∆−2ξ+2ψ

)
qx+

1

4

(
2−ξ′−ψ′

)
qz+

3

16
q2x2+

1

16
q2z2

}
, (3.23)

with q ≡ B′1/B0. Here we keep terms to first order in ∆, ψ, ψ′, ξ, ξ′, and BEi/B0,

except in the x2 and z2 terms where the non-idealities are omitted.
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The atoms will be trapped at the minimum of the total potential. Along x

the minimum can be found directly as

x0 = −2 (∆− 2ξ + 2ψ)

3q
. (3.24)

We take the vertical position z0 as an independent parameter. We can then

express the time-dependent field magnitude at the center, to first order in non-

idealities, as

|Btot|(t) = B0

{
1 +

1

2
qz0 + qEx sin Ω1t+ qEz cos Ω1t

+
1

2

(
qz0 − 2ξ′ − 2ψ′

)
cos 2Ω1t−

2

3

(
∆ + ξ − ψ

)
sin 2Ω1t

}
(3.25)

with qEi = BEi/B0. We see that the non-idealities combine to give oscillating con-

tributions to |B| that have different frequencies and phases. Measuring these dif-

ferent components therefore provides information about the non-idealities, which

can then be compensated with the goal of producing a bias field that varies as

little as possible. We see that it is not necessary for all the non-ideal parameters

to be zero, since the combinations qz0− 2ξ′− 2ψ′ and ∆ + ξ −ψ appear together.

As long as the parameters are adjusted to make |Btot| constant in time, the net

bias field will rotate uniformly as

Btot = B0

(
1 +

qz0

2

) (
x̂ sin Ω1t+ ẑ cos Ω1t

)
+BEyŷ. (3.26)
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Figure 3.1: Radio-frequency spectra of trapped condensate atoms. The
vertical axis shows the fraction of atoms remaining in the trap after rf is
applied at the indicated frequency. (a) Spectrum obtained using a single long
pulse of duration 200 ms. (b) Spectrum obtained using a train of 250 pulses
each with 10 µs duration. The pulses are synchronized to the 12.8 kHz bias
rotation frequency, so that the magnetic field has the same value during each
pulse. At the delay time shown, the field magnitude happens to take on nearly
its largest value. The curve is a Lorentzian fit.

The amplitude shift due to z0 is typically unimportant, so we do not attempt to

measure or compensate for it.

3.2 Magnetic field control

Information about the magnetic field at the location of the atoms can be obtained

by driving the Zeeman transition mF = 2→ mF = 1 using a radio-frequency field.

Atoms making the transition are no longer supported against gravity and fall out of

the trap. If the atoms form a Bose–Einstein condensate, the thermal broadening

of the rf spectrum will be negligible and the character of the spectrum will be

determined entirely by the variations in the magnetic field at the trap potential

minimum. Figure 3.1(a) shows the spectrum observed when a continuous rf pulse
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is applied to an unoptimized trap. The broad and complicated lineshape indicates

that the atoms experience considerable variations in the trap field, making the

resonant frequency vary over the course of the TOP period.

More detailed information can be obtained by applying a pulsed rf field, with

the pulses synchronized to the Ω1 trap frequency. In this way we obtain a snap-

shot of the field value at a particular point in the cycle, using the same principle

as the stroboscope. Figure 3.1(b) shows the spectrum obtained with a 10 µs pulse

duration at a fixed delay with respect to the 80 µs oscillation period. The spectrum

is much narrower, with a width close to the 60 kHz transform limit of the pulse.

The frequency at which the peak occurs indicates the instantaneous value of the

field at that time.

To map out the field amplitude as a function of time, we take a series of

spectra such as Fig. 3.1(b) with different time delays between the trap current

oscillation and the rf pulses. A typical result is shown in Fig. 3.2(a). We fit such

data to a function with the form of Eq. (3.25), where the amplitudes of each term

are fit parameters. The solid line in the figure shows the result, which generally

fits the data well.

The fitted coefficients indicate how the parameters BEx, BEz, q and ∆ can be

adjusted to make |B| constant in time. We do not adjust the ψi or ξi variables. The

environmental fields are controlled using a set of bias coils, while q and ∆ are set

by the quadrupole and bias current amplitudes respectively. Figure 3.2(b) shows a

spectral measurement of the field variations after the oscillating components have
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Figure 3.2: Time-dependence of the magnetic field magnitude during TOP
field oscillation, as measured by the center frequency of spectra such as in
Fig. 3.1(b). Error bars are one-σ errors from the fit. Solid curves are fits to the
form of Eq. (3.25).(a) Initial variation in a trap using nominal driver current
amplitudes. (b) Variation after adjusting the oscillating terms in (3.25) to be
zero. The residual oscillation corresponds to field variations of less than 10 mG.

been minimized, showing that the transition frequency remains nearly constant

during the bias rotation. Our measurement resolution is 5 mG, and we are able

to zero each frequency component to that level. This corresponds to a total rms

field variation of about 10 mG.

The rf spectroscopy technique is insensitive to the BEy component, since it

makes only a dc contribution to the field magnitude. However, we want to ensure

that the field rotates in the xz plane, so it is necessary to determine and null

out the BEy field as well. A way to achieve this is by applying a dc spherical

quadrupole field

BQ = B′Q(2zẑ − xx̂− yŷ) (3.27)

to the atoms in the TOP trap. We focus on the resulting confinement potential

along the y direction, taking x = z = 0. Calculation of the time-averaged field
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magnitude as in Eq. (3.23) yields

〈|B|〉 = B0 +
B′22
B0

y2 +
B′2Q
2B0

(
y − yE

)2
, (3.28)

where yE ≡ BEy/B
′
Q is the position where the net dc field is zero. The minimum

of the resulting potential occurs at position

y0 = yE
B′2Q

B′2Q + 2B′22
=

BEyB
′
Q

B′2Q + 2B′22
. (3.29)

To find BEy, we measure the condensate’s position while varying B′Q and fit

the results to Eq. (3.29). Typical data are shown in Fig. 3.3(a), along with the

fit curve. Figure 3.3(b) shows the values of BEy obtained from the fit as current

through a dc bias coil is varied. The slope of the curve is consistent with the

bias coil geometry, and the intercept allows us to determine where BEy is zero to

an accuracy of 7 mG. We used a similar technique observing motion along the z

direction, and verified that the trap motion and rf spectroscopy techniques give

consistent results for the BEz component.

The background magnetic fields and rotating bias field show good stabil-

ity over long timescales without the need for regular adjustments. We observed

drifts of less than 10 mG over several months of operation. However, the lin-

ear quadrupole amplitude B′1 does drift by about 30 mG/cm over the course of

days, making regular adjustments necessary. It is easy to see when B′1 has shifted,

because the z position of the atoms changes.
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Figure 3.3: Using trap motion to determine the BEy background field. In the
main graph, data points are the observed trap positions as the dc gradient B′Q
is slowly varied. The curve is a fit to Eq. (3.29) yielding BEy = 0.56(2) G. The
inset shows measured BEy values as a function of current Iy through a pair of
dc bias coils. The red point corresponds to the data in the main graph.

3.3 Beam alignment

I will briefly discuss the alignment procedure of the Stark beam onto the atoms.

There is a minor inconvenience in using a shared optical axis between the Stark

beam and imaging axis in that there are different requirements for the spatial

profile of the two beams. The imaging probe needs to be collimated at the atoms

whereas the Stark beam is focused onto them for maximal phase sensitivity in

the tune-out measurements. This is dealt with by including a second lens in the

probe beam path before the beam sampler which combines the probe and Stark

beams. This lens acts as the first lens in a telescope with the focusing lens for the

Stark beam collimating the probe beam. A schematic of this setup can be seen

in Fig. 3.4. Polarization maintaining fibers bring both beams to the experiment

from a separate laser table.



Polarization control 58

T
i:
S
a

C
al
ci
te

P
ol
ar
iz
er

λ
/4

λ
/2

F
re
sn
el

R
h
om

b
W
ed
ge

B
ea
m
sp
li
tt
er

15
0m

m

T
A

75
m
m

λ
/2

A
to
m
s

x̂

ŷ
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Figure 3.5: The image on the left is of the atoms and Stark beam exposed
simultaneously. It was taken during the alignment procedure for the
interferometer as an example of their relative sizes. The beam is aligned with
the location of the atoms 5 ms after splitting, which is at half of their
maximum separate. Images of the beam and atoms are not typically taken
together as it makes finding the center of each difficult, and the Stark beam
can easily saturate the camera. On the right is a general schematic of the
beam and interferometer to give further perspective and show our coordinate
system explicitly.

These optics are mounted on a translation stage such that the imaging probe

and Stark beams are moved in tandem. This prevents large changes to the Stark

beam alignment from adversely affecting the probe beam. The translation stage

also allows for precise and repeatable alignment of the Stark beam on the atoms.

Given the atoms’ size of roughly 10 µm in their narrowest direction and a beam

waist on the Stark beam of 50 µm, the micrometers on the stage make achieving an

initial alignment of better than 10 µm easily attainable. This is an improvement in

design over the setup used in our scalar polarizability measurements, which lacked

the repeatability. Details on that setup as well as the previous work on ensuring

run-to-run atom position stability to make this alignment procedure feasible can

be seen in Bob Leonard’s Thesis [7].

We use two slightly different alignment procedures based on the specific mea-

surement being done. They involve determining the atoms’ position and then

translating the Stark beam on to them. In both cases, the Stark beam is imaged

using the same camera we use with the atoms. It is necessary to significantly
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attenuate the beam due to its small beam waist easily saturating and potentially

damaging the camera. We add 16 dB attenuation to the output of the Stark AOM

drivers, set the analog input to the drivers to only a few percent their maximum,

turn the beam on for roughly 4 µs when imaging, and finally minimize the beam

intensity by rotating a zero-order half-wave plate before a polarizer at the input

of the optical fiber.

The two procedures differ only in where the atoms are located when their

position is measured. The first procedure is used to measure the polarization of

the Stark beam and requires longer interaction times, thus the atoms’ position is

measured when they are at rest within the trap. The polarization measurement

technique will be discussed later in this chapter. The second procedure is used

when making tune-out wavelength measurements using the atom interferometer,

where only one of the atom packets is exposed to the Stark beam. In this case, the

atoms are imaged when they are at half their maximum separation after splitting,

roughly 125 µm. This occurs 5 ms after the splitting sequence. The Stark beam

waist is large compared to this distance as it passes through the polarizing optics

and vacuum window, so we do not expect any appreciable change in polarization

purity between the two positions.
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3.4 Optical polarization characterization and con-

trol

In addition to having a well-controlled magnetic field, we need to apply a light

field with a well known and stable polarization. This is a critical element for our

tune-out wavelength studies, and it is important for other precision measurements

as well. For our experiments, we need to apply σ+ polarized light to the atoms

with a polarization accuracy better than 10−4.

Two factors make polarization control challenging here. The first is that

the bias field at the atoms is rotating, so relative to the quantization axis the

light polarization is constantly changing. This can be addressed using the same

technique described above for rf spectroscopy, by applying short pulses of light

that are synchronous with the magnetic field oscillations. If light polarization Ê is

applied to the atoms, the polarization fidelity can be defined as F = 〈|Ê∗ · σ̂+|2〉,

where the angle brackets denote a time average over the direction of the field.

We use circularly polarized light travelling along z, with Ê = (x̂ − iŷ)/
√

2. The

direction of the trap field determines the σ̂+ vector as (x̂′ − iŷ)/
√

2, for x̂′ =

cos Ω1tx̂+sin Ω1tẑ. If the light applied for time τ � 1/Ω1, centered on t = 0, then

the time-averaged fidelity is

F = 1− 1

48
Ω2

1τ
2. (3.30)
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For Ω1 = 2π × 12.8 kHz, this gives a negligible polarization error of 2× 10−6 at a

pulse duration of 120 ns.

The second challenging factor is that optical polarizing elements are not ideal,

so the light polarization reaching the atoms will not be perfect. For instance,

stress-induced birefringence of the vacuum window introduces polarization errors

that are difficult to determine in situ [64]. Similarly, waveplate retardances are

not exact and can vary with temperature and light wavelength.

The behavior of the polarization can be characterized using the Stokes vector

S = [S1, S2, S3], which can be related to the left- and right-circular polarized

electric field components E` and Er by S1 = 2Re(ErE∗` ), S2 = −2 Im(ErE
∗
` ) and

S3 = |Er|2−|E`|2. The S0 Stokes parameter is the beam intensity and is here taken

to be unity. Further, we normalize S2
1 + S2

2 + S2
3 = |Er|2 + |E`|2 = 1. When the

laser beam passes through a birefringent element with retardance δ and axis at

angle α, the effect on S is given by the Mueller matrix [65]

M(α, δ) =




cos2 2α + sin2 2α cos δ cos 2α sin 2α (1− cos δ) sin 2α sin δ

cos 2α sin 2α (1− cos δ) cos2 2α cos δ + sin2 2α − cos 2α sin δ

− sin 2α sin δ cos 2α sin δ cos δ



,

(3.31)

such that input S is transformed to S′ = MS. The fidelity of the output polariza-

tion with respect to the initial state is given by

F =
1

2
(1 + S′ · S) . (3.32)
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In the case of weak birefringence δ � 1, the fidelity can be calculated to second

order as

F ≈ 1− δ2

4

[
(S1 sin 2α− S2 cos 2α)2 + S2

3

]
, (3.33)

The error is zero for linearly polarized light aligned to the axis of the retarder, but

in general the fidelity decreases by a factor of order δ2. A similar error occurs for

light passing through a waveplate if δ is interpreted as the birefringence error and

S is the ideal output polarization. We observe typical values of δ to be 5 × 10−2

or greater, which imposes a polarization error on the order of 10−3. It is therefore

necessary to correct for these errors.

We prepare the polarization state starting with linear polarization produced

by a Glan-Taylor polarizer, with an estimated error below 10−5 [66]. The conver-

sion to circular polarization is achieved using a Fresnel rhomb, which is the most

stable retarder readily available [67]. Using BK7 glass, the calculated wavelength

variation of the retardance is below 10−8 rad/nm, and the calculated tempera-

ture dependence is about 4 × 10−6 rad/K. We verified experimentally that the

retardance of the rhomb is stable at our measurement sensitivity of 10−5.

The retardance of the rhomb is not easily adjustable, so prior to the rhomb

we pass the light through two Meadowlark Optics zero-order polymer retarders,

one a quarter-wave plate and the other a half-wave plate. Both plates are aligned

with their axes close to the incident polarization axis, which limits the sensitivity
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Figure 3.6: Data showing optimization of the polarization through changes
to (a) the quarter-wave plate and (b) the half-wave plate at 795 nm. The wave
plates are set to a precision of better than 10−3 rad, which corresponds to a
negligible contribution to the current polarization uncertainty.

to retardance errors or drifts. The polarization state exiting the rhomb is then

Srhomb =




−2α1

4α2 − 2α1

1




+O(α2) (3.34)

where α1 is the angle of the quarter-wave plate and α2 the angle of the half-wave

plate. Any inaccuracies of the rhomb or polarization shifts from subsequent optical

elements will give additional small contributions to S1 and S2. We see, however

that the two waveplate angles provide sufficient degrees of freedom to compensate

for any such contributions, allowing S1 and S2 to be tuned to zero. The behavior

of the polarizing system can be visualized using the Poincaré sphere, as described

in Fig. 3.7.

It is useful to calculate the projection of the light polarization onto the atomic
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Figure 3.7: Poincaré sphere depiction of the polarization control scheme. In
the upper diagram, the radial arrows indicate the axis orientation of the two
wave plates and the Fresnel rhomb. Deviations from the ideal orientations are
exaggerated for clarity. The correspondingly colored traces on the surface show
how the Stokes vector evolves as it passes through the elements, starting with
vertically polarized light output from the polarizer.

σ− and π components, in terms of the Stokes parameters and the relative orienta-

tion between the laser beam and the magnetic field. The results are

|Eπ|2 =
1

2
(1 + S1 cos 2φ+ S2 sin 2φ) sin2 θ ≈ θ2

2
(3.35)

|E−|2 =
1

2
(1−S3 cos θ)− 1

4
(1+S1 cos 2φ+S2 sin 2φ) sin2θ

≈ S2
1 + S2

2

4
, (3.36)

where the laser beam propagates at polar angles (θ, φ) with respect to the field.

We see that the π polarization component depends primarily on alignment, while

the σ− term is set by the polarization optics. The polarization error 1−F can be

expressed here as |Eπ|2 + |E−|2.

This analysis shows that in order to apply pure σ+ light to the atoms, several

conditions must be met. First, the laser beam should be aligned to the z direction

of the trap. Second, the laser pulse timing must be set so that the pulse center
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Figure 3.8: Results of numerical calculations showing how circular
polarization can be achieved despite imperfect wave plates and unknown
additional retardance from subsequent optics. The graphs are projections of
the Poincaré sphere onto the upper hemisphere, with the red dot showing the
σ+ pole. The grid of black dots represent numerically calculated final
polarizations resulting from angular changes spanning ±5 degrees in the half
wave plate and ±10 degrees in the quarter wave plate. Here the polarization
error is modeled as a birefringent element with a retardance of 0.02. The four
panes show different orientations of the stray retarder axis. In all cases, the
two wave plate angles can be adjusted to compensate for the extra element.

arrives when the trap field points along z. Data showing the timing optimization

can be see in Fig. 3.9. Finally, the wave plate angles α1 and α2 must be adjusted to

compensate for the birefringence of the vacuum window and any other polarization

errors. Typical adjustments of the wave plate angles are shown in Fig. 3.6.

In order to set these values precisely, we require a means to characterize the

polarization at the location of the atoms. As shown in Fig. 3.10, our 87Rb atoms

are trapped in the |F,mF 〉 = |2, 2〉 ground state, and we measure the polarization

fidelity by tuning the laser to the 5P1/2 F = 2 level. This level has no state with

angular momentum projection m = 3, so pure σ+ light does not scatter from the

atoms. We can then use the scattering rate as a measure of polarization error,

which is very sensitive since scattering even a single photon causes an atom to be
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Figure 3.9: Data showing optimization of the pulse delay for measuring
σ+-polarized light. We measure the timing to an uncertainty of 6 ns, Delays
are measured using a fast photodiode in situ to account for timing offsets in
the electronics.

Figure 3.10: Level diagrams for polarization testing depicting development of
dark state. The atoms are trapped in the |F,mF 〉 = |2, 2〉 ground state, where
they cannot scatter σ+ polarized light. Any contamination by π or σ− light
does lead to scattering and loss from the trap; the diagram shows π light for
illustration. Because of the scattering, a small population can be temporarily
established in the |F,mF 〉 = |2, 1〉 state, where the strong excitation to m′F = 2
can destructively interfere with the excitation amplitude from mF = 2. This
leads to a suppression of scattering at high optical intensity.

removed from a Bose–Einstein condensate.

To make the measurement, we apply up to 4000 light pulses, each of duration

120 ns and with a period of 2π/Ω1. We then measure the fraction of atoms

remaining in the trap. We observe the scattering rate for near-σ+ light to be a

complicated function of the total intensity, as seen in Fig. 3.11(a). This is due to
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Figure 3.11: (a) Experimental measurements of atom loss. Data points show
the fraction of atoms P remaining in the trap after 1280 pulses of laser light at
the indicated total intensity, relative to the saturation intensity IS . (b)
Numerical calculation of the survival probability after N pulses (1− ε)N for
N = 1280. The solid curve shows the result from the optical Bloch equations
for a polarization impurity Eπ = 2× 10−4. The dashed curve shows the
behavior that would be expected in the absence of dark-state formation. The
inset shows that the loss ε depends linearly on the polarization impurity, here
calculated at I = 100IS . The slope dε/d|Eπ|2 is approximately 9.5 at the first
minimum.

the formation of a dark state. For example, Fig. 3.10 shows a case where a small

amount of π light is present. This excites atoms into the m′ = 2 state, where they

can decay to the m = 1 ground state and eventually fall out of the trap. However,

the atoms do not move significantly during the short laser pulse, so atoms with

m = 1 undergo a strong excitation to the m′ = 2 excited state from the σ+ light.

For the proper spin superposition |ψ〉 =
∑
ci|mi〉, the excitation amplitude from

m = 1 to m′ = 2 can cancel the amplitude from m = 2 to m′ = 2, leaving the

state |ψ〉 dark.

The trapped atoms experience a Zeeman splitting of about 17 MHz, as seen in
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Fig. 3.2. This causes the phases in |ψ〉 to change in time, so in order to maintain

the dark state it is necessary for the optical Rabi frequency of the light to be

comparable to the Zeeman splitting. This corresponds to an intensity I of roughly

ten times the saturation intensity IS, which agrees with the measured intensity

where the atom loss starts to level out. The Zeeman shift causes substantial

dephasing during the 80 µs between laser pulses, and measurements confirm that

that each pulse has an independent effect on the atoms.

We have analyzed the formation of the dark state by solving the optical Bloch

equations for the thirteen relevant atomic states involved [68]. This includes the

F = 2 ground states, the F ′ = 2 excited states, and the F = 1 ground states

which can be populated by spontaneous emission. We model the evolution during

a single pulse of the light, and determine the fraction of atoms ε lost from the

initial m = 2 state as a function of the intensity components Ii, with Iπ, I− � I+.

Figure 3.11(b) shows how the loss depends on the total intensity, and the shape

of the curve agrees reasonably well with the experimental observations. We do

not clearly observe the predicted oscillations at high intensity, but it is likely they

are washed out by experimental intensity noise. The inset shows that the loss ε

depends linearly on the polarization impurity.

The formation of the dark state limits the sensitivity of our polarization mea-

surement, since we cannot arbitrarily increase the laser intensity without saturat-

ing the loss rate. Instead we experimentally adjust the intensity to locate the value

where the loss rate is largest, and then use the Bloch equation model to determine

the polarization impurity corresponding to the measured loss. This calibration
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depends differently on the π and σ− components, with the loss rate always being

greater for σ− light. For both polarizations, the loss rate maximum occurs at

I ≈ 100IS. At that minimum we evaluate the loss per pulse as ε = κi|Ei|2, finding

κπ ≈ 9.5 and κ− ≈ 18. To be conservative, we assume that the impurity is all π

light to set an upper bound. We are then able relate the measured atom survival

probability P = (1− ε)N to the polarization impurity |Eπ|2 via

|Eπ|2 =
1− P 1/N

κπ
, (3.37)

for number of pulses N . For the data of Fig. 3.11(a), we obtain |Eπ|2 ≈ 1.5×10−4.

Following this procedure, we can optimize the light polarization, pulse timing,

and beam direction to minimize the polarization error. For example, Fig. 3.12

shows how the atom loss varies when the delay time of the light pulse is changed.

This corresponds to varying the angle between the beam and the rotating field,

with ∆θ = Ω1∆t. The polarization error varies like θ2/2, as expected. The

optimum delay time corresponds to the minimum of the curve. After optimizing

all parameters in this way, we consistently obtain a loss rate corresponding to

|Eπ|2 = 5× 10−5. Alternatively, if we assume the polarization impurity to be σ−,

we infer |E−|2 = 3× 10−5.

To confirm this result, we reversed the handedness of the light by rotating

the initial polarizer by 90◦, and offset the pulse timing by a half-period π/Ω1. We

then re-optimized the waveplate angles but did not otherwise change the timing

or beam pointing direction. We found that the same level of polarization error
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Figure 3.12: Dependence of polarization error on beam alignment. (a) Points
show the fraction of π polarized light at the atoms, determined as described in
the text. The angle θ between the laser beam and the rotating field is varied
by adjusting the time t at which the light pulse is centered. The curve is a
parabolic fit giving |Eπ|2 = 0.61(3) · Ω2

1t
2, in reasonable agreement with the

expectation |Eπ|2 = θ2/2. (b) Similar data where the angle is physically
changed using a mirror. The fit gives |Eπ|2 = 0.29(4) · Ω2

1t
2.

was obtained. This also verifies the procedures used to zero the BEx and BEy

environmental field components, since it shows that the bias field does in fact

reverse direction after a half period.

3.5 Pulse timing choices

With the optical polarization optimally set and characterized in the lab frame, we

can now discuss our method for setting an arbitrary polarization in the atoms’

frame. As mentioned before, the effective polarization the atoms experience de-

pends on the relative offset of when we pulse on the Stark light with respect to

the instantaneous direction of the rotating bias field. Let us work through how we

can use this to control the polarization precisely.
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I will go into more detail with regards to the theory and our measurements of

the vector polarizability through tune-out wavelength measurements at different

polarizations in the next chapter. In the current discussion we just need to be

aware of the fact that the tune-out wavelength is polarization dependent, and for

our purposes it is dependent almost primarily on the amount of circular polariza-

tion in the light. Recall Eq. (1.5) where we expressed the polarizability α in terms

of its spherically irreducible tensor components.

α = α(0) − vα(1) (3.38)

With v defined as

v ≡ 1

2
S3 cos θ, (3.39)

where S3 is the fourth Stokes parameter which explicitly describes the amount of

circular polarization, and cos θ = k̂·b̂. The previous section discussed our control of

and ability to measure S3. That leaves cos θ as the parameter to control the optical

polarization by varying when the Stark light is on relative to the time-dependent

instantaneous direction of the bias field.

We generate timing pulses which turn the Stark light on and off using a com-

mercial pulse generator (Agilent 81110a) which is triggered externally by a signal

derived from the sync output of the function generator (Agilent 33120a) driving

the ac linear quadrupole in the waveguide. We control the pulse characteristics

by communicating with the pulse generator over GP-IB during each run of the

experiment. These pulses are sent to a pair of AOMs which modulate the laser
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power. We use two AOMs to increase their extinction ratio from 10−3 for a single

AOM to close to 10−6. This ensures any residual leakage light does not adversely

affect our ability to control the polarization precisely.

Ideally we would like the ability to measure a tune-out wavelength for a par-

ticular optical polarization by creating the same effective polarization state using

several different pulse configurations to check for possible systematic errors. These

errors are primarily due to the background magnetic fields and beam alignment.

We can determine how to create these pulse configurations by looking at the phase

difference that develops between the two atom packets with one exposed to the

Stark light. This phase difference is given by

∆φ =

∫
− ~

2cε
α(ω)Idt. (3.40)

At the tune-out wavelength ∆φ = 0. For this to occur we need 〈α(ω)〉 =

0. This can be accomplished over two timescales: either instantaneously, where

α(ω) = 0, or over the course of a single TOP trap rotation period where α(ω)

time-averages to 0. Our previous scalar tune-out wavelength measurement made

use of both, where α(0) = 0 and the residual vector polarizability component was

time-averaged away over an integer number of TOP trap periods. Here though we

are using circularly polarized light to enable us specifically to measure the vector

component. To test the validity and precision of this new method, we want to

remeasure the scalar tune-out wavelength. This involves ensuring
∫

cos θ dt = 0

because we now have S3 6= 0.
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Figure 3.13: The two timing diagrams pictured here both produce nominal
linearly polarized light as we want to check for systematic effects and verify this
polarization control method by comparing with the previous scalar tune-out
wavelength near 790 nm. The solid red arcs show when the Stark light would
be pulsed on. Here, they are on for two 5 µs pulses per TOP trap period,
though other pulse widths could be used in principle. The left diagram does so
by time averaging equal amounts of σ+ and σ− which have opposite sign over
the course of a full TOP trap period resulting in 〈α(ω)〉 = 0. The right diagram
shows a configuration that leads to a more instantaneous time-averaging
because both components are present at the same time leading to α(ω) ≈ 0.
Unfortunately due to a relatively large optical dipole force in the case of the
former, only the latter can be used in the experiment’s present configuration.

Recall Eq. (3.26) from which we get the time dependence of b̂.

b̂ =
B0

B0

= sin Ωt x̂+ cos Ωt ẑ (3.41)

Using this we can find the time dependence of the vector polarizability v

v =
1

2

∫
cos θ dt =

1

2

∫
k̂ · b̂ dt, (3.42)

and then by integrating over the pulse duration along with using he fact that the

Stark beam is aligned with the rotating bias field such that k̂ ≈ ẑ we are able to
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σ+

π

σ−

Figure 3.14: These images show the effect of the polarization dependent
optical dipole force on the atoms. The Stark beam is aligned with the leftmost
packet in each image. The three cases shown use in order from top to bottom,
σ+, 1√

2
π + 1

2 (σ+ + σ−), and σ−-polarized light. The laser is tuned near the
scalar tune-out wavelength at 790 nm. The unwanted compression and
dispersion of the atoms limits our choice of usable timing combinations to
achieve a given polarization state. The effect is present in the atoms on the
right as well due to a small exposure from the edge of the Stark beam. The
integrated exposure in the atoms on the right is less than 1% that of those on
the left.

determine the effective polarization based on the timing configuration.

v =
1

2

∫ t2

t1

ẑ · (sin Ωt x̂+ cos Ωt ẑ) dt =
1

2

∫ t2

t1

cos Ωt dt. (3.43)

It is straightforward from Eq. (3.43) to determine pulse configurations to give

the wanted polarization. Figure 3.13 shows two such configurations we used in an

attempt to remeasure the scalar tune-out wavelength while looking for systematic

biases in our new methodology. Figure 3.13(a) has α(ω) = 0, and Fig. 3.13(b) has

〈α(ω)〉 = 0. Unfortunately, when attempting a tune-out wavelength measurement

using the latter, we observed large unexpected atom loss from the trap which

prevented any useful phase measurement.

We would not expect any significant variation in the spontaneous emission
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rate due to the significant detuning from resonance, yet in searching for the source

of these losses we noticed a dependence on the pulse timings or equivalently the

optical polarization. The data first showing this problem were taken near the

scalar tune-out wavelength at 790 nm and the effective polarization dependence

of these losses can be seen in Fig. 3.14.

An effect related closely to the Stark effect which is similarly dependent on the

polarizability is the optical dipole force. It is the likely source of this polarization

dependent atom loss. This force is given by [69]

F =
1

2cε0
α(ω)∇I(r). (3.44)

We will see shortly that this is indeed the source of the significant atom

loss when F 6= 0 due to optical potential heating the condensate. To assess the

polarization dependence of this heating, we can look at the impulse J from the

optical dipole force applied over the short pulse of Stark light for the pulse timing

configurations of interest, and the BEC momentum distribution will be a limit on

how large J can be. From these we can estimate the net effect of the optical dipole

force and determine the usable pulse configurations.

We start with the beam’s characteristics to calculate F . The beam’s wavefront

is approximated well by a spherical Gaussian, so we can write the intensity I for

a laser propagating in the z direction as [70]

I(r, z0) = I0

(
w0

w(z)

)2

e
− 2r2

w(z)2 , (3.45)
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where w0 is the minimum beam waist, w(z) = w0

√
1 +

(
z
zR

)2

for the Rayleigh

length zR =
πw2

0

λ
, and I0 = 2P

πw2
0
is the peak intensity of the beam given a total

power P . The Rayleigh length for the beam is on the order of a millimeter. With

the condensate size a small fraction of that length and the beam focused on the

atoms, we can let z ≈ 0. We now compute the gradient of the beam intensity using

∇ = ∂
∂r
r̂ + ∂

∂z
ẑ in cylindrical coordinates. The only non-negligible component is

in the r direction, so we will neglect the z direction.

∇rI(r, 0) = −4I0

w2
0

re
− 2r2

w2
0 (3.46)

Averaging the intensity gradient over half the condensate size, 0 to L, gives

an estimate for the net compression force on the atoms. Integrating over half the

condensate can give us a reasonable estimate because during tune-out wavelength

measurements, the atoms are moving through the beam anyway and will experi-

ence roughly 150 pulses. If the optical dipole force is weak enough that the effect of

a single pulse of light is small, there will be little net effect on the atoms after fully

passing through the conservative potential. If however the optical dipole force is

strong, repeated pulses will cause the atoms to be lost from the condensate before

any time-averaging of the optical dipole force can happen.
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The estimate for the spatially-averaged intensity gradient is

∇rI(r, 0) =
1

L

∫ L

0

∇I(r, 0) dr = − 4I0

w2
0L

∫ L

0

re
− 2r2

w2
0 dr (3.47)

≈ −4PL

πw4
0

which we can now use in calculating the impulse J .

J =

∫
F (t) dt ≈ 1

2cε0
∇rI(r, 0)

∫
α(t)dt (3.48)

The general forms of α(0) and α(1) are found in Section 1.3, and we worked

out the time dependence of v in earlier in this section. We found v(t) = 1
2

cos Ω1t

with the optical polarization adequately circularized in the lab frame. Putting

these together yields

J = − 2PL

πcε0w4
0

∫ τ/2

−τ/2

(
α(0)(ω)− 1

2
cos Ω1t α

(1)

)
dt (3.49)

= − 2PL

πcε0w4
0

(
α(0)(ω)τ − 1

2Ω1

α(1)(ω) sin Ω1t

∣∣∣∣
τ/2

−τ/2

)
.

Two pulse sequences we want to compare both create linearly polarized light.

One uses timings such that the polarization is near the equator of the Poincaré

sphere and the other uses equal parts σ+ and σ−. These two configurations

would allow us to assess possible systematics in our polarization control technique

by looking at the scalar tune-out wavelength measurement near 790 nm where

α(0)(ω) = 0 and seeing whether it shifts between the two sequences. The impulses
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from these sequences are

|J±|v=0 ≈
PLα(1)(ω)

πcε0w4
0

τ (3.50)

for polarizations near the poles of the Poincaré sphere and

|Jπ|v=0 = 0 (3.51)

near the equator.

We want to compare the nonzero |J±|v=0 impulse with the BEC momentum

distribution ∆pr, which in the xy plane is given by

∆pr =
~
Lr
, (3.52)

In the experiment we use P ≈ 100 mW, w0 = 45 µm, and τ = 5 µs. The

condensate size Lr can be estimated using the Thomas-Fermi approximation.

Lr =

(
15Na~2

m2ω2
r

)1/5

(3.53)

Here, N ≈ 15000 is the number of atoms, the scattering length is a = 5.77 nm,

m the mass, and ω0 = (ωxωz)
1/2 ≈ 2π × 4.2 Hz is the geometric average of the

TOP trap oscillation frequencies in the plane of the beam focus. Combining these

yields L ≈ 10 µm. α(1)(ω) ≈ 24500 au over the full range of available tune-out

wavelengths with variations of only about 3% so it can be taken as a constant

in this estimation. Plugging these in yields |J±|v=0 ≈ 1.2 × 10−28 kg·m/s, and
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∆p ≈ 10−29 kg·m/s. The order of magnitude difference between the two shows

that we can expect a single pulse of σ±-polarized Stark light to have a large

effect on the condensate near the scalar tune-out wavelength, therefore our choice

of timings to generate a particular polarization are limited to those which have

α(ω) ≈ 0. We also expect from this timing constraint that there will be an effective

maximum pulse width for each particular polarization.

The other relevant polarization and related pulse configuration to consider

generates σ−-polarized light in the atoms’ frame. The tune-out wavelength for

this polarization is at one extreme of the tuning range near 785 nm. At this tune-

out wavelength, v ≈ 0.5, therefore we have α(0)(ω)− 1/2α(1)(ω) ≈ 0. If we follow

through the same calculation we did for near the scalar tune-out wavelength at

790 nm we arrive at

|J+|v=1/2 ≈
PLα(1)(ω)

πcε0w4
0

Ω2
1τ

3

24
. (3.54)

Using the same values from before, we get |J+|v=1/2 = 8× 10−31 at τ = 5 µs. This

is well below ∆pr, and our tune-out wavelength data presented in the next chapter

show that indeed there is no unwanted effect on the atoms at this polarization due

to the optical dipole force.

Because we are ultimately left with only the pulse timing configurations which

have α(ω) ≈ 0, we are unable to check directly for systematics such as from

nonzero background bias fields using the tune-out wavelength measurements and

must settle with using the pulsed rf spectroscopy, trajectory, and polarization

measurement techniques outlined in Section 3.2. For the time being, this is likely
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Figure 3.15: Here are visualizations for the pulse timings of 3 optical
polarization configurations. Each pulse train is synced to the TOP trap with
each individual pulse represented by the solid red arcs roughly 5 µs long.
Pictured are when the magnetic field and k-vector are aligned giving
σ+-polarized light on the left, when they are perpendicular which gives equal
parts σ+ and σ− which results in linearly polarized light in the center, and
when they are oppositely aligned giving σ−-polarized light on the right. Other
timings between those shown are also used for arbitrarily set elliptical
polarizations.

acceptable. This will be touched on further in Section 4.3 when discussing the

error budget in our tune-out wavelength measurements. We’ve settled on using

trains of single pulses which are 5 µs long for the current measurements. This

pulse length does not lead to too large an optical dipole force while maintaining a

reasonable rate of phase accumulation within our desired wavelength tuning range.

Finally, we can estimate the maximum pulse width for the timing configura-

tion generating v ≈ 0.5 using Eq. (3.54). We find τmax ≈ 12 µs gives an impulse

roughly equal to the condensate momentum distribution. This shows that there

is likely room for potential improvement through the use of a longer pulse, though

the longer pulse will change our sensitivity to some of the experimental parame-

ters, primarily the z position. Care therefore needs to be taken in reverifying that

everything is optimized and included in the error analysis if longer pulses are used

in the future.
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3.6 Timing error

A consequence of the large dipole force limiting available pulse configurations for

a particular polarization is a larger than anticipated sensitivity to the timing of

Stark pulses, particularly when not near the pole of the Poincaré sphere (i.e. near

pure σ+ or σ−). We would have liked the ability to use several combinations of

pulses configurations some with more time-averaging to search for and minimize

several systematic errors.

Recall Eq. (3.43) showing v ≈ 1
2

cos Ω1t for a sufficiently short pulse. The

error in the tune-out wavelength due to timing errors goes as

dλ ≈ dv × 10 nm =
1

2
Ω1dt sin Ω1t× 10 nm, (3.55)

where it is dv multiplied by the 10 nm range in available tune-out wavelengths

between the D1 and D2 lines. The tune-out wavelength is approximately linear

with respect to polarization in this range. Near the poles of the Poincaré sphere,

timing errors come in at second order, whereas near the equator, they come in at

first order. This has significant implications for the precision at which we can set

the different polarizations given the timing accuracy of the Stark beam switching

electronics.

The largest timing uncertainty comes from the Agilent 81110A pulse gener-

ator. We use a Newport model 1621 fast photodiode to monitor the Stark pulse

characteristics and determine v in situ. Jitter in the pulse generator’s internal
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Source Spec error (ns) Measured error (ns) dλ0|π (pm)
5 µs pulse 5 3 1.2
150 ns pulse 1 2 0.8

Jitter 8 12 4.8
Minimum step size 50 50 20

Table 3.1: The specified timing errors are converted from the Agilent 81110A
pulse generator specifications using the TOP trap period of 78.125 µs. The
measured timing errors are converted to a tune-out wavelength error using
Eq. (3.55).

clock as well as its 3.5 digit resolution introduce uncertainties we need to consider.

Table 3.1 contains the manufacturers specifications for the pulse generator and

the results of our in situ measurements. Included as well are the uncertainties

timing errors introduce to the scalar tune-out wavelength. As a result of these

uncertainties, we will likely be unable to precisely measure tune-out wavelengths

with polarizations not near σ± in the current experimental setup. In the next

chapter we will discuss several measurements impacted by this timing error and

what can be done to overcome this limitation.

Despite these shortcomings, we will attempt tune-out wavelength measure-

ments at a variety of polarizations. We measure the pulse characteristics in a

given tune-out wavelength measurement to calculate the effective polarization and

determine the timing error. These pulse measurements account for variations in

the timing response of the pulse generator. The largest variation is the 50 ns finite

step size, which would result in a large systematic bias if ignored. Additionally, the

pulses exhibit an asymmetric profile as can be see in Fig. 5.1. The intensity varies

by a few percent over the 5 µs pulse. This is a large enough effect to significantly

bias tune-out wavelength measurements for some polarizations, so a correction
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must be applied. By integrating the pulse and finding its center of mass, we find

that a 28(4) ns correction is needed. This asymmetry is likely due to temperature

and capacitive effects in the AOMs which generate the pulses. A different switch-

ing setup using an EOM might overcome this issue without the need for a timing

correction. That prospect will be discussed further in Section 5.2.

3.7 Wavelength dependence

There is one final note to make regarding the purity and stability of the optical

polarization of the Stark beam. With the unwanted polarization components

reduced to |Eπ|2 + |E−|2 = 5 × 10−5 at the D1 resonance, we must consider the

wavelength dependence of the polarizing and nominally non-polarizing optics as

we will attempt to measure tune-out wavelengths spanning 785 nm - 795 nm.

The optics with the largest unaccounted for effect on the polarization are

three gold mirrors used to steer the beam and periscope it down to table level.

There are large phase changes for S and P polarizations upon reflection, and

these phases vary with wavelength. The reason these mirrors are necessary in the

current experimental apparatus is that the large dc magnetic quadrupole coils used

to transport the atoms from the MOT side of the apparatus to the science side

limit optical access. The other optics affect the polarization through the index

of refraction. In N-BK7 there is a negligible change over the 10 nm tuning range

[64].
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To look into the effect of the mirrors on our tune-out measurements, we start

with a simple model of a single mirror between crossed polarizers. By tuning the

wavelength over our range of interest and looking at the extinction ratio, we can

measure the difference in phase shift between the two polarization components

directly. We align the polarizers near ±45◦ for maximum phase sensitivity. Start

by considering the theoretical phase shift based on the mirror’s properties. We

will define the Jones vectors for the polarization components as

|H〉 =




1

0


 (3.56)

and

|V 〉 =




0

1


 . (3.57)

The Jones matrices for a linear polarizer at ±45◦ is given by

U±45◦ =
1

2




1 ±1

±1 1


 . (3.58)

The mirror is also not perfectly reflecting, but we will start by just considering

changes in phase to get a qualitative picture of the wavelength dependence. We

will add back in the non-unity reflectances later in this section. The mirror’s Jones

matrix is

Um =




1 0

0 eiφ


 , (3.59)
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neglecting any overall common phase. The second linear polarizer is aligned at 90◦

from the first polarizer and the extinction ratio is measured at the output. The

change in the polarization purity |E45◦|2 as the wavelength is varied is then

d|E45◦|2 = |〈V |UmU45|H〉|2 = sin2 1

2
(φ− φ0) (3.60)

for φ = mirror phase at λ, and φ0 = mirror phase at 795 nm.

We compare this to the experimental setup where a less well-known but nearly

circular polarization state is incident on the three mirrors. The circular polariza-

tion Jones vectors are defined as usual as

|LCP 〉 =
1√
2




1

i


 (3.61)

and

|RCP 〉 =
1√
2




1

−i


 (3.62)

Let U0 be the matrix describing the three mirrors at 795 nm and U1(λ) is the

matrix at some other wavelength λ. We have

|LCP 〉 = U0|ψ0〉, (3.63)
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where |ψ0〉 is the input state we set at 795 nm. We then want to know what

happens at 785 nm. Let |ψ1〉 be the output state.

|ψ1(λ)〉 = U1(λ)|ψ0〉 (3.64)

We can then write

|ψ0〉 = U−1
0 |LCP 〉, (3.65)

which leads to

|ψ1(λ)〉 = U1(λ)U−1
0 |LCP 〉. (3.66)

We have models for U0 and U1 and can work out the purity |E−|2 for |ψ1(λ)〉.

As we are just considering the effect of the mirrors on the polarization, U0 is given

by

U0 =




1 0

0 e3iφ0


 , (3.67)

whose inverse is

U−1
0 =




1 0

0 e−3iφ0


 , (3.68)

Similarly the mirrors at λ give

U1 =




1 0

0 e3iφ


 . (3.69)
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Putting all of this together yields

|ψ1(λ)〉 =




1 0

0 e3i(φ−φ0)


 |LCP 〉, (3.70)

which results in a change in the polarization purity of

d|E−|2 = |〈RCP |ψ1〉|2 = sin2 1

2
(3(φ− φ0)) (3.71)

Again φ = the change in phase difference between S and P upon reflection at λ,

and φ0 = is at 795 nm. We can see that Eqs. (3.60) and (3.71) are identical in

form differing only in the total phase due to the three mirrors in the experimental

setup versus one in the test setup. This means that the simple model can be used

effectively to estimate the wavelength dependent change in the polarization due

to the mirrors.

This calculation can be repeated with non-unity reflectances Ri = |ri|2, where

rS and rP are the the reflectance amplitudes for S and P polarizations respectively.

The Jones matrix for the three mirrors becomes

U0 =




rs(λ)3 0

0 rp(λ)3e3iφ(λ)


 . (3.72)

For the reflectances rs and rp. The rest of the derivation is the same as above.

The result is

d|E−|2 =
1

4
(a6 + b6 − 2a3b3 cos(3(φ− φ0))) (3.73)
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where a = rs(785 nm)/rs(795 nm) and b = rp(785 nm)/rp(795 nm). The simple

model of a single mirror between crossed polarizers can be shown to have the

same form. We can therefore measure the change in polarization purity in a more

accessible and simple setup to assess the polarization dependence of the mirrors

in the actual experimental setup. We empirically measured d|E45◦|2 = 5 × 10−4

over 10 nm in the experimental setup. This is more than an order of magnitude

higher than the polarization purity |E−|2 at 795 nm. When we compare this to the

change in polarization using the phase and reflectance variations from the mirrors‘

datasheets, we find d|E45◦|2 = 2×10−5 [71, 72]. Though this is significantly smaller

than what we measured, it is too high to tolerate in the experiment.

A possible explaination for this difference in estimated versus measured change

in polarization is that correcting for the relatively large ∼ π/6 phase difference

between S and P due to the mirrors leads to a larger variation in polarization

than is estimated here. Using the wave plates to correct for this phase means

they are further from their fast and slow axes than they would otherwise be when

correcting for just the smaller phase shifts from the Fresnel rhomb and chamber

window. The polarization purity is then more sensitive to the wave plate wave-

length dependences. Their retardances scale with wavelength as

δλ/4 =
π

2

λ0

λ
(3.74)

and

δλ/2 = π
λ0

λ
(3.75)
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given their design wavelength λ0. The variation in retardance over 10 nm is at

the few percent level. While this is tolerable if the wave plates are within a few

degrees of their fast or slow axes, this large change in retardance quickly leads to

excessive polarization variations as the angles increase.

We tested the polarization components independently of the full experimental

setup to estimate their performance. We found that when making corrections for

smaller birefringences on the order of the chamber at below the 10−3 level, the

polarization purity remained stable to better than 10−5 over 10 nm. Therefore in

the absence of the mirrors, it is likely that the full optical setup will not exhibit

the large variations we currently see.

The imperfect nature of the mirrors and the increase in wavelength sensitivity

makes precision measurements of tune-out wavelengths spanning the full 10 nm

tuning range difficult in the current experimental implementation. In the next

chapter we will discuss the tune-out wavelength measurements themselves as well

as our efforts to overcome these significant polarization variations across the avail-

able tuning range. I will also discuss in Section 5.2 updates to the optics and beam

alignment infrastructure for use in future iterations of this experiment which will

remove the need for these mirrors and make the polarization more stable.



Chapter 4

Tune-out wavelength measurements

In this chapter we will discuss the preliminary results of a vector polarizability

measurement implemented in our atom interferometer. Section 3.5 detailed our

ability to nearly arbitrarily set the optical polarization by using circularly polarized

light and varying the relative timing of the Stark interrogation beam and the

rotating bias field in the TOP trap. We will put this to use to measure how the

tune-out wavelength depends on the polarization. As mentioned in Chapter 1,

what we really hope to get out of these measurements is access to previously

unmeasurable contributions to the polarizability. These include individual higher-

lying dipole matrix elements which are infeasible to measure due to complicated

decay paths. There is also the “tail” from the sum to the continuum, and finally

the core contribution αc.

The tail contributions are not fully accessible from this work at the level of

precision needed for the atomic parity violation analysis. Tune-out wavelength

91
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measurements near the 6P states will be necessary as well before the experimental

precision can approach that of the current theoretical estimates for the tail and

core-valence contributions. Despite this limitation, the results presented here do

represent the first experimental constraint on the separated n′P1/2 and n′P3/2 tail

contributions and as such begin informing these difficult theoretical estimates.

Future tune-out wavelength measurements and improvements to the experimental

design will refine our understanding of these contributions further.

The first two sections in this chapter present the general procedure for mea-

suring tune-out wavelengths and the theory behind the vector tune-out wavelength

measurement. Section 4.3 discusses the first measurements of the vector polariz-

ability at various polarizations, and Section 4.4 goes over a measurement using an

improved experimental design to overcome several significant systematic limita-

tions. This chapter ends by discussing further improvements in the experimental

design. I will discuss our work towards improving the experimental precision and

realizing the 6P measurements in Chapter 5.

4.1 General procedure

We find tune-out wavelengths by measuring the polarizability at several wave-

lengths near to and on both sides the tune-out wavelength using our BEC-based

atom interferometer. As α(ω) = 0 at the tune-out wavelength, we simply look

for where the effect of the Stark beam on the interferometric phase becomes in-

dependent of its intensity. The fixed-wavelength polarizability measurements are
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themselves done over a range of Stark beam intensities where we measure the

accumulated differential phase in the interferometer. The intensity is controlled

through amplitude modulation of AOMs in the beam path. The phase difference

that develops in the interferometer as a function of intensity is given by

∆φ =

∫
− 1

2cε~
α(ω)Idt. (4.1)

As mentioned in Section 2.6, we measure this differential phase by looking at

the ratio of atoms that come to rest upon recombination. Recall Eq. (2.21) where

they are related by

N0

N
= cos2 ∆φ

2
, (4.2)

for the number of atoms at rest N0 and the total number of atoms N . We are able

to set the interferometer output to be N ′0/N = 0.5 in the absence of any additional

phase shift by varying the frequency of the Bragg light slightly between the split

and recombination pulse sequences. This is done to improve the interferometer

sensitivity. N ′0 is the number of atoms at rest with this additional phase offset.

We look specifically at the rate at which this phase develops as we vary the

intensity dφ/dI to find the tune-out wavelength. This provides several measure-

ments at each wavelength and helps verify that the interferometer is working and

that phase output from the interferometer is reasonable. Phase gradients and ex-

cessive phase accumulation can “wash out” the interferometer signal by leading

to a fixed N0/N = 0.5 output independent of intensity. This occurs because the
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Figure 4.1: Sample data showing a typical tune-out wavelength measurement
at v ≈ 0.5. Subfigure (a) shows the full measurement, where κ is measured at
different wavelengths near the tune-out wavelength. Subfigures (b) and (c) are
two of those individual fixed-wavelength measurements.

phase gradients can destroy the coherence in the interferometer. As this mimics

the signal we expect at the tune-out wavelength, we need to avoid this situation.

Verifying that the interferometer signal is intensity dependent when not at the

tune-out wavelength ensures that the measurement is valid.

To maximize the signal, we want the highest possible intensity, which can be

achieved by focusing the Stark beam to a tight waist. However, if the focus is too

small, then the measurement becomes unstable because the relative position of

the atoms and laser drifts due to thermal expansion as the apparatus temperature

varies. Temperature variations due heat dissipation from the large dc spherical

quadrupole and waveguide are a concern but can be dealt with by using a stable

repetition rate and keeping the temperature constant in the waveguide by supply-

ing a dc current of 8 A through the coils when not running. The atoms also undergo

oscillations after loading into the waveguide due to either non-adiabatic loading

or excitations from the 60 Hz background as the trap passes through resonance
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with it, though these oscillations are typically coherent run-to-run.

We are most sensitive to alignment stability in the x direction as the atoms

travel along y and the Rayleigh length of the beam along z is large compared

to the condensate size. A detailed discussion on our efforts to stabilize the atom

packet positions can be found in Bob Leonard’s Thesis [7]. We choose a beam

waist slightly larger than the condensate size of 25 µm in the x-direction to keep

the atoms near the peak in intensity and avoid fluctuations in the interferometric

signal due to the small positional variations on the order of 10 µm. The beam

waist is typically 30 to 50 µm.

The Stark light is applied for the first 20 ms of the 40 ms interferometer.

During this time, one of the atom packets traverses the beam twice, first as it

passes through after initially being split at the start of the interferometer cycle

and again after the reflect pulse reverses the packets’ velocities. As the atoms pass

through each other halfway through the interferometer cycle, the Stark beam is

blocked so that the other atom packet is not exposed.

We use an AOM to vary the total optical power, so it is useful to rewrite

Eq. (4.1) as the product of the total power in the Stark beam P and a parameter

which characterizes the linear response of the phase which we will call κ.

∆φ(ω) = κ(ω)P (4.3)
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Being proportional to the polarizability means κ(ω0) = 0 at the tune-out wave-

length. We can express κ in the low power limit as

κ(ω) = 2
d

dP

(
N ′0
N

)
|P=0. (4.4)

We measure κ(ω) by taking the least squares linear fit of phase data at five

to six different wavelengths near the tune-out wavelength per tune-out wavelength

measurement. We then fit the slopes from those measurements and interpolate

to find the tune-out wavelength where the slope would be zero. Figure 4.1 shows

the data that go into a tune-out wavelength measurement. We are able to take

one to three of these tune-out measurements in a single day limited primarily by

our relatively low repetition rate of just one BEC production cycle every 110 s

and the need to periodically remeasure and adjust the optical polarization and

beam position relative to the atoms. The overall procedure for scalar and vector

polarizability measurements differ slightly but both follow the general methodol-

ogy outlined here. I will discuss in more detail the vector tune-out wavelength

measurements in the next section. The scalar tune-out wavelength procedure can

be seen in detail in Ref. [7].

4.2 Theory

We will start by expanding upon the theory first presented in Chapter 1 to develop

the framework about which we will interpret the results and assess the success of
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these initial vector polarizability measurements. Recall Eq. (1.5) which quan-

tifies the energy shift due to the polarizability in terms of specific polarization

dependent components. Our atoms in the 5S1/2|F,mF 〉 = |2, 2〉 ground state and

v ≡ 1
2
S3 cos θ can vary from −1/2 to 1/2. α becomes

α = α(0) − v α(1), (4.5)

where as before,

α(0) =
1

3~
∑

n′,J ′

|dif |2
ω

ω2
if − ω2

+ αc + α(0)
cv (4.6)

and

α(1) =
1

3~
∑

n′,J ′

(
3J ′ − 7

2

)
|dif |2

ωif
ω2
if − ω2

+ α(1)
cv . (4.7)

The sums are over the valence states with n′ ≥ 5 and J ′ = 1
2
, 3

2
, and |dif | =

|〈i||d||f〉| are the reduced dipole matrix elements. The core-valence correction can

be expanded into its spherical tensor components αcv = α
(0)
cv + α

(1)
cv [12], because

whereas the core contribution is comprised of a symmetric closed shell and thus

cannot have an asymmetric vector component, there is no such symmetry involving

the single valence electron.

We can first consider the simplest case where α is comprised of just the two

lowest terms in the sum, and the Stark laser is near the scalar tune-out wavelength

at 790 nm. These lowest terms dominated the scalar polarizability measurement

and will similarly dominate this vector polarizability measurement due to their

large magnitudes and proximity to the Stark light. Let ωJ be the DJ transition
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frequencies, and ∆ = ω3/2−ω1/2. Neglecting the higher-order terms and using the

approximation ω ≈ ω1/2 ≈ ω3/2, we can write

α ≈ 1

6

( |d1|2(1− 2v)

ω1/2 − ω
+
|d2|2(1 + v)

ω3/2 − ω

)
. (4.8)

If we approximate the ratio of the dipole matrix elements as R ≈ 2, we easily

find where this equals zero and are left with a linear approximation as a function

of the polarization parameter v.

ωa = ω1/2 +
1

3
∆ +

2

3
v∆ (4.9)

This simplest case hides the weaker but interesting dependence on the other

terms in the polarizability but will be a useful benchmark for quantifying those

terms later in the analysis particularly when looking at the divergence from this

linear approximation. To develop a more detailed approximation, we can rewrite

α by separating out the lowest lying elements from the previous approximation.

Additionally it is worthwhile to normalize to a particular dipole matrix element.

The obvious choice is that of the lowest-lying D1 state.

α ≈ 1

3
|d1|2

(
F (ω) + A−Bv + δR

ω3/2 − vω
ω2

3/2 − ω2

)
(4.10)

F contains the lowest lying states under the assumption R = |d3/2|2/|d1/2|2 = 2.

F is the largest contributor to α for tune-out wavelength measurements between
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the D1 and D2 lines.

F (ω) =
ω1/2 + 2vω

ω2
1/2 − ω2

+
2(ω3/2 − vω)

ω2
3/2 − ω2

(4.11)

The higher order states in the scalar and vector polarizability sums as well as

their respective core contributions are in A and B.

A =
1

|d1|2

(
3αc + 3α(0)

cv +
∑

n′,J ′

|dif |2
ωif

ω2
if − ω2

)
(4.12)

and

B =
1

|d1|2

(
3α(1)

cv +
∑

n′,J ′

|dif |2
(

3J ′ − 7

2

)
ω

ω2
if − ω2

)
(4.13)

The final term in Eq. (4.10) corrects for the ratio of the dipole matrix elements in

F not being exactly two where R = 2 + δR.

We can find an approximate analytic solution for the zero in F through Taylor

expansion.

ωF ≈ ω1/2 +
1

3
∆ +

2

3
v∆− 1

9

∆2

ω1/2

(1 + v − 2v2) (4.14)

Combining Eqs. (4.9) and (4.11) lets us make an additional approximation

near 790 nm.

ω3/2 − vω
ω2

3/2 − ω2
≈ 3

4∆
(4.15)

We want to find an expression for the tune-out wavelength involving all of the

contributions. The frequency response is primarily from F , not the smaller terms
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involving A, B, and δR, so we want to find some ω = ωb such that

F (ωb) + A−Bv +
3δR

4∆
= 0. (4.16)

By Taylor expanding F (ω) at ωb = ωF + dω we find

F (ωF + dω) ≈ F (ωF ) + dω
dF

dω
= dω

dF

dω
. (4.17)

It follows then that

dω
dF

dω
+ A−Bv +

3δR

4∆
≈ 0. (4.18)

Therefore, the frequency ωb at which Eq. (4.16) is satisfied is

ωb = ωF + dω = ωF −
(
dF

dω

)−1(
A− vB +

3

4∆
δR

)
. (4.19)

A, B, and δR are all small and we will treat them in first order only. We are

left with the following for the frequency of the polarization dependent tune-out

wavelength.

ωb = ω1/2 +
1

3
∆ +

2

3
v∆ +

∆2

9

(
4

3

(
vB − A− 3δR

4∆

)
− 1

ω1/2

)
(1 + v− 2v2) (4.20)

As the wavelength dependence of v is predominantly linear, it is useful to subtract

off the linear approximation from Eq. (4.9) to see the subtle higher-order polyno-

mial dependence on the polarization. It is from this nonlinear dependence that we
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Figure 4.2: (Top) The linear approximation of the tune-out wavelength
polarization dependence from Eq. (4.9). (Bottom) The full model from
Eq. (4.21) with the linear approximation subtracted off. The model uses
Ath = 1.565(14) au, Bth = 0.014(15) au, and δ3R/4∆ = −5.422 au.

will be able to extract A+ 3δR
4∆

and B.

∆λmodel = 2πc

(
1

ωb
− 1

ωa

)
(4.21)

The values for the model parameters are Ath = 1.565(14) au and Bth =

0.014(15) au. These were calculated using using discrete dipole matrix elements

and δ3R/4∆ = −5.422 au from our previous scalar tune-out wavelength measure-

ment [8], and a recent experimental measurement of αc = 8.69(4) au [27]. A is

already well constrained by the scalar polarizability measurement. What we hope

to get here is a measurement of B. As we discussed in Section 1.3, the tail con-

tributions come in differently to the sums in the scalar and vector polarizabilities.

As A and B contain the higher-lying and small components for the scalar and

vector polarizabilities respectively, experimental measurements of both allow the

extraction of the terms of interest. The n′J1/2 tail is most relevant for the atomic
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Source A B
5 < n′ ≤ 12 0.105(1) 0.019(2)

αc 1.517(1) -
α

(0)
cv -0.062(7) -
α

(1)
cv - -0.007(7)

|t1/2|2 0.001(1) -0.002(2)
|t3/2|2 0.004(4) 0.004(4)
Total 1.565(14) 0.014(15)

Table 4.1: Components of A and B calculated near the scalar tune-out
wavelength at 790 nm.

parity violation analysis, but the others are of interest as well. The core-valence

correction for example has not been measured fully either. The next sections will

discuss our efforts to implement the first experimental measurement of B.

4.3 Experimental overview

The general procedure for measuring tune-out wavelengths which are shifted due

to the nonzero vector polarizability is essentially the same as that of our previ-

ous scalar tune-out measurement [8]. The biggest difference is in the use of 5 µs

pulses of Stark light synced to the rotating bias field, instead of having the light

on continuously, to eliminate the time-averaging of cos θ and give a nonzero vector

component. The Stark beam is aligned with one of the atom packets in the inter-

ferometer when they are at half their maximum separation. This occurs 5 ms after

splitting. By changing the relative offset between the Stark pulse and the rotating

bias field we can nearly arbitrarily set the optical polarization. By choice of timing

we can shift the tune-out wavelength nearly 2/3 the fine structure splitting from
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near 785 nm to the D1 line at 795 nm. Refer back to Chapter 3 for more details

on the polarization control technique.

The tune-out wavelengths are measured by first choosing a fixed timing delay

for the Stark pulse relative to the trap bias field to set the polarization. This

delay is measured by a fast photodiode in situ. We then measure the rate of phase

accumulation κ at several fixed wavelengths at a fixed timing delay near to and on

both sides of the tune-out wavelength. Some difficulty in initially making the mea-

surements lies in the fact that the polarization dependent tune-out wavelengths

span a range of 10 nm and being as little as tens of pm from the tune-out wave-

length can easily wash out the interferometer due to rapid phase accumulation

and phase gradients. The tune-out wavelength model described in Eq. (4.20) is a

good starting point to search for a particular tune-out wavelength given the polar-

ization used. A search of the region with an attenuated Stark beam is done until

a reasonable phase begins to develop. We typically use 5% of the total available

Stark beam power when searching as it allows for a search region of up to roughly

100 pm around the tune-out wavelength. During the search, it is often necessary

to artificially add and remove a π/2 phase shift to the interferometer output to

ensure the interferometer is not washed out. If it is washed out, the output will

not change upon adding or removing the offset. Once the tune-out wavelength

is found, we return the recombination offset to π/2 for maximum phase sensitiv-

ity and increase the optical power in the Stark beam to make a higher-precision

measurement.

We use a Ti:Sa laser as the Stark beam to take advantage of its good spectral
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qualities and high power. We are able to have up to roughly 120 mW at the atoms,

which represents a relatively low efficiency given the 1 W out of the Ti:Sa. This

is due in part to inefficient coupling through the polarization maintaining (PM)

fiber which brings the light over from the laser table and three steering mirrors

between the fiber output and the atoms which are unfortunately lossy. They

will be removed from future iterations of this experiment both for this significant

inefficiency and their somewhat detrimental wavelength dependence which was

discussed in Section 3.7.

We focus the Stark beam on the atoms using a 45 µm beam waist to in-

crease the intensity. Despite the relatively large peak intensity in excess of 3 ×

106 mW/cm2 on the atoms, the inefficiencies and reduced duty cycle result in a

reduced integrated intensity at 3× smaller than in our previous scalar tune-out

wavelength measurement. This has an impact on our statistical uncertainty but

can be readily improved by small tweaks to the experimental design which will be

discuss near the end of this chapter.

Look back to Fig. 4.1 for example tune-out wavelength data, with both indi-

vidual fixed wavelength polarizability measurements and a combined vector tune-

out wavelength measurement showing where the polarizability vanishes. Twenty

vector tune-out wavelength measurements at various polarizations are combined in

Fig. 4.3. Included in the figure is the model from Eq. (4.21) using the theoretically

derived values for A + 3δR
4∆

and B, as well as the fit of the data. The vector data

consists of the tune-out wavelength measurements with the linear approximation

from Eq. (4.9) subtracted off, and the fit is done using Eq. (4.21) with A + 3δR
4∆
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and B as free parameters. Using our experimentally measured value for δR from

the scalar tune-out wavelength measurement [8], we can then extract A.

Before continuing, it is important to note the large error bars in most of

the data. These error bars are primarily due to timing errors from jitter and

unknown timing offsets in the pulse generator, and asymmetry in the Stark beam

pulse likely due to the AOMs. We discussed the general problem we face with

regards to timing in Section 3.6, and as a reminder, we are more sensitive to these

timing errors than anticipated due to the limited pulse configurations we can use

to set the optical polarization as laid out in Section 3.5. This sensitivity is most

extreme when not at the pole of the Poincaré sphere which can be seen in the

smaller relative error bars when v ≈ 0.5 (v3 ≈ 0.12 in Fig. 4.3), therefore the fit

parameters will be constrained primarily by those data and the others are useful

more in a qualitative comparison with the theory.

We also need to discuss several necessary corrections to the measured tune-out

wavelengths. The values for A and B derived from theory lack hyperfine structure.

We consider here only the ground state hyperfine splitting for the correction, where

the F = 2 state the atoms are in is shifted 2.563 GHz [73]. The inclusion of the

few hundred MHz 5P hyperfine splittings will be necessary as the experimental

uncertainty is reduced. This will be done through refinement of the model in

Eq. (4.20) using techniques laid out in Refs. [29, 30].

Additionally, we use two AOMs in series to control the pulse characteristics

when setting the polarization. The use of two AOMs improves the extinction ratio
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Figure 4.3: Example vector tune-out wavelength measurement data. The
black points are vector tune-out wavelength measurements at a variety of
polarizations. The blue points are done at opposite handedness in the lab
frame to check for systematic biases. The red point is the previous scalar
tune-out wavelength measurement. The solid line is the experimental fit and
the dashed line is theoretical model. The fit yields A = 1.66(1)Expt(20)HF and
B = −5.7(7)Expt(2)HF the latter of which differs from theory by about 8σ due
to unaccounted for wavelength dependence in the optics.

and prevents excess leakage light from significantly effecting the polarization. Both

AOMs shift the frequency 80 MHz for a total of 160 MHz from what the wavelength

meter reports. The Stark beam AOM setup can be seen in detail in Appendix A.

The total shift is

dω = dωHF + dωAOM

= 2π × (2.563 GHz− 160 MHz) = 2π × 2.403 GHz, (4.22)

which is roughly 5 pm across the full tuning range.

We subtract this correction from the measured wavelength before comparing

directly with theory. It should be noted that this full correction is only applied to

the data measured here. The scalar tune-out result from our previous measurement
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only needs the ground state hyperfine correction, as the Zeeman and any AOM

shifts were already removed. Further, with this correction lacking the hyperfine

structure of the 5P states we will need to include an additional uncertainty in A

and B of roughly 0.2 au before making the comparison with theory. We arrive

at this value for the uncertainty by comparing the theoretical location of the

scalar tune-out wavelength with and without the 5P hyperfine structure. The

scalar tune-out wavelength without the 5P hyperfine structure was calculated in

Table 1.1 at 790.02568 nm, and its location including the 5P hyperfine splittings

can be found in Table 4.2 in Ref. [7] which gives 790.03108 nm. The difference in

the two is 5.4 pm for a difference from our correction of roughly 0.4 pm. Including

the higher-lying hyperfine structure requires reworking the model from Eq. (4.20).

While straightforward to do, we will include the associated correction as a rough

estimate in the uncertainty here because our experimental precision is currently

worse than the shift due to the higher-lying hyperfine structure.

The data in Fig. 4.3 have the correction already applied, and the result

of the fit have A = 1.66(1)Expt(20)HF au and B = −5.7(7)Expt(2)HF au given

3δR/4∆ = 5.422 au. Compare these to the values derived from theory where

Ath = 1.565(14) au and Bth = 0.014(15) au. We see an unfortunately large dis-

crepancy in B compared to theory particularly near v ≈ 0.5 where the error bars

are small enough for the difference to be significant.

This discrepancy can be explained by the wavelength dependent retardances

of the polarizing and nominally non-polarizing optics we discussed in Section 3.7.

We can make a rough estimate of the effect using the empirical measurement of
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the wavelength dependence of the polarization purity outlined in that section. We

saw a change in polarization purity of dv ≈ 5 × 10−5 over 10 nm, which shifts

the tune-out wavelength ∆λ ≈ 5 pm at v = 0.5. This is reasonably consistent

with the disagreement between the measurements and theory, but it is unlikely

we can make a polarization correction to the data due to the difficulty in precisely

determining dv.

It is worth noting that while these data consist of many distinct polariza-

tions spanning v = −0.5 to 0.5, this wide range of measurements is not strictly

necessary. Recall Eq. (4.20). Consider that at v = 0, the tune-out wavelength is

only dependent on A + 3δR
4∆

due to B being multiplied by v in the model. Our

high-precision measurement of the scalar tune-out wavelength from before already

effectively constrains A+ 3δR
4∆

with less experimental difficulty. We then need only

measure the tune-out wavelength at one other polarization to find B. The limi-

tation on useful timing configurations outlined in Section 3.6 leads us to choosing

v = ±0.5. These extrema are least sensitive to timing errors and many of the other

experimental parameters such as any dc background magnetic fields. Because the

tune-out wavelength for v = −0.5 occurs at the D1 line, spontaneous emission is a

significant concern. Therefore v = 0.5 is the best choice for the additional polar-

ization to measure. In the next section we will discuss overcoming the remaining

large discrepancy with theory via an additional step in the tune-out wavelength

measurement procedure.
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4.4 v = 0.5 measurement

In an effort to correct for the polarization error introduced when v 6= −0.5 due

to the wavelength dependence of the various optics, we repeat the same general

procedure with an additional polarization optimization step. The bluest possible

tune-out wavelength occurs when v = 0.5, therefore any σ+ or π components

will shift the tune-out wavelength to the red. To minimize any σ− component,

adjustments to the wave plate angles are needed. The wave plate angles α1 and α2

as defined in Section 3.4 are not independent of one another, so multiple iterations

of optimization are necessary.

For the π component, the alignment of the beam with the bias field needs

to be corrected. Optimizing timing and By alone are sufficient here as we only

care about this polarization and do not need the field uniformity to hold for other

polarizations as we did in the previous section. These parameters are reasonably

independent due to the geometry of the waveguide. We will be unable to get

an absolute measure of the polarization purity as we did using σ+ light near

795 nm, but can use the precision in setting the four parameters to come up with

a reasonable estimate of the final polarization uncertainty.

I was able to complete a single tune-out wavelength measurement using this

additional optimization step. For the measurement, the polarization purity was

optimized as usual on the D1 line, to |Eπ|2 + |E−|2 ≈ 1.3 × 10−4. Because the

polarization is adjusted after the laser is tuned to 785 nm, this is adequate as it

gets us reasonably close to the correct polarization.
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Figure 4.4: (a) Quarter- and (b) half-wave plates are optimized at 785 nm
after being initially set at 795 nm. Measurements are taken at a 785.15 nm
which is roughly 2 pm to the blue of the v = 0.5 tune-out wavelength. The rate
of phase accumulation κ is used to assess the wave plates’ alignments. The
errors in the fitted minimum angles are 0.003 rad for both wave plates.

The wave plate angle and alignment parameters were optimized by tuning

the laser to the blue of the v = 0.5 tune-out wavelength and measuring the rate

of phase accumulation κ while varying the angles and timing independently. κ is

minimized when the parameters are optimally set as the tune-out wavelength will

be at its bluest. The wavelength chosen was λ ≈ 785.15 nm, roughly 2 pm blue of

the tune-out wavelength.

The wave plate angles peaked up at angular changes from where they were

initially optimized on theD1 line of ∆α1 = 0.018 rad for the quarter-wave plate and

∆α2 = 0.009 rad for the half-wave plate after two iterations for total polarization

variation of

dv ≈ 2α2
1 + 4α2

2 − 4α1α2 = 4× 10−4. (4.23)

These angular changes are qualitatively in agreement with what we would expect

from the wavelength dependence of the optics (the mirrors in particular), as the
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disagreement between our previous measurements without this final compensation

and theory can be explained by a polarization impurity of roughly 10−3.

The polarization error from our ability to set the wave plate angles is also

fairly significant in the current measurements. Section 3.4 gives the framework for

relating S3 = |E+|2−|E−|2 to the effective polarization and assessing small changes

and errors in the polarizing optics.

S3 ≈
(
1− 2|E−|2

)
(4.24)

In terms of the Stokes parameters, |E−|2 is expressed as

|E−|2 ≈
S2

1 + S2
2

4
, (4.25)

where the individual Stokes parameters are related to the quarter- and half-wave

plate angles α1 and α2 respectively by

S =




−2α1

4α2 − 2α1

1



. (4.26)

As we are near the axes of the wave plates, the error in |E−|2 is

d|E−|2 ≈ 2dα2
1 + 4dα2

2 − 4dα1dα2. (4.27)
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Figure 4.5: Vector tune-out wavelength measurement with v ≈ 0.5 after wave
plate angles and pulse timing where optimized at 785 nm.

So far the uncertainties have been about the same for the two wave plates. It

follows then that

dS3 = 2d|E−|2 ≈ 4dα2
1. (4.28)

We can use Eq. (4.28) to estimate the uncertainty in polarization based on the

errors in the optimized wave plate angles. The fitted minimum angles in Fig. 4.4

have errors of dβ = 0.002 rad, so dS3 = 1.6 × 10−5. If we include the full tuning

range of 10 nm over |E−|2 = 0 to 1, this polarization uncertainty gives an uncer-

tainty in the tune-out wavelength of 160 fm. On the D1 line we regularly were

able to find the wave plate angles to better than 5 × 10−4 rad, so it is likely the

uncertainty in this measurement will drop through more iterative adjustments and

an increase in the number of measurements.

When reoptimizing at 785 nm, the timing did not change from where it was

previously determined to be. It was not expected to because the disagreement in

B was due to the wavelength dependence of the optical polarization. Additionally,



Tune-out wavelength measurements 113

−0.5 −0.25 0 0.25 0.5

0

10

20

30

v

λ
0
−
λ
a
(p
m
)

Figure 4.6: Vector tune-out wavelength model and data. The blacks points
are v ≈ ±0.5 with the v ≈ 0.5 point re-optimized at 785 nm to account for the
polarization drift. The red point is previous scalar tune-out wavelength
measurement. The solid line is the fit where A = 1.66(1)Expt(20)HF and
B = −0.8(7)Expt(2)HF . The dashed line is the model of λb − λa using
theoretical values for Ath and Bth.

the work done to fully symmetrize the rotating bias field as discussed in Section 3.2

ensured we could precisely reverse the polarization from σ+ on the D1 line to σ−

used here. An attempt to verify that By = 0 was done as well, but a small gradient

from the bias coils moved the atoms off of the beam. I lacked the time to realign

the beam with the atoms for each measurement. Fortunately, By is expected to

be well-optimized due to the trajectory data and because the field alignment is

independent of the laser wavelength. It will however be worth verifying that this

parameter is indeed fully optimized in the future.

Following the reoptimization, I remeasured the tune-out wavelength, and it

shifted an amount ∆λ ≈ 5 pm from the previous measurements using the same

pulse configuration. This change is consistent with the roughly 6 pm shift we would

expect based on the 5.7 au disagreement with theory we saw before. Doing the

same wavelength correction of roughly 5 pm as in the previous section yields A =
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Source Error Error (fm)
Statistical - 800
Polarization 3× 10−3 rad 160

Tilt 0.12◦ 10
z position 3.5 µm 30

Bx 6 mG < 1
By 10 mG < 1
Bz 4 mG 10

∆B0 17 mG < 1
5 µs pulse shape 28 ns < 1
Timing calibration 8 ns < 1

Wavemeter 0.2 ppm 150
Total - 830

Table 4.2: Vector tune-out wavelength error budget. The experimental errors
are from calculations of the change in cos θ based on the particular value.

1.66(1)Expt(20)HF au and B = −0.8(7)Expt(2)HF au for the v = 0.5 measurement.

If we compare these to the values derived from theory where Ath = 1.565(14) au

and Bth = 0.014(15) au, we see much better agreement than before where A in

still within 1σ and B just over that at 1.2σ.

Despite the large uncertainty in B of roughly 40× that of theory, this is

first experimental measurement capable of extracting the tail contributions (n′ >

12) which are needed in the atomic parity violation analysis, so while there is

significant room for improvement, this experiment represents an important step

towards better understanding these theoretically challenging contributions. In the

next chapter, we will work through using the experimentally measured values of A

and B to give the first experimental constraints on those terms. Table 4.2 shows

the full error budget for B. The largest single contribution is statistical, which

can be reduced through additional measurements. Based on the error budget from

our previous measurement [8] and the reduced integrated peak intensity here, we



Tune-out wavelength measurements 115

can expect the statistical uncertainty to approach 40 fm after a sufficient number

of measurements. My previous data has already shown that statistical errors of

around 125 fm at v = 0.5 are achievable over a single day of data acquisition.

Additionally, the wavelength meter can readily be calibrated and its contribution

to the uncertainty made negligible. The remaining largest single contribution is the

polarization uncertainty. In the next section, we will work through a few scenarios

to reduce this uncertainty in an effort to better design the next implementation of

this experiment.

4.5 Polarization improvements

If we could measure the v = 0.5 tune-out wavelength to a similar accuracy as our

previous scalar tune-out wavelength (32 fm), the experimental uncertainty in B

would be dB = 0.027 au. We would therefore like to determine what improvements

can be done to improve the current experimental uncertainty beyond that level.

The statistical uncertainty currently dominates the total uncertainty at 0.6 au.

Based on our previous scalar tune-out wavelength measurement [8], we can expect

the contribution from the statistical error on B to drop to 0.03 au after a sufficient

number of measurements given our reduced integrated intensity. The polarization’s

contribution to the total uncertainty is currently 0.14 au. Both errors can be

reduced through an increase in the integrated intensity. This section will focus

on a few improvements aimed at doing just that. We will discuss a few other

experimental changes in the next chapter that if implemented should reduce the
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total uncertainty significantly further, and allow our experimental precision to

reach the level of theory.

As mentioned previously, we currently have a factor of three reduction in

integrated intensity of the Stark beam compared to our previous measurement.

Let’s now explore the polarization uncertainty’s dependence on the integrated

intensity to see what we can expect with reasonable improvements to the exper-

imental design. The phase difference that develops between the two arms of the

interferometer is given by

∆φ = − ~
2cε

α(ω)It = − ~
2cε

(
α(0) − vα(1)

)
It. (4.29)

We can look at how the interferometric phase varies with wave plate angle

when near a tune-out wavelength to estimate how precisely we can set the wave

plate angles. There is a maximum phase difference we can resolve before the

interferometer signal washes out. This typically occurs above 2π, though we tend

to stay below π to avoid any reduction in visibility from affecting the data. The

exact phase we use though is irrelevant in this discussion, as long as we consider

fixed maximum phase in determining the uncertainty estimates. At the v = 0.5

tune-out wavelength, this phase maximum ∆φmax occurs when a wave plate is

rotated by some angle β for a given integrated intensity It. At this wavelength,

the polarizability is

α = α(0) − (1− 2|E−|2)α(1) = 2|E−|2)α(1) ≈ 4β2. (4.30)
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If we plug this into the equation for ∆φ, we get

∆φmax = −2~α(1)

cε
β2It. (4.31)

We can rewrite the expression as

β2It =
4∆φmaxcε

~α(1)
≡ γ (4.32)

with γ = constant. Therefore we can see that the maximum adjustment we can

make to β scales with integrated intensity as

β ∼ 1√
It
. (4.33)

The center of a parabola can typically be found to a few percent, so the precision

we can expect to set the wave plate angles also scales as 1/
√
It. We will use this

to estimate the effect of any improvements to the experiment.

There are several straightforward improvements that can help reduce the un-

certainty in polarization. First, we can increase the intensity. The beam waist at

the atoms is larger than in the past. This was done to keep the atoms and beam

more easily aligned, but can likely be reduced as long as the overlap is periodically

checked while taking data, which is more easily done when the experiment is run

with multiple graduate students. Additionally there is significant optical power

lost on the beam steering mirrors and the efficiency into the fiber is not great.

Adjustments to the optical setups before and after the fiber could increase the
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Power (mW) w0 (µm) τmax (µs) Improvement in Iτmax
100 45 12 2.4×
300 37.5 6.8 5.5×
300 30 5 6.8×

Table 4.3: Potential improvements in integrated intensity. Close to an order
of magnitude increase is possible with minimal changes to the experimental
setup. Starting point is 3× less than previous scalar tune-out wavelength
measurement.

optical power at the atoms by at least a factor of three.

Another improvement might be in the pulse length. We never fully searched

for the optimal pulse length, nor compared the atom loss as a function of the

pulse length to what we would expect from theory. In Section 3.5 we calculated

an estimate for the maximum pulse width for the timing configuration used to set

v ≈ 0.5, where an increase from the 5 µs pulses used in here to as much as 12 µs

should be possible. The limit on the pulse width is dependent upon the optical

dipole force, and if changes are made to the total power, beam waist, or pulse

width, we need to account for the increase in the impulse from the Stark beam

|J+|v=1/2 and ensure it remains below the BEC momentum distribution.

|J+|v=1/2 ≈
PLα(1)(ω)

πcε0w4
0

Ω2
1τ

3

24
< 10−29 kg·m/s (4.34)

As before, P is the total optical power, L is the condensate size, w0 is the beam

waist, Ω1 is the TOP trap bias field rotation frequency, and τ is the pulse width.

In the current configuration, |J+|v=1/2 ≈ 8 × 10−31, so an increase of roughly up

to roughly 15× is reasonable without expecting significant atom losses. We can
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estimate the increase in performance using various configurations easily using

|J+|v=1/2 ∼
Pτ 3

w4
0

. (4.35)

Table 4.3 shows several reasonable improvements that can be made to increase the

integrated intensity It over the current experiment.

As our ability to set the wave plate angles is essentially limited by our abil-

ity to measure the interferometer phase, the statistical error will decrease with

increased intensity in the same way. The measurement discussed here included

just a single tune-out wavelength measurement, so a reasonable number of addi-

tional measurements will reduce the statistical uncertainty. For the estimate we

will use ten measurements and a statistical uncertainty based on the current setup

achievable over a single day of 150 fm. This was typical for the other v ≈ 0.5 mea-

surements compared to the 800 fm statistical uncertainty here. The lower number

is more in line with what we saw in the previous scalar tune-out wavelength mea-

surement corrected for the smaller integrated intensity here.

Another significant source of error in Table 4.2 is the variation in atom posi-

tion. These variations affect the polarization through a nonzero contribution from

the linear quadrupole when not at the trap center. Refer back to Chapter 3 to see

how the field components vary with position. This additional nonzero field contri-

bution changes the effective width of the v ≈ 0.5 Stark pulse, and by calculating

k̂ ·b̂ directly we can estimate the uncertainty in v due to these variations. Therefore

in the present setup there are diminishing returns as the improvements are done



Tune-out wavelength measurements 120

because we are ultimately limited by positional stability in the z direction until

the experimental design is changed to accommodate these variations. I am leaving

out any potential improvements to this sensitivity in the current estimates, but I

will discuss in Section 5.2.3 what can be done to reduce this contribution to the

experimental uncertainty.

The final significant contribution to the uncertainty comes from the wave-

length meter. It is a Bristol 621A wavelength meter with a specified ±0.2 ppm

accuracy which at 790 nm is 160 fm. It is able to display up to nine significant

digits and has a stable reading to eight digits with averaging. We typically av-

erage over 10 measurements. In our previous measurement [7], we calibrated the

wavelength output using measurements of the D1 and D2 atomic transitions in

K, Rb, and Cs. This calibration was done periodically while taking data using

a saturated absorption spectroscopy setup and vapor cells containing the three

elements. We were able to determine a correction to apply to improve on the

accuracy to better than 10 fm. This calibration was not done for the present data

due to the increased experimental uncertainty, so listed in Table 4.2 is the effect

of the specified accuracy. As the improvements we are discussing here are imple-

mented it will be necessary to again calibrate the wavelength meter, so I use the

uncertainty in our previous calibration to estimate what we will see here.

Table 4.4 shows the significant contributions to the total error budget esti-

mates for the measurement presented here and the three reasonable improvements

considered above. We leave out the additional 5P hyperfine contribution discussed

in Section 4.3 as it will be removed by expanding the model in Eq. (4.20) as the
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dB (au)
Source Current 2.4× 5.5× 6.8×

Statistical 0.68 0.017 0.008 0.006
Polarization 0.14 0.058 0.025 0.021

Tilt 0.009 0.01 0.009 0.009
z position 0.026 0.026 0.026 0.026

Bz 0.009 0.009 0.009 0.009
Wavemeter 0.13 0.004 0.004 0.004

Total 0.71 0.067 0.039 0.036

Table 4.4: Estimated experimental error in B due to cumulative
improvements of integrated intensity. The specifics of each improvement are
detailed in Tab. 4.3. Compared to the uncertainty from theory of
dBth = 0.015 au, further improvements are still needed.

various improvements are implemented. We estimate then that we can measure B

to a precision of dB = 0.036 au through several reasonable improvements to the

experimental design. This is a factor of two above dBth = 0.015 au, but as it will

be the only experimental constraint B, the information we get by combining it the

measurement of A from the scalar tune-out wavelength result should prove useful

in assessing the current theoretical estimates for the difficult to calculate tail and

core-valence terms. I will present several more substantial routes for improvement

in the next chapter. These have the potential to surpass the theoretical uncer-

tainty, but more specific developmental work will be necessary to choose the path

forward.



Chapter 5

Conclusion and future work

Tune-out spectroscopy has opened up a rich field of study and allows access to

previously inaccessible components of atomic structure, namely dipole matrix ele-

ments. The apparatus used in this experiment still has plenty of room to continue

improving. See Chapters 2 and 3 for detailed descriptions of the current setup.

This thesis will conclude with a discussion that puts the results from Chapter 4

into a broader perspective through the impact of future improvements to the ex-

periment on its potential contributions to the theoretical analyses that motivate

our work.

5.1 Impact of results

Recall our discussion on atomic parity violation (APV) in Chapter 1. The parity

nonconservation amplitude APNC from Eq. (1.3) depends on the n′P1/2 dipole

122
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matrix elements. A significant theoretical uncertainty is introduced during the

analysis due to insufficient knowledge of the higher-lying matrix elements [13–15].

The largest contribution to this theoretical uncertainty comes from the difficulty

in estimating the sum to infinity “tail” from the matrix elements not discretely

calculated. Measurements of tune-out wavelengths offer a potential path to reduce

these uncertainties.

The contributions to the scalar tune-out wavelength from the matrix elements

of the n′P1/2 and n′P3/2 states come in together via a sum, but only the n′P1/2

terms come into the APV analysis. So while allowing a potentially useful estimate

of the two tail contributions together, scalar tune-out wavelength measurements

alone do not remove the need for an imprecise estimate of the higher-lying states

in the APV analysis. In the previous chapter, we discussed a measurement of

the vector polarizability through measurements of tune-out wavelengths shifted

by carefully controlled changes to the optical polarization. What these measure-

ments contribute is the ability to separate out the n′P1/2 and n′P3/2 tail contri-

butions due to the J ′ contributions having different coefficients. Therefore, by

combining measurements of scalar and vector tune-out wavelengths it should be

possible to determine the n′P1/2 and n′P3/2 tail contributions individually. The

tail contributions are |t1/2|2 and |t3/2|2 for J ′ = 1/2 and 3/2 respectively, where

|tJ ′ |2 =
∑

n′>12

|dJ ′ |2. (5.1)
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As a reminder, Eqs. (4.12) and (4.13) contain the scalar and vector contribu-

tions respectively. Measurement of these two parameters will allow us to separate

out the J ′ dependence.

A =
1

|d1|2

(
3αc + 3α(0)

cv +
∑

n′,J ′

|dif |2
ωif

ω2
if − ω2

)
(5.2)

and

B =
1

|d1|2

(
3α(1)

cv +
∑

n′,J ′

|dif |2
(

3J ′ − 7

2

)
ω

ω2
if − ω2

)
(5.3)

The J ′ dependence in B is through 3J ′ − 7
2
, where it equals 1 for J ′ = 3/2 and -2

for J ′ = 1/2. If we subtract of the discrete matrix elements for 5 < n′ ≤ 12 and

core contributions from the experimentally measured values of A and B, we can

access the tail contributions. Table 1.1 contains discretely measured or calculated

matrix elements up to n′ = 12 in 87Rb, the core polarizability, and the tails. How

these contribute to Ath and Bth explicitly can be found in Table 4.1. Let A′ and B′

be the remaining tail contributions to A and B respectively after the other terms

are removed. Recall that from Section 4.4 we measured A = 1.66(1)Expt(20)HF au

and B = −0.8(7)Expt(2)HF au.

A′ = A− 1.560(9) au = 0.1(2) au (5.4)

B′ = B − 0.017(9) au = −0.8(7) au (5.5)
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We can now determine the J ′ tails independently through combinations of A′

and B′.

|t1/2|2 =
1

3
|d1/2|2(A′ −B′) = 5(4) au (5.6)

|t3/2|2 =
1

3
|d1/2|2(2A′ +B′) = −4(4) au (5.7)

The experimental values are reasonably consistent with the theoretical estimates

|t1/2|2 = 0.022(22) au and |t3/2|2 = 0.075(75) au within their uncertainties but

the experimental uncertainties are currently 200× greater. We can look at the

estimated achievable uncertainties to determine how well we can expect to be able

to find |tJ ′ |2 when the experimental uncertainty is reduce. We will use the best

case estimate of dB = 0.036 au shown in Table 4.4 to see what the short term

performance improvement might lead to. The uncertainties in the tails with the

modest experimental improvements reduce to

d|t1/2|2 = 0.22 au (5.8)

and

d|t3/2|2 = 0.27 au. (5.9)

Though the uncertainty is roughly 10× higher than current uncertainty estimate

for the n′P1/2 tail, no other experimental measurements of the tail components

exist to date. Additionally, theoretical estimates for the tail are quite challenging,
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so even a low accuracy experimental value for comparison would be useful. Fur-

ther, we fully expect that many additional improvements will be possible, so that

an experimental accuracy relevant to the APV measurements can ultimately be

achieved. I will discuss the future tune-out wavelength experiments in Section 5.3

and how they are necessary to fully extract the various contributions, but first I

want to go into a little more detail on the incremental improvements to the overall

experimental design which were described in Section 4.5 and used in the present

analysis.

5.2 Experimental improvements

Our ability to almost arbitrarily set the optical polarization is useful feature not

seen in many other experiments, but significant limitations in this technique re-

main such as the timing difficulties from Section 3.6 and the wavelength depen-

dence of optics outlined in Section 3.7. I want to outline briefly several specific

improvements that will overcome many of the challenges mentioned throughout

this thesis and bring the experimental uncertainty closer to the current theoretical

uncertainty.

5.2.1 Optics

The re-optimization technique outlined in Section 4.4 corrects for the change in

polarization estimated at near the 10−3 level due to the wavelength dependence of
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the various post-polarizer optics in the Stark beam path, whereas we empirically

measured the behavior of the Fresnel rhomb and wave plates in an external test rig

and saw variations closer to the 10−5 level. A reasonable starting point is then to

remove the optics with the largest uncontrolled wavelength dependence that were

present in this work. The largest such culprit is suspected to be the protected

gold mirrors. These mirrors were necessary due to geometric constraints from

the overall apparatus superstructure and an underestimation of their overall effect

on the experiment during the design phase. A redesign of the optics system for

polarizing the light and controlling its orientation at the atoms is thus warranted.

I suggest swapping the locations of the vertical imaging probe and Stark optics

with vertical camera such that the camera would image the atoms from below as

opposed to imaging from above in the current setup. The output fiber coupler and

polarization optics can be mounted on a translatable breadboard pointing straight

down into the chamber, which removes the need for any steering mirrors. High

load tip/tilt and linear translators are available to give the necessary control over

beam steering.

5.2.2 Timing

Another area of the overall experiment with significant room for improvement is

in the timing control and stability of the Stark pulses. We designed the control
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mechanism for the in situ optical polarization to be entirely timing-based. The fi-

nal tune-out measurement uncertainties at arbitrary polarizations can be sensitive

to timing jitters and unknown delays on the scale of nanoseconds.

As I mention in Chapter 4, the parameters A and B can be constrained

quite well using only the scalar polarizability result and a single vector tune-out

measurement. Choosing v = 0.5 as that measurement reduces the sensitivity

to timing errors, but it is still desirable to reduce timing instabilities to enable

measurements of tune-out wavelengths at additional polarizations. For instance,

this would allow a timing-based measurement of the scalar polarization, providing

a consistency check for the two methods.

There are a few changes in particular that should lead to much smaller po-

larization uncertainties. The first is a better pulse generator. Our experiment

used an Agilent 81110A, which has a jitter of roughly 8 ns given our experimental

parameters. This corresponds to an overall error of nearly 5 pm near the scalar

tune-out wavelength where we are most sensitive. Other commercial products

are available which should reach the necessary precision. A potential replacement

is the Stanford Research Systems DG535 digital delay generator with a jitter of

< 100 ps and 5 ps delay resolution, though some additional work may be neces-

sary to ensure the output voltage is stable and accurate. It will quite difficult to

fully reduce the timing uncertainty to a level where a measurement of the scalar

tune-out wavelength using the polarization control method outlined in this thesis

can approach that of our previous measurement, but a more reasonable check on

the latter than what we were able to achieve here is still desirable.
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Figure 5.1: A slight asymmetry of 3% over the 5 µs Stark beam pulse shown
here leads to a 28 ns timing correction. While negligible for v = 0.5, it
corresponds to a a several pm shift in the scalar tune-out wavelength. The
need for this correction and thus any uncertainty introduced by it can be
reduced through different Stark beam switching optics. The dashed line is
included at the mean value to guide the eye.

Another improvement would be to change how the Stark beam amplitude

is modulated. Right now, as laid out in Appendix A, we use two acousto-optic

modulators (AOMs) in series to switch the beam on and off, but AOMs have

several drawbacks. They have a delay in switching, which while stable, is quite

large compared to our precision requirement. This delay is as much as 1 µs due

to capacitive effects in the AOM and the speed of sound within the AOM crystal.

An additional drawback due to the finite speed of sound in the crystal leads to

distortions of the pulse shape and a relatively large mimimum pulse width. The

latter has significant implications for measurement of the polarization purity due

to the time dependent bias field. The roughly 120 ns pulse width corresponds to

a variation in polarization over the pulse width of 10−5 given the 12.8 kHz bias

field rotation frequency.

A further limitation on precisely controlled polarizations not near the pole of
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the Poincaré sphere is that we observe an asymmetry in the optical pulse shaping

likely due to heating in the crystal. This asymmetry can be seen in Fig. 5.1. It leads

to a timing correction that could be avoided or at least suppressed significantly

through the use of a better switching method. A reasonable choice might be to

use a Pockels cell to do the switching. They have switching times on the order

of 10 ns which is 6× faster than in our current AOM-based setup. It would be

necessary to use an AOM to gate the Pockels cell due to its reduced extinction

ratio compared to the current setup.

There is also the possibility of changing the TOP trap rotation period to

reduce dependence on timing instabilities. As mentioned in Section 2.4, the choice

of frequency is fairly large, needing only fall between where the atomic motion lies

and the Larmor frequency, which spans hundreds of Hz to nearly 10 MHz. Slowing

the trap down to the single kHz range would decrease the timing sensitivity an

order of magnitude in the current setup given the same jitter and error from the

electronics. The next section will discuss further changes to the bias rotation

frequency which can further benefit the timing precision requirements.

5.2.3 Bias field rotation frequency

In the present setup, a significant limitation on the experimental precision is from

atom positional variations. They lead to changes in the total bias field through

a nonzero contribution from the linear quadrupole when not at the trap center

which makes determining the effective polarization from timing measurements
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alone potentially imprecise. We are particularly sensitive to the atoms’ position in

the z direction for the v ≈ 0.5 measurement. The linear quadrupole field B1, has

a gradient of 30.7 G/cm which quickly leads to a larger than tolerable variation

in the bias field. At dz = 10 µm, it contributes 30 mG to the total field.

We can calculate k̂ · b̂ directly and vary the atoms’ position to estimate the

positional stability’s contribution to the polarization uncertainty. We find that

at v ≈ 0.5 set using a 5 µs wide pulse, dz = 10 µm leads to dv = 3 × 10−6.

This problem is even more exacerbated for the 12 µs pulse which we hope to

implement to increase the integrated intensity where the uncertainty increases to

an intolerable dv = 2× 10−5.

One solution to the reduce the sensitivity both on the atoms’ position and

the Stark pulse timing is through the addition of higher-order frequency terms

sin(nΩ1t) to change the bias field’s instantaneous angular velocity. It is straight-

forward to implement using arbitrary function generators without further loss of

the integrated intensity of the Stark beam. To maintain the same duty cycle,

the higher-order terms are added such that bias field can be slowed down during

the Stark pulses and sped up elsewhere. We can work through the simplest case

with the addition of a second order frequency term. Recall the ideal normalized

rotating bias field from Eq. (2.10), where

B0

B0

= sin Ω1tx̂+ cos Ω1tẑ. (5.10)
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Figure 5.2: Example higher order bias field. The dashed line is the current
normalized bias field B0 = sin Ω1tx̂+ cos Ω1tẑ. The solid line is a possible
higher order extension with a 2Ω1 component given by
Bnew = (sin Ω1t+ 0.5 sin 2Ω1t)x̂− (cos Ω1t+ 0.5 cos 2Ω1t− 0.5)ẑ. The shaded
regions show the areas swept out in a 12 µs pulse for the current setup (lighter)
and the extension (darker). The integrated physical angle swept out in the
extension is 20× smaller than in the current setup, resulting in a decrease in
sensitivity to the atoms’ position.

The first extension would be to add 2Ω1t terms.

Bnew

Bnew
= (sin Ω1t+ 0.5 sin 2Ω1t)x̂− (cos Ω1t+ 0.5 cos 2Ω1t− 0.5)ẑ (5.11)

The magnitude and offset of the second order term are chosen to keep Bnew similar

enough to the current bias field to avoid adversely affecting the atoms, though

actual implementation of any higher-order corrections requires changes to the bias

field drive electronics which are currently optimized to operate at 12.8 kHz.

How the positional variations affect the experimental uncertainty scales ap-

proximately with the angle swept out during the Stark pulse. A larger angle swept

out makes the effective polarization more sensitive to variations in the other field
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components by changing the angle of the rotating bias field from what we expect

based on the Stark pulse timings. The angle swept out by Bnew is a factor of 50

narrower in width for a 5 µs wide pulse than it is for B0. At 12 µs the differ-

ence is a still significant 10× narrower when using the second order terms. This

corresponds to a reduction in polarization uncertainty due to 10 µm positional

variations by a factor of 100 for 12 µs wide pulse and the uncertainty is made

negligible for 5 µs wide pulses.

A comparison with the current bias field is shown in Fig. 5.2. The varying

magnitude of Bnew limits its usefulness in precisely controlling the optical polar-

ization, but through the use of an arbitrary waveform generator it will be possible

to leave the magnitude constant in time while varying only the angular velocity.

The specific changes to the current setup involving any of the possible solu-

tions to the various problems mentioned above as well as any others that have not

come up here need to be carefully considered as there is an interplay between the

various experimental considerations. Timing and how it relates to the bias field

is certainly the largest consideration, and more work is likely needed to extend

the models of the full waveguide field and its effect on the polarization before the

best path forward can be chosen. It seems likely though that none of the current

limitations in the design are insurmountable.



Conclusion and future work 134

5.3 Higher-lying tune-out wavelengths

This first measurement of a vector tune-out wavelength shows this general tech-

nique has promise in accessing difficult to estimate dipole matrix elements, but

that more work is certainly needed to impact the likes of the atomic parity vio-

lation analysis. Beyond incrementally improving the experimental design of the

current setup, it will be necessary to measure higher-lying tune-out wavelengths

to further separate and drive down the uncertainties of the various contributions.

I will now highlight the work that is to come.

Ath and Bth from Chapter 4 are calculated at a fixed wavelength, that of the

scalar tune-out wavelength near 790 nm. While this is a reasonable approxima-

tion for the dynamics near the lowest-lying tune-out wavelengths, there is more

to be gained by considering the frequency dependence of the individual terms.

The discretely calculated terms are straightforward to consider. The transition

energies are well-known through conventional spectroscopy, and the matrix ele-

ments are either calculable or accessible through subsequent tune-out wavelength

measurements.

We need tune-out wavelength measurements at multiple wavelengths to sep-

arate the tail and core contributions specifically. A recent measurement of αc by

Ref. [27] has driven down uncertainty on that term by an order of magnitude,

leaving the core-valence correction the other significant contribution to the total

uncertainty. Since it comes in at the same level as the tail contributions, it will

need to be dealt with. Fortunately, the core and tail contributions have different
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frequency dependences, and we will be able to extract the tail contributions |t1/2|2

and |t3/2|2 by exploiting the differing frequency dependences through measure-

ments of several higher-lying tune-out wavelengths. The frequency dependence

of core components goes as ωcore/(ω
2
core − ω2), where ωcore is the frequency of the

lowest core excitation. This occurs in 87Rb near λcore = 94 nm. The frequency de-

pendence of tail components has a similar form ωion/(ω
2
ion−ω2) but with ωion being

the valence electron ionization frequency which occurs at λion = 297.8 nm. These

scale differently enough that a measurement near 420 nm allows their separation.

Doing a global fit over several tune-out wavelengths near different states and

with different polarization using the tails, core components, and discrete matrix

elements as fit parameters yields a more effective result than what is achievable

through the singular scalar and vector tune-out wavelength measurements pre-

sented here. In Ref. [28], we generated synthetic data using the best current the-

oretical and experimental values and used our previous experimental uncertainty

of 32 fm to estimate future performance. The results showed that additional mea-

surements near the 6P states would allow measurement uncertainties of the various

contributions to be reduced by as much as an order of magnitude. The tails for

example currently have 100% uncertainty, so a reduction to 10% would go a long

way in assisting the APV analysis.

While the experimental uncertainty of the data in this thesis is higher by a

factor of 20 than our previous scalar tune-out wavelength measurement, I have

shown several improvements to the current design informed by the lessons learned
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Contribution α(0) (421.08 nm) α(0) (423.03 nm)
5P1/2 -40.386 -40.910
6P1/2 -113.875 50.423
7P1/2 0.128 0.125
8P1/2 0.024 0.024
9P1/2 0.008 0.008
10P1/2 0.004 0.004
11P1/2 0.002 0.002
12P1/2 0.001 0.001
5P3/2 -83.181 -84.276
6P3/2 228.035 65.371
7P3/2 0.391 0.382
8P3/2 0.082 0.081
9P3/2 0.031 0.030
10P3/2 0.015 0.015
11P3/2 0.008 0.008
12P3/2 0.005 0.005
Other 8.709(93) 8.709(93)
Total 0.001 0.002

Table 5.1: Shown here are the scalar polarizability components for the 6P
scalar tune-out wavelength measurements.

through the pulsed rf spectroscopic measurements and measurements of the po-

larization purity. When these improvements are implemented, we should see the

experimental precision match and possible exceed that of the scalar result.

There has already been work on tune-out wavelength measurements near

higher-lying states. The scalar tune-out wavelengths near 420 nm have been mea-

sured before. Herold et al. [34] were able to achieve uncertainties of a few pm with

measurements of 421.075(2) nm and 423.018(7) nm for the two tune-out wave-

lengths. These tune-out wavelength measurements give the ratio of the higher-

lying 6P matrix elements to d5P1/2
much in the same way the 790 nm scalar

tune-out wavelength. They were able to improve upon the 6P dipole matrix ele-

ments with d6P1/2
= 0.3235(9) au and d6P3/2

= 0.5230(8) au, a factor of 10 better
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Figure 5.3: The scalar polarizability near the 6P transitions. There are two
nearby tune-out wavelengths due to individual terms cancelling between the
5S1/2 to 5P3/2 and 6P1/2 transitions and again between the 5S1/2 to 6P1/2
and 6P3/2 transitions.

than the best theoretical values [12]. Our apparatus will likely be able to improve

further upon this.

One final consideration for the 6P measurements is the need to take into ac-

count atom loss as we are much nearer to resonance than in the 5P measurements.

The scattering rate is expressed as

Rs =
Γ

2

(
I
Isat

1 + 4
(

∆
Γ

)2
+ I

Isat

)
, (5.12)

where I is the peak intensity given by

I =
2P

πw2
0

, (5.13)

Γ is the natural linewidth, Isat is the saturation intensity, and ∆ is the detuning.

For a beam waist of w0 = 30 µm. The saturation intensities for the 6P1/2 and
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6P3/2 states are 6.3 mW/cm2 and 3 mW/cm2 respectively. Using a beam waist

of 30 µm and the 6P3/2 saturation intensity, we find that approximately 15% of

the atoms will be scattered when exposed to a 300 mW Stark beam for 10 ms.

There will be a manageable reduction in the interferometer signal, though not large

enough to limit the future tune-out wavelength measurements. We therefore find

it likely that we can provide useful experimental measurements of higher-lying

dipole matrix elements, the various core contributions, and the sum to infinity

tails.
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Laser system

Previous iterations of the general BEC infrastructure have been described in sev-

eral theses [5–7]. In those they used an MBR Ti:Sa pumped with a 10 W Coherent

Verdi to do laser cooling and trapping, atom manipulation, and imaging. Other

lasers at use at various times have included several iterations of homebuilt repump

diode lasers, homebuilt and commercial (Toptica DL 100) laser diodes for atom

interferometry, and amplified diode lasers for further atomic manipulation.

Due to the frequency sensitivity of tune-out wavelength measurements and

requirement of relatively high tuneability as is evident from the body of this work,

we decided that the Ti:Sa would be much better suited as the Stark laser. We

replaced the Ti:Sa as the main laser in the experiment with a novel amplified diode

system described in Section 2.1. This switch had an additional benefit of helping

reduce the overall complexity of the laser systems. This appendix goes over the

details of this new setup.

139
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A.1 New MOT setup

During the scalar tune-out measurement, we determined that the Ti:SA would be

an ideal Stark laser in the experiment with its improved stability and tunability

over the diode laser used then [8]. In that experiment, it was necessary to include

a narrow bandwidth notch filter (0.25 nm) in the Stark beam path to eliminate

unwanted broadband background light present in the beam. The Ti:Sa removes

the need for this filter and can also more easily be used in future tune-out mea-

surements near higher-lying P states through frequency doubling or tripling. The

Verdi pump laser at the time was also showing its age and suffering significant

power degradation. Its inevitable replacement and the rebuild of the optics setup

would serve as a convenient time to upgrade the Stark laser.

We had hoped to get through the vector polarizability measurements before

making the switch, but in the run up to the vector polarizability experiment, we

saw the Verdi pump laser degrade enough to force an early switch of primary

MOT laser system. We were lucky enough to obtain a Toptica DL Pro for free

through a government surplus program to use as the seed laser for the tapered

amplifier (TA). We used a refurbished and modified Sacher Lasertechnik system

as the TA. Also on hand from a previous student’s dissertation work [74] was a

fiber coupled electro-optic modulator (EO) from EOPSPACE. The custom package

had low (less than 2dB) insertion loss, with no internal termination, and a low

Vπ = 1.7 V. The fiber EO allowed for the removal of our repump laser by using

sidebands at the repump detuning of roughly 6.8 GHz. This reduced the total
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Figure A.1: MOT laser AOM configuration. After the TA are additional
AOMs for switching the MOT, optical pumping, and imaging.

number of lasers needed in the experiment and beneficially, the number of lasers

locked to an atomic transition. More information on how we drive the EO is in

the next section.

The acousto-optic modulator (AOM) setup for the primary MOT laser is

simplified somewhat from before as well. The double pass AOM used to vary

the laser frequency between the MOT, CMOT, and imaging frequencies is now

before the TA, so we have significant overhead on optical power. This allows the

removal of several pickoff mirrors in very close proximity which are replaced with

a beamsplitter. This makes initial alignment and optimization of the double pass

much easier. The new AOM setup can be seen in Fig. A.1.

While rebuilding the laser systems we also took the opportunity to move the

lasers, with the exception of the TA, to a separate optics table for better isolation

from the experiment. The MOT, Stark, and Bragg lasers are all fiber-coupled

through polarization maintaining (PM) optical fibers to reduce polarization noise
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at their outputs.

A.1.1 Driving the EOM

The use of an electro-optic modulator (EO) to introduce sidebands to the seed

laser prior to amplification simplifies the MOT laser system significantly. In order

to have adequate repump light during all stages of our experiment we previously

needed a combination of a free-space cavity EO generating the necessary sidebands

in the two vertical MOT beams and also a locked laser diode. The free-space EO

supplemented the repump laser during regular MOT operation. When transition-

ing to the CMOT, the repump laser was blocked and just light from the EO was

used to repopulate the cycling transition. During optical pumping, where the the

carrier light was tuned far outside of the bandwidth of the free-space EO, the

repump laser was unblocked once more. These stages are all now done with just

the fiber EO.

Switching of the amplitude and frequency of the rf source driving the EO

is handled through solid state analog switches with all outputs tied to a voltage

controlled oscillator and adjustable attenuator. Selection is done through a digital

demultiplexer which is fed by two digital outputs from our Adwin breakout panel.

The four available states are MOT, CMOT, Pumping, and an Off state which

is low output / far detuned. There is an additional switch on the control panel

for completely shutting down the output as the dynamic range of the adjustable

attenuator is only 20 dB. This switch allows manipulation of the output SMA
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Stage Digital 1 Digital 2 Power (mW) Frequency (MHz)
MOT High Low 0.7 6587
cMOT High High 1.0 6519

Pumping Low High 2.6 6840
Off Low Low 0.1 6260

Table A.1: EO logic settings. Two Adwin digital outputs are fed into a
digital demultiplexer to allow selection of the specific configuration needed for
the given cooling stage. Listed are the rf powers and sideband frequencies
relative to the carrier.

cable without risk of damaging the drive circuitry. Additionally, to further protect

the amplifier, there is a 1 dB attenuator directly connected to the EO such that

it more mimics a typical 50 Ω load. The fiber EO is an unterminated, capacitive

load, so this is done to prevent excessive back reflections damaging the amplifier.

A.2 Stark setup

Key to the vector tune-out wavelength measurements is that the extinction ratio

between when the light is pulsed on and when it is off must be better than 106

to avoid significant errors in the optical polarization. AOMs typically have an

extinction ratio of just 103, so we use two in series. As seen in Fig. A.2 both use

the -1 order. This 160 MHz shift must be accounted for in the tune-out wavelength

analysis.

For the polarization purity measurements outlined in Chapter 3, it is locked

to the D1 line. Because the atoms are suspended in a magnetic trap, we must

account for the ∼ 20 MHz Zeeman shift and undo most of the 160 MHz shift from

the switching AOMs. We do this by including a double-pass AOM before the lock,
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Figure A.2: Stark laser AOM configuration.

which allows changing the lock set point without altering the beam alignment.

This allows us to be resonant with the m-sublevel of choice. We typically have it

resonant with the 5P1/2|2, 2〉 state during the polarization purity measurements.



Appendix A 145

AOM Frequency (MHz) Order Frequency Modulation (V)
Main 2× 41.95 -1 × 2 MOT: 0.016

Main 2× pass 55.82 -1 × 2 cMOT: 0.75
Main 2× pass 35.98 -1 × 2 Pump: -0.3
Main 2× pass 45.05 -1 × 2 Probe: 0.18
MOT lock 31.89 +1 -
Pump 80 -2 -
Probe 119.16 +1 -
MOT 90.72 -1 -

Stark lock 2× pass 66.69 -1 × 2 2.50
Stark 1 80 -1 -
Stark 2 80 -1 -
Bragg 80 +1 -

Table A.2: Here are the AOM values for the experiment. The main double
pass, inline with the TA has a tuning rate of 37.8 MHz/V total. The voltages
listed for it are controlled via Adwin analog output 1. The Stark lock double
pass is set by a dc power supply.
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Twitch routines

The following sections describe the settings of many of the experimental param-

eters for the various measurements involved in measuring a tune-out wavelength.

Twitch is our homebuilt compiler for the Adwin realtime computer which controls

much of the equipment. The leftmost column is for the duration in ms the partic-

ular line is to run or if text is present, the given routine. These routines include

other Twitch files run as subroutines, Adwin input triggers such as “sync26” which

has Adwin wait for a signal before continuing, and routines run on the lab com-

puter via a separate program called Commander. Examples of the latter include

our camera setup scripts which begin each main Twitch file, and various rs232

or GPIB commands to reprogram equipment in situ such as the radio-frequency

function generator used during rf evaporation. These scripts are contained in a

text file titled “evap.txt” which Commander references, and I have included several

relevant commands below. The general structure of those commands is the GPIB

146
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channel, the variable to set, and its value. The next columns in the Twitch files are

for the digital outputs and the eight analog outputs. If parameters are unchanged

from one line of a Twitch routine to the next, " can be used on the later lines

instead of repeating the parameter values.

Thanks to improvements by Seth Berl, we now have the ability to comment

out lines in Twitch routines. This makes maintaining the correct timing sequences

across the various measurements straightforward. The prime example where this

comes into play is in the alignment of the Stark beam on the atoms 5 ms after

they are split. We need to ensure that the atoms’ position is measured at the same

point in time as when the beam will be turned on during the tune-out wavelength

measurements. All Twitch routines listed here are the same “interferometer.twh”

routine with the relevant lines uncommented. This removes the need to maintain

and update multiple twitch files for the various measurements

Additional notes are included detailing other manually controlled parameters

for the given measurement. These include attenuations set through wave plate

adjustments and switching between imaging systems. This appendix ends with

a complete list of the experimental parameters and their Adwin and Commander

counterparts.
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B.1 Full BEC experiments

B.1.1 Tune-out wavelength interferometer

This is the full tune-out wavelength measurement. The atoms and beam are

aligned with one another and the interferometer is optimized prior to running

this routine. The parameters to change here are in the rs232 L command, where

the pulse delay sets the effective optical polarization and the output voltage of

the pulse is used to control the intensity of the Stark beam through amplitude

modulation of the Stark AOMs. We typically vary the AOMs from full on to off in

5 to 10% increments in a randomized order. In general the voltages used depend

on the particular AOM driver and have a nonlinear response. Here they span

roughly 0.6 to 1 V.
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Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

setupKinCam

cmot_pump

loadtrap

movetrap

evaporate

loadguide_ac

rs232 L

sync26

180.04 afv " " " " " " " "

270 afv " " " " " " " "

5 afvoe " " " " " 0 0 "

Bragg_Split1

10 afvoemg " " " " " " 0 "

Bragg_Reflect1

10 afvoem " " " " " " 0 "

10 afvoe " " " " " " " "

Bragg_Reflect1

10 afvoe " " " " " 0.25 0 "

Bragg_Split1

15 afv " " " " " 0 0 "

4 fs 0.18 " " " " " " "

0.45 fs " -5 0 -5 -5 0 0 -5

probe_kin

cleanup

mot
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L generic 6

10 ARM:SOUR EXT

10 PULS:DEL1 〈#〉us
10 PULS:WIDT1 5us

10 VOLT1:HIGH 〈#〉V
10 CHAN:MATH OFF

10 OUTP1:STAT ON

Notes: Digital J manual override ON (side imaging) - No attenuation in Stark

AOM rf outputs - Beam attenuation HWP at 100◦ (maximized)

B.1.2 Atom position

This routine is to find the atoms’ position in order to align the Stark beam with

them. The atoms are imaged 5 ms after they are split. The camera trigger digital

“u” is added before splitting as the Apogee camera used in the vertical imaging

setup is significantly slower than the PI camera used in the side imaging setup.
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Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

setupVertCam

cmot_pump

loadtrap

movetrap

evaporate

loadguide_ac

rs232 L

sync26

180.04 afv " " " " " " " "

270 afvu " " " " " " " "

5 afvoe " " " " " 0 0 "

Bragg_Split1

4 fs 0.18 " " " " " " "

0.45 fs " -5 0 -5 -5 0 0 -5

probe_apogee

cleanup

mot

L generic 6

10 ARM:SOUR EXT

10 PULS:DEL1 〈#〉us
10 PULS:WIDT1 150ns

10 VOLT1:HIGH 0.6V

10 CHAN:MATH OFF

10 OUTP1:STAT ON

Notes: Digital J manual override OFF (vertical imaging) - 16 dB attenuation

(6 dB and 10 dB) in Stark AOM rf outputs - Beam attenuation HWP at 142◦

(minimized)



Appendix B 152

B.1.3 Beam position

The Stark beam is imaged by running the experiment in the same was we did to

find the atoms’ position but with a modified probing routine to turn the Stark

beam briefly on. Because it is tightly focused in the imaging plane, it is necessary

to significantly attenuate the beam.

Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

setupVertCam

cmot_pump

loadtrap

movetrap

evaporate

loadguide_ac

rs232 L

sync26

180.04 afv " " " " " " " "

270 afvu " " " " " " " "

5 afvoe " " " " " 0 0 "

probe_stark

cleanup

mot

L generic 6

10 ARM:SOUR EXT

10 PULS:DEL1 〈#〉us
10 PULS:WIDT1 150us

10 VOLT1:HIGH 〈#〉V
10 CHAN:MATH OFF

10 OUTP1:STAT ON
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Notes: Digital J manual override OFF (vertical imaging) - 16 dB attenuation

(6 dB and 10 dB) in Stark AOM rf outputs - Beam attenuation HWP at 142◦

(minimized)

B.1.4 Pulsed radio-frequency spectroscopy

This routine is used to measure the time dependence of the TOP trap bias field

magnitude. This process is automated. A list of rf frequencies and delay times in

a csv file are used to set the corresponding “evap.txt” parameters. Seven different

delay times with around 10 frequencies are typically necessary to fit the field

components with the required precision. As usual the experimental timings are

identical to those used in the tune-out wavelength measurement with the rf turned

on during the 20 ms period the Stark beam would be on.
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Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

setupKinCam

cmot_pump

loadtrap

movetrap

evaporate

loadguide_ac

rs232 H

rs232 P

sync26

180.04 afv " " " " " " " "

270 afv " " " " " " " "

5 afvoe " " " " " 0 0 "

20 afvoemg " " " " " " 0 "

15 afv " " " " " 0 0 "

4 fs 0.18 " " " " " " "

0.45 fs " -5 0 -5 -5 0 0 -5

probe_kin

cleanup

mot

H generic 3

19 POW:AMP -4 DB

19 FREQ:CW 〈#〉MHZ
19 OUTP:STAT ON

P generic 6

10 ARM:SOUR EXT

10 PULS:DEL2 〈#〉us
10 PULS:WIDT2 7.5us

10 VOLT2:HIGH 10V

10 CHAN:MATH OFF

10 OUTP2:STAT ON
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Notes: Digital J manual override ON (side imaging)

B.1.5 Polarization measurement

The polarization measurement routine differs slightly from the others. Due to the

longer necessary interaction time, we do not split the atoms here. Instead their

position is measured with the atoms at rest, and the Stark beam is aligned to

that location. This is a difference in alignment of roughly 125 µm. We again vary

the pulse output amplitude being fed into the Stark AOM amplitude modulation

inputs and observe the first minimum in the number of scattered atoms to calibrate

the polarization purity.

This routine is also used when optimizing timing, alignment, and wave plate

angles when setting the polarization.
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Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

setupKinCam

cmot_pump

loadtrap

movetrap

evaporate

loadguide_ac

rs232 L

sync26

180.04 afv " " " " " " " "

270 afv " " " " " " " "

5 afvoe " " " " " 0 0 "

300 afvoemg " " " " " " " "

15 afv " " " " " " " "

4 fs 0.18 " " " " " " "

0.45 fs " -5 0 -5 -5 0 0 -5

probe_kin

cleanup

mot

L generic 6

10 ARM:SOUR EXT

10 PULS:DEL1 〈#〉us
10 PULS:WIDT1 150us

10 VOLT1:HIGH 〈#〉V
10 CHAN:MATH OFF

10 OUTP1:STAT ON

Notes: Digital J manual override ON (side imaging) - 16 dB attenuation (6 dB

and 10 dB) in Stark AOM rf outputs - Beam attenuation HWP at 130◦
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B.2 ADWIN outputs, Subroutines, and Evap.txt

B.2.1 ADWIN outputs

Digitals
a MOT AOM

b Pump AOM

c

d Probe AOM

e Stark Shutter

f Waveguide preamplifier

g General trigger

h

i

j Vertical/side imaging Low: Vertical High: Side

k Track Low: Science High: MOT

l Pumping bias coil

m Pulse generator trigger

n

o Bragg shutter

p DC quadrupole

q

r

s TA main shutter

t

u Camera trigger

v EOM driver digital

w EOM driver digital

x Commander
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Analogs
1 TA double pass frequency 31 MHz/V

2 Waveguide bias amplitude -5 V to +5 V

3 DC quadrupole amplitude 0 V to +10 V

4 Waveguide quad amplitude -5 V to +5 V

5 Unused Broken

6 Bragg frequency

7 Bragg amplitude

8 AC y coil amplitude -5 V to +5 V

Digital inputs
24 RS232 Commander

25 60 Hz sync

26 Waveguide quad sync

B.2.2 Twitch subroutines

cmot_pump.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

1 pksav 0.016 -5 0.22 -5 -5 0 0 -5

10r pksavw 0.75 " " " " " " "

5 ksavw " " 0 " " " " "

0.3 klsw " " " " " " " "

0.35 " -0.3 " 0 " " " " "

0.5 klswb " " " " " " " "

0.5 kls " " " " " " " "

loadtrap.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

0.1 pkl -0.1 -5 0 -5 -5 0 0 -5

15r " " " 3 " " " " "

50 pakl " " " " " " " "

100r " " " 9.9 " " " " "
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movetrap.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

1800 aplrv -0.1 " " " " " " "

evaporate.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

5 apv -0.135 -5 9.9 -5 -5 0 0 -5

rs232 h apv

5.015 " " " " " " " " "

500 apfv " 5 " " " " " "

3000r " " 1.8 " " " " " "

8000r " " -3.6 8 " " " " "

rs232 f "

rs232 O "

10 " " " " " " " " "

loadguide_ac.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

sync25

10 apfv -0.135 -3.6 8 -5 -5 0 0 -5

200r " " 0 5.6 2 " " " 0

300r " " 2.5 2 3.3 " " " 5

500r " " 5 1 3.6 " " " "

1500r " " " 0.2 3.7 " " " "

3000r " " " 0.05 3.745 " " " "

6000r " " " 0 " " " " "

10 apv " " " " " " " "
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Bragg_split1.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

0.02168 afvoe " " " " " " 1.698 "

0.03644 " " " " " " " 1.224 "

0.02168 " " " " " " " 1.698 "

0.001 " " " " " " " 0 "

Bragg_reflect1.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

0.076 afvoe " " " " " " 1.818 "

0.001 " " " " " " " 0 "

probe_kin.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

0.5 su " -5 0 -5 -5 0 0 -5

0.05 sud " " " " " " " "

6.1 su " " " " " " " "

0.05 sud " " " " " " " "

100 " " " " " " " "

probe_apogee.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

0.5 s " -5 0 -5 -5 0 0 -5

0.025 sd " " " " " " " "

75 av " " " " " " " "

4.95 s " " " " " " " "

0.025 sd " " " " " " " "

500 " " " " " " " "



Appendix B 161

probe_stark.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

5 fe 0.21 " " " " " 0 "

4 fse " " " " " " " "

0.5 " " -5 0 -5 -5 0 0 -5

0.5 se " " " " " " " "

2 sem " " " " " " " "

195 av " " " " " " " "

5 s " " " " " " " "

0.05 " " " " " " " " "

100 " " " " " " " "

cleanup.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

50 " " -5 0 -5 -5 0 0 -5

rs232 o

50 " " " " " " " " "

rs232 O

2000 pksav 0.016 -5 0.22 -5 -5 0 0 -2

2000 ksav " " " " " " " "

rs232 Z

mot.twh
Time (ms) Digitals V1 V2 V3 V4 V5 V6 V7 V8

/ Routine

60000 pksav 0.016 -5 0.22 -5 -5 0 0 -2



Appendix B 162

B.2.3 Evap.txt

GPIB devices
10 Pulse generator HP 8110A

11 Bias 1 function generator Agilent 33120A

12 Bias 2 function generator Agilent 33120A

13 Linear quad function generator Agilent 33120A

19 RF signal generator Agilent 8648D

Evap.txt

% Instructions:

%

% evaporation commands have

% 〈key〉 rf 〈nlines〉
% 〈startf〉 〈stopf〉 〈time_const〉 〈power〉 〈bottom_freq〉
%

% generic GPIB commands have

% 〈key〉 generic 〈nlines〉
% 〈device address〉 〈command to send〉
%

% Imaging setup

b system 1

c:/Experiment_Software/Princeton_Instruments/PI_Background.bat

c system 1

c:/Experiment_Software/Apogee/Apogee_Background.bat

i system 1

c:/Experiment_Software/Princeton_Instruments/PI_Kinetics.bat

e system 1

c:/Experiment_Software/Apogee/Apogee_Kinetics.bat

% rf Function Generator
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% Evaporation

f rf 1

8.0 0.045 2.75 0 2.075

% Evaporation

h rf 3
90 30 6 3.5 0.0

30 15 3 3.5 0.0

15 12 1.5 3.5 0.0

% RF spectroscopy

H generic 3
19 POW:AMPL -4 DB

19 FREQ:CW 14.5 MHZ

19 OUTP:STAT ON

o generic 1

19 OUTP:STAT OFF

% Function Generators

A generic 1

11 PHASE:ADJ 0 DEG

B generic 1

12 PHASE:ADJ 90 DEG

C generic 1

13 PHASE:ADJ 315 DEG

% Pulse Generator

% Stark AOMs - Output 1

L generic 6
10 ARM:SOUR EXT

10 PULS:DEL1 50.68us

10 PULS:WIDT1 150ns

10 VOLT1:HIGH 0.95V

10 CHAN:MATH OFF

10 OUTP1:STAT ON
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% Evaporation - Output 2

N generic 7
10 ARM:SOUR IMM

10 PULS:PER2 1ms

10 PULS:DEL2 0ms

10 PULS:WIDT2 995us

10 VOLT2:HIGH 10V

10 CHAN:MATH OFF

10 OUTP2:STAT ON

% RF spectroscopy - Output 2

P generic 6
10 ARM:SOUR EXT

10 PULS:DEL2 15us

10 PULS:WIDT2 7.5us

10 VOLT2:HIGH 10V

10 CHAN:MATH OFF

10 OUTP2:STAT ON

O generic 3
10 OUTP1:STAT OFF

10 OUTP2:STAT OFF

10 CHAN:MATH OFF



Bibliography

[1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. Observation of a single-
beam gradient force optical trap for dielectric particles. Optics Letters, 11(5):288–
290, May 1986.

[2] I. E. Dzyaloshinskii, E. M. Lifshitz, and Lev P. Pitaevskii. Reviews of Topical Prob-
lems: General Theory of Van Der Waals’ Forces. Soviet Physics Uspekhi, 4(2):153–
176, February 1961.

[3] M. S. Safronova, Carl J. Williams, and Charles W. Clark. Optimizing the fast
rydberg quantum gate. Phys. Rev. A, 67:040303, Apr 2003.

[4] Y.B. Zeldovich. Parity nonconservation in electron scattering and in other effects
in the first order of the weak interaction coupling constant. Zh. Eksp. Teor. Fiz.,
36, 1959.

[5] Jessica Reeves. An Atom Waveguide For Interferometry with a Bose-Einstein Con-
densate of 87Rb. PhD thesis, University of Virginia, 2006.

[6] John Burke. Improvements and applications of a guided wave Bose-Einstein con-
densate interferometer. PhD thesis, University of Virginia, 2010.

[7] Robert Leonard. High precision measurement of the D-line tune-out wavelength in
87Rb using a Bose-Einstein condensate interferometer. PhD thesis, University of
Virginia, 2015.

[8] R. H. Leonard, A. J. Fallon, C. A. Sackett, and M. S. Safronova. High-precision
measurements of the 87Rb D-line tune-out wavelength. Phys. Rev. A, 92:052501,
Nov 2015.

[9] U. Volz and H. Schmoranze. Precision lifetime measurements on alkali atoms and
on helium by beam–gas–laser spectroscopy. Physica Scripta., T65:48–56, 1996.

[10] J E. Simsarian, LA Orozco, G Sprouse, and W Z. Zhao. Lifetime measurements of
the 7P levels of atomic francium. Physical Review A, 57, 04 1998.

[11] R. F. Gutterres, C. Amiot, A. Fioretti, et al. Determination of the 87Rb 5P state
dipole matrix element and radiative lifetime from the photoassociation spectroscopy
of the Rb2 0−g (P 3/2) long-range state. Phys. Rev. A, 66:024502, Aug 2002.

[12] Bindiya Arora, M. S. Safronova, and Charles W. Clark. Tune-out wavelengths of
alkali-metal atoms and their applications. Phys. Rev. A, 84:043401, Oct 2011.

165



Bibliography 166

[13] S. G. Porsev, K. Beloy, and A. Derevianko. Precision determination of weak charge
of 133Cs from atomic parity violation. Phys. Rev. D, 82:036008, Aug 2010.

[14] V. A. Dzuba, J. C. Berengut, V. V. Flambaum, and B. Roberts. Revisiting parity
nonconservation in cesium. Phys. Rev. Lett., 109:203003, Nov 2012.

[15] George Toh, Amy Damitz, Carol E. Tanner, W. R. Johnson, and D. S. Elliott.
Determination of the scalar and vector polarizabilities of the cesium 6s2S1/2 →
7s2S1/2 transition and implications for atomic parity nonconservation. Phys. Rev.
Lett., 123:073002, Aug 2019.

[16] Sheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics,
22(4):579 – 588, 1961.

[17] C. S. Wood, S. C. Bennett, D. Cho, et al. Measurement of parity nonconservation
and an anapole moment in cesium. Science, 275(5307):1759–1763, 1997.

[18] P. L. Anthony, R. G. Arnold, C. Arroyo, et al. Precision measurement of the weak
mixing angle in møller scattering. Phys. Rev. Lett., 95:081601, Aug 2005.

[19] D. Androić, D. S. Armstrong, A. Asaturyan, et al. Precision measurement of the
weak charge of the proton. Nature, 557(7704):207–211, 2018.

[20] M. Tanabashi, K. Hagiwara, K. Hikasa, et al. Review of particle physics. Phys. Rev.
D, 98:030001, Aug 2018.

[21] J. Stark. Beobachtungen über den effekt des elektrischen feldes auf spektrallinien.
i. quereffekt. Annalen der Physik, 348(7):965–982, 1914.

[22] William F. Holmgren, Melissa C. Revelle, Vincent P.A. Lonij, and Alexander D.
Cronin. Absolute and ratio measurements of the polarizability of Na, K, and Rb
with an atom interferometer. May 2010.

[23] Maxwell D. Gregoire, Ivan Hromada, William F. Holmgren, Raisa Trubko, and
Alexander D. Cronin. Measurements of the ground-state polarizabilities of Cs, Rb,
and K using atom interferometry. Phys. Rev. A, 92:052513, Nov 2015.

[24] B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett. Measurement of the
ac stark shift with a guided matter-wave interferometer. Phys. Rev. A, 77:031604,
Mar 2008.

[25] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team.
NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available:
https://physics.nist.gov/asd [2019, December 2]. National Institute
of Standards and Technology, Gaithersburg, MD., 2019.

[26] W.R. Johnson, Dietmar Kolb, and K.-N. Huang. Electric-dipole, quadrupole, and
magnetic-dipole susceptibilities and shielding factors for closed-shell ions of the He,
Ne, Ar, Ni (Cu+), Kr, Pb, and Xe isoelectronic sequences. Atomic Data and Nuclear
Data Tables, 28(2):333 – 340, 1983.

[27] S. J. Berl, C. A. Sackett, T. F. Gallagher, and J. Nunkaew. Core polarizability of
rubidium using spectroscopy of the ng to nh, ni rydberg transitions. 2020.



Bibliography 167

[28] Adam Fallon and Charles Sackett. Obtaining atomic matrix elements from vector
tune-out wavelengths using atom interferometry. Atoms, 4(2), 2016.

[29] P. Schneeweiss F. L. Kien and A. Rauschenbeutel. Eur. Phys. J. D, 67(92), 2013.

[30] P. S. Jessen I. H. Deutsch. Quantum control and measurement of atomic spins in
polarization spectroscopy. Optics Communications, 283:681–694, 2010.

[31] Daniel A. Steck. Rubidium 87 D line data. revision 2.2.1, 21 November 2019.

[32] Felix Schmidt, Daniel Mayer, Michael Hohmann, et al. Precision measurement of
the 87Rb tune-out wavelength in the hyperfine ground state F = 1 at 790 nm. Phys.
Rev. A, 93:022507, Feb 2016.

[33] William F. Holmgren, Raisa Trubko, Ivan Hromada, and Alexander D. Cronin.
Measurement of a wavelength of light for which the energy shift for an atom vanishes.
Phys. Rev. Lett., 109:243004, Dec 2012.

[34] C. D. Herold, V. D. Vaidya, X. Li, et al. Precision measurement of transition matrix
elements via light shift cancellation. Phys. Rev. Lett., 109:243003, Dec 2012.

[35] M. S. Safronova and U. I. Safronova. Critically evaluated theoretical energies, life-
times, hyperfine constants, and multipole polarizabilities in 87Rb. Phys. Rev. A,
83:052508, May 2011.

[36] L. J. LeBlanc and J. H. Thywissen. Species-specific optical lattices. Phys. Rev. A,
75:053612, May 2007.

[37] J. Catani, G. Barontini, G. Lamporesi, et al. Entropy exchange in a mixture of
ultracold atoms. Phys. Rev. Lett., 103:140401, Sep 2009.

[38] G. Lamporesi, J. Catani, G. Barontini, et al. Scattering in mixed dimensions with
ultracold gases. Phys. Rev. Lett., 104:153202, Apr 2010.

[39] Philipp Schneeweiss, Fam Le Kien, and Arno Rauschenbeutel. Nanofiber-based
atom trap created by combining fictitious and real magnetic fields. New Journal of
Physics, 16(1):013014, jan 2014.

[40] Raisa Trubko, James Greenberg, Michael T. St. Germaine, et al. Atom interferom-
eter gyroscope with spin-dependent phase shifts induced by light near a tune-out
wavelength. Phys. Rev. Lett., 114:140404, Apr 2015.

[41] William D. Phillips. Nobel lecture: Laser cooling and trapping of neutral atoms.
Rev. Mod. Phys., 70:721–741, Jul 1998.

[42] T.W. Hänsch and A.L. Schawlow. Cooling of gases by laser radiation. Optics
Communications, 13(1):68 – 69, 1975.

[43] Christopher C. Davis. Lasers and Electro-Optics: Fundamentals and Engineering.
1996.

[44] V. Bolpasi and W. von Klitzing. Double-pass tapered amplifier diode laser with an
output power of 1 W for an injection power of only 200 µW. Review of Scientific
Instruments, 81(11):113108, 2010.



Bibliography 168

[45] V. M. Valenzuela, L. Hernández, and E. Gomez. High power rapidly tunable system
for laser cooling. Review of Scientific Instruments, 83(1):015111, 2012.

[46] C. E. Rogers and P. L. Gould. Nanosecond pulse shaping at 780 nm with fiber-
based electro-optical modulators and a double-pass tapered amplifier. Opt. Express,
24(3):2596–2606, Feb 2016.

[47] P. D. Lett, W. D. Phillips, S. L. Rolston, et al. Optical molasses. J. Opt. Soc. Am.
B, 6(11):2084–2107, Nov 1989.

[48] Alan L. Migdall, John V. Prodan, William D. Phillips, Thomas H. Bergeman, and
Harold J. Metcalf. First observation of magnetically trapped neutral atoms. Phys.
Rev. Lett., 54:2596–2599, Jun 1985.

[49] Naoto Masuhara, John M. Doyle, Jon C. Sandberg, et al. Evaporative cooling of
spin-polarized atomic hydrogen. Phys. Rev. Lett., 61:935–938, Aug 1988.

[50] E. Majorana. Atomi orientati in campo magnetico variabile. Il Nuovo Cimento,
9:43–50, February 1932.

[51] J. M. Reeves, O. Garcia, B. Deissler, et al. Time-orbiting potential trap for bose-
einstein condensate interferometry. Phys. Rev. A, 72:051605, Nov 2005.

[52] David E. Pritchard. Cooling neutral atoms in a magnetic trap for precision spec-
troscopy. Phys. Rev. Lett., 51:1336–1339, Oct 1983.

[53] K. B. Davis, M. O. Mewes, M. R. Andrews, et al. Bose-einstein condensation in a
gas of sodium atoms. Phys. Rev. Lett., 75:3969–3973, Nov 1995.

[54] J. H. T. Burke, B. Deissler, K. J. Hughes, and C. A. Sackett. Confinement effects
in a guided-wave atom interferometer with millimeter-scale arm separation. Phys.
Rev. A, 78:023619, Aug 2008.

[55] Peter J. Martin, Bruce G. Oldaker, Andrew H. Miklich, and David E. Pritchard.
Bragg scattering of atoms from a standing light wave. Phys. Rev. Lett., 60:515–518,
Feb 1988.

[56] K. J. Hughes, B. Deissler, J. H. T. Burke, and C. A. Sackett. High-fidelity manipu-
lation of a bose-einstein condensate using an optical standing wave. Phys. Rev. A,
76:035601, Sep 2007.

[57] M. Lintz J. Guéna and M.-A. Bouchiat. Atomic parity violation: principles, recent
results, present motivations. Mod. Phys. Lett. A, 20:375–389, 2005.

[58] T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh. Electric dipole
moments of atoms, molecules, nuclei, and particles. Rev. Mod. Phys., 91:015001,
Jan 2019.

[59] M. S. Safronova, D. Budker, D. DeMille, et al. Search for new physics with atoms
and molecules. Rev. Mod. Phys., 90:025008, Jun 2018.

[60] S. G. Crane, S. J. Brice, A. Goldschmidt, et al. Parity violation observed in the
beta decay of magnetically trapped 82Rb atoms. Phys. Rev. Lett., 86:2967–2970,
Apr 2001.



Bibliography 169

[61] A S Arnold. Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein
condensates. J. Phys. B: At. Mol. Opt. Phys., 37:L29, 2004.

[62] S Gupta, K W Murch, K L Moore, T P Purdy, and D M Stamper-Kurn. Bose-
Einstein condensation in a circular waveguide. Phys. Rev. Lett., 95:143201, 2005.

[63] A. J. Fallon and C. A. Sackett. Precise control of magnetic fields and optical polar-
ization in a time-orbiting potential trap. Submitted, 2020.

[64] Schott Advanced Optics. Stress in optical glass. Technical Report TIE-27, SCHOTT
AG, 2019.

[65] R A Chipman. Handbook of Optics, volume I, chapter 15. McGraw-Hill, New York,
third edition, 2010.

[66] Y Takubo, N Takeda, J H Huang, KMuroo, and M Yamamoto. Precise measurement
of the extinction ratio of a polarization analyser. Meas. Sci. Technol., 9:20–23, 1998.

[67] J. M. Bennett. A critical evaluation of rhomb-type quarterwave retarders. App.
Opt., 9:2123–, 1970.

[68] Christopher J Foot. Atomic physics. Oxford master series in atomic, optical and
laser physics. Oxford University Press, Oxford, 2007.

[69] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. Optical Dipole
Traps for Neutral Atoms. Advances in Atomic Molecular and Optical Physics, 42:95–
170, January 2000.

[70] Bahaa E A Saleh and Malvin Carl Teich. Fundamentals of photonics; 2nd ed. Wiley
series in pure and applied optics. Wiley, New York, NY, 2007.

[71] Thorlabs protected gold coating. Technical report, Thorlabs, Inc.

[72] Thorlabs protected gold coating (phase). Technical report, Thorlabs, Inc.

[73] S Bize, Y Sortais, M. S Santos, et al. High-accuracy measurement of the 87Rb
ground state hyperfine splitting in an atomic fountain. Europhysics Letters (EPL),
45(5):558–564, mar 1999.

[74] Eun Oh. Asymmetric splitting of Bose-Einstein condensate. PhD thesis, University
of Virginia, 2014.


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Dipole matrix elements
	1.2 Atomic parity violation
	1.3 Tune-out wavelengths

	2 Experimental apparatus
	2.1 Magneto-optical trap
	2.2 Magnetic trap loading
	2.3 Evaporative cooling
	2.4 Time-orbiting potential trap
	2.5 Waveguide
	2.6 Interferometry
	2.7 Absorption imaging

	3 Polarization control
	3.1 Non-ideal magnetic waveguide
	3.2 Magnetic field control
	3.3 Beam alignment
	3.4 Optical polarization characterization and control
	3.5 Pulse timing choices
	3.6 Timing error
	3.7 Wavelength dependence

	4 Tune-out wavelength measurements
	4.1 General procedure
	4.2 Theory
	4.3 Experimental overview
	4.4  v = 0.5  measurement
	4.5 Polarization improvements

	5 Conclusion and future work
	5.1 Impact of results
	5.2 Experimental improvements
	5.3 Higher-lying tune-out wavelengths

	A Laser system
	A.1 New MOT setup
	A.2 Stark setup

	B Twitch routines
	B.1 Full BEC experiments
	B.2 ADWIN outputs, Subroutines, and Evap.txt

	Bibliography

