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The Role of Chromosomal Region 16p13.13 in Type 1 Diabetes 

Melvin Joseph Tomlinson IV 

Advisor: Patrick Concannon Ph.D. 

Abstract 

Type 1 diabetes most frequently results from the autoimmune destruction of the 

insulin producing pancreatic Beta cells, resulting in dependence on exogenous insulin. 

The disease is complex and arises due to the effects of both genetic and environmental 

factors. With the advent of genome-wide association studies (GWAS) over 40 additional 

loci have been identified that confer low to moderate risks of developing type 1 diabetes 

(Odds Ratios, OR, ≤1.3). One of these regions identified is located at chromosome 

16p13.13 and is associated with type 1 diabetes and several other autoimmune disorders. 

The specific region of interest on chromosomal region 16p13.13 implicated in 

autoimmunity spans approximately 530 KB from 10,937,499-11,467,499 base position 

(bp) (build Hg19) and encompasses four major genes: CIITA, DEXI, CLEC16A and 

SOCS1.  

In order to identify specific risk variants for type 1 diabetes in this region and 

understand the mechanism of their action, we re-sequenced the entire region in 192 

individuals (128 patients and 64 controls) identifying 93 novel variants. A panel of 939 

SNPs, that included 46 of these novel variants, was genotyped in 3,070 multiplex families 

with type 1 diabetes to identify potential risk variants. After correcting for multiple 

testing, 48 SNPs provided statistically significant evidence of association with type 1 
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diabetes (most significant SNP rs34306440 P = 5.74 x 10
-6

), conditioning on the top SNP 

found no further significant associations.  

The panel of SNPs used for fine mapping was also tested for association with 

variation in the transcript levels of each reported isoform of all genes in the region. 

Significant associations were observed only for transcript levels of DEXI, a gene 

originally reported to be unregulated by dexamethasone but whose function is unknown. 

We also tested novel unreported isoforms of CIITA in our study, but found no 

association.  

We examined the relationship between the odds ratio for type 1 diabetes and the 

magnitude of the effect of DEXI transcript levels for each SNP in the region. Among 

SNPs significantly associated with type 1 diabetes, the common allele conferred an 

increased risk for disease, and corresponded to lower DEXI expression. Our results 

suggest that the primary mechanism by which genetic variation at CLEC16A contributes 

to risk for type 1 diabetes is through reduced expression of DEXI. 
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Dissertation Overview 

The dissertation is divided into five chapters. Chapter 1 (Type 1 Diabetes) focuses 

on a review of our current knowledge of type 1 diabetes. Chapter 2 (Brief History of 

Diabetes) examines the magnitude and impact diabetes has had on our society and some 

of the major historical events that led up to our current understanding of the disease. 

Chapter 3 (Genetics of Type 1 Diabetes) encompasses a compressive review of the 

current genetic understanding of type 1 diabetes and the contextual placement of the 

dissertation project in this rapidly advancing field. Chapter 4 (Chromosome 16p13.13 and 

Its Role in Type 1 Diabetes) is the main focus of the dissertation and explores the overall 

project. Chapter 5 (Future Directions) expands upon future experiments of this project 

and overall future directions of type 1 diabetes research.  

 

 

 

 

 

 

 

 

  



VIII 

 

Table of Contents 

Chapter 1: Type 1 Diabetes in Today’s World  ............................................................ 1 

Introduction ................................................................................................................. 2 

Incident Rates .............................................................................................................. 3 

General Features of Diabetes  ................................................................................... 3-4 

Type 1 Diabetes Environmental Variables ................................................................ 4-5 

Pathogenesis of Type 1 Diabetes (What is known) ................................................... 5-8 

Important Research Tool- Islet Cell Autoantibodies (ICA) ....................................... 8-9 

Conclusion ................................................................................................................... 9 

Work Cited ........................................................................................................... 10-16 

 

Chapter 2: Brief History of Diabetes .......................................................................... 17 

Introduction ............................................................................................................... 18 

Ancient Times--- "To Pass Through" .................................................................... 18-19 

Diabetes "Mellitus" ............................................................................................... 19-20 

Discovery of Insulin .............................................................................................. 20-22 

Two Diseases: Type 1 and Type 2 ......................................................................... 22-23 

1970 - Present ....................................................................................................... 23-24 

Work Cited ........................................................................................................... 25-27 



IX 

 

Chapter 3: The Genetics of Type 1 Diabetes .............................................................. 28 

Introduction .......................................................................................................... 29-31 

Genetic Linkage Studies ............................................................................................. 32 

Candidate-Gene Association Studies ..................................................................... 32-33 

GWAS .................................................................................................................. 33-37 

HLA (IDDM1) ...................................................................................................... 37-41 

Insulin (INS) (IDDM2) ............................................................................................... 41 

CTLA-4 (IDDM12) ............................................................................................... 42-43 

PTPN22 ................................................................................................................ 43-44 

IL2RA ................................................................................................................... 45-46 

Conclusion ............................................................................................................ 46-47 

Work Cited ........................................................................................................... 48-64 

 

Chapter 4: Chromosome 16p13.13 and Its Role in Type 1 Diabetes ......................... 65 

Introduction .......................................................................................................... 66-77 

 Background Information ............................................................................... 66-68 

 CIITA ............................................................................................................ 69-70 

DEXI .................................................................................................................. 71 

 CLEC16A...................................................................................................... 71-73 



X 

 

Chapter 4: Continued ..................................................................................................  

 SOCS1 .......................................................................................................... 74-75 

Project Purpose ............................................................................................. 76-77 

Research Design and Methods ............................................................................... 78-84 

 Subjects ............................................................................................................. 78 

 Sequencing of Region to Identify SNPs .............................................................. 78 

 SNP Filtering and Selection ............................................................................... 79 

Genotyping ................................................................................................... 79-80 

 ImmunoChip Dataset .................................................................................... 80-81 

 Imputation.......................................................................................................... 81 

 Association Testing ....................................................................................... 81-82 

 RT-PCR ........................................................................................................ 82-83 

 Expression Quantitative Trait Loci (eQTL) Analysis .......................................... 84 

Results ................................................................................................................ 85-108 

 Re-sequencing of the 16p13.13 Region Identifies Novel SNPs ........................... 85 

 Fine Mapping Identifies Statistically Significant Association  

with Type 1 Diabetes .................................................................................... 85-95 

  Custom Panel .................................................................................... 85-87 

ImmunoChip ..................................................................................... 88-89 



XI 

 

Chapter 4: Continued ......................................................................................................  

Final Merged Dataset......................................................................... 90-95 

Conditioning on Top SNP ............................................................................. 96-97 

 Identification of Novel Splicing Isoforms of CITTA Created by Alternative  

Splicing ............................................................................................. 98-99 

 SNPs in CLEC16A are Associated with Variation in Expression Level of  

DEXI ............................................................................................. 100-106 

 Relationship of SNPs Associated with Type 1 Diabetes and/or DEXI  

Expression ..................................................................................... 107-108 

Discussion ......................................................................................................... 109-111 

Acknowledgements for Research Work .................................................................... 112 

Work Cited ....................................................................................................... 113-120 

Chapter 5: Future Directions .................................................................................... 121 

Introduction ............................................................................................................. 122 

Investigating DEXI ........................................................................................... 122-125 

Possible Mechanisms Conferring Risk .............................................................. 125-127 

Future Directions of Type 1 Diabetes Research ................................................. 128-130 

Work Cited ....................................................................................................... 131-133 

  



XII 

 

List of Figures  

Figure 3-1 Study Strengths for Discovering Genes Involved in Complex Diseases  ....... 31 

Figure 3-2 Forty-nine Non HLA Gene Regions Associated With Type 1 Diabetes ........ 35 

Figure 3-3 HLA  ........................................................................................................... 38 

Figure 4-1 Locations of Autoimmune Related Disease SNPs that Have Reached Genome  

Wide Significance for a Linkage Disequilibrium Block in Chromosome  

16p13.13 ............................................................................................................ 67 

Figure 4-2 Linkage Disequilibrium in Chromosome 16p13.13 ...................................... 68 

Figure 4-3 The Pathway of CIITA ................................................................................ 70 

Figure 4-4 Isoforms of CLEC16A ................................................................................. 72 

Figure 4-5 Co-localization of Spinster and Ema ............................................................ 73 

Figure 4-6 The SOCS Activation Pathway (Negative Feedback Inhibition) ................... 75 

Figure 4-7 Fine Mapping of a Chromosome 16p13.13 Region with Custom  

SNP Genotyping Panel for Association with Type 1 Diabetes ............................ 87 

Figure 4-8 SNPs from the ImmunoChip Genotyping Panel Associated with Type 1  

Diabetes ............................................................................................................. 89 

Figure 4-9 A Comparison of SNP Genotyping Panels Used to Fine Map Chromosome  

16p13.13 ............................................................................................................ 91 

 



XIII 

 

Figure 4-10 SNPs Associated with Type 1 Diabetes from the  

Final Genotyping Panel  ..................................................................................... 92 

Figure 4-11 Focused View of the 48 Most Statistically Significant SNPs Associated with  

Type 1 Diabetes  ................................................................................................ 93 

Figure 4-12 Conditioning on the SNP Most Significantly Associated with Type 1  

Diabetes to Reveal Independently Associated SNPs ........................................... 97 

Figure 4-13 Novel Isoforms of CIITA ........................................................................... 99 

Figure 4-14 eQTL SNPs for DEXI  ............................................................................. 101 

Figure 4-15 Expression Levels of DEXI ..................................................................... 106 

Figure 4-16 Relationship of Risk for Type 1 Diabetes and DEXI Expression ............... 108 

Figure 5-1 Possible Mechanism for Linkage Disequilibrium Block in Chromosome  

16p13.13 in Autoimmunity .............................................................................. 127 

 

  



XIV 

 

List of Tables  

Table 4-1 Primer Sequences Used for the Expression Quantitative Trait Loci (eQTL)  

Analysis of the Genes and Isoforms in LD Block 16p13.13 ................................ 83 

Table 4-2 Functional Annotation of SNPs on Custom Panel .......................................... 86 

Table 4-3 Functional Annotation of SNPs on Final Genotyping Panel (939 SNPs)  ....... 90 

Table 4-4 SNPs in CLEC16A Most Strongly Associated with Type 1 Diabetes  

(total 48) from TDT Analysis Sorted in Order of Base Position ..................... 94-95 

Table 4-5 SNPs Significantly Associated with Type 1 Diabetes with their  

Corresponding eQTL Results for DEXI ..................................................... 102-103  

Table 4-6 Top eQTL SNP P-values for Each Gene Tested .......................................... 104 

 

 

 

 

 

 



1 

 

 

 

 

 

 

 

Chapter 1 

Type 1 Diabetes in Today’s World 

 

 

 

 

 

 

 

 

  



2 

 

Introduction 

 Type 1 diabetes most frequently results from the autoimmune destruction of the 

insulin producing pancreatic β cells, ultimately resulting in the affected individual 

requiring exogenous insulin for survival. Type 1 diabetes is considered a complex disease 

that arises due to the effects of both genetic and environmental factors evident by the 

incomplete concordance of 30-70% between monozygotic twins (1-6). For dizygotic 

twins the concordance rate is estimated to be around 5-15% (2-4,6). Type 1 diabetes was 

previously known as insulin-dependent diabetes mellitus (IDDM), or juvenile onset 

diabetes, because it was originally recognized to occur in young children, but these terms 

are no longer widely used. Type 1 diabetes can occur at any age and it has been found 

that over 50% of new cases of type 1 diabetes occur in adults (7).  

 The initial symptoms of type 1 diabetes are excessive thirst, urination, and 

hunger. These symptoms occur because the body is producing insufficient amounts of 

insulin resulting in chronic hyperglycemia: a condition which if not treated can result in 

death (8). Type 1 diabetes has two sub-types; 1A and 1B. Type 1 diabetes 1A refers to 

the auto-immune driven form of the disease, which is evident by the development of 

autoantibodies. Type 1 diabetes 1B, also called "idiopathic diabetes,” is a form of 

diabetes with no auto-antibodies present even though the insulin levels are drastically 

reduced similar to type 1A. Type 1 diabetes 1B mainly occurs in Africans or Asians and 

the exact mechanism of the disease is poorly understood (8). Type 1 diabetes 1B will not 

be discussed further here and for simplicity, type 1 diabetes will refer to the sub-type 1A 

hereafter. 
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Incident Rates 

 Based on the Center for Disease Control and Prevention (CDC), approximately 

13,000 young people are diagnosed with type 1 diabetes each year. The most recent CDC 

reports put the prevalence of type 1 diabetes at 1.7 per 1000 people age 0-19 in the 

United States (9). Type 1 diabetes is predominantly a disease that affects Europeans or 

populations of European descent. The highest incidence rates (age 0-14) were found in 

Finland and Sardinia (37/100,000), the USA rate was 16.1/100,000 and the lowest rates 

of <1/100,000 were found in China and Venezuela (10,11). Globally the rates of type 1 

diabetes have been increasing, and the USA has seen a yearly increase of 5.3% (12). A 

study in Europe has predicted that by 2020 the prevalence of type 1 diabetes among 

individuals 15 years and younger will increase by 70% (13). Clearly the epidemic of type 

1 diabetes is exacerbating and research into the underlying mechanisms is essential in 

understanding the disease and to help prevent future cases. 

  

General Features of Diabetes 

 In all forms of diabetes, the key identifying trait is hyperglycemia; a condition 

where there is a high glucose level in the blood stream that can cause very serious 

medical conditions such as ketoacidosis, kidney failure, heart disease, stroke, and 

blindness. Hyperglycemia occurs in all four of the classified forms of diabetes: type 1 

diabetes, type 2 diabetes, gestational diabetes, and "other" (14). The World Health 

Organization (WHO) currently estimates that 347 million people in the world have 

diabetes. In 2004, ~3.4 million people died from hyperglycemia (15). The three other 
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types of diabetes will be briefly mentioned for contextual understanding. Type 2 diabetes 

is now the major form of diabetes; it encompasses 90% of all cases and occurs when an 

individual develops insulin resistance, further risk augments with age and obesity. 

Generally individuals do not need exogenous insulin for survival and disease can be 

controlled by diet, exercise and medications (9,16). Gestational diabetes is a form of 

diabetes that affects pregnant women and usually subsides after pregnancy. However, if 

the condition persists after pregnancy, the diabetes type needs to be re-classified and 

treated accordingly. The "other" category of diabetes refers to an underlying identifiable 

defect in the way the body responds to insulin; it is not related to autoimmune destruction 

of β-cells (8).  

 

Type 1 Diabetes Environmental Variables 

 There has been much investigation into "unknown environment factor/factors" 

that trigger the autoimmune response to type 1 diabetes. More children are diagnosed 

with diabetes during the winter "cold season" and less during the summer. A plausible 

explanation for this observation is on the account of the winter season bringing people in 

closer contact, thus increasing the exposure to viral infections (17,18). No definitive 

triggering virus strain has been found; however, some evidence hints at the genus of an 

enterovirus, specifically Coxsackievirus involvement in the development of type 1 

diabetes (19-21). It has been reported that when migrants move from a low incidence 

region for type 1 diabetes to a region of higher risk their incidence rate increases as well 

(22,23). Various other environmental triggers have also been investigated such as 
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bacterial gut composition and consumption of certain foods and nutrients (12,24), or lack 

of exposure to immunogens as postulated in the "hygiene hypothesis". The hygiene 

hypothesis states that as countries become more developed (cleaner living environments), 

individuals are exposed to less pathogens and the immune system begins to malfunction 

due to the "lack of challenge," resulting in autoimmune diseases and allergies (25). 

Evidence for this argument is seen in the model organisms for type 1 diabetes such as the 

non-obese diabetic (NOD) mouse  and the inbred BioBreeding (BB) rat, which develop 

diabetes at a higher rate when animals are kept in a pathogen-free environment (26,27). 

Further evidence for this hypothesis (as previously mentioned) is seen by the increased 

incidence of type 1 diabetes among migrants to a region of high incidence (22,23). 

However, all these detailed studies have found no conclusive evidence of the causative 

factor in humans. Ongoing collaborative studies such as The Environmental 

Determinants of Diabetes in the Young (TEDDY) (28) and Diabetes Autoimmunity 

Study in the Young (DAISY) (29) aim to determine environmental triggers for type 1 

diabetes in children who are at risk based on genetics.  

 

Pathogenesis of Type 1 Diabetes (What is known)  

 It is predicted that type 1 diabetes occurs due to an accumulation of multiple 

immune responses that ultimately result in the destruction of the insulin producing β-

cells. Type 1 diabetes will occur when 70-90% of the β-cell mass is destroyed. This 

cascade of immune response can occur very quickly (e.g. juvenile onset of disease) or 

take years to develop (12,30). Deciphering what events precede diagnosis of type 1 
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diabetes in humans is very complicated due to the "unknown trigger” and difficulty in 

examining the pancreas in living individuals. Based on examinations of pancreas from 

cadavers from long term type 1 diabetes patients, it appears that β-cell destruction in the 

pancreas is very slow and incomplete (31). Studies also found that during insulitis, 

macrophages and CD8
+
 T-cells were the most abundant cell types present, CD4

+
 T-cells 

were present as well but at a lower rate (32,33). Due to the difficulty in examining the 

pathogenesis in humans, we turn to genetic studies to shed light on biochemical pathways 

leading to type 1 diabetes that can be tested in animal models such as the NOD mouse 

(34) and BB rat (35).  

 In the NOD mouse model there are four stages of disease progression; pre-

insulitis, peri-insulitis, intra-insular insulitis and finally complete islet destruction (30). In 

pre-insulitis no damage or immune response is evident in the pancreatic islets. CD11c
+
 

dendritic cells and ER-MP23
+
 macrophages are the first cells that invade the pancreas in 

three week old mice (30). Around the same time (or shortly after) pathogenic T-cells, 

majority CD4
+ 

T-cells, CD8
+
 T-cells, and other immune cells are also present and have 

been identified surrounding the pancreas. This period of development is  referred to as 

peri-insulitis (34). It is postulated that these T-cells react to β-cells’ antigens based on the 

high turnover of β-cells in the mouse islet (36). At this point, lymphocytes invade the 

islets in the stage referred to as intra-insular insulitis, resulting in more inflammation 

preempting total islet destruction. In comparison to the animal models, the amount of 

insulitis that occurs in humans is much less and incomplete (30,31,37)  
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 In the NOD mouse, it has been found both CD4
+
 and CD8

+ 
T-cells are needed for 

the development of diabetes (34). For example, when the NOD mouse does not have a 

functional β2-microglobulin (β2M), resulting in a non-functional MHC class I molecules 

(CD8
+
 T cells absent in periphery); they do not develop diabetes (38-40). When the MHC 

class II molecule is not expressed as in the CIITA knockout mouse (CD4
+
 T cells absent), 

islet infiltration in the NOD mouse occurs but diabetes does not develop (41). However, 

if an autoaggressive CD8
+
 T cell clone is introduced into NOD CIITA knockout or NOD 

SCID mice, diabetes will develop in the absence of CD4
+
 T cells (41,42). Based on these 

findings both MHC class I & II molecules are needed in the development of diabetes. The 

absence of either will inhibit diabetes, but with a slightly greater emphasis on the 

requirement for CD8
+
 T-cells as key to initial development.  

 It has also been determined that developing self-antigens of insulin is essential in 

developing diabetes. This finding was based on observations of antibodies against insulin 

appearing first in young children that develop type 1 diabetes (43,44). Mice have two 

insulin genes that express proteins differing by two amino acids, at position B9 and B27 

(45,46). In insulin 1 knockout NOD mice diabetes was prevented, but in insulin 2 

knockout NOD mice diabetes was accelerated.(46,47). The specific epitope triggering the 

autoimmune reaction in the NOD mice was narrowed down to amino acid sequence B9-

B23 in insulin 1 (48-50). 

 After examining human and animal cases of type 1 diabetes, a pathway of 

pathogenesis of diabetes can be postulated. Some "unknown trigger” or lack thereof 

causes the development of autoreactive T-cells (CD4
+
 and CD8

+
). It can be speculated 
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that CD8
+
 T-cells are recruited first to pancreas and then after this initial wave of attack 

CD4
+
 T-cells are activated. However, the end result is that T-cells invade the islets and 

cause β-cell destruction. Over time this causes more inflammation and even greater 

destruction which destroys an individual's ability to produce insulin and ultimately results 

in diabetes.  

 

Important Research Tool- Islet Cell Autoantibodies (ICA) 

  In type 1 diabetes, the development of autoantibodies is indicative of an 

autoimmune response occurring. The targets of some of the autoantibodies are insulin, 

glutamate decarboxylase (GAD65), insulinoma-associated antigen-2 (IA2), islet cells, 

and zinc transporter 8 (ZNT8) (43,51-53). The presence of one of these autoantibodies 

does not necessarily indicate an individual will develop diabetes because levels of 

autoantibodies have been found to fluctuate (43). An individual's risk for developing type 

1 diabetes does increase as the number of autoantibodies increases rather than the titre of 

autoantibodies (43,51,52). Also antibodies appear to develop in a sequential order and as 

previously mentioned antibodies against insulin appear first (43,44). Autoantibodies are 

important for diabetes research due to the fact they are an easily measurable quantity for 

investigators that can be indicative of a pending autoimmune or occurring autoimmune 

destruction of β-cells in the pancreas (44). However, antibodies are not the only specific 

epitope targeting mechanism in the immune system and it was recently found that 

cytotoxic T-cells from a type 1 diabetes patient were targeting β-cells through a glucose 

regulated preproinsulin epitope (54). Future testing to determine an individual's risk for 
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type 1 diabetes should also include T-cells screening, although they are more difficult to 

measure.  

 

Conclusion 

 

 Type 1 diabetes is a complex disease that is influenced by many different factors, 

some known and many unknown. Currently, why diabetes occurs (destruction of insulin 

producing β-cells) is known, but what triggers it and exactly what leads up to this final 

precipitating event is unknown. Researchers and doctors have a few tools to try to 

identify the pathogenesis of diabetes by examining the presence of autoantibodies and the 

genetics of an individual. There are certain combinations of genetic risk factors that 

greatly increase an individual's likelihood of developing diabetes. But, in order to better 

understand the present direction of research, understanding the past history of the disease 

is important.  
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Introduction 

 Diabetes is a disease that has been documented for thousands of years. Many of 

the big breakthroughs for understanding diabetes did not occur until the last one hundred 

years, but there were numerous small steps that led up to these important discoveries. To 

understand what led up to the current Genome Wide Association Studies (GWAS) that 

have revolutionized the field, understanding the discoveries that came before is essential 

to fully appreciate the state of the field today.  

 

Ancient Times---"To Pass Through"  

 In the Ebers Papyrus, an ancient Egyptian text from ~1500 B.C.E., a disease 

(presumed to be diabetes) is referenced that causes "great emptying of the urine" (1) and 

excessive thirst (2). The term “diabetes,”  a literal translation from Greek as “to pass 

through,” was first used by the Apolonius of Memphis (230 B.C.E.) (1). The naming 

most likely referred to the continuous urination and wasting away of affected individuals 

(3). The Greek physician Aretaeus (from 80-138 A.C.E. Cappadocia) noted the sweet 

taste of diabetic urine (2) in his work "On the Causes and Indications of Acute and 

Chronic Diseases," (1) an exhaustive analysis of the disease. 

 Diabetes is a dreadful affliction, not very frequent among men, being a melting down of the flesh 

 and limbs into urine. The patients never stop making water and the flow is incessant, like the 

 opening of the aqueducts...The patients are affected by nausea, restlessness and burning thirst, and 

 within a short time they expire. (1,4) 

 

Numerous allusions to diabetes are referenced in cultures of India, China and Middle East 

(1,3); for instance in 5
th

 century India, physicians Sushruta and Charaka noted the 

appearance of two types of diabetes: one afflicting younger individuals and the other 
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affecting the heavier and older (1). Furthermore in 7
th
 century China, physician Li Hsuan 

observed the susceptibility of diabetic patients to boils and lung infections. Although 

misleadingly concluding as treatment, an abstinence from sex and wine (1,3), these 

original observations lay the foundation for the discoveries of the 18
th
 and 19

th
 century. 

 

Diabetes "Mellitus" 

In 1670 Thomas Willis re-discovered the “sweet” tasting of urine in affected 

individuals (1). This “sweet” tasting compound was identified as sugar in 1776 by 

Matthew Dobson. This was deduced by procuring urine from a diabetic patient and 

performing various experiments on it: letting sit, boiling, evaporating and mixing with 

mineral acids. 

Two quarts of this urine were, by a gentle, evaporated to drynefs...There remained, after the 

 evaporation, a white cake which weighed 3iv. 3ij. and Эij. This cake was granulated, and broke 

 eafily between the fingers ; it fmelled fweet like brown fugar. (5) 

 

Matthew Dobson also noted that the level of glucose was elevated in the urine of patients 

with the disease and that the blood of patients was sweeter too (1,5). In 1788 Thomas 

Cawley, a surgeon, suggested there was connection between diabetes and the pancreas 

after he noted individuals that sustained pancreatic injuries developed diabetes (6,7).  

 John Rollo (1749-1809), a surgeon general in the British Army, was the first 

person to use the phrase diabetes “mellitus,” (Latin and Greek for "honey") when 

referring to diabetes. This was done to differentiate the two types of “diabetes” identified 

at the time; diabetes mellitus (sweet) and diabetes insipidus (tasteless) (1,3). Diabetes 

insipidus refers to a disease that manifests itself as excessive urination due to hormonal 

imbalance of vasopressin and is not at all related to diabetes mellitus (8). John Rollo with 
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assistance from William Cruickshank monitored the amount of sugar excreted by a 

Captain Meredith who had diabetes and severe glycosuria (sugary urine) (4). They 

monitored the amount of sugar in his urine by boiling it and weighing the sugar residue 

leftover. They also meticulously recorded the types of foods he ate. They noticed that 

breads, grains and fruits increased the sugar content in the urine and meats lowered it. 

After these observations they concluded the stomach was overproducing sugar from 

certain foods and recommended a diet low in carbohydrates and high in fat and protein. 

(4,9). This recommendation became the standard for future treatments of diabetes until 

the discovery of insulin (4). It should be noted for the treatment of type 2 diabetes this 

method worked well, but for type 1 diabetes it was lethal due to starvation (1).  

 

Discovery of Insulin 

The next big breakthrough in diabetes did not come until 1889 when Joseph von 

Mering and Oskar Minkowkski found that by removing the pancreas of dogs they could 

trigger a diabetic state (excessive urination, intense thirst, hunger and weight lost), 

resulting in death of the dogs. However, their attempts to isolate this pancreatic 

compound failed (2,7). Jean de Meyer in 1910 postulated that this pancreatic chemical 

that was not being produced in diabetic patients be called "insulin." The term was derived 

from "insula" which means island in Latin referencing to its origin in the "islets of 

Langerhans" (10).  
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Diabetus  

 Ligate pancreatic ducts of the dog. Keep dog alive till acini degenerate leaving Islets. Try to 

 isolate the internal secretions of these to relieve glycosurea   

 

Frederick Grant Banting's lab notebook October 31, 1920, University of Toronto, Canada (1,11) 

 

In 1921 Frederick Banting and graduate student Charles Best, utilizing John 

MacLeod's laboratory, began experiments into extracting pancreatic hormones from dogs 

with ligated pancreas and re-injecting the extract into dogs with removed pancreas 

(diabetic dogs). Banting and Best's experiments were effective in relieving diabetic 

symptoms, prolonging the diabetic dogs' lives. Later experiments used pancreas from 

fetal calves (no proteolytic enzymes present and were more readily available) and later 

adult bovines’ pancreas when extraction techniques improved (12). The finding that from 

these pancreas extracts prolonged a diabetic dog's life from fourteen days to seventy days 

and prompted further experimentation. Banting enlisted James Collips, a biochemist, to 

help further purify the compound they called "isletin" (1,4,12). The compound "isletin” 

was later renamed by MacLeod to “insulin” to recognize de Meyer's original naming, 

which was not known at the time (1).  

Human diabetic patients were first tested in January 1922, with this compound 

called "insulin" with very positive results: immediate effects on lowering blood glucose 

levels (12). Leonard Thompson, a fourteen year old boy, was the first diabetic patient 

tested and his life was prolonged 13 years with ongoing insulin therapy. He died at the 

age of 27 from pneumonia (1).  

Interestingly, the group then had difficulties isolating the compound again, but 

with assistance from a small company named Eli Lilly, the compound was successfully 



22 

 

isolated and produced on a large scale. The breakthrough in large scale production came 

from the observation of a chemist, George Walden, at Eli Lilly who noticed maintaining 

insulin at its isoelectric point (no charge) could allow for maximum isolation and 

extraction from beef or pork pancreas (4,13). In 1923 Banting and Macleod received the 

Nobel Prize for discovering insulin. (4).  

Insulin immediately became a "wonder" drug, drastically changing the lives of 

diabetics who would have certainly faced premature deaths without treatment (4,14). In 

the years following the discovery of insulin, breakthroughs occurred in improved 

production, knowledge of its structure and variations in the types used (4). Even though a 

successful treatment for diabetes was found, a reclassification of the disease itself was 

needed to better understand and study the mechanism underlying diabetes. 

 

Two Diseases: Type 1 and Type 2 

 Over the course of years after insulin was discovered various classification 

schemes were adopted to describe diabetes. Prior to 1976 the classification of diabetes 

was based on phenomenological observations and was extremely confusing (15). The 

terms juvenile onset and maturity onset diabetes were also in popular usage. These terms 

would be replaced by insulin dependent diabetes (IDDM) and non-insulin-dependent 

diabetes mellitus to make the classification less dependent on age at onset and more 

representative of the disease mechanism (15). In 1976 Andrew Cudworth reintroduced 

the terms type 1 and type 2 diabetes (John Lister had previously used these designations 

in 1951) (15,16). This time the designations caught on and in 1979 these terms were 
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officially adopted and standardized by the National Diabetes Data Group Committee to 

the present day usage: type 1 diabetes (previously IDDM or juvenile onset diabetes) and 

type 2 diabetes (NIDDM or adult onset diabetes) (4). Interestingly H.P Himsworth 

originally postulated in 1939 that diabetes had two types: lack of insulin or the resistance 

to insulin, however it took 40 years for this idea to finally catch on (4).  

 

1970 - Present 

 Since 1979 there have been updates to the official classification of diabetes to 

include rarer forms (4). As diabetes was in the midst of re-classification, the scientific 

field was changing rapidly as well, laying the foundation for a better understanding of 

type 1 diabetes. The first genetic locus identified to be involved in type 1 diabetes was 

the HLA region in 1973 in a candidate gene study through serotyping (17). This was 

followed by a candidate gene association study that identified insulin in 1984(18), a 

linkage study identifying CTLA-4 in 1996 (19) and in more recent years PTPN22 (20) 

and IL2RA (21) were identified in candidate gene association studies.  

In the 1990's and early 2000's genome wide linkage studies were performed using 

microsatellite markers. These relatively infrequent markers were statistically 

underpowered for detecting new genes affecting type 1 diabetes and only could re-

validate known regions (22). Microsatellite markers were replaced with single nucleotide 

polymorphisms (SNPs) to investigate disease association with much deeper coverage on 

a greater genomic scale (although at moderate effect sizes) (23-25). The first 

comprehensive Genome Wide Association Study (GWAS) for type 1 diabetes using 
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SNPs was reported in 2007 and completely changed the field (26,27). The major genetic 

findings from these studies for type 1 diabetes will be discussed to a greater extent in 

chapter three. 
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Introduction 

 Type 1 diabetes is considered a complex disease that arises due to the effects of 

both genetic and environmental factors evident by <100% concordance between 

monozygotic twins (1-6). The most prevalent form of type 1 diabetes is thought to occur 

due the interaction of multiple genes (polygenic) and does not appear to show any clear 

pattern of inheritance though it does aggregate in families (6,7). It should be noted there 

are less common forms of type 1 diabetes that are monogenic and are immune-mediated, 

but these types will not be discussed further (8,9). Due to the ambiguity about the 

pathogenesis of type 1 diabetes and the exact genes involved, genetic studies have been 

performed that make few assumptions about the disease (model-free). Two study 

approaches that are commonly utilized in studying type 1 diabetes are linkage studies and 

association studies (10). 

  In linkage studies, affected related individuals (such as siblings) are investigated 

for identical chromosomal regions that are shared more frequently than expected by 

Mendelian inheritance. Linkage of the marker and the locus that confers susceptibility for 

the disease is identified by the accumulation of data across numerous families 

investigated. In general, linkage studies work well when the overall effect of the risk 

allele is large and the overall frequency of the allele is low in a population (Figure 3-1). 

However, linkage studies implicate regions of DNA that are many megabases long, 

which then require intensive investigation using fine mapping techniques to identify the 

causative risk variant (10,11). In association studies, case (affected) and control 

(unaffected or general population) groups are compared based on frequencies of specific 
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marker alleles within candidate genes, pathways or chromosomal regions. Association 

studies work well at discovering alleles that have a moderate to high frequency in the 

population, even if they have a small effect size (Figure 3-1) (10). An issue with 

association studies is carefully matching the control population for comparison; however, 

this can be avoided by utilizing the transmission disequilibrium test (TDT) and an 

affected sib-pair population. The TDT test investigates the number of times a marker 

allele is transmitted and not transmitted in the cases population (11,12). Association 

studies take advantage of linkage disequilibrium (LD) in the human genome, exploiting 

the situation where an allele (testable polymorphic marker) is in linkage disequilibrium 

with a causative variant. LD is the situation where specific allelic combinations that are 

relatively close to each other are recombined at a lower frequency then would be 

predicted (11). Linkage disequilibrium can span from a few hundred bases up to a few 

hundred kilobases, making identification of the causative variant much simpler than 

linkage study. (10).  
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Figure 3-1 
 

 

Figure 3-1 Study Strengths for Discovering Genes Involved in Complex Diseases 

Visualized on the Y-axis is effect size and X-axis is frequency in the population. A 

disease allele that has a small effect size and frequency in the population is likely to exist, 

but will be extremely difficult to discover and not be that informative. A disease allele 

that has strong effect and high frequency in the population will most likely not exist due 

to selective pressure over time. Reproduced with permission from (10), Copyright 

Massachusetts Medical Society 
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Genetic Linkage Studies 

The first genome wide genetic linkage study for type 1 diabetes was performed in 

1994 (13). This study reported linkage with human leukocyte antigen (HLA), insulin and 

18 other regions. This was followed up with other genome wide linkage studies in 

different populations in 1998 (14,15), 2001 (16) and ultimately ended with a 

comprehensive study that combined all prior studies in 2005 (17). These linkage studies 

further validated the HLA region as being the major risk locus for type 1 diabetes (10). 

Many of the other regions identified in linkage studies have been inconsistently seen 

because they are either false positives or when combining many different families, 

population heterogeneity is masking the true effects (10). However, a small scale 

candidate gene linkage study did identify CTLA-4 gene in 1996 as a risk for type 1 

diabetes (18).  

 

Candidate-Gene Association Studies 

 As previously mentioned, the first gene region identified to be involved with type 

1 diabetes was HLA in 1973 (19) through a candidate gene study using serotyping. The 

next couple of genes discovered were INS insulin in 1984 (20), PTPN22 in 2004 (21) and 

IL2RA in 2005 (22). However, candidate gene association studies require prior 

knowledge about a gene or region. The field of association studies was completely 

revolutionized by the development of genome wide association studies (GWAS) which 

utilized tagging single nucleotide polymorphisms (SNPs) for high-throughput screening 

of the entire genome and requiring no prior knowledge of a region to implicate it (23-25). 



33 

 

GWAS became feasible due to the availability of fine resolution SNP maps of the whole 

genome. In addition, knowledge of the linkage disequilibrium patterns in human 

populations decreased the number of SNPs that needed to be genotyped in order to cover 

the genome. 

 

GWAS 

 One of the first GWAS was performed in 2005 on patients with age related 

macular degeneration (AMD) (26). The first type 1 diabetes GWAS, performed in 2006 

using non-synonymous SNPs, identified IFIH1 in association, however SNP coverage 

and statistical power was very poor (27). The first comprehensive GWAS that 

interrogated the entire human genome for type 1 diabetes was performed in 2007 (28). 

Since that initial study another GWAS was performed with much greater SNP coverage 

(29) along with a comprehensive meta-analyses (30,31) and numerous follow-up studies 

that interrogated the identified regions more thoroughly (32-34). GWAS studies have 

greatly increased the number of type 1 diabetes loci to over fifty reported loci that confer 

low to high risks. In Figure 3-2, the odds ratios for forty-nine of these loci that are most 

significantly associated with type 1 diabetes are graphed (note: HLA is excluded but 

confers an odds ratio of 6.8) (10,35). An odds ratio of one means the event can occur with 

equal likelihood in both the affected group and controls. An odds ratio greater than one 

means the event has a greater likelihood to occur in the affected group (36). An odds ratio 

less than one means the event is less likely to occur in the affected group. When 
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analyzing alleles (major/minor) switching to the risk allele allows for correction of the 

odds ratio, so that all values are greater than one.  
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Figure 3-2 

 
Figure 3-2 Forty-nine Non-HLA gene regions associated with type 1 diabetes. 

Located on the y-axis is the corresponding odds ratio for the risk allele which was 

determined from prior reported literature and is reported at  www.t1dbase.org (35). The 

HLA region is not pictured but has an estimated odds ratio of 6.8 (10). The light red bars 

correspond to genes identified by candidate gene studies (PTPN22, Insulin (INS)). The 

yellow bar corresponds to CTLA4 identified by a linkage study. The blue bars correspond 

to genes identified by GWAS. The red bar corresponds to CLEC16A (odds ratio 1.19) 

which was identified by GWAS, but will be discussed in much greater detail in 

Chapter 4.  

  



36 

 

 GWAS have helped re-confirm known loci such as HLA, INS, PTPN22, CTLA4 

and IL2RA whose specific genetic involvement in type 1 diabetes has been elucidated to 

some extent by prior studies. The current dilemma is that instead of having a shortage of 

additional loci to investigate (problem in the 1990's), there are now a multitude of 

possible candidate regions. To better focus time and resources, loci that are involved in 

specific biochemical pathways or shown to overlap with other autoimmune disorders are 

currently being prioritized for further interrogation.  

 For example, the initial non-synonymous GWAS study identified IFIH1 gene in 

association with type 1 diabetes (27,34). IFIH1 codes for the protein melanoma 

differentiation-associated gene 5 (mda5), which is involved in the recognition of double 

stranded RNA (dsRNA) from picornaviruses (37,38). This feature of mda5 is exciting 

because, as previously mentioned, one of the possible environmental triggers of type 1 

diabetes is suspected to be a virus. Specifically, it has been hypothesized that the 

Coxsackievirus B4, a virus in the picornavirus family, is involved in type 1 diabetes (39-

41). The SNP rs1990760 in IFIH1 codes for a non-synonymous mutation of an alanine to 

threonine (A946T) (27). Recently it was found that the SNP was associated with different 

frequencies of enterovirus RNA in the blood of healthy children, with heterozygous 

individuals having the highest amount (42).  

 Another way to investigate these new loci is to determine whether any of these 

regions overlap with other autoimmune related disease associated regions, which may 

hint at a common pathogenic mechanism. For example SNPs in the CLEC16A region 

were identified in association with both type 1 diabetes (28) and multiple sclerosis (43). 
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The association with type 1 diabetes risk maps to a locus that is composed of four genes; 

CIITA, DEXI, CLEC16A and SOCS1. Two of these genes are good candidates for an 

immune related disorder; CIITA is a positive regulator of MHC class II molecules (44) 

and SOCS1 is involved in the negative regulation of cytokines (45). The other two genes 

in this region; DEXI and CLEC16A currently have unknown functions, making this 

region even more perplexing and important to decipher. Further exploration of this entire 

region will be the focus of chapter 4.  

 Clearly understanding which of these loci truly affect type 1 diabetes is important 

in understanding the disease. The next section explores how HLA, insulin, CTLA-4, 

PTPN22 and IL2RA confer genetic risk in the disease. 

 

HLA (IDDM1) 

 The Human Leukocyte Antigen (HLA) region was the first region identified in 

association with type 1 diabetes and confers the largest risk. As shown in Figure 3-2, the 

odds ratio for the association of the HLA region with type 1 diabetes is 6.8, which is 

significantly larger than any other locus (odds ratios usually between 1.2 - 1.3, excluding 

PTPN22 and insulin) (10). The HLA region located on chromosome 6 at the region 

6p21.1-21.3 codes for three classes of major histocompatibility complex (MHC) 

molecules (MHC class I, MHC class II, and MHC class III), with each class consisting of 

several genes (Figure 3-3). MHC class I molecules are expressed on all nucleated cells 

and present antigens derived from the cytoplasmic proteins and activate CD8
+
 T cells 

against abnormal cells. MHC class II molecules are expressed on certain antigen 
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presenting cells (APC), such as macrophages and dendritic cells that present external 

antigens to CD4
+
 T cells. CD4

+
 T cells activated by specific peptides in the context of 

APCs are involved in B cell proliferation and antibody production. MHC class II 

molecules are also involved in antigen processing such as tapasin, DM, DO and 

proteasome. MHC class III molecules code for molecules involved in other immune 

related processes like complement, cytokines and heat shock proteins (46). 

 

Figure 3-3  

 

Figure 3-3 HLA. The gene map of the human leukocyte antigen found on chromosome 6 

at region 6p21.1-21.3. The largest risk for type 1 diabetes comes from MHC class II 

genes, however some risk has been associated with the MHC class I region (36) (Image 

adapted from (46,47))   
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The nomenclature for the region starts with a four character alphanumeric code 

which refers to the locus, followed by an asterisk and four digits which refer to the allele 

at the locus. For example in DQB1*0302, the 0302 refers to the allele at the highly 

polymorphic locus DQB1 which is located in MHC class II (48). 

The HLA region was first implicated in association with type 1 diabetes in the 

1970's through a candidate gene study that was based on prior studies implicating HLA in 

autoimmune disorders. Originally the MHC class I antigens (B8 and B15) were reported 

to be in association with type 1 diabetes (19,49,50). Much stronger associations were then 

found with the MHC class II molecules HLA-DR and HLA-DQ (36,51-56). The prior 

association with B8 and B15 was detected due to high linkage disequilibrium among 

MHC molecules (B8 and DR3, and B15 and DR4) (51,57,58). However, MHC class I 

molecules do confer some risk in type 1 diabetes (discussed later).  

Since the original association of MHC class II with type 1 diabetes was 

discovered, studies have shown a hierarchy of gene/haplotype combinations within MHC 

II that range from protective to high risk for development of type 1 diabetes (59,60), 

differing slightly among different ethnicities (61-65). For example in Caucasians of 

European descent the haplotype DRB1*1501-DQA1*0102-DQB1*0602 was found to be 

strongly protective and occurring in ~20% of the population, but is only seen in ~1% of 

diabetes patients (60). The highest susceptibility for type 1 diabetes in Caucasians is 

found in individuals who are heterozygous for the haplotypes DR3/DR4-DQ8 (note: this 

can also be written as DR3/DR4-DQ2/DQ8 or DR3/DR4) (36,60,66). Currently 30-50% 

of new type 1 diabetes cases have the DR3/DR4-DQ8 genotype, which only occurs in 
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2.4% of the general population (67). One hypothesis for the increased risk from the 

haplotypes is that slight changes in the amino acid codes change how the MHC II 

molecules present antigen peptides that favor T-cell activation and result in the attack 

against self antigens in the pancreatic β cells (60,66). 

It would appear MHC class II molecules confer the largest risk in development of 

type 1 diabetes, however the MHC class I molecules have been re-implicated in 

association with type 1 diabetes, but to a much lesser extent then MHC class II molecules 

(68-73). After adjusting for the strong association of MHC class II molecules, MHC class 

I molecules HLA-B and HLA-A genes were identified to confer a risk in disease (74). 

The HLA-B and HLA-A genes appear to modify the severity of an individual's disease 

risk; with certain alleles being associated with age of diagnosis and overall risk of 

developing type 1 diabetes (67,75-79). 

On the functional side there is evidence that CD8
+
 T-cells, which are activated by 

APC presenting MHC class I molecules, drive the progression of the β-cell destruction in 

the pancreas (80,81). This finding was supported by studies showing that MHC I 

molecules (allele HLA-A*02) loaded with beta cell antigens react strongly with CD8
+
 

cytotoxic T-cells (CTLs) from type 1 diabetes patients' peripheral blood (82-84). The 

selection of HLA-A*02 allele (also written as HLA-A2 allele) was based on the fact that 

it is found in >60% of type 1 diabetes patients (67,69). This allele is also correlated with 

increased risk of developing type 1 diabetes when found in individuals with the high risk 

haplotype DR3/DR4-DQ8 (67,69). In transgenic NOD mice (mouse model of type 1 

diabetes) expressing HLA-A*02, the onset of diabetes was accelerated (85). These 



41 

 

studies support a role for MHC class I molecules in risk of type 1 diabetes, adding to the 

risk conferred by MHC class II molecules (36).  

 

Insulin (INS) (IDDM2)  

 In 1984 a polymorphism located in the 5' region of the insulin gene was identified 

in a candidate gene study to be associated with  type 1 diabetes in a Caucasian population 

(20). The association was with a "variable number of tandem repeats" (VNTR) region 

located in the promoter of insulin (86-89). The VNTR region could be classified into 

three different groups based on the size of the VNTR region (20,90,91). Individuals with 

the shortest VNTR (class I) were found to be at the highest risk for type 1 diabetes and 

individuals with the longest VNTR (class III) were protected from type 1 diabetes 

(20,92,93). The medium length VNRT (class II) rarely occurs in Caucasians (20,91). It 

was found that the short VNTR (class I) risk allele decreased expression of insulin in the 

thymus and increased expression in the peripheral tissue, while the protective, longest 

VNTR (class III) showed higher expression in the thymus and lower expression in the 

peripheral tissue (66,86,93-95). It is hypothesized that individuals with the risk associated 

"short" class I VNTR have less expression of insulin in the thymus and therefore negative 

selection of autoreactive T cells for insulin is less efficient. Whereas in the "long" class 

III VNTR individuals the selection is more efficient, preventing the production of 

autoreactive T-cells for insulin (94,95). 
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CTLA-4 (IDDM12)  

 Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) gene was first identified 

as a susceptibility locus for  type 1 diabetes in a 1996 linkage study (18) and was 

confirmed in a multi-ethnic association study in 1997 (96). CTLA-4 is involved in 

negative regulation of T-cells. The exact mechanism of how it regulates T-cells is 

unknown, but it is speculated that it functions by directly binding B7 (on APC cells) and 

competitively blocking CD28 from binding, or it binds B7 and sends an inhibitory signal 

(phosphatases) damping the TCR and CD28 signal, blocking T-cell activation (46,97). 

When the CTLA-4 gene was knocked out in a mouse it resulted in severe 

lymphoproliferation (over production of immune cells) that resulted in early lethality 

(98). This finding hints that CTLA-4 is an essential molecule in the negative regulation of 

the immune system. The risk associated with CTLA-4 has also been replicated in other 

autoimmune related diseases like multiple sclerosis (MS) (99), systemic lupus 

erythematosus (SLE) (100), rheumatoid arthritis (101), Grave's disease (102) and 

Addison’s Disease (103). Currently three polymorphism types have been reported that 

could influence CTLA-4: SNPs in the promoter of CTLA-4, a non-synonymous SNP in 

exon 1, and microsatellite repeats in the 3'UTR (97,104-106). All three polymorphisms 

are in linkage disequilibrium with each other and deciphering the true causative variant is 

difficult because the three variants almost always co-occur (107), though a meta-analysis 

from 2005 suggests the SNP in exon 1 is the true risk variant (108). One of the SNPs in 

the promoter region of CTLA-4 (318 C→T) was found to increase promoter activity and 

increase CTLA-4 expression (104). The exon 1 polymorphism (SNP rs231775 49A→G) 
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results in a non-synonymous amino acid change from threonine to alanine at residue 17 

(T17A). In-vitro, the non-synonymous variant, resulted in CTLA-4 being processed 

incorrectly in the endoplasmic reticulum resulting in less surface expression of the 

protein (105). In a study of myasthenia gravis patients (autoimmune neuromuscular 

disease) the 3'UTR polymorphism (longer AT)n) was found to affect mRNA stability and 

reduced CTLA-4 expression (106). The risk variants appear to reduce the amount of 

CTLA-4 expressed (either through reduced mRNA expression or reduction of final 

protein expression) increasing T-cell activation and increasing the risk of autoimmunity. 

However, further investigation is necessary due to conflicting reports for both effects on 

expression and for association with autoimmune disease. 

 

PTPN22 

 A SNP (rs2476601) in the PTPN22 gene, which produces the lymphoid protein 

tyrosine phosphatase (LYP), was originally identified in a candidate gene study in 2004 

to be associated with type 1 diabetes (21,109). PTPN22 (LYP) forms a complex with C-

terminal Src kinase (CSK) to negatively regulate the T-cell receptor (TCR) (110). LYP 

functions by dephosphorylating the proteins involved in the TCR signaling cascade like 

Lck (Src family kinase), the ITAMs of TCRζ/CD3 complex, Zap70, Vav and valosin 

(111).  

 The SNP (rs2476601) is located in a coding exon (1858C→T) and results in non-

synonymous amino acid change (arginine to tryptophan) at residue 620 in the LYP 

protein (R620W) (21,29). This same SNP has also been confirmed to be associated with 
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numerous other autoimmune diseases like rheumatoid arthritis and systemic lupus 

erythematosus (110,112,113). It has been found that the variant allele disrupts the 

interaction of LYP and CSK (21). Currently there are two theories (loss of function/gain 

of function) that predict how the mutations could affect function of a T-cell with evidence 

that supports both models (36). If the mutation causes a loss of function, it could mean 

that autoreactive T-cell in the periphery could become more active (hyperactivity) and 

cause more damage. This loss of function hypothesis is consistent with a mouse model 

where the mouse orthologue of LYP, PEST-enriched tyrosine phosphatase (PEP) (110), 

was knocked out and an expanded T-cell population occurs (114). If the mutation causes 

a gain of function, it could mean that T-cell activation is reduced which could allow 

autoreactive T-cells to escape negative selection in the thymus (110). This gain of 

function model was seen in T cells from heterozygous carriers of the allele who had less 

phosphorylated proteins targeted by LYP and also showed less T-cell signaling 

(115,116). Interestingly, there also appears to be a dose dependent factor with the 

PTPN22’s SNP rs2476601 risk allele (T) in some autoimmune diseases, meaning the 

number of copies determines overall risk (10,109,117,118). Also, the polymorphism 

R620W appears to affect B cells. The polymorphism affected B cell receptor (BCR) 

signaling (signal reduction) and also favored production of autoreactive B cells and 

antibodies (66,116,119,120).  
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IL2RA 

 The interleukin (IL)-2 receptor α gene (IL2RA) was identified in type 1 diabetes 

candidate gene association studies in 2005 (22) and was re-confirmed and fine-mapped in 

numerous follow up studies (28,121,122). The region has also been found in association 

with multiple sclerosis (123). The IL2RA, also known as CD25, is one of three non-

covalently associated proteins that make up the interleukin-2 receptor. The interleukin-2 

receptor is composed of IL2RA, IL-2/15Rβ and γc  (46). IL2RA is the only subunit that is 

unique to the interleukin-2 receptor, the other two subunits are found in other cytokine 

receptors.  

When cytokine interleukin-2 (IL-2) is released by a T cell, it binds to the  

IL-2Rαβγc complex and signal transduction occurs through IL-2/15Rβ and γc to activate 

the Jak3-STAT5 signal transduction pathway (46,124). All three subunits are required for 

high affinity binding of interleukin-2 (124). Interleukin-2 is important for T-cell 

proliferation and survival and is essential for Tregs (T regulatory cells) to survive (124). 

Multiple sclerosis patients have an increased amount of soluble IL2RA (sIL2RA) in 

circulation (125). The levels of sIL2RA in multiple sclerosis patients correlate with 

certain SNP variants and disease severity (122,123,126). An explanation for this 

observation is that sIL2RA can bind to circulating IL-2 and impair Treg function and 

disease variants in multiple sclerosis appear to increase sIL2RA levels (36). However, in 

type 1 diabetes patients the risk variants correlate with lower levels of sIL2RA (122,123). 

This lower level of sIL2RA in type 1 diabetes patients was also reported in in-vitro 

stimulated peripheral blood mononuclear cells (PBMCs) (127). Interestingly, normal 
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levels of Tregs can be found in type 1 diabetes patients (128), however, their ability to 

suppress effector T-cells is inhibited(129). A possible explanation is a risk polymorphism 

in the IL2RA receptor causes a defective receptor causing lower expression of the 

receptor and/or poorer IL-2 signaling in Tregs, which ultimately results in inhibited Treg 

function. Supporting this idea are two different studies performed in healthy individuals. 

In one study individuals with the risk haplotype have lower IL2RA levels (130). Whereas 

in another study they found individuals with the risk haplotype have reduced interleukin-

2 signaling in memory T cells and Tregs and a reduction in Treg ability to suppress 

effector T-cells (131). Clearly, IL2RA is important in T-cell regulation and different 

autoimmune disease loci affect IL2RA in different ways. However, both pathways appear 

to result in less interleukin-2 being recognized by T-cells (defective production of IL2RA 

or higher levels of sIL2RA) which drastically affects Tregs and inhibits their ability to 

function properly (36).  

 

Conclusion 

 Deciphering the risks involved in type 1 diabetes will take time and resources. In 

the last couple of years, major strides have been made in identifying multiple genetic risk 

regions in addition to those identified prior to GWAS. The challenge is to understand 

how these loci contribute to the risk of type 1 diabetes and other autoimmune disorders. 

 To understand all these novel gene regions we begin by fine mapping the regions 

to locate the true causative gene variant. GWAS help to narrow the risk region down to a 

linkage disequilibrium block that could contain many genes. In the type 1 diabetes 
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associated loci identified by GWAS, the average number is 8.5 protein-coding genes per 

region (132). The tagging SNP could be in linkage with the true causative variant and so 

fine mapping with greater coverage (sequencing to identify additional SNPs in the 

region) is needed. After locating the variant(s) most significantly associated with risk, 

deciphering its role in a gene will be important in determining whether it is causative to 

disease risk: does it influence the protein directly, or does it influence neighboring genes? 

Risk associated SNPs can be assessed for effects on expression of the gene or 

neighboring genes. The next step would be determining how the change in expression of 

these genes increases risk for type 1 diabetes. Such a study as described above will be the 

focus of Chapter 4 where we investigated chromosomal region 16p13.13 and its role in 

type 1 diabetes.  
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Introduction 

Background Information 

As mentioned in previous chapters prior to 2007, a small number of genetic loci 

that contributed to type 1 diabetes risk were identified through linkage and candidate 

gene studies including HLA, INS, IL2RA, CTLA4 and PTPN22 (1). With the advent of 

genome-wide association studies (GWAS) over 40 additional loci have been identified 

that confer low to moderate risks of developing type 1 diabetes (Odds Ratios, OR, 

≤1.3)(2). One of these regions is located at chromosome 16p13.13 and is associated with 

type 1 diabetes and several other autoimmune disorders, including Multiple Sclerosis 

(MS), celiac disease, Primary Biliary Cirrhosis (PBC), Systemic Lupus Erythematosus, 

Crohn’s Disease, Ulcerative Colitis and primary adrenal insufficiency (Figure 4-1) (3-

15). 
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Figure 4-1 

 
 

Figure 4-1 Locations of autoimmune related disease SNPs that have reached genome 

wide significance for a linkage disequilibrium block in chromosome 16p13.13. Color 

of the SNP relates to its reported P-value (-log 10) (red>7, orange 6-7, yellow 5-6) 

Source of Image dbSNP database for region chr16:10,937,499-11,467,499 (Hg19). SNPs 

(left to right) rs4781011 (14), rs11865121 (7), rs12708716 (2), rs12924729 (10), 

rs2903692 (3), rs6498169 (6), rs416603 (16), rs12928822 (8), rs7191700 (17) 

 

 

 The specific region on chromosomal region 16p13.13 implicated in autoimmunity 

spans approximately 530 KB from position 10,937,499-11,467,499 (build Hg19) (Figure 

4-2). The most significant evidence of association with type 1 diabetes was with two 

SNPs, rs12708716 and rs2903692, located in the different introns of a gene of only 

inferred function, CLEC16A, previously known as KIAA0350 (2,3). Complicating the 

interpretation of these results is the fact that neighboring genes appear to be stronger 

candidates for playing a role in type 1 diabetes pathogenesis based on their known 

functions.  The region contains 4 genes CIITA, DEXI, CLEC16A and SOCS1. 
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Figure 4-2 
 

 

Figure 4-2. Linkage Disequilibrium in Chromosome 16p13.13. LD plot of 

chromosome 16p13.13 for Caucasians (CEU) and Italian Tuscans (TSI) at coordinates 

10,937,499-11,467,499 (build Hg19) with the location of the major genes marked. The 

strongest LD occurs around the CLEC16A gene (18).  
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CIITA 

CIITA is a ~48 KB gene that is controlled by four different promoters (pI-IV) that 

produce three isoforms of CIITA (pII promoter function is currently unknown). The three 

isoforms of CIITA are cell type specific: isoform I is found in myeloid cells, isoform III is 

found in lymphoid cells and isoform IV in cells from non-hematopoietic origin. CIITA is 

involved in the regulation of HLA class II gene transcription and has been extensively 

studied due to its important immunological role (19). Mutations in the CIITA regulation 

pathway can cause bare lymphocyte syndrome, a severe immune deficiency disease (20). 

SNPs specifically in CIITA have been found to increase susceptibility for multiple 

sclerosis, arthritis and myocardial infarction (21). Down regulation of CIITA has also 

been implicated in various forms cancer (22). CIITA is constitutively expressed in 

dendritic cells (DC), B cells, macrophages and activated T Cells, while in other cell types 

it is induced by IFN-γ. CIITA functions by binding to the MHC II enhanceosome 

complex promoter and acts as master regulator of the MHC II transcription complex 

(Figure 4-3). It is inhibited by various cytokines (examples: TGF-β & Il-4), negative 

feedback inhibitor (SOCS1) and by various pathogens (19). In an interesting development 

it was found that regulation of CIITA also occurs through chromatin remodeling that 

regulates distal enhancer sites. One of these distal enhancer sites is located in the intronic 

region of adjacent gene DEXI (23,24). 
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Figure 4-3 

 

Figure  4-3. The Pathway of CIITA. CIITA is activated by a variety of factors (green) 

and inhibited by others (red). It is constitutively expressed in dendritic cells, B-cells, 

macrophages and activated T-Cells, while in other cells types it is induced by IFN-γ. 

CIITA functions by binding to the MHC II promoter (specifically the enhanceosome 

complex) and act as master regulator of MHC II transcription. CIITA is inhibited by 

various factors like cytokines (examples: TGF-β & Il-4, negative feedback inhibitor like 

SOCS1 (purple dashed circle) and by various pathogens. (Copyright 2004, with 

permission from John Wiley and Sons (19))  
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DEXI 

DEXI is a 14 KB gene that is transcribed in the opposite direction to CIITA and 

CLEC16A. DEXI is composed of two exons (only 1 coding) and codes for a protein 95 

amino acids long (25). DEXI is up-regulated by dexamethasone, a glucocorticoid (a 

steroidal hormone) but little is known about its function. Protein analyses have identified 

a central transmembrane domain, carboxy-terminal leucine zipper motif and a negatively 

charged carboxy-terminal. It is speculated that DEXI could be a membrane protein and 

not a nuclear protein because of the central transmembrane domain. It is found to be 

highly expressed in the heart, brain and liver (26). In a yeast two-hybrid screen DEXI 

was found to interact with Golgi membrane protein 1 (GOLM1) and tubulin-specific 

chaperone D protein (TBCD) (27). GOLM1, also known as GP73, has been found to be 

up-regulated in a viral infection (28), implicating DEXI in a possible immune response 

mechanism. Whereas TBCD is a protein involved in helping beta-tubulin fold correctly 

and seems like a unlikely target for an auto-immune disease (29). 

 

CLEC16A 

CLEC16A also referred to as KIAA0350, is a possible C-type lectin that is ~240 

KB with mostly unknown function. C-type lectins normally function as cell surface 

receptors in the immune system. Based on available cDNA, there are three predicted 

isoforms of CLEC16A that vary greatly in size. Their specific genomic location, size, 

exons and number of amino acids can be seen in Figure 4-4. There also appears to be an 

ITAM sequence located in the middle region of the protein (4). ITAM sequences function 

http://en.wikipedia.org/wiki/Glucocorticoid
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as targets in tyrosine phosphorylation and in the transmission of cell surface signals (30). 

CLEC16A is highly expressed in immune cells like T cells, B cells and NK cells (31). 

However, in a more recent study with Drosophila orthologue of CLEC16A - ema - was 

reported to be involved in late endosomal maturation (Figure 4-5) (32).  

 

Figure 4-4  

 

 

Figure 4-4. Isoforms of CLEC16A. There are three predicted isoforms of CLEC16A; 

the specific locations are observed in the above plot and the corresponding table, 

denoting the specific size, exon count, coding exons count, and number of amino acids. 

The source of information and image came from http://genome.ucsc.edu (25).  
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Figure 4-5 

 

Figure 4-5. Co-localization of Spinster and Ema. The drosophila CLEC16A 

orthologue ema (Ema::GFP fusion (green)) was found to co-localize with the late 

endosomal protein spinster (magenta) in a instar larval garland cells (Image use permitted 

by Rockefeller University Press Noncommercial third-party reuse (32)). 
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SOCS1 

The last important gene in the region is SOCS1, a small gene located ~80 KB 

downstream from CLEC16A. SOCS1, a negative feedback regulator of cytokine signaling 

and is <1 KB. It is part of the family of suppressors of cytokine signaling (SOCS) family 

that is made up of eight proteins SOCS1-7 and CIS. All SOCS family proteins have a Src 

homology 2 (SH2) domain, C-terminal motif referred to as the SOCS box and a variable 

N-terminal region. When cytokines are received by a cell, they induce transcription of 

genes for survival, proliferation, and functional activation; however, they also induce 

SOCS genes. SOCS genes function to dampen/turn off the signaling in a negative 

feedback loop; SOCS1 specifically binds to JAK and inhibits its kinase activity (Figure 

4-6) (33,34). When SOCS1 is completely knocked out in mice, neonatal lethality occurs 

(35-37) and when over expressed results in increased apoptosis of peripheral T-cells (38). 

SOCS1 is clearly an essential gene for proper cytokine regulation and is important in T-

cell development (33,34). In an interesting "diabetes" connection, SOCS1, SOCS3 and 

SOCS6 were found to block insulin signaling, causing insulin resistance, however this 

finding maybe be more relevant to type 2 diabetes (39,40).  
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Figure 4-6 
 

 

Figure 4-6. The SOCS Activation Pathway (negative feedback inhibition). A cytokine 

signal is received by the cell and causes dimerization of two receptors. Attached JAK 

molecules become active and phosphorylate the receptors' cytoplasmic tails allowing for 

the STAT molecules to bind. These STAT molecules become phosphorylated by JAKs, 

dimerize and translocate into the nucleus to promote genes involved in survival, 

proliferation, and functional activation of immune related genes like the SOCS. SOCS 

genes can inhibit cytokine by: (1) blocking STATs binding to the cytokine receptor, (2) 

causing the receptor to be degraded by the proteasome, (3) binding to the JAK receptor 

and preventing kinase activity, and (4) causing JAKs to be degraded by the proteasome. 

Specifically, SOCS1 functions through option (3), binding directly to JAK and inhibiting 

its kinase activity. (Copyright 2009, with permission from Elsevier (33))  
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Project Purpose 

Several GWAS studies (3-5) identified the chromosome 16p13.13 region as 

associated with type 1 diabetes and these reported associations were replicated in several 

follow up studies (16,18,41-44). While these replication studies clearly confirm a role for 

the 16p13.13 region in conferring risk for type 1 diabetes, they do not clearly delineate 

which specific genes or SNPs are responsible for this effect. There is, however, 

complementary functional data suggesting a possible model for how SNPs in this region 

might act. Most of the variants most strongly associated with type 1 diabetes in this 

region occur within introns of the CLEC16A gene. It has been reported that intronic 

regions of CLEC16A can physically interact with the putative promoter region of DEXI 

and thereby modulate DEXI expression in monocytes and in Epstein Barr Virus (EBV) 

transformed lymphoblastoid cell lines (45-47). As previously mentioned, the intronic 

region of DEXI then works as a distal enhancer for CIITA (23,24). These functional 

findings provide a potential mechanism for variation at intronic sites in CLEC16A 

affecting neighboring genes expression. However they do not clearly resolve the 

causative variants or whether this mechanism is the actual mode of action of these 

variants with regards to modulating risk of type 1 diabetes. In the current study, in order 

to refine the type 1 diabetes association at 16p13.13 and identify the relevant risk variants 

and genes, a 455 KB segment of the region was re-sequenced in 128 type 1 diabetes 

patients and 64 controls. Both the newly identified SNPs from the sequencing and the 

prior reported SNPs from HapMap (48) and 1000 Genomes (49) were tested for an 

association with type 1 diabetes and with mRNA transcript levels for genes located in the 
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region. A group of highly correlated SNPs were found to be both significantly associated 

with type 1 diabetes and with the expression of DEXI.   
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Research Design and Methods 

Subjects 

This study was reviewed and approved by the Institutional Review Board at the 

University of Virginia. DNA from anonymous type 1 diabetes cases and controls were 

obtained from Virginia Mason Medical Center and Puget Sound Blood Center (Seattle, 

WA, USA), respectively. DNA from affected sib-pair families (ASP) was obtained from 

the Type 1 Diabetes Consortium (T1DGC) (50) and Human Biological Data Interchange 

Repository (HBDI) (51).  

 

Sequencing of Region to Identify SNPs 

We targeted a 455 kb region (10,943,936 - 11,399,037 (Hg19)) on 16p13.13 for 

deep sequencing, which encompassed the four genes (CIITA, DEXI, CLEC16A, and 

SOCS1) and all SNPs previously reported to be significantly associated with type 1 

diabetes. The region was tiled with ~10 kb PCR fragments with ~0.5 kb overlaps. 

Amplifications were carried out in 48 pools that each contained DNA from 4 individuals 

(128 type 1 diabetes patients and 64 controls). Amplified PCR fragments were pooled in 

equimolar amounts to create DNA libraries. DNA libraries were prepared for sequencing 

using Illumina’s Paired-End Sample Preparation Kit (Illumina Inc.). Sequencing was 

performed on an Illumina Genome AnalyzerIIx (Illumina Inc) using 63 base paired-end 

reads. Sequencing reads were assembled using Burrows-Wheeler Aligner (BWA) tool 

(52). SAMtools (53) was used for conversion, indexing, and aligning of the data to the 

reference genome (Hg18 ver. 36) (25,54) as well as for identifying SNPs.  
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SNP Filtering and Selection 

Putative SNPs identified from sequencing were filtered to limit false positives 

caused by strand bias by including only minor alleles with a frequency rate ≥0.1%, for 

which the proportion of forward reads was not statistically different from the proportion 

of reverse reads. The two proportions were only declared not statistically different if the 

absolute value of the t-statistic for the proportions test was less than one. The SNP list 

was then parsed into two groups: annotated SNPs and novel unreported SNPs (defined as 

lacking a dbSNP ID).  

SNPs annotated in dbSNP were excluded from analysis if they had a minor allele 

frequency (MAF) <5% (except exonic SNPs) or had <50 mapped reads. The annotated 

SNP list was further filtered to exclude SNPs that had previously been genotyped by the 

HapMap project (48), leaving a total of 355 annotated SNPs.  

Novel variants, were filtered to exclude those with a MAF <5% (for exonic SNPs 

exclusion was for MAF <1%) or the combination of <50 aligning reads and >20% non-

aligning reads, which left a total of 93 novel SNPs.  

 

Genotyping 

We designed two custom GoldenGate genotyping assays (Illumina, CA).The first 

panel consisted of 123 SNPs which were selected as tagging SNPs (r
2
 = 0.9) to capture 

information on the 505 reported SNPs in the CEU HapMap population using Haploview 

4.2 (18). The second panel consisted of SNPs identified through sequencing. The 

compiled SNP lists were verified for design-ability using Illumina's GoldenGate Panel 
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Design software (www.illumina.com). Genotyping was performed on a total of 413 SNPs 

on 1850 HBDI and 1750 TIDGC samples. Data were examined in GenomeStudio 

(Illumina Inc.) and exported in PLINK (55) format.  

The following quality control steps were applied to the SNP genotyping data. 

Signal cloud graphs were manually reviewed for all of the SNPs and those with poor 

clustering were excluded. SNPs with >5 Mendelian transmission errors were identified 

and excluded from further analyses. SNPs genotyped in duplicate were examined for 

concordance using PLINK; those with ≥5% discordance were excluded. SNPs with 

significant deviations from Hardy-Weinberg equilibrium, >5% missingness or  <1% 

MAF. 

For sample quality control in GenomeStudion, DNA samples with a genotype call 

rate of <90% were removed from further analyses. Subjects with >5 Mendelian 

transmission errors were identified with PLINK (55) and excluded from the analyses. All 

remaining Mendelian transmission errors were identified and problematic genotypes 

removed with PEDCHECK (56).  

 

ImmunoChip Dataset  

Genotypes from 1,734 SNPs in the 16p13.13 region obtained from 10,796 

individuals were extracted from the ImmunoChip dataset (data release Feb 2012) (57). 

Quality control included the exclusion of SNPs with significant deviations from Hardy-

Weinberg equilibrium or >5% missingness. PEDCHECK was used to identify Mendelian 
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errors and remove conflicting genotypes. Finally, the data was filtered to remove all 

duplicate SNPs and SNPs with <1% MAF.  

 

Imputation 

After quality control, the data set that was derived from targeted sequencing 

included 319 SNPs with genotypes from 749 families containing 3370 individuals. The 

ImmunoChip dataset included 1040 SNPs with genotypes from 2689 families containing 

10,746 individuals. There were 252 SNPs and 1581 individuals in common between the 

two datasets.  

The two datasets were merged and missing genotypes were filled in by 

imputation. A reference haplotype population (same individuals from both panels) was 

generated using MACH (58) and data from 481 parental Caucasian founders whose 

ethnicity was confirmed using KING (59). Imputation was performed using MACH and 

the reference population. SNPs with r
2 
≤0.5 (values generated by MACH) were removed. 

The same quality control steps as applied to the originally generated genotype data were 

applied to the imputed data.  

 

Association Testing 

 The final merged datasets was tested for association with type 1 diabetes using the 

TDT option in PLINK and results were visualized using LocusZoom (60). Test for 

residual evidence of disease association after conditioning on the SNP with the most 

significant association with type 1 diabetes were carried out using UNPHASED (61). 
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Statistical significance for association was determined by the conservative Bonferroni 

correction based on the number of SNPs tested( P ≤ [0.05 / (Number of SNPs tested)] 

(62,63) 

 

RT-PCR 

 RNA was isolated from the 33 HapMap B lymphoblastoid cell lines (Coriell 

Institute for Medical Research, Camden NJ) using TRIzol (Invitrogen Inc.) followed by a 

DNase treatment (Applied Biosystems). RNA was reverse transcribed using random 

primers (Invitrogen Inc.) and Superscript II (Invitrogen Inc.) following manufacturer’s 

protocol. The cDNA samples and standards were then plated in triplicate using a 

Beckman FX-Robotic workstation and air dried (24-48 hours). PCR primers were 

designed using cDNA transcripts from the NCBI database and Primer3 (64) (Table 4-1). 

Amplifications were carried out on an Applied Biosystems Inc. 7900 [95C for 10 

minutes, (95
o
C for 15 seconds, (60

o
-61

o
C) for 30 seconds, 72

o
C for 30 seconds) for 35-40 

cycles, followed by a dissociation curve]. The data was examined using ABI’s SDS 2.3 

software, and CT (threshold cycle) and baseline adjusted for each PCR run.  
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Table 4-1 

Primer Sequences used for the expression quantitative trait loci (eQTL) analysis of the 

genes and isoforms in LD block 16p13.13 
 

NCBI Ref Seq Gene Forward Primer Reverse Primer Size (bp) 

BQ221200 CIITA III* ggggaagctgagggcacg gaagctccaggtagccaccttcta 182 

BM147267 CIITA IV * gcggccccagagctgg gaagctccaggtagccaccttcta 125 

NM_015226.2 CLEC16A Iso I cgcatgaagatgcagagaat ggtggcgactgtgaggac 257 

BC112897.1 CLEC16A Iso II ctctgtggagcctgtgtgag tgtttaatcttgcgctgtgc 102 

AK126771.1 CLEC16A Iso III acagcccagagtccagca actcatgggggcatctgaat 157 

NM_014015.3 DEXI † agtagggtctcgactgctgttc acctctctgttggcacgaag 192 

NM_003745.1 SOCS gccccttctgtaggatggta ggaggaagaggaggaaggtt 104 

NM_002046.3 GAPDH cagccgagccacatcgc catgggtggaatcatattggaaca 186 

  
 

      

Novel Transcript CIITA V acctgcaacaacaggattcac caccaacacctcagacttcatc 105 

Novel Transcript CIITA VI agctcgctgccagccttc ggattctcgcttgtccctgt 159 

 

*CIITA III and CIITA IV primers were originally designed by Hornell 2003 (65) 

†There are two intron-less DEXI pseudogenes (retro-DEXI) located on chromosome 15 at 

coordinates (Hg19) (29,033,933-29,035,470) and (23,157,046-23,158,548) whose 

genomic DNA matches almost exactly the cDNA for DEXI. The forward primer has one 

nucleotide difference at the 3’ end (bold) that differ from the pseudogenes.  
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Expression Quantitative Trait Loci (eQTL) Analysis 

Amplification efficiencies were calculated per transcript and compared to that for 

the control GAPDH gene. Median CT values were determined from the raw triplicate CT 

values. The ΔΔCT values were calculated correcting for primer efficiencies and were 

quantile normalized. The quantile normalized ΔΔCT were merged with genotyping data 

on the 33 HapMap cell lines to create a PLINK PED file. An eQTL analysis (linear 

model with quantitative trait) was then performed in PLINK using the normalized 

expression data. The eQTL results from the custom and ImmunoChip panels were 

merged together. The dataset was filtered to remove SNPs with a MAF <5% as well as all 

duplicate SNPs. The final SNP dataset was visualized using LocusZoom. To correct for 

limited sample size, instead of using stringent Bonferroni corrected P-values (63), a 

program was designed to calculate the total number of independent tests. The program 

examined the correlations (r
2
) for all 915 SNPs by examining each SNPs genotyping 

pattern, determining how many SNPs had the same pattern, versus how many unique 

patterns and represented independent tests. The number of independent tests performed 

was N = 366 with a corrected P-value of 0.05 / 366 = 1.37 x 10
-4

. 
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Results 

Re-sequencing of the 16p13.13 Region Identifies Novel SNPs 

A region of 455 kb from 16p13.13 was amplified in 192 individuals (128 T1D 

patients and 64 control individuals) and sequenced to an average depth of coverage of 

35X. When aligned to the human reference sequence, there were two gaps at coordinates 

(Hg19) (11,028,710-11,083,336) and (11,340,104-11,350,943) from which no sequence 

was obtained that passed quality control. When compared to the human reference 

genome, 962 SNPs were identified, of which 93 had no prior annotation. A genotyping 

panel spanning the region was designed containing both tagging SNPs selected from 

HapMap, and novel SNPs identified from our re-sequencing (60 of the 93 SNPs were 

designable and included in the panel). 

 

Fine Mapping Identifies Statistically Significant Associations with Type 1 Diabetes 

Custom Panel 

 A total of 413 SNPs were genotyped on 3600 individuals from the HBDI and 

T1DGC. After data cleaning and merging, the custom panel contained 319 SNPs (MAF 

>1%) genotyped on 3370 individuals from 749 families (Table 4-2 and Figure 4-7). The 

data was analyzed by the TDT test using PLINK  
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Table 4-2 

Functional Annotation of SNPs on Custom Panel  
 

Type of SNP Combined 
Exonic-coding synonymous 6 

Exonic-coding missense 4 

Near 5' UTR 4 

3' UTR 9 

Intron 191 

Intergenic 105 

Total 319 
 

Function was determined from UCSC Genome Table Browser (25) 
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Figure 4-7 

 

 

Figure 4-7. Fine Mapping of a Chromosome 16p13.13 Region with Custom SNP 

Genotyping Panel for Association with Type 1 Diabetes. The custom genotyping 

panels were merged together for a final total of 319 SNPs in 3370 individuals. The most 

significant SNP was rs79263553 (P = 5.87 x 10
-4

) located in intron 23 of CLEC16A. No 

SNPs reached statistical significance. Bottom dotted red line represents -log(P ≤ 0.05) 

and top dotted red-line is Bonferroni corrected -log(P ≤ 1.57 x 10
-4

). There are a total of 

63 SNPs between the dotted red lines. The r
2
 was not calculable from the 1000 Genome 

March 2012 EUR (Hg19) because the most significant SNP, which is set as reference 

SNP for the LocusZoom plot, was a novel SNP identified from sequencing and was not 

found in the database.  

rs79263553 

P = 5.87 x 10-4
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ImmunoChip 

In order to increase the statistical power of the study, the data were merged with 

the ImmunoChip affected sib-pair dataset using imputation to fill in the missing 

genotypes. The ImmunoChip dataset originally contained 1,734 SNPs genotyped on 

10,796 individuals. After quality control steps described in the methods section, the final 

numbers were filtered down to 1,040 SNPs (MAF >1%) and 10,746 individuals (Figure 

4-8). In the ImmunoChip a total of 30 SNPs were identified to have alleles significantly 

associated with disease. The ImmunoChip dataset was then merged with the custom 

genotyping panels. 
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Figure 4-8 

 

 

Figure 4-8. SNPs from the ImmunoChip Genotyping Panel Associated with Type 1 

Diabetes. The final ImmunoChip panel contained 1,040 SNPs that were genotyped on 

10,746 individuals. The most significant SNP was rs62026379 (P = 4.52 x 10
-6

) located 

in intron 22. A total of 30 SNPs reached statistical significance (Bonferroni corrected P ≤ 

4.81 x 10
-5

) for association with type 1 diabetes (above the dotted red-line). The r
2
 was 

calculated using SNPs from the 1000 Genome March 2012 EUR (Hg19) and the most 

significant SNP was set as the as reference SNP for the LocusZoom plot. 

 

  

rs62026379 

P = 4.52 x 10-6
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Final Merged Dataset 

 The merged dataset, after imputation, contained genotypes for 939 SNPs on 

12,485 individuals (4,057 ASP). A breakdown of the type of SNPs can be found in Table 

4-3. The combined panel contained 26 SNPs from the Custom Genotyping panel, 661 

SNPs from the ImmunoChip and 252 SNPs that were genotyped on both panels (Figure 

4-9). The family based TDT (66) was used to test for association of alleles at these SNPs 

with type 1 diabetes (Figure 4-10). A total of forty eight statistically significant SNPs 

were identified (Bonferroni corrected P ≤ 5.32x10
-5

) (Table 4-4). A magnified plot of the 

forty-eight statistically significant SNPs can be seen in Figure 4-11. The strongest 

evidence for association was obtained at rs34306440 located in intron 20 of CLEC16A 

(OR = 0.838 (0.776-0.904), P = 5.74 x 10
-6

). 

 

 

Table 4-3 

Functional Annotation of SNPs on Final Panel (939 SNPs)  
 

Type of SNP Count 
Exonic-coding synonymous 9 

Exonic-coding missense 3 

Near 5' UTR 31 

3' UTR 15 

Intron 555 

Intergenic 326 

Total 939 
 

Function was determined from UCSC Genome Table Browser (25) 
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Figure 4-9 
 

 

Figure 4-9. A Comparison of SNP Genotyping Panels Used to Fine Map 

Chromosome 16p13.13. A breakdown of individuals (left-side) and SNPs (right-side) 

found in the final combined panel. The merged dataset contained a total of 12,486 

individuals; 1,751 individuals genotyped with the Custom SNP Genotyping panel, 9,165 

individuals genotyped with the ImmunoChip and 1,569 individuals that were genotyped 

on both panels. The merged dataset combined panel contained a total of 939 SNPs; 26 

SNPs from the Custom Genotyping, 661 SNPs from the ImmunoChip and 252 SNPs that 

were on both panels.  
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Figure 4-10 
 

 
Figure 4-10. SNPs Associated with Type 1 Diabetes from the Final Genotyping 

Panel A total of 939 SNPs (genotyped and imputed) were analyzed for association with 

type 1 diabetes in 3070 Families (12,485 individuals) using the Transmission 

Disequilibrium Test. The most significantly associated SNP was rs34306440 (P = 5.74 x 

10
-6

). Out of the 939 SNPs 26 were only genotyped on the custom panel (snowflake), 661 

were only genotyped on the ImmunoChip (circle) and 252 were genotyped on both panels 

(square). SNPs above the dotted red-line is considered significant (P ≤ 0.05) after 

Bonferroni correction. The r
2
 was calculated using SNPs from the 1000 Genome March 

2012 EUR (Hg19) and the most significant SNP was set as the reference SNP for the 

LocusZoom plot.   

  

rs34306440    P = 5.74 x 10-6 
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Figure 4-11 

 
Figure 4-11. Focused View of the 48 Most Statistically Significant SNPs Associated 

with Type 1 Diabetes. A magnified view of the 48 most statistically significant SNPs out 

of the 939 SNPs (genotyped and imputed) that were analyzed for association with type 1 

diabetes in 3070 Families (12,485 individuals) using the Transmission Disequilibrium 

Test. The most significantly associated SNP was rs34306440 (P = 5.74 x 10
-6

). Out of the 

48 SNPs, 3 were only genotyped on the custom panel (snowflake), 29 were only 

genotyped on the ImmunoChip (circle) and 16 were genotyped on both panels (square). 

The r
2
 was calculated using SNPs from 1000 Genome March 2012 EUR (Hg19) and the 

most significant SNP was set as the as reference SNP for the LocusZoom plot.  

 

  

rs34306440 
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Table 4-4 

SNPs in CLEC16A most strongly associated with type 1 diabetes (total 48) from TDT 

analysis sorted in order of base position.  

SNP Name 
Position 

(Hg19) 
MAF* 

Minor 

Allele 

Major 

Allele 

Transmitted 

Minor 

Allele Count 

Untransmitted 

Minor Allele 

Count 

TDT          

P-value† 
Odds Ratio† 

Location

‡ 

rs12708713 11072459 0.167 T C 1045 1239 4.92E-05 0.843 (0.777-0.916) Intron 8 

rs12708714 11072525 0.168 C T 1048 1244 4.24E-05 0.842 (0.776-0.915) Intron 8 

rs7403919 11085968 0.341 C T 1691 1938 4.13E-05 0.873 (0.818-0.931) Intron 10 

rs8062322 11092319 0.289 A C 1529 1768 3.15E-05 0.865 (0.808-0.926) Intron 10 

rs9926367 11093179 0.288 C T 1520 1759 3.00E-05 0.864 (0.807-0.926) Intron 10 

rs7200940 11164567 0.307 G C 1556 1804 1.88E-05 0.863 (0.806-0.923) Intron 19 

rs11860603 11165017 0.305 C T 1546 1796 1.53E-05 0.861 (0.804-0.921) Intron 19 

rs9934969 11166002 0.303 A G 1540 1795 1.01E-05 0.858 (0.802-0.918) Intron 19 

rs11865121§ 11166688 0.304 A C 1544 1798 1.11E-05 0.859 (0.802-0.919) Intron 19 

rs7198621 11167458 0.304 G C 1538 1779 2.86E-05 0.865 (0.808-0.926) Intron 19 

rs725613 11169683 0.336 C A 1625 1874 2.56E-05 0.867 (0.811-0.927) Intron 19 

rs12925642 11171602 0.304 G A 1548 1797 1.67E-05 0.861 (0.805-0.922) Intron 19 

rs2058531 11172109 0.305 G A 1554 1807 1.28E-05 0.860 (0.804-0.920) Intron 19 

rs9652601 11174365 0.306 A G 1557 1792 4.89E-05 0.869 (0.812-0.93) Intron 19 

rs9652582 11174564 0.300 A G 1536 1783 1.81E-05 0.862 (0.805-0.922) Intron 19 

rs2041670 11174652 0.300 T C 1537 1785 1.69E-05 0.861 (0.804-0.922) Intron 19 

rs11648679 11175984 0.335 G A 1623 1877 1.76E-05 0.865 (0.809-0.924) Intron 19 

rs12708715 11177824 0.301 T C 1542 1795 1.19E-05 0.859 (0.803-0.92) Intron 19 

rs9929994 11178245 0.336 G A 1617 1873 1.47E-05 0.863 (0.808-0.923) Intron 19 

rs12708716|| 11179873 0.333 G A 1615 1866 2.10E-05 0.866 (0.810-0.925) Intron 19 

rs9888908 11181244 0.300 A C 1539 1790 1.36E-05 0.860 (0.803-0.92) Intron 19 

rs7203793 11182134 0.335 G C 1626 1876 2.39E-05 0.867 (0.811-0.926) Intron 19 

rs12924729¶
 
 11187783 0.305 A G 1565 1806 3.31E-05 0.867 (0.810-0.927) Intron 19 

rs12928537 11191400 0.303 A G 1550 1798 1.82E-05 0.862 (0.806-0.923) Intron 19 

rs12927355 11194771 0.302 T C 1556 1802 2.18E-05 0.864 (0.807-0.924) Intron 19 

rs741172 11200798 0.300 T C 1551 1803 1.35E-05 0.860 (0.804-0.921) Intron 19 

rs9746695 11207894 0.302 C T 1550 1799 1.69E-05 0.862 (0.805-0.922) Intron 19 

rs12935413 11210447 0.333 A G 1617 1865 2.64E-05 0.867 (0.811-0.927) Intron 19 

rs34306440# 11215035 0.209 G A 1203 1436 5.74E-06 0.838 (0.776-0.904) Intron 20 

rs35032408 11215424 0.208 G T 1204 1429 1.16E-05 0.843 (0.780-0.910) Intron 20 

rs8064154 11219419 0.338 G A 1610 1870 1.05E-05 0.861 (0.806-0.920) Intron 21 

rs12924112 11219720 0.336 G T 1589 1849 9.24E-06 0.859 (0.804-0.919) Intron 21 

rs34540843 11221287 0.242 G A 1332 1555 3.32E-05 0.857 (0.796-0.922) Intron 22 

rs36045143 11224966 0.242 G A 1332 1564 1.62E-05 0.852 (0.792-0.916) Intron 22 

rs2241099 11225064 0.241 G C 1325 1555 1.82E-05 0.852 (0.792-0.917) Intron 22 
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*MAF was calculated from the founders (4,655 individuals).  

†TDT P-values and Odds Ratio were calculated from the 3,070 multiplex families  

(12,485 individuals).  

‡ Intronic regions were based on Ensembl (CLEC16A - 001 ENST00000409790) (67). 

§GWAS reported SNP in association with multiple sclerosis (7). || GWAS reported SNPs  

in association with type 1 diabetes (2,3). 

¶GWAS reported SNP previously reported in association with primary biliary cirrhosis  

(10).GWAS reported SNPs were limited to the dbGAP NHGRI GWAS catalog. 

 #Most significant SNP associated with type 1 diabetes. MAF, minor allele frequency. 

 

 
 

  

SNP Names 
Position 

(Hg19) 
MAF* 

Minor 

Allele 

Major 

Allele 

Transmitted 

Minor 

Allele Count 

Untransmitted 

Minor Allele 

Count 

TDT          

P-value† 
Odds Ratio† 

Location

‡ 

rs12919828 11226779 0.243 G A 1335 1567 1.66E-05 0.852 (0.792-0.917) Intron 22 

rs35732840 11228355 0.336 G T 1606 1860 1.60E-05 0.863 (0.808-0.923) Intron 22 

rs62026376 11228712 0.243 T C 1331 1569 9.89E-06 0.848 (0.789-0.913) Intron 22 

rs62026377 11229128 0.243 T G 1327 1564 1.04E-05 0.849 (0.789-0.913) Intron 22 

rs7203459 11230703 0.242 C T 1324 1558 1.31E-05 0.850 (0.790-0.914) Intron 22 

rs2867880 11231857 0.334 A G 1604 1856 1.84E-05 0.864 (0.808-0.924) Intron 22 

rs12919732 11235123 0.244 G A 1321 1558 1.00E-05 0.848 (0.788-0.912) Intron 22 

rs2903692|| 11238783 0.330 A G 1581 1844 6.99E-06 0.857 (0.802-0.917) Intron 22 

rs4322688 11238991 0.332 G C 1590 1856 5.86E-06 0.857 (0.801-0.916) Intron 22 

rs12930373 11239599 0.331 A G 1590 1847 1.17E-05 0.861 (0.805-0.921) Intron 22 

rs12917893 11239978 0.331 T A 1584 1842 1.04E-05 0.860 (0.804-0.92) Intron 22 

rs62026379 11241806 0.241 A G 1314 1556 6.27E-06 0.845 (0.785-0.909) Intron 22 

rs17673553 11241906 0.242 G A 1326 1558 1.56E-05 0.851 (0.791-0.916) Intron 22 
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Conditioning on Top SNP 

 In order to determine whether any other SNPs were independently associated with 

type 1 diabetes in this region, the data was reanalyzed conditioning on the most 

significantly associated SNP using Unphased (61), An independent, but not statistically 

significant association was found downstream of CLEC16A at SNP rs11643024 (P = 1.79 

x 10
-4

) (Figure 4-12). After identifying the most significant SNPs associated with type 1 

diabetes, we investigated whether any of these SNPs showed correlation with mRNA 

expression level changes for any of the genes in the region. Prior to assessing expression 

levels, we catalogued alternative splice forms of genes in the region.  
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Figure 4-12 
 

 

Figure 4-12. Conditioning on the SNP Most Significantly Associated with Type 1 

Diabetes to Reveal Independently Associated SNPs. The Unphased program was used 

to analyze the genotyping data conditioned on the SNP most significantly associated with 

type 1 diabetes. An independent association was identified downstream with SNP 

rs11632024 (P = 1.79 x 10-4). No SNPs reached statistical significance. The r
2
 was 

calculated using 1000 Genome March 2012 EUR (Hg19) and the most significant SNP as 

reference.  

  

rs11643024     P = 1.79 x 10-4
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Identification of Novel Splicing Isoforms of CIITA Created by Alternative Splicing 

 Examination of RNA-Seq data from the Human BodyMap 2.0 project (Illumina 

Inc.) (data available at (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-

513/novel) ) at coordinates (Hg19 chr16:11,010,386,-11,039,093) revealed evidence of 

infrequent transcripts that included sequences from both CIITA and DEXI, which are 

neighboring genes that are transcribed in opposite directions (Figure 4-13). This 

observation raised the possibility that these genes could exert some regulatory role on 

each other via anti-sense inhibition. The transcripts were validated and characterized by 

amplification and Sanger sequencing. Two types of novel isoforms of CITTA were 

identified that overlap with the DEXI transcript. One isoform that ends in the intronic 

region of DEXI, referred to here as CIITA V and another isoform that overlaps with exon 

1 of DEXI, referred to as CIITA VI (Fig. 4-13). The novel isoforms of CIITA have the 

same stop codon as other CIITA isoforms, but differ in the 3’UTR. Real time PCR 

primers were designed that amplified the two isoforms found and are noted in  

Figure 4-13.  

 

  

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/novel
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/novel
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Figure 4-13 
 

 

Figure 4-13. New Isoforms of CIITA. . New Isoforms of CIITA were identified that 

have exons that overlap with the middle intronic region of DEXI or overlap into exon 1 of 

DEXI. These two isoforms have been named CIITA V, and CIITA VI. Start sites of the 

new isoforms are not known. Primers were designed that amplified these two new 

isoforms. The exact locations of primers are noted in the above figure. The reverse primer 

for CIITA VI straddled two exons (designated by the dotted line).  
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SNPs in CLEC16A are Associated with Variation in Expression Level of DEXI  

 Given that one of the significant associations with type 1 diabetes were observed 

at SNPs located within a coding region, and previous reports suggested that sequences in 

the 16p13.13 region could act at a distance (cis) to regulate the expression of genes in the 

region, an expression quantitative trait locus analysis (eQTL) was performed using the 

expression levels of CIITA, DEXI, CLEC16A and SOCS1 in B-cell lines as phenotypes. 

Primers that specifically amplified each of the common reported alternative spliced 

transcripts for the target genes were designed and used to assess transcript levels by 

quantitative RT-PCR. The full panel of SNPs (N = 915) from the region were then tested 

for association with quantitative variation in the levels of each of the transcripts. The only 

significant associations were observed for DEXI transcripts and a number of SNPs 

spanning the CLEC16A gene, many of which had alleles that were modestly correlated 

(r
2
>0.6) (Figure 4-14). The most statistically significant association was observed at 

rs7403919 (P = 1.24 x 10
-4

). A second independent biological replicate focusing on 

DEXI expression yielded similar results (rs7403919, P = 5.45 x 10
-5

). A full breakdown 

of the forty-eight type disease associated SNPs and their correlation (r
2
) with SNP 

rs7403919 can be found Table 4-5. All other SNPs tested as eQTL for other genes in the 

region (CIITA Isoforms III-VI, CLEC16 Isoforms 1-3, and SOCS) did not show 

statistically significant association with expression levels. The most significant SNP for 

each gene eQTL test and corresponding P-value can be found in Table 4-6. Note: CIITA I 

was not measured because it is myeloid dependent (19). 
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Figure 4-14 

 

 
Figure 4-14. eQTL SNPs for DEXI . The most significant SNP rs7403919 (P = 1.25 x 

10
-4

) is located in intron 10 of CLEC16A, and is in strong LD with numerous other SNPs 

that span introns 19, 21 and 22 of CLEC16A. Diamonds correspond to the SNPs 

significantly associated with type 1 diabetes. The r
2
 was calculated from 1000 Genome 

March 2012 EUR (Hg19) and the most significant SNP as reference.  
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Table 4-5 

SNPs Significantly Associated with Type 1 Diabetes with their Corresponding eQTL 

Results for DEXI  

SNP 
Position 

(Hg19) 
Minor 
Allele 

β* STAT* P-value* 
r

2
 

rs7403919† 
r

2
 

rs34306440† 
Location‡ 

rs7403919 11085968 C 0.9029 4.404 1.25E-04 1.000 0.533 Intron 10 

rs725613 11169683 C 0.8884 4.289 1.72E-04 0.940 0.501 Intron 19 

rs11648679 11175984 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 19 

rs9929994 11178245 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 19 

rs12708716 11179873 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 19 

rs7203793 11182134 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 19 

rs12935413 11210447 A 0.8884 4.289 1.72E-04 0.940 0.501 Intron 19 

rs8064154 11219419 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 21 

rs12924112 11219720 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 21 

rs4322688 11238991 G 0.8884 4.289 1.72E-04 0.940 0.501 Intron 22 

rs12930373 11239599 A 0.8884 4.289 1.72E-04 0.940 0.501 Intron 22 

rs2903692 11238783 A 0.8884 4.289 1.72E-04 0.940 0.529 Intron 22 

rs35732840 11228355 G 0.8934 4.306 1.64E-04 0.875 0.467 Intron 22 

rs2867880 11231857 A 0.8934 4.306 1.64E-04 0.875 0.467 Intron 22 

rs12917893 11239978 T 0.8518 3.994 3.88E-04 0.875 0.467 Intron 22 

rs7200940 11164567 G 0.7586 3.799 6.61E-04 0.844 0.645 Intron 19 

rs8062322 11092319 A 0.7974 3.502 1.47E-03 0.834 0.578 Intron 10 

rs9926367 11093179 C 0.7974 3.502 1.47E-03 0.834 0.578 Intron 10 

rs11860603 11165017 C 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs9934969 11166002 A 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs11865121 11166688 A 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs7198621 11167458 G 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs12925642 11171602 G 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs2058531 11172109 G 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs9652601 11174365 A 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs9652582 11174564 A 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs2041670 11174652 T 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs12708715 11177824 T 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs9888908 11181244 A 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs12928537 11191400 A 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs12927355 11194771 T 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs741172 11200798 T 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs9746695 11207894 C 0.7596 3.586 1.17E-03 0.790 0.622 Intron 19 

rs12924729 11187783 A 0.6429 3.1 4.19E-03 0.737 0.511 Intron 19 
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SNP 
Position 

(Hg19) 
Minor 
Allele 

β* STAT* P-value* 
r

2
 

rs7403919† 
r

2
 

rs34306440† 
Location‡ 

rs34540843 11221287 G 0.9382 2.98 5.67E-03 0.600 0.680 Intron 22 

rs62026379 11241806 A 0.9382 2.98 5.67E-03 0.600 0.680 Intron 22 

rs17673553 11241906 G 0.9382 2.98 5.67E-03 0.600 0.680 Intron 22 

rs34306440§ 11215035 G 0.8521 2.561 1.57E-02 0.533 1.000 Intron 20 

rs35032408 11215424 G 0.8521 2.561 1.57E-02 0.533 1.000 Intron 20 

rs36045143 11224966 G 0.9253 2.95 6.10E-03 0.500 0.600 Intron 22 

rs2241099 11225064 G 0.9253 2.95 6.10E-03 0.500 0.600 Intron 22 

rs62026376 11228712 T 0.9253 2.95 6.10E-03 0.500 0.600 Intron 22 

rs62026377 11229128 T 0.9253 2.95 6.10E-03 0.500 0.600 Intron 22 

rs12919732 11235123 G 0.8494 2.649 1.28E-02 0.500 0.600 Intron 22 

rs12919828 11226779 G 0.9253 2.95 6.10E-03 0.485 0.592 Intron 22 

rs7203459 11230703 C 0.8583 2.663 1.23E-02 0.412 0.529 Intron 22 

rs12708713 11072459 T 0.5901 1.6 1.20E-01 0.394 0.638 Intron 8 

rs12708714 11072525 C 0.5901 1.6 1.20E-01 0.394 0.638 Intron 8 

 

Samples are sorted in order of r
2
 relative to rs740319 (most significant SNP that is 

associated with DEXI expression levels).  

*Statistical analysis performed using expression and genotyping data.  

†r
2
 values were calculated using genotyping data for 33 HapMap samples and the 

designated SNP as reference. ‡Intronic regions were based on Ensembl (CLEC16A - 001 

ENST00000409790) (67).  

§Most Significant SNP associated with type 1 diabetes.  

β, linear regression coefficient; STAT, coefficient t-statistic; r
2
, correlation. 
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Table 4-6 

Top eQTL SNP P-values for each gene tested 

Gene Most Sig. SNP BP (Hg19)  P-value 

CIITA III rs7199828 11006262 2.14 x 10
-3

 

CIITA IV  rs4381620 11477757 1.26 x 10
-2

 

CLEC16A Iso I rs431918 11365416 5.36 x 10
-3

 

CLEC16A Iso II rs243329 11352313 3.33 x 10
-2

 

CLEC16A Iso III  rs11074964 11455169 7.64 x 10
-4

 

DEXI * rs7403919 11085968 1.25 x 10
-4

 

SOCS1 rs77309215 11261183 3.20 x 10
-3

 

     

 CIITA V rs34033173 10982933 1.41 x 10
-2

 

CIITA VI rs4129933 11528893 2.68 x 10
-2

 

 

*Only SNP P-value that reached statistical significance was found in the eQTL study for 

DEXI located in intron 10 of CLEC16A. (Bonferroni corrected P ≤ 1.37 x 10
-4

) 
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We specifically examined the expression levels of DEXI in relation to three SNPs: 

rs34306440 (the SNP most strongly associated with type 1 diabetes in the region), 

rs7403919 (the SNP most strongly associated with variation in DEXI expression in the 

region) and rs12708716 (most often cited in type 1 diabetes literature) (Figure 4-15). For 

all three SNPs the risk allele always corresponded to the major allele. The homozygotes 

for the risk alleles had lower expression of DEXI, whereas the heterozygotes and 

homozygotes for the alternative allele displayed higher levels of expression.  
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Figure 4-15 

 

 
 

Figure 4-15. Expression levels of DEXI. Expression levels grouped by genotypes of 

SNPs rs7403919 (A), rs12708716 (B) and rs34306440 (C). Alleles associated with type 1 

diabetes are bolded. Center lines (bold) represent the median value, box area represents 

upper and lower quartiles, and smaller lines represent one standard deviation from 

median.  
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Relationship of SNPs Associated with Type 1 Diabetes and/or DEXI Expression 

In order to more broadly characterize the relationship between disease risk and 

DEXI expression we plotted the odds ratio (OR) for type 1 diabetes versus the linear 

regression coefficient (β) representing DEXI expression level for the minor alleles of all 

809 SNPs for which these data were available (Figure 4-16). Disease risk was negatively 

correlated with DEXI transcript levels, Pearson correlation (R= -0.66). All SNPs for 

which statistically significant associations with type 1 diabetes were observed clustered 

in the lower right quadrant of the graph corresponding to the low disease risk and 

increased DEXI expression. 
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Figure 4-16 
 

 
 

Figure 4-16. Relationship of Risk for Type 1 Diabetes and DEXI Expression. Results 

are plotted for the minor allele at each of the 809 SNPs in the 16p13.13 region. SNPs at 

which alleles are significantly associated with type 1 diabetes are indicated by red 

squares.  
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Discussion 

 

Chromosomal region 16p13.13 is one of a large number of regions where there is 

significant, replicated evidence of allelic association with type 1 diabetes (2-5), as well as 

with other autoimmune disorders. As these different disorders have disparate target 

organs and pathologies, such findings of association imply that the loci in question have 

basic autoimmunity-predisposing effects.  

 Repeated findings of association for multiple autoimmune disorders in a single 

chromosomal region like 16p13.13 increases both confidence in the initial findings and 

the importance of the locus in understanding the underlying mechanism whereby 

autoimmunity develops. However, functional studies that might elucidate the mechanism 

depend upon the ability to specify the relevant gene in the region, if not the specific 

causative genetic variants. In the current study, we addressed this need for the 16p13.13 

region by resequencing the region in a large collection of type 1 diabetes cases and 

unaffected controls to identify all common variants, genotyping these variants in a 

collection of multiplex type 1 diabetes families, and then seperately testing for 

association of alleles at these SNPs with disease state and transcript levels for each of the 

genes in the region.  

There were 46 novel variants from our re-sequencing that were included among 

the 939 SNPs that we genotyped in 3,070 multiplex families with type 1 diabetes. Forty-

eight of these SNPs displayed a statistically significant association with type 1 diabetes. 

These included several SNPs that provided the most significant findings in this region in 

other autoimmune diseases such as rs11865121 in MS (7) and rs12924729 in PBC (10). 
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In all cases, it was the major allele that conferred risk for type 1 diabetes. Alleles at these 

48 SNPs were not all highly correlated (pairwise r
2
 range from 0.4 to 0.9), nor were the 

SNPs physically clustered. All of these 48 SNPs were located in introns that spanned 

much of the CLEC16A gene (introns 8-22).  

The broad physical distribution of disease associated SNPs and their modest 

correlation raise the possibility that they either act through multiple mechanisms or the 

SNPs could affect multiple genes. Given their intronic locations and prior reports of cis-

oriented transcriptional effects in the region, we tested for association between our entire 

panel of SNPs and transcripts levels for each of the documented alternatively spliced 

forms of the four genes in the region, CIITA, DEXI, CLEC16A and SOCS1. Only for 

DEXI were statistically significant results obtained. Similar to the disease association 

results, SNPs associated with DEXI transcript levels appear to be distributed across much 

of the CLEC16A gene. A comparison of DEXI expression levels in cell lines grouped by 

genotype at one of three disease-associated SNPs suggested that risk for disease was 

associated with reduced expression of DEXI. To explore this hypothesis more globally, 

we examined the relationship between the odds ratio for the minor allele at each SNP in 

the region and the corresponding linear regression coefficient for DEXI expression for the 

same allele. DEXI expression was negatively correlated with disease risk (R = -0.66). 

Our results suggest that genetic variation over a broad region spanning much of 

the CLEC16A gene influences the expression of a neighboring gene, DEXI and that 

reduced DEXI expression is correlated with increased risk for type 1 diabetes. This model 

is consistent with a prior report that sequences in intron 19 of CLEC16A can interact with 
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the promoter region of DEXI (45). Our results suggest that the region of interaction may 

be large or that distal sequences may act indirectly to affect the stability or structure of 

the DNA loops formed.  

Our results and those from prior studies focus attention on DEXI as the gene most 

likely to affect risk for type 1 diabetes in the 16p13.13 region. Little is known about the 

function of DEXI and its predicted 95 amino acid protein product. The protein is well-

conserved, with orthologues readily detectable in multiple species. There is 95% identity 

between the human and mouse orthologoes and 84.5% between human and zebrafish.  

There are no identifiable domains in DEXI that might suggest a possible function 

for the protein. However, Miyaki et al showed that siRNA mediated knockdown of DEXI 

reduced the incidence of apoptosis in cells treated with the chemotherapy agent 

camptothecin (68). A role in a basic cellular function such as apoptosis would be 

consistent with the involvement of DEXI in multiple autoimmune diseases with different 

target tissues.  
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Introduction 

Clearly from this study we have unanswered questions about chromosomal region 

16p13.13. Based on our data future research should be focused on understanding DEXI’s 

function and how changes in its expression confer risk for type 1 diabetes. Even though 

in our experiments we encountered novel isoforms of CIITA that could influence the 

region, none of our data supported these isoforms involvement. This finding may be due 

to lack of statistical power, wrong cell type tested or cytokine stimulation is needed, 

however due the lack of evidence for involvement the novel isoforms will not be 

examined further. Since chromosomal region 16p13.13 is one region out of many 

associated with type 1diabetes, a much broader discussion of future studies with a more 

global approach will conclude the dissertation.  

 

Investigating DEXI 

Understanding the function of the previously uncharacterized protein, DEXI,  is 

the most essential part of understanding how this region confers risk for type 1 diabetes 

and other autoimmune diseases. As mentioned previously, DEXI is a 14 KB gene that is 

transcribed in the opposite direction to CIITA and CLEC16A. DEXI is composed of two 

exons (only 1 coding) and codes for a protein 95 amino acids long (1).  

DEXI has been implicated in two possible immune response related pathways. In 

yeast two-hybrid screens, DEXI was found to interact with the Golgi membrane protein 1 

(GOLM1) and tubulin-specific chaperone D protein (TBCD) (2). GOLM1, also known as 

GP73, has been found to be up-regulated in a viral infection (3) and TBCD is a protein 
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involved in helping beta-tubulin fold correctly (4). In another study siRNA mediated 

knockdown of DEXI, reduced the incidence of apoptosis in cells treated with the 

chemotherapy agent camptothecin (5). This indicates that DEXI is possibly involved in 

either an anti-viral response or apopstosis or a combination of both.  

Interestingly, there are two intronless retro-DEXI genes located at 15q11.2 and 

15q13.1 in a chromosomal region known for duplications and imprinting which have 

been implicated in causing Prader-Willi/Angelman syndrome (6,7). Davison et al showed 

that the 15q11.2 version is minimally expressed in cells, especially lymphoblastoid cells 

(8) and version 15q13.1 straddles across two genes. Therefore the duplication of DEXI 

raises evolutionary questions and also complicates future experiments that need to be 

carefully controlled for the presence of these pseudogenes. 

DEXI has no identifiable domains that could suggest function. The major focus 

for future research should be investigating expression levels of DEXI in other tissues and 

specifically investigating individuals with the risk alleles. Based on our data it appears 

expression levels of DEXI are the key mode of conferring risk for disease. However 

further investigation into the protein DEXI is needed in order to completely understand 

how it functions in a cell and causes apoptosis. 

Using the previously utilized primer pair the expression levels of DEXI can be 

investigated in other tissues and cell types. It is important when performing this assay 

that activated T and B cells be investigated as well as resting cells because the levels of 

expression can easily change in inactivated/activated immune cells. DEXI was originally 

identified as being upregulated in the lungs of emphysema patients (9), and this 
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upregulation was suggested to be likely due to the exposure to cigarette smoke (8), 

hinting at an immune response to toxic chemicals (apoptosis???). This also implies that 

investigating DEXI expression specifically in type 1 diabetic patients is essential for 

defining the specific immunological response. However, the change in mRNA level does 

not always correspond to measureable difference in protein levels, so investigating the 

protein levels is important.  

Measuring DEXI's protein levels and determining what proteins it interacts with 

are essential. In order to begin such studies, high affinity antibodies that stain DEXI and 

other possible interacting proteins need to be designed or purchased. Currently, 

commercial antibodies for DEXI are available from Sigma Aldrich and other sources. As 

previously mentioned, in a yeast two-hybrid screen DEXI was found to interact with 

GOLM1 and TBCD (2). GOLM1 might be a good candidate for further study because of 

its involvement in virus response. Commercial antibodies are available for this protein 

from Sino Biological Inc. The TBCD protein seems like an unlikely candidate for 

involvement in an autoimmune disease although an unknown biochemical relationship 

could exist.  

Using the high affinity antibodies or epitope tag, protein complex 

immunoprecipitation (co-IP) experiments can be performed to confirm DEXI’s 

expression levels and its interactions with GOLM1. Once a successful co-IP has been 

performed, the protein complex can be subjected to mass spectrometry. Mass 

spectrometry will allow for the validating of known interacting proteins and identification 

of any unknown interactions. It will also allow for identification of any post translational 
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modifications that occur. Identification of unknown interacting proteins will also help 

decipher the exact pathway that DEXI interacts in that up regulates cell apoptosis.  

 Determining the location and movement of the DEXI protein is the final phase to 

better understand how it triggers cell apoptosis. The protein will be tagged with a 

fluorescent tag like GFP and expressed in a cell. Using immunofluorescent microscopy 

the protein’s exact location can be visualized. It can be speculated based on the 

interaction with GOLM1 that DEXI could interact with/around the Golgi apparatus.  

 Deciphering the expression levels of DEXI in various tissues and individuals with 

type 1 diabetes is key to confirming how the region confers risk. Further investigations 

into the protein are needed to validate the change in expression seen in mRNA. Finally, 

validating/determining the proteins that DEXI interacts with and its location in the cell is 

important to decipher how it possibly causes apoptosis in a cell. 

 

Possible Mechanisms Conferring Risk 

Based on our findings the CLEC16A intronic region influences the expression of 

neighboring gene DEXI. Alleles associated with risk for type 1 diabetes correspond to 

lower expression of DEXI. This model is consistent with a previous finding where intron 

19 of CLEC16A was found to interact with the promoter region of DEXI (8). However, 

our data suggests that this interaction may span multiple introns or the distal sequences in 

neighboring introns, which surround intron 19, influences the stability or structure of the 

loop. Now exactly how lower expression of DEXI confers risk is more theoretical and 

currently based on limited findings. As mentioned previously it was recently found that 
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DEXI interacts with GOLM1 (2), a golgi membrane protein upregulated in a virus 

infection. Also it was recently found when DEXI is knocked out by siRNA it inhibits the 

cell’s ability for apoptosis (5). Based on all these findings a possible model can be 

hypothesized where the intronic regions of CLEC16A loop around and influence DEXI’s 

expression which inhibits a cells ability for apoptosis (Figure 5-1).  

Exactly how this increases a individuals risk for type 1 diabetes will be explored 

further, but is all specultative. Assuming type 1 diabetes is triggered by a virus, lower 

DEXI expression could confer risk by inhibiting cell death during a viral infection in the 

pancreatic beta cells. By inhibiting apoptosis of cells a longer infection could occur, 

resulting in a more aggressive immune response later. A more aggressive immune 

response could result in a greater chance for autoimmunity to develop in the pancreas. 

This model is supported by the fact that DEXI interacts with GOLM1, a protein 

upregulated by a virus. A second model that is not viral based can can also be 

hypothesised based on the inhibition of apoptosis. During the development of B and T 

cells they undergo a process of negative selection where cells that tightly bind to self 

antigens are removed. If any of these self reactive cells are inhibited from apoptosis, 

possibly caused by lower DEXI expression, they could allow for the escape of 

autoreactive T and B cells into the body and favor the development of autoimmunity. 

Clearly, these two models are very speculative and further investigations into the exact 

function of DEXI are needed to identify the exact mechanism of action.  
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Figure 5-1 

 

 

Figure 5-1. Possible Mechanism for Involvement of Linkage Disequilibrium Block in 

Chromosome 16p13.13 in Autoimmunity. The intronic region of CLEC16A could loop 

around and influence the promoter region of DEXI, influencing the expression/repression 

of DEXI based on risk variants present. Lower expression of DEXI could inhibit a cells 

ability for apoptosis. 
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Future Directions of Type 1 Diabetes Research 

Clearly more time and resources are needed for deciphering the genetics behind 

type 1 diabetes. With the advent of GWAS the list of possible candidate regions has 

grown drastically and on average GWAS reported loci contain over 8.5 protein coding 

genes per region (10). Each of these regions require further fine mapping to identify the 

causative risk variant/variants. However, as seen in Chapter 4, fine mapping the region is 

very time consuming and may not truly identify the causative risk variant because of 

strong LD. Complicating issues further, as seen with chromosomal region 16p13.13, the 

risk variant identified by GWAS may confer risk for the disease by influencing a 

neighboring gene.  

Future genetic studies of type 1 diabetes and other autoimmune diseases should 

utilize large expression microarrays in combination with GWAS panels to perform 

comprehensive eQTL analysis. This combination of investigation will ensure resources 

are not wasted pursuing genes that are associated with risk, yet have no direct influence 

on disease as seen with CLEC16A. This will narrow down the functional regions that 

confer risk for disease. Also, utilizing GWASs and expression data from other 

autoimmune disorders will help prioritize follow-up genes to study. The exact phenotypic 

change could ultimately be different as seen with IL2RA in type 1 diabetes and multiple 

sclerosis. 

After thorough investigations of several regions identified in GWASs by fine 

mapping, genotyping and functional studies, SNPs were identified that clearly increase or 

decrease an individual’s risk for disease. These risk-associated SNPs will be entered in a 
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database for type 1 diabetes and other autoimmune related diseases. This will add to the 

screening of individuals for risk with disease in a tiered risk system (11). It can be 

hypothesized that individuals that have the high risk MHC class II haplotype DR3/DR4, 

can have further increased risk if they have the HLA-A*02 allele (12) and an even greater 

risk if they have the shortest VNTR (class I) of the insulin gene (13).  

Functional SNPs from GWAS constitute the next tier for example if the individual 

has risk variant/variants from CLEC16A that lowers DEXI expression this further 

increases their risk. However, this additive predicative model is indeed speculative at the 

time and per current findings the predictive  power for type 1 diabetes risk after 

accounting for HLA is small (14,15). This limitation may be overcome by utilizing larger 

datasets that look at the complex inactions of SNPs (15). After all regions identified by 

GWAS have been fine mapped and risk variants identified, the predictive power may 

show a modest improvement. Currently, the established tool for predicting type 1 

diabetes is identifying individuals with the high risk haplotype and monitoring them for 

development of autoantibodies (16,17). As previously mentioned in Chapter 1, an 

individual's risk for developing type 1 diabetes increases as the number of autoantibodies 

increases rather than the titre of autoantibodies (18-20). Utilizing the tiered screening 

system in combination with testing for antibodies may help improve the predictive model 

and future screening. 

This tiered system would allow for more precise and personally adapted 

treatment/prevention for an individual’s risk for developing type 1 diabetes and other 

autoimmune diseases. Utilizing this screening method might also help to ultimately 
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identify the environmental trigger/triggers of type 1 diabetes and sub types of the disease. 

Currently, type 1 diabetics are diagnosed based on the fact they no longer produce 

insulin, but they could be sub-grouped based on age of onset and severity. In the future, 

each individual may be assessed for combinations of factors which ultimately predict 

their risk for developing type 1 diabetes and other autoimmune diseases and allow for 

medical intervention/prevention.  
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