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ABSTRACT 
 Past attempts to predict earthquakes 
have been largely unsuccessful. Professor 
Geoffrey Fox and I, on behalf of the 
University of Virginia Biocomplexity 
Institute, tried feeding earthquake data into 
machine learning models to predict events. 
We collected time-series data on earthquake 
events from the United States Geological 
Survey (USGS) for select regions in the 
United States; and we built a Long Short-
Term Memory (LSTM) model to predict 
earthquakes months in advance. Our results 
show that earthquakes appear to be 
predictable in the long term, although more so 
for some locations than others. Inconsistency 
in the results of this study suggest more work 
is needed before application into an 
Earthquake Early Warning system. 

1. INTRODUCTION 
 P r e d i c t i n g e a r t h q u a k e s i s a 
significantly challenging problem with a long 
history of largely unsuccessful attempts. As 
defined by USGS, an acceptable earthquake 
prediction must include a time, location and 

magnitude (USGS, n.d.a). There is a 
distinction between earthquake prediction and 
earthquake forecasts. Earthquake predictions 
are specifically predictions months or years in 
advance of the event, while forecasting is on 
the scale of hours. There has never been an 
accurate prediction of any major earthquake 
(USGS, n.d.b). The technical research is 
focused on predicting earthquakes by feeding 
large time-series data sets of earthquake 
events into machine learning (ML) models. 
 It would be very useful to know when 
and where large earthquakes will occur. Many 
lives could be saved. Even for communities 
that cannot access transportation to 
geographically relocate during an event, 
moving to open areas or holding onto shelter 
and covering one’s head is fairly effective in 
preventing casualties (USGS, n.d.c). 
Furthermore, mitigation efforts would be able 
to take place far in the future, at least as far as 
the prediction window of the model. 
Resources such as buildings, food, and 
livestock would also be able to be moved and 
saved. Pre-designated dangerous areas, such 
as areas with buildings that are not 



earthquake-resistant, could be closed off and 
evacuated in advance. Simply put, given an 
accurate prediction of a large event, the 
public would have more time to avoid 
potential harm. 

2. RELATED WORKS 
 While there are known physical 
equations that govern when and where an 
earthquake will happen, humans are unable to 
obtain the parameters needed to perform such 
a calculation. One traditional field of attempts 
for predicting earthquakes has been 
monitoring for suspected local precursors to 
large events (Hayakawa, 2016; Korepanov, 
2016). This is challenging because of the high 
complexity in correlation and the relatively 
short prediction range this allows. Therefore, 
at best it could only be used for earthquake 
forecasting. 

Another avenue has been mathematically 
analyzing long-term trends in geophysical-
related patterns (Boucouvalas et. al, 2015; 
Kannan, 2014). No consistent pattern has 
emerged as it relates to earthquakes. This 
technical research is on predict ing 
earthquakes using ML models rather than 
physical models. ML methods are possible 
because of the large amount of historical 
earthquake data available. With this data and 
high computational power, computers can be 
trained to fit a certain dataset. Furthermore, 
the built-in ability of time-series-based 
methods to correlate complex spatio-temporal 
state spaces makes them promising for this 
problem. The goal is to accurately predict the 
time, location and magnitude of major 
earthquakes months or years into the future. 

3. PROJECT DESIGN 
 USGS has developed the most 
extensive, active database on earthquakes 
events worldwide since around 1950 (USGS, 
n.d.d) This public data includes events 
characterized by their magnitude, depth, date, 
and latitude/longitude coordinates. An 
example of data from Southern California is 
shown in Figure 1. 

 The data was transformed into a 
space-time matrix by binning the events 
based on bin size. For example, an event at 
(34.9, 116.4) and (34.84, 116.2) would be 
processed as events at the same location. The 
time unit was chosen to be one day. 
Therefore, if the two events from the previous 
example occurred on different days, they 
would be stored with the same location index 
but a different time index. 
 This was used to train a single LSTM 
model. The ML model is made for problems 
that deal with predicting certain values over 
time, which is exactly the framework of the 
earthquake prediction model. The model was 
trained on 80% of the locations and tested on 
the rest. If the model had substantially learned 
some general pattern, then its predictions on 
the locations it had never seen before should 
resemble the actual earthquake activity that 



happened there. Other parameters were 
tweaked in an effort to increase the similarity 
between the prediction and the actual output. 

4. RESULTS 
 Initially, data was gathered from all 
areas with significant earthquake activity, 
including Southern California, Japan, Mexico 
and others. After further inspection, it was 
found that only data from the United States 
contained a large enough record of small 
events with a magnitude less than 0.5. It 
proved to be challenging to accurately predict 
future events in regions that did not record 
small events, which suggested that these 
small events act as necessary predictors for 
big events. Therefore, results were collected 
for regions in the United States such as 
Southern and Northern California, Hawaii, 
Washington, and Alaska. 
 Figure 2 shows the results for a model 
asked to predict 6 months in the future on 
earthquakes from Hawaii. Within each graph, 
the actual cumulative magnitude within the 
entire location’s space is plotted over time in 
blue. At every point in time, the model is 
given a history of actual events up to that 
point, and is asked to predict the magnitudes 
across the location space six months into the 
future. Therefore, the predicted value on 
January 1, 2000 in orange was made by the 
model with only an understanding of what 
had happened up to June 1, 1999.  

 On both graphs, the orange line shows 
these predictions. The left graph contains 
locations included in the training set from 
which the model learned a pattern in input 
parameters and output prediction. The right 
graph serves as the test, as it shows the 
model’s predictions on locations within 
Hawaii it had never seen before. The results 
for Hawaii are promising. The 1976 7.7 M 
earthquake and 2018 6.9 M earthquake, both 
near Leilani Estates, Hawaii, were accurately 
predicted with notable spikes in the test 
graph. 

The model is not always accurate, 
however. As shown in Figure 3, for a model 
trained on data from Northern California, a 
major spike appears unnecessarily in 1980 
and does not appear for the 6.9 M Loma 
Prieta earthquake or the 6.1 Carter Springs 
earthquake. Therefore, there is a potential for 
false positives and negatives. 

 

 While false positives and negatives 
are inherent in any prediction model, they 
especially need to be minimized for an 
earthquake prediction model. We do not want 
to waste resources in a long-term preparation 
effort for an earthquake that does not happen. 

Upon closer investigation into Figure 
3, one can see that the reason for the 
predicted event in 1980 most likely was 
because the training data contained the 6.1 M 

 



earthquake in Aspen Springs in 1980. It was 
suspected that the model was overfitting to its 
training data. An overfitted model is not 
useful, since it will not help us predict 
earthquakes it has not seen before. 
 At this point, one could argue that the 
results on Hawaii from Figure 2 could have 
also been due to overfitting. This is especially 
likely since the major earthquakes that 
affected locations in the test set, such as the 
1976 7.7 M earthquake and the 2018 6.9 M 
earthquake near Leilani Estates, also affected 
locations in the training set. To test whether 
the model was ac tual ly learning a 
generalizable pattern of when earthquakes 
would happen in the long term, we used a 
model trained on a given location to predict 
earthquakes in a completely different 
location. This effectively removed the 
potential for overlap in the training and test 
sets that might have prevailed in the results 
from Figures 2 and 3. As shown in Figure 4, 
the model trained on Northern California's 
data was asked to predict earthquake activity 
in Southern California six months in advance. 

 In this case, both the left and right 
graphs are test data, since the model never 
saw any location from Southern California 
during its training. While there is a 
discrepancy in the absolute values of the 

spikes, the relative values appear to line up. 
The highest prediction peak in 1993 correctly 
corresponds with the three 6+ M events that 
occurred that year. Similarly, other local 
spikes also match, such as the 2019 7.1 M 
earthquake in Ridgecrest. This is especially 
promising, as it suggests that earthquakes 
have predictable properties in the long term, 
and LSTM models have the ability to learn 
and encode them. 
 The performance of the model is 
largely location-specific and not yet 
consistent. For example, Figure 5 shows a 
model trained on data from Washington 
predic t ing ear thquakes in Nor thern 
California. The predictions are largely 
sporadic, although the actual data also 
appears sporadic. Nevertheless, actionable 
insight could not be gained from such a 
prediction, showing the need for greater 
consistency. 

5. CONCLUSION 
The problem of earthquake prediction appears 
to be solvable. One potential solution 
explored in this study combined large time-
series earthquake datasets with LSTM 
models. While the results were largely 
dependent on location, there were cases 
where such a model was able to predict 
significant earthquakes six months in 
advance. 



6. FUTURE WORK 
Future work should aim to reduce the number 
of false positives and negatives of the model, 
as that will be key if it is ever to be deployed 
into an Earthquake Early Warning system. 
Additionally, as with most ML problems, 
expanding data collection efforts to ensure 
large, complete datasets are available is 
extremely helpful. These efforts are most 
necessary outside of the United States, as 
their current datasets are not thorough enough 
to be used with this solution. 
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