

Software Engineering: Custom Date-Picker Component

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Isabella Felaco

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Briana Morrison, Department of Computer Science

1

Software Engineering: Custom Date-Picker Component

CS4991 Capstone Report, 2024

Isabella Felaco

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

isfelaco@gmail.com

ABSTRACT

OpenGov, a cloud-based software company

with the goal of empowering local

governments, needed a custom date-picker

component to utilize in their products. During

my internship at the company, I was tasked

with creating this component from a base

design. I coded the custom component

entirely from scratch in React.JS using

Typescript (a language similar to JavaScript)

and Cascading Style Sheets (CSS). As a

result, the component was integrated

company-wide into their suite of products and

for use with other teams. I even utilized it in

future projects that I contributed to. This

component could be improved to integrate

open-source code that generates date-picking.

Additionally, I plan to work at a software

company that serves as a government

contractor, to continue my interest in frontend

software development and creating

government-used software.

1. INTRODUCTION

OpenGov’s motto is “powering more

effective and accountable government.” All

of my work, including my work on the

custom date-picker, was designed to further

the goal of increasing trust and transparency

in governments,

During my internship, I worked in the

Permitting and Licensing division. The

software being developed was a portal for

constituents and government employees to

submit and review documents, respectively.

Applicants and reviewers have different

views with different privileges. The

applicants are able to fill out forms custom-

made by employees, and employees are able

to view submissions, review them, and send

feedback directly to the applicant.

The primary purpose of the date-picker was

to allow applicants to select a date in a

custom date form field. Later, it was added to

other workflows to allow date selection

wherever needed, such as in selecting when a

form is due. This software is important for

several reasons. First, it increases

effectiveness because the process of filing

and approving documents is streamlined, and

applicants receive immediate, custom

feedback. Additionally, it increases citizen

participation because of the ease in

submitting applications; constituents no

longer have to go to offices in person or mail

printed documents. Last, it increases

accountability in government because files

that are publicly accessible are even more

accessible when stored on the cloud. The

date-picker component contributes to meeting

these goals.

2. RELATED WORKS

My work on the date-picker component

utilized several technologies and coding

strategies. The technology I leveraged most

2

was React.JS (React), a JavaScript(JS)

frontend framework. For this project, I wrote

in TypeScript (TSX), a high-level

programming language that adds type-

checking to JS. A main feature of React is

that it is declarative and component-based,

which is helpful in designing UIs.

Secondly, I used date-fns, a toolset for

manipulating JS’s built-in Date object (date-

fns, 2024). To preface, the JS Date object

defines a timestamp down to the millisecond

(Mozilla, 2024). The Date object has many

functions for manipulating dates, but date-fns

has extended functions that were required for

this component. I used many of the functions

throughout my component for advanced

functionality.

Another resource I utilized was Figma. Figma

is an interface design application that allows

UI/UX designers to share their designs with

developers. I used this software to get precise

details on my component and make sure it

met the exact specifications, as UI designers

have very specific visions that directly affect

user experience. It gave me a starting point a

reference for asking for additional details or

clarification.

Finally, I utilized styled-components, a

library used to write CSS in JS while building

custom components in React. Every style is

tied to a specific component, allowing for

easy maintenance and clarity in the code

(Styled Components, 2024). There is also the

ability to implement class hierarchy and

extend classes. It was particularly useful for

this task, as I had a lot of custom styles and

needed to style individual components.

3. PROJECT DESIGN

I was tasked with creating a custom date-

picker component. This component was an

inline input with an icon that opened an

interactive calendar. Users were to be able to

select a date in two ways: by typing in the

input, or by selecting a date in the calendar.

Our company already had inputs that

formatted dates, so my task was to extend that

component to include the interactive calendar.

3.1 The Design Choice

For this component, I decided to create from

scratch rather than use pre-existing code, such

as MUI’s React Date Picker. This was

ultimately due to the fact we needed

advanced functionality that these components

did not provide, such as selecting multiple

dates, ranges of dates, and blacking out

certain dates. It was also more coherent to

keep using date-fns, as it was regularly used

throughout our code space.

3.2 Creating the Design

I was given a design in Figma that I had to

recreate in React. The Figma design included

views for different states of the component,

such as the open calendar, selecting a date,

and navigating through the date-picker. These

designs gave me a starting point before I

developed the actual functionality.

In order to create this component, I utilized

styled-components. Styled-components

allowed me to create custom styles for

different components within the date-picker.

For example, each square in the calendar had

a unique design that changed according to

user input (e.g., it was colored blue when

selected, white when not selected, or gray

when disabled). The calendar icon that

opened the calendar had similar behaviors in

that it changed colors depending on whether

the calendar was open or not.

3.3 Implementing Functionality

The date-fns functions I used most were for

formatting and comparing dates. For

example, I used the “isEqual” method to

determine if the date selected was equal to the

current date (as given by the generic JS Date

3

object), in order to give it a custom style. I

also used the “parse” function to manipulate

data and use dates in different formats, such

as changing the format that the data came in

into a usable form, and then returning it to the

original format.

3.4 Challenging Features

The greatest difficulty I encountered while

creating this component was configuring for

date ranges as input to the component and as

user input. For context, the component was to

be used as a form component where users

could select dates and submit it with a form.

The forms were customizable, so admins

could configure the settings of each of the

components. The date picker was to have

settings allowing or disallowing the selection

of certain dates and of multiple dates at a

time. This meant that when rendered, the

component would receive arguments that told

it whether or not to allow these features. I had

to determine the best format that this data

should come in and figure out a way to

manipulate it to implement the functionality.

The data for disabling certain dates came in

the form of a regular expression, where

specific dates or patterns of dates (for

instance, every other Sunday) could be

disabled. I had to parse this regular

expression and apply the pattern to the

calendar’s formatting. Additionally, I had to

do form validation so that if the user

manually typed an invalid date, error

feedback would be displayed.

For allowing users to select multiple dates, I

used React’s “useContext” hook. A React

hook is a built-in function that allows the user

to tap into the React state and lifecycle

features from functional components (React,

2024). Specifically, “useContext” is

employed alongside the “useState” hook to

share state between deeply nested

components (W3Schools, 2024). I utilized the

context function to facilitate sharing the state

of the calendar (i.e., what dates were

currently selected) to the parent component,

the input itself. This also allowed me to

populate the input with the selected date once

a calendar square was clicked by the user.

3.5 Ensuring Accessibility

An important aspect of the design process

was ensuring that the component was

accessible and Section 508-compliant. This

included making the entire component

compatible with keyboard control. To do this,

I utilized React’s `tabIndex` attribute, which

creates an order for elements to be focused

when navigating with the tab button.

Additionally, I made sure the calendar pop-up

was accessible by enabling users to press the

enter button to open and close it. Users could

also navigate the calendar through the

keyboard using the left and right arrows and

tab to enter the calendar month.

4 RESULTS

Upon completion, the custom date-picker

component was directly integrated into the

larger project that I was working on. This was

a workflow titled “Requesting Changes,”

where admins could create custom forms,

users could fill them out and submit them,

then admins could provide direct and

immediate feedback via the online platform.

This component was added to the list of form

fields available when creating forms. It was

used to provide more accessibility and

flexibility in date selection.

After its success in the Requesting Changes

project, the component was later integrated

company-wide. It was translated by other

engineers to be part of our reusable

component library for other platforms.

5 CONCLUSION

4

The date-picker component is an integral part

of OpenGov’s form submission workflow. It

is now used company-wide on all forms and

has been expanded to include additional

configurations that can be set by the admin of

the form. By being keyboard-accessible, t

increases accessibility to more users and it

provides more specificity in what dates are

allowed to be selected than with the original

date input.

This component was important to not only the

company, but to my development as a

computer scientist. I began my internship

with very little knowledge of frontend

computer programming, but with mentorship

and outside practice, I eventually became a

more effective software engineer. Because of

this experience, I now have the ability to

create my own independent projects and will

be continuing as a full-time full-stack

software engineer.

6 FUTURE WORK

Since my work on the date-picker component,

it has been expanded by other developers to

include more options for disabling dates.

Other expansions could include more robust

testing as only simple unit tests were

originally written.

My work as a software engineer will continue

with OpenGov full-time. I will be working in

both frontend and backend code bases, thus

expanding by professional coding experience.

REFERENCES

Mozilla. (n.d.). Date - JavaScript. MDN Web

Docs. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_

Objects/Date

date-fns. (n.d.). date-fns | Modern JavaScript

date utility library. https://date-

fns.org/v3.3.1/docs

Styled Components. (n.d.). Documentation.

https://styled-components.com/docs/basics

https://mui.com/x/react-date-pickers/date-

picker/

ReactJS. (n.d.). Hooks overview.

https://legacy.reactjs.org/docs/hooks-

overview.html#:~:text=Hooks%20are%20fun

ctions%20that%20let,if%20you'd%20like.)

W3Schools. (n.d.). React useContext hook.

https://www.w3schools.com/react/react_usec

ontext.asp

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://styled-components.com/docs/basics

