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Abstract

Active magnetic bearings (AMBs) adopt electromagnetic forces to support the rotating shaft

and do not have physical contact with the rotary structure. Compared to conventional

mechanical bearings, AMBs do not require lubrication; the non-contact working environment

improves the e�ciency and reduces maintenance cost caused by mechanical wear; the dynamic

forces also help the machinery to achieve higher rotational speeds. These appealing features

of AMBs have gradually expanded their application in di↵erent industries, especially those

involving high speed rotating machineries, such as compressors, where e�ciency and reliability

are highly desired.

Emerging applications in o↵shore drilling for oil and gas production require compressors

to operate in a remote and harsh environment for long periods of time. By adopting AMB

technologies, these remotely operated applications have become technically and economically

more feasible. Motivated by the challenges in those applications, this dissertation first

addresses controlling high speed compressors supported by AMBs in o↵shore oil and gas

development, where the control and sensor measurement signals are transmitted through long

cables between the control unit on the shore and the compressor on the seabed. These cables,

which may extend for several kilometers, introduce significant time delays to the system and

the delays can degrade the system performance and even cause instability. Therefore, control

methods that e↵ectively contain the delay e↵ect become indispensable. In this dissertation,

the truncated predictor feedback (TPF) control law is applied to handle the time delay. The

TPF control method utilizes the prediction of future states in the control signal calculation
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to eliminate the delay e↵ect. The controller corresponding to the maximized input delay that

the closed-loop system can tolerate is obtained iteratively from the solution of a linear matrix

inequality (LMI) problem. It is demonstrated in the dissertation that the TPF controller can

tolerate a significant amount of input delay for AMB system levitation and outperforms a

properly designed µ-synthesis robust controller.

The second topic of this dissertation is unbalance compensation of AMB systems at

both constant and time-varying rotational speeds. Any rotating machines are subject to

disturbance forces caused by residual unbalance and the disturbance force is synchronous to

the rotational speed. Therefore, unbalance compensation is crucial for reducing rotor vibration

and preserving the system stability in high speed rotating machines. A properly controlled

compressor supported by AMBs needs to confine the vibration to a small level to satisfy

industrial standards. To mitigate the adverse e↵ects of unbalance forces, this dissertation

proposes a novel unbalance compensation technique based on the output regulation mechanism.

The problem of output regulation is to design a controller for disturbance rejection and/or

reference tracking, while the disturbance or reference signal is generated by a known dynamic

system called exosystem. For a time-invariant exosystem, the regulation error can be fully

eliminated while for a time-varying exosystem, it is observed that a small residual error

exists in the regulated output for a non-minimum phase system, such as an AMB system. A

unified gradient method is adopted to ensure that the error is small. To apply the output

regulation mechanism, the unbalance forces are modeled as the output of the exosystem and

the compensator gains are obtained based on the solution of static regulator equations for

the constant speed case and di↵erential regulator equations for the time-varying speed case.

Eventually, the TPF control law and the output regulation based unbalance compensation

method are combined to achieve the control requirements of a remotely located compressor

supported by AMBs at di↵erent rotational speeds. To demonstrate the e↵ectiveness and

applicability of the proposed methods, extensive simulations and experiments have been

performed using precise AMB system models and AMB test rigs.



Acknowledgments

I would like to deeply thank my advisor Prof. Zongli Lin for bringing me into ROMAC,

providing me the opportunities to work on several exciting projects, continuously stimulating

me to pursue research excellence, and mostly importantly, backing me up and inspiring me

when I got stuck and faced formidable challenges. Whenever I seek advice or discussion,

Prof. Lin is always available no matter whether it is in the middle of the week or during the

weekend. Without his guidance and encouragement, I would not have been able to reach the

current stage.

I want to express my sincere appreciation to my dissertation committee members,

Prof. Houston Wood, Prof. Gang Tao, Prof. Chris Goyne and Prof. Baoxing Xu for their

support of my research, revising my dissertation and providing valuable advice.

I am grateful to have Prof. Se Young Yoon and Dr. Parinya Anantachaisilp as my colleagues

and friends. I learned much AMB control related knowledge and skills from them and they

provided a lot of assistance in the projects I was involved. Besides, they have been sharing

their inspiring life and school experiences with me, which motivated me to work harder and

become stronger.

I would also like to thank Dr. Simon Mushi for helping me with the ROMAC flexible

rotor AMB test rig. I also want to thank ROMAC faculty members and fellow students,

Prof. Paul Allaire, Dr. Roger Fittro, Dr. Brian Weaver, Dr. Jason Kaplan, Dr. Ali Gerammi,

Day Gri�n, Benny Schwartz, Yusheng Wei for sharing their knowledge and discussing with

me on topics related to AMB, control design and rotordynamics. I also want to send my

iv



Acknowledgments v

thanks to Ms. Lori Pedersen for helping me with the school documents and ordering the

parts for my experiments.

My PhD journey would have been so lonely without my friends, Dr. Jia Hu, Long Chen,

Jing Guo, Cheng Yang, Zhiyuan Tao, Ge Song, Longze Chen, Dr. Jiekun Yang and many

others. We came to UVa around the same time and we work together towards the same goal.

With their company, I always have someone to share the joy and stress.

My parents are the biggest supporters of my school journey. They provided me the initial

opportunity to study in the US and the once a week video chat for the last 11 years since I

came here has become a tradition for our family. I am always willing to share my happiness

and depression with them and they have been so considerate and supportive throughout my

education path. I am so thankful for being raised in the “DI” family.

Last but not least, I want to send my gratitude to my wife May Zou, who has been so

patient, thoughtful and accommodating. Without her love and support, this journey would

have been more di�cult.



Contents

Contents vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Literature Review 9
2.1 Overview of AMB systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 AMB control fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Control of systems with time delays . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Vibration control of AMB systems . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Description of the Test Rig and Rotordynamic Study 15
3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Rotor construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Magnetic bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 AMB system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Rotor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Modeling of AMBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Modeling of additional components . . . . . . . . . . . . . . . . . . . 25
3.2.4 The entire AMB system . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Fundamentals 31
4.1 Control of systems with input delay . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Output regulation for input-delay system with time-invariant exosystem . . . 34

4.2.1 Output regulation by state feedback . . . . . . . . . . . . . . . . . . 35
4.2.2 Output regulation by output feedback . . . . . . . . . . . . . . . . . 37

4.3 Output regulation for input-delay system with time-varying exosystem . . . 39
4.3.1 Output regulation by state feedback . . . . . . . . . . . . . . . . . . 40

vi



Contents vii

4.3.2 Output regulation by output feedback . . . . . . . . . . . . . . . . . 42
4.3.3 Bounded regulator gains for non-minimum phase systems . . . . . . . 44

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Unbalance Compensation under Constant Rotational Speeds 51
5.1 TPF control for the AMB test rig . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Maximization of the delay bound . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Controller derivation for the AMB test rig . . . . . . . . . . . . . . . 53
5.1.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Unbalance compensation in AMB systems . . . . . . . . . . . . . . . . . . . 63
5.2.1 Problem formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Simulation and experimental results . . . . . . . . . . . . . . . . . . . 67

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Unbalance Compensation under Time-varying Rotational Speeds 75
6.1 Autobalancing in an AMB system . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Unbalance suppression on a balancing beam . . . . . . . . . . . . . . . . . . 81

6.2.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusions 93
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 99



List of Figures

1.1 AMB systems in o↵shore applications. . . . . . . . . . . . . . . . . . . . . . 2
1.2 Rotor unbalance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 AMB system operating principle. . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Schematic of the flexible rotor AMB test rig. . . . . . . . . . . . . . . . . . . 16
3.2 The ROMAC flexible rotor AMB test rig. . . . . . . . . . . . . . . . . . . . . 17
3.3 A functional overview of the support AMBs. . . . . . . . . . . . . . . . . . . 18
3.4 A functional overview of the exciter AMBs. . . . . . . . . . . . . . . . . . . . 19
3.5 AMB system block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 The flexible rotor finite element model. . . . . . . . . . . . . . . . . . . . . . 21
3.7 The mode shape plot of the rotor. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 The Campbell diagram of the rotor with 5 MN/m support sti↵ness to show

the splitting of the natural frequencies with the speed increase. . . . . . . . . 24
3.9 One DOF AMB model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Bode plots for the test rig: analytic model vs experimental measurements. . 29

4.1 The unified gradient method process. . . . . . . . . . . . . . . . . . . . . . . 50

5.1 The LMI-based optimization procedure for determining the maximal allowable
delay bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Path of the optimal solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Singular value plot of the derived output feedback TPF controller. . . . . . . 56
5.4 Simulated step response of the closed-loop AMB system with a constant input

delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Simulated zero-to-peak rotor vibration level for rotational speeds up to 7000 rpm. 58
5.6 Controller feedback loop implementation in the AMB test rig. . . . . . . . . 59
5.7 Rotor displacement measurement during levitation with µ-synthesis controller

and input delayed by D = 3T
s

. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8 Rotor displacement measurement during levitation with TPF controller and

input delayed by D = 3T
s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9 Rotor displacement measurement during levitation with TPF controller and

input delayed by D = 8T
s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.10 Rotor displacement measurement during levitation with TPF controller and

input delayed by D = 10T
s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



List of Figures ix

5.11 Zero-to-peak rotor vibration amplitude measured at di↵erent rotating speeds
with TPF controller and input delayed by D = 6T

s

. . . . . . . . . . . . . . . 63
5.12 Block diagram of the controller implementation under constant rotational speed. 67
5.13 Simulated rotor displacements and AMB forces under the rotor displacement

regulation with the output regulator active for t > 1 s. . . . . . . . . . . . . 68
5.14 Simulated rotor displacements and AMB forces under the AMB force regulation

with the output regulator active for t > 1 s. . . . . . . . . . . . . . . . . . . 69
5.15 Experimental measurements under the controller designed for the non-regulated

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.16 Experimental measurements under the controller with the rotor displacement

regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.17 Experimental measurements under the controller with the AMB force regulation. 73

6.1 Rotor rigid body modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Block diagram of the controller implementation under time-varying rotational

speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Simulated control voltages without (left) and with (right) the di↵erential

regulator as the rotating speed varies from 1,000 to 7,500 rpm using state
feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Simulated control voltages and rotor displacements without (left) and with
(right) the di↵erential regulator at 7,500 rpm using state feedback. . . . . . . 79

6.5 Simulated control voltages without (left) and with (right) the di↵erential
regulator as the rotating speed varies from 1,000 to 7,500 rpm using output
feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Simulated control voltages and rotor displacements without (left) and with
(right) the di↵erential regulator at 7,500 rpm using output feedback. . . . . . 80

6.7 Simulated control voltages and rotor displacements with the di↵erential regu-
lator turned on at 2 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.8 The balancing beam test rig. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.9 Illustrative diagram of the balancing beam test rig. . . . . . . . . . . . . . . 85
6.10 Simulated control current and titling angle without the di↵erential regulator

at 980 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.11 Simulated control current and titling angle with the di↵erential regulator at

980 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.12 Simulated control current and titling angle without the di↵erential regulator

from 0 to 1,200 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.13 Simulated control current and titling angle with the di↵erential regulator from

0 to 1,200 rpm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.14 Experimental performance without (left column) and with (right column) the

di↵erential regulator at 685 rpm. . . . . . . . . . . . . . . . . . . . . . . . . 90
6.15 Experimental performance without (blue curves) and with (red curves) the

di↵erential regulator from 0 to 685 rpm and then back to 0 rpm. . . . . . . . 91



List of Figures x



Chapter 1

Introduction

The research and development of active magnetic bearings (AMBs) can be traced back several

decades and AMBs have seen steady popularity growth in the industrial applications, ranging

from small turbomolecular pumps to large megawatt-level compressors [1]. Compared to

conventional mechanical bearings, AMBs adopt di↵erent operating principles and retain

di↵erent structures. On the one hand, AMBs utilize magnetic forces generated by electrical

coils to support the shaft so there is no physical contact between the rotating and static

components, which creates a nearly friction-free working environment. On the other hand,

since AMBs are inherently unstable systems, feedback controllers are indispensable for AMBs

to generate the desired dynamic force, which entails additional electronics. Given that AMB

supported rotating machines can deliver high e�ciency and reliability with low maintenance

and repairing costs, they become more suitable for a variety of high speed compressor

applications.

1.1 Problem statement

Because of their prominent advantages and features, AMB supported rotating machinery

has gradually gained popularity in applications where the machines have to be operated

remotely. More specifically, emerging applications in o↵shore drilling for oil and gas production

1
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Figure 1.1: AMB systems in o↵shore applications.

entail compressors to operate in remote and harsh areas for long hours and those areas are

not easily accessible for frequent diagnosis and maintenance. By using AMB technologies,

these applications have become technically and economically more feasible. Because of the

sensitivity concern of the power electronics to the seawater and the challenge in accessing

remote compressor sites, manufacturers commonly install AMB control units, which include

all the power electronics, on the shores while planting the compressors supported by AMBs

on the seabed, as shown in Fig. 1.1.

The AMB control units and AMB actuators are connected through long cables that can

extend for several kilometers, which introduces significant time delays that may degrade the

performance of the operation and even cause instability. Time delays widely exist in engineer-

ing practice, including the gas/fluid flow in piping for chemical processes, computational time

in complex control algorithm implementation, and remote control and operation. The amount

of delay added by the cabling can be estimated from their physical properties, or directly

measured when the cables are accessible. Electrical wire is typically made from copper, and

the transmission speed generally ranges from 0.59 c to 0.77 c [2], where c is the speed of light.

For a cable that extends for 20 kilometers, the propagation delay could be as much as 0.113

ms, which is close to the phase margin created by a properly designed controller. In a later

chapter, it is shown that an input delay above 0.16 ms can induce instability in the system.
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When system failures happen, it causes undesired machine downtime for the manufacturers

and leads to significant financial loss. Therefore, the control of AMB systems with input

delay needs to be carefully investigated.

In addition to the e↵ect of time delay, high speed rotating machines in remote applications

are also subject to unbalance forces caused by residual rotor unbalance. Any newly machined

rotor always carries some small residual weights and when the rotor’s axis of geometry is not

aligned with its principal axis of inertia as shown in Fig. 1.2, disturbance forces synchronous to

the rotational speed cause the rotor to deflect from the geometric center and enter a whirling

motion. Natural vibrations of a rotating shaft usually manifested themselves as a whirling

about the rotor axis. In a forward whirl, the whirling motion moves in the same direction

as the rotor spinning and, as the unbalance rotates with the rotor spinning, the natural

frequencies are excited, leading to resonance. Besides exciting undesirable synchronous

vibrations, rotor unbalance can also cause saturation of the amplifiers, result in rotor position

runout, and increase the housing vibrations and noise emissions.

The conventional approach to handling rotor unbalance is through installing or removing

a small amount of mass from the rotor to counteract the residual unbalance. Nevertheless,

this mechanical approach requires a significant amount of experience and is a time-consuming

procedure. In addition, for some high speed rotating machines, the unbalance might change

during the operation, so mechanical balancing has to be performed repeatedly, causing

additional inconvenience. One of the prominent AMB features is that, instead of rotating

around the rotor’s geometric axis, the shaft can rotate around the principle axis of inertia.

Therefore, the unbalance is e↵ectively compensated, and to achieve such balancing-free

operation, it requires certain knowledge of the controller design and analysis of unbalance

forces.

In order to achieve the control requirement of a remotely located compressor supported

by AMBs at di↵erent rotational speed conditions, a special advanced control method needs

to be developed to handle the adverse e↵ect of the time delay and to minimize the unbalance
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Unbalance 
mass
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Figure 1.2: Rotor unbalance.

disturbance.

1.2 Objectives of the dissertation

Few works have considered the problems of controlling AMB systems with time delays and

under di↵erent rotating conditions. This dissertation aims to achieve the following objectives:

1. Analyze the rotordynamics of a high-speed flexible rotor AMB test rig that was built

to emulate the characteristics of a small industrial centrifugal compressor, develop a

comprehensive AMB system modeling program for model-based controller designs, and

conduct novel rotordynamic studies using the test rig.

2. Design advanced controllers to stabilize AMB systems subject to input delay and

maximize the allowable delay. Implement the algorithms on the AMB test rigs to verify

the e↵ectiveness of the proposed method.

3. Develop a new unbalance compensation strategy for time-delay AMB systems under

di↵erent rotational speed conditions. Implement and assess the proposed method on

the AMB test rigs.

4. Compare and evaluate the results from simulation and experimental measurements.



1.3 Research approach 5

1.3 Research approach

The control of dynamic systems with time delay is an active area of research and the predictor

feedback control approach for systems with input delays has been extensively studied in the

literature. The predictor feedback control adopts prediction of the future state in calculating

the control signal to cancel the e↵ect of the input delay. By using the prediction of the

future state, the delayed system becomes an equivalent delay-free system. In recent years,

a finite-dimensional predictor by truncating the distributed term of the original predictor

equation has been developed for stable and unstable linear systems, which is called the

truncated predictor feedback (TPF) control law [3, 4].

The TPF control law has been applied to an AMB system as the rotor levitation controller,

which is open-loop exponentially unstable. The controller corresponding to the maximized

input delay that the closed-loop system can tolerate is obtained iteratively from the solution

of a linear matrix inequality (LMI) problem. The Rotating Machinery and Control (ROMAC)

Lab flexible rotor AMB test rig is used for numerical verification and experimental validation

of the developed TPF control law.

To reduce the e↵ect that the rotor unbalance has on high speed rotating machinery

supported by AMBs, a variety of unbalance compensation methods have been developed. If

designed and implemented properly, these methods can significantly mitigate the unbalance

forces acting on the rotor. The vibrations due to the residual unbalance are measured by

sensors and through di↵erent control algorithms, the AMBs can either generate counteracting

bearing forces or shift the rotor axis in such a way that the shaft is rotating about its

principal axis of inertia to cancel the disturbance forces caused by the unbalance. Thus,

the synchronous vibrations are not transmitted to the machine foundations in spite of the

presence of unbalance.

Unbalance compensation methods have not been extended to AMB systems subject to

time delays. To address this challenge, with the TPF control law serving as the feedback

controller, an unbalance compensation method based on the solution of an equivalent output
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regulation problem at a constant rotational speed is developed. The problem of output

regulation is to design a controller for disturbance rejection and/or reference tracking, while

the disturbance or reference is generated by a known dynamic system called exosystem.

Since the rotational speed is constant, the exosystem is time-invariant. By applying output

regulation to AMB systems for unbalance compensation, the unbalance force is modeled by

the exosystem and the control voltage defines the error to be regulated. The resulting model

based controller will demonstrate that both synchronous rotor vibrations and the magnitude

of control output are significantly reduced.

After considering the case of constant rotational speed, the research is extended to the

autobalancing and unbalance suppression problems of AMB systems subject to input delay

at time-varying rotational speeds. The speed generally varies slowly since the torques of

the drive and the load are limited. To reject the unbalance disturbance under di↵erent

rotational speed conditions, the main approach discussed in the literature is to intermittently

switch the regulator gains that have been designed beforehand and saved in the memory as a

look-up table, similar to the concept of gain scheduling control. Switching of regulator gains

may result in bumpy transition. Therefore, this approach is not only cumbersome but also

restricted to discrete speed ranges.

To address the remaining challenge in the research, a di↵erential regulator based output

regulation approach is presented to address the unbalance mitigation problem of AMB

systems for varying rotational speeds. After formulating the output regulation problem

with a time-varying exosystem, it is observed that the compensator gains can be obtained

based on the solution of the di↵erential regulator equation (DRE) and can be iteratively

generated to closely approach the output regulation objective with a small bounded residual

error in the regulated output. When the rotational speed changes in an AMB system,

the exosystem derived from the unbalance forces becomes time-varying, and the proposed

di↵erential regulator based output regulation approach can be adopted to generate the desired

compensator gains that locally minimize the AMB control force and suppress the vibration.
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The resulting compensator will demonstrate those capabilities at varying rotational speeds.

1.4 Research contributions

The main contributions of this dissertation are summarized as follows:

1. Develop a truncated predictor feedback based output regulation mechanism to control

AMB supported high speed compressors in remotely operated applications, given that

the unbalance compensation of AMB systems subject to time delay has not been

documented in the previous literature.

2. Derive a practical di↵erential regulator based output regulation algorithm to achieve

locally minimized residual error in the regulated output for non-minimum phase systems

that are disturbed by the signals generated from time-varying exosystems, considering

that little literature has addressed such a problem and the current approach has

restrictions.

3. Design and implement the control algorithms on the AMB test rigs to demonstrate the

e↵ectiveness of the proposed method.

4. Characterize how small an input delay can a↵ect the system stability and achieve the

maximization of the delay bound using the LMI optimization method.

5. Demonstrate the versatility of the output regulation framework by investigating di↵erent

output regulation scenarios that achieve unbalance suppression.

1.5 Organization of the dissertation

The remainder of the dissertation is organized as follows:
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1. Chapter 2 briefly describes the operating principles of AMBs and give a brief review of

the literature on the control of systems with time delay and on unbalance compensation

of AMB systems.

2. Chapter 3 describes the flexible rotor AMB test rig that is used for the experimental

validation and presents the AMB system modeling procedure.

3. Chapter 4 details the fundamentals of this dissertation. The TPF control law is

first introduced. Then the output regulation with time-invariant and time-varying

exosystems are formulated.

4. Chapter 5 presents the unbalance compensation for the time-delay AMB system operat-

ing at a constant rotational speed. The TPF controller for the flexible rotor AMB test

rig is first derived to achieve the maximization of the allowable delay bound by using

the LMI method. Then experimental tests are conducted and the TPF controller is

compared with a µ-synthesis robust controller. Afterwards, the unbalance compensation

with input delay using the output regulation mechanism is considered and two scenarios

of output regulations are investigated in both simulation and experiments on the flexible

rotor AMB test rig.

5. Chapter 6 presents the unbalance compensation for time-delay AMB systems under

time-varying rotational speeds. It starts with autobalancing of AMB systems at

continuously changing unbalance disturbance. The TPF control law and the di↵erential

regulator based output regulation method are applied to fulfill the unbalance suppression

requirement. The flexible rotor AMB test rig and a balancing beam test rig are adopted

to verify the proposed compensation method with extensive simulation and experimental

results.

6. Chapter 7 summarizes the work completed in the dissertation and provides suggestions

for the future research.



Chapter 2

Background and Literature Review

2.1 Overview of AMB systems

Active magnetic bearings (AMBs) require feedback controllers to generate appropriate

electromagnetic forces to stabilize rotating components, so they entail additional electronic

devices, such as power amplifiers, sensors and digital computers. Fig. 2.1 illustrates the basic

operating principle of an AMB system in one degree of freedom: when the perturbation

currents ±i
c

converted by power amplifiers are fed to the copper coils wrapped around

the poles in the bearing casing, the electromagnets produce dynamic forces to adjust the

movement of the rotor and try to maintain it near the geometric center of the AMB. Whenever

the rotating component deflects, displacement sensors capture the instantaneous changes

x and pass the measurement information to the controller. The feedback controller then

produces suitable voltage that drives the coils to generate counteracting forces f
amb

so that

the rotor always remains in the allowable clearance in the AMB.

Compared to mechanical bearings, AMBs possess several advantages but are also more

complex and introduce new challenges. Because of the nonlinearity and instability of AMBs,

control design is the most essential task in an AMB application.

9
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Figure 2.1: AMB system operating principle.

2.2 AMB control fundamentals

The AMB system is inherently open loop unstable and a well designed feedback controller

becomes indispensable for the closed loop system stability and smooth operation. There

are several factors that create challenges to the control design of AMB systems, including

flexibility of structures or rotors, unbalance forces that are synchronous to the rotational speed,

nonlinear dynamics of magnetic bearings, and sensitivity to changes in AMB components.

Proportional-integral-derivative (PID) controllers are the most widely used control mech-

anism for AMB related industrial applications. Because of their simple structure, PID

controllers are easy to implement and can be tuned intuitively. They can achieve reasonable

control performance with proper tuning of the parameters. However, for complex dynamic

systems, such as AMB supported flexible rotors, it is di�cult for PID controllers alone to

provide su�cient control authority and to deliver robust performance without additional

filters. When the system parameters change or the working condition varies, PID controllers

might need to be retuned to ensure the AMB system stability and performance requirements.

Given the deficiencies of PID controllers, advanced controllers are needed to push the

envelop and di↵erent approaches have been applied to stabilize AMB systems with improved
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performance and robustness. These approaches are primarily based on modern control theory.

These control designs rely on precise system dynamic models and usually possess multiple-

input multiple-output (MIMO) structures. Some typical designs include linear quadratic

Gaussian (LQG) control, H1 control and µ-synthesis control [5]. These methods rely on

extensive mathematics to optimize the control performance, although they are not as familiar

as PID controllers to most practitioners. Another challenge of model-based control is that the

designs are sensitive to model uncertainties. For AMB systems, there are several major causes

of model uncertainties, including unmodeled high-frequency dynamics, resonant frequency

splitting caused by the gyroscopic e↵ect, and rotor modal damping variations.

Since advanced control methods typically require preliminary work on system modeling

and model validation, their initial commissioning time is longer than PID controllers. However,

a well developed model-based controllers can generally reach the control design criteria and

sometimes even exceed them. A typical way to design controllers for AMB systems is to

start with a simple PID controller for leviation and initiate the preliminary modeling and

validation procedures. Then the practitioner can rely more on the advanced control methods

and conduct systematic design to arrive at a final controller.

Besides those linear control approaches, other advanced design methods, such as adaptive

control, have also been applied to AMB systems. A recent work [6] introduces a characteristic

model based all-coe�cient adaptive control to AMB supported high speed rotating machineries.

This method does not require the actual system model. It relies on the characteristic model,

described by a second order time-varying di↵erence equation, and uses a gradient adaptive

algorithm to generate estimates of the characteristic parameters, which are then used as the

indirect adaptive control parameters. Moreover, the adaptive control method still preserves a

relatively simple structure that makes it easy to implement. It has demonstrated comparable

performance and robustness over some well-known robust controllers.
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2.3 Control of systems with time delays

The control of dynamic systems with time delay is an active area of research. Recent

developments in this area, as well as some open research problems, are discussed in detail

in [7, 8]. More detailed discussions of di↵erent control solutions for the stabilization of

linear time-delay systems are presented in [9]. References [10] and [11] study the control of

time-delay systems with input saturation, while [12], [13] and [14] develop di↵erent solutions

for robust stabilization of time-delay systems with model uncertainties. On the application

side, the e↵ect of time-delay has been considered, for examples, in robotics [15], autonomous

vehicles [16], and magnetic levitation [17].

The predictor feedback control approach for systems with input delay has been studied

extensively in the literature since the Smith predictor was introduced in [18]. In the predictor

feedback control, a prediction of the future states is utilized in the computation of the control

signal to cancel out the e↵ect of the input delay. By utilizing the state prediction in generating

the control output, the delay system is transformed into an equivalent delay-free system. A

vast majority of the predictor feedback methods for linear systems found in the literature is

based on the Artstein model reduction technique [19] and the finite spectrum assignment

technique [20].

Variations of these predictor feedback control methods have been presented in the literature

in recent years. Predictor based controllers have been constructed for uncertain Euler-Lagrange

systems [21], for linear systems with time-varying delays [22], and for systems with unknown

input delays [23], to name a few. A finite dimensional predictor, which is obtained by

truncating the distributed term of the original predictor equation, was developed in [3] for

linear systems with all poles in the closed left-half plane. The truncated predictor relies on

the low gain feedback design [24] to ensure the stability of the closed-loop system. This finite

dimensional predictor was later expanded in [4] to systems with time-varying delays, and in

[25] to exponentially unstable systems.
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2.4 Vibration control of AMB systems

High speed rotating machines are susceptible to large disturbance forces caused by the rotor

unbalance. Residual unbalance on a rotor can generate disturbance forces synchronous to the

rotating speed, causing the rotor to go into a whirling motion. To reduce the rotor unbalance

e↵ect on AMB systems, various unbalance compensation methods have been investigated

and developed over the years. These methods can significantly reduce the disturbance forces

acting on the rotor. The interest in rotor unbalance suppression methods has increased rapidly

in recent years as high speed AMB applications become more common. A small sample of

the literature studying the unbalance compensation problem can be found in [26–33] and the

references therein.

Reference [26] presents one of the earliest and most commonly used unbalance compensa-

tion techniques for AMB systems. In [26], generalized notch filters are designed and inserted

into the system to cancel the synchronous signal components while the controller design

remains unrestricted and the closed-loop stability is preserved. However, the notch filter can

still potentially jeopardize the stability margin of the system due to the associated changes

in the phase response. The feedforward unbalance compensation scheme is another common

approach. It generates a sinusoidal compensation signal which has the appropriate magnitude

and phase information to cancel out the corresponding sinusoidal component in the sensor

measurement signal. Shafai et al. presents an adaptive forced balancing (AFB) method to

address the problem of synchronous vibration caused by mass unbalance in AMB systems

[27]. The AFB computes a synchronous reference signal and inserts it at the reference adding

location to cancel the synchronous component of the system output. In [30], a time-domain

iterative learning control (ILC) and gain-scheduled control based unbalance compensation

method is proposed. The ILC scheme is able to work in a predefined speed range and the

control gain is automatically adjusted through learning to compensate for di↵erent speeds.

Reference [31] applies the multivariable H1 control technique to an AMB supported rigid

rotor. It is shown that the H1 controller, which adopts di↵erent structures of weighting func-
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tions and uncertain parametric structure for the bearing sti↵ness and rotor speed, prevents

the whirling of the rotor at the critical speed and achieves substantial vibration suppression

of the unbalance. Tang et al. build a magnetically suspended flywheel and propose notch

filter based open-loop and closed-loop control methods to eliminate the vibration caused

by the residual unbalance [32]. Their compensation method utilizes adaptive notch filters

to generate additional currents which have equivalent magnitudes and opposite phases to

eliminate the synchronous components in the control current. Reference [33] proposes a

double-loop design to compensate the unbalance vibration. They first identify the rotor

unbalance characteristic using generalized notch filters, and then apply a feedforward loop at

low speeds and an adaptive tuning loop at high speeds. The only drawback of their method

is that the synchronous magnetic bearing force always exists, which is mainly caused by the

measurement error and variations of the AMB current sti↵ness and displacement sti↵ness.

Throughout the literature, most unbalance compensation methods focus on constant

rotational speeds and have not been extended to AMB systems that are subjected to time

delay.



Chapter 3

Description of the Test Rig and

Rotordynamic Study

In this chapter, the ROMAC flexible rotor AMB test rig that is to be used to validate the

proposed control method is described in detail. Then the models for the major components

in the AMB system are enumerated and the procedure of formulating the state space model

for the entire AMB system is described.

3.1 System description

The flexible rotor AMB test rig is a research platform constructed in the ROMAC laboratory.

The original purpose of this test rig was to emulate an industrial size centrifugal gas compressor

and perform advanced control designs [5, 6]. A schematic of the rotor AMB test rig is shown

in Fig. 3.1. In particular, Disk 1 and Disk 2 emulate the wheels in a compressor. There are

four AMBs in the test rig. Two radial support AMBs are located at the non-driven end

(NDE) and the driven end (DE) of the rotor. One exciter AMB is at the mid span and the

other is at the quarter span of the rotor. This combination of four radial AMBs allows the

simulation of di↵erent operating conditions of a compressor.

15
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Support AMB Support AMB 

Sensor Disk1 Disk2

Exciter AMB Exciter AMB

NDE DE

Figure 3.1: Schematic of the flexible rotor AMB test rig.

3.1.1 Rotor construction

The rotor in the test rig is 1.23 m long and weights 44.9 kg. Four laminated steel journals are

mounted on the shaft respectively for the two radial support AMBs at the NDE and the DE

locations, and the two radial exciter AMBs at the rotor mid and quarter spans. There are

also two auxiliary ball bearings mounted at the support AMB locations to prevent damage to

the AMBs in the event of a rotor drop. A 3.7 kW high speed motor with variable frequency

drive (VFD), Colombo RS-90/2, drives the rotor in the test rig to speed up to 18,000 rpm.

The drive is connected to one end of a flexible disc coupling using a custom shaft extension.

The assembled flexible rotor AMB test rig is shown in Fig. 3.2.

3.1.2 Magnetic bearings

The two support AMBs utilize a 16-pole heteropolar design with M-15 Si-Fe lamination.

There are 48 turns of #18 copper wires for each pole. The air gaps for the NDE and DE

AMBs are 0.518 mm and 0.593 mm, respectively. The quadrant inductance L
w

= 12 mH and

the quadrant resistance R
w

= 0.35 ⌦. The two exciter AMBs utilize a 8-pole design and there

are 94 turns of #18 copper wires for each pole. The air gaps for the mid and quarter span

AMBs are 0.575 mm and 0.491 mm, respectively. The quadrant inductance L
w

= 36 mH and

the quadrant resistance R
w

= 0.34 ⌦. The quadrant orientation has a 45� o↵set from the

vertical axis so that the rotor weight is evenly distributed between the two control channels,
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Figure 3.2: The ROMAC flexible rotor AMB test rig.

which also ensures the x and y axes possess identical rotordynamics. The properties of the

support and exciter AMBs are summarized in Table 3.1.

3.1.3 Electronics

The digital control system is based on an Innovative Integration M6713 PCI board and

a TI C6713B 32-bit floating point digital signal processing (DSP) chip is used for the

implementation of the digital control algorithm with an updating frequency of 12 kHz.

Sixteen input-output analog channels are simultaneously sampled and interfaced with the 16

sensors and the 16 actuators associated with the four AMBs.

A functional overview of the support AMBs is shown in Fig. 3.3. The pair of the support

AMBs are driven by a Model 422 analog PWM amplifier from Copley Controls operating
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Property NDE/DE mid/quarter Units
Bias current, I

b

4 1 A
Number of poles, n 16 8 --
Estimated air gap flux density, B 0.55/0.5 0.27 T
Current gain, K

i

130/100 94/91 N/A
Negative sti↵ness, K

x

900/600 165/186 kN/m
Copper turns, N 48 94 --
Projected pole area, A

p

348 700 mm2

Nominal air gap, g
0

0.518/0.593 0.575/0.491 mm
Stator axial length, l 43.6 43.6 mm
Stator outer diameter, D

0

196 196 mm
Stator inner diameter, D

i

92.412/92.424 92.418/92.358 mm
Rotor lamination diameter, D 91.377/91.237 91.269/91.377 mm
Back iron thickness, T

b

0.0171 0.0201 mm
Stator weight 35.6 53.4 N

Table 3.1: Support and exciter AMBs properties.

Support AMB Support AMB 

Sensor Disk1 Disk2

Exciter AMB

AMB Test Rig

Exciter AMB

Kaman Mag. Brg. 
Measuring System

8-channel Sensor Anti-
aliasing Filter Circuit

ADC DAC

Codehammer 
PCI JTAG

M6713 
DSP

PCI Bus Extender

Controller Servo16

Quad Amplifier 
Control Boards

NI cDAQ 9172 
chassis

Windows 
PC

8     Copley 422 
Power Amps
uLEM Current 

Transducers
Anti-aliasing 

Filters
Terminal 

Box

Figure 3.3: A functional overview of the support AMBs.
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from a 150 V DC supply with a 10 A continuous current rating, which gives each AMB a

static load capacity of 1450 N. The rotor motion at each support AMB location is detected

using a Kaman eddy current probe measuring system. A pair of Kaman 1H/15N static probes

are mounted to measure the displacements of the two control axes. The high frequency noise

of the displacement signals is attenuated by an anti-aliasing filter circuit.

A functional overview of the exciter AMBs is shown in Fig. 3.4. The mid span and the

quarter span exciter AMBs are driven by four Copley Controls 413 and 4212 amplifiers. A

pair of Bently Nevada 7200 Series eddy current probes are used at the mid span and quarter

span locations. A gain/o↵set circuit is connected to a BN 7200 Series proximitor, changing

the output voltage from around �10 V to 0 V. The two AMBs in the mid and quarter spans

have been used to emulate the negative sti↵ness of the generator and the gyroscopic e↵ects

of the flywheel disk on the rotordynamics in the recent research.

Support AMB Support AMB 

Sensor Disk1 Disk2
Exciter AMB

AMB Test Rig

BN 7200 Series 
Proximitor + Gain/ 

Offset Circuit

8-channel Sensor Anti-
aliasing Filter Circuit

ADC DAC

Codehammer 
PCI JTAG

M6713 
DSP

PCI Bus Extender

Controller Servo16

4 X Copley 413 
Power Amps

4  x  Copley 4212 
Power Amps

Quad Amplifier 
Control Boards

NI cDAQ 9172 
chassis

Windows 
PC

Terminal 
Box

Exciter AMB

Figure 3.4: A functional overview of the exciter AMBs.
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Figure 3.5: AMB system block diagram.

3.2 AMB system model

The AMB system model for the test rig incorporates the rotor finite element (FE) model, the

linearized AMB model, the sensor and amplifier models, and the Padé approximation model

of the computational delay. The block diagram of the AMB system is shown in Fig. 3.5. The

following subsections elaborate the modeling of several key components in the system. A

more comprehensive review of the AMB system modeling can be found in [1].

3.2.1 Rotor model

By dividing the rotor length into 50 stations, a two dimensional FE model of the rotor is

obtained for the lateral rotordynamic analysis. A drawing of the finite element rotor model

is shown in Fig. 3.6. The rotor is modeled as a lumped mass-sti↵ness element while the

discs and the AMB laminations are modeled as mass-inertia elements added to appropriate

locations. A four degree of freedom (DOF) lateral analysis is performed for each node and

a ROMAC custom code is used to generate the global entries for the mass (M), internal

shaft sti↵ness (K), internal shaft damping (D) and gyroscopic (G) matrices. Matrices M , K

and D are symmetric and positive definite while matrix G is skew-symmetric. The dynamic
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Figure 3.6: The flexible rotor finite element model.

motion of the rotor can be described in the following di↵erential equation,

Mq̈ + (D + ⌦G)q̇ +Kq = B
mag

F
mag

+B
w

F
w

, (3.1a)

y
r

= Cq, (3.1b)

where the displacement vector q contains 200 elements representing the lateral translations

in the x and y axes and rotating angles around the y and x axes, F
mag

represents the forces

provided by the AMBs and B
mag

specifies the location where the forces are injected, F
w

represents all external forces acting on the rotor with B
w

specifying the locations, ⌦ is the

rotational speed, and the vector y
r

represents the rotor displacement at the sensor locations

specified by the output matrix C. The modeling assumes that there is no axial motion of the

rotor.

Based on the coordinate transformation between the physical space [5] and the modal
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Mode Free-Free 2.5 MN/m Support Sti↵ness
Nc1 0 52.2 Hz (3,130 rpm)
Nc2 0 88.8 Hz (5,327 rpm)
Nc3 224 Hz (13,433 rpm) 243 Hz (14,596 rpm)
Nc4 549 Hz (32,915 rpm) 552 Hz (33,110 rpm)
Nc5 982 Hz (58,920 rpm) 982 Hz (58,920 rpm)

Table 3.2: The rotor natural frequencies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Rotor Length (m)

M
od

al
 R

el
at

iv
e 

D
is

pl
ac

em
en

t

 

 

1st Rigid Body Mode (52.2 Hz)
2nd Rigid Body Mode (88.8 Hz)
1st Bending Mode (243 Hz)
2nd Bending Mode (552 Hz)
3rd Bending Mode (982 Hz)Sensor Sensor AMBAMB AMB AMB

Figure 3.7: The mode shape plot of the rotor.

space using q = �
m

⇣, the state space model based on Eqs. (3.1a) and (3.1b) can be converted

into the following modally reduced state space form
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The original state space model has 400 states and contains several high order rotor modes
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beyond the controller bandwidth. These modes are unlikely to be excited and contribute

negligible e↵ect to the system dynamics. Thus, in order to facilitate analysis and design,

model truncation is applied to obtain a reduced order model. The model truncation is justified

by verifying the relative magnitude of the Hankel singular values of the rotor model. For the

first five rotor modes, the Hankel singular values are 10.1, 10.1, 9.35, 9.32 and around 0.1

while the remaining higher order modes have significantly lower magnitudes, which verifies

the higher order modes can be truncated. The mode shape plot corresponding to the first

five natural frequencies of the rotor is shown in Fig. 3.7. The Campbell diagram under the

original gyroscopic e↵ects with 5 MN/m support sti↵ness is shown in Fig. 3.8, and it is

observed that the rotor natural frequencies start dividing into forward and backward modes

with the increasing of the rotational speed. The first five natural frequencies under free-free

and 2.5 MN/m support sti↵ness are shown in Table 3.2. The final rotor model retains the

two rigid body modes and the first three bending modes with a total of 20 states and is

represented as follows,

ẋ
m

= A
m

x
m

+B
m

F
mag

+B
d

F
w

,

y
r

= C
m

x
m

.

3.2.2 Modeling of AMBs

Here a one DOF AMB model is used to illustrate the electromagnetic force characteristics.

As shown in Fig. 3.9, the forces generated by AMBs depend on the air gap between the rotor

and the stator, as well as the current feedings in the windings on the stator. The following

nonlinear equation is derived to describe the net force generated by a pair of electromagnets

based on the movement x and the air gap g
0

f = f
1

� f
2

=
µ
0

N2A
g

I2
1

4(g
0

� x)2
� µ

0

N2A
g

I2
2

4(g
0

+ x)2
=

µ
0

N2A
g

4

"
I2
1

(g
0

� x)2
� I2

2

(g
0

+ x)2

#
, (3.3)
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Figure 3.8: The Campbell diagram of the rotor with 5 MN/m support sti↵ness to show the
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x x

g0+x

g0-x

N I2

I1

Ag

Ag

Lamination

Coils

Shaft

N

Figure 3.9: One DOF AMB model.

where µ
0

is the permeability, I is the current, N is the number of turns of wires, A
g

is the

face area of the pole and g
0

is the size of the air gap.
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With I
1

and I
2

being the bias current I
b

perturbed by the perturbation current i as I
b

+ i

and I
b

� i, respectively, linearization of f around the equilibrium point (i = 0 and x = 0)

results in

f =
µ
0

N2A
g

g4
0

(I2
b

g
0

x+ I
b

ig2
0

) =
µ
0

N2A
g

I2
b

g3
0

x+
µ
0

N2A
g

I
b

g2
0

i, (3.4a)

f = k
x

x+ k
i

i, (3.4b)

where k
x

=
µ0N

2
AgI

2
b

g

3
0

and k
i

= µ0N
2
AgIb

g

2
0

are the sti↵ness and current gains, respectively.

This AMB model ignores the eddy current loss and assumes zero leakage in the magnetic

circuit. The current gains k
i

are 130 and 100 N/A for NDE and DE AMBs while the negative

sti↵ness gains k
x

are 900 and 600 N/mm for the NDE and DE AMBs with a bias current

I
b

= 4 A. The AMB forces vector acting on the rotor in the x and y axes at the support

AMB locations are described as F
mag

= [F
mag,x1

F
mag,x2

F
mag,y1

F
mag,y2

]T and the perturbation

current vector is described as i = [i
x,1

i
x,2

i
y,1

i
y,2

]T.

Combining the rotor model with the linearized AMB model, we arrive at the following

system model

ẋ
m

=
⇣
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m

� B
m
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x
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x
m
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m
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i
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m
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m
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m
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i+B
d

F
w

, (3.5b)

y
r

= C
m

x
m

. (3.5c)

3.2.3 Modeling of additional components

The power amplifier dynamics are associated with the resistance and inductance of AMB

windings as well as back-EMF and eddy current e↵ect. Through the lamination between the

rotor and the stator, the eddy current e↵ect is reduced significantly and can be ignored in

radial AMBs [34]. Based on the fitting with the experimental frequency response, the power
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amplifier is modeled by the following transfer function,

G
a

(s) =
DC gain

(s+ p
a1

)(s+ p
a2

)(s2 + 2⇠
a

!
a

s+ !2

a

)
, (3.6)

where the DC gain is 2.5 A/V, p
a1

= 13820 rad/s, p
a2

= 28270 rad/s, ⇠
a

= 0.55 and

!
a

= 16210 rad/s with a bandwidth of 2.5 KHz for the Copley 422 amplifiers that power the

support AMBs. The amplifier transfer function G
a

(s) is then converted into a state space

model (A
a

, B
a

, C
a

) with a total of 16 states for all the four control channels. The control

voltage u serves as the input to the amplifier whose output is the perturbation current i.

Then the previous system model (3.5) can be expanded as
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y
r

= C
m

x
m

. (3.7b)

For each AMB, there are four eddy current sensor probes, each of which is modeled by a

constant gain 8 mV/µm and one analog signal conditioning circuit is also included, which

serves as the anti-aliasing filter (AAF). The AAF is an 8th order Chebychev Type II low

pass filter that achieves �30 dB stop band attenuation at 4 KHz. The eddy current sensor

and AAF are represented by a state-space model (A
s

, B
s

, C
s

) with 32 states and 4 voltage

outputs y
s

. The previous system model (3.7) can be further augmented as
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ẋ
a

3

77775
=

2

66664

Â
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y
s

= C
s

x
s

. (3.8b)

There are two sampling filters at the analog front-end of the DSP board, which have flat
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magnitude response over the bandwidth of the flexible rotor AMB system and introduce a

phase lag of less than 5� at 1 KHz. Besides, the computational delay between each iteration

is manifested as a phase lag in the frequency domain, to model the computational delay

caused by the DSP. A second order Padé approximation is used to obtain a rational transfer

function for a approximated time delay as follows,

e�⌧s =
e�

1
2 ⌧s

e
1
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⇡
1� 1

2

⌧s+
�
1

2

⌧s
�
2

1 + 1

2

⌧s+
�
1

2

⌧s
�
2

. (3.9)

The computational delay introduces a phase lag of 23� at 1 KHz, which has to be taken

into account in the final system model. The sampling filters from the ADC and the Padé

approximation of computational delay can be formulated into a state space model (A
f

, B
f

,

C
f

) that contributes 24 additional states.

3.2.4 The entire AMB system

The final system model incorporating the rotor, AMBs, amplifiers, sensors, filters and time

delay can be described in the following form,
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y
f

= C
f

x
f

. (3.10b)

The entire AMB system model has 92 states, which is a relatively large number for the

controller synthesis. After representing all electrical/electronic components as gain plus time

delay using a fourth-order Padé approximation, the following state space model (A
gd

, B
gd

,
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C
gd

, D
gd

) is derived with 16 states

ẋ
gd

= A
gd

x
gd

+B
gd

y
r

, (3.11a)

y = C
gd

x
gd

+D
gd

y
r

. (3.11b)

The gain plus delay model closely matches the magnitude and phase response of the

combined model from the amplifiers, sensors, filters and approximations of computational

delay. It takes the output from the rotor AMB model, which are the displacements at the

sensor locations, and generates the perturbation current input to the rotor AMB model.

Then the following reduced order model can be acquired at with 36 states.
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Â

m

0

B
d

C
m

A
d

3

75

2

64
x
m

x
d

3

75+

2

64
B̂

m

0

3

75 u (3.12a)

y
s

=


D

d

C
m

C
d

�
2

64
x
m

x
d

3

75 . (3.12b)

To be utilized for the control synthesis, the reduced order nominal plant model (3.12)

is compared with experimental frequency response as shown in Fig. 3.10. Closed-loop

identification is performed using a lightly tuned PID controller with filters to first levitate the

rotor. Then a sinusoidal sweep from 10 Hz to 1200 Hz with fixed amplitude is generated from

a spectrum analyzer and added on the controller output signal. After collecting the signal

from the AAF, a frequency response is produced through the spectrum analyzer. Afterwards,

similar measurements are collected from other control channels. As shown in the comparisons

in Fig. 3.10, the close agreements in the frequency response among di↵erent channels indicate

that the MIMO plant model captures accurate dynamics of the actual AMB system.
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Figure 3.10: Bode plots for the test rig: analytic model vs experimental measurements.
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3.3 Summary

This chapter first introduces the ROMAC flexible rotor AMB test rig. The overall system

and the key components are described in detail. Afterwards, modeling of the AMB system is

presented. The rotor FE model, the linearized magnetic circuit model for AMBs, amplifier

and sensor models, and approximation of the computational time delay model are presented.

The formulation of the entire AMB system model by cascading those individual components

is also detailed.



Chapter 4

Fundamentals

In this chapter, the fundamentals of controlling systems with input delay and the problem of

output regulation for input-delay systems with time-invariant and time-varying exosystems

are presented. First of all, the general problem formulation of a linear time-invariant (LTI)

system with input delay is described and the truncated predictor feedback (TPF) control

law is introduced. Then the stability condition for the input-delay system under the TPF

law is developed. Afterwards, the output regulation problem for a general LTI system with

input delay and time-invariant exosystem is formulated and the solution by using both state

and output feedbacks are detailed. Finally, the output regulation problem is extended to a

general input-delay LTI system with a time-varying exosystem, and a di↵erential regulator

based compensator design is developed to locally minimize the residual error in the regulated

output for non-minimum phase systems.

4.1 Control of systems with input delay

Consider an LTI system with input delay, represented by the following state space equation,

ẋ = Ax+Bu(�(t)), (4.1)

31
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where x 2 Rn is the state, u 2 Rm is the input, (A,B) is controllable and �(t) is a known

time-varying delay function defined as

�(t) = t�D(t). (4.2)

where the delay function D(t) satisfies that there is a D̄ > 0 such that 0  D(t)  D̄. The

function �(t) is also assumed to be continuously di↵erentiable, invertible and d�(t)

dt

> 0 for all

t > 0.

The predictor feedback control method depends on the closed form solution of the dynamic

system to predict the future system state, and the control input can be pre-computed to annul

the e↵ects of an input delay. For a constant delay D(t) = ⌧ , the future state is predicted as

follows,

x(t+ ⌧) = eA⌧x(t) +

Z
t

t�⌧

eA(t�s)Bu(s)ds. (4.3)

Then the predictor state feedback law takes the following form

u(t) = Kx(t+ ⌧) = KeA⌧x(t) +K

Z
t

t�⌧

eA(t�s)Bu(s)ds. (4.4)

A drawback of the predictor feedback control is that the controller is infinite dimensional

due to the distributed term and it is di�cult to implement in practice.

A stabilizing controller for Eq. (4.1) could be constructed through the finite dimensional

predictor feedback control method as discussed in [3], which is also known as the truncated

predictor feedback (TPF) method. For a constant delay, the TPF control law with a feedback

gain K is given as

u(t) = KeA(�

�1
(t)�t)x(t) = KeA⌧x(t). (4.5)

The state space equation of the closed-loop system (4.1) under the TPF control can be

found as

ẋ(t) = (A+BK)x(t)� BK�(t), (4.6)
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where �(t) is defined as

�(t) =

Z
t

�(t)

eA(t�s)BKeA(s��(s))x(�(s))ds,

=

Z
t

t�⌧

eA(t�s)BKeA⌧x(s)ds.

(4.7)

The feedback gain K that stabilizes the closed-loop system can be obtained from the

following theorem [41]:

Theorem 4.1.1 Consider the input-delay system (4.1), where the pair (A,B) is controllable.

Given some positive definite matrix W , the TPF control (4.6) with

K = �BTW�1 (4.8)

asymptotically stabilizes the delayed system (4.1) if there exist real scalars ! > 0 and ↵ > 0

such that

↵W � BBT, (4.9a)

(A� 1

2
!I)W +W (A� 1

2
!I)T < 0, (4.9b)

W (A+
↵3D̄

2!
e!

¯

D(e!
¯

D � 1)I)T

+(A+
↵3D̄

2!
e!

¯

D(e!
¯

D � 1)I)W < BBT. (4.9c)

The above theorem provides the stability conditions for the input-delay system under the

TPF control law. These conditions have been established from the solution to an algebraic

Riccati equation, and the details are shown in [41]. Based on Theorem 4.1.1, the optimal

TPF control law that maximizes the allowable delay bound D̄ for the stable closed-loop

system can be obtained. The process of deriving the controller with the maximized delay

bound will be detailed in the next chapter.
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4.2 Output regulation for input-delay system with time-

invariant exosystem

Output regulation is one of the central problems in control theory and the objective is to

regulate the plant output so that it tracks a prescribed reference signal in the presence of

disturbances. The reference and disturbance signals perturbing the system are produced

by an external dynamic system known as the exosystem. The output regulation problem

has been extensively studied by many researchers since it was formulated by [42] for linear

systems, and by [43] for nonlinear systems. A comprehensive treatment of the nonlinear

output regulation problem can be found in [44,45].

Several works have studied the output regulation problem for time delay systems. The

output regulation problem for systems with state delays has been discussed in [46] and [47],

where the authors derive the necessary and su�cient conditions for the existence of a solution

by employing an argument similar to one as presented in [42] for the delay-free case. In

the nonlinear system setting, [48] extends the solvability conditions of the output regulation

problem to systems with state delays. For systems with input delay, [49] introduces a robust

solution to the output regulation problem. For continuous time linear time-invariant system

with delays in the state, input and output, the output regulation problem has been studied

in [50,51]. Few works that apply the output regulation problem with time delays to practical

systems can be found in the literature.

The exosystem studied in this section is assumed to be time-invariant and is extended to

time-varying exosystem in Section 4.3.

Consider the following LTI system with input delay,

ẋ(t) = Ax(t) + Bu(t� ⌧) + Pw(t), (4.10a)

y(t) = Gx(t), (4.10b)

e(t) = Cx(t) +Du(t� ⌧) +Qw(t), (4.10c)
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where state x 2 Rn, control input u 2 Rm, output y 2 Rr, error to be regulated e 2 Rr and

⌧ � 0.

The external disturbance w is generated by the following linear exosystem

ẇ(t) = Sw(t). (4.11)

In general, w could be of any dimension. The objective for the output regulation problem

is to find a control law such that

1. The closed-loop system is asymptotically stable when w ⌘ 0.

2. The regulation error e(t) approaches zero as t ! 1, for any arbitrary initial conditions

of x and w.

Some standard assumptions are made on the system (4.10) that are required for the

solvability of the output regulation problem.

Assumption 1 The system (4.10) is stabilizable and detectable when w ⌘ 0.

Assumption 2 The eigenvalues of the exosystem (4.11) have nonnegative real parts.

Assumption 1 guarantees that there exists a control law using the output information

available to asymptotically stabilize system (4.10). Assumption 2 ensures that the output

regulation problem is nontrivial and the disturbance signal generated by the exosystem will

not converge to zero.

4.2.1 Output regulation by state feedback

The following lemma provides a solution to the output regulator problem by state feedback,

given that a stabilizing control law exists for the disturbance-free system.
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Lemma 4.2.1 Consider the time-delay system (4.10) satisfying Assumptions 1 and 2, and

let the state feedback law u(t) = x(t),  2 Rm⇥n, be an asymptotically stabilizing control law

for (4.10) when w ⌘ 0. Then, the control law

u(t) = ⌫(t) + �e⌧Sw(t), (4.12)

where ⌫(t) = z(t) and z(t) = x(t)� ⇧w(t), solves the output regulation problem if and only

if there exist matrices ⇧ 2 Rn⇥2s and � 2 Rm⇥2s that satisfy the regulator equations

⇧S = A⇧+ B�+ P, (4.13a)

0 = C⇧+D�+Q. (4.13b)

Proof. The proof follows readily from defining the state transformation z(t) = x(t)� ⇧w(t),

and the control input to be in the form of (4.12). Let ⇧ and � be the solution to (4.13).

Then (4.10) simplifies to

ż(t) = Az(t) + B⌫(t� ⌧), (4.14a)

e(t) = Cz(t) +D⌫(t� ⌧), (4.14b)

which is equivalent to (4.10) with w ⌘ 0. Assumption 1 implies that there exists a stabilizing

state-feedback control law ⌫(t) = z(t), and the fact that lim
t!1 e(t) = 0 leads to the

conclusion that (4.12) is a solution to the output regulation problem.

To demonstrate the necessary condition, assume that (4.12) is a solution to the output

regulation problem. Then, the regulation error becomes

e(t) = Cz(t) +Dz(t� ⌧) + (C⇧+D�+Q)w(t),
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which must satisfy that lim
t!1 e(t) = 0. Since Assumption 2 states that w(t) is nonvanishing,

the regulation error approaches zero for arbitrary initial conditions if lim
t!1 z(t) = 0 and

(4.13b) is true. Furthermore, it was assumed that ⌫(t) = z(t) asymptotically stabilizes

(4.14). For lim
t!1 z(t) = 0 to be true under Assumption 2, it is required that (4.13a) is

satisfied.

For the undisturbed system (4.10) with w ⌘ 0, the TPF control takes the form of a finite

dimensional predictor feedback law as discussed in Section 4.1 as follows,

u(t) = KeA⌧x(t), (4.15)

where K is the feedback gain with K = �BTW�1 and W is derived based on the stability

conditions described in (4.9).

4.2.2 Output regulation by output feedback

For practical implementation purposes, the state feedback results are extended to the output

feedback design.

Consider Eqs. (4.10) and (4.11) in the following state space form with � = [xT wT]T,

�̇(t) =

2

64
A P

0 S

3

75�(t) +

2

64
B

0

3

75 u(t� ⌧), (4.16a)

y(t) =


G 0

�
�(t), (4.16b)

e(t) =


C Q

�
�(t) +Du(t� ⌧). (4.16c)

Lemma 4.2.2 Consider the time-delay system (4.16) satisfying Assumptions 1 and 2, and

let the state feedback law

u(t) = z(t) + �e⌧Sw(t),
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as defined in Lemma 4.2.1, be a solution to the problem of output regulation by state feedback,

where z(t) = x(t)� ⇧w(t), and ⇧ 2 Rn⇥2s and � 2 Rm⇥2s satisfy the regulator equations in

(4.13). Then, the output feedback control law

˙̂�(t) = A�̂(t) + Bu(t� ⌧) + L(C�̂(t)� y(t)), (4.17a)

u(t) =


 �e⌧S�⇧

�
�̂(t), (4.17b)

solves the output regulation problem, where

�̂ =

2

64
x̂

ŵ

3

75 , A =

2

64
A P

0 S

3

75 , B =

2

64
B

0

3

75 , C =


G 0

�
,

if a matrix L 2 Rr⇥m exists such that (A+ LC) is Hurwitz.

Proof. Similarly to the proof of Lemma 4.2.1, the state transformation is defined as

z(t) = x(t)�⇧w(t), and let ẑ = x̂�⇧ŵ and z̃ = ẑ� z. The closed-loop equation of z(t) and

the regulation error e(t) respectively become

ż(t) = Az(t) + Bz(t� ⌧)

+


B B

�
�e⌧S � ⇧

�
�
�̃(t� ⌧), (4.18a)

e(t) = Cz(t) +Dz(t� ⌧)

+


D D(�e⌧S � ⇧)

�
�̃(t� ⌧), (4.18b)

where the equation for �̃ = �̂� � is obtained from (4.16) and (4.17) as

˙̃�(t) = (A+ LC) �̃(t). (4.19)

The z(t) and �̃(t) subsystems are decoupled, and (4.19) is asymptotically stable. Lem-

ma 4.2.1 also yields that z(t) asymptotically approaches zero when �̃ ⌘ 0. Finally, as the
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states z(t) and �̃(t) asymptotically approach zero, the regulation error signal will also converge

to zero. Therefore, (4.17) is a solution to the output regulation problem by output feedback.

4.3 Output regulation for input-delay system with time-

varying exosystem

Most of existing literature on the output regulation problem assumes the exosystem to be

time-invariant. However, for many practical systems, the external disturbance is time-varying,

so it is worthwhile to investigate the output regulation problem with a time-varying exosystem.

Only a few works have considered this problem [52–54] and the linear di↵erential regulator

equation becomes the essential part in tackling the time-varying exosystem. All the previous

results are restricted to minimum phase systems, except [55], where the results are extended

to non-minimum phase systems. Throughout the literature, systems with input delay have

not been considered in the output regulation problem with a time-varying exosystem.

First consider the following LTI plant with a constant input delay

ẋ(t) = Ax(t) + Bu(t� ⌧) + Pw(t), (4.20a)

y(t) = Hx(t), (4.20b)

e(t) = Cx(t) +Du(t� ⌧) +Qw(t). (4.20c)

In (4.20), the state vector x 2 Rn, the control input vector u 2 Rm, the plant output

vector y 2 Rr and the error to be regulated e 2 Rr.

Consider the following linear time-varying exosystem

ẇ(t) = S(t)w(t), (4.21)
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where w 2 Rp represents the disturbance to be rejected
�
Pw(t)

�
and the reference signal to

be tracked
�
Q(w(t)), S(t)

�
is bounded and smooth with bounded derivatives.

For convenience, a matrix A(t) is said to be exponentially stable if the linear system

ẋ = A(t)x is exponentially stable, which means that the corresponding state transition matrix

�
A

(t, t
0

) satisfies k�
A

(t, t
0

)k  c
0

e�↵(t�t0) with t � t
0

for some c
0

> 0 and ↵ > 0.

The objective of the output regulation is to find a control law such that

• The closed-loop system is asymptotically stable when w ⌘ 0;

• The error e(t) converges to zero, for any initial conditions of the plant and the exosystem.

Two assumptions are made for the solvability of the output regulation problem.

Assumption 3 The system (4.20) is stabilizable and detectable when w ⌘ 0.

Assumption 4 The state transition matrix for the time-varying exosystem is uniformly

bounded for all t and t
0

, that is, c
1

 k�
S

(t, t
0

)k  c
2

for some positive constants c
1

and c
2

.

Assumption 3 is required for the existence of a control law that asymptotically stabilizes

the system (4.20) when w ⌘ 0. Assumption 4 does not a↵ect the generality of the problem

but facilitates the solution of the output regulation problem.

4.3.1 Output regulation by state feedback

Given that a stabilizing control law exists for the disturbance-free system with input delay,

the following lemma provides a solution to the output regulation problem by state feedback.

Lemma 4.3.1 Consider a time-delay system (4.20) that satisfies both Assumptions 3 and

4. The state feedback control law

u(t) = x (t) + (R(t)K
d

� ⇧ (t))w(t), (4.22)
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where  is the state feedback gain that asymptotically stabilizes the system when w ⌘ 0 and

K
d

= �
S

(t, t
0

)��1

S

(t � ⌧, t
0

), achieves output regulation if and only if there exist matrices

R(t) 2 Rm⇥a and ⇧ (t) 2 Rn⇥a and satisfy the following di↵erential regulator equation (DRE)

⇧̇ (t) + ⇧ (t)S (t) = A⇧ (t) + BR(t) + P , (4.23a)

lim
t!1

(C⇧ (t) + DR(t) +Q) = 0 . (4.23b)

Proof. The proof starts with defining the state transformation z (t) = x (t)� ⇧ (t)w(t). The

dynamic eqaution of z(t) and the regulation error e(t) can be written as

ż(t) = Az (t) + Bu(t � ⌧) + A⇧ (t)w(t) + Pw(t)� ⇧ (t)S (t)w(t)� ⇧̇ (t)w(t),

e(t) = Cz (t) + Du(t � ⌧) + C⇧ (t)w(t) +Qw(t).

Consequently, the control law (4.22) can be written as u(t) = z(t) + R(t)K
d

w(t). Let

R(t) and ⇧ (t) be solution of the DRE (4.23). The equations for ż(t) and e(t) then simplify

to

ż(t) = Az(t) + Bz(t� ⌧), (4.24a)

e(t) = Cz(t) +Dz(t� ⌧). (4.24b)

Since  is the state feedback gain that asymptotically stabilizes the input-delay system

when w ⌘ 0, lim
t!1 z(t) = 0 and hence lim

t!1 e(t) = 0. Thus, control law (4.22) solves the

output regulation problem.

To demonstrate the necessary condition, assuming the state feedback control law (4.22) is

a solution of the output regulation problem, then e(t) becomes

e(t) = Cz (t) + Dz (t � ⌧) + (C⇧ (t) + DR(t) +Q)w(t),
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which must satisfy that lim
t!1 e(t) = 0. Since Assumption 4 states that w(t) is nonvanishing,

e(t) approaches 0 for arbitrary initial conditions if lim
t!1 z(t) = 0 and (4.23b) is true.

Furthermore, it is assumed that under u(t) = z(t) +R(t)K
d

w(t), (4.24) are established for

z(t) and e(t) to be asymptotically stable. For lim
t!1 z(t) = 0 to be true under Assumption

4, (4.23a) is required to be satisfied.

4.3.2 Output regulation by output feedback

Consider the combined perturbed system with � = [xT wT]T, and

�̇(t) =

2

64
A P

0 S(t)

3

75�(t) +

2

64
B

0

3

75 u(t� ⌧), (4.25a)

y(t) =


H 0

�
�(t), (4.25b)

e(t) =


C Q

�
�(t) +Du(t� ⌧). (4.25c)

Lemma 4.3.2 Consider the system (4.25) satisfying both Assumptions 3 and 4, and let

the following state feedback control law

u(t) = x (t) + (R(t)K
d

� ⇧ (t))w(t),

be the solution to the state feedback output regulation problem from Lemma 4.3.1. Then the

following output feedback control law

˙̂�(t) = A(t)�̂(t) + Bu(t� ⌧) + L(C�̂(t)� y(t)), (4.26a)

u(t) =


 R(t)K

d

� ⇧ (t)

�
�̂(t), (4.26b)
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where

�̂ =

2

64
x̂

ŵ

3

75 , A(t) =

2

64
A P

0 S(t)

3

75 , B =

2

64
B

0

3

75 , C =


H 0

�
,

x̂ and ŵ are the estimated states, achieves the output regulation objectives if the transition

matrix �
⌅

L corresponding to ⌅L(t) = A(t) + LC and L 2 Rr⇥m satisfies k�
⌅

L(t, t
0

)k 

k
L

e�l0(t�t0) for some k
L

> 0 and l
0

> 0.

Proof. The proof starts with defining the state transformation z (t) = x (t)� ⇧ (t)w(t). Let

ẑ = x̂ � ⇧ ŵ and z̃ = ẑ � z. The closed-loop equation of the z(t) and the regulation error

e(t) can be written as

ż(t) =Az (t) + A⇧ (t)w(t) + Pw(t)� ⇧ (t)S (t)w(t)� ⇧̇ (t)w(t) + Bẑ (t � ⌧)

+BR(t)K
d

ŵ(t� ⌧),

e(t) =Cz (t) + C⇧ (t)w(t) +Qw(t) + Dẑ (t � ⌧) + DR(t)K
d

ŵ(t � ⌧),

which, in view of ẑ = z̃ + z and ŵ = w̃ + w , can be written as

ż(t) = Az (t) + Bz (t � ⌧) +


B B

�
R(t)K

d

� ⇧(t)
�
�
�̃(t � ⌧),

e(t) = Cz (t) + Dz (t � ⌧) +


D D

�
R(t)K

d

� ⇧(t)
�
�
�̃(t � ⌧),

where �̃(t) = �̂(t)� �(t). The dynamics of �̃(t) is given by

˙̃�(t) =
�
A(t) + LC

�
�̃(t). (4.27)

With the assumption of k�
⌅

L(t, t
0

)k  k
L

e�l0(t�t0) for ⌅L(t) = A(t) + LC, Eq. (4.27) is

asymptotically stable and as the states z(t) and state estimation errors �̃(t) asymptotically

approach zeros, lim
t!1 e(t) = 0.
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4.3.3 Bounded regulator gains for non-minimum phase systems

From the previous subsection, it can be observed that the output regulation problem with

time-varying exosystem is solved if bounded solutions are found to the corresponding DRE.

For minimum phase systems, the solution to (4.23) is always bounded, and numerical methods

can be used to construct the output regulation control law. When the system is of non-

minimum phase, such as AMB systems, the solution to (4.23) may become unbounded and

the applicability of the current approach is restricted to a small number of special cases [55].

In this subsection, a sub-optimal solution to the output regulation problem is proposed for

non-minimum phase systems, such that the solution to the corresponding DRE is always

bounded and the residual error in the regulated output is locally minimized.

A coordinate transformation is adopted to convert the system (4.20) into a normal form

as described in [56]. Denote the jth row of the matrix C by C
j

. For a set of positive

integers r
1

, r
2

, . . . , r
p

, where p is the number of outputs, the row vector ⌧ i
j

is defined as

⌧ i
1

:= C
i

, 1  i  p , ⌧ i
j+1

:= ⌧ i
j

A, 1  j  r
i

� 1. The other set of row vector ⌧̆ i
j

is defined as

⌧̆ i
1

:= Q
i

, 1  i  p, and ⌧̆ i
j+1

:= ⌧̆ i
j

S + ⌧ i
j

P, 1  j  r
i

� 1.

Assumption 5 There exist positive integers r
1

, r
2

, . . . , r
p

known as the ‘vector relative

degree’ [57] such that r = r
1

+ r
2

+ · · ·+ r
p

 n, ⌧ i
j

B = 0 for 1  i  p and 1  j  r
i

� 1,

and the rank of the matrix  = [ (⌧1r1 )
T

(⌧

2
r2

)

T ··· (⌧

p
rp )

T ]T B 2 Rp⇥m is p.

Define the matrices

T̄ x =


⌧ 0T
1

· · · ⌧ 0T
n�r

⌧ 1T
1

· · · ⌧ 1T
r1

⌧ 2T
1

· · · ⌧ pT
rp

�
T

,

Tw =


0 · · · 0 ⌧̆ 1T

1

· · · ⌧̆ 1T
r1

⌧̆ 2T
1

· · · ⌧̆ pT
rp

�
T

,

where ⌧ 0
1

, ⌧ 0
2

, . . . , ⌧ 0
n�r

are vectors that make T̄ x a transformation matrix whose existence is

guaranteed by Assumption 5. A w -dependent coordinate transfomration from x to (�̄, ⇣) is

given as
h

¯

�

⇣

i
= T̄ xx + Tww , to generate the following multi-input multi-output (MIMO)
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normal form [57]:

˙̄� = �̄�̄ + ⇤̄⇣ + ⇥̄w , (4.28a)

⇣̇j
i�1

= ⇣j
i

, for i = 2, 3, ..., r
j

and j = 1, 2, ..., p, (4.28b)

[⇣̇1
r1
, ⇣̇2

r2
, . . . , ⇣̇p

rp
]T = Ē �̄ +M ⇣ + u + Nw , (4.28c)

e = [⇣1
1

, ⇣2
1

, . . . , ⇣p
1

]T. (4.28d)

Assumption 6 There exists a coordinate transformation T � such that, under the co-

ordinate change � =
⇥
�

a

�

s

⇤
= T ��̄, �a 2 Rk, �s 2 Rn�r�k, the zero dynamics ˙̄� = �̄�̄

becomes 2

64
�̇a

�̇s

3

75 =

2

64
�a 0

0 �s

3

75

2

64
�a

�s

3

75 = ��, (4.29)

where all eigenvalues of �s have negative real parts and all eigenvalues of �a have non-negative

real parts.

Based on Assumptions 5 and 6, the coordinate transformation

⇥
�

⇣

⇤
=
h
T

�
0

0 Ir⇥r

i
T̄ xx+ Tww = T xx+ Tww

yields the following normal form for system (4.20)

�̇ = �� + ⇤⇣ +⇥w , (4.30a)

⇣̇j
i�1

= ⇣j
i

, for i = 2, 3, ..., r
j

and j = 1, 2, ..., p, (4.30b)

[⇣̇1
r1
, ⇣̇2

r2
, . . . , ⇣̇p

rp
]T = E� +M ⇣ + u + Nw , (4.30c)

e = [⇣1
1

, ⇣2
1

, . . . , ⇣p
1

]T. (4.30d)

In the new coordinate (�, ⇣), it can be explicitly observed which control signal should

be generated by the designed controller to achieve the output regulation objective. The
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following theorem presents the solution of the di↵erential regulator equation based on the

new coordinates.

Theorem 4.3.3 [55] Under Assumptions 3-6, the linear di↵erential matrix equation

⇧̇ �(t) + ⇧ �(t)S (t) = �⇧ �(t) +⇥ (4.31)

always has a solution ⇧ �(t) = [(⇧ �a(t))T (⇧ �s(t))T]T, which can be obtained as follows,

⇧ �a(t) = �
Z 1

t

�
�

a (t , �)⇥a�
s

(�, t)d�,

⇧ �s(t) = �
�

s (t , t
0

)⇧ �s

0

�
s

(t
0

, t) +

Z
t

t0

�
�

s (t , �)⇥s�
s

(�, t)d�,

where ⇥a and ⇥s are the upper k rows and the lower n� k � r rows of ⇥, respectively. ⇧ �s

0

is any constant (n� r � k)⇥ q matrix. The DRE (4.23) has a solution given as

⇧ = (T x)�1

 2

64
⇧ �

0
r⇥q

3

75� Tw

!
, (4.32a)

R = �( )+(E⇧� +N), (4.32b)

where ( )+ is the right-inverse of  .

Note that the solution to the DRE for the stable zero dynamics ⇧ �s can be found by

calculating the corresponding definite integral with finite limits in Theorem 4.3.3. On the

other hand, the solution to the anti-stable part of the zero dynamics ⇧ �a is more di�cult

to obtain, and the infinite upper limit of the closed-form solution can lead to numerical

errors during the implementation. In the remainder of this section, an alternative approach

is presented to Theorem 4.3.3, and a numerically robust suboptimal solution is developed to

the output regulation problem.
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The bounded solution for the stable part of the zero dynamics can be easily obtained by

iterating the following DRE

⇧̇ �s(t) = �s⇧ �s(t)� ⇧ �s(t)S (t) +⇥s (4.33)

with some arbitrary initial condition ⇧ �s(t
0

). However, it is not as straightforward to solve

the unstable part of the zero dynamics for the DRE.

In order to guarantee a bounded solution, the unstable zero dynamics of (4.30) is first

stabilized. Assuming that a gain K
r

exists such that all the eigenvalues of (� + ⇤K
r

) are

exponentially stable, rewrite (4.30a) as

�̇ = (�+ ⇤K
r

)� + ⇤(⇣ �K
r

�) +⇥w .

Let ⇣̃ = ⇣ �K
r

� and Equation (4.30) then becomes

�̇ = (�+ ⇤K
r

)� + ⇤⇣̃ +⇥w, (4.34a)

˙̃⇣j
i�1

= ⇣̃j
i

, for i = 2, 3, · · · , r
j

and j = 1, 2, . . . , p, (4.34b)

[ ˙̃⇣1
r1
, ˙̃⇣2

r2
, . . . , ˙̃⇣p

rp
]T = E� +M ⇣̃ + u+Nw �K

r

�
�� + ⇤(⇣̃ +K

r

�) +⇥w
�
,

=
�
E �K

r

�+MK
r

�K
r

⇤K
r

�
� + (M �K

r

⇤)⇣̃ + u+ (N �K
r

⇥)w ,

(4.34c)

e = [⇣̃1
1

, ⇣̃2
1

, . . . , ⇣̃p
1

]T +K
r

�. (4.34d)

Based on the updated normal form (4.34), let the control input u(t) drive the states ⇣̃

to zero. The regulated error then becomes e = K
r

�. In addition, for the zero dynamics in

(4.34a), the solution to the corresponding DRE

⇧̇ �(t) = (�+ ⇤K
r

)⇧ �(t)� ⇧ �(t)S(t) +⇥,
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is always bounded. As ⇣̃ ! 0, the system equation (4.34) reduces to

�̇ = (�+ ⇤K
r

)� +⇥w , (4.35a)

e = K
r

�. (4.35b)

To regulate the residual error in (4.35b), the H
2

norm of the transfer function from w to

e, given by G
e

(s) = K
r

(sI � �� ⇤K
r

)�1⇥, is minimized.

The unified gradient method from [58] is utilized to minimize the H
2

norm of (4.35).

Assuming that �+ ⇤K
r

is stable, the H
2

norm of G
e

(s) is given by

kG
e

(s)k2
2

= tr(⇥TP⇥) =: J
1

(4.36)

where P = PT � 0 satisfies the Lyapunov equation

(�+ ⇤K
r

)TP + P (�+ ⇤K
r

) = �KT

r

K
r

. (4.37)

In the case where the poles of �+ ⇤K
r

are not fixed a priori, the gain K
r

may become

unbounded to make the H
2

norm in (4.36) small. Instead, the following H
2

optimization

problem under pole assignment constraints is considered

inf
Kr

J
1

(K
r

), (4.38)

s.t. V �1(�+ ⇤K
r

)V = ⇤
r

,

where ⇤
r

is a real block-diagonal matrix with its eigenvalues corresponding to the desired

pole locations, V is a nonsingular matrix satisfying �V � V ⇤
r

= �⇤U and K
r

= UV �1 for a

free parameter U .
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For the constrained optimization (4.38), it was shown in [58] that

@J
1

@K
r

= 2⇤TPX , (4.39)

where X is the unique solution to the Lyapunov equation

(�+ ⇤K
r

)X +X(�+ ⇤K
r

)T = �⇥⇥T. (4.40)

Furthermore, the gradient of the objective function about the free parameter matrix U

was given by
@J

1

@U
=

@J
1

@K
r

(V �1)T + ⇤TY T, (4.41)

where @J
1

/@K
r

is given in (4.39), and Y is the unique solution to the Sylvester equation

Y �� ⇤
r

Y = V �1

✓
@J

1

@K
r

◆
T

K
r

. (4.42)

A local minimum to (4.38) can then be found numerically by evaluating the gradient (4.41)

about the free variable U .

The complete process of the unified gradient method is illustrated in Fig. 4.1.

4.4 Summary

This chapter presents the theoretical fundamentals of the dissertation. The TPF control law

is first introduced to handle LTI systems subject to input delay and the stability conditions

for the input-delay system under the TPF control law are established. Afterwards, the output

regulation problem is presented for input-delay systems with a time-invariant exosystem

and an output feedback solution is constructed based on the TPF control law and static

regulator gains. Finally, based on the di↵erential regulator equation, the output regulation

problem extends to input-delay systems with time-varying exosystem. A sub-optimal solution
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Figure 4.1: The unified gradient method process.

is developed for non-minimum phase systems so that the regulator gains are always bounded

and the residual error in the regulated output is locally minimized.



Chapter 5

Unbalance Compensation under

Constant Rotational Speeds

5.1 TPF control for the AMB test rig

In the first section of this chapter, the TPF control method presented in Section 4.1 is employed

to construct the rotor levitation controller for the flexible rotor AMB test rig described in

Section 3.1 in the presence of input delay. Furthermore, the control law maximizing the

upper bound of the delay that the stable closed-loop system can tolerate is derived.

5.1.1 Maximization of the delay bound

A linear matrix inequality (LMI) method is used to derive the TPF control law that satisfies

the stability conditions (4.9) for the maximum delay bound D̄ [59]. Given that the conditions

(4.9) are nonlinear with respect to the decision variables W , ↵, !, and D̄, the path-following

method [60] is used to find a local solution to the original nonlinear optimization problem by

solving a linearized approximation. The linearized decision variables are considered, which

are defined as W = W
0

+ �W , ↵ = ↵
0

+ �↵, ! = !
0

+ �!, and D̄ = D̄
0

+ �D̄. The known

variables W
0

, ↵
0

, !
0

, and D̄
0

are the initial solutions satisfying the original matrix inequalities

51
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(4.9). The perturbation terms �W , �↵, �!, and �D̄ are the decision variables of the linearized

LMI problem, and they correspond to an incremental improvement of the solution at each

iteration of the path-following method. After eliminating higher order perturbation terms,

the linearized LMI problem becomes

↵
0

�W +W
0

�↵ + ↵
0

W
0

� BBT > 0, (5.1a)

A�W + �WAT � �!W
0

� !
0

�W

+AW
0

+W
0

AT � !
0

W
0

< 0, (5.1b)
✓
AW +WAT � BBT +

h
1

!
0

↵3

0

D̄
0

W
0

◆

+

✓
A�W + �WAT +

h
1

!
0

↵3

0

D̄
0

�W

◆

+

✓
h
2

!
0

D̄
0

↵3

0

W
0

� h
1

!
0

D̄
0

↵3

0

W
0

◆
�!

+W
0

✓
h
1

!
0

↵3

0

+ h
2

↵3

0

D̄
0

◆
�D̄

+

✓
3
h
1

!
0

D̄
0

↵2

0

W
0

◆
�↵ < 0, (5.1c)

2

64
h
step

W
0

�W

�W T h
step

W
0

3

75 > 0, (5.1d)

2

64
h
step

D̄
0

�D̄

�D̄ h
step

D̄
0

3

75 > 0, (5.1e)

2

64
h
step

↵
0

�↵

�↵ h
step

↵
0

3

75 > 0, (5.1f)

2

64
h
step

!
0

�!

�! h
step

!
0

3

75 > 0, (5.1g)

where h
1

= e2!0 ¯

D0 � e!0 ¯

D0 , h
2

= 2e2!0 ¯

D0 � e!0 ¯

D0 , and h
step

> 0. The inequalities (5.1a) -

(5.1c) result from the linearization of the conditions in (4.9). Conditions (5.1d) - (5.1g) aim
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to limit the maximum step sizes of the perturbation terms.

Each iteration of the path-following method starts with an initial feasible solution to

(4.9), and solves for the linearized LMI problem (5.1). At the end of each iteration, a test is

carried out before moving on to the next iteration to check if the found solution satisfies the

original inequality (4.9). If satisfied, the initial feasible solution is updated. If not satisfied,

the initial feasible solution is left unchanged and h
step

is reduced.

To avoid the solution converges to an undesired local minimum, an objective function J
i

is defined in which the objective is switched at each step of the path-following iteration as

J
i

=

8
>>>>>><

>>>>>>:

��D̄ for i mod 3 = 0,

�! for i mod 3 = 1,

�↵ for i mod 3 = 2.

(5.2)

where i is the iteration number. The first objective increases the delay bound by solving

for the maximum �D̄; the second and third objectives indirectly not only steer the solution

towards a larger delay bound by increasing ! and ↵, but also keep the solution of the

path-following algorithm out of an undesired shallow local minimum.

The complete optimization procedure for the LMI method is illustrated in Fig. 5.1.

5.1.2 Controller derivation for the AMB test rig

To simplify the design of the TPF control law, the lateral control axes of the AMB systems

are assumed to be decoupled, which is equivalent to the condition that there is no gyroscopic

e↵ect for a stationary rotor. The dynamic equation of the AMB system is given in the

following state space form

⇣̇(t) = A⇣(t) + Bu(�(t)), (5.3a)

z(t) = C⇣(t), (5.3b)
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Find feasible solution  (W0, 
a0, ω0,      ) and select initial 

value for hstep and i=0
0D

Solve for (δW, δa, δω,      ) 
min Ji subject to the LMI 

conditions

Dδ

For newly found solution 
(W, a, ω,    ), check if the 

original stability conditions 
are satisfied

D

Update the values of 
W0,a0,w0 and     to the 
newly found solution

0D

Stop the iteration when 
hstep falls below a set 

minimum step size or initial 
solution cannot be 

improved

No Reduce hstep Yes

Trigger

Figure 5.1: The LMI-based optimization procedure for determining the maximal allowable
delay bound.

where u(t) is the control signal to the current amplifiers powering the AMB actuators and

the output z(t) contains rotor displacements as observed at the locations of the sensors. A

notch filter at 1005Hz is added to the control loop at each output channel of the plant in

order to attenuate the excitation of the rotor third bending mode. This mode is outside the

range of the AMB dynamic force envelope, and it is common practice in AMB systems to

filter out the high frequency modes of the plant. The input delay is considered to be constant

�(t) = t�D, (5.4)

for some D > 0. The objective is to find a TPF controller corresponding to the largest D̄

such that the AMB system is stable for any D  D̄.

The initial feasible solution set for the LMI equations is ↵
0

= 1000, !
0

= 1000, and

D̄
0

= 6 ⇥ 10�6 s. The path-following algorithm with initial h
step

= 0.2 is used to derive

the control law that locally minimizes the objective function (5.2). The solution to the
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Figure 5.2: Path of the optimal solution.

LMI approximation in (5.1) is obtained using the MATLAB software package SDPT3 [61],

which has been observed to have good numerical stability in this particular application.

The final solution set from the path-following algorithm is ↵
0

= 652.58, !
0

= 638.74, and

D̄
0

= 2.02⇥ 10�4 s.

Figure 5.2 shows the trajectory of the optimal solution at each iteration of the path-

following method. It is observed that the solution of the path-following method initially

wanders in searching for a path towards a desired optimal solution. Without the perturbation

terms added in the objective function as in (5.2), the solution would quickly converge to an

undesired “shallow” local minimum, before finding a path towards a more desirable solution.

The added perturbation terms enable the solution to escape the pull of undesired local minima

and drive it towards a more desired solution.

To implement the state feedback TPF control law on the AMB test rig, a state observer

is constructed based on a Kalman filter. By combining the TPF control law with the state
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Figure 5.3: Singular value plot of the derived output feedback TPF controller.

observer of the AMB system, the dynamic output feedback controller is obtained as

˙̂
⇣(t) = (A+ LC)⇣̂(t) + Bu(�(t))� Lz(t), (5.5a)

u(t) = KeAD⇣̂(t). (5.5b)

The stability of the linear time delay system under the above output feedback TPF

control was proven in [25]. The observer gain L of the Kalman filter is obtained following the

standard procedure such that it minimizes the steady state error covariance of the observed

states. The Control System Toolbox in MATLAB is utilized to calculate such gain, where

the covariance values for the inputs and outputs of the plant are 5 ⇥ 10�2 and 1 ⇥ 10�5,

respectively. Meanwhile, the design of the observer is not a↵ected by the delay and the

observer error dynamics can be decoupled from the design of the state feedback TPF control.

The singular value plot of the final controller with D = D̄ is shown in Fig. 5.3.
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Figure 5.4: Simulated step response of the closed-loop AMB system with a constant input
delay.

5.1.3 Simulation results

The control law derived in Section 4.1 is first verified through simulation. The plant model

is obtained from the dynamic equations of the AMB system as described in Section 3.2. A

constant input delay (5.4) is introduced to the simulation, with D = 2.02⇥ 10�4 s.

Fig. 5.4 shows the step response of the closed-loop system, in which an step reference of

0.0254mm is fed to the closed-loop AMB system at both the driven and non-driven ends.

The step response indicates that the AMB system is stable with good transient performance.

Small oscillations can be observed at the beginning for the rotor displacement due to the

excitation of the first bending mode, but the displacement eventually settles to the steady

state.

Afterwards, a rotor unbalance is added at the disk location in order to induce a synchronous

disturbance on the rotor and the unbalance response test is performed for the speed to

gradually increase from 0 to 7000 rpm. The zero-to-peak magnitude of the rotor vibration

during the rotor spin-up is plotted in Fig. 5.5. The figure shows that the AMB system
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Figure 5.5: Simulated zero-to-peak rotor vibration level for rotational speeds up to 7000 rpm.

remains stable within the tested speed range, and the amplitude of the vibration is contained

within the levels specified by the various industry standards for high speed rotating machines.

The peak vibrations located near 5,000 rpm come from the resonance of the rotor second

rigid body mode.

5.1.4 Experimental results

The TPF control law was implemented and tested on the flexible rotor AMB test rig as

described in Section 3.1. In order to recreate the delay experienced in remotely controlled

machinery, a time delay was added in the digital controller between the calculation of the

controller output and the transmission of the command signal to the current amplifiers

powering the AMB actuators.

Prior to the implementation of the optimal TPF controller for experimental testing, special

considerations were required regarding some of the physical limitations of the test setup. A

lightly weighted integrator was added to the controller to reduce the steady-state error in

the rotor position due to the static gravitational force. Furthermore, in order to prevent
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Figure 5.6: Controller feedback loop implementation in the AMB test rig.

actuator saturation and maintain the AMB operation within the dynamic force envelope of

the bearings, as well as to prevent the excitation of the higher order modes of the flexible

rotor, the H1 norm and bandwidth of the control law were constrained. This was achieved

in this case by carefully selecting the gains of the output feedback observer. Finally, in order

to reduce the computational load, the order of the final controller was reduced to 14 states

per lateral axis, or 28 states in total, using the Hankel singular value based model reduction

function reduce in MATLAB.

With the special considerations given above, a TPF controller was derived and implemented

on the test rig. A block diagram describing the implementation of the control loop for the

AMB test rig is shown in Fig. 5.6. Note that because the delay in the input was implemented

in the digital controller, the length of the time delay is always a multiple of the control

sampling time T
s

= 8.33⇥ 10�5 s.

First based on the delay bound D̄ corresponding to the optimized controller, the input

delay is set to be D = 3T
s

and the initial rotor levitation was tested. For comparison, the

levitation test was first performed with the µ-synthesis controller presented in [5], which was

carefully designed for the AMB test rig to provide the best robustness and performance. It
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Figure 5.7: Rotor displacement measurement during levitation with µ-synthesis controller
and input delayed by D = 3T

s

.

can be observed from Fig. 5.7 that some of the modes are close to instability as indicated by

the high amplitude rotor vibration. The same test was performed on the test rig using the

TPF controller. As illustrated in Fig. 5.8, the rotor levitation is stable as expected and the

rotor gradually returns to the zero positions after the initial transient response.

The maximum delay estimated by the LMI based method was conservative since longer

delay can be tolerated during simulation. To further investigate the observation experimentally,

the delay was gradually increased and the rotor levitation test was performed correspondingly.

When D = 8T
s

, it is observed that the rotor levitation is stable from Fig. 5.9, and the

transient response is more noticeable since the delayed input signal takes longer time to reach

the AMBs. When D = 10Ts, it is observed that the test rig starts showing instability as in

Fig. 5.10.

The unbalance response of the AMB system with input delay D = 6T
s

, or equivalently

5⇥10�4 s was carried out up to a speed near 5,000 rpm. The zero-to-peak vibration amplitude
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Figure 5.8: Rotor displacement measurement during levitation with TPF controller and input
delayed by D = 3T

s
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Figure 5.10: Rotor displacement measurement during levitation with TPF controller and
input delayed by D = 10T

s

.

of the rotor is shown in terms of the rotational speed. The results from Fig. 5.11 show that

the rotor vibration is well contained and the vibration level is within the operation zones

suggested for long-term operating by various industrial specifications. For example, the Amer-

ican Petroleum Institute (API) [62] and the International Organization of Standardization

(ISO) [63] require the zero-to-peak vibration level below 0.075 mm, or 2.95 mils for similar

turbomachineries.

The rotating speed is limited to 5,000 rpm during the experimental test because it is

observed that the rotor first bending mode is easily excited as the rotor speed approaches the

corresponding resonance frequency, which is also observed during the numerical simulation in

Section 5.1.3. As the rotor speed approaches the critical speed of the AMB system, large

oscillations appear in the rotor position and the control signal, which may cause instability

and serious damage to the test rig. The di�culty in compensating for the excitation of the

rotor modes is mainly due to the speed dependent dynamics of the rotor, which introduces a
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Figure 5.11: Zero-to-peak rotor vibration amplitude measured at di↵erent rotating speeds
with TPF controller and input delayed by D = 6T

s

.

significant uncertainty to the LTI AMB system model.

5.2 Unbalance compensation in AMB systems

In this section, the unbalance compensation problem is investigated for AMB systems with

input delays using the output regulation approach proposed in Section 4.2. The unbalance

compensation method is based on the solution to an equivalent output regulation problem.

Since precise location and eccentricity of a rotor unbalance are di�cult to measure in high

speed rotating machines, the unbalance forces and the rotor displacements are defined as

the errors to be regulated, which enables the AMB system to achieve autobalancing and

unbalance suppression. The developed model based unbalance compensation controller is

first verified in simulations and then demonstrated experimentally that it is able to notably
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reduce the synchronous rotor vibrations and the magnitude of the AMB control voltage.

5.2.1 Problem formulations

The net force generated by the pair of AMB actuators can be approximated by

f
amb

= K
x

x+K
i

i
c

, (5.6)

where K
x

is the open loop sti↵ness, K
i

is the open loop gain of the AMB, i
c

is the perturbation

current and x is the rotor displacement at the AMB location.

The lateral dynamic equation of the AMB system with input delay, under the assumption

that the rotor and AMB actuators are symmetric regarding both x and y lateral axes, can be

expressed in the following state space form
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where the subscripts x and y refer to the lateral x and y directions of the AMB system,

respectively, i
c

is the control current to the AMBs, and ! represents the rotating speed.

The state vector ⇣ describes the lateral dynamics of the AMB system, which includes the

AMB actuators, AMB electronics and rotor. The lateral dynamics of the rotor are commonly

modeled through finite-element methods, and a modal coordinate transformation is employed

to simplify the resulting di↵erential equation. The matrices A
⇣

2 R20⇥20 and B
c

2 R20⇥2 are

the state space matrices of a single axis AMB system, and the lateral axes are coupled by

the gyroscopic e↵ect !G. w
x,j

and w
y,j

represent the disturbance force generated by the jth
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unbalance mass on the rotor in the following form

w
x,j

= ✏
j

!2 cos(!t+ ✓
j

), (5.8a)

w
y,j

= ✏
j

!2 sin(!t+ ✓
j

), (5.8b)

where ✏
j

is the unbalance eccentricity and ✓
j

is the phase angle. Then they can be modeled

in the following dynamic form as the exosystem
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The AMB system and the exosystem can be rewritten in the following standard output

regulation problem form

⇣̇(t) = A⇣(t) +Bi
c

(t� ⌧) +
sX
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P
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(t), (5.10a)

ẇ
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j

, for j = 1, 2, · · · , s, (5.10b)
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In developing the unbalance compensation controller, it is assumed that the rotor is a

rigid body so the design is focused on the vibration patterns composed of the rigid body

modes of the rotor. The parallel mode describes the translation of the rotor about the center

line while the conical mode describes the rotor tilt about its center of mass. In a sub-critical



Chapter 5 Unbalance Compensation under Constant Rotational Speeds 66

AMB system operation, the rotor vibration combines the e↵ect from the parallel and conical

modes.

In order to simultaneously regulate both parallel and conical modes of the rotor, two

locations along the rotor length are selected where the disturbances !
j

’s are assumed to be

applied. These locations are selected so they do not coincide with the nodal points of the

rotor modes under consideration. In the case where higher order modes of the rotor are

considered, additional disturbance input locations may be introduced. For simplicity, the

locations of the disturbance forces are defined to match the locations of the AMB actuators.

Based on this information, the matrices P
1

and P
2

can be found during the modeling of the

rotor dynamics.

In this section, two scenarios of output regulations are considered. In the first case, the

error signal is the rotor displacement measured at the sensor locations and it can be defined

from the system states as

e
d

(t) = C
sens

⇣(t), (5.11)

where C
sens

is the output matrix. By regulating the rotor displacement, the observed rotor

vibration is reduced and the rotor is forced to rotate about the geometric center.

The second case is to regulate the AMB forces and thus it reduces the disturbance forces

generated by the unbalance mass. The error signal is defined to be the applied AMB forces as

e
f

(t) = K
x

C
amb

⇣(t) +K
i

i
c

(t� ⌧). (5.12)

Once again, the matrix C
amb

is obtained such that C
amb

⇣ corresponds to the rotor displace-

ments at the bearing locations. In this case, the AMB forces are regulated, which in turn

reduces the disturbance forces generated by the unbalance mass on the rotor. Based on (5.8),

the unbalance force is zero only if the unbalance eccentricity equals zero,

✏
j

= 0, for j = 1, 2, · · · , s,
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Figure 5.12: Block diagram of the controller implementation under constant rotational speed.

and the rotor rotates about its center of mass. Therefore, this second case corresponds to a

compensation of the rotor unbalance.

Based on the validated AMB system model, the rotor levitation controller and the

unbalance compensation methods are designed. The leviation controller is based on the TPF

control method for the undisturbed case (! ⌘ 0) as detailed in Section 5.1. The results

of Lemma 4.2.2 yield an augmented observer to estimate the states of the plant and the

exosystem. The augmented observer is utilized to construct the output feedback controller

and the block diagram of the final implemented controller is illustrated in Fig. 5.12.

5.2.2 Simulation and experimental results

The output regulation control designed to regulate the error signals (5.12) and (5.11) for

the AMB test rig were first verified through simulation. The simulation of the AMB system

included two unbalance masses located at the locations of the bearings. The rotational

speed was fixed at 6,000 rpm and the input delay was set to be ⌧ = 0.5 ms. First, the rotor

displacement regulation control was tested as shown in Fig. 5.13. The AMB system is initially

controlled by the levitation controller designed for the undisturbed system, and the output



Chapter 5 Unbalance Compensation under Constant Rotational Speeds 68

0 0.5 1 1.5 2 2.5 3
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

 

 

dnx
dny

0 0.5 1 1.5 2 2.5 3
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

 

 

ddx
ddy

0 0.5 1 1.5 2 2.5 3
−200

−150

−100

−50

0

50

100

150

200

Time (s)

AM
B 

Fo
rc

e 
(N

)

 

 

dnx
dny

0 0.5 1 1.5 2 2.5 3
−200

−150

−100

−50

0

50

100

150

200

Time (s)

AM
B 

Fo
rc

e 
(N

)

 

 

ddx
ddy

Figure 5.13: Simulated rotor displacements and AMB forces under the rotor displacement
regulation with the output regulator active for t > 1 s.

regulator component is activated near time t = 1 s. As expected, the amplitude of the rotor

vibration approaches zero after the output regulator is activated.

Then the AMB force regulator was tested and similar results are obtained as shown in

Fig. 5.14, where the amplitude of the AMB forces converges to zero after the unbalance

compensator is activated.

The output regulation control laws were also implemented and tested on the ROMAC

flexible rotor AMB test rig. As in the simulation, the rotational speed is set to 6,000 rpm and

input delay ⌧ = 0.5 ms. The eccentricity and axial distribution of the rotor unbalance are

unknown, and they can be determined by the residual error during the initial rotor balancing

process.
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Figure 5.14: Simulated rotor displacements and AMB forces under the AMB force regulation
with the output regulator active for t > 1 s.

Fig. 5.15 presents the results corresponding to the base controller designed for the AMB

system without the regulator to evaluate the performance of the output regulation controllers.

The first row of Fig. 5.15 show the control voltage from the controller to the current amplifiers

powering the AMB actuators; the second row of Fig. 5.15 shows the rotor vibrations measured

by the sensors at the bearing locations; the rotor obits at the bearing locations are illustrated

in the third row of Fig. 5.15.

Fig. 5.16 presents the results corresponding to the controller designed for the AMB system

with the rotor displacement regulation. The first row of Fig. 5.16 shows the control voltage

from the controller to the current amplifiers powering the AMB actuators; The second row

of Fig. 5.16 shows the rotor vibrations measured by the sensors at the bearing locations;
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Figure 5.15: Experimental measurements under the controller designed for the non-regulated
system.
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Figure 5.16: Experimental measurements under the controller with the rotor displacement
regulation.
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DEX DEY DEX DEY NDEX NDEY NDEX NDEY
Vib/mm Vib/mm Ctl/v Ctl/v Vib/mm Vib/mm Ctl/v Ctl/v
(pk-pk) (pk-pk) (pk-pk) (pk-pk) (pk-pk) (pk-pk) (pk-pk) (pk-pk)

Without
regulation 0.0413 0.0316 0.5779 0.5826 0.0552 0.0629 1.0874 1.5233
Vibration
regulator 0.0257 0.0266 0.6644 0.8082 0.0214 0.0264 1.0462 1.3011
Force
regulator 0.0206 0.0296 0.3411 0.4492 0.0280 0.0270 0.4016 0.5126

Table 5.1: Performance summary of the experimental results.

the rotor obits at the bearing locations are illustrated in the third row of Fig. 5.16. It is

clear that the rotor vibration level has been significantly reduced when compared to the no

regulation case and the control voltages also show smaller amplitude oscillations compared to

the no regulation case but the improvement is not as significant.

Fig. 5.17 presents the results corresponding to the controller designed for the AMB system

with the AMB force regulation. The first row of Fig. 5.17 shows the control voltage from

the controller to the current amplifiers powering the AMB actuators; the second row of

Fig. 5.17 shows the rotor vibrations measured by the sensors at the bearing locations; the

rotor obits at the bearing locations are illustrated in the third row of Fig. 5.17. The measured

rotor displacement at the sensor locations demonstrate that the rotor vibration level is well

suppressed when compared to the no regulation case. The control voltages are significantly

reduced, which indicates the energy required to compensate for the unbalance force has

decreased since the rotating axis closely coincides with the the rotor principle axis of inertia.

The performance summaries of the experimental results at di↵erent control channels are

shown in Table 5.1. It is observed that with the displacement regulator implemented, the

vibration is reduced up to 61% while the control voltage remains in the same range compared

to no regulation case; meanwhile, with the force regulator implemented, the vibration is

reduced up to 57% and the control voltage is reduced up to 66% compared to no regulation

case. The experimental results demonstrate that the proposed unbalance compensation

methods are e↵ective in suppressing the rotor vibration and reducing the peak control
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Figure 5.17: Experimental measurements under the controller with the AMB force regulation.
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voltage.

5.3 Summary

This chapter presents the unbalance compensation for an AMB test rig subject to input delay

under constant rotational speed. First of all, the TPF control law is applied to construct the

rotor levitation controller and an LMI method is adopted to maximize the upper bound of

the delay that the stable closed-loop system can tolerate. The stability and performance of

the closed-loop AMB system under the designed controller is first verified through simulation,

and then demonstrated on the AMB test rig. The TPF controller notably outperforms a

previously designed µ-synthesis robust controller when longer input delay is added and the

rotor vibration level is su�ciently contained during the unbalance response test. Besides,

it is observed that the delay bound estimated by the proposed optimization method is

conservative. Afterwards, the output regulation and TPF based control method is applied

to the AMB test rig to achieve unbalance compensation under constant rotational speed.

Two output regulation scenarios are investigated, which define the unbalance forces and rotor

displacements as the regulation errors. Both simulation and experimental results reveal that

the synchronous rotor vibrations and the magnitude of the AMB control voltage can be

significantly reduced using the developed controllers.



Chapter 6

Unbalance Compensation under

Time-varying Rotational Speeds

6.1 Autobalancing in an AMB system

In the first section of this chapter, the output regulation based unbalance compensation

approach is applied to the AMB test rig with time-varying rotational speeds. After formulating

the output regulation problem with a time-varying exosystem as detailed in Section 4.3, it

becomes evident that the compensator gains can be obtained based on the solution of a

di↵erential regulator equation (DRE). Since AMB systems are of non-minimum phase, to

ensure the boundedness of the compensator gains, the original normal form is reformulated

and the unified gradient method is adopted to guarantee that suboptimal solutions are

achieved. Then the compensator gains are generated iteratively to enable the closed-loop

system to approach the output regulation objective with a locally minimized residual error

in the regulated output. To apply the output regulation mechanism to AMB systems for

autobalancing, the unbalance force is modeled by the exosystem and the AMB force defines

the error to be regulated [64].

Because the test rotational speed is far away from the rotor flexible mode frequencies, the

75
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Figure 6.1: Rotor rigid body modes.

rotor is assumed to be a rigid body in designing the autobalancing controller. Therefore, only

the rigid body modes of the rotor are considered. When the AMB system operates below the

frequency of the first flexible mode, the rotor vibration profile is mainly dominated by the

two rigid body modes. The parallel mode is characterized by the rotor translation around the

center line while the conical mode describes the rotor tilt around its center of mass as shown

in Fig. 6.1. In order to regulate both rotor rigid modes independently, two locations defining

the disturbance force entrance are identified in the AMB system model. Since only the rigid

modes are considered, the actual locations of the disturbance forces are not important as

long as they are not collocated. For simplicity, the matrices are specified for the disturbance

at the locations that match the locations of the AMB actuators.

The lateral dynamic equation of a rotor AMB system is described as follows,

2
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where the subscripts x and y refer to the lateral x and y directions of the AMB system,

respectively, i
c

is the control current to the AMBs, ⇣ describes the states of the AMB system

lateral dynamics, ! is the rotating speed, G
r

is the gyroscopic matrix, and w
x,j

and w
y,j

represent the time-varying disturbance force generated by the j
th

unbalance mass on the
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rotor in the following form

w
x,j

= ✏
j

!2 cos(!t+ ✓
j

), (6.1a)

w
y,j

= ✏
j

!2 sin(!t+ ✓
j

), (6.1b)

where ✏
j

is the unbalance eccentricity, ! is a random time-varying rotational speed and ✓
j

is

the phase angle. Then the disturbance forces can be modeled by the following time-varying

exosystem, 2
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ẇ
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ẇ
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w
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75 . (6.2)

To achieve autobalancing under time-varying unbalance forces, the rotational axis should

consistently adjust itself and dynamically approach the principle axis of inertia. Then the

rotor performs force-free rotation and the support AMB forces are significantly reduced. To

apply the output regulation mechanism, the regulated error signal is defined as the applied

AMB forces

f
amb

(t) = K
x

C
amb

⇣(t) +K
i

i
c

(t� ⌧),

where i
c

is the control current, and K
x

and K
i

are the open loop sti↵ness and the current

gain of the AMB, respectively.

Afterwards, the AMB system and the exosystem can be formulated in the following output

regulation problem form,

⇣̇(t) = A⇣(t) +Bi
c

(t� ⌧) +
sX

j=1

P
j

w
j

(t), (6.3a)

ẇ
j

(t) = S(t)w
j

(t), for j = 1, 2, · · · , s. (6.3b)

e
f

(t) = K
x

C
amb

⇣(t) +K
i

i
c

(t� ⌧). (6.3c)

Based on the validated AMB system model, the rotor levitation controller and the
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Figure 6.2: Block diagram of the controller implementation under time-varying rotational
speed.

di↵erential regulator based unbalance compensation control law are designed. The leviation

controller is based on the TPF control law for the undisturbed case (! ⌘ 0), which is detailed

in Section 5.1.2 with D̄
0

= 2.02⇥10�4 s. The results of Lemma 4.3.2 yield a dynamic observer

to estimate the states of the plant and the exosystem at di↵erent rotational speeds. The

observer satisfies k�
⌅

L(t, t
0

)k  k
L

e�l0(t�t0) for k
L

> 0, l
0

> 0 and ⌅L(t) is the system matrix

of the estimation error. The designed observer is utilized to construct the output feedback

controller and the implementation of the final controller is illustrated in Fig. 6.2.

6.1.1 Simulation results

The proposed method is verified by simulation for autobalancing at both varying rotational

speeds and constant speeds on the model of the flexible rotor AMB test rig. A constant input

delay (5.4) is introduced to the simulation, with D = 2.02⇥ 10�4 s. Since AMB systems are

of non-minimum phase, a control gain K
r

is designed to stabilize the unbounded compensator

gains and the unified gradient method described in Section 4.3.3 is applied to ensure that

inf
Kr

J
1

(K
r

) is achieved.

The eigenvalues corresponding to the desired pole locations are composed of the originally



6.1 Autobalancing in an AMB system 79

0 5 10 15
−0.5

0

0.5

Time (s)

C
on

tro
l O

ut
pu

t (
V)

0 5 10 15
0

5000

10000

Time (s)

Sp
ee

d 
(rp

m
)

0 5 10 15
−0.5

0

0.5

Time (s)

C
on

tro
l O

ut
pu

t (
V)

0 5 10 15
0

5000

10000

Time (s)

Sp
ee

d 
(rp

m
)

Figure 6.3: Simulated control voltages without (left) and with (right) the di↵erential regulator
as the rotating speed varies from 1,000 to 7,500 rpm using state feedback.
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Figure 6.4: Simulated control voltages and rotor displacements without (left) and with (right)
the di↵erential regulator at 7,500 rpm using state feedback.

stable eigenvalues and the originally anti-stable eigenvalues with their real parts multiplying

by �1. The free parameter U is initially selected as a matrix with all the components

equal to 1. After 117 iterations through the unified gradient method, @J1
@U

approaches 0, and

J
1

= 1.83 ⇥ 10�4. The corresponding K
r

is applied to the di↵erential regulator equation

to generate the compensator gains that locally minimize the residual error in the regulated

AMB control voltage.

Shown in Fig. 6.3 are the control voltages of the four radial axes as the rotational speed

varies from 1,000 to 7,500 rpm using state feedback, without and with the di↵erential regulator,
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Figure 6.5: Simulated control voltages without (left) and with (right) the di↵erential regulator
as the rotating speed varies from 1,000 to 7,500 rpm using output feedback.
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Figure 6.6: Simulated control voltages and rotor displacements without (left) and with (right)
the di↵erential regulator at 7,500 rpm using output feedback.

respectively. It can be observed that the control voltage is significantly reduced over the

wide speed range. Fig. 6.4 shows the simulated control voltages and rotor displacements

without and with the di↵erential regulator at 7,500 rpm using state feedback. The vibration

levels under both cases are similar while the control voltage is significantly reduced with the

di↵erential regulator.

Shown in Fig. 6.5 are the control voltages of the four radial axes as the rotating speed

increases from 1,000 to 7,500 rpm using output feedback, without and with the di↵erential

regulator, respectively. Similar to the state feedback case, the control voltage is significantly
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reduced and almost remains steady as the rotational speed increases. Fig. 6.6 shows the

simulated control voltages and rotor displacements without and with the di↵erential regulator

at 7,500 rpm using output feedback. Compared to the results without the di↵erential regulator,

the vibration level is noticeably smaller and the control voltage is significantly reduced with

the proposed di↵erential regulator.

To better illustrate the e↵ectiveness of the di↵erential regulator based output regulation

method, Fig. 6.7 shows the 3-dimensional plot of the control voltage and the rotor displacement

with the di↵erential regulator switched o↵ and on at a fixed rotational speed. The di↵erential

regulator is activated after 2 seconds, and the control outputs quickly converges to much

smaller values at both driven and non-driven ends while the rotor displacements are also

noticeably reduced, which indicates that the rotational axis closely approaches the principle

axis of inertia and the AMB system achieves autobalancing.

It is observed in the simulation that the proposed di↵erential regulator based output

regulation approach has e↵ectively achieved autobalancing of an AMB system for varying

rotational speeds. Because of the computation and hardware limitations, currently it is

di�cult to implement the algorithms on the prospective platform. In order to conduct

experiments to better demonstrate the strength and potential of the proposed method,

another test rig is adopted.

6.2 Unbalance suppression on a balancing beam

The experimental studies have been conducted on a balancing beam (as shown in Fig. 6.8)

to validate the unbalance suppression capability of the di↵erential regulator based output

regulation method. The test rig consists of two sets of active electromagnets at each end

of a pivoting beam. The magnetic coils generate electromagnetic forces to keep the beam

near the center pivot point. The test rig has two rails to prevent the beam from damaging

the coils, which limit the range of angular motion of the beam to ±0.013 rad. The angle of
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Figure 6.7: Simulated control voltages and rotor displacements with the di↵erential regulator
turned on at 2 seconds.

the beam with respect to the fixed base is measured by two proximity sensors. A brushless

DC motor, which currently can run up to 1,200 rpm, is mounted on a rack attached to the
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Figure 6.8: The balancing beam test rig.

beam with an unbalance weight, and when the motor starts rotating, the unbalance weight

injects significant disturbance to the system. The control box includes the voltage regulators,

sensor conditioning and measurement circuits, motor speed controllers. A Linux computer

running an open source real-time control software called Scicos-Lab is used to process the

sensor measurements, implement the control system design and feed the control signal to the

test rig.

The controller design is based on the dynamic model of the test rig. The balancing beam

includes two states, the beam angle and the angular velocity, while the input and output are

the control current and the sensor probe readings, respectively. The dynamics of the beam

can be modeled as follows,

J
b

✓̈ = �D
b

✓̇ + T
2

� T
1

, (6.4)

where ✓ is the angle between the beam and the horizon, T
1

and T
2

are torques provided by

the two active electromagnets and the total torque T = T
2

� T
1

. J
b

is the moment of inertial

of the beam and D
b

is the internal damping.
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The following di↵erential equations are used to model the two active electromagnets:

L
1

İ
1

= v
1
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�R
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I
1

, (6.5a)

L
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İ
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�R
2

I
2

, (6.5b)

where L
1

= L0g0

g0+✓

and L
2

= L0g0

g0�✓

, I
1

and I
2

are the final control currents to the coils, I
1

= I
b

+I,

I
2

= I
b

�I, I
b

is the bias current and I is the perturbation control current, L
0

is the inductance

of the coil when ✓ = 0 and g
0

is the maximum angle when the beam reaches one of the rails.

The torques are calculated as follows

T
1

= c
t

✓
g
0

I
1

g
0

+ ✓

◆
2

,

T
2

= c
t

✓
g
0

I
2

g
0

� ✓

◆
2

,

where c
t

is a constant based on the air gap and flux density.

The brushless motor with the unbalance weight is modeled as the exosystem. The motor

generates a sinusoidal torque T
d

caused by the centripetal force to keep the unbalance on

its orbit. In addition, the motor mass is added to the beam so the moment of inertia J
b

is

increased and the mass induces a constant torque T
m

. The parameters T
d

, J
b

and T
m

can be

approximated as follows,

T
d

= m
d

!2r
d

l
d

sin(!t),

J
m

= m
m

l2
m

,

T
m

= m
m

gl
m

,

where m
d

is the mass of the unbalance, r
d

is the radius of the orbit of the unbalance weight

center gravity around the rotor, l
d

is the projection of the length between the motor shaft and

the pivot onto the horizon, ! is the motor speed, m
m

is the motor mass, l
m

is the distance
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Figure 6.9: Illustrative diagram of the balancing beam test rig.

between the motor and the pivot, g is the acceleration of gravity.

A diagram illustrating the basic function of the test rig is shown in Fig. 6.9. The linearized

plant subject to input delay and the exosystem can be grouped in the following output

regulation form

ẋ(t) = Ax(t) + BI(t� ⌧) + Pw(t), (6.8a)

ẇ(t) = S(t)w(t), (6.8b)

e(t) = Cx(t), (6.8c)

where
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2
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The exosystem is derived based on the unbalance force equation. Since it is not appropriate

to apply autobalancing to the balancing beam, suppression of the unbalance disturbance
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becomes the primary objective to achieve and the error to be regulated is the tilting angle

of the beam under di↵erent motor speeds. Besides, a constant delay ⌧ is added at the

output of the controller to simulate the input delay. The LMI approach presented in Section

5.1 is applied to synthesize the TPF controller with the maximum delay bound, where the

corresponding maximum input delay D̄ = 1.54 ms. Similar to Section 6.1, the results of

Lemma 4.3.2 are adopted to construct an observer to estimate the states of the plant and

the exosystem at di↵erent rotational speeds. The state observer is utilized to formulate the

output feedback controller, with a structure similar to Fig. 6.2.

6.2.1 Simulation results

The proposed di↵erential regulator based output regulation method is first verified by

simulation for unbalance suppression at both constant motor speed and varying motor speeds

on the model of the balancing beam test rig. Shown in Fig. 6.10 are the control current

and beam tilting angle without the di↵erential regulator when the motor speed stays at 980

rpm while the di↵erential regulator is activated in Fig. 6.11. The red dashed line indicates

the mechanical boundary created by the two rails. It can be observed that the tilting angle

quickly converges to near zero and the control current is notably reduced.

Shown in Fig. 6.12 are the control current and beam tilting angle without the di↵erential

regulator when the motor speed increases from 0 to 1,200 rpm while the di↵erential regulator

is activated in Fig. 6.13. It can be observed that the tilting angle remains near zero for

the wide motor speed range and the control current is notably reduced. In addition, when

the di↵erential regulator is activated, the angle clearance is significantly bigger at higher

motor speed while the beam almost hits the rails and the system becomes unstable when the

di↵erential regulator is o↵.
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Figure 6.10: Simulated control current and titling angle without the di↵erential regulator at
980 rpm.
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Figure 6.11: Simulated control current and titling angle with the di↵erential regulator at 980
rpm.

6.2.2 Experimental results

The proposed controller is implemented on the balancing beam test rig. The algorithms are

formulated and programmed on the open source real-time control platform Scicos-Lab. A

constant delay ⌧ = 1.54 ms is added at the output of the controller to simulate the input

delay and a TPF controller synthesized from the LMI optimization procedure is used for the
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Figure 6.12: Simulated control current and titling angle without the di↵erential regulator
from 0 to 1,200 rpm.
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Figure 6.13: Simulated control current and titling angle with the di↵erential regulator from 0
to 1,200 rpm.

levitation. The graphic user interface (GUI) in Scicos-Lab facilitates the testing of di↵erent

control designs, and several key parameters such as the beam tilting angle, perturbation

current are displayed on real-time plot windows. During experiments, those parameters can
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be saved in the computer for post-processing and frequency response analysis.

Shown in Fig 6.14 are the experimental results without and with the di↵erential regulator

when the motor runs at 685 rpm. The corresponding control currents, beam titling angles,

and FFTs of the sensor measurements without and with the di↵erential regulators are shown

on the left and right columns, respectively. It is observed that with the regulator activated,

the beam titling angles are reduced for more than 50%, and the control current is also notably

reduced. The FFT of the sensor measurements indicates that the synchronous vibration is

fully rejected when the di↵erential regulator is active.

Shown in Fig 6.15 are the experimental results without and with the di↵erential regulator

when the motor runs from 0 to 685 rpm and then back to 0 rpm within 30 seconds. The

red curves indicate the results with the di↵erential regulator activated while the blue curves

indicate the results without the regulator. With the increasing of the motor speed, the

unbalance forces become larger. It clearly shows that when the di↵erential regulator is not

active, in order to maintain the balance of the beam, the controller has to generate larger

force to counteract the disturbance while the titling angle still increases significantly. When

the di↵erential regulator is active, the control output remains almost steady and the beam

titling angles are also contained in a small level. The experimental results are consistent

with the simulation results for both constant speed and time-varying speeds. The reason

the speed is limited to near 700 rpm is due to the open-source software limitation. Because

of unknown software issue, the original analog ports can not support three analog inputs

simultaneously, and the speed signal has to be imported through the digital port and utilized

in the control signal calculation after filtering. However, when the motor reaches 1,200 rpm,

the noise level prevents the rotating frequency from filtering out of the digital signal. The

experimental results from 0 to near 700 rpm have demonstrated the e↵ectiveness of the

proposed method, and since new sets of control hardware and software have been planned,

the current limitations can be well addressed in the near future.
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(a) Control currents.
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(b) Beam tilting angles.
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(c) FFT of the sensor measurements.

Figure 6.14: Experimental performance without (left column) and with (right column) the
di↵erential regulator at 685 rpm.
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Figure 6.15: Experimental performance without (blue curves) and with (red curves) the
di↵erential regulator from 0 to 685 rpm and then back to 0 rpm.
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6.3 Summary

This chapter focuses on unbalance compensation of AMB systems subject to input delay with

time-varying rotational speed. The di↵erential regulator based output regulation method is

first applied to the model of the flexible rotor AMB test rig for autobalancing at di↵erent

rotational speed conditions, which has been verified in the simulation results. Then a

balancing beam test rig is adopted to further validate the proposed compensation method.

Extensive simulation and experimental results under time-varying rotational speed show close

agreements and they have demonstrated the strength and potential of the proposed method.



Chapter 7

Conclusions

7.1 Summary

This dissertation presents a systematic approach for the unbalance compensation of AMB

systems with input delay. The potential applications of AMB supported compressors for

o↵shore oil and gas production entail the system to be remotely located in severe environments

for long operating hours. Since these areas are not easily accessible for frequent diagnosis and

maintenance, AMB systems need to operate stably and robustly. Two main challenges of the

applications have been addressed in this work. The first one is the time delay caused by long

cables connecting the AMB control unit to the AMB actuators. Because time delay may

degrade the system performance and even jeopardize the closed-loop system stability, the

control of AMB systems subject to input delay e↵ects has to be well addressed. Besides time

delay, the unbalance disturbance is the other challenge for such applications. Considering any

newly machined rotor always carries some small residual weight, unbalance e↵ects cannot

be ignored. If they are not suppressed properly, the rotor can be induced into whirling

motion and the AMB system can become unstable. To satisfy the control requirements of a

remotely located compressor supported by AMBs, a special advanced control method has

been developed to contain the time delay e↵ect and suppress the unbalance disturbance under
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di↵erent rotational speed conditions.

To first achieve stable rotor levitation with input delay e↵ects, the TPF control method is

applied. The controller corresponding to the maximal input delay the closed-loop system can

tolerate is obtained iteratively from the solution of a local LMI problem. The ROMAC flexible

rotor AMB test rig is used for experimental validation of the developed TPF control law. The

TPF controller notably outperforms a previously designed µ-synthesis robust controller when

longer input delay is added and the rotor vibration level is su�ciently contained during the

unbalance response test. Additionally, to reduce the rotor unbalance disturbance on AMB

supported high speed rotating machineries subject to input delay, with the TPF control law

serving as the feedback controller, an unbalance compensation method based on the solution

of an equivalent output regulation problem at a constant rotational speed is developed.

By applying the output regulation mechanism to AMB systems for unbalance reduction,

the unbalance force is modeled as a time-invariant exosystem and two output regulation

scenarios are investigated that define the control forces and rotor displacements as the errors

to be regulated. Both simulation and experimental results reveal that the synchronous rotor

vibrations and the magnitude of the AMB control currents can be significantly reduced using

the developed output regulation compensator.

After considering unbalance compensation for input-delay AMB systems under a constant

rotational speed, the research extends to the autobalancing and unbalance suppression problem

of AMB systems subject to input delay at varying rotational speed. A di↵erential regulator

based output regulation approach is presented to first address the autobalancing problem of

AMB systems for varying rotational speed cases. When the rotational speed dynamically

changes, the exosystem derived from the unbalance forces becomes time-varying. After

formulating the output regulation problem with a time-varying exosystem, it is observed that

the compensator gains can be obtained based on the solution of the DRE and a sub-optimal

solution is developed using the unified gradient method for non-minimum phase systems so

that the regulator gains are always bounded and the residual error in the regulated AMB
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control force is locally minimized. Simulation results are presented to verify the e↵ectiveness

of the method. Lastly, a balancing beam test rig is adopted to further validate the proposed

compensation approach under time-varying rotational speed and the beam titling angle is

defined as the regulation error. Both simulation and experimental results demonstrate the

strength and potential of the developed method.

Based on what has been completed in the dissertation, the most significant novelties

and contributions are summarized as follows: given that the unbalance compensation of

AMB systems subject to time delay has not been documented in the previous literature, this

dissertation has developed a truncated predictor feedback based output regulation mechanism

to control AMB supported high speed compressors in remotely operated applications, and

considering that little literature has addressed the time-varying exosystem problem and

the current approach has restrictions, this dissertation has derived a practical di↵erential

regulator based output regulation algorithm to achieve locally minimized residual error in the

regulated output for non-minimum phase systems, such as AMB systems, that are a↵ected

by the disturbance generated from time-varying exosystems.

7.2 Future work

Following the work completed in this dissertation, there are still several problems to be

addressed in the future:

1. The size of the plant model plays a critical role in the di↵erential regulator based output

regulation approach. For complex dynamic systems which are represented by high

order plant models, the corresponding compensator will have high orders as well. For

implementation purpose, this may place an excessive demand on the computing power

from the hardware, which sometimes may become impractical. Therefore, a systematic

approach can be developed to reducing the size of the developed compensator while

maintaining its appealing features.
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2. The unified gradient method is adopted to locally minimize the residual error in the

regulated output. Additional investigation can be taken to verify if the residual error

can be further reduced using other approaches.

3. Since the current problem formulation only considers a time-invariant plant subject

to input delay, there might be new findings if the current framework is extended to a

time-varying plant.

4. Uncertainties may be considered in the development of the compensator to enhance

the robustness of the output regulation problem for a system with time delay.
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