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Abstract

Surgical robots are complex cyber-physical systems driving the development of new

features and technologies to improve efficiency and patient safety in surgery. This

dissertation focuses on three major challenges that hinder the development of surgi-

cal robots: small datasets with low diversity and incompatible activity labels, limited

generalizability and interpretability of black box activity recognition models, and

limited attention to identifying executional errors during surgeon training and skill

assessment. We propose a formal framework for the fine-grained modeling of surgical

tasks using context and motion primitives. This framework directly relates interac-

tions among tools and objects within the surgical environment encoded as context, to

surgical workflow described by motion primitives, and enables the modeling of tasks

as finite state machines. Then, we develop a method for labeling context based on

video data that results in objective, fine-grained annotations with near-perfect agree-

ment among non-expert annotators and expert surgeons. Using our framework, we

create the COntext and Motion Primitive Aggregate Surgical Set (COMPASS) con-

taining kinematic and video data with consistent labels from six different surgical dry

lab tasks that nearly triples the amount of data for modeling and analysis. To under-

stand the relationship between different levels of granularity, we use this framework

and dataset to develop models for the inference of surgical context from video data and

the recognition of motion primitives and gestures from kinematic data. We propose

the novel Leave-One-Task-Out (LOTO) cross validation setup that evaluates the gen-

eralizability of activity recognition models to unseen tasks. We find that aggregating

data across datasets supports the task-generalization of motion primitive recognition

models. Then, we develop novel activity-aware methods for the identification and

analysis of errors based on the surgical task and activity recognition models created

in the previous thrusts. We use these methods to identify interpretable patterns in

fine-grained surgical activities that strongly correlate with measures of surgical skill

and can be used to improve feedback in surgeon training and skill assessment.
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Chapter 1

Introduction

1.1 Motivation

Surgical robots provide surgeons with increased flexibility and precision while re-

ducing incision size, recovery time, and scarring for patients. They are driving the

creation of new surgical techniques and technologies [1] and are now used in many sur-

gical procedures across multiple specialties including urology, gynecology, and general

surgery. Since their adoption, there has been an increase in the number of minimally

invasive surgery (MIS) cases [2], and the da Vinci Surgical Systems by Intuitive Sur-

gical [3] have been used to perform over 10 million procedures [4] as of 2021. Surgical

robots are complex, human-in-the-loop cyber physical systems (CPS) [5] where a hu-

man surgeon with knowledge of the surgical workflow sits at the master console and

operates the surgical robot. Commands from the control software in the cyber layer

are sent to the surgical robot in the physical layer.

Surgical robots are transforming the way surgeons operate, and enabling the devel-

opment and integration of features to make surgical robots dependable, safe, secure,

and efficient [5]. Advancements in sensing and computing technology support the col-

lection of system logs, kinematic data, and videos from robot-assisted surgery (RAS)

systems and simulators during procedures. This has given rise to the field of surgical

data science [6]. Surgical data science aims to increase the accessibility and qual-

ity of medical data, and leverage it to assist care providers, improve patient care,
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augment surgeon training, and enable the development of new surgical technologies.

As shown in Figure 1.1, surgical data science is central to the analysis of data for

surgical process modeling, surgical scene segmentation, activity recognition, surgical

autonomy, and automated skill assessment.

Surgical 
Data 

Science

Surgical Process 
Modeling

Surgical Scene 
Segmentation

Automated Skill 
Assessment

Surgical Autonomy Activity Recognition

Figure 1.1: Surgical data science is central to the modeling and analysis of medical

data for augmenting surgeon training, improving patient care, and enabling the de-

velopment of new technologies.

As part of their training, surgeons perform surgical tasks using the surgical robot

in both real dry lab and virtual simulated environments. These tasks allow surgeons

to hone their skills on the surgical robot and practice the motions and gestures that

are the building blocks for real surgical operations. Their performance on these

tasks is manually or automatically assessed by a senior surgeon or training simulator

to track skill development, provide feedback, and determine skill level. However,

2



manual assessment, using standardized rubrics such as the Global Rating Scale (GRS)

score [7], can be subjective and time consuming.

Automated skill assessment is being developed for more objective feedback and to

reduce the burden on expert surgeons, but these methods are based on metrics such as

time and path length, or data-driven models which lack specificity and interpretabil-

ity. In addition, less attention has been paid to safety metrics and the analysis of

errors which is an emerging subfield of research [8]. There has also been more interest

in fine-grained and interpretable feedback during training based on the decomposi-

tion of surgical activities into smaller components for analysis by leveraging surgical

process modeling. Surgical process modeling [9, 10] seeks to model surgical workflow

by defining different levels of a surgical hierarchy and decomposing surgical proce-

dures into smaller components such as tasks, gestures, and actions. Machine learning

models for the automated recognition of these surgical activities are a fundamental

component of systems for skill assessment, autonomy, and error detection. However,

comprehensive and comparative analyses are hindered by the lack of a generalizable

framework for modeling surgical tasks and the absence of annotated datasets that

reflect the diversity of tasks in real surgery.

1.2 Challenges

This dissertation focuses on addressing three challenges in robotic surgery including

limited datasets with incompatible activity labels, limited explainability and gener-

alizability in activity recognition, and limited attention to executional errors in the

surgical tasks during training and skill assessment.

1.2.1 Surgical Context and Activity Modeling

The formal specification of surgical interventions is part of planning, teaching, and

evaluating surgical operations [10] and can involve top-down knowledge representation

and bottom-up data-driven techniques [11]. These models are applied to datasets with

real or dry lab tasks to label surgical activity at different granularities such as phases,

3



tasks, gestures, and actions. However, a major limitation is that datasets contain

only a few tasks, subjects, and trials resulting in low data diversity.

Much work has been done at the gesture level in skill assessment [12, 13], auton-

omy [14], and error detection [15–18] using these datasets, and they have also been the

subject of activity recognition and image segmentation challenges [19–21]. The auto-

mated segmentation and classification of gestures is critical for these applications and

an active field of research. However, the definitions of gestures vary between datasets

which limits comparative analyses between datasets and models [8]. Surgical actions

and action triplets [22,23] have also been introduced for the fine-grained description of

surgical activity, but the number and types of actions used to label datasets still vary,

and these datasets focus on video data of real surgeries. The absence of a standard-

ized, multilevel framework for defining and labeling fine-grained surgical activities

continues to be a challenge for surgical robotics research [8,10]. These challenges are

compounded by the difficulty of annotating for surgical workflow [24], the presence of

errors in gesture labels [25], and differing gesture definitions among existing works.

1.2.2 Surgical Context Inference and Activity Recognition

Understanding the complex surgical environment is an important first step in aug-

menting surgical robots with systems to improve training, safety, and efficiency [26].

Towards these applications, it is important to know the tools, objects, and anatomi-

cal structures in the scene; the current step and task; and the activities the surgeon

is performing to make progress in the operation. This is accomplished by analyzing

video and kinematic data from the surgical robot using various data processing and

machine learning methods. However, interpretability remains a challenge in deep

learning models [27].

Previous works on surgical robot instrument or surgical scene segmentation used

publicly available datasets of real surgical videos such as MICCAI EndoVis 17 [28],

MICCAI EndoVis 18 [19], and Cata7 [29]. However, they did not explicitly relate

the segmentation and interactions of tools and objects to the activities performed by

the surgeon. Relating these tool and object interactions to surgical activity would
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provide a deeper understanding of the surgical environment as well as an alternative

method of verifying activity labels. The complexity and number of interactions dur-

ing individual gestures has been a challenge to directly relating segmented images

to surgical workflow. In addition, video and/or kinematic data has also been used

for surgical gesture recognition as summarized in [8]. Kinematic data is critical for

safety and error detection applications, since occlusions and lens contamination are

common [17, 30, 31], but is not always available in datasets. Furthermore, the lim-

ited number of tasks in each dataset and lack of standardized labels is a significant

challenge to aggregating data for comparative analysis of models and evaluating their

generalizability. Evaluating the generalizability of activity recognition models is par-

ticularly important to ensure that they can produce reliable results on new trials,

subjects, and tasks that they have not seen during training. Previous works have

focused on generalizability to unseen subjects or trials, but there has not yet been an

assessment of the task-generalizability of activity recognition models.

1.2.3 Surgical Error Analysis

It is generally expected that a surgeon’s skill will improve with experience, and stud-

ies of the learning curve for robotic surgical procedures found that between 30 and

175 operations are needed to “significantly reduce the overall rate of postoperative

complications” [32]. There have been significant efforts towards developing stan-

dardized and validated training programs to help surgeons achieve the high level of

experience necessary for safe operations [32]. During their training, surgeons are

periodically evaluated by automated assessments from training simulators and man-

ual assessments from expert surgeons. However, existing automated skill evaluation

methods have limited interpretability, and manual methods are time-consuming and

subjective. Many previous works have developed data-driven methods for skill as-

sessment using statistical measures and machine learning models. However, there

has been limited attention to identifying executional errors made by surgeons during

training and skill assessment. These are important because a review of adverse event

reports in the FDA’s MAUDE (Manufacturer and User Facility Device Experience)
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database for the da Vinci Surgical System found that 81% of adverse events relating

to pre-existing health conditions or surgeon errors resulted in injury or death [33].

However, error detection is still an emerging subfield [8] with significant challenges.

The rarity of errors has led to a lack of datasets that are labeled for errors, and

resulted in limited attention to developing methods for identifying and analyzing

errors. Previous works that do consider errors have done so in the context of activity-

aware skill assessment where the errors are associated with a particular fine-grained

unit of surgical activity such as gestures or motions. Several works have found that

some gestures are more indicative of skill than others [13, 34–36] and that there is a

correlation between skill level and errors [15]. For example, [37] found that experts

used fewer gestures, made fewer errors, and had more predictable transitions between

gestures. Thus, methods for identifying and analyzing executional errors can improve

the safety of robotic surgery and support surgeon training and skill assessment.

Monitoring systems that are aware of the tools, objects, and tissues in the surgical

scene, the surgical process, and the activities the surgeon is performing can improve

robotic surgery by providing interpretable feedback about skill and safety. Such safety

monitoring systems would need to differentiate between deviations from the expected

procedure due to individual surgeon preferences or patient anatomy, and those that

are due to errors. A high false positive rate for error detection could lead to surgeons

ignoring the alerts given by the safety monitoring system, but not detecting and

correcting errors could be harmful to the patient. Furthermore, errors contribute to

suboptimal performance and potentially safety-critical events, so they can affect the

surgical process and workflow [33]. However, previous fine-grained surgical activity

analysis has focused on statistical measures such as time and path length [34,38], or

used data-driven models such as Hidden Markov Models (HMMs) [12, 13] which are

not specific or easily interpretable. On the other hand, works that aim to provide

interpretable feedback have used metrics as inputs [39,40], or techniques to visualize

trajectories [41] or features [42], but have not considered patterns in fine-grained

surgical activities.
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1.3 Contributions

This dissertation addresses the above challenges by developing and evaluating meth-

ods for fine-grained activity modeling, recognition, and error analysis in robot-assisted

surgery, organized around three research thrusts as shown in Figure 1.2.

First, we address the challenge of limited datasets with incompatible activity labels

by proposing a formal framework for the fine-grained modeling of surgical tasks using

context and motion primitives. This framework directly relates interactions between

tools and objects (encoded as context) to surgical workflow (described by motion

primitives) and enables the modeling of tasks as finite state machines. We also develop

a method for labeling context that results in objective, fine-grained annotations with

near-perfect agreement among annotators and expert surgeons. We apply our method

to three publicly available multimodal datasets with both kinematic and video data

to create the COntext and Motion Primitive Aggregate Surgical Set (COMPASS)

with nearly three times as much data compared to JIGSAWS alone [43].

Second, we use this framework and dataset to develop models for surgical context

inference and activity recognition with improved explainability and generalizability.

We leverage image segmentation models for inferring context from surgical videos to

improve the explainability of gesture recognition models. With the aggregated data

from a variety of tasks in COMPASS, we propose a novel cross validation setup that

evaluates the generalizability of activity recognition models to unseen tasks. We find

that finer-grained models exhibit greater generalizability across tasks which motivates

us to study the execution of lower-level surgical activities in these tasks.

Third, we use the surgical task and activity models developed in the previous

thrusts to create activity-aware methods for the identification and analysis of errors.

We use these novel methods to identify interpretable patterns in fine-grained sur-

gical activities that strongly correlate with measures of surgical expertise and can

be used to provide specific and interpretable feedback to surgeons during training

and skill assessment.
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Figure 1.2: Research thrusts for developing and evaluating methods for fine-grained

activity modeling, recognition, and error analysis in robot-assisted surgery.

This work makes the following contributions:

• Definition and labeling method for surgical context: We formally define

surgical context as a set of important state variables that represent the inter-

actions between surgical instruments and objects. Context is a combination

of general- and task-specific state variables and can be manually labeled using

video data. We show that this definition can be applied to different surgical

tasks by using it to label six standard dry lab training tasks. Our method for

annotating surgical context results in a set of high-quality labels with near-

perfect agreement between consensus labels from non-experts and labels from

expert surgeons, as well as higher agreement among annotators than existing

methods for labeling gestures with descriptive definitions.

• Modeling of surgical tasks with motion primitives enabling dataset

aggregation: We propose a formal framework for modeling surgical tasks with

motion primitives, as atomic units of surgical activity, whose performance re-

sults in changes in surgical context. This enables the modeling of tasks as finite

state machines using context and motion primitives. Using our methods for
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labeling context and the automated translation of context to motion primitives,

we label six dry lab tasks from three publicly available datasets (JIGSAWS [43],

DESK [44], and ROSMA [45]) to create an aggregate dataset called COMPASS

(COntext and Motion Primitive Aggregate Surgical Set) that contains both

kinematic and video data along with standardized context and motion primi-

tive labels. This nearly triples the amount of data available for analysis and

comparison, and for training machine learning models.

• Automated inference of surgical context based on image segmenta-

tion: We propose an algorithm for the detection of surgical states using image

segmentation that results in the automated inference of surgical context based

on only video data. This leverages improvements in surgical tool and object

segmentation to support surgical workflow annotation.

• Methods for translating surgical context to gestures: We design two

models for translating surgical context to existing gesture definitions using a

knowledge-based finite state machine and a data-driven machine learning model.

This enables the comparison of gestures derived from context to the gesture

labels from the JIGSAWS dataset and helps bridge the gap between image

segmentation and surgical workflow annotation.

• Evaluation of the task-generalizability of activity recognition models:

We propose the Leave-One-Task-Out (LOTO) cross validation method to assess

the generalizabilty of a surgical activity recognition model to an unseen task

since models will see new tasks and subjects when deployed. This enables

us to perform the first evaluation of a surgical activity recognition model on

data from multiple tasks and datasets, and show that our framework enables

comparisons between models and datasets. We show preliminary results that

dataset aggregation can enhance the task-generalization of motion primitive

recognition models.
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• Rubric for the identification of gesture-specific errors: We create a

gesture-specific rubric for identifying executional and procedural errors in robotic

surgery and apply it to the Suturing and Needle Passing tasks from the JIG-

SAWS dataset to obtain a set of error labels that support error analysis and

detection. We find that gestures have different predominant error modes and

some kinematic parameters can be better indicators of executional error oc-

currences. In addition, the total number of executional errors correlates with

longer trial durations and lower skill.

• Identification of inverse motion primitives towards interpretable skill

assessment: We analyze surgical gestures and motion primitives and the re-

lationship between them towards improving the interpretability of skill assess-

ment. We identify inverse motion primitives that are often used as recovery

actions to correct the position or orientation of objects, or may be indicators of

other issues such as with depth perception. Their occurrence and total dura-

tion are strongly correlated with lower GRS scores (provided with the JIGSAWS

dataset) and can be used to identify the portions of trials containing specific

motions that contribute to lower scores.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents a novel formal framework

to describe the surgical scene using context and models of surgical tasks using a set

of standardized motion primitives. Chapter 3 evaluates models for the recognition

of surgical context, motion primitives, and gestures. Chapter 4 proposes methods

for identifying and analyzing gesture-level errors and motion-level patterns in dry lab

surgical tasks. Chapter 5 gives the conclusion and directions for future research.
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Chapter 2

Surgical Context and Activity

Modeling

2.1 Background

Surgical process models (SPMs) [9, 10] decompose surgical operations into smaller

units of activity such as steps, tasks, and gestures as shown in Figure 2.1. While

modeling procedures with phases and steps enables standardization and supports

teaching [47], finer-grained modeling is needed for automated assistance, skill as-

sessment, and autonomy in robot-assisted surgery. Gestures, defined as intentional

activities with meaningful outcomes [43], are an important analytical unit for skill

evaluation [8, 48] and error detection [15]. Finer-grained activities called actions or

motions [49–51] have also been proposed to improve the understanding of tool-tissue

interactions and their relationship to different granularity levels. The recognition of

motions can increase the explainability of gesture-level analyses, improve error de-

tection by identifying the exact erroneous parts of gestures [40–42, 48], and enable

autonomy or error recovery through the execution of motion primitives [11, 14].

The decomposition of tasks into gestures has been done with models such as

graphs [37, 52], statecharts [11], hybrid automata [53], and behavior trees [54] for

This chapter contains material from [46] coauthored with I. Reyes, Z. Li, and H. Alemzadeh.
Reproduced with permission from Springer Nature.
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cooperative, autonomous, and supervisory systems in robotic surgery [55]. However,

prior work has not explicitly modeled or formalized surgical context, which is charac-

terized by the status and interactions among surgical tools and tissues/objects, and

its relationship to motions, gestures, and surgical workflow.

Additionally, while research has focused on standardized surgical ontologies [56],

labeling methods [57], and action triplets [49], there is still a need for a common

surgical language and larger multimodal datasets to support comparative analysis of

activity recognition and error detection models [8]. Section 2.6 provides a detailed

summary of related work on gesture and action definitions and datasets. As shown

in Tables 2.14 and 2.15, the definitions, numbers, and types of activity labels vary

in the existing datasets. The most commonly used dataset is JIGSAWS [43], which

contains kinematic data, videos, gesture labels, and surgical skill scores for three dry

lab surgical tasks. However, only two of its tasks are labeled with similar sets of

gestures. Other recently developed datasets such as DESK [58] and V-RASTED [59]

have defined their own sets of gestures while ROSMA [45] is not labeled. Datasets

such as these with both kinematic and video data from a surgical robot or simulator

are small and contain only a handful of trials of a few simulated or dry lab training

tasks performed by a limited number of subjects leading to low data diversity. This

scarcity of data hinders the training and generalization of machine learning models.

Also, most datasets on finer-grained actions have focused on only video data from

real surgery. While video data is required for labeling, the inclusion of kinematic

data is valuable for safety analysis [16–18], improved recognition accuracy through

multimodal analysis [60, 61], or when video data is not available or is noisy due to

smoke or occlusions [30] or lens contamination.

Furthermore, annotating surgical workflow is costly and requires guidance from

expert surgeons [24], and the resulting labels may contain errors and inconsistencies

such as those identified by [25] in JIGSAWS. Label quality and inter-rater agreement

have not been examined when creating the existing datasets. Also, the labels in

these datasets do not capture multiple levels of granularity which can be useful for

detecting errors and preventing their propagation to higher levels of the surgical
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hierarchy. In addition, they do not differentiate between activities performed by the

left and right hands, which is important for detailed skill assessment and the analysis

of bimanual coordination [62].

We address these challenges by making the following contributions:

• We propose a novel formal framework for modeling surgical dry lab tasks with

finite state machines using a standardized set of motion primitives whose exe-

cution leads to changes in important state variables that make up the surgical

context. Context characterizes the physical interactions among surgical tools

and objects, and motion primitives represent basic surgical actions across dif-

ferent surgical tasks and procedures.

• We develop a method for labeling surgical context based on the video data of

dry lab tasks that achieves near-perfect agreement between crowdsourced labels

and expert surgeon labels, higher agreement among annotators than using ex-

isting gesture definitions, and such that the context labels can be automatically

translated into motion primitive labels.

• We apply our framework and labeling method to create an aggregate dataset,

called COMPASS (COntext and Motion Primitive Aggregate Surgical Set),

which includes kinematic and video data as well as context and motion primi-

tive labels for a total of six dry lab tasks from the JIGSAWS [43], DESK [58],

and ROSMA [45] datasets.

The tools for labeling surgical context based on video data, automated transla-

tion of context to motion primitive labels, and the aggregated dataset with context

and motion primitive labels are publicly available at https://github.com/UVA

-DSA/COMPASS.

This chapter is organized as follows. Section 2.2 introduces the surgical hierar-

chy, defines context and the surgical activities at each level, and describes the tasks

that will be studied. Section 2.3 describes the context and motion primitive mod-

els for the tasks and the translation of context to motion primitives. Section 2.4
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presents the method for labeling surgical context and the evaluation of the method

for labeling and translating context to motion primitives. Section 2.5 describes the

standardized features of the COMPASS dataset. Section 2.6 reviews related work

on datasets and recognition models for gestures and actions. Section 2.7 gives the

conclusion for this chapter.

Surgical 
Procedure

Steps

Tasks

Gestures

Motion
Primitives

Partial Nephrectomy

Patient 
preparation

… Tumor 
excision

Renorrhaphy Hilar 
unclamping

Tumor 
retrieval

Suture large 
vessels

Secure suture 
with clips

Suture renal 
capsule

Secure suture 
with clips

G1 G5 G8 G2 G3 G6 G9 G4 … G6 G11

Grasp(L, Needle) Release(R, Needle) Untouch(R, Needle) Pull(Needle, Thread)

* Example motion 
primitive sequence

Context 
Changes

0XXXX → 2XXXX XX2XX → XX0XX XXX2X → XXX0X 2XXX2 → 2XXX0

Figure 2.1: Surgical hierarchy showing the decomposition of a surgical procedure into

steps, tasks, and gestures. Our proposed framework adds the motion primitive and

context levels that relate surgical workflow to physical interactions in the surgical

environment which can be identified in video data.

2.2 Surgical Hierarchy and Activity Definitions

Surgical procedures follow the hierarchy of levels defined in [10] which relate the fine-

grained activities a surgeon performs to objects and progress in the operation as shown

in Figure 2.1. In this dissertation, surgical activities will refer in general to units

at any level of the surgical hierarchy, but more specifically to both the gesture and

motion levels. When a patient undergoes a surgical operation, they may have one

or more procedures performed which are divided into steps. Each step (or phase)
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results in the completion of a major objective during the surgery such as the removal

of a tumor. This is accomplished by performing a series of tasks which achieve

smaller goals such as suturing. These tasks are comprised of gestures (also called

sub-tasks or surgemes) as shown in grammar graphs [52] which are defined as units of

surgical activity with a specific intent [43] with semantic meaning of both the activity

and underlying physical context. Below this level, motion primitives (also called

motions, actions, or dexemes) are atomic surgical activities involving only one hand

and without the semantics of physical context [9, 10] such as moving an instrument

or closing the graspers. These motion primitives effect changes in important states

that define the overall surgical context which describes the interactions between

surgical tools, objects, and anatomical structures. Further, motion primitives can be

decomposed into the basic actuations of translate, rotate, and open/close graspers

that represent commands sent to the surgical robot.

Our new representation of surgical tasks extends surgical process modeling to

include context and motion primitives which is missing from previous work where

lower-level activities beneath gestures are obscured by hidden states such as in [52].

2.2.1 Context

A surgical environment (in either dry lab or real surgical procedures) can be modeled

by a set of state variables that characterize the status and interactions among surgical

instruments (e.g., graspers, scissors, and electrocautery tools) and objects (e.g., nee-

dles, threads, blocks, balls, sleeves, and rings) or anatomical structures (e.g., organs,

tissues, and tumors) at a given time in the physical environment. We define surgical

context using two sets of variables that can be observed or measured using kinematic

and/or video data from a surgical scene: (i) general state variables relating to the

contact and hold interactions between the tools and objects in the environment, and

(ii) task-specific state variables describing the states of objects critical to the current

task. We define independent state variables for the left and right tools to enable the

generation of separate label sets for each side to support side-specific skill assessment,

hand coordination analysis, and improved motion primitive recognition.
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We propose the following definition of surgical context with general and task-

specific state variables. The four general state variables are: Left Holding, Left

Contact, Right Holding, and Right Contact where the value of the state variable

represents the interacting object as shown in Figure 2.2. An additional task-specific

state variable is appended to the right of the general state variables to describe

progress in the task. The Suturing and Needle Passing tasks involve throwing four

sutures and passing a needle through four rings, respectively, so the needle, if held,

can be “not touching”, “touching”, or “in” the fabric or ring. The Knot Tying task

involves tying two knots, so while a knot is being tied, the thread can be “wrapped”

around the opposite grasper, in a “loose” knot, or in a “tight” knot. The Peg Transfer

and Post and Sleeve tasks involve picking up a block and placing it on another post,

so the block can be “on” or “off” the peg. The Pea on a Peg task involves picking

up a pea and placing it on a post, so the pea, if held, can be “in the cup”, “stuck to

other peas”, “not stuck to other peas”, or “on the peg”. For example in Figure 2.2,

the state 50202 indicates that the left grasper is holding a ring, the right grasper is

holding the needle, and the needle is in the ring.

5 0 2 0 2

Release(L,5)

0 5 2 0 2

Objects:

0 = Nothing

1 = Ball/block

2 = Needle

3 = Thread

4 = Fabric/tissue

5 = Ring

6 = Other

Needle State:

0 = Not touching

1 = Touching

2 = In

Figure 2.2: Object and needle state encodings for the state variables of the context

in the Needle Passing task.
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Changes in the surgical context happen as the result of performing a set of basic

motion primitives with the robot (either controlled by the surgeon or autonomously).

So, each surgical task can be modeled as a finite state machine (FSM) with the

states representing the surgical context and the transitions representing the motion

primitives as presented in Section 2.3.2. We focus on dry lab training tasks and

manually construct FSMs to model each task after reviewing the videos to under-

stand the general activities in the task. In these models, states represent context

and transitions represent MPs. This representation of surgical tasks incorporates

surgical context into procedure modeling which is missing from previously proposed

models such as grammar graphs and Hidden Markov Models [52] where hidden states

obscure lower-level actions.

2.2.2 Motion Primitives (MPs)

We define a unified set of six modular and programmable surgical motion primitives

(MPs) to model the basic surgical activities that lead to changes in the physical

context and thus relate surgical context to workflow. As shown in Equation 2.1,

each MP is characterized by its type (e.g., Grasp), the specific tool which is used

(e.g., left grasper), the object with which the tool interacts (e.g., block), and a set

of constraints that define the functional (e.g., differential equations characterizing

typical trajectories [14]) and safety requirements (e.g., virtual fixtures and no-go

zones [17, 63, 64]) for the execution of MPs:

MP(tool, object, constraints) (2.1)

The performance of an MP results in changes in the state variables of the surgical

context. Table 2.1 shows the set of MPs and corresponding changes to surgical context

applicable to all tasks. Table 2.2 shows the set of MPs and corresponding changes

to surgical context applied to specific dry lab tasks.

In this framework, tools and objects are considered classes as in object-oriented

programming and can have attributes such as the specific type of tool and current
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Table 2.1: General motion primitives for changes in context: “L” and “R” represent

the left and right graspers as tools, “a” is a generic object as listed in Figure 2.2, and

“X” can be any value.

Motion Primitive Context Change

Touch(L, a) X0XX → XaXX
Touch(R, a) XXX0 → XXXa
Grasp(L, a) 0aXX → aXXX
Grasp(R, a) XX0a → XXaX
Release(L, a) aXXX → 0aXX
Release(R, a) XXaX → XX0a
Untouch(L, a) XaXX → X0XX
Untouch(R, a) XXXa → XXX0

position. The MPs can be further decomposed into the fundamental transformations

of move/translate, rotate, and open/close grasper that characterize the low-level kine-

matic commands. These can be used for the programming and execution of motions

on a robot for semi-autonomous surgery [11], which is the subject of future work.

The segmentation of tasks into MPs allows the separation of activities performed

by the left and right hands and the generation of separate sets of labels. This can

support more detailed skill assessment, the analysis of bimanual coordination [62],

and surgical automation [14]. To generate separate left and right label sets, MPs

performed by each hand or arm of the robot are split into new transcripts. MPs

performed with a held object such as a needle are assigned to the transcript of the

arm holding the object. Then, the Idle MP is used to fill in the gaps created by

the separation so that every kinematic sample and video frame has a label and the

labels are continuous.

MPs are similar to the action triplets proposed by [49] for surgical action recog-

nition based on video data in real surgical tasks. But, we focus on developing a

standardized framework and applying it to a variety of tasks and datasets with both

kinematic and video data to enable comparative analyses between datasets and tasks.

Kinematic data can support analysis for safety and skill evaluation, and be used to

develop dynamic motion primitives (DMPs) for automating surgery [14]. Context
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and MPs can be extended to new tasks and real surgical procedures by defining task-

specific state variables for the context and adding task- or tool-specific verbs perhaps

similar to those proposed in [49] (e.g., Cut for scissors) that change the value of those

state variables and result in progress in the task.
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Table 2.2: Task-specific motion primitives for changes in context: “L” and “R” repre-

sent the left and right graspers as tools, objects are encoded as in Figure 2.2, “b” is a

value greater than 0, and “X” can be any value.

Motion Primitive Context Change

Suturing/Needle Passing
Touch(2, 4/5) 2XXX0 → 2XXX1
Touch(2, 4/5) XX2X0 → XX2X1
Push(2, 4/5) 2XXX1 → 2XXX2
Push(2, 4/5) XX2X1 → XX2X2
Push(2, 4/5) XXXX0 → XXXX2
Pull(L, 2) 2XXX2 → 2XXX0
Pull(R, 2) XX2X2 → XX2X0
Pull(2, 4/5) XXXX2 → XXXX1

Knot Tying
Pull(L, 3) 3XXX0 ↔ 3XXX1
Pull(R, 3) XX3X0 ↔ XX3X1
Pull(L, 3) Pull(R, 3) 3X3X1 → 3X3X2
Pull(L, 3) Pull(R, 3) 3X3X2 → 3X3X3

Peg Transfer and Post and Sleeve
Untouch(1, Post) XXXX0 → XXXX1
Touch(1, Post) XXXX1 → XXXX0

Pea on a Peg
Grasp(L, 1) 0XXX0 → 1XXX1
Grasp(R, 1) XX0X0 → XX1X1
Pull(L, 1) 1XXX1 → 1XXX2
Pull(R, 1) XX1X1 → XX1X2
Pull(L, 1) 1XXX1 → 1XXX3
Pull(R, 1) XX1X1 → XX1X3
Touch(1, 1) XXXX3 → XXXX2
Untouch(1, 1) XXXX2 → XXXX3
Touch(1, Peg) XXXX3 → XXXX4
Untouch(1, Peg) XXXX4 → XXXX3
Release(L, 1) 1XXXb → 0XXX0
Release(R, 1) XX1Xb → XX0X0
Push(L, 1) 1XXX2 → 1XXX1
Push(R, 1) XX1X2 → XX1X1
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2.2.3 Gestures

Surgical gestures are defined as modular and recognizable units of surgical activity

that result in a meaningful outcome [43,44]. This dissertation does not propose new

gestures, but instead relates context and motion primitives to the existing defini-

tions from JIGSAWS since it is the most commonly used dataset for gesture-related

research. Section 2.6 presents a detailed summary of related work on gesture and ac-

tion definitions and datasets including and beyond JIGSAWS. The set of 15 gestures

defined by [43] and used to label surgical activity in the Suturing, Needle Passing,

and Knot Tying tasks of the JIGSAWS dataset are listed in Table 2.3.

Table 2.3: JIGSAWS gesture indices and definitions from [43].

Index Description

G1 Reaching for needle with right hand
G2 Positioning needle
G3 Pushing needle through tissue
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
G8 Orienting needle
G9 Using right hand to help tighten suture
G10 Loosening more suture
G11 Dropping suture at end and moving to end points
G12 Reaching for needle with left hand
G13 Making C loop around right hand
G14 Reaching for suture with right hand
G15 Pulling suture with both hands
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2.2.4 Tasks

The performance of a task achieves a goal in a surgical step, and the exercises on

robotic simulators and in dry lab settings are common examples of this unit of ac-

tivity. By practicing these tasks, surgeons improve their manipulation of the robot’s

instruments and learn the basic components of surgical operations such as object

manipulation, suturing, knot tying, and electrocautery. In this dissertation, we use

six dry lab tasks from the JIGSAWS [43], DESK [44], and ROSMA [45] datasets

and describe each task below.

Suturing

Suturing is one of the most common tasks surgeons perform. An example of suturing

as a dry lab exercise is shown in Figure 2.3 from the JIGSAWS dataset. In this task,

the surgeon retrieves the needle and throws four sutures with the entry and exit points

for the needle marked with red dots on the fabric. We abbreviate this task as “S”.

Figure 2.3: Example of the Suturing (S) task from the JIGSAWS dataset [43].
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Needle Passing

The Needle Passing task of the JIGSAWS dataset is similar to the Suturing task in

that it involves manipulating a needle. The dry lab setup for this task is shown in

Figure 2.4 and in this task, the surgeon threads the needle through four of the rings.

We abbreviate this task as “NP”.

Figure 2.4: Example of the Needle Passing (NP) task from the JIGSAWS dataset [43].
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Knot Tying

Knot Tying is another basic skill that surgeons must master. In this task, the surgeon

ties two knots with the suture around the rubber tubing as shown in Figure 2.5 from

the JIGSAWS dataset. Each knot is tied by grasping the right end of the suture with

the left grasper, wrapping the suture around the jaws of the right grasper, grabbing

the left end of the suture with the right grasper and pulling it through the loop to

create a knot. We abbreviate this task as “KT”.

Figure 2.5: Example of the Knot Tying (KT) task from the JIGSAWS dataset [43].
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Peg Transfer

Peg Transfer from the DESK dataset is a basic object manipulation task using rubber

blocks and a set of vertical pegs as shown in Figure 2.6. In this task, each of the

three blocks is grasped and lifted from its peg, passed to the other instrument, and

placed on a different peg. We abbreviate this task as “PT”.

Figure 2.6: Example of the Peg Transfer (PT) task from the DESK dataset [44].
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Post and Sleeve

The Post and Sleeve task of the ROSMA dataset is similar to the Peg Transfer task

but uses sleeves and posts instead of blocks and pegs as shown in Figure 2.7. Tasks

like this and Peg Transfer are also called pick-and-place tasks since they involve the

picking up, transfer, and placing of objects. In the Post and Sleeve task, each sleeve

is grasped, lifted from its post, passed to the other instrument, and placed on a

different post. We abbreviate this task as “PaS”.

Figure 2.7: Example of the Post and Sleeve (PaS) task from the ROSMA dataset [45].
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Pea on a Peg

Pea on a Peg from the ROSMA dataset is another pick-and-place task where fuzzy

balls called peas are contained in a cup surrounded by pegs as shown in Figure 2.8.

In this task, the surgeon picks up a pea from the cup and places it on one of the

pegs. This task is challenging since the peas stick together and must be separated.

Also, careless maneuvers may knock previously placed peas off of their pegs. We

abbreviate this task as “PoaP”.

Figure 2.8: Example of the Pea on a Peg (PoaP) task from the ROSMA dataset [45].
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2.3 Surgical Task Models

2.3.1 Context to Motion Primitive Translation

The translation of context to MPs is an important step in leveraging high-quality

context labels in creating surgical workflow annotations that enable the aggregation

of data from different surgical tasks and datasets. The context labels are translated

automatically into MP labels using the finite state machine (FSM) models for each

task shown in Section 2.3.2. Given an input sequence of context labels, the corre-

sponding sequence of MP labels are generated based on the transitions described in

Tables 2.1 and 2.2 for the general and task-specific state variables respectively. Ta-

ble 2.1 shows the set of universal MPs and corresponding changes to surgical context

applicable to all tasks which enables the generalizability of this framework and allows

activity recognition models to leverage these similarities across tasks. Table 2.2 shows

the sets of MPs and corresponding changes to surgical context applied to specific dry

lab tasks. We focus on dry lab tasks where the tools are graspers, but do not model

or analyze the MP-specific functional and safety constraints here.

For each change of context in the input sequence, the specific changes to the state

variables are identified and translated to the corresponding MPs. If multiple states

changed between labeled frames, then Grasp and Release MPs would have a higher

priority than Touch and Untouch MPs (if they were performed on the same object by

the same tool). Otherwise, all MPs were listed in the MP transcript so that separate

MP transcripts for the left and right sides could be generated. Context was labeled

at 3 Hz and the context to MP translation assumes that states persist until the next

context label in order to generate an MP label for each kinematic sample. Figure 2.9

shows an example of a sequence of context translated into MPs. This rule-based

translation method also assumes that changes in context can be completely described

by the definitions in Tables 2.1 and 2.2. Alternatively, data-driven and learning-from-

demonstration approaches can be used for more realistic and personalized modeling

of the tasks and label translations. To generate separate left and right label sets,

MPs performed by each hand or arm of the robot are split into new transcripts.
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MPs performed with a held object such as a needle are assigned to the transcript of

the arm holding the object. Then, the Idle MP is used to fill in the gaps created

by the separation so that every kinematic sample and video frame has a label and

the labels are continuous.

Frame Context
⁞

1380 05202

1400 00202

1500 20202

1510 20002

1560 20000

1770 20200

⁞

Start Stop Motion Primitive
⁞

1380 1399 Untouch(L, Ring)

1400 1499 Grasp(L, Needle)

1500 1509 Release(R, Needle)

1510 1559 Pull(L, Needle)

1560 1769 Grasp(R, Needle)

⁞

Figure 2.9: Example sequence of context translated into motion primitives.

2.3.2 Context and Motion Primitive Models of Tasks

We model the ideal performance of each task using context and MPs as a finite state

machine (FSM) where the states are specific contexts and the transitions between

states are MPs. The FSMmodels for the tasks are shown in Figures 2.10, 2.11, 2.12, 2.13,

and 2.14.
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Touch(L,2)

Grasp(L,2)

Release(R,2)

Untouch(R,2)

Release(L,2)

Pull(L,2)

Touch(2,4) Push(2,4)

0020100202

02202

20202

20022

00202

2000202000

00002

Start

End

02200

20200

20020

00200

20000

Pull(R,2)

20030 20300

00022
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Figure 2.15: Grammar graphs showing transitions between gestures for the (a) Su-

turing, (b) Needle Passing, and (c) Knot Tying tasks. Adapted from [52].

These models differ from previous task models, such as grammar graphs which

simply represent the typical sequences of gestures (e.g., grammar graphs for Suturing,

Needle Passing, and Knot Tying from [52] shown in Figure 2.15).

The definition of MPs based on the changes in the surgical context could enable the

translation of context and MPs to existing gesture labels and facilitate the aggregation

of different datasets labeled with different gesture definitions. However, translation

from context and MP labels to existing gesture definitions is complicated. This is

because surgical process and workflow are affected by suboptimal performance and

safety-critical events [33], so executional and procedural errors in gestures can affect

the MP sequences for each gesture. Additional modeling is needed to develop and

evaluate the MP to gesture translation which is future work beyond this dissertation.
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2.4 Surgical Context Labeling

2.4.1 Context Labeling Method

Surgical activity recognition models using supervised learning techniques require a

large number of annotated video sequences [65]. However, the manual labeling of

gestures is time consuming and subjective which can lead to labeling errors [25]. To

address this, we have developed a tool for the manual annotation of surgical context

(states of the objects and instruments) based on video data and used it to label all

trials in six tasks from the JIGSAWS [43], DESK [44], and ROSMA [45] datasets.

Labeling video data for surgical context provides a more objective way of recog-

nizing surgical activities and can thus lead to a higher level of agreement among anno-

tators. As noted in [24], labels for surgical workflow require guidance from surgeons

while annotations for surgical instruments do not. Since context labels document the

objects held by or in contact with the left and right instruments, they rely less on

surgical knowledge than gestures which require anticipating the next activities in a

task to mark when a gesture has ended. Figure 2.16 shows a snapshot of the tool

for the manual labeling of context based on video data. The annotators indicate the

values of different state variables for frames in the video data and have the option of

copying over the same values of the state variables to future frames until a change in

context is observed. This differs from other labeling methods where annotators mark

the start and end of each segment and assign a label to it.

To ensure reliable and high-quality annotations, three full sets of context labels

were obtained using our context labeling tool for all trials. Two annotators, with

extensive experience with the datasets and the dry lab robotic surgery tasks, each

produced a full set of labels for all trials. The third set of labels was crowdsourced to

22 engineering students, who had no previous experience but were given a training

module on the definitions of context, MPs, and their relationship, and how to use

the labeling tool. The “Consensus” labels were then created using majority voting

for each state variable.
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Figure 2.16: App for context labeling based on video data.

2.4.2 Evaluation of Labeling Method

In order to evaluate our context labeling and context to motion primitive translation

methods, we obtain two more sets of labels, in addition to the Consensus set. A group

of expert surgeons labeled a set of six trials (one from each task) for context, referred

to as the “Surgeon” set, against which we evaluate the quality of the context labels.

Then, three independent annotators also labeled a subset of trials in the JIGSAWS

tasks for context, MPs, and gestures to assess and compare the different labeling

methods and the context to motion primitive translation. This set is referred to as

the “Multilevel” set.
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We assess the quality of context labels generated using our labeling tool by mea-

suring the agreement among the annotators in the Consensus set as well as the agree-

ment between the Surgeon and Consensus sets of context labels using Krippendorff’s

Alpha. Then, we compare context-, MP-, and gesture-level labeling methods using

labels in the Multilevel set.

Krippendorff’s Alpha

Krippendorff’s Alpha, α, is a commonly used statistical measure of inter-rater relia-

bility. It indicates how much the data from two or more methods can be trusted to

represent the real phenomenon [66]. As shown in Equation 2.2, it is calculated by

considering the probability De that two labelers produced the same annotation due

to change rather than agreement on the data to label, and the observed disagreement

Do between each labeler’s annotations:

α = 1− Do

De

(2.2)

The coefficient α is a value ranging from -1 to 1, where larger positive values

indicate greater agreement, α = 0 indicates no agreement other than by chance, and

negative values indicate greater disagreement. Table 2.4 lists the thresholds of α for

the interpretation of different levels of agreement based on [67] and [68].

Table 2.4: Interpretation of Krippendorff’s Alpha (α) from [69].

Range Interpretation

α > 0.8 Near-perfect
0.6 < α ≤ 0.8 Substantial
0.4 < α ≤ 0.6 Moderate
0.2 < α ≤ 0.4 Fair

α ≤ 0.2 Slight

The sequence of states annotated by each of the labelers were encoded as numbers

and did not have numerical significance, so they can be best described as categorical

data. Thus, the nominal distance (also called the difference function) is best suited
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to quantify the agreement between labelers annotating for context. The nominal

distance function shown in Equation 2.3 is used to calculate De and Do [69] as given

in Equation 2.4 where nl is the number of labelers and nu is the total number of

frames annotated by two or more labelers.

dnominal(label1 label2) =

0 if label1 = label2

1 if label1 ̸= label2

(2.3)

Do =
1

2nunl(nl − 1)

∑
l1,l2∈all labels

dnominal(l1, l2)

De =
1

2nunl(nunl − 1)

∑
l1,l2∈all labels

dnominal(l1, l2)

(2.4)

Consensus Context Labels

The quality of the context labels is measured by calculating Krippendorff’s Alpha

among the annotators in the Consensus set as well as the agreement between the

Surgeon and Consensus sets of context labels.

Agreement among annotators We report the agreement among crowdsourced

annotators using the average Krippendorff’s Alpha in the second column of Table 2.5.

Four of the tasks have α above 0.8 indicating near-perfect agreement and the other

two tasks have α above 0.6 indicating substantial agreement among annotators. The

average for all tasks, weighted for the number of frames in each task, was 0.84 indi-

cating near-perfect agreement in context labeling overall. We also observed that long

segments of near-perfect agreement were punctuated by disagreements at the transi-

tions between context groups. However, this disagreement is limited to a few context

states instead of the gesture label for a specific frame which results in much greater

agreement between annotators when labeling for context than for gestures. This shows

that our method for labeling context results in a high-quality set of fine-grained labels.
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Table 2.5: Krippendorff’s Alphas among annotators and between Consensus and

Surgeon context labels.

Task Among
annotators

Between Consensus
and Surgeon

S 0.69 0.86
NP 0.85 0.90
KT 0.79 0.94
PT 0.90 0.94
PoaP 0.83 0.93
PaS 0.89 0.97

Agreement between Consensus and Surgeon context labels Krippendorff’s

Alpha between the Consensus and Surgeon context labels for each task is shown in

the third column of Table 2.5. All tasks had an α of at least 0.8 and the average

for all tasks, weighted for the number of frames in each task, was 0.92 indicating

near-perfect agreement between crowdsourced context labels from non-experts and

those given by expert surgeons.

Multilevel Labels

The agreement among annotators for labels at different granularities is shown in

Table 2.6. There is the least agreement when labeling using the descriptive gesture

definitions since the Krippendorff’s Alpha values were 0.24, 0.08, and 0.20 for the

Suturing, Needle Passing, and Knot Tying tasks, respectively, which is only slight

to fair agreement according to Table 2.4. The agreement when annotating for MPs

directly ranges from 0.26 to 0.41 which is fair to moderate agreement according to

Table 2.4. Thus, directly labeling MPs is also difficult, likely due to their short

durations. The greatest agreement is seen for context which has substantial to near-

perfect agreement. This is likely because the context labels are based on well-defined

interactions among surgical tools and objects that can be observed in video data.

The agreement of the Multilevel context and gesture labels with the Surgeon con-

text labels and the JIGSAWS gesture labels, respectively, are shown in Table 2.6.
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Table 2.6: Krippendorff’s Alphas among annotators for context-, MP-, and gesture-

level labels in the Multilevel set.

Multilevel Multilevel vs.
Surgeon Context

Multilevel vs.
JIGSAWS GesturesTask Context MPs Gestures

S 0.72 0.33 0.24 0.86 0.34
NP 0.91 0.41 0.08 0.90 0.04
KT 0.89 0.26 0.20 0.89 0.06

There is much greater agreement when labeling for context than for gestures and

the existing JIGSAWS gesture labels are difficult to reproduce since the Krippen-

dorff’s Alpha for the Needle Passing and Knot Tying tasks are only 0.04 and 0.06,

respectively. This may be because the JIGSAWS gesture labels were generated more

subjectively by only one annotator by watching the videos and developing the gesture

definitions in consultation with a surgeon [43]. Thus, we again see that crowdsourcing

context labels results in high-quality annotations that are comparable to those from

surgeons and are thus representative of expert knowledge.

2.4.3 Evaluation of Context to MP Translation

Context to MP translation allows us to leverage high-quality context labels in creating

surgical workflow annotations and aggregating different surgical datasets. Context la-

bels are translated automatically into MPs using the FSMs for each task. To evaluate

our framework, we obtain MP graphs (similar to grammar graphs but with nodes rep-

resenting MPs) from two expert robotic surgeons describing the execution of S, NP,

and KT, and compare our proposed models to expert knowledge. To evaluate our

context labeling and context to MP translation methods, we obtain two more sets of

labels, in addition to the Consensus set. Two trios of independent annotators labeled

subsets of trials in the JIGSAWS and DESK tasks, respectively, for context, MPs,

and gestures to assess and compare the different labeling methods and the context to

MP translation. We refer to these labels as the Multilevel set and their gesture labels

can be compared to the gesture labels from JIGSAWS and DESK. The surgeons also
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labeled a set of six trials (one from each task to capture task-diversity, and overlap-

ping the trials in the Multilevel set) for context, referred to as the Surgeon set, against

which we evaluate label quality. To assess the performance of the context to MP trans-

lation, we translate the context labels in the Multilevel annotations set and compare

the resulting translated MP transcripts to the ground truth MP labels from each

annotator. We calculate the accuracy and edit score for each task as described below.

Accuracy

Given the lists of predicted and ground truth labels, the accuracy is the number of

correctly predicted samples divided by the total number of samples in the trial, and

reported as a percentage. Accuracy is a standard frame-wise metric, but doesn’t

consider sequential relations or oversegmentation [8].

Edit Score

Given sequences of predicted labels, P , and ground truth labels, G, the edit score is

calculated as defined in [70] by normalizing the Levenshtein edit distance, edit(G,P ).

The edit distance measures the number of insertions, deletions, and replacements

needed to transform the sequence of predicted labels, P , to match the sequence of

ground truth labels, G, and is normalized by the maximum length of the predicted and

ground truth sequences as in Equation 2.5. The edit score ranges from 0 to 100 where

a higher score indicates greater similarity between the predicted and ground truth

sequences. Edit score is a segmental metric for the order and segmentation of activity

predictions, but doesn’t consider the timing of boundaries between activities [8].

Edit Score =
(
1− edit(G,P )

max(len(G), len(P ))

)
× 100 (2.5)
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Graph Edit Score

Graph edit score (GES) is the normalized graph edit distance (GED) calculated using

Equation 2.6 by dividing the minimum cost of transforming A to B by the maximum

GED (cost of deleting all nodes and edges in A and inserting all nodes and edges in

B, where C represents an empty graph). GED is implemented using networkx [71]

with the Start nodes as the root and a timeout of 18 hours.

GES =
(
1− GED(A,B)

(GED(A,C) + GED(B,C))

)
× 100 (2.6)

Task Modeling

We evaluate our framework by comparing the MP graphs for S, NP, and KT to MP

graphs defined by expert surgeons as shown in Figures 2.17, 2.18, and 2.19 using graph

edit score. Surgeons may not be available to verify future models, so it is important

to check that those for surgically-relevant tasks represent expert knowledge. The

surgeon-defined graphs were created by obtaining the MP sequences for each gesture

and substituting them into the grammar graphs in Figure 2.15. In order to compare

the FSMs with the MP graphs defined by expert surgeons, the MP transitions from

the FSMs were converted to MP graphs. Touch and Untouch MPs that immediately

preceded or followed Grasp and Release MPs, respectively, were removed since the

surgeons assumed they were combined when creating their MP graphs.
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Figure 2.17: (a) Surgeon-defined and (b) proposed MP graph models for the Suturing

task.
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Figure 2.18: (a) Surgeon-defined and (b) proposed MP graph models for the Needle

Passing task.
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Figure 2.19: (a) Surgeon-defined and (b) proposed MP graph models for the Knot

Tying task. The Touch(R, 3) in (a) refers to a different thread than that of the

following Grasp(R, 3).

GES was lowest for S in Table 2.7 because it was the most complex task and the

surgeons had additional MPs to represent passing the needle from left to right while

the proposed model represented it as the inverse of passing the needle from right to

left. Also, although physically possible, several transitions in our proposed graph for

S were not in the surgeons’ graph since they may not represent an efficient execution

of the task. Comparatively, KT was a simpler task, and overall the proposed models

are good representations of expert knowledge.

Table 2.7: Graph edit scores between the proposed and surgeon-defined MP graphs.

Task Graph Edit Score

Suturing 76.4
Needle Passing 83.6
Knot Tying 93.3
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Quality of Multilevel Labels

We assess context label quality by measuring the agreement among annotators in the

Consensus set and the agreement between the Surgeon and Consensus sets of context

labels using Krippendorff’s Alpha [65]. Then, we compare context-, MP-, and gesture-

level labeling methods using labels in the Multilevel set. The context and MP labels

in the Multilevel set show variability with the type of task (S, NP, KT) and with the

skill of the annotator, both of which can affect the resulting translated MP labels and

their evaluation. So, we first assessed the quality of each annotator based on their

agreement with the Surgeon context labels and JIGSAWS/DESK gesture labels with

respect to the label for each frame and the overall label sequence.

Table 2.8 shows α, and Table 2.9 shows accuracies and edit scores for each an-

notator when labeling for context (compared to Surgeons) and gestures (compared

to JIGSAWS/DESK). For JIGSAWS, annotator 3 was the most reliable annotator

overall with annotator 2 almost as reliable for context labels. Less variation was seen

among the annotators for DESK.

Table 2.8: Krippendorff’s Alphas of Multilevel labels compared to Surgeon context

and JIGSAWS/DESK gesture labels.

Context Gestures

Task Annotator 1 Annotator 2 Annotator 3 Annotator 1 Annotator 2 Annotator 3

S 0.87 0.89 0.91 0.06 0.05 0.76
NP 0.88 0.88 0.85 0.09 0.07 0.47
KT 0.72 0.85 0.87 0.08 0.39 0.48

PT 0.93 0.89 0.93 0.40 0.41 0.45
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Table 2.9: Accuracies and edit scores of Multilevel labels compared to Surgeon context

and JIGSAWS/DESK gesture labels.

Context Gestures

Annotator 1 Annotator 2 Annotator 3 Annotator 1 Annotator 2 Annotator 3

Task Acc Edit Acc Edit Acc Edit Acc Edit Acc Edit Acc Edit

S 67.6 69.2 72.3 73.0 77.3 78.0 25.5 49.1 26.1 42.0 85.6 88.7
NP 74.1 74.9 76.0 76.6 74.7 74.9 34.0 56.8 27.7 49.5 47.3 54.5
KT 32.5 32.5 60.7 60.7 62.2 62.2 24.0 51.5 52.3 61.0 62.5 64.1

PT 83.3 84.1 83.7 87.2 83.7 84.0 49.8 52.7 50.6 52.3 54.1 55.8

Context to Motion Primitive Translation Accuracy

We translate the context labels given by each annotator into MP labels and compare

them with the corresponding ground truth MP labels that each annotator labeled

directly. The accuracies between the translated MP labels and ground truth MP

labels are shown in Table 2.10. We find that the context to MP translation accuracy

was higher for annotators 1 and 3 for JIGSAWS, and annotators 2 and 3 for DESK.

There is inter-rater variability across tasks, where KT and PT generally had higher

metrics while S had lower metrics likely due to task complexity.

Table 2.10: Accuracies and edit scores between ground truth and translated MPs for

Multilevel and Surgeon labels.

Annotator 1 Annotator 2 Annotator 3 Surgeon

Task Acc Edit Acc Edit Acc Edit Acc Edit

S 0.27 33.9 0.18 26.9 0.23 30.1 0.29 30.8
NP 0.64 67.4 0.27 45.1 0.45 46.4 0.22 25.4
KT 0.50 53.8 0.31 56.1 0.53 56.8 0.42 50.3

However, the ground truth MP labels used in this evaluation had very low agree-

ment among annotators compared to the context labels and assessing their reliability

is the subject of future work. Collaborations with surgeons could facilitate the gener-

ation of high-quality annotations using multilevel labeling methods to better evaluate

these different methods and improve the automated translation between levels.
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2.5 COMPASS Dataset

We create the COMPASS (COntext and Motion Primitive Aggregate Surgical Set)

dataset by aggregating data from 39 trials of Suturing (S), 28 trials of Needle Pass-

ing (NP), and 36 trials of Knot Tying (KT) performed by eight subjects from the

JIGSAWS dataset [43]; 47 trials of Peg Transfer (PT) performed by eight subjects

from the DESK dataset [44]; and 65 trials of Post and Sleeve (PaS) and 71 trials of

Pea on a Peg (PoaP) performed by 12 subjects from the ROSMA dataset [45]. Thus,

COMPASS contains a total of 286 trials by 28 different subjects which is about three

times the number of trials and subjects in JIGSAWS. Tables 2.11, 2.12, and 2.13

list the numbers of MPs and gestures of each type in each task and dataset. By

using standardized definitions, COMPASS has fewer classes and more examples than

other datasets.

Table 2.11: Number of motion primitives (MPs) in each task and the COMPASS

dataset: Suturing (S), Needle Passing (NP), and Knot Tying (KT) from JIG-

SAWS [43]; Peg Transfer (PT) from DESK [58]; and Pea on a Peg (PoaP) and Post

and Sleeve (PaS) from ROSMA [45].

JIGSAWS DESK ROSMA COMPASS

MP S NP KT PT PoaP PaS All

Grasp 471 373 283 323 577 824 2851
Release 441 365 247 313 556 776 2698
Touch 518 330 135 539 1782 1598 4902

Untouch 314 206 111 364 1261 1131 3387
Pull 194 114 235 0 525 0 1068
Push 179 119 0 0 2 0 300

This aggregate dataset contains video and kinematic data along with context and

motion primitive labels, and gesture labels when available from the original dataset.

The videos are at 30 fps for the stereoscopic JIGSAWS and DESK tasks and 15 fps

for the single camera for the ROSMA tasks. The kinematic data have been down-

sampled to 30 Hz and contain position, velocity, orientation (in quaternions), and

gripper angle variables. Since linear velocity data was not available for all tasks, it
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was derived from the position data using a rolling average over five samples. The

ROSMA dataset did not contain gripper angle, so a separate round of manually la-

beling video data was performed to approximate the gripper angle as open or closed.

The consensus context labels are at 3 Hz and the automatically generated motion

primitive labels are interpolated to 30 Hz for both arms of the robot so that every

kinematic sample has an MP label. The original gesture label files from the JIGSAWS

and DESK datasets are renamed under the new naming convention and included to

promote comparisons between data and label sets. To uniquely identify each individ-

ual file, a naming system that includes the task, subject number, and trial number

was applied to facilitate matching kinematic, video, and label files. For example, the

name Pea on a Peg S02 T05 identifies the fifth trial of Pea on a Peg performed by

subject two. The dataset is organized into different tasks with directories for the

kinematic and video data, and each type of label. The subject and trial numbers

from the original datasets are retained so that the LOSO and LOUO setups from [52]

can be extended to COMPASS.

The tools for labeling surgical context based on video data, the automated trans-

lation of context to motion primitive labels, as well as the aggregated dataset with

context and motion primitive labels are made publicly available at https://github

.com/UVA-DSA/COMPASS to facilitate further research and collaboration in this area.
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Table 2.12: Number of gestures in each JIGSAWS task and dataset.

Gesture Suturing Needle Passing Knot Tying JIGSAWS

G1 29 30 19 78
G2 166 117 0 283
G3 164 111 0 275
G4 119 83 0 202
G5 37 31 0 68
G6 163 112 0 275
G8 48 28 0 76
G9 24 1 0 25
G10 4 1 0 5
G11 39 25 36 100
G12 0 0 70 70
G13 0 0 75 75
G14 0 0 98 98
G15 0 0 73 73

Table 2.13: Number of gestures in DESK for Peg Transfer performed on the da Vinci

surgical robot.

Gesture Peg Transfer

S1 146
S2 147
S3 137
S4 146
S5 146
S6 135
S7 135
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2.6 Related Work

The “Language of Surgery” project [72] models surgical procedures as a language

and uses grammar to dictate how gestures are combined to perform tasks, and a

hierarchical framework has been proposed to model surgical procedures [10]. Available

datasets primarily focus on the task, gesture, and action levels as summarized in

Tables 2.14 and 2.15. Within this hierarchical framework, tasks consist of a sequence

of gestures, and gestures can be decomposed into actions.

2.6.1 Surgical Gestures

Gestures are defined as units of surgical motion with a specific intent (e.g., insert

needle through tissue) and semantic meaning. The JIGSAWS dataset [43], provides

gesture-level labels for the Suturing, Needle Passing, and Knot Tying tasks in a dry

lab setting. Recent works have introduced new datasets as shown in Table 2.14, but

differing gesture definitions limit comparisons between them as well as their generaliz-

ability to other tasks. Specifically, [73], [59], and [74] all performed gesture recognition

based on kinematic data, but used different datasets and gesture definitions making

comparisons between these works difficult. [60] fused kinematic, video, and event data

to recognize and predict data, and [61] explored using multimodal attention for ges-

ture recognition. But, previous works have not combined data from multiple sets

since the gesture labels are incompatible.

2.6.2 Action Triplets

Action triplets, defined as <surgical tool/instrument, action verb, target anatomy>,

are used to describe tool-tissue interactions (TTI) in surgical process modeling [22].

One of the early works formalizes laparoscopic adreanectomies, cholecystectomies and

pancreatic resections [23] with surgical activities in the form of action triplets for sur-

gical phase inference. [76] annotates two robotic surgery datasets of MICCAI robotic

scene segmentation and Transoral Robotic Surgery (TORS) in the form of action
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Table 2.14: Datasets and definitions for gesture recognition.

Paper Dataset Tasks Gestures

Gao 2014 [43] [52] JIGSAWS

• Video
• Kinematics

Suturing
Needle Passing
Knot Tying

G1 - Reaching for needle with right hand
G2 - Positioning needle
G3 - Pushing needle through tissue
G4 - Transferring needle from left to right
G5 - Moving to center with needle in grip
G6 - Pulling suture with left hand
G7 - Pulling suture with right hand
G8 - Orienting needle
G9 - Using right hand to help tighten suture
G10 - Loosening more suture
G11 - Dropping suture at end and moving to end points
G12 - Reaching for needle with left hand
G13 - Making C loop around right hand
G14 - Reaching for suture with right hand
G15 - Pulling suture with both hands

DiPietro 2019 [73] MISTIC-SL

• Video
• Kinematics

Suturing
Needle Passing
Knot Tying

G1-G12 & G14
G13 - Grab suture using 2nd needle driver
G15 - Rotate suture twice using 1st needle driver around 2nd needle driver
G16 - Grab suture tail using 2nd needle driver in knot tying
G17 - Pull suture tail using 2nd needle driver through knot
G18 - Pull ends of suture taut
G19 - Rotate suture once using 2nd needle driver around 1st needle driver
G20 - Grab suture tail using 1st needle driver in knot tying
G21 - Pull suture tail using 1st needle driver through knot
G22 - Grab suture using 1st needle driver

Gonzalez 2020 [44] DESK

• Video
• Kinematics

Peg Transfer S1 - Approach peg S5 - Transfer peg - Exchange
S2 - Align & grasp S6 - Approach pole
S3 - Lift peg S7 - Align & place
S4 - Transfer peg - Get together

Menegozzo
2019 [59]

V-RASTED

• Video
• Kinematics

Pick and Place 1 – Collecting ring 4 – Failing 1
2 – Passing ring R to L 5 – Failing 2
3 – Posing ring on pole 6 – Failing 3

Goldbraikh
2022 [74]

own (open)

• Video
• Kinematics

Suturing
(not robotic)

No gesture Instrument tie
Needle passing Lay the knot
Pull the suture Cut the suture

Qin 2020 [75] RIOUS

• Kinematics
• Video
• Events

Ultrasonic
probing

S1 Probe released, out of view S5 Lifting probe up
S2 Probe released, in view S6 Carrying probe to tissue surface
S3 Reaching for probe S7 Sweeping
S4 Grasping probe S8 Releasing probe

triplets to generate surgical reports. In the SARAS Endoscopic Surgeon Action De-

tection (ESAD) challenge [77], instead of action triplets, actions are described by both

the verb and the anatomy. In the CholecTriplet2021 benchmark challenge for surgical

action triplet recognition [21], the challenge dataset, CholecT50, consists of 50 video

recordings of laparoscopic cholecystectomy labeled for 100 action triplet classes com-

posed from 6 instruments, 10 verbs, and 15 targets. Despite being more descriptive

of the surgical scene, the number of action triplets in the form of verbs, instruments,

and targets can grow exponentially compared to a more limited number of gestures.
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Table 2.15: Datasets and models for surgical actions.

Paper Dataset Tasks Actions

Nwoye 2022 [49] CholecT50

• Video

Laparoscopic
cholecystectomy

Aspirate Dissect Pack
Clip Grasp Retract
Coagulate Irrigate
Cut Null

Li 2022 [78] EndoVis 2018

• Video

Nephrectomy Cauterization Looping Clipping
Suction Idle Retraction
Staple Tool manipulation
Ultrasound sensing Suturing

Meli 2021 [55] own (dVRK)

• Video
• Kinematics

Ring Transfer Move
Grasp
Release
Extract

Forestier 2012 [79] own (open)

• Video

Lumbar disk
herniation
(not robotic)

Right: Left:
Sew Hold
Install Install
Hold Remove
Remove
Coagulate
Swab
Irrigate

Wagner 2021 [20] EndoVis 2019

• Video

Laparoscopic
cholecystectomy

Grasp
Hold
Cut
Clip

De Rossi 2021 [53] own
(dV and SARAS)

• Video

Pick and place
(semi-
autonomous
and cooperative)

A01 – MS moves to ring
A02 – MS picks ring
A03 – MS moves ring to exchange area
A04 – AS moves to ring
A05 – AS grasps ring and MS leaves ring
A06 – AS moves ring to delivery area
A07 – AS drops ring on target
A08 – AS moves to starting position

Valderrama
2022 [50]

PSI-AVA

• Video

Radical
prostatectomy

Cauterize Open Still
Close Open Something Suction
Close Something Pull Travel
Cut Push Wash
Grasp Release
Hold Staple

Ma 2021 [80] own (dV)

• Video

Renal hilum
dissection
(Partial
nephrectomy)

Single blunt dissection: Single sharp dissection: Combination:
Spread Cold cut Pedicalize
Peel/push Hot cut 2-hand spread
Hook Burn dissect Coagulate then cut

Huaulmè 2021 [51] MISAW

• Kinematic
• Video

Suturing
Knot Tying

Catch Loosen completely Position
Give slack Loosen partially Pull
Hold Make a loop
Insert Pass through

2.6.3 Surgical Actions

Surgical actions are generally referred to as the level of the surgical hierarchy be-

low gestures. Motions, motion primitives, and the action verb in action triplets are

surgical actions. In surgical process modeling, [10] and [9] define motions as an activ-

ity performed by only one hand and without semantic meaning. Many other works

define actions as atomic units as listed in Table 2.15.
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The gesture and action label datasets are mostly proposed for surgical workflow

segmentation [20,50,81–83], and gesture [59,60,73,74], action, or action triplet recog-

nition [20,49,78]. However, different datasets have varying definitions of gestures and

actions. This makes combining data from multiple sets challenging. Besides varying

definitions, prior datasets with surgical actions mainly contain video data, and none

of the previous datasets examine the process of labeling and the labeling agreement.

Existing datasets also do not differentiate between activities performed by the left

and right hands, which is important for detailed skill assessment and the analysis of

bimanual coordination. In our framework, we formally define motion primitives for

the left and right hands. Our motion primitives are sets of action definitions that are

generalizable across different datasets. We also look into how motion primitives relate

to surgical context and task progress. Our proposed dataset contains both kinematic

and video data along with context and motion primitives labels for a total of six dry

lab tasks. Our dataset will facilitate the development of recognition, skill assessment,

and error detection models using both vision and kinematic data.

2.7 Conclusion

In this chapter, we defined surgical context to represent the interactions between sur-

gical instruments and objects in the surgical environment and presented a framework

for modeling dry lab surgical tasks as finite state machines where motion primitives

cause changes in surgical context, characterized by tool and object/tissue interac-

tions. We then presented and analyzed methods for labeling context, MPs, and

gestures and found that our method for labeling context achieves substantial to near-

perfect agreement between non-expert annotators and expert surgeons. By applying

our framework to three publicly available datasets (JIGSAWS, DESK, and ROSMA),

we created the COMPASS dataset containing video and kinematic data and labeled

with unified context and motion primitive labels. COMPASS has nearly three times

as much data as JIGSAWS alone and has greater task and subject diversity. Our
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framework enables dataset aggregation with multiple consistent levels, greater objec-

tivity and agreement in labeling, and the modeling of tasks with finite state machines.

Furthermore, surgical data collection and aggregation would benefit from platform-

independent and multimodal methods of recording data from surgical robots. Towards

this goal, we present preliminary work on the development of a Data Collection Sys-

tem (DCS) and a proof of concept of its operation in Appendix A.

Future work includes extending the framework to tasks from real surgical pro-

cedures which would be accomplished by defining additional tools (e.g., scissors),

objects (e.g., vessels and tissues), task-specific state variables to augment the con-

text labels, and the associated MPs (e.g., Cut from [49]) that change those state

variables. The context to MP translation could be improved by using data-driven

and learning-from-demonstration approaches for more realistic and personalized task

modeling. The definition of MPs based on changes in the surgical context could

also enable translations between existing gestures and MPs. But this is complicated

due to executional and procedural errors affecting the order and performance of MPs

that comprise gestures, and is thus the subject of future work. These relationships

could provide insight into the functional and safety constraints of MPs and enable

autonomous operations, safety monitoring, and recovery. Our standardized set of

context and motion primitive labels enables the generalized modeling and compari-

son of surgical activities between datasets and tasks. This supports the development

of models for surgical activity recognition, skill analysis, error detection, and surgical

automation [14] by providing examples of fine-grained motions, and multi-granularity

models for improved fine-grained activity recognition [51].

55



Chapter 3

Surgical Context Inference and

Activity Recognition

3.1 Background

Surgical robots for minimally invasive surgery (MIS) enable surgeons to operate with

greater flexibility and precision, thus reducing incision size, recovery time, and scar-

ring. Their widespread adoption into surgical specialties such as urology, gynecology,

and general surgery has opened up new fields of interdisciplinary research and surgi-

cal data science [6]. Many of these areas depend on the modeling and decomposition

of surgical procedures into smaller units based on surgical process modeling [9, 10].

Automatic segmentation of the surgical scene and workflow are active areas of re-

search [50], and developed methods are used for skill assessment [12, 13, 28], error

detection [17, 18], and autonomy [86]. Methods and models for detecting and under-

standing the surgical environment and surgeon’s activities will enable improvements

in the safety, dependability, security, and efficiency of surgical robots.

Surgical scene segmentation has benefited from challenges such as the 2017 and

2018 EndoVis workshops at MICCAI which presented challenges to perform robotic

instrument and scene segmentation using images from a da Vinci Xi robot in porcine

This chapter contains material from the works [84] and [85], coauthored with I. Reyes, Z. Li,
and H. Alemzadeh, copyrighted by IEEE.
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procedures [19, 28]. High-performing models from these challenges have advanced

video data analysis, and datasets for instrument and object segmentation in MIS

procedures are more plentiful.

Video data has also been used for finer-grained surgical workflow segmentation

such as recognizing action triplets [49,55,78] based on the interactions between robotic

tools and objects in the surgical environment. However, an explicit relation between

these interactions and units of surgical activity such as gestures or motion primitives

has not been defined.

There has also been much work in recognizing gestures and actions as summa-

rized in [8]. The JIGSAWS dataset [43] with its surgical gesture labels has been the

foundation of many advancements in surgical gesture recognition [8], surgical process

modeling [52], skill assessment [12, 13], error detection [16–18], and autonomy [86].

Both supervised [52, 70, 73, 87–89] and unsupervised [90–94] approaches to gesture

segmentation and classification have been developed. Also, previous work has shown

that models trained for multilevel granularity recognition perform better than models

for action recognition alone [51], so incorporating knowledge of higher surgical pro-

cess levels can improve finer-grained recognition. However, these approaches either

rely on black box deep learning models that are hard to verify and need extensive

training data, or do not capture the human interpretable contextual information of

the gestures. In addition, previous works and comparisons between them have been

restricted by datasets with differing gesture definitions [8] and limited diversity in

the numbers of subjects, trials, and tasks.

Furthermore, while gesture recognition has been done with kinematic and/or video

data [8], recent work on action triplet recognition has mainly focused on video data of

surgical procedures [49,78]. But, kinematic data is important for improved recognition

accuracy using multimodal data [61, 75] and for error detection [8, 18], since it is

unaffected by common camera issues such as occlusions, lens contamination, and

smoke [17,30,31]. Thus, fine-grained surgical activity recognition using only kinematic

data should be investigated.
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In this chapter, we use the framework and COMPASS dataset from Chapter 2 to

develop models for the automated inference of surgical context from video data and

the recognition of surgical motion primitives and gestures from kinematic data with

improved explainability and generalizability. Our method leverages improvements in

image segmentation models to automatically detect surgical tool and object inter-

actions and infer context. We develop knowledge-based and data-driven models for

translating this context to gestures in order to relate these tool-object interactions

to surgical workflow, and we compare the performance of our proposed pipeline to

existing methods for unsupervised gesture recognition. These translations could also

be used to facilitate dataset aggregation and check labeling accuracy. With the aggre-

gated data from a variety of tasks in COMPASS, we propose a novel cross validation

method that evaluates the generalizability of activity recognition models to unseen

tasks. We implement a state-of-the-art surgical activity recognition model created

by [70] and evaluate it as a case study using our novel cross validation method to

quantify how well an activity recognition model will generalize to an unseen task

when it is deployed. This enables us to perform the first evaluation of an activity

recognition model trained on data from multiple tasks and datasets and show the

limitations of using the current gesture definitions compared to motion primitives.

We find that finer-grained models exhibit greater generalizability across tasks which

motivates us to study the execution of lower-level surgical activities in these tasks.

This chapter makes the following contributions:

• We present a method for the automated inference of surgical context based on

detecting important surgical tool and object interactions using image segmen-

tation.

• We propose two methods for the automated translation of context labels to

gesture labels based on a knowledge-based finite state machine and a data-

driven machine learning model.

• We use the JIGSAWS dataset as a case study to demonstrate that our proposed

approach results in shorter labeling time using the segmentation masks.

58



• We compare the performance of existing activity recognition models in a case

study of TCNs (Temporal Convolutional Networks) using only kinematic data

at different levels of the surgical hierarchy, specifically the gesture and motion

primitive levels, and for separate left and right sides of the robot vs. both sides

combined.

• We introduce the Leave-One-Task-Out (LOTO) cross validation method to mea-

sure the ability of surgical activity recognition models to generalize to an unseen

task, since current datasets do not include all of the surgical tasks that a model

may see when it is deployed.

• We perform the first evaluation of a surgical activity recognition model trained

on multiple tasks with data combined from different datasets by comparing

model performance using the existing LOUO method as well as our proposed

LOTO cross validation method.

This chapter is organized as follows. Section 3.2 describes our methods for the

automated inference of context and its translation to gestures. Section 3.3 evalu-

ates the performance of surgical activity recognition models at different levels of the

surgical hierarchy and their generalizability across tasks. Section 3.4 reviews related

work on surgical scene and workflow segmentation. Section 3.5 gives the conclu-

sion for this chapter.

3.2 Automated Context Inference

Our goal is to develop an automated, independent, and explainable way of generating

gesture transcripts based on video data that does not rely on expensive training data

for gestures. Such a method would be easier to verify by humans and experts and can

be used as the ground truth for evaluating the black box gesture recognition models

that directly detect gestures from kinematic data.

Previous works defined context in terms of the current surgical task or proce-

dure [17, 18] and performed context-aware error detection by using different error
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detection models for different tasks and gestures. However, they did not explicitly

detect context as defined in Chapter 2 and their definitions of context did not cap-

ture fine-grained activities or the interactions between the surgical instruments and

objects in the environment. The interactions encoded in our definition of context

could be used to detect some types of errors in robotic surgery such as a tool com-

ing into contact with an inappropriate anatomical structure or accidentally dropping

a needle. In this way, error detection models could be improved by including con-

text information which necessitates the development of a method for the automated

inference of surgical context.

Furthermore, despite the limited availability of datasets that include kinematic

data from surgical robots, datasets for instrument and object segmentation in mini-

mally invasive procedures are plentiful and have been the subject of image segmenta-

tion competitions [19, 28]. Unlike annotations for surgical instrument segmentation,

annotations for surgical workflow such as gestures require guidance from surgeons [24].

Labeling using descriptive gesture definitions is tedious and subjective, leaving un-

certainty as to exactly when gestures start and end, and gesture labels can have

annotation errors, such as those noted in [25], that adversely impact machine learn-

ing models and analyses [8]. Recent studies using the JIGSAWS dataset have found

errors in the gesture labels including a dozen amendments listed in [25] for the Sutur-

ing task. Thus, we propose methods that leverage the abundance of data with image

annotations for surgical instruments and important surgical objects to address the

challenges of manual labeling and relate surgical context to gestures. We aim to inte-

grate data-driven segmentation with knowledge-based context inference and context

to gesture translation to perform gesture recognition. This can enable improvements

in gesture recognition by integrating human input.

In order to automatically generate context labels, we not only need to segment and

identify both tools and objects, but we also need to determine if the identified objects

are in contact with or held by the surgical instruments. Figure 3.1 shows our proposed

approach for automatically inferring context where binary segmentation models are

used to generate masks for the objects relevant to the task, and the intersections
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and overlaps of the contours of these masks are used to deduce the context state

variables. We use multiple binary segmentation models instead of a single multi-class

segmentation model in order to maximize performance in identifying each specific

object class, and so that we can calculate the intersections between the object masks

and thus infer their interactions. The automated context inference step takes the

predicted masks from the DeepLab V3 binary segmentation models and first extracts

the contours of the masks to reduce noise and computation time. Then, the distances,

D(), and intersections, Inter(), between tool (e.g., Left Grasper “LG” and Right

Grasper “RG”) and object masks (e.g., Needle “N” and Thread “T” and Ring/Tissue

Points “Ts”), and the calculated open (α) or closed (¬α) pose of the grasper jaws are

used to label context according to Equations 3.1, 3.2, 3.3, 3.4, and 3.5.

3.2.1 Methods

This section presents our overall pipeline for the automated inference of surgical

context and translation to gesture labels based on video data as shown in Figure 3.1.

Surgical context can be inferred from video or kinematic data by estimating the values

of the state variables. In this work, we specifically focus on context inference based

solely on video data as an independent method of verifying gestures predicted from

kinematic data or when kinematic data is not available. Our methods are presented for

a case study of the JIGSAWS dataset [43] using the context labels from the COMPASS

dataset in Chapter 2, but are applicable to other datasets and sets of gestures.

Tool and Object Segmentation

The detection of general and task-specific state variables for surgical context requires

identifying the status and relative distances of the instruments and the objects of

interest in a task. As shown in Figure 3.2a for the JIGSAWS tasks, these include the

left and right graspers, needle, thread, and rings.

We modified the DeepLab V3 model [95] to perform binary segmentation and clas-

sify the background vs. one object class in the video frames of a task trial. Specifically,
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Figure 3.1: Pipeline for automated context inference from video data and translation

of context to gestures. D() is the distance between objects, Inter() is the intersection

between two objects, α is the gripper open state, and ¬α is the gripper closed state.
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Figure 3.2: (a) Surgical hierarchy and relation between gestures and context in a

suturing task. (b) State variables and object encodings that comprise context for the

JIGSAWS tasks (see Figure 3.1). In the Suturing and Needle Passing tasks, a needle

is used to throw four sutures through the fabric and rings, respectively, while in the

Knot Tying task, two knots are tied around a piece of tubing.

we train separate binary classification models to classify background vs. left grasper,

background vs. right grasper, background vs. needle, background vs. thread, and

background vs. ring. The input to each model is a matrix AH×W×3 representing an

RGB image of a video frame with height (H) and width (W ). The output is a binary

matrix MH×W representing the segmentation mask with 0 for the background class,
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and 1 for the segmented object class. We then use the intersections between objects

to infer context, which cannot be done with existing multi-class segmentation models

that classify each pixel to a single object class. Binary segmentation models for each

object class enable the analysis of intersections and overlaps among separate object

masks to infer interactions between tools and objects.

For each object, we combine the data from all tasks to train a single model to

classify that object in all tasks. We leveraged transfer learning by initializing the

model with a ResNet-50 [96] backbone pre-trained on the COCO dataset [97]. We

obtained tool and object annotations for the JIGSAWS dataset and used a subset of

70 videos to fine-tune the model. However, this significantly limited the test set for

the whole pipeline since most of the data from JIGSAWS was needed to train the

image segmentation models. We trained our models for up to 20 epochs using Adam

optimization [98] with a learning rate of 10−5.

Automated Context Inference

The masks from the segmentation models provide information about the areas and

positions of the instruments and objects that can enable state variable estimation

for each frame. By calculating intersections and distances between the object masks

in a given frame, we can detect interactions such as contact and hold as shown

in Figure 3.2b.

In the mask matrices MH×W generated by the segmentation models, each element

mhw ∈ {0, 1} indicates if the pixel (h,w) belongs to an object mask. We first perform

a preprocessing step on M to eliminate noise around the masks such as the needles

and threads. As shown in Figure 3.1, these masks have the worst segmentation per-

formance due to their slender shape compared to the rounder and larger graspers.

Contour extraction is performed to help eliminate the rough edges of the masks and

improve intersection detection. This step uses the OpenCV library [99] to iteratively

construct contours around every element mhw ∈ M , thus reducing the input matrix

to a list of points p ∈ C ⊂ M for each tool or object class where C is the boundary

of M . Using simplified polygons instead of binary masks greatly reduces the time
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required to calculate intersections and distances between objects for each frame. The

best instrument masks tend to result in a single clearly defined polygon such as for the

left and right graspers, while the needle and thread masks often result in small poly-

gons well outside of the actual instrument position. We experimentally determined

that dropping polygons with areas under 15 pixel units squared and smoothing the

polygons using the Ramer-Douglas-Peucker (RDP) algorithm [100, 101] resulted in

the best performance based on the training set.

Next, we detect overlaps between masks by taking a list of valid polygons and

calculating a feature vector, v, of distances, D(), and intersection areas, Inter(), be-

tween pairs of input masks. The input polygons Left Grasper (LG), Right Grasper

(RG), and Thread (T ) are common for all tasks. Task-specific objects are the Needle

(N) appearing in the Suturing and Needle Passing tasks, the manually labeled Tissue

Points (Ts) representing the markings on the tissue where the needle is inserted in

Suturing, and the Rings (R) in Needle Passing.

We define the distance functions D(I, J) and d(i, j) and the intersection function

Inter(I, J) to, respectively, calculate the pixel distance between two object masks I

and J , the pixel distance between the individual polygons i1, j1, . . . that constitute an

object mask, and the area of intersection between two object masks I and J . For any

object polygon I comprised of several polygon segments i1, i2, . . . , in, the distance to

any other object J can be calculated as: D(I, J) = average([d(i, j) for i ∈ I and j ∈

J ]). The intersection function, Inter(I, J), is implemented using a geometric inter-

section algorithm from the Shapely [102] library. We also define the components

I.x, I.y for an object I as the horizontal and vertical coordinates of the midpoint of

polygon I, calculated as the average of every point in I. In order to determine the

Boolean function (α) for each grasper, if the distance between the manually labeled

pixel coordinates of the grasper jaw ends was less than 18 pixels, then the grasper

was closed (¬α), else it was open (α).

The feature vector v = < D(LG,N), Inter(LG, T ), · · · > (see Figure 3.1) is then

used to estimate the values of different state variables using a set of task-specific

functions. An example set of functions is shown in Equations 3.1-3.5 for the state
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variables relating to the left and right robot arms and needle in the Suturing task. As

an example, if the distance between the left grasper and needle is less than one pixel

(D(LG,N) < 1) and the grasper is closed (¬α), then a value of 2 will be estimated for

the Left Hold state variable. Or the Needle State is detected as “touching” (2) when

the relative horizontal distance of the needle polygon (N.x) is less than the average

(midpoint) of the tissue points (Ts.x) and these two objects intersect (Inter > 0).

The input sample rate of the context to gesture translation was 3 Hz, so the final

estimated variables were downsampled from 30 Hz to 3 Hz using a rolling mode for

each state variable with a window of 10 frames.

Left Hold


2 if D(LG,N) < 1 ∧ ¬α

3 if Inter(LG, T ) > 0 ∧ ¬α

0 otherwise

(3.1)

Left Contact


2 if D(LG,N) < 1 ∧ α

3 if Inter(LG, T ) > 0 ∧ α

0 otherwise

(3.2)

Right Hold


2 if D(RG,N) < 1 ∧ ¬α

3 if Inter(RG,T ) < 1 ∧ ¬α

0 otherwise

(3.3)

Right Contact


2 if D(RG,N) < 1 ∧ α

3 if Inter(RG,T ) < 1 ∧ α

0 otherwise

(3.4)

Needle



2 if (Inter(Ts,N) > 0 ∧N.x < Ts.x)

1 if (Inter(Ts,N) = 0 ∨N.x ≥ Ts.x)∧

(D(RG,T ) > 1 ∨D(LG,N) > 1)

0 otherwise

(3.5)
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Context to Gesture Translation

The last step in the pipeline translates the inferred context labels into gesture labels.

We develop two models for relating our proposed context labels to existing gesture

definitions by mapping each time-series context label to a gesture label. The first

model is a knowledge-based Finite State Machine (FSM) and the second is a data-

driven Long-Short Term Memory (LSTM) model.

The input to these translation models is a 2-dimensional time-series matrix χState×n,

where State represents the five state variables describing the context (see Figure 2.2)

and n represents the total number of samples in the trial. The state at each time

step, Statet, is mapped to a corresponding gesture, Gi, in the JIGSAWS dataset.

The output of the translation is a 1-dimensional time-series array Yn ∈ {G} with

each time step mapped to a JIGSAWS gesture. We present two approaches based

on domain knowledge and data.

Finite State Machine Model Our first approach relies on a finite state machine

(FSM) defined based on knowledge of the surgical tasks which directly relates context

to gestures and is more explainable than deep learning models. The grammar graphs

from [52] for each task were overlaid on top of the ideal context models from Sec-

tion 2.3.2 so that each gesture could be mapped into the groups of contextual changes

that happen as the result of executing the gesture as shown in Figure 3.3 for the Su-

turing task. For example, G2 (positioning needle) would correspond to a change in the

fifth state variable from a “0” to a “1”. Or G4 (transferring needle from left to right)

is the context sequence 20000→ 20020→ 20200→ 02200→ 00200 which means the

needle is initially held in the left grasper, and then touched and grasped by the right

grasper, and released by the left grasper. In Figure 3.3, the G4 and G8 groupings

overlap since G8 (orienting needle) is performed by passing the needle from the right

grasper to the left grasper and back to the right grasper while changing its orientation.

Given the context transcript of a trial, the FSM is evaluated for each context and

a transition to the next gesture is detected if the input context is part of the next

gesture. The FSMs for each task were initialized in the “Start” state since not all of
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Figure 3.3: Grouping and mapping of context to gestures in the grammar graph

of the Suturing task. * denotes transitions due to duration limits as follows:

G2 > 6.0 s → G3, G3 > 11.1 s → G6, G4 > 5.2 s → G2, G6 > 6.1 s → G4.

the trials started with G1. Also, G11 was assumed to be last and so it was appended

to the gestures following the last detected gesture after the cycles through the gesture

grammar graph. In addition, in the Suturing and Needle Passing tasks, G9 and G10

had low rates of occurrence and were not included in the final translation. This

allowed us to focus only on state changes involving the needle and thus ignore grasps

and touches of the thread and rings with the added benefit of simplifying the FSMs

and limiting the total number of valid context changes.

We also consider gesture duration as a trigger for transitions between gestures.

If the current gesture’s duration exceeds a certain threshold based on the average

duration of that gesture class, a transition to the next gesture is enforced. This is

to address the cases where a transition between gestures does not happen due to

inaccuracies in context detection. For example, the segmentation models tend to

have lower accuracy in detecting the needle and thread states, leading to undetected

transitions that are dependent on those states.

LSTM Model Our second approach for the translation of context to gesture tran-

scripts relies on sequential deep learning methods to learn relationships in the data

that are not captured by the FSM models. We chose to use an LSTM model be-

cause it is a relatively simple network with the ability to learn temporal features.

67



We trained an LSTM based on the model from [70] to perform automated context to

gesture translation for each task. Specifically, we used a simple double layer LSTM

network with 64 hidden units for the Suturing and Needle Passing tasks and 256

hidden units for the Knot Tying task. We used Adam optimization [98] and the cross

entropy loss function to train the models. The hidden layers, number of hidden units,

and learning rates were determined by hyperparameter tuning. The final models were

trained with the best model configurations and used to perform inference on the au-

tomatically generated context labels using the segmentation masks in the test set.

Note that the LSTM model is a black box model and does not provide transparency

like the FSM model in the previous section.

3.2.2 Evaluation

Experimental Setup

We use an 80/20 train/test split of the JIGSAWS dataset for evaluating our pipeline.

The original videos are 30 Hz and we obtained binary masks for the tools and objects

at 2 Hz which we then used to train and test the segmentation models. The LSTM

networks are trained with the 3 Hz context labels from Chapter 2. We evaluate both

the FSM and LSTM for context to gesture translation with the test set context labels.

The experiments were conducted on a PC with an Intel Core i7 CPU@3.60 GHz,

32 GB RAM, and an NVIDIA GeForce RTX 2080 Ti GPU running Ubuntu 18.04.2 LTS.

Metrics

The following metrics were used to evaluate the pipeline.

Accuracy Accuracy is the ratio of samples with correct labels divided by the total

number of samples in a trial.

Edit Score Edit score is calculated using Equation 3.6 from [70] by normalizing

the Levenshtein edit distance, edit(G,P ), which quantifies the number of insertions,

deletions, and replacements needed to transform the sequence of predicted labels, P ,
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to match the ground truth sequence of labels, G. This is normalized by the maximum

length of the sequences so that a higher edit score is better.

Edit Score =
(
1− edit(G,P )

max(len(G), len(P ))

)
× 100 (3.6)

Intersection Over Union (IOU) Mean Intersection Over Union (IOU) as calcu-

lated in Equation 3.7 is a standard metric for assessing segmentation and translation

models [97] where TP is the number of true positives, FP is the number of false

positives, and FN is the number of false negatives.

IOU =
TP

TP + FP + FN
(3.7)

When comparing labels, each predicted segment is matched to a corresponding

segment in the ground truth labels. Then, the average IOU for each class is calculated

and the mean of these class IOUs is returned.

Tool and Object Segmentation

Table 3.1 shows the performance of our segmentation models in comparison to related

work. Although the MICCAI 18 challenge [19] dataset is from real porcine procedures

and differs from the JIGSAWS dataset collected from dry lab experiments, it has sim-

ilar objects including the clasper (similar to the graspers in JIGSAWS), needle, and

thread. The Deeplab V3+ model achieved the best performance on the thread class.

The top models from MICCAI 18 do not perform as well as our binary models on

the needle and thread classes in the Suturing task. However, the Mobile-U-Net [103]

achieved the highest performance for grasper and needle segmentation in the JIG-

SAWS Suturing task. [104] reported tool segmentation IOUs for all the JIGSAWS

tasks with up to 0.8 for KT using a Trained LinkNet34, but did not do object seg-

mentation. However, they do examine each task separately and report the best IOUs

for different models for each task as: S: 69.48, NP: 66.10, and KT: 80.01. They also

suggest that KT generally does better than S or NP because the contrast between

the background and foreground is higher. Among the JIGSAWS tasks, we achieved
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the best performance in Suturing for the right grasper, needle, and thread, while the

model performance on the Needle Passing task was the worst. This is likely due to

the background of the Needle Passing videos having less contrast with the foreground

compared to the other two tasks as shown in Figure 3.1. In the same figure, we can

also see that the masks of the needle and thread are thinner compared to the masks

of the grasper. Therefore, the mask boundary errors could contribute to a lower

score for the needle and thread class than the grasper class. The estimated time for

segmenting the whole JIGSAWS dataset using this approach is 8.6 hours.

Table 3.1: Tool and object segmentation performance on the test set (mean IOU for

each object class) on the MICCAI 18 (M) and JIGSAWS Suturing (S), Needle Passing

(NP), and Knot Tying (KT) tasks.

Model Data
Graspers Objects

Left Right Needle Thread Ring

Deeplab V3+ [19]
M [19]

0.78 0.014 0.48 N/A
U-net [19] 0.72 0.02 0.33 N/A

Mobile-U-Net [103] S 0.82 0.56 N/A N/A

Trained UNet [104]
S 0.69 N/A N/A N/A
NP 0.66 N/A N/A N/A

Trained LinkNet34 KT 0.80 N/A N/A N/A

Deeplab V3 (ours)
S 0.71 0.64 0.19 0.52 N/A
NP 0.61 0.49 0.09 0.25 0.37
KT 0.74 0.61 N/A 0.44 N/A

Automated Context Inference

Tables 3.2 and 3.3 show the performance of the context inference method in terms

of IOU achieved for each state variable with the predicted segmentation masks and

the ground truth masks from crowdsourcing.

Table 3.2 shows that Left and Right Contact have higher IOUs compared to Left

and Right Hold, and the Needle or Knot State has the lowest IOU. This is because

errors in estimating the position of the grasper jaw ends affect the accurate inference
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of the hold state, while contact is relatively simple to infer by finding if the two masks

intersect. Better performance in detecting Left and Right Contact compared to Left

and Right Hold is also observed in Table 3.3 where state detection performance is

shown with ground truth segmentation masks. Hence, the lower performance for Left

Hold and Right Hold could primarily be due to the difficulty in detecting these states.

For the Needle/Knot State, we need to detect if the needle is in the fabric or tissue

for the Suturing task, in or out of the ring for the Needle Passing task, and if the knot

is loose or tight in the Knot Tying task. Detecting the state of the needle and knot is

difficult even with the ground truth segmentation masks as shown in Table 3.3. This

is because the needle and thread have the lowest segmentation performance compared

to graspers as shown in Table 3.1 which could worsen the performance of the context

inference. The total time to perform automated context inference is estimated to be

about 30 seconds for the whole JIGSAWS dataset.

Table 3.2: State variable IOUs with consensus context using predicted masks from

DeepLab V3.

Task Left
Hold

Left
Contact

Right
Hold

Right
Contact

Needle
or Knot

Avg

Suturing 0.48 0.75 0.60 0.87 0.30 0.60
Needle Passing 0.40 0.97 0.18 0.95 0.39 0.58
Knot Tying 0.75 0.72 0.57 0.78 0.59 0.68

Avg 0.54 0.81 0.45 0.87 0.43

Table 3.3: State variable IOUs with consensus context using ground truth masks.

Task Left
Hold

Left
Contact

Right
Hold

Right
Contact

Needle
or Knot

Avg

Suturing 0.52 0.77 0.61 0.87 0.39 0.63
Needle Passing 0.42 0.97 0.19 0.94 0.41 0.59
Knot Tying 0.83 0.77 0.61 0.79 0.62 0.72

Avg 0.59 0.84 0.47 0.87 0.47
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Context to Gesture Translation

Table 3.4 shows the performance of the FSM and LSTM methods in translating

the ground truth context labels from Chapter 2 to gestures. Between these two

methods, the FSM achieves higher accuracies and edit scores than the LSTM. The

performance of both models is degraded when automated context labels are used as

input. In a follow-up work, [105] trained a more complex, Transformer model for

gesture recognition that used consensus context labels as input and achieved higher

accuracy, but lower edit score compared to the FSM for the Suturing task.

Table 3.4: Performance of models translating consensus context labels to gestures.

Task Model Accuracy (%) Edit Score IOU

Suturing
FSM 66.3 84.4 0.48
LSTM 38.8 34.7 0.26

Transformer [105] 74 71

Needle Passing
FSM 70.1 88.7 0.54
LSTM 17.0 20.0 0.04

Knot Tying
FSM 54.6 91.5 0.43
LSTM 50.8 49.2 0.28

Results for the overall pipeline are shown in Table 3.5 where we observe that using

automated context inferred from predicted masks degrades the overall performance

because the tool and object segmentation models perform poorly at generating masks

for the needle and for all tools and objects in the Needle Passing task. This effect

is propagated through the automated context inference and the context to gesture

translation resulting in low accuracies and IOUs. The FSM generally outperforms

the LSTM likely due to its knowledge-based structure and limits on gesture dura-

tions that prevent the model from becoming stuck in any one gesture even when

given degraded context labels. The FSM pipeline achieves accuracies lower than un-

supervised models from [93] and [94] for Suturing, but outperforms them in terms of

edit score. These observations suggest that there are benefits to incorporating knowl-

edge into the context to gesture translation that can make the model more robust to
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degraded context labels. However, the FSM is manually developed based on domain

knowledge and relies on defined inputs and transitions while the LSTM requires la-

beled data for training. The time to perform gesture translation from context for the

entire JIGSAWS dataset is less than 3 minutes for both models.

Table 3.5: Pipeline performance translating automatically inferred context, given

masks from the Deeplab V3 models, to gestures.

Task Model Accuracy (%) Edit Score IOU

Suturing ST-CNN [87] 77.7 68.0
Suturing (vid) Zero-shot [93] 56.6 61.7
Suturing (kin) TSSC-DL [94] 49.7 32.8

Suturing
FSM 40.8 67.1 0.28
LSTM 25.4 24.9 0.17

Needle Passing
FSM 18.0 76.2 0.12
LSTM 14.8 20.1 0.02

Knot Tying
FSM 42.9 70.7 0.43
LSTM 36.5 23.8 0.17

3.3 Surgical Activity Recognition

In robot-assisted surgery (RAS), modeling and analysis at the gesture and action

levels of the surgical hierarchy [9, 10] is performed to gain a better understanding of

surgical activity and improve skill assessment [12, 13], error detection [17, 18], and

autonomy [86]. Towards these applications, the automated segmentation and clas-

sification of surgical workflow has been an active area of research [50]. [8] and Sec-

tion 3.4.2 provide comprehensive summaries of recent works at the gesture and action

levels. However, previous works and comparisons among them have been restricted

by differing gesture definitions [8] and limited diversity in the numbers of subjects,

trials, and tasks across the existing datasets.

Recent works in gesture recognition have each defined their own sets of gestures for

their own datasets [44,53,59,73,74] with limited overlap between gesture definitions.
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On the other hand, works on the recognition of fine-grained surgical actions focus

on action triplets (verb, instrument, tissue/object) [49, 55, 78], representing surgical

instrument and tissue interactions in endoscopic videos. While gesture recognition

has been done with kinematic and/or video data [8], recent work on action triplet

recognition has mainly focused on video data of surgical procedures [49,78]. To lever-

age finer-grained action recognition in safety monitoring and autonomy applications,

we examine verb-only predictions based on kinematic data. Kinematic data is par-

ticularly important for safety analysis [16–18], error detection [8, 18], and improved

recognition accuracy using multimodal data [61, 75], since it is unaffected by com-

mon camera issues such as occlusions, lens contamination, and smoke [17, 30, 31].

Plus, using fewer data types can reduce computational costs and enable real-time

applications [106].

The evaluation of gesture recognition models has been performed using the Leave-

One-Supertrial-Out (LOSO) and Leave-One-User-Out (LOUO) cross validation meth-

ods defined in [52] for the JIGSAWS dataset. The LOSO setup tests the generaliz-

ability of a model to an unseen trial by a known user while the LOUO setup tests

the generalizability of a model to an unseen user. The LOUO cross validation setup

is considered the gold standard for evaluating gesture recognition models because it

represents the realistic situation where a deployed model will need to recognize ges-

tures performed by a surgeon it was has not seen before. However, an even more

realistic case would have a gesture recognition model predict on an unseen, but per-

haps similar, task performed by an unknown user. Thus, a method of evaluating the

performance of models in this scenario is needed.

Using the COMPASS dataset created in Chapter 2, we train surgical activity

recognition models based on the Temporal Convolutional Network (TCN) from [70] for

motion primitive (MP) and gesture recognition. Some of the tasks in the COMPASS

dataset share similar objects and goals enabling their aggregation and comparison. So,

the standardized labels in COMPASS can support the combined analysis of datasets

and the aggregation of data from contextually similar tasks for improved activity

recognition and error detection [8]. We then analyze the performance of the TCN
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across users, tasks, and datasets by using the standardized MP labels. Since we are

primarily interested in the performance of the models with respect to different types

of labels and the augmentation of the training set with data from multiple datasets,

we use the existing Leave-One-User-Out (LOUO) cross validation setup and propose

the Leave-One-Task-Out (LOTO) cross validation setup which provides insights into

the data needed to train surgical activity recognition models.

3.3.1 Methods

This section presents our methods for the construction, training, and evaluation of

the gesture and MP recognition models.

Data Preprocessing

We use the COMPASS dataset from Chapter 2 to train our surgical activity recog-

nition models since it has kinematic data from da Vinci surgical robots for different

dry lab tasks from multiple datasets. It contains kinematic and video data at 30

Hz for a total of six tasks from three different datasets as described in Table 3.6.

Context and MP labels are present for all trials, but gesture labels are only available

for trials in the JIGSAWS and DESK datasets. To generate separate left and right

label sets, MPs performed by each arm of the robot are split into new transcripts.

Also, an Idle MP is defined and used to fill the gaps created by the separation so

that every kinematic sample has a label.

The input signal to the activity recognition model is the time-series kinematic

data, xt, and the output is a transcript of class labels, yt, one for each time-series

sample, where each class label is selected from the finite set of gestures or MPs.

We experimented with different combinations of kinematic variables as inputs to the

activity recognition models (while hyperparameter and cross validation settings were

kept constant) and found that using only the position, linear velocity, and gripper

angle kinematic variables resulted in the best performance. This is consistent with the

best-performing gesture recognition models that relied on kinematic data as reported
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in [8]. The stride was 1, so there was no downsampling, and the kinematic data and

gesture and MP labels were all at 30 Hz.

Surgical Activity Recognition Model

One of the fastest and best performing models that used only kinematic data for

gesture recognition in [8] was the Temporal Convolutional Network (TCN). The TCN

is also used as a component in more complex state-of-the-art models such as MA-

TCN [61] and MRG-Net [107]. Thus, as a case study, we adopt the TCN model

from [70] for activity recognition at both the gesture and MP levels. This model

has an encoder-decoder structure, each consisting of three convolutional layers with

pooling, channel normalization, and upsampling. As in [70], the kernel size is set

to the average duration of the shortest activity class (e.g., gesture or MP), and the

three layers have 32, 64, and 96 filters respectively. We used the cross-entropy loss

function and Adam optimizer [98].

The learning rate and weight decay hyperparameters for all TCN models were

selected based on a grid search of values by training on the JIGSAWS dataset with

gesture labels for each cross validation setup. For LOUO models, the learning rate

was 0.00005 and the weight decay was 0.0005. For LOTO models, the learning rate

was 0.0001 and the weight decay was 0.001. These values were fixed for all models

Table 3.6: Number of subjects and trials and types of annotations for each task in

the COMPASS dataset: Suturing (S), Needle Passing (NP), Knot Tying (KT), Peg

Transfer (PT), Post and Sleeve (PaS), and Pea on a Peg (PoaP).

Dataset JIGSAWS [43] DESK [58] ROSMA [45]

Tasks S NP KT PT PaS PoaP
Trials 39 28 36 47 65 71

Subjects 8 8 12
Gesture Labels ✓ ✓
MP Labels ✓ ✓ ✓
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of their respective cross validation setup to analyze the effect of different training

and label sets on model performance.

We compare the performance of the TCN when trained with four different sets of

labels: gestures, MPs for only the left side (Left MPs), MPs for only the right side

(Right MPs), and MPs for both sides together (MPs).

Model Generalization

We evaluate the generalization of the activity recognition models to unseen users/subjects

and surgical tasks using two cross validation setups: Leave-One-User-Out (LOUO)

from [52] and our novel Leave-One-Task-Out (LOTO) which are introduced next.

Leave-One-User-Out (LOUO) LOUO is the standard cross validation setup for

comparing gesture recognition models and is preferred over the Leave-One-Supertrial-

Out (LOSO) method because it measures a model’s ability to generalize to an unseen

user which is expected of a deployed model [8]. Since tasks from different aggre-

gated datasets in COMPASS do not share the same subjects, we extended the LOUO

setup from JIGSAWS [52] to include the new subjects, resulting in a maximum of

28 folds (corresponding to 28 unique users) when the model was trained on data

from all tasks and datasets.

Leave-One-Task-Out (LOTO) Existing datasets represent a limited number of

trials, subjects, and tasks. This means that machine learning models trained on them

will see subjects, trials, and tasks that could be very different when they are deployed.

In order to assess a model’s ability to generalize to an unseen task, we introduce the

Leave-One-Task-Out (LOTO) cross validation method.

In the LOTO setup, all of the data for one task was held out as the test set while

the model was trained on all of the data for a set of other tasks. Thus, the model

would be tested on all the trials of all subjects from an unseen task. For an example

fold, a model could be trained on NP, KT, PT, PaS, and PoaP and tested on S. This

differs from the LOSO setup where a model would be tested on unseen trials from
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a known subject of a known task. Similar to the existing LOSO and LOUO setups,

average accuracy and edit score across the folds can be reported and used to compare

models. However, examining each fold’s performance and considering the relationship

and similarity between the tasks in the training and test set yields insights about the

generalizability of the model to unseen tasks and the data needed to train a model.

Task Combination for Training

The unified set of finer-grained MP labels enables the aggregation of data from dif-

ferent tasks across datasets which can improve the diversity and size of training

data and model generalization. On the other hand, gesture labels are specific to

each dataset and only tasks with similar labels within that dataset can be com-

bined. To evaluate the effect of label granularity on task-generalization, we use

data from different combinations of tasks in the aggregated datasets for training

models in the LOUO and LOTO setups. Using MPs, there were two combina-

tions with similar context: S+NP=“SNP” where both tasks have a task-specific

needle state, and PT+PaS=“PTPaS” where both tasks have a task-specific block

state. Tasks could also be grouped together if they come from the same dataset:

S+NP+KT=“JIGSAWS” and PaS+PoaP=“ROSMA”. Combining all of the data to

train a model was referred to as “All”. With gestures, only the SNP and JIGSAWS

combinations could be used. For LOTO, we also considered specific combinations

of data that tested on one task but removed the contextually similar tasks (defined

above) from the training set to assess the importance of augmenting the training set

with data from similar tasks.

Evaluation Metrics

We use the following standard metrics to evaluate the gesture and MP recognition

models.

Accuracy Given the lists of predicted and ground truth labels, the accuracy is the

ratio of correctly classified samples divided by the total number of samples in a trial.
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Edit Score We report the edit score as defined in [70]. The Levenshtein edit

distance, edit(G,P ), is the number of insertions, deletions, and replacements needed

to transform the sequence of predicted labels, P , to match the ground truth sequence

of labels, G. Then, the edit score is obtained by normalizing the edit distance by

the maximum length of the predicted and ground truth sequences as in Equation 3.8

(with 100 representing the best prediction performance):

Edit Score =
(
1− edit(G,P )

max(len(G), len(P ))

)
× 100 (3.8)

Mean Average Precision (mAP) Average Precision (AP) for a class is the av-

erage precision weighted by the increase in recall between thresholds calculated using

Scikit-learn [108]. Then, the mean Average Precision (mAP) is the average AP for

all classes. Micro mAP is reported for each verb to account for class imbalance.

3.3.2 Evaluation

The experiments were performed on a computer with an Intel Core i9 CPU @

3.60 GHz x 16 and 64 GB RAM, running Linux Ubuntu 18.04 LTS, and an NVIDIA

GeForce RTX 2070 GPU running CUDA 10.2. The models were built and trained

using Torch 1.10.1 [109].

Kinematic Variables

We experimented with different combinations of kinematic variables as inputs to the

surgical activity recognition models, specifically for the JIGSAWS tasks under Leave-

One-User-Out (LOUO) cross validation as defined in [52] since both gesture and MP

labels were available for those tasks. Table 3.7 shows the performance of the MP and

gesture recognition models for three combinations of kinematic variables: (i) position,

linear velocity, and gripper angle; (ii) position, orientation, and gripper angle; and

(iii) position, orientation, linear velocity, and gripper angle. We found that using

only the position, linear velocity, and gripper angle resulted in the best performance.
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This is consistent with the best-performing gesture recognition models that relied on

kinematic data as reported in [8].

Table 3.7: Accuracies and edit scores for different combinations of variables for ac-

tivity recognition in the JIGSAWS tasks under LOUO cross validation.

Variables
MPs Gestures

Acc Edit Acc Edit

Position, Orientation, Linear Velocity, and Gripper Angle 52.4 54.5 77.8 79.2
Position, Orientation, and Gripper Angle 50.8 54.3 76.3 77.9
Position, Linear Velocity, and Gripper Angle 56.0 55.6 81.4 82.2

Gesture vs. Motion Primitive Recognition

In this section we present the performance of TCN models in recognizing gestures and

MPs in comparison to state-of-the-art models and with different combinations of data.

Tables 3.8 and 3.9 compare the accuracies and edit scores averaged over the folds

of the LOUO setup for the TCN models trained to recognize gestures and MPs,

respectively. Accuracies for two state-of-the-art models are also presented in Table 3.8

against which our TCN model performs comparably or better. The TCN performed

best on S alone achieving an accuracy of 84.6% and an edit score of 87.7 which is

also slightly better than the 79.6% accuracy and 85.8 edit score reported by [70]

(not shown in Table 3.8) and comparable to the results of [61] for the TCN using

only kinematic data.

Despite KT only sharing two similar gestures and having a different task-specific

context state variable than the other two JIGSAWS tasks, the performance of the

TCN on KT is comparable to its performance on S (accuracy of 84.4%, edit score

of 85.4 vs. accuracy of 84.6%, edit score of 87.7). When data from multiple tasks

is combined for the SNP and JIGSAWS models, the accuracies of the TCN models

are only about the average of their performances on individual tasks while the edit

score for the JIGSAWS model drops to 82.0 which is lower than any single task in

that dataset. Thus, there does not appear to be much benefit to combining data
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Table 3.8: Gesture recognition performance under the LOUO cross validation setup

compared to state-of-the-art models using only kinematic data. Results for the state-

of-the-art models were only available for the JIGSAWS tasks.

Tasks Gestures Baselines

Acc (%) Edit Score mAP Acc (%) Model

PT 73.5 83.8 80.7

S 84.6 87.7 86.0 90.2 MS-RNN [110]
NP 78.4 85.2 86.4 75.3 SC-CRF [111]
KT 84.4 85.4 89.8 78.9 SC-CRF [111]

SNP 81.4 85.2 85.1
JIGSAWS 80.9 82.0 85.7

Table 3.9: MP recognition performance with different task combinations under the

LOUO cross validation setup.

Tasks
MPs Left MPs Right MPs

Acc Edit Acc Edit Acc Edit

S 52.6 58.5 66.0 65.2 60.3 61.8
NP 52.3 53.1 64.7 60.0 55.9 54.8
KT 62.9 58.0 71.2 67.2 64.6 59.9

SNP 55.2 56.2 66.5 62.2 59.5 61.1
JIGSAWS 55.8 55.3 66.4 63.5 61.7 60.1

PoaP 67.4 74.6 79.6 72.6 79.3 74.7
PaS 70.2 76.5 80.0 77.6 78.5 75.9

ROSMA 67.5 74.9 78.8 73.1 78.2 73.6

PT 75.3 79.9 81.1 81.8 82.0 82.4

PTPaS 70.3 76.4 78.5 77.8 78.8 77.4

All 65.9 69.6 75.0 70.3 73.1 70.7

from the JIGSAWS tasks at the gesture level. The PoaP and PaS tasks from the

ROSMA dataset did not have gesture labels, so no gesture recognition models were

trained for them. The PT task of the DESK dataset did have gesture labels although

their definitions were much closer in scope to MPs rather than the more complex

gestures of the JIGSAWS dataset. The TCN only achieves an accuracy of 73.5% for
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gesture recognition on the PT task which is comparably lower than the performance

of any of the MP recognition models for this task in the LOUO setup shown in

Table 3.9. For the JIGSAWS tasks, the gesture recognition models performed much

better than MP recognition models (only considering verbs). This suggests that

the definitions and granularity of the labels in the surgical hierarchy affect activity

recognition performance.

By examining Table 3.9, we note that MP recognition performance is better for the

task in the DESK dataset, and to a somewhat lesser extent for tasks in the ROSMA

dataset, than for tasks in the JIGSAWS dataset. This could be because the JIGSAWS

tasks (S, NP, KT) are more challenging with more complex grammar graphs [52],

while the tasks in the ROSMA and DESK datasets are variations of a pick-and-place

task with simpler grammar graphs. This is supported by the higher edit scores for the

models trained on the ROSMA and DESK datasets compared to the models trained on

the JIGSAWS dataset. Combining data at the MP level also resulted in performance

metrics that are about the average of the individual tasks that were combined. But,

training separate models for each side of the robot resulted in higher accuracies with

comparable or better edit scores. So, having separate annotations and models for the

left and right arms of the robot can improve MP recognition performance.

Furthermore, Table 3.10 shows the mAPs for each MP and micro average over

all verbs for the MP recognition models in the LOUO setup. We note that class

imbalance may have caused differences between the macro and micro mAPs for tasks

from the DESK and ROSMA datasets where MPs with a greater number of instances

sometimes had higher mAPs. None of these MP recognition models perform as well

as the gesture recognition models for the JIGSAWS tasks as listed in Table 3.8, which

achieve mAPs of up to 89.8. So, additional work is needed to improve fine-grained

activity recognition performance. Although the recognition models of [49] have been

evaluated for verb recognition performance, a direct comparison to action triplet

models is not fair as the data (kinematic vs. video) and tasks (robotic dry lab vs.

real laparoscopic surgery) are different.
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Table 3.10: Number of examples (#) and mean average precisions (mAPs) of MPs

for models trained on different combinations of tasks in the LOUO setup with micro

mAP for all verbs (weighted by number of samples in each class).

Tasks Grasp Release Touch Untouch Pull Push All verbs

# mAP # mAP # mAP # mAP # mAP # mAP # mAP

S 471 57.6 441 48.7 518 58.1 314 27.6 194 72.2 179 55.1 2117 52.5
NP 373 63.0 365 57.0 330 57.0 206 16.2 114 69.1 119 34.2 1507 52.0
KT 283 64.5 247 69.1 135 43.8 111 18.6 235 85.3 0 N/A 1011 62.7

SNP 844 61.3 806 54.8 848 58.0 520 21.2 308 70.0 298 47.3 3624 52.9
JIGSAWS 1127 62.2 1053 58.7 983 53.0 631 20.7 543 72.6 298 41.5 4635 53.7

PoaP 577 52.8 556 55.3 1782 88.0 1261 47.2 525 58.3 2 33.5 4703 65.5
PaS 824 50.2 776 50.3 1598 88.9 1131 45.7 0 N/A 0 N/A 4329 63.3

ROSMA 1401 50.7 1332 53.1 3380 89.2 2392 45.3 525 59.2 2 5.1 9032 64.5

PT 323 48.3 313 61.1 539 90.3 364 68.3 0 N/A 0 N/A 1539 70.3

PTPaS 1147 48.7 1089 54.6 2137 89.8 1495 53.0 0 N/A 0 N/A 5868 65.9

All 2851 54.5 2698 55.4 4902 79.5 3387 43.5 1068 65.7 300 37.7 15206 60.7

Model Generalization

Table 3.11 reports the accuracies and edit scores for models trained with different

combinations of data in the LOTO setup and immediately shows the limitations of

existing gesture definitions. Note that only the JIGSAWS dataset had gesture labels

that could be used in the LOTO setup, so gesture recognition models using tasks

from different datasets could not be trained because gesture labels were not present

(i.e., ROSMA) or were not compatible (i.e., JIGSAWS vs. DESK).

We observe that splitting the MP labels into separate transcripts and training

separate models for the left and right arms of the robot generally resulted in improved

accuracies compared to having a single model.

We find that a gesture recognition model trained on S or NP is able to transfer

to NP or S, respectively, but when KT is added to the training set, performance

is severely decreased. Specifically, a model tested on S drops from an accuracy of

48.5% to 24.4%, and a model tested on NP drops from 37.9% to 28.8% when KT

is added to the training set. This is due to the lack of generalizable gesture labels

between these tasks since S and NP have an almost completely different set of gestures

compared to KT. Thus, gesture recognition for the KT task using a model trained
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Table 3.11: MP and gesture recognition performance with different task combinations

under the LOTO cross validation setup.

Test Set Training Set Gestures MPs Left MPs Right MPs

(Task combinations) Acc Edit Acc Edit Acc Edit Acc Edit

S NP KT PT PaS PoaP 39.0 49.0 62.3 59.4 42.9 58.5
S KT PT PaS PoaP 25.3 40.2 41.3 50.2 34.8 42.5
S NP KT 24.4 33.9 43.2 48.3 56.2 52.7 46.3 48.2
S NP 48.5 70.5 44.0 47.7 62.7 58.7 50.1 54.7

NP S KT PT PaS PoaP 40.8 48.5 54.1 55.9 41.6 46.4
NP KT PT PaS PoaP 35.6 44.5 46.2 51.9 34.4 39.9
NP S KT 28.8 38.2 37.2 46.9 49.9 52.8 44.7 48.3
NP S 37.9 52.7 42.2 48.6 52.2 51.9 46.0 52.8

KT S NP PT PaS PoaP 33.3 40.2 47.2 51.9 35.2 39.8
KT PT PaS PoaP 22.6 37.5 37.7 36.5 25.1 36.8
KT S NP 6.8 9.3 29.7 40.5 48.1 50.4 34.5 42.8

PT S NP KT PaS PoaP 53.1 48.0 55.9 42.0 43.9 38.6
PT S NP KT PoaP 44.5 44.4 49.0 37.6 55.3 44.8
PT PaS 48.0 37.6 51.1 40.3 52.6 43.5

PaS S NP KT PT PoaP 58.1 65.5 58.8 60.5 61.1 58.0
PaS S NP KT PoaP 60.7 65.0 58.5 58.5 61.4 57.7
PaS PT PoaP 58.0 64.1 65.8 58.3 63.9 57.2
PaS PT 61.0 37.5 42.5 54.6 55.0 42.9
PaS PoaP 58.4 62.9 59.5 57.2 59.8 56.1

PoaP S NP KT PT PaS 56.5 64.2 59.1 50.7 58.5 49.8
PoaP S NP KT PT 53.4 47.8 50.4 45.9 36.0 43.9
PoaP PaS 54.8 63.1 57.8 44.9 58.0 45.2

on S and NP is particularly poor with an accuracy of only 6.8%. Hence, at the

gesture level, combining data from different tasks is not beneficial for a model that

must predict on an unseen task.

Comparatively, when MPs are used, the model is able to predict on a new task

like KT by leveraging information learned from other tasks that are dissimilar to it

such as S and NP. Adding data from a dissimilar task has a much smaller detrimental

effect at the MP level than at the gesture level. For example, the model’s accuracy

drops less than 1% for S and 5% for NP when KT is added to the training set.

When the model must predict MPs on a dissimilar task with a different task-

specific context state, then combining data from all tasks results in better perfor-

mance compared to using only data in the same dataset. KT improves from an

accuracy of 29.7% to 33.3% and PoaP improves from 54.8% to 56.5% by including

data from other datasets.
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For S and NP, we observe that models trained with data from the same dataset and

with the same task-specific state variable perform better than models including data

from the same dataset but without the same task-specific state variable. However,

the opposite is true for PaS where models whose training sets included PoaP (same

dataset) but not PT (same task-specific state variable) sometimes performed better.

For KT and PoaP, even though data with the same context was not available,

models whose training sets included tasks from the same dataset generally performed

better than models whose training sets did not. The poorest performing models

for PaS were trained with data that only included PT, even though they had the

same task-specific state variables. For PT, some models that included PaS (same

task-specific state variable) performed better than those that did not. Since tasks

from the same dataset were performed by the same subjects, models whose training

sets included tasks from the same dataset are tested on different tasks performed by

known subjects. This is somewhat similar to the Leave-One-Supertrial Out (LOSO)

cross validation method where models are tested on unseen trials performed by known

subjects. Models evaluated using the LOSO method perform better than those using

the LOUO method which suggests that including data from the same subjects may

improve model performance. However, additional data and tests would be needed

to determine if it is this or another feature of the dataset that is responsible for the

better performance. Additional evaluations are also needed to verify that MPs enable

task-generalization for other types of models such as transformers [106].
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3.4 Related Work

3.4.1 Surgical Scene Segmentation

There are many models that focus on surgical instrument segmentation [112–115],

as well as also identifying anatomy and objects [116] including the needle and su-

ture [117–119]. Most existing works on robot instrument or surgical scene segmenta-

tion have been based on real surgery videos using publicly available datasets such as

MICCAI EndoVis 17 [28], MICCAI EndoVis 18 [19], and Cata7 [29]. Popular frame-

works include UNet [120], TernausNet [121], and LinkNet [122]. Various models have

been proposed in the EndoVis challenges, but segmenting all objects in a surgical

scene has been challenging. The DeepLab V3+ model [95] achieved the best overall

performance in [19], and other DeepLab models [95,123] have also shown promise in

surgical tool and object segmentation. Surgical scene segmentation in dry lab set-

tings with the JIGSAWS dataset has been done in [103] and [104], but we go further

by segmenting additional objects and using tool and object segmentation for con-

text inference. Thus, our method benefits from the availability of large open-source

image segmentation datasets and could also improve segmentation performance by

fine-tuning on smaller datasets.

3.4.2 Surgical Workflow Segmentation

Surgical workflow segmentation has been examined in different datasets with different

tasks and at different levels of granularity as summarized in Table 3.12.

Datasets and Tasks

Some recent works in surgical activity recognition perform comparative evaluations

of their models across different datasets. For example, [50] developed the TAPIR

model and found that it performed better on the MISAW dataset than their PSI-

AVA dataset for phase and step recognition in terms of mAP, but did not examine

the reason for this. [18] evaluated an LSTM using LOSO cross validation on the
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JIGSAWS dataset and their own dataset of Block Transfer on the Raven II. The

LSTM achieved a higher accuracy for the Block Transfer task since it was a simpler

task with a larger amount of data compared to the JIGSAWS tasks. However, these

works did not combine data from multiple datasets or tasks since the label definitions

differed. [16] found that combining data from the Suturing and Needle Passing tasks

of the JIGSAWS dataset could improve the performance of executional error detection

models because the gestures were kinematically similar. This suggests that there is

a benefit to aggregating data for training models. Additionally, [124] found that

gesture recognition models trained on the JIGSAWS dataset did not generalize well

to other dry lab or clinical data.

Label Granularities

Surgical workflow recognition has been examined at different levels of granularity

as listed in the fifth column of Table 3.12. Note that there are inconsistencies in

label and granularity definitions across datasets. For example, the tasks of Sutur-

ing, Knot Tying, and Peg Transfer in JIGSAWS and DESK are considered phases

in MISAW [51] and PETRAW [125]. [73] trained a GRU for gesture and maneuver

recognition on the JIGSAWS and MISTIC-SL datasets, respectively. Although the

datasets had different labels, the lower-level gesture recognition model had a higher

error rate than the maneuver recognition model. The MISAW challenge [51] and Hei-

Chole benchmark [20] datasets were labeled at multiple levels as well as the PSI-AVA

dataset [50]. The best-performing models from these works all showed decreasing per-

formance metrics for finer-grained labels which highlights a significant challenge for

fine-grained recognition. Interestingly, [51] found that multi-granularity recognition

models performed better than activity recognition models because the models may be

learning that certain activities only occur during specific phases and steps. Also, re-

cent works on action triplet recognition in laparoscopic procedures focus on concurrent

phase, step, and action recognition [125]. The poor performance of activity recogni-

tion models is a barrier to clinical applications, but understanding the relationship

between granularity levels can address this challenge and guide model development.
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Table 3.12: Surgical workflow segmentation models that considered multiple datasets,

data types, and label granularities.

Paper Dataset Data Type Tasks Label Levels Best Teams/Models and Performance

MISAW
Challenge
2021 [51]

MISAW
Kinematics
and/or
Video

Anastomosis

Phases MedAIR [107] AD-Accuracy: 96.5%

Steps MedAIR [107] AD-Accuracy: 84.0%

Activities NUSControl Lab
and UniandesBCV

AD-Accuracy: ∼64%

Multi-granularity NUSControl Lab AD-Accuracy: ∼72%

HeiChole
benchmark 2021 [20]

EndoVis
2019

Video
Laparoscopic
cholecystectomy

Phases HIKVision and CUHK F1 Score: ∼65%
Actions Wintegral F1 Score: 23.3%

Valderrama
2022 [50]

PSI-AVA Video
Radical
prostatectomy

Phases
TAPIR

mAP: 56.6%

Steps mAP: 45.6%

Actions mAP: 23.6%

DiPietro
2019 [73]

JIGSAWS
Kinematics

Suturing Gestures
GRU

Error rate: 15.2% Edit distance: 8.4

MISTIC-SL Knot Tying Maneuvers Error rate: 8.6% Edit distance: 9.3

Multimodal
attention [61]

JIGSAWS
Kin+Vid Suturing Gestures

MA-TCN
(Acausal)

Accuracy: 86.8% Edit: 91.4

own (dV) Accuracy: 80.9% Edit: 79.6

Gesture
Recognition
Survey [8]

JIGSAWS
Kinematics

Suturing Gestures
MS-RNN [110] Acc: 90.2% Edit Score*: 89.5

Video Symm dilation+attention [126] Acc: 90.1% Edit Score: 89.9

Kin+Vid Fusion-KV [75] Acc: 86.3% Edit Score: 87.2

PETRAW
Challenge [125]

PETRAW

Video

Peg
Transfer

Phases,
Steps, and
Activities

SK AD-Accuracy: 90.8%

Kinematics MedAIR AD-Accuracy: 90.7%

Segmentation SK AD-Accuracy: 88.5%

Vid+Kin NCC NEXT AD-Accuracy: 93.1%

Vid+Kin+Seg NCC NEXT AD-Accuracy: 93.1%

Sim2Real
Gesture Classifi-
cation [44,58]

DESK Kinematics
Peg
Transfer

Gestures RF

Simulator Acc: 86%

Robot Acc: 95%

Sim2Real (0% Real) Acc: 34%

Sim2Real (18% Real) Acc: 85%

CholecTriplet2021
Challenge [21]

CholecT50 Video Laparoscopic
cholecystectomy

Action Triplets Trequartista APV : 52.9
APIV T : 38.1

* Normalized by maximum number of segments in any ground-truth sequence.

Robotic Systems

[44] and [58] examined gesture classification using transfer learning for the Peg Trans-

fer task. Their random forest (RF) model was more accurate for trials performed on

the Taurus robot compared to the dVRK, but the Taurus simulator had the lowest

accuracy. Although the performance of the model for complete transfer from the Tau-

rus simulator to the Taurus robot (0% Taurus robot data in the training set) resulted

in poor performance, including a percentage of Taurus robot data in the training set

allowed the model to achieve comparable performance to the Taurus simulator model.

They found that models can transfer from simulated to real robots, or between real
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robots, although the latter required a greater percentage of data from the target do-

main to achieve comparable performance. Thus, future work may be able to leverage

transfer learning across robotic systems and/or tasks to improve model performance.

3.5 Conclusion

In this chapter, we presented methods for the automated inference of surgical con-

text and translation to gestures based on video data, and the recognition of motion

primitives and gestures from kinematic data. Models such as these are critical com-

ponents in understanding the surgical scene and workflow, and support the develop-

ment and implementation of features to improve the safety, security, and efficiency

of robotic surgery.

First, the pipeline for the inference of surgical context and translation to ges-

ture labels can perform automated and explainable gesture inference given video

segmentation masks and key points. It integrated data-driven segmentation with

knowledge-based context inference and context to gesture translation to perform ges-

ture recognition. Compared with deep learning approaches to gesture recognition, our

approach enables improvements by integrating human input. Furthermore, it can be

used as an efficient and fast inference method by significantly shortening the manual

gesture labeling time (∼9 hours vs. ∼26 hours for the case study of the JIGSAWS

dataset). We rely on models pre-trained on general images and publicly available

datasets which lowers the cost of manually labeling video data and makes our model

generalizable to other datasets and tasks.

For the case study of the JIGSAWS dataset, our binary segmentation models

achieve comparable performance to state-of-the-art models on the grasper and thread

classes, and better performance on the needle class. However, they still do not perform

well enough for the needle and thread classes which are important for accurate context

inference, specifically for the task-specific state. Context inference also does not

perform equally well for all of the states. Given the ground truth segmentation

masks, it achieves ∼85% IOU for states such as Left and Right Contact, but only
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∼45% IOU for the Needle/Knot State. The FSM and LSTM models for context

to gesture translation have better performance given ground truth context labels

compared to predicted context which may be due to imperfect model performance

at each stage of the pipeline and error propagation. A more complex Transformer

model is found to be comparably effective at translating ground truth context labels

to gestures compared to the FSM for the Suturing task [105].

Limitations of this pipeline included the need for manual annotations of the

grasper jaw end points and tissue entry/exit points. These gaps could be closed

by implementing models such as those in [127] and [128] to obtain these points au-

tomatically from video data. Work such as [129] could also be used to improve the

thread masks. In addition, this method relied on 2D images to infer context about

a 3D environment. This can particularly complicate the detection of contact states

since tools and objects that overlap in the 2D images may not necessarily be in

contact. Future work will focus on addressing these limitations and improving the

performance and robustness of the overall pipeline in order to apply it to runtime

error detection [16, 18]. Additional data modalities and input features, as well as

model architectures are also avenues of future research for generating gesture labels.

Second, we compared the performance of surgical activity recognition in a case

study of TCN models at different levels of the surgical hierarchy, evaluated their

generalizability to unseen users and tasks, and drew insights from the combination

of tasks used to train these models. We found that gesture-level recognition models

performed better than motion primitive-level recognition models under the LOUO

cross validation method which is consistent with the observations of [51]. Our models

achieved comparable or better accuracies than state-of-the-art models in recognizing

gestures from JIGSAWS. Using motion primitives, we combined data from different

datasets, tasks, and subjects and found that having separate models for the left and

right sides improved performance.

We also introduced the Leave-One-Task-Out (LOTO) cross validation setup, and

performed the first evaluation of a surgical activity recognition model in terms of its

ability to generalize to an unseen task. When tested on a task from a specific dataset,
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the model performed better if data from other tasks in that dataset were included

in the training set. Also, models for tasks with different task-specific state variables

performed best when data from all other tasks were aggregated in their training sets.

Similarly, [130] evaluated the performance of surgeme classification models in sim2real

domain transfer using different data percentages in the target domain and found that

this improved the accuracies of their models. Thus, improved performance may be

achieved by including a small percentage of data from the target test task in the

training data. Future work will focus on evaluating the task-generalization of other

state-of-the-art recognition models (e.g., recurrent neural networks and transformers)

using both kinematic and vision data as well as using other tasks and datasets.

The models and methods developed in this chapter can be utilized in provid-

ing context and activity-awareness in autonomous systems. An example of an au-

tonomous camera arm for a surgical robot is described in Appendix B which would

benefit from the integration of these models in further refining its movements and

behaviors during surgical tasks.
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Chapter 4

Surgical Error Analysis

4.1 Background

Safety during robotic surgery is entirely dependent on the surgeon since surgical

robots are fully teleoperated and have no autonomy or haptic feedback. This leaves

patients vulnerable to human errors [133–135] or faults in the robot-assisted surgery

(RAS) system which can lead to cuts, bleeding, or collisions that may propagate

into adverse events and cause complications during or after the procedure [136]. A

review of adverse event reports in the FDA’s MAUDE (Manufacturer and User Fa-

cility Device Experience) database for the da Vinci Surgical System found that 81%

of events related to pre-existing health conditions or surgeon errors resulted in in-

jury or death [33].

However, the sources of errors in RAS are diverse and domain-specific, including

faults in the robotic system software and hardware, and human errors [136]. Error

detection is an emerging subfield [8], but there has been limited attention to identi-

fying executional errors made by surgeons during training and skill assessment. This

is because errors are rare, leading to a lack of datasets that are labeled for errors.

Previous works that do consider errors have done so in the context of activity-aware

skill assessment where the errors are associated with a particular fine-grained unit

This chapter contains material from the works [131], [16], and [132], coauthored with Z. Li, L.
A. Cantrell, N. Schenkman, K. Chen, and H. Alemzadeh; [16] copyrighted by IEEE.
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of surgical activity such as gestures or motions. However, the surgical process and

workflow are affected by suboptimal performance and safety-critical events [33]. Thus,

error detection and analysis are important applications of the surgical workflow and

activity recognition models developed in the previous chapters.

In addition, automated scoring and feedback on training exercises have focused

on efficiency, safety, and task/procedure-specific metrics. But, they assess overall

performance during a demonstration and are not descriptive enough to pinpoint inef-

ficiencies or errors. In order to improve explainability, previous works have performed

skill assessment at different levels of the surgical hierarchy. At the gesture level, [37]

found that experts used fewer gestures, made fewer errors, and had more predictable

transitions than novices. So, methods for automated skill assessment that leverage

gestures, such as those listed in Table 4.14, use gestures as inputs to their models

or by training models for specific gestures. Efforts towards increasing interpretabil-

ity have thus focused on identifying problematic gestures that contribute to the low

skill scores [137, 138], using data-driven models. But, there is a large variability in

the correct performances of gestures due to style or expertise and it is impossible

to define all errors or incorrect performances of gestures, thus limiting the effec-

tiveness of supervised machine learning models trained on small datasets. At the

motion level, skill assessment has focused on statistical measures such as time and

path length [34,38], and data-driven models such as HMMs [12,13] which lack speci-

ficity. Motions learned from data in an unsupervised manner are not easily human

interpretable and do not correspond with labeled units of surgical activity [35]. Pro-

viding gesture-specific feedback based on identifying patterns in finer-grained units

of surgical activity has not been explored yet.

In this chapter, we use the surgical task and activity models developed in the

previous chapters to create activity-aware methods for the identification and analysis

of errors. We use these novel methods to identify interpretable patterns in fine-

grained surgical activities that strongly correlate with measures of surgical expertise

and can be used to provide specific and interpretable feedback to surgeons during

training and skill assessment.
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This chapter addresses the above challenges by making the following contributions:

• We propose a task- and gesture-specific rubric for the identification of execu-

tional and procedural errors using data collected from real or simulated surgical

demonstrations.

• We apply this rubric to manually annotate video data of the Suturing and

Needle Passing tasks to augment the JIGSAWS dataset with executional error

labels.

• We develop quantitative analytical methods to characterize gesture-specific ex-

ecutional and procedural errors using pre-collected kinematic data and gesture

labels.

• We provide insights on the types, frequencies, and durations of executional

and procedural errors across tasks and gestures and their correlations with skill

levels which can provide a basis for the design of automated error detection

mechanisms.

• We analyze the relationship between surgical gestures and fine-grained motion

primitives which shows that the sequence of motion primitives can help detect

labeling errors in surgical gestures.

• We define and detect inverse motion primitives in the execution of surgical

gestures and tasks. Inverse motion primitives are often used as recovery actions

to correct the position or orientation of objects, or may be indicators of other

issues such as poor depth perception.

• We analyze the types, frequencies, and durations of inverse motion primitives

across gesture types and skill levels which shows that they strongly correlate

with lower skill levels, and could be used to improve the interpretability of skill

assessment by identifying the specific motions within a trial that contribute to

lower scores.
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This chapter is organized as follows. Section 4.2 describes our methods for iden-

tifying and analyzing gesture-specific executional and procedural errors. Section 4.3

identifies and examines inverse motion primitives and their categorization. Section 4.4

reviews related work on error detection, activity-aware skill assessment, and inter-

pretable feedback. Section 4.5 gives the conclusion for this chapter.

4.2 Gesture-Level Identification and Analysis of

Errors

Sources of errors in robot-assisted surgery are diverse and domain-specific, includ-

ing faults in the robotic system software and hardware, or human errors [136]. We

focus on errors in the execution of procedures that can occur at any level of the sur-

gical hierarchy [10] and may propagate and cause errors at other levels as shown

in Figure 4.1. In a surgical operation there may be multiple procedures which

are divided into steps. Each step is subdivided into tasks comprised of gestures

(also called sub-tasks or surgemes) which are made of motions such as moving an

instrument or closing the graspers. We specifically focus on studying the quality of

the task demonstrations at the gesture level.

To inform the development of error detection models, we present methods for

analyzing executional and procedural errors and provide insights about key features

that are indicative of errors. Figure 4.2 shows our overall method for the analysis

of executional and procedural errors in the Suturing and Needle Passing tasks of the

JIGSAWS dataset. We focus specifically on these two tasks because they share similar

gestures and contain a sufficient number of demonstrations for comparisons between

the two tasks. We analyze the kinematic data for erroneous and normal performances

of each gesture since many gesture recognition models in [8] are based on kinematic

data and this modality is robust to camera occlusions, lens contamination, smoke

and other negative effects on video data [17, 30, 31].
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We focus on answering the following research questions:

RQ 1: Which tasks and gestures are most prone to errors?

RQ 2: Are there common error modes or patterns across gestures and tasks?

RQ 3: Are erroneous gestures distinguishable from normal gestures?

RQ 4: What kinematic parameters can be used to distinguish between normal

and erroneous gestures?

RQ 5: Do errors impact the duration of the trajectory?

RQ 6: Are there any correlations between errors and surgical skill levels?

4.2.1 Rubric for the Objective Assessment of Errors

Two types of human errors in laparoscopic surgery were defined by [133]: procedu-

ral errors and executional errors. Procedural errors involve “the omission or re-

arrangement of correctly undertaken steps within the procedure” while executional

Surgical 
Procedure

Steps

Tasks

Gestures

Motions

Partial Nephrectomy

Patient 
preparation

… Tumor 
excision

Renorrhaphy Hilar 
unclamping

Tumor 
retrieval

Suture large 
vessels

Secure suture 
with clips

Suture renal 
capsule

Secure suture 
with clips

G1 G5 G8 G2 G3 G6 G9 G4 … G6 G11

Grasp(L, Needle) Release(R, Needle) Untouch(R, Needle) Pull(L, Needle)

Executional 
error 

propagation

Procedural error

Suturing

Figure 4.1: Surgical hierarchy (adopted from [10]) for an example urological proce-

dure of partial nephrectomy (based on [139] and [140]) with example gesture-specific

executional and procedural errors.
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DTW Distance Distributions
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Samples 

Normal-Normal 
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- Gesture Types
- Surgical Skill Levels 
- Gesture Duration 
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Task Grammar 
Graphs

- Suturing
- Needle Passing

G1-G5-

G8-G2-

G3-G6-

G9-G4-

G8-G2-

G3-G6-

G4-G2-

G3-G6-

G4-G2-

G3-G6-
G11

Example 
Gesture 

Transcript

Figure 4.2: Overall methodology for the analysis of executional and procedural errors.

errors are the “failure of a specific motor task within the procedure.” Technical

errors are a subtype of executional errors that can be quantified with thresholds

and are defined as the “failure of a planned action to achieve a goal,” including in-

adequate (too much or too little) use of force or distance, inadequate visualization,

and incorrect orientation of instruments or dissection plane [141]. This is similar to

the definition used by [17] which we now extend. In this work, we define executional

and procedural errors at the gesture level in order to generalize these definitions to

different procedures and tasks and because gestures are the lowest-level activities

with semantic meaning. Our goal is to define a rubric for the identification of errors

based on video and/or kinematic data which can also be used for automated error
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detection using quantitative measures such as instrument position, amount of force,

traveling distance, and system events.

We define a set of executional error modes for each gesture as listed in the rubric

in Table 4.1. Some of the errors are gesture-specific such as “Needle orientation”

which is only defined for G4 (transferring needle from left to right) and G8 (orienting

needle) since those gestures specifically manipulate the needle in preparation for G2

(positioning the needle) and G3 (pushing needle through tissue) as shown in the

grammar graphs of Figures 2.15a and 2.15b. The standard acceptable practice for

those gestures is to hold the needle in the grasper 1
2
to 2

3
of the way from the tip of

the needle and with the needle perpendicular to the jaws of the grasper [142]. Other

gestures that do not purposely alter the orientation of the needle in the grasper

cannot have this error mode. For G3, the definition of a “Multiple attempts” error

also includes “Not moving along the curve” since these two errors are very difficult to

distinguish and often occur simultaneously. Other error modes including “Multiple

attempts”, “Needle drop”, and “Out of view”, could occur at any time during a task

and are thus considered for every gesture.

We define procedural errors as any deviation in the sequence of gestures performed

in a demonstration from the standard accepted gesture sequences defined for that task

and shown in the grammar graphs in Figures 2.15a and 2.15b from [52]. [133] defined

several subcategories for procedural errors, including adding an unexpected step,

skipping a step, out of order transitions, and repeating steps. These subcategories

are included in our analysis of procedural errors as discussed in Section 4.2.4.

4.2.2 Dataset

The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [43] is a publicly

available dataset, collected using the Research API for the da Vinci Surgical System

(dVSS), containing trials from eight surgeons of varying skill levels performing three

dry lab surgical tasks: Suturing, Needle Passing, and Knot Tying. These tasks are

among the standard modules in most surgical skill training curricula.

98



Table 4.1: Gesture-specific executional errors for Suturing and Needle Passing in the

JIGSAWS dataset.

Suturing Needle Passing

Gesture Description Error Mode
Total No.
Errors

Erroneous
Gestures (%)

Total No.
Errors

Erroneous
Gestures (%)

G1
Reaching for needle
with right hand

Multiple attempts 7
8/29
(28%)

N/A
11/30
(37%)Needle drop 0 2

Out of view 1 10

G2 Positioning needle
Multiple attempts 21

22/166
(13%)

51
55/117
(47%)Needle drop 0 0

Out of view 1 6

G3
Pushing needle
through tissue

Multiple attempts/
Not moving along the curve 80

82/164
(51%)

17
17/111
(15%)Needle drop 0 0

Out of view 2 0

G4
Transferring needle
from left to right

Multiple attempts 19
71/119
(60%)

15
23/83
(28%)

Needle orientation 53 9

Needle drop 0 0

Out of view 14 3

G5
Moving to center
with needle in grip

Needle drop 1 2/37
(5%)

0 3/31
(10%)Out of view 1 3

G6
Pulling suture with
left hand

Multiple attempts 8
121/163
(74%)

14
46/112
(41%)Needle drop 2 0

Out of view 120 37

G8 Orienting needle

Multiple attempts 18
28/48
(58%)

1
3/28
(11%)

Needle orientation 22 1

Needle drop 0 0

Out of view 4 2

G9
Using right hand to
help tighten suture

Multiple attempts 3
11/24
(46%)

1
1/1

(100%)Needle drop 0 1

Out of view 11 0

Total number of errors
across all gestures

Multiple attempts 156
345/750
(46%)

99
159/513
(31%)

Needle drop 3 3

Needle orientation 75 10

Out of view 154 61

Example videos for each error mode can be found at https://www.youtube.com/watch?v=I7jQ6U
9jaoc, https://www.youtube.com/watch?v=V-NJjgRu2OI, https://www.youtube.com/watch?v=
-UNNWQ3j0yU, and https://www.youtube.com/watch?v=LhNg8uLRQzI.

99

https://www.youtube.com/watch?v=I7jQ6U9jaoc
https://www.youtube.com/watch?v=I7jQ6U9jaoc
https://www.youtube.com/watch?v=V-NJjgRu2OI
https://www.youtube.com/watch?v=-UNNWQ3j0yU
https://www.youtube.com/watch?v=-UNNWQ3j0yU
https://www.youtube.com/watch?v=LhNg8uLRQzI


The JIGSAWS dataset includes kinematic and video data from 39 trials of Sutur-

ing and 28 trials of Needle Passing, along with manually annotated gesture transcripts

(indicating the sequence of gestures, with the beginning and end of each gesture and

its type) and surgical skill levels for each demonstration. The vocabulary of surgical

gestures used for labeling is shown in Table 4.1 along with the number of examples of

each gesture, and the kinematic variables and abbreviations are shown in Table 4.2.

Table 4.2: Kinematic variables in the JIGSAWS dataset (adopted from [43]).

Index Description of variables Parameter name

39-41 Right PSM1 tool tip position (xyz) R Pos
42-50 Right PSM1 tool tip rotation matrix (R) R Rot Mat
51-53 Right PSM1 tool tip linear velocity (x’ y’ z’) R Lin Vel
54-56 Right PSM1 tool tip rotational velocity (α’ β’ γ’) R Rot Vel
57 Right PSM1 gripper angle (Θ) R Grip Ang
58-60 Left PSM2 tool tip position (xyz) L Pos
61-69 Left PSM2 tool tip rotation matrix (R) L Rot Mat
70-72 Left PSM2 tool tip linear velocity (x’ y’ z’) L Lin Vel
73-75 Left PSM2 tool tip rotational velocity (α’ β’ γ’) L Rot Vel
76 Left PSM2 gripper angle (Θ) L Grip Ang

Surgical skills were characterized using both self-proclaimed expertise levels and

the Global Rating Scale (GRS) score for each demonstration. Self-proclaimed (SP)

expertise levels were based on the number of hours of robotic surgical experience,

divided into three groups: “SP-Expert” (>100 hrs), “SP-Intermediate” (10-100 hrs),

and “SP-Novice” (<10 hrs). GRS scores were given using a modified Objective Struc-

tured Assessments of Technical Skills (OSATS) approach based on six elements (on

a rating scale of 1-5 per element): Respect for Tissue, Suture & Needle Handling,

Time & Motion, Flow of Operation, Overall Performance, and Quality of Final Prod-

uct [43]. We also categorized the demonstrations into three groups based on these

GRS scores: “GRS-Novice” (0≤GRS≤9), “GRS-Intermediate” (10≤GRS≤19), and

“GRS-Expert” (20≤GRS≤30).
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4.2.3 Executional Error Analysis

Method

Kinematic and video data for each trial were first segmented into gestures based on the

gesture transcript annotations. The video clip for each gesture was then reviewed and

labeled by two to three independent annotators (with experience in robotic surgery

and/or suturing) as normal or erroneous for each error mode. Final labels for each

error mode were obtained by taking the consensus among annotators. A gesture

example that exhibited one or more errors was marked as erroneous, otherwise, it

was labeled as normal. We then proceeded with the analysis of the patient-side

manipulator (PSM) kinematic data corresponding to each gesture for all the normal

and erroneous trials of each task.

Our analytical method for executional errors compares normal and erroneous in-

stances of each gesture and performs pairwise trajectory alignment using Dynamic

Time Warping (DTW) on the kinematic data to obtain distributions of distances

between pairs of normal gestures (Nor-Nor) and between normal and erroneous ges-

tures (Err-Nor). We then perform distribution similarity analysis using Kullback-

Liebler (KL) divergence to determine which kinematic parameters are most different

between normal and erroneous gestures. After that, we examine those kinematic pa-

rameters by performing trajectory averaging using C-means clustering to visualize

the differences in kinematics and gain insight into why these parameters with high

KL divergence are important.

Dynamic Time Warping We used Dynamic Time Warping (DTW) to measure

the similarity between normal and erroneous trajectories for each gesture. DTW is an

effective method for aligning two temporal sequences, independent of the non-linear

variations in time, by minimizing the Euclidean distance between the two signals. In

our analysis, we performed independent DTW on each variable before summing the

returned distances for each parameter listed in Table 4.2. We found no significant

difference between this method and dependent DTW where all variables in each pa-
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rameter group were warped together yielding a single distance instead of a sum of

distances. Similar observations were made in [143]. DTW was performed on every

combination of two example trajectories for each gesture. From this, we obtained com-

parisons of normal examples to other normal examples (Nor-Nor) and comparisons

of erroneous examples to normal examples (Err-Nor). The DTW distance samples

represented a distribution of distances for the Nor-Nor and Err-Nor subsets as shown

in the histogram of Figure 4.2. This resulted in two sets of distance samples for each

parameter, each representing a DTW distribution for a comparison subset.

Kullback-Liebler Divergence Kullback-Liebler (KL) divergence, also called rel-

ative entropy, is a non-symmetric measure of the difference between two probability

distributions. The KL divergence between two identical distributions is zero. As

shown in Equation 4.1, KL divergence was used to compare the Err-Nor and Nor-Nor

DTW distance distributions for each gesture to determine which parameters had a

significant difference between the two distributions.

DKL(DTWErr-Nor||DTWNor-Nor) = −
∑

DTWErr-Norlog

(
DTWNor-Nor

DTWErr-Nor

)
(4.1)

Trajectory Averaging We examined the kinematic data for important parameters

to verify differences between normal and erroneous gestures using a method based

on [144]. Each signal was time-normalized by downsampling the signal by 3 (keeping

only every third sample) and then linearly interpolated to stretch it to the average

duration of the normal or erroneous gesture examples of that task (supported by

our analysis of gesture durations in Section 4.2.3). Then, fuzzy C-means clustering

was performed on each variable and its normalized time index to obtain the average

normal and erroneous trajectories (represented by 15 cluster centers), shown with

blue (normal) and red (erroneous) dots in Figure 4.4b.
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Results and Insights

Table 4.1 lists the number of examples of each error mode as well as the total number

of erroneous examples for each gesture. Note that a gesture example could exhibit

multiple error modes, so the sum of the total number of errors does not necessarily

equal the number of erroneous gestures.

Distribution of Executional Errors Among Gestures Figure 4.3 shows the

distribution of errors of each type for each gesture from Table 4.1. If a gesture

example had more than one error label, it was counted under the “Multiple errors”

category. We made the following observations:

• G5 for both tasks and G1, G8, and G9 for Needle Passing did not have enough

examples of executional errors, so further analysis was not performed on these

gestures. G8 from Needle Passing and G5 from both tasks had the lowest

percentage of errors because they may be less challenging than other gestures.

• G2 and G3 have the most “Multiple attempts” errors in both tasks because they

require a high level of accuracy in positioning and driving the needle though

the tissue, respectively. G2 has more errors in Needle Passing because the eye

of the ring is a smaller target than the dot on the fabric. G3 has more errors

in Suturing because surgeons often tried multiple times to align the tip of the

needle with the exit point while the needle was not visible beneath the fabric.

Comparatively in Needle Passing, the needle only had to pass through one point

and was always visible.

• G4 and G6 from both tasks, and G8 from Suturing have the most gestures with

“Multiple errors”. G4 and G8 both involve manipulating the needle between

the graspers and the predominant error modes were “Needle orientation” and

“Multiple attempts” likely due to issues with hand coordination. For G6, the

main error modes were “Out of view” and “Multiple attempts” due to multiple

attempts at grasping the needle and pulling it through the ring or tissue and

then moving off-camera to pull the suture through.
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• G6 has a large number of “Out of view” errors especially in Suturing possibly

because surgeons could not move the camera for the trials in the JIGSAWS

dataset. However, a different technique to pull the suture could have been

used, such as the hand-over-hand or pulley methods, that would have kept the

tools within view.
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Figure 4.3: Distribution of executional errors for each gesture.
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Kinematic Parameter Analysis We performed a comparative analysis of KL di-

vergence values for parameters in each gesture and identified the kinematic parameters

that are associated with error occurrences as listed in Table 4.3. We also examined

the KL divergence of the kinematic data between normal gestures of each task to

quantify their similarity. The following are key observations from this analysis:

Table 4.3: Kinematic parameters with the greatest KL divergence distinguishing er-

rors in different gestures.

Task Gesture Parameters

Suturing

G1
Right Gripper Angle
Right Linear Velocity
Right Position

G3
Right Linear Velocity
Right Rotational Velocity
Right Gripper Angle

G6 Left Position

G8

Right Position
Left Gripper Angle
Left Linear Velocity
Right Gripper Angle

G9 Left Gripper Angle

Needle Passing

G2
Left Rotational Velocity
Left Linear Velocity

G3
Left Rotational Velocity
Right Rotation Matrix
Right Gripper Angle

• For G1 in Suturing, the predominant error mode was “Multiple attempts” at

picking up the needle. Figures 4.4b and 4.5 show that erroneous gestures ex-

hibited a second opening and closing of the grasper and a large difference in

Y Position trajectories. This explains the large KL divergences for those right

hand parameters in Figure 4.4a.
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Figure 4.4: G1 in Suturing: (a) KL divergences of kinematic parameters, (b) right

gripper angle trajectories for normal and erroneous gestures.
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Figure 4.5: Right tooltip xyz position for normal and erroneous G1 in Suturing.

• For G2 in Needle Passing, Figure 4.6 shows a large difference in KL divergence

for Left Rotational and Linear Velocities which may be due to the active role the

left hand plays in stabilizing the ring unlike in Suturing. This is an important

contextual difference between tasks.

• The main error mode for G3 was “Not moving along the curve/Multiple at-

tempts”. Erroneous gestures in Suturing were caused by lateral, instead of

characteristically rotational, movements of the needle while in the fabric. In

surgery, lateral movements may tear tissue and contribute to a safety-critical
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Figure 4.6: KL divergences of kinematic parameters for G2.

event. This explains the high KL divergences for the parameters listed in Ta-

ble 4.3 and shown in Figure 4.7a. This is also consistent with [145] who found

that the rate of orientation change during needle insertion (i.e. Rotational Ve-

locity during G3) was higher for experienced surgeons.

However, Needle Passing shows nearly the opposite result in Figure 4.7b. Upon

reviewing the gesture clips for both tasks, we noticed that clips for Suturing

showed the right grasper driving the needle through the fabric and the left

grasper pulling it through, but clips for Needle Passing began with the needle

halfway through the ring and only showed the left grasper pulling the needle

through. Due to the large difference in KL divergences between the two tasks,

we see that the part of G3 that involves driving the needle with the right grasper

is important to the correct execution of this gesture.

• In both tasks, G4 had KL divergences below 0.6 for all parameters meaning

normal and erroneous examples had very similar kinematics.
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Figure 4.7: KL divergences of kinematic parameters for G3.

• G6 in Suturing had the most errors with primarily “Out of view” errors. Fig-

ure 4.9 shows that final Y and Z Positions for the left grasper were much larger

for erroneous gestures since the left grasper exceeded the threshold for visibility

while pulling the suture. This explains the large KL divergence for the Left

Position parameter in Figure 4.8.
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Figure 4.8: KL divergences of kinematic parameters for G6 in Suturing.
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Figure 4.9: Left tooltip xyz position for normal and erroneous G6 in Suturing.

• There were two main error modes for G8 in Suturing: “Multiple attempts”

and “Needle orientation”. Figure 4.10 shows a comparison of DTW and KL

divergence analysis for G8 from Suturing for all errors, for “Multiple attempts”

versus all other examples, and for “Needle orientation” versus all other exam-

ples. The “Needle orientation” error alone had the greatest KL divergences

and contributed the most to the results for all errors. For the “Multiple at-

tempts” error, both the Left and Right Position parameters had the highest KL

divergences which suggests that hand coordination is important in this gesture.

Since this gesture includes the right gripper moving to grasp the needle, we see

that Right Position is an important parameter in the “Multiple attempts” error

in both G1 and G8.
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(a) All errors
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(b) Multiple attempts errors
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(c) Needle orientation errors

Figure 4.10: KL divergences of kinematic parameters for G8 in Suturing.
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Since the Suturing and Needle Passing tasks contained many of the same ges-

tures, we also investigated the similarity of normal gestures between these two tasks.

Similarities between these tasks could support data aggregation such as for training

models for skill assessment and error detection. We used KL divergence to quantify

the differences in the distributions of the values of the kinematic variables. The av-

erage KL divergences between two gestures are shown in Figure 4.11. The squares

outlined in black show the KL divergences between distributions of kinematic data

for the same gestures from the two different tasks. These values are the smallest

in the rows for G1, G4, and G6. For G2 and G3, 0.76 and 1.47, respectively, are

smaller than most other elements in their respective rows in the quadrants comparing

gestures from Suturing and Needle Passing. This means that normal gestures are sim-

ilar between tasks. However, the KL divergence values between the gestures used in

Needle Passing are generally lower than between other tasks and gestures. Thus, Nee-

dle Passing gestures are more similar to other Needle Passing gestures which could

contribute to errors in gesture recognition.

SG1 0.00 5.94 4.25 3.04 2.86 2.77 4.63 5.26 4.32 4.69
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Figure 4.11: Average KL divergences among distributions of normal gestures.
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Executional Errors and Skill Levels We analyzed the relationship between ex-

ecutional errors and surgical skill levels. Based on self-proclaimed expertise levels,

Figure 4.12a shows a clear difference in the number of errors across different self-

proclaimed expertise groups for Suturing. However, no similar pattern was seen in

Needle Passing. This might be because Suturing is a more difficult task so the number

of executional errors is more reflective of self-proclaimed skill levels in Suturing. For

GRS-defined skill levels, the total number of executional errors per trial was larger

for GRS-Novices than for GRS-Experts in Needle Passing (Figure 4.12b), which is

consistent with our expectation that experts with high GRS scores make fewer ex-

ecutional errors than novices. However, since there was only one GRS-Novice trial

for Suturing, we did not observe clear differences.
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Figure 4.12: Total number of executional errors across surgical skill levels for (a) self-

proclaimed skill levels in Suturing, and (b) GRS skill levels in Needle Passing.
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Executional Errors and Gesture Duration We compared erroneous and normal

gesture durations using a one-tailed t-test. The null hypothesis is that normal and er-

roneous gestures have similar durations. The alternative hypothesis is that erroneous

gestures are longer than normal gestures. Figures 4.13 and 4.14, respectively, show

the average durations and several examples of differences in durations (along with the

p-values from the hypothesis test) for normal and erroneous gestures in both tasks.

We observed that some error types increase the gesture duration, e.g., “Multiple

attempts” for G1, G2, G3, and G8 in Suturing, and G2 and G3 in Needle Passing;

and “Out of view” for G6 and G9 for Suturing, and G4 in Needle Passing. Erroneous

gestures with “Out of view” errors are longer because the distance traveled by the

tool is larger, while the speed is similar. We rejected the null hypothesis and found

that erroneous gestures are longer than normal gestures for all gestures of both tasks.

There is a relatively large p-value (p=0.308) for G4 compared to other p-values. This

could be because “Needle orientation” is the primary error mode in G4 and orienting

the needle erroneously takes about the same amount of time as orienting it correctly.

(a) Suturing (b) Needle Passing

Figure 4.13: Average normal and erroneous gesture durations.
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Figure 4.14: Erroneous vs. normal gesture durations for Suturing and Needle Passing.

Executional Errors and Trial Duration For each trial, we summed the number

of executional errors of all gestures in the trial. Then, we analyzed the correlation

between the total number of executional errors per trial and the duration of the trial

(in number of frames). Figure 4.15 shows that there is a significant positive correlation

for Suturing (r=0.837, p=6.18e-12), but no significant correlation for Needle Passing.

This is likely due to the limited number of trials and fewer errors for Needle Passing

in the JIGSAWS dataset (see Table 4.1).

4.2.4 Procedural Error Analysis

Method

Previous works proposed modeling the standard acceptable gesture sequences for a

task using a grammar graph that shows the relationship, order, and flow of ges-

tures [12, 13, 52]. The grammar graph of a task is a digraph with the vertices repre-

senting the set of gestures for the task and the edges representing common transitions

between two gestures. We adopted the grammar graphs for Suturing and Needle Pass-
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Figure 4.15: Correlation between executional errors and durations of trials.

ing from [52] and included an additional directed link from G1 to G2 in Suturing (see

Figures 4.1 and 4.2).

We acquired the gesture sequences performed for Suturing and Needle Passing

from the JIGSAWS transcripts. Then, we developed a method for checking if each

gesture sequence follows the standard acceptable sequence of gestures in the grammar

graph. As shown in Algorithm 1, for each gesture we check if it is in the grammar

graph for the task and if it is a valid successor of the previous gesture, otherwise it is

marked as a procedural error. Each transcript can have multiple, possibly sequential,

procedural errors. This algorithm, combined with a gesture segmentation algorithm,

can be used for the automated detection of procedural errors in real-time. Deviations

from the grammar graph might also happen because of variations in surgical style

and expertise, as discussed in Section 4.2.4.
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Algorithm 1 Procedural Error Detection Algorithm
Input:
- A grammar graph G(V,E) for a surgical task which is a digraph with each vertex
in V representing the entry point START or one of the common gesture types Gi

in the task, and each edge(Gi, Gj) ∈ E representing a common transition between
gestures Gi and Gj.
- A set of m task transcripts T = {T1, T2, ..., Tm}, where Tk ∈ T is an ordered
sequence of n gestures Tk = [G1, G2, ..., Gn]
Output:
- A list of erroneous gesture transitions error seq for each transcript

1 for Tk ∈ T
2 error seq = ∅
3 val← G.successors(START )
4 for Gi ∈ Tk

5 if Gi ∈ V
6 if Gi /∈ val
7 error seq.append([Gi−1, Gi])

8 val← G.successors(Gi)
9 else

10 error seq.append([Gi])
11 val← [Gi+1]

Results and Insights

We analyzed the numbers and patterns of procedural errors by task, skill level, and

subject. We hypothesized that the number of procedural errors would be inversely

proportional to surgical experience and negatively correlated with the demonstra-

tion duration.

Procedural Errors and Self-Proclaimed Skill Levels We compared the per-

centage of erroneous trials for the SP-Novice, SP-Intermediate and SP-Expert groups.

As shown in Table 4.4, we observed that for both tasks, SP-Expert surgeons on aver-

age had more procedural errors compared to SP-Intermediate surgeons. For Needle

Passing, SP-Intermediate surgeons made more errors than SP-Novice surgeons. This

could be due to variations in surgical style especially in more experienced surgeon

groups. For example, our analysis of error patterns by subject showed that one of the
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Table 4.4: Procedural errors and self-proclaimed skill levels.

Task Skill Level
Total Number of
Procedural Errors

Percentage of
Erroneous Trials

Longest Erroneous
Gesture Sequences

Suturing
SP-Expert 11 6/10 G9-G6-G2
SP-Intermediate 2 2/10 G3-G11
SP-Novice 23 10/19 G4-G5-G6-G2

Needle
Passing

SP-Expert 11 6/9 G2-G6-G10
SP-Intermediate 9 5/8 G6-G8-G6
SP-Novice 7 4/11 G6-G5-G6

Total 63 33/67

SP-Expert subjects consistently made G9-G11 transitions in different trials of Sutur-

ing. This is a unique non-safety-critical pattern that was not observed in the trials by

other subjects. However, procedural errors by SP-Novice subjects were more random

and did not follow specific patterns.

Of the two tasks, the longest erroneous gesture sequence is G4-G5-G6-G2 in Su-

turing performed by an SP-Novice surgeon. Upon review of the video, G5 may be

a typo in the transcript.

Table 4.5: Correlation between the number of procedural errors and GRS subscores

for Suturing and Needle Passing.

Suturing Needle Passing

GRS Subscore Correlation
Coefficient

p-value Correlation
Coefficient

p-value

Respect for Tissue -0.41 0.009 -0.12 0.528
Suture & Needle Handling -0.50 0.001 -0.26 0.184
Time & Motion -0.55 <0.001 -0.11 0.594
Flow of Operation -0.43 0.006 -0.22 0.268
Overall Performance -0.62 <0.001 -0.16 0.412
Quality of Final Product -0.26 0.115 -0.02 0.920

GRS Score -0.51 <0.001 -0.15 0.434
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Procedural Errors and GRS Skill Levels We analyzed the correlation between

the number of procedural errors and GRS score (Table 4.5). The strongest neg-

ative correlation between the number of procedural errors, GRS score, and GRS

subscores is in Suturing. Among the subscores of Suturing, Overall Performance has

the strongest negative correlation with procedural errors. This could happen because

an inefficient procedure has the greatest impact on Overall Performance in Suturing.

Needle Passing has a weaker negative correlation between procedural errors and GRS

score. The Suture & Needle Handling subscore has the highest negative correlation

with the number of procedural errors. This is expected since needle handling is the

main component of the Needle Passing task and poor performance due to procedural

errors would lead to a lower score.

Procedural Errors and Trial Duration In Suturing, there is a significant pos-

itive correlation between procedural errors and the durations of the trials, so more

procedural errors lead to longer trials. However, there is no significant correlation in

Needle Passing possibly because Needle Passing is an easier task (Table 4.6).

Table 4.6: Correlation between procedural errors and trial durations.

Task r p-value

Suturing 0.71 <0.001
Needle Passing 0.17 0.399
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4.2.5 Research Questions

We used our insights from the analysis of executional and procedural errors in the

JIGSAWS dataset to answer the following research questions:

RQ 1: Which tasks and gestures are most prone to errors? The more

challenging gestures in each task that required a high level of accuracy and hand

coordination were more prone to executional errors. As shown in Table 4.1, Suturing

is more difficult than Needle Passing and had a greater number of executional errors.

G6, G3, and G4 had the greatest number of executional errors in Suturing while G2

and G6 had the greatest number of executional errors in Needle Passing.

However, procedural errors were almost equally likely in both tasks. 18/39 Sutur-

ing trials and 15/28 Needle Passing trials contained procedural errors (Table 4.4).

RQ 2: Are there common error modes or patterns across gestures and

tasks? Within each task, each gesture had a different predominant error mode that

correlated with the challenging aspects of performing the gesture. For both tasks,

G2 and G3 had a large number of “Multiple attempts” errors, G5 had the fewest

errors, G6 had the largest number of “Out of view” errors, and G4 and G6 had the

greatest number of gestures with “Multiple errors”. Thus, the types and frequencies

of executional errors are both task- and gesture-specific.

RQ 3: Are erroneous gestures distinguishable from normal gestures?

KL divergence magnitudes provide insight into which gestures have the greatest dif-

ference between normal and erroneous examples. We found that G9 from Suturing,

G2 from Needle Passing, and G3 from Suturing had the three greatest KL diver-

gences for any parameter. However, upon examination of the kinematic data for the

Left Gripper Angle of G9 from Suturing, the large KL divergence for this gesture

could be due to the effect of three outlying gestures on an already relatively small

set of only 24 examples.

RQ 4: What kinematic parameters can be used to distinguish between

normal and erroneous gestures? Table 4.3 lists the parameters with the greatest

KL divergences for each gesture and task which can be used to develop automated
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error detectors. Focusing on a subset of variables for a given task and gesture may

enable and improve real-time error detection and skill assessment by reducing pro-

cessing time and providing context. Our KL divergence analysis approximated the

DTW distance distributions as Gaussian, which might not always be accurate. Future

work will focus on further refining our analytical method to address this limitation.

RQ 5: Do errors impact the duration of the trajectory? Executional and

procedural errors often lead to lengthier trials, especially during more complicated

tasks such as Suturing. Timely detection and correction during training or surgery

will enable more efficient and safer patient care, and aid in reducing learning curves

and time to certification.

RQ 6: Are there any correlations between errors and surgical skill

levels? The total number of executional errors made per trial could help differentiate

between skill levels. We found this to be true for self-proclaimed skill levels in Suturing

and GRS skill levels in Needle Passing.

There was a significant negative correlation between overall GRS scores and sub-

scores and the total number of procedural errors made per trial in Suturing meaning

a greater number of procedural errors contributes to lower GRS scores. After exam-

ining procedural error patterns, we noticed that self-proclaimed novice surgeons tend

to closely follow the grammar graph, but experts have unique signatures that devi-

ate from the graph. This motivates developing automated gesture identification and

procedural error detection techniques based on grammar graphs for training novice

surgeons in simulation experiments. Further verification of the correlation between

errors and skill levels requires access to larger datasets representing more tasks and

surgeons. Additionally, the grammar graphs cannot completely capture all possible

valid gesture sequences and surgeon-specific signatures, and manual labeling may in-

troduce errors in the gesture transcripts (e.g., incorrectly adding or missing some

gestures) that might lead to the incorrect detection of errors.
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4.3 Motion Primitive-Level Analysis

Previous work found that gesture-level HMMs for skill assessment were better than

task-level models, and that building the task-level models using gestures as the states

was better than learning the states from unlabeled kinematic data [146]. In addi-

tion, [13] and [12] used HMMs for motion-level skill assessment and found that the

sequence of states was indicative of skill level. This motives a lower, motion-level

analysis of surgical activity enabled by the fine-grained motion primitive labels in

the COMPASS dataset.

4.3.1 Methods

This section presents an overview of the surgical process model and datasets used in

this study and our methods for the analysis of motion primitive sequences and their

relationship to gestures and surgical skill.

Surgical Process Model

Surgical procedures are often modeled by decomposing them into finer levels of gran-

ularity, including phases, steps, tasks, gestures, and actions [9, 10]. Surgical tasks

such as suturing and knot tying are modeled as a sequence of gestures (shown as

grammar graphs [52]) that represent units of surgical activity with semantic mean-

ing and specific intents (Section 3.2). Gestures (also called sub-tasks or surgemes)

can be decomposed into finer-grained atomic motions, referred to as motion primi-

tives (MPs), dexemes [8, 13], or action triplets [49]. In the literature, MPs are often

modeled as triplets [49, 147] that encode the type of action, the tool that is used,

and the object with which the tool interacts. In this study, we use the model and

notation from Chapter 2 (e.g., Grasp(L, Needle)) where the left and right tools are

abbreviated as “L” and “R”.
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Datasets

We use the publicly available JIGSAWS dataset [43] that contains kinematic and video

data from dry lab simulation training experiments, including 39 trials of Suturing, 28

trials of Needle Passing, and 36 trials of Knot Tying. These trials were performed

by two expert (E) surgeons with more than 100 hours of robotic surgical experience,

two intermediate (I) surgeons with between 10 and 100 hours of experience, and four

novice (N) surgeons with less than 10 hours of experience. Each trial was annotated

with gesture labels and received a Global Rating Scale (GRS) score comprised of

subscores for the areas of Respect for Tissue, Suture & Needle Handling, Time &

Motion, Flow of Operation, Overall Performance, and Quality of Final Product which

was based on a modified OSATS approach [148]. We also use the COMPASS dataset

from Chapter 2 that provides MP labels for the tasks in the JIGSAWS dataset. In

this analysis, we focus on gestures that are repeated multiple times during a trial

as listed in Table 4.7.

Table 4.7: JIGSAWS gesture definitions from [43] and surgeon-defined motion prim-

itive sequences based on Chapter 2 where N = Needle.

Gesture and Description Task Surgeon-defined Motion Primitive Sequence

G2 Positioning needle
S Touch(Needle, Fabric)
NP Release(L, N), Touch(Needle, Ring), Push(Needle, Ring)

G3
Pushing needle
through tissue

S Touch(Needle, Fabric), Push(R, N), Grasp(L, N)
NP Grasp(L, N)

G4
Transferring needle
from left to right

S Grasp(R, N), Release(L, N)
NP Grasp(R, N)

G6
Pulling suture with
left hand

S Grasp(L, N), Release(R, N), Pull(L, N)
NP Release(R, N), Pull(L, N)

G8 Orienting needle
S Grasp(L, N), Release(R, N), Grasp(R, N), Release(L, N)
NP Release(R, N), Grasp(R, N)

G12
Reaching for needle
with left hand

KT Grasp(L, Thread), Release(R, Thread)

G13
Making C loop
around right hand

KT Pull(L, Thread), Touch(R, Thread)

G14
Reaching for suture
with right hand

KT Grasp(R, Thread)

G15
Pulling suture with
both hands

KT Pull(L, Thread) Pull(R, Thread)
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MP Sequence Analysis

As the first step, two expert surgeons in urology and gynecology with experience in

robotic surgery reviewed the gesture definitions and videos of gesture trials and de-

fined an ideal sequence of MPs for each gesture as listed in Table 4.7. Since these

surgeon-defined MP sequences omitted Touch and Untouch MPs immediately pre-

ceding or following Grasp and Release MPs, respectively, of the same object with the

same tool, we combine MPs in the transcripts meeting those requirements prior to

our MP sequence extraction and subsequent analysis.

We extracted the corresponding MP sequence for each gesture trial from the COM-

PASS dataset based on the start and end frames of the gestures in JIGSAWS. If an MP

overlapped at the beginning or end of a gesture, it was included in the MP sequence

for the gesture. For example, in Figure 4.16, Grasp(L, Needle) is included in the MP

sequences for G2, G3, and G6 since it overlaps all of them. But this also means that

in the video clip created for the gesture, parts of those MPs get cut off in the video

(because the start and end frames of the gesture are used to create the video clips).

Then, we examine the varieties of MP sequences by plotting the frequencies of

the MP sequences for each gesture in each task and creating state graphs to visualize

their transitions. This provides insight into how surgeons perform gestures, reveals

specific patterns in the MPs, and identifies inconsistencies in the gesture annotations.

Inverse MP Definition and Analysis

We define inverse MPs as two or more sequential MPs performed by the same tool on

the same object whose verbs effectively negate or undo each other (e.g., Touch(Needle,

Fabric), Untouch(Needle, Fabric), Touch(Needle, Fabric) of G2 in Figure 4.16). In-

verse MPs are easily identifiable patterns in the MP sequences of the gestures or tasks.

They may be symptoms of issues with depth perception or used as recovery actions to

correct the position or orientation of objects. However, they may be necessary in some

cases like the Release(R, Needle), Grasp(R, Needle) in G8, so we do not count those

instances in G8 where inverse MPs were part of the surgeon-defined MP sequences
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Figure 4.16: Example of gesture and motion primitive labels for a trial of Needle

Passing and the motion primitive sequence extracted for G6.

as shown in Table 4.7. We then manually review the video clips associated with each

gesture containing one or more instances of inverse MPs to confirm their presence and

gain insight about the relationship between their types and the gestures they occur in.
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Correlation between Inverse MPs and GRS Scores

Since inverse MPs may be indicative of inefficiencies in the performance of a surgical

gesture or task, we examine the correlation between their occurrence and the GRS

score and subscores. For each trial, we count the number of inverse MPs and their

total durations. This summation includes inverse MPs in all gestures in a trial even if

it was not considered in the analysis above (e.g., G1), and was not subject to manual

review to remove instances when the inverse MP may not have been seen. We then

calculate the Spearman correlation coefficient (ρ) between the total number of inverse

MPs or their total durations, and the GRS scores or subscores.

4.3.2 Results

For each gesture, we examine the variety of MP sequences in comparison to the

surgeon-defined MP sequences shown in Table 4.7. As an example, the vertical axis

of Figure 4.17 lists all of the different MP sequences that comprise G2 in the Suturing

task. From these graphs, we observed that many of the MP sequences contained

strings of MPs that effectively negated each other, as highlighted in the red boxes

in Figure 4.17, so we identify them as inverse MPs and conduct further analysis on

them in the following sections.

MPs at the Boundaries of Gestures

We also note that several gestures contain MPs from the surgeon-defined MP se-

quence of gestures that are before or after them according to the gesture grammar

graphs in [52]. Table 4.8 lists the common MPs from preceding or following ges-

tures. For the Needle Passing task, the surgeon-defined MP sequence of G2 includes

Push(Needle, Fabric), so there were fewer boundary issues with MPs from gestures

before and after G2 compared to Suturing. Some of the MP sequences contained

partial or full repetitions of the MPs in the surgeon-defined sequences in almost all

of the gestures except G6 in Suturing and Needle Passing, and G13 in Knot Tying,

indicating the gesture may have been attempted twice. These MPs are important
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because machine learning models usually struggle at the transitions between gestures

and future work should explore if the above boundary inconsistencies in the training

data is contributing to this poor performance.

Examining the sequence of MPs in gestures can also help identify gesture anno-

tation errors. [25] listed a dozen amendments they made to the gesture labels for

Suturing and we find that four of them contain MPs from the gesture immediately

after the original gesture and two of them do not contain all of the MPs in the labeled

gesture. For example, in the second trial of Suturing performed by subject C, the

MP sequence for the G6 at frames 1506-1685 is Release(R, Needle), Pull(L, Needle),

Grasp(R, Needle), Release(L, Needle). According to Table 4.7, the MP sequence for

G6 includes Release(R, Needle), Pull(L, Needle), but the following Grasp(R, Needle)

and Release(L, Needle) actually belong to G4 which is the correction given in [25].

Additionally, gesture annotation errors could also be found using inverse MPs since

all gesture clips from Needle Passing with the Touch/Untouch(Needle, Ring) inverse

MPs that were labeled G4, G6, and G8 were found to be labeling errors and should

have been labeled as G2. Thus, using the surgeon-defined MP sequences for each

gesture from Table 4.7 could help review gesture labels since Touch(Needle, Ring)

is an important part of G2.

Table 4.8: Common MPs from preceding or following gestures found in the MP

sequences of each gesture.

Task Gesture MPs from the Preceding or Following Gesture

Suturing

G2 Release(L, Needle) from the G8 before
and/or the Push(Needle, Fabric) from the G3 after

G3 Release(R, Needle) of the G6 after
G6 Grasp(R, Needle) of the G4 after

Needle Passing

G3 Release(R, Needle) in the G6 after
G4 Release(L, Needle) in the G2 after
G6 Grasp(L, Needle) from the G3 before

and/or the Grasp(R, Needle) from the G4 after
G8 Release(L, Needle) from the G2 after

Knot Tying
G12 Pull(L, Thread) from the G13 after
G14 Pull(L, Thread) and Pull(R, Thread) from the G15 after
G15 Release(L, Thread) and Release(R, Thread) from the G11 after
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[Touch(N, F)]

[Release(L, N), Touch(N, F)]

[Touch(N, F), Push(N, F)]

[Untouch(L, N), Touch(N, F)]

[Release(L, N), Touch(N, F), Push(N, F)]

[Release(L, N), Touch(L, T), Touch(N, F)]

[Grasp(R, N), Release(L, N), Touch(N, F)]

[Release(L, N), Grasp(L, T), Touch(N, F)]

[Pull(R, N), Grasp(L, N)]

[Release(L, N), Grasp(L, N)]

[Release(R, T), Grasp(R, N)]

[Touch(N, F), Untouch(N, F), Touch(N, F)]

[Release(L, N), Touch(L, T), Untouch(L, T), Touch(N, F)]

[Release(L, N), Touch(L, T), Touch(N, F), Push(N, F)]

[Release(L, N), Touch(N, F), Untouch(N, F), Touch(N, F)]

[Grasp(R, N), Release(L, N), Touch(L, T), Touch(N, F)]

[Grasp(R, N), Release(L, N), Touch(N, F), Push(N, F)]

[Release(L, N), Grasp(L, T), Touch(N, F), Push(N, F)]

[Release(L, N), Grasp(R, N), Touch(N, F), Push(N, F)]

[Release(L, N), Touch(L, T), Touch(N, F), Untouch(L, T)]

[Release(L, N), Touch(N, F), Push(N, F), Grasp(L, N)]

[Release(L, N), Touch(L, T), Untouch(L, T), Touch(L, T), Touch(N, F)]

[Release(L, N), Touch(L, T), Untouch(L, T), Touch(N, F), Push(N, F)]

[Release(L, N), Touch(N, F), Touch(L, T), Untouch(N, F), Touch(N, F)]

[Release(L, N), Touch(N, F), Untouch(N, F), Touch(N, F), Push(N, F)]

[Touch(L, N), Untouch(L, N), Touch(N, F), Push(N, F), Grasp(L, N)]

[Release(L, N), Touch(N, F), Push(N, F), Touch(R, F), Grasp(L, N), Untouch(R, F), Release(R, N)]

[Release(L, N), Touch(N, F), Untouch(N, F), Touch(L, T), Untouch(L, T), Touch(L, T), Touch(N, F)]

MP in surgeon-defined sequence for gesture
MP in preceding or following gesture
Inverse MPs

Figure 4.17: Number of instances of each MP sequence in G2 of Suturing where F =

Fabric, N = Needle, and T = Thread.

MP State Graphs of Gestures

The MP sequences in each gesture can also be visualized in state transition diagrams

such as those in Figure 4.18 which show how the different experience levels used

MPs to perform G3 in Suturing. In these graphs, we see that the surgeon-defined

sequences are part of the dominant path in each graph, but they show variation with

task and experience level. Additional MP state graphs for all tasks, gestures, and

expertise levels are shown in Appendix C.

Furthermore, G3 corresponds to surgeme #3 examined in [13] which they found

was modeled with five dexemes a-e. They note that dexemes a, b, and c show the

right tool driving the needle which best aligns with the Push(Needle, Fabric) MP.

Dexemes d and e show the left tool reaching and grasping the needle, respectively,
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and would thus align with the Touch(L, Needle) and Grasp(L, Needle) MPs, which

agrees with the surgeon-defined MP sequence for G3 in Suturing listed in Table 4.7.

Inverse MPs

The number of inverse MPs by type is shown in Table 4.9, and the number of gestures

containing one or more inverse MP is shown in Tables 4.10 and 4.11 by gesture

and expertise level, respectively, after subtracting the number of instances not seen

in the manual review. These instances could have been due to annotation errors

in the MP labels or the boundaries of the gestures because the gesture clips that

were reviewed were generated using the start and end frames from the JIGSAWS

labels. This is because all MPs that overlapped with a gesture were included in the

extracted MP sequence and could be detected as part of inverse MPs, but since the

end of the MP wasn’t within the boundaries of the gesture, it was not seen in the

reviewed gesture clip.

Table 4.9: Number of inverse MPs in each gesture where F/R = Fabric or Ring.

Inverse MP G2 G3 G4 G6 G8 G12 G13 G14 G15 Total

Touch(L, Needle) Untouch(L, Needle) 1 10 0 2 3 - - - - 16
Touch(R, Needle) Untouch(R, Needle) 1 0 7 2 4 - - - - 14
Grasp(L, Needle) Release(L, Needle) 2 8 2 6 12 - - - - 30
Grasp(R, Needle) Release(R, Needle) 3 6 3 1 2 - - - - 15
Touch(L, Thread) Untouch(L, Thread) 7 3 0 2 0 5 0 0 2 19
Touch(R, Thread) Untouch(R, Thread) 0 0 1 8 0 3 0 15 8 35
Grasp(L, Thread) Release(L, Thread) 0 0 0 1 0 17 1 3 9 31
Grasp(R, Thread) Release(R, Thread) 0 0 0 0 0 6 0 2 13 21
Touch(L, F/R) Untouch(L, F/R) 3 2 0 0 0 - - - - 5
Touch(R, F/R) Untouch(R, F/R) 0 0 1 7 0 - - - - 8
Grasp(L, F/R) Release(L, F/R) 3 0 0 0 0 - - - - 3
Grasp(R, F/R) Release(R, F/R) 0 0 0 0 0 - - - - 0
Touch(Needle, F/R) Untouch(Needle, F/R) 49 2 2 2 1 - - - - 56
Push(Needle, F/R) Pull(R, Needle) 0 4 0 0 0 - - - - 4

Total 69 35 16 31 22 31 1 20 32 257
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Start

Touch(Needle, Fabric)

0.67

Push(Needle, Fabric)

0.27

Touch(L, Needle)Release(L, Needle) Untouch(L, Thread)Untouch(Needle, Fabric)

0.96

Grasp(L, Needle)

0.59

Release(R, Needle)

Touch(R, Fabric)

0.19

Pull(R, Needle)

Untouch(L, Needle)

0.83

End

0.60

0.41

Untouch(R, Fabric)

0.49

Grasp(R, Needle)

Pull(L, Needle)0.74

0.38

0.38

0.80

Touch(L, Thread)

0.50 0.83

0.75

0.50

Touch(R, Needle)
0.25

(a) Novice

Start

Touch(Needle, Fabric)

0.70

Push(Needle, Fabric)

0.28

Touch(L, Thread)

0.97

Untouch(L, Thread)

Pull(R, Needle)

0.24

Touch(L, Needle)

Grasp(L, Needle)

0.61

0.50

0.50

0.83

Untouch(L, Needle)

End

0.80

Release(R, Needle)

0.58

0.42 Pull(L, Needle)

0.95

Grasp(R, Needle)

(b) Intermediate

Start

Touch(Needle, Fabric)

0.70

Push(Needle, Fabric)

Touch(L, Thread)

Untouch(L, Thread)

Touch(L, Needle)

Release(L, Thread)

Grasp(L, Needle)

0.68

0.29

Touch(L, Fabric)

0.57

Untouch(L, Fabric) Untouch(L, Needle)

0.75

End

Release(R, Needle)

Pull(L, Needle) 0.94

0.40

Release(L, Needle)

0.57

(c) Expert

Figure 4.18: State transition diagrams for Suturing G3 as performed by (a) novices,

(b) intermediates, and (c) experts with the surgeon-defined MP sequence in green

and inverse MPs in red.
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Categories of Inverse MPs

During our manual review, we observed that the inverse MPs could be broadly cate-

gorized as relating to depth perception issues, poor positioning or orientation of the

needle or suture in the graspers, or incidental actions to adjust the environment.

Depth perception issues were characterized by overshoot in the movement to-

wards an object, running into an object when reaching for another object, or multiple

attempts to grab it. This appears as Touch/Untouch(L, Needle) inverse MPs in G3

while reaching for the needle with the left tool after it emerged from the fabric or ring,

or in G14 which had the most instances of Touch/Untouch(R, Thread) in Table 4.9

where surgeons struggled to grasp the suture on the left side of the knot due to poor

depth perception or occlusion by one of the tools.

Poor positioning or orientation of the needle or suture was a significant

contributor to inverse MPs where they are used as recovery actions to fix the position

or orientation of the needle or suture from previous gestures. When suturing, the

needle should be held with the plane of its curve perpendicular to the tool and about

two-thirds from the tip of the needle. The needle tip must also be inserted into the

fabric at about 90 degrees. Holding the needle parallel to its curve or inserting it

at other angles can result in difficulty driving the needle through the fabric leading

to inverse MPs to correct or re-attempt the gesture. Deviations from these proper

positions and orientations were responsible for many of the Grasp/Release(L, Needle)

inverse MPs in G3 where the left tool grasped the needle trying to adjust how the

needle was held while the right tool was trying to drive it through the fabric. This

is clinically significant because it can cause excessive strain on the tissue leading to

tearing or bleeding. In Section 4.2.3, it was noted that G3 in Suturing had the most

“Multiple attempts” errors for similar reasons. In addition, all four occurrences of

Push(Needle, Fabric) Pull(R, Needle) were in G3 of the Suturing task where the

needle had to be removed from the fabric since poor orientation of the needle made

it too difficult to complete the throw as shown in Figure 4.19.
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Touch(L, Thread) Untouch(L, Thread)

Push(Needle, Fabric) Pull(R, Needle)

Figure 4.19: Example of a Push(Needle, Fabric) Pull(R, Needle) inverse MP in Su-

turing.

In Needle Passing, all three expertise levels struggled with accurately positioning

the needle because the eye of the ring was a small target leading to a high occurrence

of Touch/Untouch(Needle, Fabric/Ring) inverse MPs in G2 as shown in Table 4.9.

These were a large contributor to the 40.2% of G2 instances in Needle Passing that

contained inverse MPs from Table 4.10 and is also consistent with the results from

Section 4.2.3 where G2 had the most “Multiple attempts” errors in Needle Passing.

When tying knots, if the left tool grasps the suture too close or too far from the

knot, there will be too little or too much slack to make a properly sized wrap, thus

making it difficult for the right tool to grasp and pull the end of the left suture through

the wrap made in G14. The right tool should grasp the other end of the suture near

the end, otherwise it might require more than one re-grasp and pull to get all of it

through the knot like in G15 of Knot Tying. If the suture is grasped too far away from

the knot, one or both tools will have to release it and grasp it closer to the knot and

perform a second pull to fully tighten the knot. This was responsible for many of the

Grasp/Release(R, Thread) and Grasp/Release(L, Thread) inverse MPs which were

present in most of the 28.8% of G15 instances that had inverse MPs in Table 4.10.

Similarly, inverse MPs also occurred in additional exchanges of the needle or suture

that were used to manipulate the object’s position in the tools that could have been

accomplished with fewer MPs. For example, correctly orienting the needle in G8 of

Suturing could be accomplished with a single exchange, but Table 4.10 shows that this

gesture has the highest percentage of gestures with inverse MPs. Many of these were
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Grasp/Release(L, Needle) inverse MPs with most from novices. Also, G12 can be

efficiently performed by grasping the suture in the right tool and passing it to the left

as in the surgeon-defined MP sequence shown in Table 4.7. But there was a significant

number of occurrences of Grasp/Release(L, Thread) that were mainly from novices

and accounted for most of the 31.4% of G12 instances with inverse MPs in Table 4.10.

Adjustment of the environment was another reason for the occurrence of

inverse MPs. For example, inverse MPs were used to move or hold the suture out

of the way, as shown in Figure 4.20, or to hold the ring in place when positioning

the needle in G2 of Suturing and Needle Passing. Specifically, all seven occurrences

of Touch/Untouch(L, Thread) were performed by novices in the Suturing task while

trying to move the suture out of the way when positioning the tip of the needle at

the dot on the fabric. But, they either moved the tool away from the suture or the

suture slipped out from beneath the tool resulting in the inverse MPs.

It is also interesting to note that there was only one inverse MP found in G13.

This is because G13 involved wrapping the suture around the right grasper and was

a difficult motion represented by Pull(L, Thread). However, its inverse where the

suture became unwrapped from around the tool was represented by the same MP,

and thus was not detected as an inverse MP. In the manual review, several clips of

G14 also showed instances where the wrap slipped off of the right tool, but these

contained different types of inverse MPs that either contributed to the suture coming

unwrapped or tried to re-wrap the suture.

Table 4.10: Number and percentage of gesture clips with one or more inverse MPs in

each gesture over the total number of instances of that gesture.

Task G2 G3 G4 G6 G8 G12 G13 G14 G15

Suturing
12/166
(7.2%)

21/164
(12.8%)

7/119
(5.9%)

17/163
(10.4%)

13/48
(27.1%)

Needle Passing
47/117
(40.2%)

10/111
(9.0%)

7/83
(8.4%)

12/112
(10.7%)

4/28
(14.3%)

Knot Tying
22/70
(31.4%)

1/75
(1.3%)

17/98
(17.3%)

21/73
(28.8%)

Total
59/283
(20.8%)

31/275
(11.3%)

14/202
(6.9%)

29/275
(10.5%)

17/76
(22.4%)

22/70
(31.4%)

1/75
(1.3%)

17/98
(17.3%)

21/73
(28.8%)
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Touch(L, Thread) Untouch(L, Thread)

Push(Needle, Fabric) Pull(R, Needle)

Figure 4.20: Example of a Touch(L, Thread) Untouch(L, Thread) inverse MP in

Suturing.

Table 4.11: Number and percentage of gesture clips with one or more inverse MPs in

each gesture over the total number of instances of that gesture by experience level.

Task N I E Total

Suturing
45/342
(13.2%)

13/161
(8.1%)

12/157
(7.6%)

70/660
(10.6%)

Needle Passing
27/160
(16.9%)

22/138
(15.9%)

31/153
(20.3%)

80/451
(17.7%)

Knot Tying
39/139
(28.1%)

14/87
(16.1%)

7/90
(7.8%)

61/316
(19.3%)

Total
111/641
(17.3%)

50/386
(13.0%)

50/400
(12.5%)

211/1427
(14.8%)

Relationship between Inverse MPs and Skill Level

Occurrences of Inverse MPs by Expertise Level Table 4.11 shows the number

and percentage of gesture clips with one or more inverse MPs over the total number

of clips by expertise level. When considering expertise level, we use percentages due

to the data imbalance of having four novices, two intermediates, and two experts.

Overall, and for the Suturing and Knot Tying tasks, the percentage of gestures with

inverse MPs decreased with increasing expertise level. However, this trend is not

seen in the Needle Passing task where experts had the highest percentage of gestures

with inverse MPs. This could be because Needle Passing is a more difficult task than

Suturing since greater accuracy is required to thread the needle through the eye of
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the ring. This also makes it less surgically realistic and we found that more than half

of the inverse MPs in the Needle Passing task were Touch/Untouch(Needle, Ring)

inverse MPs from experts which was even greater than the number from novices.

MP State Graphs for Expertise Levels By examining the MP state graphs of

each task and gesture for the different experience levels such as the ones shown in

Figure 4.18, we observed that in Suturing and Knot Tying, novices tended to have

more states and more complicated graphs than experts and intermediates similar

to [35], but in Needle Passing, experts usually had more complicated graphs than

novices. Additional MP state graphs for all tasks, gestures, and expertise levels are

shown in Appendix C.

Table 4.12: Spearman’s correlation coefficient (ρ) between the total number of inverse

MPs in a trial and GRS scores and subscores.

Suturing Needle Passing Knot Tying

GRS Subscore ρ p-value ρ p-value ρ p-value

Respect for Tissue -0.63 <0.001 -0.13 0.517 -0.63 <0.001
Suture & Needle Handling -0.52 <0.001 -0.15 0.432 -0.46 0.005
Time & Motion -0.64 <0.001 -0.20 0.296 -0.64 <0.001
Flow of Operation -0.58 <0.001 -0.06 0.775 -0.65 <0.001
Overall Performance -0.65 <0.001 -0.14 0.471 -0.61 <0.001
Quality of Final Product -0.50 0.001 -0.03 0.890 -0.59 <0.001

GRS Score -0.65 <0.001 -0.19 0.338 -0.63 <0.001

Correlation between Inverse MPs and GRS Scores Tables 4.12 and 4.13 show

the Spearman’s correlation coefficient (ρ) between the number and total duration

of inverse MPs in a trial with the GRS scores and subscores. We find that there

are significant and strong negative correlations for all GRS scores and subscores in

the Suturing and Knot Tying tasks with ρ < −0.5 except for the Suture & Needle

Handling subscore in Knot Tying which has correlation coefficients of -0.46 and -0.49.

This means that a greater number of occurrences and longer durations of inverse MPs

can be indicative of lower skill. However, in the Needle Passing task, the correlation
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coefficients are only between -0.06 and -0.33 with larger p-values indicating a weaker

and not significant correlation.

Table 4.13: Spearman’s correlation coefficient (ρ) between the total duration of inverse

MPs in a trial and GRS scores and subscores.

Suturing Needle Passing Knot Tying

GRS Subscore ρ p-value ρ p-value ρ p-value

Respect for Tissue -0.59 <0.001 -0.26 0.188 -0.58 <0.001
Suture & Needle Handling -0.61 <0.001 -0.28 0.151 -0.49 0.002
Time & Motion -0.71 <0.001 -0.31 0.113 -0.71 <0.001
Flow of Operation -0.68 <0.001 -0.20 0.305 -0.66 <0.001
Overall Performance -0.66 <0.001 -0.32 0.100 -0.63 <0.001
Quality of Final Product -0.57 <0.001 -0.22 0.258 -0.61 <0.001

GRS Score -0.71 <0.001 -0.33 0.087 -0.65 <0.001

4.4 Related Work

4.4.1 Error Detection

State-of-the-art RAS systems and simulators are designed with data logging mecha-

nisms to collect system logs, kinematics, and video data from surgical procedures. The

recorded data has been mostly used for offline surgical skill evaluation [146,149,150],

with the aim of improving surgeons’ performance and making evaluations objective

and scalable.

Current work focuses on using surgical data for skill assessment and distinguishing

between expert and novice surgeons. Methods for the objective assessment of robotic

technical skills can be classified into two general categories: manual assessment and

automated assessment. Manual skill evaluation is usually performed globally, as-

sessing performance over an entire demonstration using frameworks such as OSATS

(Objective Structured Assessment of Technical Skills) [148], R-OSATS [151], GOALS

(Global Operative Assessment of Laparoscopic Skills) [152], and GEARS [153]. How-

ever, manual assessment methods are subjective, time consuming, cognitively de-
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manding, and prone to errors [150]. In response, automated assessment methods

utilizing kinematic, video, and system event data [75] are being developed to pro-

vide objective and quantitative metrics [150,154], and explainable feedback [41]. The

metrics used for surgical skill assessment can be classified into three broad cate-

gories of: (i) efficiency (e.g., path length, completion time), (ii) safety (e.g., instru-

ment collisions [155], instruments out of view, excessive force, needle drops, tissue

damage [156]), and (iii) task/procedure-specific metrics (e.g., task outcome metrics,

camera movement, energy activation [157]). While most previous works focused on

skill evaluation for distinguishing between expertise levels, less attention has been

paid to identifying specific erroneous surgical activities that contribute to suboptimal

performance and potential safety-critical events.

Towards error detection, [18] was an early work that trained models to detect er-

rors. Then, [137] trained a contrastive regression transformer for skill assessment that

was also able to detect those errors. The most closely related works have proposed

objective gesture-based checklists for laparoscopic and robot-assisted suturing [142]

and [158], as well as general and custom rubrics for the evaluation of human er-

rors [133] and technical errors [159] in laparoscopic surgery. Another closely related

work is [15] which defines ineffective, effective, and erroneous labels for dissection

gestures and found that novices performed the greatest proportion of ineffective ges-

tures, intermediates performed the greatest proportion of erroneous gestures, and

experts performed the greatest proportion of effective retraction gestures. They also

found differences between experience levels in terms of gesture selection and efficacy,

but this study was limited to only videos of a dissection task in real surgery and for

the purpose of classifying experience level. Other related works on errors in RAS

mainly focused on analyzing adverse events and system malfunctions as reported by

the surgical teams and institutions [136].
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Table 4.14: Related work on gesture-aware skill assessment.

Method Data Modalities Skill Metrics 1 Tasks Method Performance 3 Evaluation
Method 4

Transformers [160]
Clinical features

1-year EF
recovery

RARP

AUC=0.69

Monte Carlo
random folds

Gesture sequences AUC=0.77

Combined AUC=0.75

Logistic
regression [160]

Clinical features AUC=0.65

Gesture sequences AUC=0.68

Combined AUC=0.67

Contra-
Sformer [137]

Video GRS score

Suturing ρ=0.65, MAE=2.58

LOUO
Needle Passing ρ=0.71, MAE=3.17
Knot Tying ρ=0.69, MAE=1.39

Across tasks ρ=0.68, MAE=2.38

C3D-MTL-VF [138] Video

GRS score
Suturing ρ=0.0.69

LOUONeedle Passing ρ=0.86
Knot Tying ρ=0.83

N/I/E
Suturing Acc=100.0%

LOSONeedle Passing Acc=100.0%
Knot Tying Acc=97.5%

IMTL-AGF [138] Video and gestures
Intermediate
scores

Suturing ρ=0.98
LOUONeedle Passing ρ=0.98

Knot Tying ρ=0.96

Discriminative
interpretable
patterns [42]

Kinematics
N/I/E

Suturing Acc=89.74%
LOSONeedle Passing Acc=96.30%

Knot Tying Acc=61.11%

Peg Transfer Acc=83.33%
LOO

N/E Microsuturing Acc=85.19%

SD-Net [161] Video N/I/E Suturing Acc=90.5%, Edit=90.6,
F1@10=93.5

LOUO

DCC-CSM [162] Kinematics and gestures Binned GRS
score

Suturing 2 Average Acc=84.51% LOUO

HMM [35] Kinematics and gestures N/I/E Suturing 2 Average Acc=70% LOO

1 N/I/E = Novice/Intermediate/Expert.
2 Not from the JIGSAWS [43] dataset.
3 ρ = Spearman’s correlation.
4 LOO = Leave-One-Out, LOUO = Leave-One-User-Out, LOSO = Leave-One-Supertrial-Out.

4.4.2 Activity-Aware Skill Assessment

Skill assessment has been performed at different levels of the surgical hierarchy. Au-

tomated methods enable the subdivision of demonstrations into subtasks or gestures,

and to base performance assessment and technical skill evaluation on the quality

and/or sequence of these components as proposed in [52], [12], and [149]. In addi-

tion, [163] trained a model for step, task, and action recognition that learned inter-

and intra-relations between units of activity at different levels.
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Many works have focused on specific activity levels. At the gesture level, [37] found

that experts used fewer gestures, made fewer errors, and had more predictable transi-

tions than novices. Gesture-level error detection is an emerging subfield [8] that can

augment skill assessment since several works have shown a correlation between skill

level and errors [15,164,165]. Many works have found significant differences between

gestures performed by expert and novice surgeons, so some gestures are more indica-

tive of skill than others [13,15,34–36,80]. Table 4.14 lists related works that leverage

knowledge of gestures in performing skill assessment by using gestures as inputs to

their models or by training models for specific gestures. Efforts towards increasing

the interpretability of these models have used data-driven methods to identify prob-

lematic gestures that contribute to low skill scores [137,138]. However, there is a large

variability in the correct performances of gestures due to style or expertise and it is

impossible to define all errors or incorrect performances of gestures, thus limiting the

effectiveness of supervised machine learning models trained on small datasets.

Skill assessment has also been performed at the motion level using both statistics

and data-driven models. [34] and [38] found differences between experts and novices in

the numbers and durations of actions performed during laparoscopic simulation and

dry lab tasks. [36] examined efficiency in microsurgical suturing based on time and the

cosine similarity of movement patterns. But, these works were limited to statistical

analyses of the motions without considering patterns in the motion sequences. Models

such as Hidden Markov Models (HMMs) have also been used for motion-level skill

assessment where the motions were modeled with hidden states and learned from

data [12, 13]. [13] showed that the sequence of states visited was indicative of skill

level and confirmed this by measuring the average edit distance between sequences for

gestures performed by surgeons of different skill levels. Interestingly, [35] found that

gesture-level HMMs for skill assessment were better than task-level models, and that

building the task-level models using gestures as the states was better than learning the

states from unlabeled kinematic data. This motivates a lower, motion-level analysis

of surgical activity. Gestures have also been modeled as strings comprised of finer-

grained activities mapped to an alphabet in [42] and [162], while [90] and [91] use
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bottom-up approaches that learn finer-grained motions as an intermediate step in

recognizing surgical gestures. However, motions learned from data in an unsupervised

manner are not easily human interpretable and do not correspond with labeled units

of surgical activity [35].

4.4.3 Interpretable Feedback

Recent efforts have been directed at increasing the interpretability of surgical skill

assessment. Several methods use metrics such as energy usage, time, path length,

and economy of motion, as inputs to their models so that the outputs are explain-

able and objective [39, 150, 166–168], while others identify or localize the parts of

the trial that contribute to the predicted score by visualizing trajectories or fea-

tures [40–42,48]. [138] proposed a model for gesture recognition and skill assessment

with running intermediate skill scores to identify problematic gestures. But, provid-

ing gesture-specific feedback based on identifying patterns in finer-grained units of

surgical activity has not been explored yet.

4.5 Conclusion

In conclusion, we presented a new rubric and method for the objective evaluation of

RAS procedures with a focus on gesture- and task-specific executional and procedural

errors. We used the proposed rubric to evaluate dry lab demonstrations of Suturing

and Needle Passing tasks. Our analysis identified the most common error modes and

their correlations with skill levels and demonstration times as well as important error-

specific kinematic parameters that distinguish erroneous gestures. This study is a step

towards developing methods for automated error detection and providing real-time

context-dependent feedback for performance improvement. Future work will extend

the error rubric and analytical methods to larger datasets and other surgical tasks.

We also analyzed surgical activity at the gesture and motion levels and found that

the sequence of MPs could help detect labeling errors in surgical gestures. We de-

fined and identified inverse MPs that are motion-level patterns often used as recovery
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actions to correct the position or orientation of objects. Although these inverse MPs

are sometimes required to perform gestures, we found that the number and duration

of inverse MPs strongly correlates with lower GRS scores for two dry lab surgical

tasks. Recent work [169] found only minimal correlation between self-proclaimed

expertise and GRS scores in the JIGSAWS dataset, but subjects with higher GRS

scores were more similar in their performance of certain tasks. Thus, future work

could investigate how the MPs used to perform gestures may vary with GRS scores.

Future work also includes developing a pipeline for interpretable surgical skill assess-

ment that can show inverse MPs identified in the MP sequence output from an action

recognition model. Showing video clips of these inefficient or problematic motions

will provide specific explanations of the causes of lower performance scores. However,

better performing action recognition models must first be developed to obtain reliable

and precise motion sequences and support this method of skill assessment.

In addition, the methods and insights from our analysis can be leveraged in the

design of simulators and training tasks to improve training and skill assessment with

more specific and interpretable feedback. Specifically, the safety of robotic surgery

could be improved with the development of safety monitoring systems that are aware

of the tools, objects, and tissues in the surgical scene, the surgical process, and the

actions the surgeon is performing. Mechanisms for context-specific monitoring [17]

and virtual coaching will be enabled by the advanced sensing and computing tech-

nology, artificial intelligence, and data science driving the development of the next

generation of RAS systems. These will provide early and context-specific feedback to

surgeons on potentially suboptimal or unsafe motions that could help improve per-

formance scores in training, prevent safety-critical events in actual surgery [18], and

improve the safety, efficiency, and quality of care [170].
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Surgical robots are complex cyber-physical systems that are driving the development

of new features and technologies to improve efficiency and patient safety. But, the

development of these features is limited by small datasets with low diversity, the

poor performance of black box activity recognition models in fine-grained segmen-

tation, and limited attention to identifying errors at the fine-grained gesture and

motion primitive levels.

In this dissertation, we proposed a formal framework for the fine-grained model-

ing of surgical tasks using context and motion primitives which enabled the modeling

of tasks as finite state machines and aggregation of data from different tasks and

datasets. Our method for labeling context achieved high agreement between non-

expert annotators and expert surgeons and was used to create objective and consis-

tent labels for the COntext and Motion Primitive Aggregate Surgical Set (COMPASS)

which nearly triples the amount of kinematic and video data for comparative analysis.

Using video data, we leveraged image segmentation models in inferring surgical con-

text, and using kinematic data, we utilized the larger variety of tasks in the COMPASS

dataset to evaluate the task-generalizability of surgical activity recognition models us-

ing our novel Leave-One-Task-Out (LOTO) cross validation method. We found that

aggregating data across datasets supports the task-generalization of motion primitive
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recognition models. Finally, we identified and analyzed activity-specific errors and

patterns in surgical gestures and motion primitives. We used our gesture-specific

rubric for executional errors to label and analyze errors, and identified inverse mo-

tion primitives in gestures and tasks. Our analysis found that different gestures have

different predominant error modes. Inverse motion primitives were often used as re-

covery actions to correct the position or orientation of objects and may be indicative

of other issues such as with depth perception. We found that the occurrence of errors

and inverse motion primitives was correlated with objective measures of skill level

and thus can be used as part of interpretable feedback in surgical skill assessment.

5.2 Future Work

The data, methods, and models presented in this dissertation can support many areas

of future work within and beyond the field of robotic surgery.

• Generalization to real surgery: We presented a framework for modeling

surgical tasks with context and motion primitives in order to aggregate data

from different tasks and datasets and create the COMPASS dataset. Although

the tasks in COMPASS are dry lab exercises, the framework can be extended

to model surgical activities in real operations by increasing the number of ob-

jects encoded in the context, adding task-specific context state variables, and

defining additional verbs that change those states. Whereas previous tasks were

all performed with graspers, specific tools could also be incorporated into the

framework by defining tool-specific verbs such as Cut for scissors or Monopolar

Cautery for tools with monopolar electrocautery. Extending the framework to

include data from real surgery can enable additional analyses of how well mod-

els trained on dry lab data may be able to transfer to surgical operations as a

parallel to how surgeons advance from dry lab exercises to real patients.
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• Application to human activity modeling and recognition: Surgical ges-

tures and motion primitives are only very specific examples of human activity.

Recognizing human activities can be important in other scenarios like every-

day tasks such as shopping [171] and preparing food [172,173], interacting with

robots in a cooperative task [53], or treatment actions and interventions taken

by health professionals such as nurses, physicians, and first responders. In these

scenarios, context could represent the objects in contact with or held by the left

and right hands of the human and/or robot, and task- or tool-specific verbs

could be defined to describe progress. Applying the framework proposed in this

dissertation could enable dataset aggregation in the more general field of human

activity recognition since there are many similarities between basic activities in

different tasks such as reaching for or grasping a task-specific object.

• Activity-aware safety monitoring: The error rubric and analytical meth-

ods proposed in this dissertation can be extended to larger datasets and other

surgical tasks by defining additional gesture-specific error modes and generat-

ing ideal models of tasks using context and motion primitives. Furthermore,

each motion primitive may be subject to constraints such as virtual fixtures

and no-go zones [63, 64] that can be used as properties for runtime context-

aware monitoring to improve the safety of robotic surgery. Combined with the

insights from our activity-aware analysis of surgical tasks, this can inform the

development of safety monitoring systems and support interpretable feedback.

However, there are several challenges in implementing an activity-aware safety

monitoring system such as the following:

1. Surgical scene segmentation and workflow recognition models need to be

reliable and robust so that the safety monitor is provided with accurate

context.

2. Error detection models should have high true positive rates but low false

positive rates because it is important to catch errors before they result in
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adverse events, but too many alerts may lead to fatigue and cause surgeons

to ignore the system.

3. The surgical scene segmentation, workflow recognition, and error detection

models must be implemented in real-time to provide timely alerts about

potential errors to surgeons and enable corrective actions on the robot.
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Appendix A

Data Collection System

A.1 Introduction

Although the da Vinci Surgical Systems from Intuitive Surgical are currently the only

FDA-approved surgical robot used in the operating room, other companies are de-

veloping systems to compete with it. For example, the Hugo robot-assisted surgery

(RAS) system by Medtronic [174] received approval for urologic and gynaecologic

procedures in Europe in 2021. There are also many robots and systems used for

research such as the Raven II [175] developed by Applied Dexterity, the Taurus II,

and the YuMi robot that was adapted for surgical tasks in [58]. Simulated robots

and environments are also used for training and research such as SimNow by Intuitive

Surgical, and virtual models of the Raven II [176] and Taurus II [58]. [174] details

several more commercial and prototype RAS systems that are in use or under devel-

opment. Thus, there is a growing variety of RAS systems. Efforts towards facilitating

collaboration in the research community among users of different RAS systems have

included the development of a Collaborative Robotics Toolkit (CRTK) as a common

API for the Raven II and the da Vinci Research Kit (dVRK) [177].

As cyber-physical systems (CPS), these surgical robots still have much in common

in terms of how they are controlled. A human surgeon or operator interacts with the

surgical robot using a master console where they are provided a 3D view of the

This system was designed and developed in collaboration with S. Yapalparvi, J. Park, and S. Liu.
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surgical environment and directly control the movements of the surgical robot using

manipulators or controllers. The surgical robot then uses various control systems

and methods to execute these commands, which, at a low level, involves forward

and inverse kinematic calculations to solve for the signals that should be sent to the

actuators of the surgical robot both real and in simulation. These variables comprise

the kinematic data recorded from surgical robots that complements the stereoscopic

video data of the environment. Having multimodal datasets is important for the

improvement of activity recognition [125] and the development of safety and error

detection applications since kinematic data is robust to camera occlusions and lens

contamination which are common in robotic surgery [17, 30, 31].

However, kinematic data is less often recorded and included in multimodal datasets

for research in surgical robotics. This could be due to several factors including ac-

cessibility where kinematic data is easily obtainable from open source robots such as

the Raven II, but not from proprietary systems such as the da Vinci Surgical Sys-

tems. In addition, different robotic systems record different kinematic variables at

different frequencies, and in different units, and the video and kinematic data must

be synchronized during or after recording. There is much preprocessing that must

be performed to make kinematic data consistent and compatible before it can be

analyzed. Thus, obtaining kinematic data from surgical robots remains a challenge

in creating multimodal datasets for research.

This project addresses the challenge of acquiring multimodal data from a variety

of robots by developing a platform-independent Data Collection System (DCS) that

records and synchronizes video and kinematic data from the master console. This

enables the standardized collection of consistent and compatible data from different

RAS systems in both simulated and dry lab settings. The following sections describe

the design, operation, and evaluation of the DCS.
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A.2 Methods

This section describes the design of the Data Collection System (DCS) including its

overall architecture, details of the subsystems for video and kinematic data collection,

and data synchronization.

A.2.1 System Architecture

The Data Collection System (DCS) deployed on a da Vinci Surgical System is shown

in Figure A.1. It consists of an application running on a laptop that records video

data from a video capture card and kinematic data from an NDI trakSTAR system.

The DCS application has a front end coded in Python and a back end coded in

C++. The front end handles the GUI, initiates and terminates the collection of

data from the video capture card and trakSTAR, and automatically synchronizes

the video and kinematic data in post-processing. The back end interfaces with the

trakSTAR via its API which implements settings from the front end such as sampling

rate and optional offsets.

The GUI gathers information about the trial including the type of task that is

being performed, an identifier for the subject, the trial number, and the subject’s

experience level. This information is used to identify individual trials and connect

them to specific experience levels such as the number of years in the residency pro-

gram. The sampling frequency is set to a default of 30 Hz. The front end records

this information and combines it with a time stamp to create a unique set of folder

and file names for each trial.

Then, the front end begins recording data from the video capture card using the

OpenCV library in Python the kinematic data from the NDI trakSTAR. A video

capture card was selected for the collection of video data because connections and

ports for the display of video data are easily accessible on the master console. For

example, the da Vinci Surgical Systems have DVI ports that enable the projection of

the endoscopic video on external monitors and displays. Thus, only a DVI to HDMI

cable is needed to input the video to the video capture card. On the other hand,
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Figure A.1: The Data Collection System deployed on a da Vinci Surgical System.

Image sources [178] and [179].

the Raven II has VGA ports, so a separate VGA to HDMI converter is needed to

input the video to the video capture card.

The trakSTAR system is an electromagnetic tracking system comprised of an elec-

tronics unit, a transmitter, and multiple sensors. Compared to the alternative method

of using cameras to capture the movements of the surgeon’s hands, electromagnetic

tracking is more accurate, does not require the use of markers for visual identifica-

tion in the images of the video, and is not affected by occlusions. Four Model 180

sensors that are only 2.0 mm wide and 9.9 mm long are temporarily attached to the

manipulators of the master console to avoid interference with the surgeon’s hands.

This configuration enables the collection of kinematic data representative of the sur-

gical robot’s internal kinematics due to the direct control of the surgical robot by

the surgeon, up to a scaling factor or any constant offsets induced by tool or camera
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clutching. In analysis, the average of the two sensors on the left and right manip-

ulators respectively are taken to represent the position of the end effector, and the

distance between them is normalized to represent the angle of the jaws of the tool.

When the trial is complete, data collection is terminated by the front end, and the

video and kinematic data files are automatically synchronized. During data collection,

epoch timestamps are recorded for each kinematic sample and video frame. Since the

video recordings start later than the kinematic data recordings, the kinematic data

files are cropped so that they start with the sample with the timestamp closest to

the timestamp of the first video frame.

A.3 Results

A.3.1 Deployment Details

The DCS application runs on an Alienware m15 R4 laptop computer so that it is

portable and can be used to record data from different robots and systems in different

locations. When surgeons operate, they hold the manipulator with their thumb and

middle finger, while their index finger controls the finger clutch for the tool. Thus,

the four sensors of the trakSTAR are attached to the manipulators in the following

order: 1 is the left middle finger, 2 is the left thumb, 3 is the right thumb, and 4

is the right middle finger. Figure A.2 shows the DCS set up for data collection on

a da Vinci simulator.

A.3.2 System Evaluation

We evaluated the DCS by comparing the kinematic data obtained from it to the

kinematic data logged by the Raven II surgical robot during trials of Peg Transfer in

dry lab. Specifically, we compared the Cartesian x, y, and z coordinates of the left

and right end effectors measured by the Raven II to the positions of the left and right

manipulators measured by the DCS. The Peg Transfer task is a standard training task

in robotic surgery that develops skills in object manipulation and hand coordination.
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Figure A.2: Data Collection System set up on a da Vinci simulator.

During this task, the surgeon picks up a block, passes it to the other tool, places it

on another peg, and repeats this several times per trial as shown in Figure A.3.

We collected data for ten trials of the Peg Transfer task performed on the Raven

II surgical robot. However, the DCS did not record kinematic data for one of the

trials, so it was removed from the dataset. In addition, the Unix timestamps for the

first two trials differed between the Raven II computer and the DCS, so offsets of 77s

and 76s were applied to trials 1 and 2 respectively. Since the Raven II recorded the

x, y, and z positions of the left and right end effectors while the DCS recorded the x,

y, and z positions of four sensors, we took the average position of the sensors on the

left manipulator (denoted Lx, Ly, and Lz) and the average position of the sensors on

the right manipulator (denoted Rx, Ry, and Rz). This provides a representation of

the master console kinematics which should be the the same as or very similar to the

kinematics of the surgical robot except for scaling and offset constants.
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Figure A.3: Peg Transfer performed with the Raven II surgical robot.

Previous testing and calibration of the system mapped the x, y, and z coordi-

nates of the DCS to those of the Raven II as shown in Table A.1. The Raven II

kinematics were scaled by a factor of 1/1000 so that all measurements had units

of millimeters, and downsampled to a rate of 30 Hz with missing values filled in

using linear interpolation.

Table A.1: Mapping between kinematic variables of the DCS and Raven II.

DCS Raven II

Lx field.pos1
Ly −field.pos2
Lz −field.pos0
Rx −field.pos4
Ry field.pos5
Rz −field.pos3
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Both the DCS and Raven II kinematics were cropped to the start and end of

the trial based on the first and last clutch commands in the field.runlevel variable

in the Raven II kinematics. Specifically, samples at the beginning and end of the

trials corresponding with field.runlevel = 2 where dropped because the clutch was

engaged and the robot was not being operated.

Since use of the clutch pedal was allowed during the trials, this meant that when

the clutch pedal of the Raven II was pressed, the robot would be disengaged so that

its end effectors would not move, but the manipulators at the master console could

still move freely. Thus, the kinematics from the DCS would show movement during

this time but no corresponding motion would be seen in the Raven II kinematics. In

order to remove the effect of clutching, we first find the parts of the trial during which

the clutch pedal is pressed. That is, we detect when field.runlevel transitions from 3

to 2 indicating that the clutch pedal is pressed, and when field.runlevel transitions

from 2 to 3 indicating that the clutch pedal is released. When the clutch pedal is

pressed, we note the current kinematic values of the DCS and subtract it from the

kinematic values of the DCS when the clutch pedal is released to obtain an offset

that represents how much the manipulators moved while the robot was disengaged.

This offset is added to all previous samples in the DCS data up to the time when

the clutch pedal was engaged, and the samples corresponding to the time during

which the clutch pedal was pressed are filled in with the kinematic values of the DCS

when the clutch pedal is released. These calculations are repeated for each period of

clutching during the trial. Thus, the kinematic files for both the DCS and Raven II

will now show no change in the variables for periods when the clutch pedal is pressed.

Then, we remove the effect of constant offsets by subtracting the average value

from each variable. A scaling factor of 0.4 was used in operating the Raven II, so

the values of the DCS kinematics were multiplied by 0.4. Figure A.4 shows the

resulting kinematic traces for Trial 9 from the Raven II and DCS after the above

transformations.
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Figure A.4: Cartesian positions of the left and right end effectors on the Raven II

compared to the positions of the left and right manipulators derived from the DCS

for the ninth trial of Peg Transfer.

Evaluation Metrics

We quantified the performance of the DCS by calculating the root mean squared error

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)

between the kinematics from the DCS and Raven II averaged across all nine trials.

These are standard metrics for comparing predicted and true values from models and

are implemented in the Scikit-learn library [180] for Python.

Root Mean Squared Error RMSE measures the Euclidean distance between

predicted and measured values using Equation A.1 where n is the number of data

points, yi is the true value of the i-th sample given by the Raven II kinematics, and

ŷi is the predicted valued of the i-th sample derived from the DCS.

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi

)2

(A.1)
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Mean Absolute Error MAE is the arithmetic average of the absolute errors be-

tween samples. Equation A.2 shows how it is calculated as the sum of the abso-

lute value of the differences between the true and predicted values divided by the

number of samples.

MAE =
1

n

n∑
i=1

|yi − ŷi| (A.2)

Mean Absolute Percentage Error MAPE measures the relative percentage error

and is not sensitive to scaling like the previous metrics. It is calculated using Equa-

tion A.3 where ϵ is a small, strictly positive number to avoid undefined results if yi is 0.

MAPE =
1

n

n∑
i=1

( |yi − ŷi|
max(ϵ, |yi|)

)
(A.3)

Table A.2 shows the performance of the DCS in representing the Raven II kine-

matics in terms of RMSE, MAE, and MAPE for each of the Cartesian positions for

the left and right sides of the robot. We find that the RMSE is about 10-15 mm

and the MAE is about 6-13 mm across all of the variables with MAPEs of about

2% except for Lz and Rz. This is because our method for processing and comparing

the kinematic data assumed that the coordinate systems for the Raven II and DCS

were aligned. However, there is likely to be some misalignment between the systems,

meaning a linear movement along the positive x-axis for the Raven II may actually

have additional components along the y- and z-axes of the DCS system. These mis-

alignments should be accounted for by performing a calibration sequence to generate

a more exact transformation matrix that maps the kinematic variables between the

two systems. Such a transformation matrix would replace Table A.1.

Despite this, the kinematic data from the DCS is a good representation of kine-

matic data from a surgical robot due to the generally low MAPEs. As shown in

Figure A.4, the DCS captures the overall movements of the surgeon’s hands hold-

ing the manipulators.
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Table A.2: Comparison between kinematic positions from the Raven II and DCS.

Metric Lx Ly Lz Rx Ry Rz

RMSE (mm) 14.29 12.37 15.36 7.20 10.88 15.87
MAE (mm) 11.83 9.86 12.74 6.08 8.56 13.06
MAPE (%) 2.61 1.82 7.23 1.96 1.68 10.34

A.4 Conclusion

In conclusion, we develop and evaluate a platform-independent system for collecting

video and kinematic data from surgical robots. The DCS has been used to collect

data of simulated tasks from a da Vinci Surgical System and the Raven II surgical

robot. We evaluated the DCS by comparing the kinematic data collected from it

to the kinematic data from the Raven II surgical robot and found that it had low

MAPEs for most of the kinematic variables. This demonstrates that the DCS can be

used to collect video and kinematic data from different surgical robotic systems.

Future work on the DCS includes further evaluation of the system using data

collected from different tasks and surgical robots, and integrating additional sensors

to collect multimodal datasets. In addition, the software architecture of the DCS

could be restructured so that data logging and synchronization occurs at runtime,

instead of in post-processing.

154



Appendix B

A Reactive Autonomous Camera

System for the Raven II Surgical

Robot

The endoscopic camera of a surgical robot provides surgeons with a magnified 3D

view of the surgical field, but repositioning it increases mental workload and operation

time. Poor camera placement contributes to safety-critical events when surgical tools

move out of the view of the camera. This paper presents a proof of concept of

an autonomous camera system for the Raven II surgical robot that aims to reduce

surgeon workload and improve safety by providing an optimal view of the workspace

showing all objects of interest. This system uses transfer learning to localize and

classify objects of interest within the view of a stereoscopic camera. The positions

and centroid of the objects are estimated and a set of control rules determines the

movement of the camera towards a more desired view. Our perception module had an

accuracy of 61.21% overall for identifying objects of interest and was able to localize

both graspers and multiple blocks in the environment. Comparison of the commands

proposed by our system with the desired commands from a survey of 13 participants

This appendix contains material from [181] coauthored with M. S. Yasar, H. Bhatia, and H.
Alemzadeh, with help from E. Tian, A. Maran, and R. Wang in the collection and analysis of data,
copyrighted by IEEE.
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indicates that the autonomous camera system proposes appropriate movements for

the tilt and pan of the camera.

B.1 Introduction

Surgical robots such as Intuitive Surgical’s da Vinci Surgical Systems [3] are advanc-

ing medical specialties such as urology, gynecology, and general surgery by providing

surgeons with increased flexibility and precision, while reducing incision size, recovery

time, and scarring. Their adoption is linked to an increase in volume of minimally

invasive surgery (MIS) cases [2], and is driving the development of new surgical pro-

cedures and technologies [1].

However, the current generation of robots is not autonomous yet. They are in

level 0 of autonomy [182] and the surgeon must position and control all four arms

manually which increases their mental workload [183]. One of these arms holds the

endoscopic camera which provides surgeons with a magnified 3D view of the surgical

field, but requires both hands and a foot to switch control of the arms and reposition

the camera. During an operation, surgeons often adjust their camera position or

settle for a suboptimal viewpoint which increases procedure time and risk to the

patient since poor camera placement contributes to safety-critical events such as arm

collisions, use of excessive force, dropping an object, or movement of the instruments

out of camera’s view [136, 184].

Existing methods for automating the surgical robot’s camera focus on using re-

active simple sets of rules, proactive machine learning algorithms to learn movement

behavior, or combined control strategies that integrate these two techniques [183].

Most reactive autonomous camera systems rely on kinematic data from the surgical

robot [185], use a camera to track the surgical tools [186], or track the surgeon’s

eyes using visual servoing [187], and change the camera position in direct relation

to changes in these measurements. But, these methods overemphasize tracking tools

and do not account for other objects of interest in the environment such as important

tissues or needles. Our goal is to create an autonomous camera system that reduces
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surgeon workload and improves safety by providing an optimal viewpoint of the sur-

gical environment that keeps objects of interest and surgical tools in the field of view

thus reducing the likelihood of off-camera injuries.

In related work on autonomous camera systems, Yu et al. [188] introduced a

region of interest (ROI) around the robot end effectors. Yang et al. [189] defined an

intuitive virtual plane (IVP) as the plane normal to the surgeon’s line of sight and

containing the intersection of the surgeon’s line of sight with the ROI. The IVP was

a constraint to reduce misorientation that occurs when the optical and physical axes

of the laparoscope are not parallel. However, their work used a 2D laparoscope and

followed only one end effector.

While previous work focused on laparoscopic surgery, [190–192] were the first

works that created an autonomous camera system for a surgical robot using the da

Vinci Research Kit (dVRK) [193]. Their system used several rules and kinematic

data from the dVRK to keep the tools centered in the camera’s view. They con-

ducted a trial with 20 participants, including four surgeons, that compared their

automated camera system to the traditional clutched camera control. The results

showed that the automated camera was able to keep the tools within the camera’s

field of view, and improved metrics of workload, efficiency, and progress. In contrast,

our work relies on video data for detecting objects in the surgical workspace, thus

enabling the consideration of all objects of interest in the environment as well as

being platform-independent.

Contributions. We present a proof of concept of an autonomous camera system

for the Raven II robot, an open-source platform for robotic surgery research [175].

• We introduce a custom-built camera arm, the Independent Binocular Imaging

System (IBIS) (Section B.2.1), supporting a 3D stereoscopic camera (ZED Mini

by Stereolabs Inc. [194]). The IBIS reports its joint and camera positions, and

accepts commands from foot pedals and serial communication which facilitates

system integration.
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• We present a Perception module (Section B.2.2) for the automated perception

of the surgical field using transfer learning to localize and classify objects of

interest (end effectors and blocks in dry lab) in a given image of the surgical

field. We use a Mask Region-based CNN (MRCNN) [195] (with convolutional

layers pre-trained using the COCO dataset [196]) to identify objects of interest

by generating bounding boxes, classifying, and then creating masks. The co-

ordinates of all objects of interest provided by the Perception module are then

used to calculate the centroid of the objects and to adjust the camera position.

• We present a Control module (Section B.2.3) that adjusts the zoom, pan, and

tilt of the camera to align the center of the view with the centroid of the objects

and maximize the view of all objects of interest. The Control module computes

the projection of each object’s position onto an image plane containing the cen-

troid. Then, control rules determine camera movements based on the position

of the centroid relative to the desired view area of the camera.

The training set for the MRCNN consisted of 1,686 annotated images (3,372 after

augmentation), and the validation set consisted of 600 images. The images were

collected from dry lab experiments of the Pick and Place task. The dataset included

both left and right images from the ZED Mini camera, but there was not a 50/50

ratio between the two. After tuning the hyperparameters using the early stopping

technique, the overall loss (defined as the sum of the region proposal class loss, region

proposal bounding box loss, MRCNN class loss, MRCNN bounding box loss, and

MRCNN mask loss) was 0.2672.

We evaluated the camera system using a separate set of 27 pairs of left and right

images of a Block Transfer task, and a survey was used to determine the ground

truth desired commands for each image. The Perception module correctly identified

61.21% of the objects, and the Control module demonstrated acceptable behavior

when tilting and panning, but the desired zoom area should be decreased to provide

a wider field of view.

158



B.2 Autonomous Camera System

Our autonomous camera system consists of a custom-built camera arm integrated

with a ZED Mini and a software pipeline for perception of the environment and

control of the camera arm, as shown in Figure B.1 and described next.

ZED Camera

MRCNN

Object position estimation

Centroid calculation

Projection onto camera image plane

View area maximization

Average distance 

between centroid 

and each object

Vector from 

camera center to 

centroid

IBIS Camera Arm

Zoom Pan and tilt

List of positions of objects 

in images

List of positions of objects 

relative to IBIS

List of positions of objects 

in view of the camera

Perception

Control

Images

Position

Commands

Figure B.1: Autonomous camera pipeline.
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B.2.1 IBIS Camera Arm

A custom robotic camera arm, shown in Figure B.2, was developed to hold the stereo-

scopic camera and provide control over the position of the camera during teleoper-

ation of the Raven II. This Independent Binocular Imaging System (IBIS) can also

be controlled using a set of foot pedals making it platform-independent and enabling

future experimentation with alternative control interfaces for surgical endoscopes. An

Arduino Uno R3 runs custom forward kinematic and inverse kinematic models, and

communicates through a serial port to report its position and accept commands. This

allows for open-source development and facilitates integration with other systems.

Figure B.2: IBIS Camera Arm: (a) ZED Mini, (b) Linear Actuator, (c) Top Servo,

(d) Bottom Servo, and (e) Base Servo.

The mechanical design of the IBIS consists of upper and lower arms positioned

using three servos and a linear actuator. The Base Servo, embedded in the blue base

of the IBIS shown in Figure B.2, controls the pan of the camera by rotating the entire

arm left or right. The Bottom Servo is a high torque servo that supports the rest

of the arm and camera. The Top Servo, at the joint between the upper and lower

arms, is a standard servo with an angled bracket that joins to the mounting plate

for the linear actuator. The ZED Mini is held by a custom-machined adapter that

fits on the end of the linear actuator.
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The Base Servo pans the camera arm, while the other two servos and linear ac-

tuator move together to change the vertical and horizontal position of the camera.

These movements are calculated using the inverse kinematics functions based on in-

cremental changes in the position of the Bottom Servo. This enables the calculation

of a deterministic solution for the positions of the Top Servo and linear actuator.

The Base Servo is the origin of the coordinate system of the IBIS where the positive

x-axis points into the operating space, the positive y-axis points upwards, and the

positive z-axis points right.

The software on the Arduino Uno uses an open source library [197] to control

the servos and the linear actuator. The main function of the code is to listen for

commands from the foot pedals or serial line, use inverse kinematic functions to move

the arm, update the state of the arm using the kinematic functions, and report the

position of the arm over a serial line at a baud rate of 9600. A Python script on

the receiving computer parses and logs the position of the IBIS enabling real-time

and closed loop control of the arm.

B.2.2 Perception

Object Detection and Localization

We used Transfer Learning to apply the knowledge obtained from a pre-trained model

to our task. This allowed us to obtain competitive accuracy with a smaller training

dataset. As the perception task involves both object detection and localization, we

used the Mask Region-based Convolutional Neural Network (MRCNN) architecture,

which has a backbone network, in our case pre-trained Residual Nets (ResNet) [96],

followed by the network head. The backbone network performs feature extraction on a

given image, and is followed by the Region Proposal Network (RPN) which examines

each region of interest (ROI), before feeding the extracted features into the fine-tuned

classification layers. The classification layers generate the bounding boxes and masks

for each class. The bounding boxes indicate where an object has a high probability

of being found while the masks reveal where the object was actually found.
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In our task, the classes of the objects were “Left Grasper”, “Right Grasper”, “Red

Block”, “Green Block”, and “Background”. We fine-tuned the final two layers of the

MRCNN, pre-trained on the COCO dataset [196], for our application of detecting

and localizing objects of interest in the surgical workspace. The classification layers

were trained on a set of 1,686 images (3,372 after augmentation) that were manually

annotated using the VGG Image Annotator (VIA) [198]. The images were annotated

by five students and each image was annotated once. Each object’s boundary was

outlined and it was labeled with the appropriate class. These images were collected

using the ZED Mini from the execution of the Fundamentals of Laparoscopy (FLS)

Pick and Place task on the Raven II robot. The diversity in scenes was ensured

to a certain degree by picking up different blocks with the graspers and showing

incremental movements in the images.

We performed image augmentation to diversify object orientations in the images

of the training set and improve the model’s ability to detect objects of interest. After

image augmentation, the training set consisted of 3,372 images. This is one method

of artificially expanding a dataset. Some of the techniques that can be used for

image augmentation include scaling, translation, rotation, flipping, adding noise, and

changing lighting conditions. The techniques used for augmenting our dataset were

flipping the images left/right 50% of the time and generating images with random

blending between the original images and their canny edges.

Object Position Estimation

For each left and right image obtained from the ZED Mini, the MRCNN returns a

list of the objects and the coordinates for the upper left and lower right corners of

their bounding boxes. The centers of the bounding boxes are assumed to be the

center of the object in the image, and are used for subsequent calculations. These

objects are sorted and paired, and if an object was detected in one image but not

the other, it is discarded because there is not enough information to reconstruct

that object’s position.
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The locations of the objects in the left and right images are used to estimate

each object’s position with respect to the camera arm. Then, the centroid of the

identified objects is calculated so that an image plane containing this point and per-

pendicular to the optical axis of the camera can be constructed. Each object is then

projected onto this image plane in order to relate their locations to a desired field

of view of the camera.

For each object in the list returned by the MRCNN, the center of the bound-

ing box is calculated by taking the average of the x and y pixel coordinates of the

corners. This estimates the center of each object in the left and right images. The

lists are sorted to pair an object’s location in the left image with its corresponding

location in the right image.

The position of the camera and its optical axis are obtained from the IBIS. A unit

vector parallel to the camera’s optical axis is defined as the normal unit vector, n̂.

The camera is assumed to be horizontal which allows the construction of a horizontal

unit vector, ĥ, perpendicular to the optical axis of the camera. A third, orthogonal

unit vector is defined as the cross product of the normal unit vector and the horizontal

unit vector. This vector is named the vertical unit vector, v̂.

The distance, d, of an object from the camera is calculated using the difference

in the horizontal position of the object between the left and right images as shown

in Equation B.1. The ZED Mini has a focal distance of f = 700 pixels and a camera

separation of S = 63 mm. Lpx and Rpx are the horizontal positions, in pixels, of the

object in the left and right images, respectively.

d =
fS

|Lpx −Rpx|
(B.1)

Then, the horizontal displacement of the object, dh, in the direction of ĥ, from

the center of the camera’s view is calculated using Equation B.2. This is added to

1
2
S to account for the position of the right camera offset from the center of the ZED

Mini. The images used in our experiments are 720x1280, so Rpx− 640 represents the

horizontal location of the object relative to the center of the right image.
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dh = S
(1
2
+

(Rpx − 640)

|Lpx −Rpx|

)
(B.2)

Likewise, the vertical position, Rpy, of the object in the right image is used to

calculate the vertical displacement of the object, dv, in the direction of v̂, from the

center of the camera’s view, as shown in Equation B.3. Similarly, Rpy−360 represents

the vertical location of the object relative to the center of the right image.

dv = S
( 360−Rpy

|Lpx −Rpx|

)
(B.3)

The object’s position relative to the camera arm is then calculated as the position

of the camera added to the distances and displacements multiplied by their respective

unit vectors, as shown in Equation B.4.

Pobject = Pcamera + dn̂+ dhĥ+ dvv̂ (B.4)

B.2.3 Control

The Control module uses the list of the objects’ positions relative to the camera arm

to calculate the centroid of the objects as their average position. An image plane

containing the centroid and defined by v̂ and ĥ is constructed. The distance from the

camera to the image plane, dcam, is calculated using Equation B.5 where p⃗centroid and

p⃗camera represent vectors from the origin to the centroid and camera’s position, respec-

tively. The camera’s position on the image plane defines the origin of the image plane.

dcam = (n̂ · p⃗centroid)− (n̂ · p⃗camera) (B.5)

Then, each object is projected onto the image plane and the average distance from

the centroid to each object’s projected position is calculated. The height of the image

plane within view of the camera is calculated using Equation B.6, proportional to the

distance from the image plane to the camera. The radius of the desired view was set
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at 50% and defined a circle that should maximally overlap the circle drawn around

the centroid by the average distance to the objects.

hvisable = dcam tan(30◦) (B.6)

Based on the location of the centroid with respect to the origin of the image plane

(the center of the camera’s view), the control rules determine the movement of the

camera. Zoom is controlled by the difference in size of the circles around the centroid

and origin. If the average distance from the centroid to the objects is larger than the

desired view ring, then the system proposes zooming out. Conversely, if the average

distance from the centroid to the objects is smaller than the desired view ring, then

the system proposes zooming in. The tilt and pan of the camera are controlled by the

location of the centroid on the image plane relative to the origin of the image plane.

If the centroid is further away from the origin than 30% of the visible height of the

camera’s view in any direction, then the camera is tilted up or down, or panned left

or right to bring the centroid closer to the center of the camera’s view.

B.3 Experimental Evaluation

The autonomous camera system was evaluated by examining the Perception and

Control modules separately as well as assessing the system as a whole. This analysis

considered 27 pairs of left and right images of a block transfer task showing the left

and right graspers and several blocks. These 54 images were annotated to create

the ground truth of the locations of the objects in the images. The accuracy of

the MRCNN was defined as the ratio of correctly localized and classified objects

to the total number of objects present in the image set. An object was considered

correctly localized if the center of the object was within the bounding box generated

by the MRCNN. The root mean square error (RMSE) for the horizontal and vertical

locations of the centers of the objects were also calculated. To evaluate the Control

module, 13 students were shown these 27 pairs of images and asked how they would

adjust the camera’s zoom, pan, and tilt to achieve a better view of the objects in the
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environment. For each pair of images, the commands given by the Control module

using the object locations directly from the Perception module and the commands

given by the Control module using the ground truth object locations were compared

to the majority vote of the commands from the survey.

All the experiments were conducted on an x86 64 PC with an Intel Core i7 CPU

@ 3.70 GHz and 32 GB RAM, running Linux Ubuntu 18.04 LTS, and an Nvidia

1080 Ti GPU, running CUDA 10.1. We used Keras [199] API v.2.2.4 on top of

TensorFlow [200] v.1.13.1 for training our model and Scikit-learn [108] v.0.21.3 for

preprocessing and evaluation.

B.3.1 Perception

The model was evaluated in terms of its overall loss, bounding box loss, classification

loss, validation bounding box loss, and validation classification loss which are listed

in Table B.1. The validation bounding box loss was 0.1346, and the validation class

loss was 0.0274. We used hyperparameter tuning to find the optimum learning rate

which was 0.01 for 20 epochs, each with a step size of 50 and a batch size of 1 image.

Tensorboard was used to visualize the impact that certain hyperparameters had on

the model’s performance.

Table B.1: MRCNN losses.

Type Loss

Bounding Box Loss 0.0422
Class Loss 0.0312
Validation Bounding Box Loss 0.1346
Validation Class Loss 0.0274
Overall Loss 0.2672

The MRCNN model predicted on images from the ZED Mini and returned a list

of objects identified for each image. One such pair of left and right images is shown

in Figure B.3. Although both graspers and four blocks were localized in the left

image, only the two graspers and three blocks were detected in the right image. The
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rightmost block in the right image was classified as a Green Block and was ignored

by the algorithm. In addition, the vertical difference in the positions of the right

grasper in the left and right images was too large, so it was not correctly paired, and

was thus also ignored. This left us with only three objects to use in the proceeding

calculations, the left grasper and two blocks.

(a) Left image from the ZED Mini (b) Right image from the ZED Mini

Figure B.3: Pair of images with objects localized and classified by the MRCNN.

The MRCNN consistently misclassified the left grasper as the Right Grasper and

the right grasper as the Left Grasper. Errors in the classification of the graspers

can be attributed to insignificant differences between the color of the graspers and

the background. The graspers appear to blend in with their background and al-

though apparent to the naked eye, the two can be easily confused with a camera.

The right and left graspers were also very similar in shape and size, so without in-

formation about their relative position in regards to other objects, they would be

difficult to differentiate.

Different colored blocks were also used to test the ability of the MRCNN to discern

color, but since most of the blocks were classified as Red Blocks regardless of their

color, this analysis considered Blocks in general. The model had an accuracy of

52.87% in correctly identifying blocks in the images. Due to the consistent mislabeling

of the graspers, this analysis considered Graspers in general as well. The model had

an accuracy of 80.77% in correctly identifying graspers in the images. Table B.2 shows

the number of objects correctly classified out of the total number of objects for all 54

images. The MRCNN correctly localized but misclassified seven objects and in two
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cases incorrectly identified the frame of the Raven II as a Right Grasper. Overall,

the model had an accuracy of 61.21% in correctly classifying blocks and graspers in

the images and provided sufficient information for the Control module to estimate

the centroid of the objects and propose commands to move the camera.

Table B.2: Object classification accuracies.

Class Correctly Classified Total Accuracy (%)

Graspers 84 104 80.77
Blocks 129 244 52.87

All objects 213 348 61.21

The ground truth annotations were also used to determine the RMSE in the

horizontal and vertical locations of the centers of the objects in each image. The

RMSE error in the horizontal and vertical locations of the bounding boxes proposed

by the MRCNN and the centers of the ground truth annotations were 20.37 pixels

and 16.98 pixels, respectively. The sorting and pairing algorithm used by the sys-

tem to match the position of an object in the left image with its position in the

right image tolerated up to a 20 pixel difference in vertical position, so this was an

acceptable amount of error.

B.3.2 Control

Figure B.4 shows the objects in Figure B.3 mapped to the image plane. Given the

estimated positions of the objects identified by the Perception module, the Control

module mapped them to the image plane as shown in Figure B.4a. The Control

module sent commands to the IBIS to zoom in. However, given the list of estimated

positions for each object calculated using the ground truth annotations, the Con-

trol module mapped these objects to the image plane as shown in Figure B.4b and

proposed zooming in, tilting down, and panning right instead.

The Control module determined commands to move the camera based on the

location of the centroid relative to the center of the camera’s view, and the average

distance between the centroid and each object compared to a desired zoom radius.
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(a) (b)

Figure B.4: Projection of objects located in Figure B.3 onto the camera image plane.

(a) Object coordinates directly from MRCNN where mispairing resulted in incorrect

position estimations, (b) Object coordinates from ground truth.

In Figure B.4, the center of the camera’s view is a black dot while the centroid of

the objects is a red dot. The gray disk represents the desired area that the centroid

should be in and the Control module adjusted the pan and tilt of the camera to move

the gray disk towards the centroid. The average distance between the centroid and

objects is shown with a red circle around the centroid and represents the size of the

region of interest. The thick pink ring around the center of the image represents

the desired zoom area and the Control module adjusted zoom so that the red circle

was within the pink ring.

In order to evaluate the control rules used to determine camera movement com-

mands, 13 graduate and undergraduate students were shown the 27 pairs of images

and asked to select commands for zoom, tilt, and pan (no movement was also an

option for each category). The ground truth for desired movements for each image

was determined by majority voting based on the survey responses. The confusion ma-

trices between the desired commands and the Control module’s commands are shown

in Figure B.5. Figures B.5a, B.5c, and B.5e show the confusion matrices for the

commands proposed by the system when directly fed the predictions of the MRCNN,

and Figures B.5b, B.5d, and B.5f show the confusion matrices for the commands

proposed by the system based on the ground truth annotations for the Perception

module (assuming perfect Perception).
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(a) (b)

(c) (d)

(e) (f)

Figure B.5: Confusion matrices for Control module commands. (a), (c), and (e) are

based on MRCNN predictions. (b), (d), and (f) are based on ground truth annotations

for Perception.
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The set of images used in this analysis included frames showing a Block Transfer

task, during which the camera position was held constant. The task occurred in

the central, lower, and slightly right regions of the operating space, which meant

appropriate camera commands were limited to tilting down, panning right, adjusting

zoom, or no movement. Thus, the confusion matrices in Figure B.5 only show data

for these movements. The confusion matrices for the zoom command show that the

system proposed zooming in when the desired command was no movement. This

behavior was consistent even when the Control module was given the ground truth

annotations. Since the amount of zoom tends to be subjective, the desired zoom area

should be adjustable to accommodate personal preferences. The confusion matrices

for the tilt command show that in 75% of cases the system proposed no adjustments

to tilt even if the desired command was to tilt down. However, when given the ground

truth annotations, the system often proposed tilting down when the desired command

was no movement (61%). On the other hand, the system usually selected appropriate

commands for panning, even given the ground truth annotations.

The undesired tilt down commands could be explained by the equal weighting of

all objects in the centroid calculation. The Perception module had a higher accuracy

in detecting graspers, which were usually located more centrally in the images and

would have led the system to propose no change in tilt. But using the ground truth,

the blocks would have pulled the location of the centroid down in the image resulting

in tilt down commands. The difference between Figures B.5c and B.5d suggests that

a weight function should be implemented in the centroid calculation to address how

some objects are more important to view than others.

B.4 Conclusion

This work presents a proof of concept of an autonomous camera system for teleop-

erated robotic surgery that tracks the centroid of all objects of interest in the field

of view of the camera. The objects of interest were identified using transfer learning,

with an MRCNN partly pre-trained on the COCO dataset. A custom-built camera
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arm was created for positioning the camera and the centroid of objects of interest

was tracked using a set of control rules. The system was evaluated using a dataset of

images from dry lab experiments and by comparing the proposed motions of the cam-

era to the desired motions. The evaluation results suggest that the system proposes

appropriate movements for the tilt and pan of the camera, but the desired zoom area

should be decreased to provide a wider field of view and an object weight function

should be implemented in the centroid calculation. Future work will focus on im-

proving the accuracy of the Perception module by increasing the size and diversity

of the training set and generating more accurate annotations, adjusting the control

rules for zoom, and testing the system on a wider variety of object configurations

and movement directions.

Code Availability

Designs and code for the IBIS and the perception model are respectively available

at https://github.com/kch4fk/IBIS and https://github.com/thatssohars

h/Raven-II-Perception.
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Appendix C

Motion Primitive State Graphs

The following figures show the state graphs for Section 4.3 for the gestures in each

task performed by experts, intermediates, and novices where the surgeon-defined

motion primitive sequences are highlighted in green and inverse motion primitives

are boxed in red.
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C.1 Suturing

Figure C.1: State graph for Suturing G2 performed by experts.
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Figure C.2: State graph for Suturing G2 performed by intermediates.
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Figure C.3: State graph for Suturing G2 performed by novices.
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Figure C.4: State graph for Suturing G3 performed by experts.
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Figure C.5: State graph for Suturing G3 performed by intermediates.
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Figure C.6: State graph for Suturing G3 performed by novices.
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Figure C.7: State graph for Suturing G4 performed by experts.
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Figure C.8: State graph for Suturing G4 performed by intermediates.
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Figure C.9: State graph for Suturing G4 performed by novices.
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Figure C.10: State graph for Suturing G6 performed by experts.
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Figure C.11: State graph for Suturing G6 performed by intermediates.
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Figure C.12: State graph for Suturing G6 performed by novices.
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Figure C.13: State graph for Suturing G8 performed by experts.
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Figure C.14: State graph for Suturing G8 performed by intermediates.

Figure C.15: State graph for Suturing G8 performed by novices.
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C.2 Needle Passing

Figure C.16: State graph for Needle Passing G2 performed by experts.

Figure C.17: State graph for Needle Passing G2 performed by intermediates.
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Figure C.18: State graph for Needle Passing G2 performed by novices.

Figure C.19: State graph for Needle Passing G3 performed by experts.
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Figure C.20: State graph for Needle Passing G3 performed by intermediates.
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Figure C.21: State graph for Needle Passing G3 performed by novices.

Figure C.22: State graph for Needle Passing G4 performed by experts.
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Figure C.23: State graph for Needle Passing G4 performed by intermediates.
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Figure C.24: State graph for Needle Passing G4 performed by novices.
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Figure C.25: State graph for Needle Passing G6 performed by experts.
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Figure C.26: State graph for Needle Passing G6 performed by intermediates.

195



Figure C.27: State graph for Needle Passing G6 performed by novices.
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Figure C.28: State graph for Needle Passing G8 performed by experts.

197



Figure C.29: State graph for Needle Passing G8 performed by intermediates.
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Figure C.30: State graph for Needle Passing G8 performed by novices.
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C.3 Knot Tying

Figure C.31: State graph for Knot Tying G12 performed by experts.
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Figure C.32: State graph for Knot Tying G12 performed by intermediates.

Figure C.33: State graph for Knot Tying G12 performed by novices.
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Figure C.34: State graph for Knot Tying G13 performed by experts.
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Figure C.35: State graph for Knot Tying G13 performed by intermediates.
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Figure C.36: State graph for Knot Tying G13 performed by novices.
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Figure C.37: State graph for Knot Tying G14 performed by experts.
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Figure C.38: State graph for Knot Tying G14 performed by intermediates.

Figure C.39: State graph for Knot Tying G14 performed by novices.
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Figure C.40: State graph for Knot Tying G15 performed by experts.
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Figure C.41: State graph for Knot Tying G15 performed by intermediates.
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Figure C.42: State graph for Knot Tying G15 performed by novices.
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[23] D. Katić, A.-L. Wekerle, F. Gärtner, H. Kenngott, B. P. Müller-Stich, R. Dill-

mann, and S. Speidel, “Knowledge-driven formalization of laparoscopic surg-

eries for rule-based intraoperative context-aware assistance,” in Information

Processing in Computer-Assisted Interventions, pp. 158–167, Springer, 2014.

[24] D. Kitaguchi, N. Takeshita, H. Hasegawa, and M. Ito, “Artificial intelligence-

based computer vision in surgery: Recent advances and future perspectives,”

Annals of Gastroenterological Surgery, vol. 6, no. 1, pp. 29–36, 2022.

[25] B. van Amsterdam, M. J. Clarkson, and D. Stoyanov, “Multi-task recurrent

neural network for surgical gesture recognition and progress prediction,” in 2020

IEEE International Conference on Robotics and Automation (ICRA), pp. 1380–

1386, IEEE, 2020.

[26] M. Wagner, S. Bodenstedt, M. Daum, A. Schulze, R. Younis, J. Brandenburg,

F. R. Kolbinger, M. Distler, L. Maier-Hein, J. Weitz, B.-P. M’́uller-Stich, and

S. Speidel, “The importance of machine learning in autonomous actions for

surgical decision making,” Artificial Intelligence Surgery, vol. 2, pp. 64–79, 2022.

[27] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzan-

tot, F. Cerutti, M. Srivastava, A. Preece, S. Julier, R. M. Rao, T. D.

Kelley, D. Braines, M. Sensoy, C. J. Willis, and P. Gurram, “In-

terpretability of deep learning models: A survey of results,” in 2017

IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &

Trusted Computed, Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–6, IEEE, 2017.

[28] M. Allan, A. Shvets, T. Kurmann, Z. Zhang, R. Duggal, Y.-H. Su, N. Rieke,

I. Laina, N. Kalavakonda, S. Bodenstedt, et al., “2017 robotic instrument seg-

mentation challenge,” arXiv preprint arXiv:1902.06426, 2019.

213



[29] Z.-L. Ni, G.-B. Bian, X.-H. Zhou, Z.-G. Hou, X.-L. Xie, C. Wang, Y.-J. Zhou,

R.-Q. Li, and Z. Li, “RAUNet: Residual attention U-Net for semantic seg-

mentation of cataract surgical instruments,” in Neural Information Processing,

pp. 139–149, Springer, 2019.

[30] N. Yong, P. Grange, and D. Eldred-Evans, “Impact of laparoscopic lens con-

tamination in operating theaters: a study on the frequency and duration of

lens contamination and commonly utilized techniques to maintain clear vision,”

Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, vol. 26, no. 4,

pp. 286–289, 2016.

[31] J. C. Allers, A. A. Hussein, N. Ahmad, L. Cavuoto, J. F. Wing, R. M. Hayes,

N. Hinata, A. M. Bisantz, and K. A. Guru, “Evaluation and impact of workflow

interruptions during robot-assisted surgery,” Urology, vol. 92, pp. 33–37, 2016.

[32] E. Palagonia, E. Mazzone, G. De Naeyer, F. D’Hondt, J. Collins, P. Wisz, F. W.

Van Leeuwen, H. Van Der Poel, P. Schatteman, A. Mottrie, and P. Dell’Oglio,

“The safety of urologic robotic surgery depends on the skills of the surgeon,”

World Journal of Urology, vol. 38, no. 6, pp. 1373–1383, 2020.

[33] P. Gupta, J. Schomburg, S. Krishna, O. Adejoro, Q. Wang, B. Marsh,

A. Nguyen, J. R. Genere, P. Self, E. Lund, and B. R. Konety, “Development

of a classification scheme for examining adverse events associated with medi-

cal devices, specifically the DaVinci Surgical System as reported in the FDA

MAUDE database,” Journal of Endourology, vol. 31, no. 1, pp. 27–31, 2017.

[34] C. G. Cao, C. L. MacKenzie, and S. Payandeh, “Task and motion analyses in

endoscopic surgery,” in Proceedings of the ASME 1996 International Mechanical

Engineering Congress and Exposition, pp. 583–590, ASME, 1996.

[35] C. E. Reiley and G. D. Hager, “Task versus subtask surgical skill evalua-

tion of robotic minimally invasive surgery,” in Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2009, pp. 435–442, Springer, 2009.

214



[36] J. Koskinen, A. Huotarinen, A.-P. Elomaa, B. Zheng, and R. Bednarik,

“Movement-level process modeling of microsurgical bimanual and unimanual

tasks,” International Journal of Computer Assisted Radiology and Surgery,

vol. 17, no. 2, pp. 305–314, 2022.

[37] S. S. Vedula, A. O. Malpani, L. Tao, G. Chen, Y. Gao, P. Poddar, N. Ahmidi,

C. Paxton, R. Vidal, S. Khudanpur, G. D. Hager, and C. C. G. Chen, “Analysis

of the structure of surgical activity for a suturing and knot-tying task,” PloS

ONE, vol. 11, no. 3, p. e0149174, 2016.

[38] M. Uemura, P. Jannin, M. Yamashita, M. Tomikawa, T. Akahoshi, S. Obata,

R. Souzaki, S. Ieiri, and M. Hashizume, “Procedural surgical skill assessment

in laparoscopic training environments,” International Journal of Computer As-

sisted Radiology and Surgery, vol. 11, no. 4, pp. 543–552, 2016.

[39] K. C. Brown, K. D. Bhattacharyya, S. Kulason, A. Zia, and A. Jarc, “How

to bring surgery to the next level: Interpretable skills assessment in robotic-

assisted surgery,” Visceral Medicine, vol. 36, no. 6, pp. 463–470, 2020.

[40] S. Khalid and F. Rudzicz, “SurGNN: Explainable visual scene understanding

and assessment of surgical skill using graph neural networks,” arXiv preprint

arXiv:2308.13073, 2023.

[41] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Accurate

and interpretable evaluation of surgical skills from kinematic data using fully

convolutional neural networks,” International Journal of Computer Assisted

Radiology and Surgery, vol. 14, no. 9, pp. 1611–1617, 2019.

[42] G. Forestier, F. Petitjean, P. Senin, F. Despinoy, A. Huaulmé, H. I. Fawaz,
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