
1

Language Interoperability: Improving Multi-Language Systems
with Bindings

CS4991 Capstone Report, 2025

Ahbey Mesfin

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

ttw8ea@virginia.edu

ABSTRACT
Modern software development often involves
multiple programming languages, each chosen
for its suitability for a specific task. However,
this multilingual approach introduces complex
interfaces between languages, leading to
decreased performance. Language
interoperability—the ability for different
programming languages to work seamlessly
together within a single program - presents a
potential solution to these bottlenecks. One
method to achieve interoperability is through
language binding, which allows code written
in one language to directly interact with code
written in another. My work illustrates the
benefits of interoperability through my work
experience at the MITRE Corporation, and
how similar approaches can be taken to
improve other existing applications. One
potential avenue to expand this work is to
compare and contrast bindings with other
interoperability methods (such as Foreign
Function Interfaces), and determine when one
is more appropriate than the other.

1. INTRODUCTION
Today, large-scale software systems are rarely
confined to a single programming language -
instead, developers leverage multiple
languages, selecting each for its particular
strengths, for a given task within the larger
system. This tendency harbors some
complications, however with regard to

communication across languages. Without the
proper interoperability mechanisms in place,
developers must rely on inefficient
communication mediums (such as file-based
data transfer or data serialization), or
sometimes even duplicate implementations in
different languages.

Language interoperability offers a solution to
this problem by enabling near seamless
communication between languages within a
single unified program. One commonly used
method to enable interoperability is language
binding, which allows code written in one
language to directly interact with data
structures and call functions from another. My
experience at the MITRE Corporation
provides one example of how interoperability
can benefit large-scale systems written in
multiple programming languages. Expanding
on this work, I explore how bindings compare
with other interoperability methods to
determine the most effective approach
depending on the application needs.

2. RELATED WORKS
Cross-language interoperability is, and has
been, an existing challenge in software
development. Early attempts to solve this
issue, such as the Common Object Request
Broker Architecture (COBRA) and
Component Object Model (COM), introduced
significant complexity and performance
overhead (Chisnall, 2013). Such work by the

2

authors investigates why older solutions aren’t
expandable or scalable to today’s demands.
Another important note in this investigation is
the difference in object models across
programming languages. For example, object-
oriented languages differ in how they
implement inheritance and memory
management, making seamless integration
very complex. Furthermore, challenges arise
when handling exceptions and garbage
collection across languages.

Another work implements a VM, TruffleVM,
to be an example of how to elegantly enable
interoperability (Grimmer et al, 2018).
TruffleVM is a language-agnostic mechanism
for cross-language interoperability and is not
locked to a fixed set of languages. The authors
go into detail about the development,
challenges, and technical details of
TruffleVM. Such work provides a basis for the
potential of language interoperability and
gives more examples to compare Bindings to
(as a Virtual Machine is distinct from Bindings
or FFIs), providing a more well-rounded
understanding of when bindings are
appropriate.

3. PROPOSAL DESIGN
This experiment will examine the performance
of different interoperability methods in the
setting of heavy computational load,
specifically, matrix multiplication (of different
dimensions) will be used.

3.1 Overview of Design
This project evaluates the efficacy of different
language interoperability techniques by
implementing “toy” (simple) programs in two
different languages and measuring the
performance differences between them. The
primary focus is on comparing language
bindings with another interoperability
approach, such as file-based data transfer and
data serialization. The results will provide
some insight regarding when one method is

preferable over another, depending on the
context of the application’s use-case.

3.2 Experimental Setup
The experiment entails the development of
two minimal programs that execute identical
computational tasks but differ in how they
exchange data between languages. One
program will use language bindings (C++ with
Python bindings via the pybind11 library), and
the other will use an alternative technique. The
performance of both approaches will be
measured and analyzed numerically and
graphically.

3.2.1 Programming Language Selection
To analyze interoperability effectively, two
languages will be selected based on their
relevance in real-world multi-language
systems. The two that have been selected are
Python and C++. C++ is commonly used in
performance-critical applications, while
Python is used for scripting.

3.2.2 Methods of Interoperability
The two methods of interoperability to be
compared are Language bindings and some
form of Data transfer (sockets, shared
memory, or file-based communication).

3.3 Performance Evaluation
To measure the efficiency of each method, key
performance metrics will be logged. First,
Execution time for the program - the time
taken from start to finish to complete the task
- will be recorded. Second, the data transfer
latency—the overhead created when
transmitting data between the two languages—
will be considered. Finally, the ease of
implementation will be weighed. That is, my
subjective experience of developing the
program with the respective interoperability
method will be assessed regarding how
difficult it was to accomplish. A series of tests
will be conducted, where the programs
perform identical computational tasks (for

3

example, numerical simulations or matrix
multiplications).

3.4 Expected Challenges
A number of challenges may arise during
implementation, including compatibility
issues between languages. Data
representation, memory management, and
error handling are all large items that differ
among languages, which may be tricky to
circumvent. Another challenge is ensuring that
the tests are as fair as possible. Ensuring my
own hardware does not impact the
performance of the programs (since hardware
may happen to run faster in one instance than
another) is an important consideration.

4. RESULTS
The two approaches were compared on the
basis of matrix multiplication speeds. Identical
dimensions for the matrices were used in both
approaches. The results show an unexpected
result: while the bindings approach (will refer
to as Pybind11 from here) significantly
outperformed the file-based approach for
small matrices, the advantage quickly
diminishes as the matrix size grows. Notably,
for large matrices (1000x1000 and beyond),
the file-based method is faster, with execution
times growing at a much slower rate than the
Pybind11 approach. Please refer to Fig 1
below to observe this trend.

Figure 1: Pybind11 vs File-Based

Communication Runtimes

To further quantify the differences in
computational speed between the two
approaches, a metric called speedup will be
considered. Speedup is simply the ratio of the
time it takes between the two approaches,
specifically, the file-based approach divided
by the Pybind11 approach (when speedup > 1,
Pybind11 is faster, when speedup < 1, file-
based is faster). This metric simply shows how
many times faster Pybind11 is than the file-
based approach. After executing roughly 50
epochs and taking the average, it is clear that
the Pybind11 approach is appropriate for
smaller matrices, but scales poorly. For
example, the speedup for a 100x00 matrix
computation was 24.5. This means that
Pybind11 was 24.5x faster in computing the
matrix product than the file-based approach.
On the other hand, the speedup for very large
matrices (3000x3000) was .06, meaning that
Pybind11 was .06x faster (or 16.67x slower)
than its counterpart. Please refer to Fig 2 for a
full list of the execution times and speedup
factors with respect to the different matrix
dimensions.

Matrix
Size

Pybind1
1 Time
(sec)

Fille-
Based
Time
(sec)

Speedup
Ratio

100x100 0.002805 0.068737 24.51x

500x500 0.310283 0.227768 0.73x

1000x10
00

2.494159 0.711464 0.29x

2000x20
00

20.25283
1

2.782751 0.14x

3000x30
000

95.23641
5

6.117981 0.06x

Figure 2: Pybind11 vs File-Based
Communication Times and Speedups

4

As can be seen in Fig 1 and Fig 2, the Pybind11
approach has an almost exponential increase in
runtime as the computational load increases. In
short, the file-based approach remains
relatively efficient across all tested sizes.
While it does require writing and reading
matrices from the disk, the execution time
scales almost linearly, resulting in much better
performance for large matrices. These
experiments suggest that the overhead of
transferring data via files is less important than
the cost of executing Pybind11 functions at
scale.

Pybind11, while being slower for larger
matrices, was very simple to implement. The
documentation, community, and support are
very active - allowing developers such as
myself to pick up the tool and get started
relatively quickly. File-based data transfer was
a bit tricky to implement, as there is no “tool”
being used here - just standard libraries.

5. CONCLUSION
This project provides an important
performance analysis on two different
methods for integrating C++ matrix
multiplications with Python: file-based data
transfer and Pybind11 bindings. While
Pybind11 was expected to be the superior
approach due to in-memory execution, the
results show that file-based execution
outperforms Pybind11 for larger matrices.
These findings challenge the assumptions held
by me and programmers in general about
bindings and highlight the need for further
optimization when using Pybind11 for large-
scale problems.

Furthermore, the results of this study offer
some valuable insights for developers
choosing between efficiency and usability in
C++-Python interoperability. Pybind11,
despite the surprising difference in execution
time, remains as a useful tool for low-latency
and small-scale operations, while file-based

communication might be a better, scalable
solution for larger datasets. These findings can
be easily applied to machine learning and
scientific computing, as both of these fields
heavily involve large matrices and, in some
cases, communication between codebases
written in different languages.

6. FUTURE WORK
To further refine this work, I would like to
compare these interoperability methods with
other existing ones (such as FFIs and sockets),
to get a better understanding on how other
options fare. The most important expansion
that can be done on this work is to compare
more tasks. This report only concerns matrix
multiplication, but this is an extremely narrow
slice of what programs do in the real world.
There is a possibility that Pybind11 could
perform much better than the file-based
approach if a task other than matrix
multiplication was tested. These two changes,
including other interoperability methods and
testing different computational tasks, would
greatly enhance the generalizability and
applicability of my work.

REFERENCES
Chisnall, D. (2013). The challenge of cross-

language interoperability. Commun. ACM,
56(12), 50–56.
https://doi.org/10.1145/2534706.2534719

Grimmer, M., Schatz, R., Seaton, C.,

Würthinger, T., Luján, M., & Mössenböck,
H. (2018). Cross-language interoperability
in a multi-language runtime. ACM Trans.
Program. Lang. Syst., 40(2), 8:1-8:43.
https://doi.org/10.1145/3201898

