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Chapter 1

Introduction

The nature of light has been a source of great fascination and controversy through-

out history. Before the discovery of quantum physics, all physical objects were be-

lieved to be either particles or waves. The first modern mathematical description

of light was Newton’s corpuscular theory which treated light as a stream of parti-

cles. Particle theories of light are very successful at explaining certain phenomena

like reflection and polarization. However they fail to provide a good description of

many other optical phenomena. The wave theory of light, attributed to Huygens,

had much more success explaining diffraction, interference, refraction and colors.

In 1845, Maxwell’s theory of electromagnetism established what is now known as

the classical theory of light. The success of the theory firmly established light as

an electromagnetic wave. However over the next fifty years, certain newly discov-

ered or proposed phenomena were found to be at odds with the theory, e.g. the

photoelectric effect and the rather imaginatively named “ultraviolet catastrophe”.

At the dawn of the twentieth century, in what is widely regarded as the seminal

discovery leading to quantum physics, Max Planck realized that the catastrophe

could be averted by assuming that light could only be absorbed in packets of energy

or quanta. Albert Einstein took this idea and developed it into his explanation

of the photoelectric effect treating light as a collection of particles or photons, a

result that won him the Nobel Prize. Eventually with advancements in technology

the discrete nature of light was experimentally verified using photographic plates

that could detect individual photons.

1
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The coming years saw the rapid development of quantum physics. According to

quantum physics, the evolution of a physical object is described by the Schrodinger

wave equation. The solution to the Schrodinger equation is called the wavefunc-

tion, which is not a directly measureable quantity but a distribution of probability

amplitudes. The wavefunction describes the object completely, can be complex

valued and the square modulus of the wavefunction gives the probability density

function of physical attributes such as position or momentum. Thus every object

is, in a sense, a wave. In the context of quantum optics, the continuous spatio-

temporal distribution of the electromagnetic field constitutes the wavefunction of

the photon. The wave-like properties of light such as interference and diffraction

can be explained using the wavefunction.

However, as mentioned above, the quantum description of light is not complete

without its particle nature. The quantization of the electromagnetic field using

quantum electrodynamics provides the framework of treating light as a gas of

bosonic particles or photons. The wavefunction can therefore be replaced by cre-

ation and annihilation of these photons, in direct analogy to atoms in quantum

field theory. Thus, the energy of the electromagnetic field is proportional to the

number of photons and the detection of light can only be done in these discrete

units. Numerous phenomena such as the photoelectric effect and Compton scat-

tering highlight the particle-like behaviour of photons.

This dichotomous behaviour is not an inconsistency but a central feature of quan-

tum physics. Wave-particle, or continuous-discrete, duality is the cornerstone of

our current understanding of how nature behaves. Theoretical and experimental

demonstration of this duality is an important test of quantum physics and a useful

tool for exploring new phenomena.

Moreover, using continuous and discrete Hilbert spaces together can provide new

insights and opportunities in applications such as quantum computing and quan-

tum information. Our ability to store and process information depends crucially

on the physical system we use as the information carrier. The theoretical and

experimental techniques vary widely over different technologies of generating and

manipulating quantum systems. Exploring the continuous-discrete interface in the

context of quantum information is therefore imperative in order to make full use

of and further our current understanding of the quantum world.



Introduction 3

1.1 The Nature of Light

In this section, we will provide some background information of quantum optics

that are relevant to this thesis. The references for the following sections are Prof.

Olivier’s notes from Quantum Optics and Quantum Information course [1] and D.

F. Walls and G. J. Milburn’s Quantum Optics [2].

1.1.1 Light as a Harmonic Oscillator

Today, the nature of light is firmly established as a quantum harmonic oscilla-

tor. A mode of light is characterized by the frequency, ω, of oscillation of its

electro-magnetic field ~E, the field polarization ê and the direction of propagation

or wavevector k̂. Each mode is an independent quantum harmonic oscillator. The

number of photons in the field mode is the excitation level of the harmonic os-

cillator. Each photon is a packet of energy ~ω, where ~ is the Planck’s constant,

corresponding to a single level difference of a harmonic oscillator. The allowed

frequencies of the mode are decided by the harmonic oscillator potential given by

the time independent Schrödinger equation for the mode.

The time-independent Schrödinger equation for a harmonic oscillator is

Hψ(x) =

(
P 2

2m
+
kX2

2

)
ψ(x) = Eψ(x).

In the context of optics, position and momentum of the harmonic oscillator corre-

spond to the amplitude (Q) and phase (P) quadrature, respectively. We can define

these quadratures from the above equation by setting Q→ X
√

k
~ω and redefining

P → P
√

1
m~ω to get

H =
~ω
2

(Q2 + P 2). (1.1)
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We can define ladder operators as the annihilation operator, a, and creation op-

erator, a†,

a =
1√
2

(Q+ iP ),

a† =
1√
2

(Q− iP ),

=⇒ H = ~ω(a†a+ 1/2), (1.2)

where a, a† are mutually adjoint operators which follow the bosonic commutation

relation [a, a†] = 1. Operators of two different harmonic oscillators commute with

each other giving us the general commutation relation

[ai, a
†
j] = δi,j = δ(ωi − ωj) δ(ki − kj) δêi,êj . (1.3)

The allowed energy values of this Hamiltonian are quantized as

En = ~ω
(
n+

1

2

)
, (1.4)

where n is an integer representing the number of photons in the mode and the

eigenvalue of the operator N ,

N = a†a, (1.5)

known as the photon number operator. The creation and annihilation operators

are not Hermitian and therefore do not correspond to any observables that we can

measure. However we can see the physical meaning of these operators.

The quantized electromagnetic field E can be written as a function of path r and

time t as

Eω,k(r, t) =

√
~ω
2V ε

(
aω,ke

i(k·r−ωt−θ) + a†ω,ke
−i(k·r−ωt−θ)

)
,

= E0
ω,k

(
aω,ke

i(k·r−ωt−θ) + a†ω,ke
−i(k·r−ωt−θ)

)
, (1.6)

=
√

2E0
ω,k (Qω,k cos (k · r − ωt− θ)− Pω,k sin (k · r − ωt− θ)) , (1.7)
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using Eq. (1.2). It is then clear that Q and P correspond to the real and imaginary

parts of the normalized quantized electromagnetic field since,

Q =
a+ a†√

2
=
Eω,k(0, 0, 0)√

2E0
ω,k

, (1.8)

P =
a− a†

i
√

2
=
Eω,k(0, 0,

π
2
)

√
2E0

ω,k

. (1.9)

Using the commutation relation Eq. (1.3), we can see that

[Qi, Pj] = iδi,j = iδ(ωi − ωj) δ(ki − kj) δêi,êj . (1.10)

Therefore Q and P are the quadrature components of the electromagnetic field

vector. A π
2

phase evolution on the mode transforms Q into P and P into -Q in

close analogy with the phase evolution of the classical rotating electromagnetic

field. The generalized quadrature, Aθ is then simply the electromagnetic field

rotated by an arbitrary phase shift,

Aθ =
E(0, 0, θ)√

2E0
ω,k

=
1√
2

(
ae−iθ + a†eiθ

)
. (1.11)

We can measure the intensity and the amplitude of the electromagnetic field by

measuring the photon number and the quadratures, which are Hermitian operators

and therefore correspond to real-valued observables.

1.1.2 Quadrature measurements

Quadrature measurement results can, in theory, be any real value between −∞ to

∞. We denote | q 〉 , | p 〉 that are eigenstates of the quadrature operators Q,P ,

Q | q 〉 = q | q 〉 , P | p 〉 = p | p 〉 . (1.12)
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The bases | q 〉 , | p 〉 are complete, orthogonal bases, meaning we can write any

state as a superposition of orthogonal vectors, i.e

〈 q | q′ 〉 = δ(q − q′), 〈 p | p′ 〉 = δ(p− p′),
∞∫

−∞

dq | q 〉 〈 q | =
∞∫

−∞

dp | p 〉 〈 p | = 1,

|ψ 〉 =

∞∫
−∞

dq | q 〉 〈 q | ψ 〉 =

∞∫
−∞

dq ψ(q) | q 〉

|ψ 〉 =

∞∫
−∞

dp | p 〉 〈 p | ψ 〉 =

∞∫
−∞

dp ψ̃(p) | p 〉

Like their position and momentum analogues, the q and p bases are related by

Fourier transform,

ψ̃(p) =
1√
2π

∞∫
∞

ψ(q) e−iqp dq. (1.13)

Amplitude quadrature measurements give us expectation value and variance,

〈ψ |Q |ψ 〉 =

∞∫
−∞

dq′ ψ∗(q′) 〈 q′ |Q
∞∫

−∞

dq ψ(q) | q 〉

=

∞∫
−∞

dq |ψ(q)|2q

〈ψ |Q2 |ψ 〉 =

∞∫
−∞

dq′ ψ∗(q′) 〈 q′ |Q2

∞∫
−∞

dq ψ(q) | q 〉

=

∞∫
−∞

dq |ψ(q)|2q2

(∆Q)2 = 〈ψ |Q2 |ψ 〉 − 〈ψ |Q |ψ 〉2 (1.14)

The commutation relation [Q,P ] = i, implies that both P and Q cannot be

measured on the state simultaneously. This translates into the corresponding

Heisenberg inequality

∆Q ∆P ≥ 1/2. (1.15)
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For an pure amplitude eigenstate | q0 〉, i.e a state with ψ(q) = δ(q − q0), the

variance ∆Q = 0, hence ∆P →∞.

1.1.2.1 Homodyne detection

Quadrature measurements are commonly made using homodyne detection. Homo-

dyne measurement employs an optical element called the beamsplitter (BS) which

is simply a partially reflecting mirror.

a1

a3

a2

a4

_

LO

N3-N4

50:50 BS

Phase 
Shift ϕ

Figure 1.1: Balanced Homodyne Detection

A BS takes two optical modes a1, a2 in and puts two modes a3, a4 out. In practice,

this requires the two input optical modes to be aligned at the BS such that the

output modes at each port are perfectly matched. At the BS, each photon of each

mode goes to either one of the two output modes with a probability decided by

the characteristics of the BS. The quantum Hamiltonian of the BS and its effective

transformation on the modes are given by,

HBS = ~κ(a1a
†
2 + a†1a2) (1.16)

a3 = a1 cosκt+ a2 sinκt (1.17)

a4 = a1 sinκt− a2 cosκt (1.18)

Therefore by controlling κ, t we can control the degree of mixing between modes a1

and a2. We can pose that sinκt is the reflectivity ρ and cosκt is the transmissivity
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τ so that ρ2 + τ 2 = 1. Now we can understand homodyne detection, which we will

just briefly outline.

We shall only look at balanced homodyne detection (BHD) so ρ = τ = 1√
2
. The

two detectors at the output of the BS measure the photon number at the output,

which can be written interms of the input as

a†3a3 =
1

2
(a†1 + a†2)(a1 + a2),

N3 =
1

2
(a†1a1 + a†2a2 + a1a

†
2 + a†1a2),

a†4a4 =
1

2
(a†1 − a

†
2)(a1 − a2),

N4 =
1

2
(a†1a1 + a†2a2 − a1a

†
2 − a

†
1a2),

N+ = N3 +N4 = a†1a1 + a†2a2, (1.19)

N− = N3 −N4 = a1a
†
2 + a†1a2, (1.20)

where N+, N− denote the sum and difference of the photon number measured at

the two outputs.

Now if a1 is the quantum state we want to measure, then the key here is to make

the a2 a bright classical field in a coherent state. The coherent state mode is

also known as the local oscillator (LO). We shall explore coherent states further in

section 1.2, but here it suffices to mention that a coherent state | β 〉 is an eigenstate

of the annihilation operator. We have 〈 β | a | β 〉 = β and 〈 β | a† | β 〉 = β∗, where

β = |β|eiθ, |β|2 is the mean intensity and θ is the phase of the mode. Now the

effective difference measurement becomes

〈N−〉 = 〈 β |2 〈ψ |1 a1a
†
2 + a†1a2 |ψ 〉1 | β 〉2

= |β| 〈ψ |1 (a1e
−iθ + a†1e

iθ) |ψ 〉1
=
√

2|β|〈Aθ〉. (1.21)

Since |β| is a known classical field, measurement of the photon number difference

is a direct measurement of generalized quadrature Aθ. Using the phase of the local

oscillator in mode a2 we can measure any quadrature of mode a1, so that θ = 0

corresponds to Q and θ = π/2 corresponds to P.
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1.1.3 Photon number measurement

Now let’s look at the discrete space. The photon number can, in theory, take whole

number values from 0 to∞. The eigenstates of the number operator are simply the

energy eigenstates of the harmonic oscillator. Eigenstates of the number operator

|n 〉 have energy ~ω(n+ 1
2
). The ~ω

2
term is known as zero point energy and is the

energy of the ground state (n = 0). This energy is not measurable or convertible

into work, and hence we can drop it out of the energy terms from here on. The

number states are the energy eigenstates of the harmonic oscillator or Fock states,

N |n 〉 = a†a |n 〉 = n |n 〉 (1.22)

Fock states are orthogonal 〈n | m 〉 = δmn, and form a complete basis i.e we can

write any state ψ as a superposition of Fock states.

∞∑
n=0

|n 〉 〈n | = 1,

|ψ 〉 =
∞∑
n=0

cn |n 〉 , (1.23)

where cn = 〈n | ψ 〉. The creation and annihilation operator increase and decrease

the photon number respectively,

a |n 〉 =
√
n |n− 1 〉 (1.24)

a† |n 〉 =
√
n+ 1 |n+ 1 〉 (1.25)

Photon-number-resolving measurements collapse the wavefunction of the measured

state to the Fock state basis.

1.1.3.1 Photon-number-resolving detection

As noted above, even homodyne measurement requires photon number measure-

ments. However the devices commonly used for quadrature measurements, such as

silicon and InGaAs photo-diodes, are not used for photon number measurements.

This is because these detectors can only resolve photo-currents of the order of 108

photons per second because of substantial dark current. The large photon num-

bers and statistical errors wash out the quantum properties of the photon number
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measurement, instead these detector can be said to be measuring field intensities.

As we saw in Eq. (1.21), homodyne detection operates in the regime of bright

classical fields. The LO amplifies the quantum signal of quadrature measurement

by the coherent field magnitude and thus these detectors can be used very well for

homodyne measurements.

True photon number resolving measurement turns out to be a very difficult en-

gineering problem, one that nevertheless has seen great progress in recent years.

Until recently photon number measurement could only be done using single photon

detectors such as avalanche photo-diodes (APD). APD’s are extremely sensitive,

their noise is below the single photon level. However they have no resolution i.e

they cannot differentiate between 1 and 2 or n photons and they have low quantum

efficiency i.e they miss a lot of photons. While these might seem like fatal prob-

lems, APD’s have been used widely as photon number measurement devices in

post-selection experiments where only 0 or 1 photon is expected. A post-selection

measurement is a conditional measurement conditioned upon an event, which for

an APD is a photon detection event. This ensures that only the detection events

are counted and the loss of the APD is neglected. As long as the probability of

encountering higher photon numbers is negligible, an APD is a legitimate photon

number measurement.

Sae Woo Nam’s group at the National Institute of Standards and Technology in

Boulder, Colorado has recently developed a new superconducting transition edge

sensor detector that can resolve photon numbers between 1 and 5 photons at 1064

nm with 95 % quantum efficiency [3]. We collaborated with Sae Woo Nam’s group

and with funding from an NSF Major Research Instrumentation grant, acquired

one 8-channel TES detector which is currently in our lab at University of Virginia.

The working principle of the detector is elaborated in section 3 .

1.2 The Wigner function

The Wigner quasi-probability distribution or the Wigner function was first intro-

duced by Eugene Wigner [4] in 1932 to study quantum corrections to classical

statistical mechanics. It is a mapping of the complex wavefunction onto a real
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valued function in the phase space of Hermitian operators, define as,

W (q, p) =
1

π

∫ ∞
−∞

ψ∗(q + y)ψ(q − y)e2ipy dy (1.26)

where ψ is the wavefunction and q and p are amplitude and phase quadrature here

but could be any conjugate variable pair.

The Wigner function integrated along any variable, i.e the marginal distribution,

yields the measurement distribution of the conjugate variable,

∞∫
−∞

W (q, p) dp = |ψ(q)|2. (1.27)

For an ensemble of classical particles, the probability distribution informs us about

the probability of finding a particle in a given location in phase space. The Wigner

function plays an analogous role for quantum states and provides a very descriptive

way to see the distinction between classical and quantum states.

A classical state is one that can be described using classical physics. The Wigner

function of such a state is a positive definite distribution.

Certain phenomena such as non-zero variances for quadratures due to Heisenberg

inequality cannot be described classically. Another example of non-classical state

is the squeezed state that we will see in the next section. However, these can still

be explained using Wigner functions that are positive everywhere. The proper-

ties of such states, despite being non-classical, could in principle be described as

probability distributions of ensembles.

However some quantum states (such as Fock states) can have Wigner functions

with negative values, which can never happen with a probability distribution.

Therefore, the Wigner function taking negative values is considered a signature of

quantum physics.

We look at some of these states that are commonly encountered in quantum optics

in both the continuous and discrete Hilbert spaces and their Wigner functions.
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Vacuum state

The vacuum state is ground state of the quantum harmonic oscillator. A field in

vacuum state has zero photons i.e it has no light. The vacuum state is represented

as | 0 〉 in the photon number basis. In the amplitude quadrature basis, the vacuum

state is given by a Gaussian wavefunction

| 0 〉 =

∫ ∞
−∞
| q 〉 〈 q | 0 〉

= (π)−1/4

∫ ∞
−∞

e−q
2/2 | q 〉 . (1.28)

Thus the vacuum state has a non-zero electromagnetic field distribution, even

though it has zero photons. Indeed,

〈 0 | (∆Q)2 | 0 〉 = 〈 0 |Q2 | 0 〉 − 〈 0 |Q | 0 〉2

= 1/2− 0 = 1/2 (1.29)

We could also write the vacuum state in the phase quadrature basis, and similarly

get (∆P )2 = 1/2. Thus ∆Q∆P = 1/2, the lowest value allowed by Heisenberg

inequality making the vacuum state a minimum uncertainty state (MUS). This

variance in the quadrature measurement is also known as “shot noise”.

A mode cannot have less than zero photons, thus the vacuum state is nullified by

the annihilation operator

a | 0 〉 = 0 (1.30)

We can find the Wigner function of this state

W (q, p) =
1

π3/2

∫ ∞
−∞

e−(q+y)2/2e−(q−y)2/2e2ipy dy

=
1

π
e−q

2−p2

(1.31)
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Figure 1.2: Wigner function of a vacuum state

Fock state

An n photon state, also known as a Fock state |n 〉, has an nth order Hermite

polynomial distribution in amplitude and phase. As mentioned above, creation

and annihilation operators transition between Fock states by raising and lowering

the excitation level respectively. We use the Hermite polynomial expression of the

quadrature-Fock Clebsch-Gordan coefficients [5] to express the Fock state in the

quadrature basis,

〈q|n〉 = π−
1
4 (2nn!)−

1
2 e−

q2

2 Hn(q), (1.32)

where Hn(q) is the Hermite polynomial of order n.

|n 〉 =

∫ ∞
−∞
| q 〉 〈 q | n 〉

= π−
1
4 (2nn!)−

1
2

∫ ∞
−∞

e−
q2

2 Hn(q) | q 〉 (1.33)

The Wigner function of a Fock state is

W (q, p) = π−
1
2 (2nn!)−1 1

π

∫ ∞
−∞

e−
(q+y)2

2 Hn(q + y)e−
(q−y)2

2 Hn(q − y)e2ipy dy

=
(−1)n

π
e−(q2+p2)Ln(2(q2 + p2)) (1.34)
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where Ln is the Laguerre-Gaussian polynomial of order n. We can see that vacuum
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Wigner Function of Fock state n=1
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Figure 1.3: Wigner function of Fock state |n = 1 〉

and Fock states are symmetric under rotations in phase space. Optical phase shifts

are rotations in quadrature phase space, therefore vacuum and Fock states are

invariant under optical phase shifts.

Intuitively we can think of Fock states as the signature of quantization of energy

and therefore a proof of the quantum nature of light.

Coherent state

Coherent state can be obtained by the action of the displacement operator, D(α) =

eαa
†−α∗a on the vacuum state.

|α 〉 = D(α) | 0 〉

|α 〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n 〉 (1.35)

The coherent state is an eigenstate of the annihilation operator

a |α 〉 = α |α 〉 . (1.36)
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Hence the coherent state subjected to losses stays a coherent state. If the displace-

ment parameter α is zero, then the resultant coherent state is simply the vacuum

state. The Wigner function of the coherent state is a Gaussian function identical

to the vacuum state, only displaced from the origin

W (q, p) =
1

π
e−(q−Re(α))2−(p−Im(α))2

(1.37)

Note that this state is not identical under phase shift. A phase shift would rotate

5
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Figure 1.4: Wigner function of coherent state with α = 2 + 2i

the state with respect to the coordinates by the angle of the phase shift. In fact

the larger the displacement from the origin, the higher is the resolution of the

angular distance. Therefore we can intuitively see why bright coherent states are

used as phase references.

Squeezed state

A squeezed-vacuum light source, can be created by a process that creates photons

in pairs. A commonly used method is parametric down-conversion in a nonlinear

crystal such as periodically poled Potassium titanyl phosphate (PPKTP). Focusing

a green coherent state in a PPKTP crystal causes it to convert green photons into

two infrared (IR) photons. Since the IR photons are always emitted in pairs, the
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Figure 1.5: Evolution of coherent state |α 〉 under a phase shift θ. As |α|
increases, ∆θ decreases.

IR generation Hamiltonian can be described as,

H =
i~κ
2

(a†2 − a2) (1.38)

Here a†2 is the two-photon creation operator and a2 is the two-photon annihilation

operator. The squeezed state can be obtained by the evolving the initial state with

the squeezing Hamitonian, i.e applying S(κt) = e−
κt
2

(a†2−a2) on the vacuum state.

| r 〉 = S(r) | 0 〉 ,

| r 〉 =
1

cosh r

∞∑
n=0

tanhn r | 2n 〉 , (1.39)

where r = κt. We find that for the squeezed state,

(∆Q)2 = e−2r, (∆P )2 = e2r. (1.40)

We see that the variance in one quadrature is squeezed and the variance in the

conjugate quadrature is anti-squeezed, hence the name squeezed state. In the limit

of r →∞, a squeezed state becomes a quadrature eigenstate | q = 0 〉.

The Wigner function of a squeezed state is shown in Fig. 1.6. As we can see it is

still a positive definite Gaussian function although it is not symmetric in q and p.

Squeezed vacuum is a special case of the set of all squeezed states which are formed

by the action of the squeezing operator on a general state.
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Figure 1.6: Wigner function of squeezed vacuum state with r = 0.5

Two-mode squeezed state

A two-mode squeezed state, or TMSS, can be created using a process that cre-

ates photons in pairs in different modes. Type-II PPKTP crystals, for example,

emit photon pairs where one photon is horizontally polarized and one is vertically

polarized. Therefore the Hamiltonian for this process is given by

H = i~κ(a†1a
†
2 − a1a2). (1.41)

The two mode squeezed state can be obtained by evolving the intial two mode state

by the Hamiltonian. Applying S12(κt) = exp(−κt(a†1a
†
2 − a1a2)) on the vacuum

state, we get

| r 〉12 = S12(r) | 0 〉1 | 0 〉2

| r 〉12 =
1

cosh r

∞∑
n=0

tanhn r |n 〉1 |n 〉2 (1.42)

where r = κt. The variances of individual mode quadratures are large, but since

the two mode are not separable, we can check the variances of two mode operators.

∆(Q1 ±Q2) = e±r

∆(P1 ± P2) = e∓r (1.43)
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In a two-mode squeezed state (TMSS), its the sums and differences of quadratures

of the two modes that are squeezed and anti-squeezed. In the limit of infinite

squeezing r →∞, we have e−r → 0 and therefore

Q1 = Q2, P1 = −P2. (1.44)

This is the optical analogue of the canonical Einstein-Podolsky-Rosen (EPR)

state [6, 7], hence the TMSS is also known as the EPR state. The EPR state

is an example of an entangled state and will be explored further in chapter 2. The

Wigner function of two mode states is four-dimensional but still Gaussian in the

(Q1 −Q2, P1 + P2) subspace.

1.3 Measurement of the Wigner function

1.3.1 Motivation and previous work

The complete characterization of the quantum state, a.k.a. quantum state tomog-

raphy or quantum tomography, of a physical system plays a key role in physics.

As newer experiments and techniques allow the generation of more exotic states,

tomography becomes very important to quantify and certify the success of such

techniques. This is particularly important in quantum information and quantum

computing applications where the success of the information processing and error

correction depends on characteristics of the quantum resources [8].

Measurement of a single observable does not uniquely identify a quantum state.

For example, even though 1√
2
(| 0 〉 + | 1 〉) and 1√

2
(| 0 〉 − | 1 〉) are two distinct

quantum states, they have the same distribution of measurement results in the

logical basis, 0 with 50% probability and 1 with 50% probability. On the other

hand, the wavefunction and Wigner function can both determine a state uniquely.

However the wavefunction is complex valued, and as such is not an observable.

The Wigner function however, is a well behaved, real-valued function which can

be measured.

Measurement of Wigner function by transforming the canonically conjugate quadra-

ture amplitude measurements is well known. Using the measurement histograms

of a sufficient number of rotated field quadratures, the Wigner function can be
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reconstructed using rather involved numerical inverse Radon transform postpro-

cessing [9, 10, 11]. As this method requires quadrature measurements, it is also

known as optical homodyne tomography.

An alternate and more direct method to measure the Wigner function, free of

the encumbrance of the reconstruction process [12], was first proposed by An-

toine Royer [13] in 1976. It was later demonstrated experimentally in atomic

states by Dietrich Leibfried et al [14], and for optical states by Banaszek and

Wódkiewicz [15]. The optical state tomography which we shall focus on in this

thesis relies on ideal photon counting, a.k.a. photon-number-resolving (PNR) de-

tection. As mentioned before, PNR detection is difficult to achieve and a good

method to circumvent this experimental difficulty has been to use detectors with

single-photon sensitivity, such as APD’s and work at photon fluxes low enough that

there would be a negligible probability of more than one photon in the detection’s

temporal window. Under such conditions, Banaszek et al. demonstrated coherent-

state quantum tomography [16], with an effective restriction to the {| 0 〉 , | 1 〉}
subset of the Fock basis.

In this work, we reproduced Banaszek et al.’s seminal experiment and extended

it, we believe for the first time, to the regime where much more than one photon

is present in the detection window. Our PNR detector was a superconducting

transition-edge sensor (TES), of system detection efficiency above 90% [3]. These

detectors can distinguish between 0 to 5-photon Fock states at 1064 nm with high

system detection efficiency, no dead time, and near zero dark count. Therefore only

the TES can measure the state without any fair sampling assumption. We believe

this to be a step towards more direct state reconstruction of non-classical states

(i.e., with minimal numerical postprocessing) which, to the best of our knowledge,

has not yet been achieved.

Here we outline the theoretical foundation proposed by Royer and adapted by

Banaszek et al for optical quantum tomography with PNR measurements.
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1.3.2 Quantum tomography by counting photons

The Wigner function [4] of a single mode of the quantum electromagnetic field of

density operator ρ can be alternatively written [10] as

W (q, p) =
1

π

∫ ∞
−∞

e2iyp 〈 q − y | ρ | q + y 〉 dy, (1.45)

where | q ± y 〉 belong to the amplitude quadrature eigenbasis. This is a gener-

alization of the Wigner function definition in Eq. (1.26) to include statististical

mixtures described by a density operator ρ. For pure states |ψ 〉 the density oper-

ator simply becomes ρ = |ψ 〉 〈ψ | and Eq. (1.45) reduces to Eq. (1.26). Now if we

write ρ =
∑

n,n′ ρnn′ |n 〉 〈n′ | in the Fock basis and use the Hermite polynomial

expression, it is then straightforward to obtain the following remarkable relation

from the orthogonality of Hermite polynomials

W (q, p) =
1

π

∫ ∞
−∞

e2iyp

∞∑
{n,n′}=0

〈 q − y | n 〉 ρnn′ 〈n | q + y 〉 dy,

W (0, 0) =
1

π

∞∑
{n,n′}=0

ρnn′

∫ ∞
−∞

dy√
π2nn!

Hn(−y)Hn′(y)e−y
2

,

W (0, 0) =
1

π

∞∑
n

(−1)nρnn

=
1

π
〈ψ |

(∑
n

(−1)n |n 〉 〈n |
)
|ψ 〉 =

1

π
〈Π〉. (1.46)

Here the right-hand side can be construed as the expectation value of the operator

Π =
∑

n(−1)n |n 〉 〈n |, the photon-number parity operator. Since ρnn is the

probability of counting n photons in ρ, it is therefore clear that the value of the

Wigner function at the origin can be obtained directly from the statistics of ideal

PNR measurements. The Wigner function in the rest of the quantum phase space

is then accessed by simply displacing the quantum state ρ. The displacement

operator we encountered in section 1.2, when applied on an arbitrary state |ψ 〉
with Wigner function W (q, p) has the effect of displacing the Wigner function to

Wdisp(q +Re(α), p+ Im(α)). Therefore

Wdisp(0, 0) = W (−Re(α),−Im(α)) (1.47)
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Thus displacing the quantum state by α and measuring the parity measure (Eq. (1.46))

of the resultant state gives us the W (−α) of the original state. By scanning the

displacement parameter α we can measure the Wigner function at every point in

phase space.

This method therefore directly gives us entire Wigner function of a state and no

back-projection algorithms are required. This reduces not only the mathemat-

ical overhead but also makes the complete characterization of a quantum state

directly accessible by measurement. We will use this theoretical foundation in our

experiment which will be detailed in chapter 3.

1.4 Quantum Entanglement

Quantum entanglement is the source of some of the most counter-intuitive and

well-known quantum phenomena. Indeed violation of the Bell inequality [17], one

of the most celebrated tests of the completeness of quantum mechanics, requires

entangled systems.

A quantum system is said to be an entangled state if it is made of two or more

physical systems but cannot be factorized into states of the separate subsystems.

As with many other quantum properties, entanglement can be demonstrated in

both continuous- and discrete-variable systems. The simplest discrete system is

a two level system, called Qbit1 or quantum bit. Just as a bit of information is

stored as either 0 or 1, the two states of a Qbit are labeled | 0 〉 , | 1 〉. Now consider

the two Qbit states

|ψ 〉 = | 0 〉1 | 0 〉2 + | 0 〉1 | 1 〉2 + | 1 〉1 | 0 〉2 + | 1 〉1 | 1 〉2 (1.48)

|φ 〉 = | 0 〉1 | 0 〉2 + | 1 〉1 | 1 〉2 (1.49)

ψ is not entangled, while state φ is. This can be seen by attempting to factorize

the state into two subsystems.

|ψ 〉 = (| 0 〉1 + | 1 〉1)⊗ (| 0 〉2 + | 1 〉2) (1.50)

|φ 〉 = | 0 〉1 | 0 〉2 + | 1 〉1 | 1 〉2 (1.51)

1We adopt in this thesis the more harmonious spelling of David Mermin’s [18].
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φ cannot be factorized into two systems and hence is entangled. This is the

well-known Bell state which is a bipartite entangled state. Another well-known

entangled state we will see later in this thesis is the Greenberger-Horne-Zeilinger

(GHZ) state [19].

The simplest continuous variable entangled system is the TMSS we saw in sec-

tion 1.2. In analogy with Qbits, we call these a continuous-variable quantum

modes or Qmodes. In the limit of infinite squeezing, the TMSS can written as,

|TMSS 〉 =

∫ ∞
−∞
| q 〉1 | q 〉2 dq (1.52)

which is clearly not separable.

The quantum effects of superposition, entanglement and collapse of the wavefunc-

tion due to measurement can be applied together to get some drastic effects which

have no classical analogue. Some of the proposed applications include quantum

teleportation [20], quantum communication [21] and quantum computing [22].

Since most complex systems are made of lot of interacting systems, understanding

large scale entanglement allows us to study such complex behaviour [23]. At a

fundamental level entangled systems are highly non-classical and as such are a

very useful tool to study the quantum-classical transition and testing the validity

of quantum mechanics itself. We will not elaborate on these concepts as they are

beyond the scope of this thesis. We only note here that generation of entangled

systems, especially large multipartite entangled systems is an extremely active

area of research.

However, entanglement is extremely difficult to create and protect from environ-

mental decoherence. Qbits systems are most commonly used in entanglement ex-

periments since the theoretical framework of such systems is very well developed.

Qdits, or d-level systems, can be considered an extension of Qbits. However, the

theoretical protocols and their experimental proposals are not very well known

and are far behind Qbits today. Continuous variable systems are Qdits where d

goes to infinity.

Continuous-variable (CV) entanglement is a highly interesting and active field

because it provides a new outlook on quantum information, offers rich perspec-

tives such as massive scalability potential [24, 25, 26, 27], and can rely on the

mature quantum optical experimental techniques of squeezed-state generation.
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In particular, our group and collaborators have discovered [25, 28] and begun

to demonstrate [26] massively scalable continuous-variable cluster entanglement

in the quantum optical frequency comb, which opens up opportunities towards

generating macroscopic entangled states. Such states are a big step towards mea-

surement based quantum computing, a computing protocol which requires the

generation of highly entangled cluster states as a resources and measurement op-

erations to perform computations.

However there is a downside to using continuous variable systems. Real squeezed

states are “approximate” entangled states, meaning that finitely squeezed states

are an approximation to the maximally entangled states in the limit r → ∞.

Numerous works have found that this represents a fundamental “no-go” for all-

Gaussian (in terms of the Wigner function) key quantum processes such as Bell

inequality violation [17], entanglement distillation [29], and quantum error correc-

tion [30].

Considerable progress has been made recently towards tackling this problem. The

solutions require either non-Gaussian measurements/gates on Gaussian states [31]

or Gaussian gates on non-Gaussian states. Much research has focused on genera-

tion of non-Gaussian states [32, 33, 34, 35]. Generation of such states with high

purity is very difficult and therefore the most feasible protocols use some form of

distillation to get high quality states out of a large pool of low quality states [36].

Here we explore the former approach by first casting Gaussian states as effective

spins, by use of the Schwinger representation [37]. Spin measurements will then

coincide with photon-number-resolving measurements [3], which are known to be

non-Gaussian measurements [38]. To the best of our knowledge, no clear pro-

tocol exists yet that uses simple photon number measurements to perform error

correction of Gaussian states but it should, in principle, be possible.

Another goal is to ascertain whether the Schwinger representation would be a

possible bridge from massively scalable Gaussian entanglement to massively scal-

able spin entanglement and, possibly, quantum simulation [23] of entangled spin

lattices.

In section 1.5 we review the Schwinger representation, a. k. a. the quantum

Poincaré sphere, or quantum Stokes parametrization, and illustrate its physical

significance.
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1.5 Schwinger representation

1.5.1 Mathematical formulation

In the Schwinger representation, two bosonic fields, say of annihilation operators

a1 and a2, are used to define an effective spin angular momentum ~J , as follows

Jx =
1

2

(
a†1a2 + a1a

†
2

)
(1.53)

Jy =
1

2i

(
a†1a2 − a1a

†
2

)
(1.54)

Jz =
1

2

(
a†1a1 − a†2a2

)
, (1.55)

which can easily be shown to obey the canonical commutation relations of an

angular momentum. The spin ladder operators are

J+ = Jx + iJy = a†1a2 (1.56)

J− = Jx − iJy = a1a
†
2. (1.57)

Finally the spin magnitude is

J2 = J2
x + J2

y + J2
z =

a†1a1 + a†2a2

2

(a†1a1 + a†2a2

2
+ 1
)

(1.58)

and can be shown to be a scalar operator—consistent with the total energy of the

two modes of the electromagnetic field. This leads us to the physical significance

of this mathematical representation.

1.5.2 Physical meaning

As just remarked, J2 represents the total energy of the two-mode field. This begets

the adoption of the Fock basis |n1 〉1 |n2 〉2. Indeed, consider the action of the J2

and Jz operators of a two-mode number state, using Eq. (1.55) and Eq. (1.58):

J2 |n1 〉1 |n2 〉2 =
n1 + n2

2

(n1 + n2

2
+ 1
)
|n1 〉1 |n2 〉2 (1.59)

Jz |n1 〉1 |n2 〉2 =
n1 − n2

2
|n1 〉1 |n2 〉2 . (1.60)
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This proves that the two-mode Fock states are the spin eigenstates | jm 〉, with

j =
n1 + n2

2
(1.61)

m =
n1 − n2

2
. (1.62)

Hence the spin magnitude is the total photon number and the z-component of the

spin is the photon number difference. The other two components of this effective

spin are equally meaningful: Eqs. (1.53-1.54) clearly show that Jx,y are interference

terms of fields 1 and 2, respectively in phase and in quadrature.

Note that in this paper we will often use interchangeably for the total photon

number and spin magnitude operators the SU(2) Casimir operator

J0 =
1

2
(a†1a1 + a†2a2), (1.63)

whose eigenvalue is j and which verifies J2 = J0(J0 + 1).

From these considerations, we easily deduce that measurements of the effective

spin along any direction can then be made using variable beamsplitters and photon

number resolving detection [39, 40, 41], as depicted in Fig. 1.7.

The detected fields are

b1 = a1 cos
θ

2
+ a2 e

−iφ sin
θ

2
(1.64)

b2 = −a1 sin
θ

2
+ a2 e

−iφ cos
θ

2
(1.65)

and the corresponding photon numbers are

b†1b1 = N1 cos2 θ

2
+N2 sin2 θ

2

+ (a†1a2 e
−iφ + a1a

†
2 e

iφ) cos
θ

2
sin

θ

2
(1.66)

b†2b2 = N1 sin2 θ

2
+N2 cos2 θ

2

− (a†1a2 e
−iφ + a1a

†
2 e

iφ) cos
θ

2
sin

θ

2
(1.67)

so that

N+ = b†1b1 + b†2b2 =
1

2
(N1 +N2) = J0 (1.68)
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b₁ 

a₁ 

PBS 

HWP  
(θ/4) 

Phase 
Shift ϕ 

± J² 
J θ,ϕ 

PNRD1 

a₂ 

PNRD2 
b₂ 

PBS 

Figure 1.7: Arbitrary spin measurements (along direction (θ, φ)) can be per-
formed with a phase shift φ, two polarizing beamsplitters (PBS), a halfwave
plate (HWP) whose axes are at θ/4 rad from the PBSs, and two photon-number-
resolving detectors (PNRD1,2).

and

N− = b†1b1 − b†2b2

=
N1 −N2

2
cos θ +

a†1a2 e
−iφ + a1a2

† eiφ

2
sin θ

= Jz cos θ + (Jx cosφ+ Jy sinφ) sin θ (1.69)

which prescribes how to set the half-wave plate θ and the phase shift φ to measure

any component of the spin, together with its magnitude.

1.5.3 Previous work

The Schwinger representation has been widely used over the years, starting from

the group theoretical modeling of interferometers by Yurke et al. in 1986 [39].

In 2002, Bowen et al. experimentally demonstrated single-spin squeezing from

two-mode squeezed light [42].
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In 2005, C. Gerry and J. Albert proposed using a beamsplitter with a Fock state in-

put to violate Bell inequality using the Holstein-Primakoff spin representation [43].

In this representation, single-mode Fock states correspond to Jz eigenstates (as op-

posed to the two Qmodes in the Schwinger representation), the vacuum state |0〉
corresponds to the |j,−j〉 state, and |n〉 to |j,−j + n〉. The photon number anti-

correlation between the two output Qmodes of a beamsplitter can then be written

as an entangled spin system.

In 2011, Evans and Pfister used an original proposal by Drummond and Reid [44,

45] to show theoretically [41] that entangled spins could be used to violate the Mer-

min inequality [46]. This proposal uses the photon correlation in the two-mode

squeezed state produced by parametric down-conversion (PDC) in an optical para-

metric amplifier (OPA) to create perfectly entangled spins of arbitrary magnitude.

Indeed, two independent OPAs (labeled 1 and 2) emit a tensor product of TMSS

(or EPR) states state [47],

∣∣EPR2
〉

=
∞∑

n1=0

tanhn1 r1

cosh r1

|n1 〉A1 |n1 〉B1 ⊗
∞∑

n2=0

tanhn2 r2

cosh r2

|n2 〉A2 |n2 〉B2 , (1.70)

which can be rewritten in the Schwinger representation of spins A (A1,A2) and B

(B1,B2), to a local optical phase shift left and assuming equal squeezing param-

eters r1 = r2 = r, as a superposition of maximally entangled states of zero total

spin: ∣∣EPR2
〉

=
∞∑
j=0

tanh2j r

cosh2 r

j∑
m=−j

(−1)j−m | j,m 〉A | j,−m 〉B (1.71)

where j = (n1 + n2)/2 as before. Note that the recasting of Eq. (1.70) as spin

eigenstates features a rather remarkable property: the entanglement amount, ini-

tially quantified by the squeezing parameter in the EPR state of Eq. (1.70), be-

comes independent of r when the entangled part of the state is expressed as an

SU(2) eigenstate in Eq. (1.71), as can be clearly seen from its rightmost sum. In

Eq. (1.71), the squeezing parameter r only conditions the probability of observing

a particular spin magnitude j, not the degree of entanglement. For each and ev-

ery value of j, the entanglement is maximal and independent of r! This requires,

however, projecting Eq. (1.71) into a single value of j, for example by a (preferably

non-destructive) measurement of the total photon number.

The aforementioned bipartite entanglement property provides us with a strong

motivation for investigating connections between Gaussian and spin entanglement
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in the multipartite case.

1.6 Summary

In summary, we have laid out the foundation and motivation of this thesis. We

have explained the motivation behind finding a way to use continuous variable

entanglement to simulate entanglement in discrete systems.

In chapter 2, we detail our results towards finding such a system using multimode

squeezed states that can be commonly generated in the lab. We have also explained

the significance of Wigner function in characterizing quantum states.

In chapter 3, we detail the experiment we performed to demonstrate, for the first

time, the direct detection of the Wigner function using photon number resolving

detection.

We then conclude in chapter 4.



Chapter 2

From Light to Spins

2.1 Introduction

Here we detail the work done on the correspondence of multimode squeezed states

and entangled Schwinger spin states. This work was published in Physics Review

A in January 2014 [48].

In section 2.2 we look at the theoretical methods that allow us to find spin op-

erators that are constants of motion of the squeezing Hamiltonian and can be

used to define the states that they necessarily nullify. We then reëxamine the

example of bipartite spin entanglement using two EPR pairs. In section 2.3, we

extend the results of our systematic derivations of the spin nullifiers to twin tri-

and quadripartite CV states. In section 2.4, we make use of these results to derive

the corresponding spin states in these cases, and examine their entanglement.

2.1.1 Stabilizers and Nullifiers

Studying quantum entanglement is easier through the use of the stabilizer formal-

ism. A stabilizer of a state is an operator for which the state is an eigenstate

with eigenvalue 1. A nullifier of a state is an operator for which the state is an

eigenstate with eigenvalue 0. Therefore if St is a stabilizer and Nu a nullifier of

29
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state |ψ 〉 then,

St |ψ 〉 = |ψ 〉

Nu |ψ 〉 = 0 |ψ 〉 (2.1)

Naturally for every nullifier Nu, there is an operator eNu which is a stabilizer.

Similarly for every stabilizer St, ln (St) is a nullifier.

To use the stabilizer formalism effectively, we have to use the Heisenberg picture.

In the Heisenberg picture, instead of studying the evolution of the quantum states,

we study the evolution of operators instead. We have already encountered the two

mode squeezed state (TMSS) in equation 1.42

|TMSS 〉12 =
1

cosh2 r

∞∑
n=0

tanhn r |n 〉1 |n 〉2

where r = κt. We can write the squeezing evolution in the Schrödinger picture as

|TMSS 〉out = S12(r) | 0 〉in . (2.2)

Alternatively in the Heisenberg picture, we look at the evolution of, say, an arbi-

trary operator M,

〈TMSS |M |TMSS 〉out = 〈 0 |S†12(r) M S12(r) | 0 〉in
= 〈 0 | M̃ | 0 〉in

=⇒ M̃out = S†12(r) Min S12(r) (2.3)

Therefore to evaluate the behaviour of the TMSS state, we can look at the evolu-

tion of the four two mode operators

S†12(r) (P1 + P2) S12(r) = (P1 + P2) e−r

S†12(r) (Q1 −Q2) S12(r) = (Q1 −Q2) e−r

S†12(r) (P1 + P2) S12(r) = (P1 − P2) er

S†12(r) (Q1 −Q2) S12(r) = (Q1 +Q2) er. (2.4)

Knowing the initial state and the above transformation uniquely identifies the evo-

lution and the behaviour of the final state. Thus we can study the measurement

results of the final state using the evolution of operators instead of evolution of the
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states. The Heisenberg picture and the Schrödinger picture are completely equiv-

alent, however the Heisenberg picture is often much easier to evaluate, especially

in quantum optics.

Finally, in the limit of infinite squeezing r →∞, we have

(P1 + P2)out = e−r(P1 + P2)in → 0

(Q1 −Q2)out = e−r(Q1 −Q2)in → 0. (2.5)

Therefore (P1 + P2)in and (Q1 −Q2)in are the nullifiers of the infinitely squeezed

TMSS.

These squeezed operators are also the variance-based entanglement witnesses [49]

of the state, i.e measuring this operator can tell us whether the state is entan-

gled. This Heisenberg picture for defining CV entangled states is therefore a

direct analog of the stabilizer formalism used to describe Qbit entanglement [50],

and these squeezed (and antisqueezed) Qmodes provide a good starting point for

understanding the relationship between CV- and spin entanglement.

In the analysis that follows we will be extensively using the Heisenberg picture.

We will attempt to characterize and gain information about the states by studying

their nullifiers. Deriving the full Schrödinger state of the state for multipartite is

extremely involved as can be seen in more detail in Appendix A. Using nullifiers

to study the state is a way to simplify this process. Another motivation to use

nullifiers is to find cluster states [51, 52, 8] that can be used in quantum computing

and quantum information where stabilizer formalism is most useful. We believe

our method is instructive and demonstrates a promising direction of research into

the correspondence between spins and squeezed states.

2.2 Squeezed states to Spins : Bipartite case

2.2.1 Nullifiers, stabilizers and constants of the motion

We write the complete basis of the quadrature operators for n quantum modes

(“Qmodes”) as a vector (Q,P )T where Q = (Q1, ..., Qn), P = (P1, ..., Pn). We use
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multimode quadratic squeezing Hamiltonians of the form

H = i~κ
∑
j,k

(a†jGjka
†
k − ajGjkak)

=
~κ
2

(QTGP + P TGQ), (2.6)

where κ > 0 and G is the H(amiltonian)-graph adjacency matrix [53, 54], whose

0 and 1 entries inform on which Qmodes of the field are subjected to a two-mode

squeezing interaction. We can find the evolution of the operator vector under the

action of this Hamitonian. From the physical point of view, diagonalizing G solves

the Heisenberg-equation system [24]

Q̇ = κGQ (2.7)

Ṗ = −κGP. (2.8)

From the mathematical, graph theoretical point of view, diagonalizing G yields

the spectrum of the H-graph. Let GD be the diagonal form of G and M the

diagonalization matrix, then

G = M−1GDM (2.9)

and the “eigenoperators” Q′ = MQ and P ′ = MP of course verify

Q̇′ = κGDQ
′ (2.10)

Ṗ ′ = −κGDP
′ (2.11)

which leads to the familiar result that the negative eigenvalues of G imply

amplitude-quadrature squeezing

Q′j(t) = Q′j(0) e−|GDjj |r, (2.12)

where r = κt is the squeezing parameter, and that the positive eigenvalues imply

phase-quadrature squeezing

P ′k(t) = P ′k(0) e−GDkkr. (2.13)

(Keep in mind that these primed Qmodes are linear superposition of the initial

Qmodes (Q,P )T ). In the limit r � 1, the system evolves into a simultaneous



From Light to Spins 33

eigenstate of all the squeezed Qmodes, with eigenvalue 0. These are then the

nullifiers of the state.

Note finally that a zero eigenvalue of GD implies that the corresponding Qmode is

neither squeezed not antisqueezed, i.e. it commutes with the squeezing Hamilto-

nian and is a constant of the motion. The measurement noise of quantum optical

constants of the motion is therefore simply the vacuum (or “shot”) noise level

when they evolve from an initial vacuum state.

2.2.2 Quantum evolution of Schwinger spin operators

We return now to the Schwinger representation. Since all Schwinger spin operators

are quadratic in field operators, we can form the time-evolved spins out the CV

operators above. Therefore using the Heisenberg representation we can find the

time-evolved spin operators. Of particular interest to us, in analogy with the Qbit

stabilizer formalism, are the spin nullifiers.

Rewriting Eqs. (1.53-1.55) in terms of quadratures, we get

Jx = Q1Q2 + P1P2 (2.14)

Jy = Q1P2 − P1Q2 (2.15)

Jz =
1

2

(
Q2

1 + P 2
1 −Q2

2 − P 2
2

)
, (2.16)

Now if we consider the set of all linear Qmode operators as either squeezed or

anti-squeezed operators, we see that we can make 2 types of spin nullifiers.

The first type is formed by a product of two squeezed Qmodes. These will be

perfect nullifiers in the limit of infinite squeezing.

The second type, however, is independent of the squeezing and is formed prod-

ucts of one squeezed and one anti-squeezed operator. If the squeezing strengths

are equal, which we’ll assume throughout the rest of the paper, then these field-

quadratic operators are constants of the motion. Moreover, if these products are

normally ordered, then they nullify the initial vacuum state by virtue of a | 0 〉 = 0

and, being constants of the motion, they will also nullify the final state of the mul-

timode squeezing Hamiltonian, whatever the value of the squeezing parameter.
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It so happens that all Schwinger spin operators defined by Eqs. (1.53-1.55) and

Eqs. (2.14-2.16) nullify the vacuum state. Therefore we can find all spin nullifiers

of any Schwinger state by systematically taking all the normally ordered products

of squeezed and anti-squeezed quadratures, given by Eqs. (2.14-2.16). Again, even

though these nullifiers are constructed out of squeezed and anti-squeezed operators,

they will be nullifiers independent of the squeezing parameter r.

Let’s illustrate the above concepts in the familiar case of two 2-mode EPR pairs

coupled to form two entangled spins (Fig. 2.1), as already evoked in the Schrödinger

picture in Eqs. (1.70-1.71). The Hamiltonian for this system is

a₂

a₄

a₁

a₃

S₂4S₁3

Figure 2.1: Two sets of 2-mode squeezed states, 1-2 and 3-4, can be viewed
through the Schwinger representation as 2 effective spins (blue ellipses). The
black dots represent Qmodes and the red edges denote the non-zero Gjk terms
in the squeezing Hamiltonian.

H = i~κ(a†1a
†
2 + a†3a

†
4 − a1a2 − a3a4) (2.17)

= ~κ(Q1P2 + P1Q2 +Q3P4 + P3Q4) (2.18)

=
~κ
2

(QTGP + P TGQ) (2.19)

where

G =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (2.20)

which is the adjacency matrix of the H-graph of the state in Fig. 2.1 (red edges).

In later examples, we shall only use the H-graph to represent the Hamiltonian



From Light to Spins 35

instead of the G matrix. As we outlined above, we now diagonalize G yielding

GD =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 , M =


1 1 0 0

−1 1 0 0

0 0 1 1

0 0 −1 1

 . (2.21)

Therefore, we have

Q′1,2(t) = Q1(t)±Q2(t) = (Q1 ±Q2)e±r (2.22)

P ′1,2(t) = P1(t)± P2(t) = (P1 ± P2)e∓r (2.23)

Q′3,4(t) = Q3(t)±Q4(t) = (Q3 ±Q4)e±r (2.24)

P ′3,4(t) = P3(t)± P4(t) = (P3 ± P4)e∓r. (2.25)

We get 8 linearly independent operators that can be constructed out of the com-

binations of the original 8 quadrature operators, 4 squeezed, and 4 anti-squeezed.

Now using products of one squeezed and one anti-squeezed operator, we can get

4× 4 = 16 linearly independent quadratic (spin) constants of the motion.

Out of these, only 6 can be defined according to Eqs. (2.14-2.16). As pointed

out above, all Schwinger operators are nullifiers of the initial vacuum state, there-

fore any that are also constants of motion of the squeezing transformation are

squeezing-independent spin nullifiers for the final state as well. (We will be using

a vacuum initial state for the rest of the thesis as well.) These are

(P1 + P2)(P1 − P2) + (Q1 +Q2)(Q1 −Q2) + (P3 + P4)(P3 − P4)

+ (Q3 +Q4)(Q3 −Q4) = 4(J013 − J024) = 0 (2.26)

(P1 + P2)(P1 − P2) + (Q1 +Q2)(Q1 −Q2)− (P3 + P4)(P3 − P4)

− (Q3 +Q4)(Q3 −Q4) = 4(Jz13 − Jz24) = 0 (2.27)

(P1 + P2)(P3 − P4) + (P1 − P2)(P3 + P4) + (Q1 +Q2)(Q3 −Q4)

+ (Q1 −Q2)(Q3 +Q4) = 4(Jx13 − Jx24) = 0 (2.28)

(P1 + P2)(Q3 +Q4) + (P1 − P2)(Q3 −Q4)− (Q1 +Q2)(P3 + P4)

− (Q1 −Q2)(P3 − P4) = 4(Jy13 + Jy24) = 0 (2.29)

which correspond to the spin definition of Fig. 2.1.
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It can be verified that their eigenstate does indeed have the form of Eq. (1.71)—

with the proper Qmode-labeling conventions, and to local optical phase shifts

left [41]. Indeed, the 4 nullifiers can then be written as Jk = Jk13 + Jk42 ∀k ∈
{x, y, z} and J013 − J042. Therefore, the final state is an eigenstate of total spin

along x,y and z with eigenvalue zero, which corresponds to the total spin-zero state

of Eq. (1.71).

The last two spin nullifiers are

(P1 + P2)(P3 − P4)− (P1 − P2)(P3 + P4) + (Q1 +Q2)(Q3 −Q4)

− (Q1 −Q2)(Q3 +Q4) = 4(Jx23 − Jx14) = 0 (2.30)

(P1 + P2)(Q3 +Q4)− (P1 − P2)(Q3 −Q4)− (Q1 +Q2)(P3 + P4)

+ (Q1 −Q2)(P3 − P4) = 4(Jy23 + Jy14) = 0 (2.31)

However, these operators pertain to spin pairings that are different from Fig. 2.1,

gathering Qmodes 1-4 and 2-3 instead of 1-3 and 2-4. We can easily check that

if we did use this spin definition, we can again define the final state as a total

spin-zero state. This is an expected result since an EPR pair is symmetric about

the exchange of the two modes.

The remaining 10 constants of motion cannot be written as Schwinger spin oper-

ators of the form Eqs. (2.14-2.16). We list them here,

a2
1 − a2

2 + a†21 − a
†2
2 , a2

3 − a2
4 + a†23 − a

†2
4 ,

a2
1 + a2

2 − a
†2
1 − a

†2
2 , a2

3 + a2
4 − a

†2
3 − a

†2
4 ,

a3a2 − a†4a
†
1, a4a1 − a†2a

†
3, a4a2 − a†3a

†
1,

a3a1 − a†4a
†
2, a1a2 − a†2a

†
1, a3a4 − a†4a

†
4.

These are not normally ordered, i.e. they contain photon-number non-conserving

operators such as aa + a†a†. Therefore these operators, even though constants of

the motion, are not nullifiers since they do not nullify the initial vacuum state.

Similarly we can also check if any of the squeezed quadratic operators such as (P1+

P2)(Q1−Q2) form spin operators that would not be constants of motion but would

be nullifiers in the limit r � 1. However, we found that all the remaining possible

spin operators are linear combinations of squeezed and anti-squeezed operators

and are therefore not nullifiers.



From Light to Spins 37

The next step is to apply this approach to more complicated CV multipartite

entangled states. At this point, we must make clear that, even though we do

conduct a systematic search for state nullifiers, we have left out (for now) the far-

reaching considerations of Qdit-stabilizer groups and cluster-state definition and

characterization, narrowing our scope to simply determining whether (and how)

multipartite-entangled CV states can be mapped onto multipartite-entangled spin

states.

We will show that this method of characterizing the spin state generated by a given

quadratic Hamiltonian is analytically easy, especially since methods for finding

CV squeezed and anti-squeezed operators are well known. Moreover, the converse

process of finding a Hamiltonian to generate any desired spin state is non-trivial,

thus our approach may be quite beneficial if interesting spin states are found. Here

we shall only focus on the study of states with up to 4 spins, out of multipartite

CV states which have been realized experimentally.

2.3 Multipartite spin nullifiers

We now turn to the casting of CV multipartite entangled states into spin states and

investigating the entanglement of the latter. We naturally start with the simplest

non-trivial examples of tripartite and quadripartite [53, 26] CV graph states.

2.3.1 Three-spin systems

By analogy with Fig. 2.1, we choose to examine the twin three-Qmode arrange-

ments illustrated in Figs. 2.2 and 2.3: we can have a chain with 2 interactions, say

1-2 and 2-3, or we can have a triangle with 3 interactions, 1-2, 2-3 and 3-1. The

CV nullifiers for the two systems will be different and hence the spin operators

and constants of motion are expected to be different as well.
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Figure 2.2: Two sets of 3 Qmodes, 1-3 and 4-6, cast as 3 effective spins (blue
ellipses).

2.3.1.1 Three-Qmode chain

We can easily find the spin constants of motion of the state of Fig. 2.2 using the

methods developed above. The CV nullifiers are readily obtained

Q′2(r) = (Q1 −
√

2Q2 +Q3) e−
√

2r (2.32)

P ′1(r) = (P1 +
√

2P2 + P3) e−
√

2r (2.33)

Q′5(r) = (Q4 −
√

2Q5 +Q6) e−
√

2r (2.34)

P ′4(r) = (P4 +
√

2P5 + P6) e−
√

2r (2.35)

from which we find that there are 10 spin constants of motion

J014 + J036 − J025 + 1 = 0 (2.36)

Jz14 + Jz36 − Jz25 = 0 (2.37)

Jx14 + Jx36 − Jx25 = 0 (2.38)

Jy14 + Jy36 + Jy25 = 0 (2.39)

Jx16 + Jx34 − Jx25 = 0 (2.40)

Jy16 + Jy34 + Jy25 = 0 (2.41)

Jx15 + Jx35 − Jx24 − Jx26 = 0 (2.42)

Jy15 + Jy35 + Jy24 + Jy26 = 0 (2.43)

J014 + J036 − Jx13 − Jx46 + 1 = 0 (2.44)

Jz14 + Jz36 − Jx13 + Jx46 = 0 (2.45)

The existence of operators which mix different spin definitions is something we see

again in this case. While a non-trivial property, it is not consistent with the spin

definitions adopted in Fig. 2.2. It is not entirely clear how these nullfiers can be



From Light to Spins 39

used beyond the information they give us about the exchange symmetries of the

modes, for example in this system, modes 4 and 6, and mode 1 and 3 are symmetric

and can be interchanged. In our paper and in this thesis, we will only consider

operators that conform to one specific definition of spins, in this case 1-4, 2-5, 3-6,

as in Fig. 2.2. The 4 spin nullifiers in this case are given in Eqs. (2.36-2.39).

Another interesting point is that the number of nullifiers obeying a spin definition

criteria has not increased, even though we added one spin.

2.3.1.2 Thee-Qmode ring: CVGHZ state

It is well known that a complete H-graph will yield a GHZ state [24]. We are

therefore naturally curious about the spin state of Fig. 2.3. The CVGHZ nullifiers

a₂

a₄

a₁ a₃

S₂₅S₁₄ S₃₆

a₆ a₅

Figure 2.3: Two sets of 3 Qmodes, 1-3 and 4-6, as 3 effective spins (blue
ellipses).

are well known [55, 24]:

P ′1(r) = (P1 + P2 + P3) e−2r (2.46)

Q′2(r) = (Q1 −Q2) e−r (2.47)

Q′3(r) = (Q2 −Q3) e−r (2.48)

P ′4(r) = (P4 + P5 + P6) e−2r (2.49)

Q′5(r) = (Q4 −Q5) e−r (2.50)

Q′6(r) = (Q5 −Q6) e−r (2.51)
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and from these we find the spin constants of motion of this system to be

Jy12 + Jy23 + Jy31 = 0 (2.52)

Jy45 + Jy56 + Jy64 = 0 (2.53)

Jy16 − Jy14 + Jy24 − Jy26 = 0 (2.54)

Jy15 − Jy14 + Jy34 − Jy35 = 0 (2.55)

Jy15 − Jy14 + Jy24 − Jy25 = 0 (2.56)

Jy16 − Jy14 + Jy34 − Jy36 = 0 (2.57)

Jy14 + Jy15 + Jy16 + Jy24

+Jy25 + Jy26 + Jy34 + Jy35 + Jy36 = 0 (2.58)

Interestingly enough, none of the above nullifiers is consistent with the non-

overlapping spin pairings in the spin definitions of Fig. 2.3! Therefore it becomes

difficult to conceive of merely characterizing a three-spin system, let alone quan-

tifying any spin entanglement, from these operators. (Recall that each spin cor-

respond to a well-defined Qmode pair on which interference and photon-number

measurements are made.) This particular arrangement of Qmodes in Fig. 2.3 thus

seems to thoroughly defeat our approach, an interesting conclusion that stems

solely from the Heisenberg viewpoint. Such is not the case, however, for the spin

graph of Fig. 2.2. Before we investigate the spin state associated with it, we derive

the spin nullifiers for some 4-spin cases.

2.3.2 Four-spin systems

2.3.2.1 Four-Qmode chain and ring CV states

We will not treat the 4-Qmode chain and the ring separately as these two are spe-

cific cases of a more general CV cluster state [51], as we first recall. (Note that it is

the complete H-graph, not the ring H-graph, that gives a CVGHZ state. As is well

known, these are the same for up to tripartite entanglement but become different

for quadripartite and larger systems.) All the cases are depicted in Fig. 2.7.

The Hamiltonian for the 4-Qmode chain [Fig. 2.7(a)] is

H(0) = i~κ(a†1a
†
2 + a†2a

†
3 + a†3a

†
4) +H.c. (2.59)
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Figure 2.4: Chain H-graph, square cluster state, H(0)
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Figure 2.5: Square H-graph, square cluster state, H(1)
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Figure 2.6: Ring H-graph, H(2)

Figure 2.7: The 4-mode Hamiltonians studied in this paper. The green edges
denote a change sign in the corresponding two-mode squeezing term with respect
to the red edges.

and was implemented in our laboratory [26] and shown to generate a quadripartite

entangled CV cluster state, of nullifiers

Q′3(r) =
[
(Q1 −Q4) + Φ (Q3 −Q2)

]
e−rΦ (2.60)

P ′1(r) =
[
(P1 + P4) + Φ (P3 + P2)

]
e−rΦ (2.61)

Q′2(r) =
[
Φ (Q1 +Q4)− (Q3 +Q2)

]
e−

r
Φ (2.62)

P ′4(r) =
[
Φ (P1 − P4)− (P3 − P2)

]
e−

r
Φ (2.63)

where Φ = (
√

5 + 1)/2 is the golden ratio. These nullifiers can be shown to be
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equivalent, in the limit r � 1 and to local optical phase shifts left, to the nullifiers

of a ring (or “square”) Qmode cluster-state [26]. Note also that a more general

description of CV graph states in the presence of finite squeezing has since been

expounded [56, 57].

However, a Qmode square cluster state can also be generated by the Hamiltonian

of Fig. 2.7(b) [53, 26]

H(1) = i~κ(a†1a
†
2 + a†2a

†
3 + a†3a

†
4 − a

†
4a
†
1) +H.c. (2.64)

The solutions of the Heisenberg equations of motion for Eq. (2.64) are

Q′2(r) =
(
Q1 +Q2 −

√
2 Q4

)
e−r
√

2 (2.65)

Q′3(r) =
(
Q1 −Q2 +

√
2 Q3

)
e−r
√

2 (2.66)

P ′1(r) =
(
P1 + P2 +

√
2 P4

)
e−r
√

2 (2.67)

P ′4(r) =
(
P1 − P2 −

√
2 P3

)
e−r
√

2. (2.68)

Like Eqs. (2.60-2.63), these squeezed operators exactly coincide with the same

nullifiers of a square cluster state, to local phase shifts left and in the limit r � 1.

Finally, we consider the Hamiltonian of Fig. 2.7(c), which can be viewed as a

two-mode squeezed state, each Qmode of which (1,2) being mixed with a vacuum

mode (3,4) on a balanced beamsplitter. The resulting 4-Qmode Hamiltonian is

H(2) = U †13U
†
24(i~κa†1a

†
2 +H.c)U13U24

=
i~κ
2

(a†1 + a†3)(a†2 + a†4) +H.c.

=
i~κ
2

(a†1a
†
2 + a†3a

†
4 + a†3a

†
2 + a†1a

†
4) +H.c. (2.69)

where Ukl = exp[−π
4
(a†kal + a†lak)].

It is important to note that H(0), H(1) and H(2) only differ in the term of the 1-4

interaction, which is respectively zero [Eq. (2.59)], of opposite sign [Eq. (2.64)],

and of the same sign [Eq. (2.69)] as the other terms, as is also clear from Fig. 2.7.

In H(0), the 1-4 interaction is absent. In H(1), the relative sign difference cor-

responds to having 3 non-linear parametric downconverting interactions and 1

upconverting interaction, while in H(2) all 4 interactions are downconverting ones.
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We will see soon that the photon number correlations are similar in the 3 Hamil-

tonians, however, the field correlations are different. As a result, while H(0) and

H(1) make quadripartite CV cluster states, H(2) does not.

To describe all cases of Fig. 2.7 in the most general fashion, we therefore consider

the following 8-mode Hamiltonian

H1−4 = i~κ(G12a
†
1a
†
2 +G23a

†
2a
†
3

+G34a
†
3a
†
4 +G14a

†
4a
†
1) +H.c. (2.70)

H5−8 = i~κ(G56a
†
5a
†
6 +G67a

†
6a
†
7

+G78a
†
7a
†
8 +G58a

†
8a
†
5) +H.c. (2.71)

H1−8 = H1−4 +H5−8, (2.72)

where Gij = ±1, 0. We also decide, still in accord with Fig. 2.7, on the specific

choice of Qmode pairings such that the spins are made up of Qmode pairs (15),

(26), (37), and (48), only. We now derive the spin nullifiers that pertain to this

definition of spins.

Two constants of the motion can be deduced intuitively from inspection of the

two-photon emission processes in Eq. (2.70), where we can easily see that when

this Hamiltonian acts on the vacuum, pairs of photons are emitted or annihilated

that involve the Qmode pairs (12), (23), (34), and (41). From this we predict that

(N1 +N3)− (N2 +N4) = 0, (2.73)

which can be proven easily:

[N1 +N3 −N2 −N4, H] = [N1 +N3, H]− [N2 +N4, H]

= H −H = 0, (2.74)

hence the operator N1 + N3 − N2 − N4 is a constant of the motion. Since this

operator is a nullifier of initial (vacuum) state, it also nullifies the final state. The

same holds for Eq. (2.71), with

(N5 +N7)− (N6 +N8) = 0. (2.75)
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Considering now the total Hamiltonian of Eq. (2.72), we deduce the following two

nullifiers

(N1 +N3 −N2 −N4) + (N5 +N7 −N6 −N8)

= (J015 + J037)− (J026 + J048) = 0 (2.76)

(N1 +N3 −N2 −N4)− (N5 +N7 −N6 −N8)

= (Jz15 + Jz37)− (Jz26 + Jz48) = 0, (2.77)

which can also be derived from products of squeezed and antisqueezed linear op-

erators.

It is reasonable to take all the H-graphs paired to make spin graphs in Fig. 2.7

identical, as is implicit in Figs. 2.1 and 2.7. From this we can find the following

two nullifiers

(Jx15 + Jx37)− (Jx26 + Jx48) = 0 (2.78)

(Jy15 + Jy37) + (Jy26 + Jy48) = 0. (2.79)

This again can be easily verified, e.g., for the former,

[Jx15 + Jx37 − Jx26 − Jx48, H1−8]

= i~κ[G12a
†
5a
†
2 +G34a

†
7a
†
4 +G23a

†
7a
†
2 +G14a

†
5a
†
4

−G12a
†
1a
†
6 −G34a

†
3a
†
8 −G23a

†
3a
†
6 −G14a

†
1a
†
8

− (G56a
†
5a
†
2 +G78a

†
7a
†
4 +G67a

†
7a
†
2 +G58a

†
5a
†
4

−G56a
†
1a
†
6 −G78a

†
3a
†
8 −G67a

†
3a
†
6 −G58a

†
1a
†
8)]

(2.80)

which is zero iff G12 = G56, G23 = G67, G34 = G78, and G14 = G58, i.e., iff the 1-4

H-graph is identical to the 5-8 H-graph. The commutation of Jy15+Jy37+Jy26+Jy48

with H follows similarly.

Note that no constraint has yet been placed on the relative interactions strengths

within a square, and these 4 nullifiers are therefore valid for all three Hamiltoni-

ans we discussed earlier. These nullifiers are also similar to the highly symmetric

ones we had for the two spins case. Finally, we have also shown, using the ex-

haustive approach outlined in section 2.2 and section 2.3 (finding squeezed and

antisqueezed operators and combining them to form operators that are invariant
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under the Hamiltonian), that there are no other nullifiers to be found pertaining to

these particular spin definitions, even though one can find 6 other SU(2) nullifiers

pertaining to different spin pairings.

We can make the 4 nullifiers more symmetric by inessential adjustments, namely by

exchanging the Qmodes in spins 26 and 48, which become 62 and 84 respectively,

and by optically phase-shifting Qmodes 6 and 8 by π, which yields the following

4 nullifiers

J0 = J015 + J037 − J062 − J084 = 0, (2.81)

Jz = Jz15 + Jz37 + Jz62 + Jz84 = 0, (2.82)

Jx = Jx15 + Jx37 + Jx62 + Jx84 = 0, (2.83)

Jy = Jy15 + Jy37 + Jy62 + Jy84 = 0. (2.84)

It is remarkable, and worth repeating here, that these nullifiers hold irrespective

of the relative signs of the interaction terms in the Hamiltonian of Eq. (2.72).

Moreover, Equations (2.82-2.84) define the components of a “total spin” ~J =

~J15 + ~J37 + ~J62 + ~J84. Indeed, we can show that

(i) [J0, Ji] = 0, ∀i = x, y, z.

(ii) [Jk, Jl] = εklmiJm, ∀k, l,m = x, y, z.

A few important points: because of (i), we can measure J0 simultaneously to any

component, as was already the case in Fig. 1.7. This means that not only are

Jz, Jx, Jy nullifiers of the state, they must also be nullifiers of any state that is

post-selected by a measurement of J0. Also, it is clear from Eqs. (2.82-2.84) that

for each value of J0, the state we seek must have zero total spin: |0, 0〉. These are

useful findings as we embark on finding the corresponding quantum spin state in

the next section. We first take a brief look at the four mode GHZ state.

2.3.2.2 Four-Qmode GHZ state

Before turning to the explicit expression of the spin states, we consider the same

GHZ construction as in section 2.3.1.2, illustrated in Fig. 2.8.
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Figure 2.8: Two 4-Qmode GHZ states, 1-4 and 5-8, paired as 4 Schwinger
spins (blue ellipses).

As mentioned earlier, the Hamiltonian is that of a complete H-graph

H(3) = i~κ
( ∑
i<j∈[1,4]

a†ia
†
j +

∑
i<j∈[5,8]

a†ia
†
j

)
+H.c. (2.85)

Following again the same procedure to find the nullifiers, we found, exactly as

in the 3-spin case in section 2.3.1.2, that there are no nullifiers that pertain the

specific 4-spin definitions of Fig. 2.8. All the spin constants of motion that we

derived mix pairings of Qmodes and therefore we cannot choose any definition of

spins for which any of these operators will be applicable.

2.4 Multipartite spin entanglement

We now turn to using the nullifiers that we have derived in the previous sections to

derive the analytic expression of the corresponding spin state, in order to attempt

to identify if these spin states are multipartite entangled and, if so, to attempt to

determine the nature of the entanglement.

2.4.1 Derivation of the spin state for Qbits

Writing the full state for all photon numbers, i.e., for all values of the spin magni-

tudes, is an arduous and tedious task that we will not present here (see Appendix

A). Here we will make use instead of the post-selection property mentioned at
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the end of section 2.3.2.1: indeed, we have shown that measuring the total pho-

ton number of each Qmode, i.e. the Casimir operator, or magnitude, of each spin

(j15, j62, j37, j84) is doable simultaneously with any other measurement of the

spin components. We therefore select the simplest interesting case of 4 Qbits, i.e.,

j15 = j37 = j62 = j84 = 1/2, which satisfies Eq. (2.81). Using this post-selected

substate we will prove simply that a multipartite entangled spin state is created

by the Hamiltonian of Eq. (2.69).

We can generate this state in the lab by decreasing the interaction strength such

that we can approximate the state as the truncated expansion of the propagator

on the vacuum. We do this for the Hamiltonian of Eq. (2.72) to get

|ψf 〉 = e−
i
~Ht |ψi 〉

= exp[r{(G12a
†
1a
†
2 +G23a

†
2a
†
3 +G34a

†
3a
†
4 +G14a

†
4a
†
1)−H.c.

+ (G12a
†
5a
†
6 +G23a

†
6a
†
7 +G34a

†
7a
†
8 +G14a

†
8a
†
5)−H.c.}] | 0 〉

= 1 + r(...)

+ r2(G12G34(a†1a
†
2a
†
3a
†
4 + a†1a

†
2a
†
7a
†
8 + a†5a

†
6a
†
3a
†
4 + a†5a

†
6a
†
7a
†
8)

+G23G14(a†1a
†
2a
†
3a
†
4 + a†1a

†
6a
†
7a
†
4 + a†5a

†
2a
†
3a
†
8 + a†5a

†
6a
†
7a
†
8)

+O(r3)] | 0 〉 (2.86)

We can then post-select, by measuring all 4 individual Casimir operators (Fig. 1.7)

and keeping only the terms that create 4 Qbits, i.e., create exactly one photon,

either in 1 or in 5, and the same for (26), (37), and (48). This yields

|ψf 〉 =[G12G34(a†1a
†
2a
†
3a
†
4 + a†1a

†
2a
†
7a
†
8 + a†5a

†
6a
†
3a
†
4 + a†5a

†
6a
†
7a
†
8)

+G23G14(a†1a
†
2a
†
3a
†
4 + a†1a

†
6a
†
7a
†
4 + a†5a

†
2a
†
3a
†
8 + a†5a

†
6a
†
7a
†
8)] | 0 〉

=a
(
| ↑〉15| ↑〉26| ↓〉37| ↓〉48 + | ↓〉15| ↓〉26| ↑〉37| ↑〉48

)
+ b
(
| ↑〉15| ↓〉26| ↓〉37| ↑〉48 + | ↓〉15| ↑〉26| ↑〉37| ↓〉48

)
+ (a+ b)

(
| ↑〉15| ↑〉26| ↑〉37| ↑〉48 + | ↓〉15| ↓〉26| ↓〉37| ↓〉48

)
(2.87)

where G12G34 = a and G23G14 = b. We now make the same single-mode unitary

operations as mentioned in the last section, considering spins 62 and 84 instead of

26 and 48 and phase-shifting Qmodes 6 and 8 by π, and get
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|ψf 〉 = a
(
| ↑〉15| ↓〉26| ↓〉37| ↑〉48 + | ↓〉15| ↑〉26| ↑〉37| ↓〉48

)
+ b
(
| ↑〉15| ↑〉26| ↓〉37| ↓〉48 + | ↓〉15| ↓〉26| ↑〉37| ↑〉48

)
− (a+ b)

(
| ↑〉15| ↓〉26| ↑〉37| ↓〉48 + | ↓〉15| ↑〉26| ↓〉37| ↑〉48

)
. (2.88)

We can check that this state satisfies all 4 nullifiers Eqs. (2.81-2.84) and is therefore

a total spin zero state. We can of course apply an overall normalization constraint

satisfying 2|a|2 + 2|b|2 + 2|a + b|2 = 1. For different instances of G, we will get

completely different states which may or may not be entangled spins.

2.4.2 Entanglement characterization

There is no commonly agreed metric of multipartite entanglement even for Qbits

although many candidates exist. Average von Neumann entropy, partial posi-

tive trace method, Schmidt decomposition are a few of the possible entanglement

metrics. There have been several attempts to compare the various entanglement

metrics and to characterize and find maximally entangled states [58]. We will not

attempt to compare the degree of entanglement of the states considered and will

simply observe whether they are factorisable or not.

It is interesting to explore the influence of the different flavors of Eq. (2.72) on the

created spin state.

To begin with, in the square cluster Hamiltonian H(1) of Eq. (2.64), we have

−G14 = G12 = G23 = G34, which implies a = −b and the state becomes

|ψ(1)
f 〉 =

(
| ↑〉15| ↓〉37 − | ↓〉15| ↑〉37

)
⊗
(
| ↑〉26| ↓〉48 − | ↓〉26| ↑〉48

)
, (2.89)

which is a product state of two spin-0 Bell pairs of Qbits. This state is pairwise

entangled but not quadripartite entangled. Remember H(1) makes a quadripartite

entangled CV cluster state. Therefore Schwinger-pairing 2 quadripartite entangled

Qmode square cluster states does not necessarily give us a quadripartite spin

entangled state.
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However, the situation changes when we consider Hamiltonian H(2) of Eq. (2.69),

which does not itself make a CV cluster state. There we have G14 = G12 = G23 =

G34, which implies a = b, and

|ψ(2)
f 〉 =

1

2
√

3

[
| ↑〉15| ↑〉26| ↓〉37| ↓〉48 + | ↓〉15| ↓〉26| ↑〉37| ↑〉48

+ | ↑〉15| ↓〉26| ↑〉37| ↓〉48 + | ↓〉15| ↑〉26| ↓〉37| ↑〉48

− 2
(
| ↑〉15| ↓〉26| ↓〉37| ↑〉48 + | ↓〉15| ↑〉26| ↑〉37| ↓〉48

)]
, (2.90)

which is a genuinely quadripartite entangled state. We notice that this state closely

resembles the well-known Dicke state [59]

|D〉 =
1√
6

(
| ↑〉15| ↑〉26| ↓〉37| ↓〉48 + | ↓〉15| ↓〉26| ↑〉37| ↑〉48

+ | ↑〉15| ↓〉26| ↑〉37| ↓〉48 + | ↓〉15| ↑〉26| ↓〉37| ↑〉48

+ | ↑〉15| ↓〉26| ↓〉37| ↑〉48 + | ↓〉15| ↑〉26| ↑〉37| ↓〉48

)
(2.91)

and shares many of its properties. Indeed, while the Dicke state is |j = 2,m = 0〉
for the total spin, this state is |j = 0,m = 0〉. Moreover, projecting one spin

in the Jz basis, gives us an entangled state, similar to Dicke states. Projecting

then another spin results in a bipartite entangled state with the probability 2/3.

Therefore |ψ(2)
f 〉 can be used as a open destination teleportation resource and is

robust under single Qbit decoherence since it retains some entanglement between

the remaining Qbits under such projections.

2.5 Effect of Non-Ideal Experimental Conditions

The analysis thus far only considers ideal experimental conditions and it would

be instructive to consider the robustness of the proposal under loss and imperfect

matching of squeezing parameters. Photon loss is extremely detrimental to photon

number correlations. Detailed quantitative analysis of the effects of loss quickly

becomes intractable with increasing number of modes. A complete analysis of 4

optical modes, generating two entangled spins has been treated in by Ruffin Evans

and Olivier Pfister [41]. An interesting case to consider is the effect of mismatched
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squeezing interactions strengths i.e the required conditions on Gij are not satisfied.

We can immediately see the that neither the relative squeezing strengths of the

interaction terms within the square or across square change the photon number

constants of motion, N1 + N3 −N2 −N4 and N5 + N7 −N6 −N8. Therefore the

first two nullifiers J0 and Jz will still hold, for all values of squeezing interactions.

Jx and Jy nullifier relations however crucially depend on the interaction strengths.

We make the following observations.

- If the two squares are identical, the 4 nullifiers will always hold for all values of

the relative strengths of the intra-square interactions.

- If the two squares are not identical, then the constraint for 4 nullifiers to hold is

-

G12G34

G23G14

=
G56G78

G67G58

(2.92)

In this case the 4 nullifiers will be -

J0 = J0, J3 = Jz,

J1 = Jx15 −
G56

G12

Jx26 +
G12G67

G23G56

Jx37 −
G58

G14

Jx48 (2.93)

J2 = Jy15 +
G56

G12

Jy26 +
G12G67

G23G56

Jy37 +
G58

G14

Jy48 (2.94)

Therefore when the squares are not identical, the nullifiers are no longer the total

spin operators. So the resultant state cannot be written as a total spin zero state.

- If this condition is not satisfied, then we can no longer have 4 nullifiers. J0 and

Jz are the only two nullifiers which makes the state and eigenstate of total Jz.

2.6 Conclusion

The close connection of twin two-Qmode Gaussian entanglement to maximal bi-

partite spin entanglement, Eqs. (1.70-1.71), initially suggested that the simulation

of entangled spins using optical Qmodes might be possible. Such a correspon-

dence of Gaussian and non-Gaussian Wigner functions, coupled to the availability

of photon-number-resolving detection methods, is a fascinating prospect, not to

mention its possible implications for quantum simulation. Another application of

this work can be for atomic ensemble spin squeezing. Multipartite singlet states

and spin squeezed states are highly desirable states for use in decoherence resistant
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entanglement memories. Such states are created by using squeezed optical modes

to excite atom ensembles.

We attempted to explore this correspondence by recasting different families of H-

graph states as spins, by way of the Schwinger representation. While we found

that this correspondence is not straightforward for multipartite systems—and even

seems to fail systematically in the case of paired CVGHZ states—we have nonethe-

less obtained nontrivial results, including a genuine multipartite entangled spin-1/2

state generated by a multimode squeezed, albeit not multipartite entangled CV

state. Moreover, closely related Qmode Hamiltonians, which make significantly

different states, can still have the same spin nullifiers, which hints at a possible

degeneracy of the nullifier picture in this case.
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Chapter 3

Tomography using

photon-number-resolving

detection

Here we detail our work done on the quantum tomography of optical states using

photon-number-resolving detectors. This work was published in Journal of Optical

Society of America B in October 2014 [60].

In section 1.3, we explained the theoretical foundation of measurement of Wigner

function using photon number resolving measurement and displacement. In sec-

tion 3.1, we describe the TES detector and the acquisition and processing of PNR

signals. In section 3.2, we describe the quantum tomography experimental setup

starting from the experimental implementation of the displacement operator. We

then present the measurement results of the experiment in section 3.3. We discuss

experimental limitations (losses), and then we conclude.

3.1 Photon-number-resolving detection setup

Our TES system contains 8 fiber-coupled thin-film tungsten devices fabricated at

NIST, optimized for detection at 1064 nm [3]. The TES devices are cooled by

a cryogen-free adiabatic demagnetization refrigerator and temperature stabilized

at 100 mK. The TES detector is voltage-biased [61], and self-heats into the su-

perconducting transition illustrated in Fig. 3.1. When a photon is absorbed, the

52
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energy of the photon is thermalized in the electrons of the TES and there is a

small temperature rise that causes a small measurable increase in the resistance

of the TES. The change in resistance causes a change in current flowing through

the device which is measured using a SQUID amplifier system.

Two-photon absorption causes a larger temperature change and therefore a larger

signal than single-photon absorption, and this results in photon-number resolution.

Figure 3.1: Principle of operation of the TES. When the TES is temperature-
biased at the edge of the superconducting transition Tbias — or on the steep
transition slope — any temperature variation δT due to photon absorption is
translated into a measurable resistance change δR.

The maximum measurable photon number is ultimately determined by the am-

plitude of the steep transition slope (Fig. 3.1): upon reaching its top, the TES

will saturate if additional photons are absorbed. There exist, however, methods

to cope with such undesirable conditions as TES saturation: on the one hand, the

cooling time would still provide information about the photon number in such an

optical pulse, if no more photons were impinging until cooling was complete [62].

Moreover, the saturation does not completely erase all photon-number informa-

tion (unlike the schematic plot of Fig. 3.1, the resistance does retain a weaker

dependence on temperature in the normal conducting regime) and a recent, more

sophisticated analysis [63] can also yield higher photon number statistics into the

saturation regime. In this experiment however, we truncated our photon number

analysis to fall within the transition slope.

Note that the single-TES restriction of the maximum number of measurable pho-

tons (here 5 photons at 1064 nm) entails a restriction of the Hilbert space to the

Fock-state basis {| 0 〉 , | 1 〉 , | 2 〉 , | 3 〉 , | 4 〉 , | 5 〉}. As noted in Ref. [16], when the
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average detected photon number approaches the cutoff limit of the detector, sta-

tistical errors increase drastically. Therefore this quantum tomography method

requires states with negligible probabilities of measuring photon numbers higher

than 5. However, in principle, with 8 independent TES channels, our system

could achieve PNR detection up to 40 photons, and sophisticated data processing

methods, mentioned in the next section, allow to push that limit further.
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Figure 3.2: An example of raw TES data showing a single photon detection
event. The detection peak can be clearly distinguished from the noise.

3.1.1 Signal acquisition

The TES signal is relayed directly from the output channels using BNC cables to

a 4 channel 125Mbit Alazar data acquisition PCIe card. The device drivers of the

Alazar card are compatible with MATLAB on Windows. The MATLAB drivers

were written at NIST, Boulder CO by the group of Thomas Gerrits.

The Alazar card can sample data at many different sampling rates. However

the characteristic TES response time to a photon detection is fixed. A typical

detection event comprised a rising edge of about 700 ns, corresponding to the

response time of the TES detection chain, followed by a cooling decay tail of a

couple µs. Figure 3.2 displays a typical example. All photon detection events,

from 1 to 5 photon events have the same characteristic shape only with different
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peak heights. Note that the detector is still active during the cooling tail and that

there is no dead time as long as the TES is on the transition slope.

We tried different sampling rates and decided to use 5 Ms/s. This gives us a data

sample every 200 ns and at least 3 data samples in the rising edge for characteriza-

tion of photon events. Each sample was saved on the computer as a 16-bit integer,

but only 14-bits were useful from the digitizer. Data is collected in batches of

continuous detection after which the packet is transferred to the computer and

the digitizer rearmed for receiving the next batch of data. The size of the batch

is decided by the memory restrictions of the Alazar card which is 8 MBytes per

batch, or 222 points per batch. Therefore each batch of data corresponded to 0.84 s

of uninterrupted data. This process could be repeated if necessary to join multiple

batches data. However, in this experiment, all Wigner function measurement data

was exactly 1-batch long and thus contained no dead time.

3.1.2 Signal processing and photon “pileups”

The signal processing and analysis subroutines were written by me. The basic

principle of these routines was built collaboratively by Reihaneh Shahrokhshahi

and I based on prior routines written by our collaborator Aaron Miller.
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Figure 3.3: Raw TES data for a CW beam showing distinct one-, two-, and
three-photon peaks. The signal levels are indicated by the red dashed lines.
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Figure 3.3 displays an example of PNR detection with the TES, over a longer time

range than Fig. 3.2.

In this experiment, continuous-wave (CW) optical fields were measured and all

TES signals were derived from continuous photon streams. Therefore photon

arrivals are completely independent and random events. Therefore the primary

step in the analysis is locating photon events. Once the photon events are identified

they have to then be classified as 0,1,2... photon events. This step is complicated

by the variation and fluctuations in the detection peak heights as we can see in

Fig. 3.3, due to noise in the readout electronics. 0 photon events are smaller than

the characteristic photons of the signal. They originate either from electronic noise

or external light and therefore are counted as part of the noise.

Finally we have to consider the case of ’photon pileup’. In a photon pileup event,

another photon impinges on the TES very soon after a first photon, while the

signal is still on the decaying tail. An example of pileup is the rightmost (double)

peak in Fig. 3.4(a). In the experiment, the photon flux was kept low enough that

most detection peaks were separated by more than the TES cooling time.

In order to achieve accurate photon counting, including in the presence of pileups,

we adopted the following procedure, whose steps are illustrated in Fig. 3.4.
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Figure 3.4: Steps in the processing of raw analog data into quantized photon-
count data. (a), a small sample of the raw data. shows 3 single peaks and 1
“piled up” double peak, where the last photon was detected before the detector
was cooled back the nominal bias temperature. (b), rising edge detection results.
The procedure correctly detected 5 rising edges. (c), encoded signals, made of
the photon detection times along with the value of the maximum peak height
within 1.2 µs of each event. (d), final quantized photon-counts determined using
the thresholds defined in the histogram of peak heights in Fig. 3.5.

First, we identified each detection event by finding rising edges in the signal. A

rising edge is defined as a detection event if it rises at least 40% of the average

height of the single photon above the mean noise level. This threshold is set

manually during the calibration process. For example, in Fig. 3.2, the threshold

would typically be at 200 arb. units. The starting time of each detection event

is recorded. Figure 3.4(b) displays the event times corresponding to the signal in

Fig. 3.4(a). The algorithm then stores the maximum signal in the 1.2 µs following

each starting time and this maximum is stored as well, see Fig. 3.4(c). The analysis

thus assumes a response time of 1.2 µs. Hence, if two photons were absorbed with

1.2 µs of each other, they would be counted as one two-photon event, not as two
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one-photon events; this is determined in the final, quantization stage. First, we

form the histogram of recorded signal heights, displayed in Fig. 3.5, where we can
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Figure 3.5: Histogram of peak heights from the sample of Fig. 3.4(a). The
histogram bins define the photon-number quantization thresholds.

clearly see three well-separated peaks (the “zero-photon” area is likely due to noise,

external light and blackbody radiation). From this histogram, we can now define

the photon-number quantization thresholds. Using these thresholds, the quantized

photon-number signals can be obtained and are displayed in Fig. 3.4(d). Note that

the rightmost pileup peak is resolved here and accounted for as two one-photon

events.

3.1.3 Detection efficiency

The detector efficiency is an important factor in accurate state reconstruction.

Losses not only introduce noise in the statistics but can also change the very state

being measured. Detailed analysis of the effect of loss can be found in Refs. [15, 16]

and references therein.
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In this work, we restricted ourselves to coherent states. Our preliminary character-

ization of the overall system determined the detection efficiency of our fiber-aligned

TES setup to be between 70% - 90%. The reason for this large margin of error

is because the TES operates in regime where it cannot be verified by any other

detector in the lab. The TES can accurately measure power only at the femto-

Watts level, but no other detector can even detect pico-Watts of light. Therefore,

the TES can only be calibrated in one of 3 ways, 1. using another already cali-

brated TES, 2. using extremely precise and calibrated attenuators, and 3. using

a highly correlated photon source and measuring the maximum attainable corre-

lation detected by the TES. The first one is a circular, unhelpful solution. The

second solution requires sophisticated calibration equipment that is not available

to us. The TES was calibrated at NIST by this method and certified to be 95

% efficient before it was installed in our lab. We know that we have additional

10 % loss at the free-space-to-fiber coupler, putting our maximum efficiency at

85 %.Finally the third method is known to be an extremely difficult experiment

and being actively pursued by groups around the world. We hope to be able to

attempt that experiment in the future.

Highly non-classical states are very strongly affected by loss and quickly lose their

characteristics. However, we limited our experiment to coherent states. Coherent

states are known to be immune to losses. A detailed treatment [16] shows that

loss only decreases the observed peak of the coherent state Wigner function, but

preserves its Gaussian nature. As we shall see in section 3.3, for coherent states

even the precise value of the efficiency is not required for validation of the state

reconstruction.

3.2 Experimental Setup

3.2.1 Displacement

As described in section 1.2, we need to implement a displacement operator on the

state we want to measure. Recall that we can reduce the action of the displacement

operator on the Wigner function of a general state as a translation along q byRe(α)

and along p by Im(α). Therefore measurement of W (0, 0) on a state displaced by

α effectively a measurement of W (−Re(α),−Im(α)) of the original state.
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Figure 3.6: Experimental setup for the quantum tomography of a coherent
state using a coherent field input and photon number measurements. The signal
optical path is that of the quantum state to be measured. The probe optical path
is that of the “local oscillator” whose field generates the phase-space displace-
ment. PBS: polarizing beam splitter; EOM: electro-optic modulator; HWP:
halfwaveplate; ND: neutral density; HV = high voltage.

In practice, the displacement operator can be achieved by combining the quantum

signal with the coherent state |α 〉 at a BS. First we can look at the effect of the

displacement operator in Heisenberg picture, using the Baker-Campbell-Hausdorff

formula

D†(α) a D(α) = eα
∗a−αa† a eαa

†−α∗a

= a+ [α∗a− αa†, a]

= a+ α (3.1)

Now we recall from Eq. (1.16) that the action of the BS on mode 1 is given by

U †BSa1UBS = τa1 + ρa2

Here τ and ρ are the field transmission and reflection coefficients respectively

(r2 + t2 = 1). Now if the quantum mode to be displaced is mode 1, mode 2 is a

coherent state |α 〉, and the BS has ρ << 1, τ ' 1 then we can approximate the
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above as

U †BSa1UBS =' a1 + ρα (3.2)

This is exactly the operation of the displacement operator. Therefore in the ap-

proximation τ ' 1, the action of the BS is to displace the mode a1 by ρα.

However, it is important to remember that the displacement operator thus imple-

mented is an approximation. A more complete analysis for the exact can be found

in [64]. Using this implementation, by displacing the state by α = (q + ip)/
√

2

the Wigner function measured by PNR statistics at the beam splitter’s output will

be [15]

Wout(0, 0) =
1

T
W
(rq
t
,
rp

t
;−r

t

)
, (3.3)

where the function W (q, p; s) on the right-hand side is the standard s-ordered

quasi-probability distribution [10], which coincides with the Wigner function for

order parameter s = 0. Hence, by choosing ρ ' 0 and by scanning α = (q+ip)/
√

2

in the (q, p) phase space, we can measure the complete Wigner function.

3.2.2 Setup

The experimental setup schematic is depicted in Fig. 3.6. The whole experiment

was set up on a 24 inch-thick floating optical table and all optical paths were

protected from air drafts by acrylic plastic enclosures. All light was emitted at

1064 nm by a monolithic Nd:YAG laser, of high intrinsic stability (1 kHz FWHM

linewidth). The optical mode was coupled to single-mode fibers for 1550 nm

light, anti-reflection (AR) coated at 1064 nm, by way of aspheric lenses, also AR-

coated, and a 5-axis fiber aligner. These fibers entered the cryostat via throughputs

and were then directly coupled to the superconducting detectors by silicon micro-

machined self-alignment [65]. As mentioned above, measuring the Wigner function

requires, besides PNR detection, quantum state displacement over the whole region

of interest of the phase space. The displacement operator was implemented by

interfering the signal field with a local oscillator (LO) coherent field at a nearly

fully transmitting beam splitter. The interference visibility of the signal and LO

fields was v = 98%. The amplitude |α| and phase arg(α) of the transmitted

coherent field were respectively varied using an amplitude electro-optic modulator
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(EOM) and a piezotransducer-actuated mirror. The EOM we used was a home-

made device built out of an X-cut, 20 mm-long RbTiOAsO4 (RTA) crystal, which

was temperature controlled to about a mK by a commercial temperature controller.

The EOM has a phase range of around 450◦ using a voltage range of 0-300 V. The

voltages applied to EOM and piezo mirrors were generated by low-noise, high-

voltage drivers controlled by the analog output ports of a lock-in amplifier. The

lock-in amplifier was computer-controlled to output desired voltages through its

auxiliary A/D outputs, which have 1 mV resolution, ±10 V range, and under 100

µs settling time. However, the fastest switching time we observed was 10 ms,

which is likely a remaining limitation of the interface rather than the limit of the

lock-in amplifier itself.

3.2.3 Procedure

Prior to the experimental run, a calibration run was required to get the scanning

voltages and expected values of the experiment.

In the calibration run, first both signal and probe were blocked and the background

was recorded. The background for the TES should be very small (< 1%) compared

to the signal. If this was not the case then it indicated an external source of light

contaminating the signal. In this case we traced all possible sources of light in

the room, excluded them one-by-one and blocked any light that is found to be

reaching the detector from external sources. Sometime the external source could

be electronic devices such as cellphones. There no way to block broad sources such

as room light or sunlight and hence all lights must be off and doors closed during

the experiment.

Next the signal beam was measured alone, without the probe, and its mean inten-

sity recorded. This is the value used as the expected value of |α0| in the Wigner

function measurement.

Next the signal was blocked and the displacement probe beam is characterized.

The voltage on the EOM was scanned through its entire range and the intensity

of the probe recorded at every step. This calibrates the EOM voltage to inten-

sity relationship. Here two important details needed to be considered. First the

displacement field intensity must span the entire phase space where the Wigner

function of the signal is expected to lie. If that was not the case then the intensity
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of the signal has to be adjusted until it lay well within the scanning region. Sec-

ondly, the granularity of scan had to be decided to give the best results. Using the

voltage-intensity calibration appropriate values of the voltage had to be chosen

such that all the features of the Wigner function are given equal importance and

there are no regions with too few or too many data points. Therefore a voltage

list was constructed which consisted of manually chosen voltages which spanned

the intensity as evenly as possible. This concludes the calibration run.

The main experimental run was completely automated. The run was controlled

by the MATLAB routine which changes the lock-in amplifier output voltage and

then runs the Alazar data acquisition, repeating this process for the entire voltage

range required to scan the phase space.

The amplitude |α| of the displacement field was varied in 40 steps while its phase

arg(α) went through 60 steps from 0 to 2π. At each point (|α|,arg(α)) of the

polar scan the TES signals were processed to yield photon-counting statistics,

hence photon-count probabilities and also parity measurements. Phase space scans

consisted of sampling a sequence of circles with increasing radius, since changing

the voltage applied to the EOM tuning |α| required a settling time of the order of 2

s, whereas arg(α) could be scanned much faster, as the phase modulator driver had

much higher, 10 kHz bandwidth. For each point in phase space, the TES output

was digitized and processed to obtain the photon statistics in real-time. The parity

measurement was subsequently calculated from the statistics and saved.

We experimented with a variety of scan parameters both in amplitude and phase.

The number of points to be scanned is a compromise between runtime of the

experiment and granularity of the measurement. Longer runtimes do degrade the

results due to drifts in experimental conditions and after a point do not result in

any added accuracy.

3.3 Results and analysis

3.3.1 Reconstruction

In Fig. 3.7, we plot the measured Wigner functions of the vacuum, of a weak

coherent state, and of a phase-diffused statistical mixture of coherent states. The
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Figure 3.7: The measured Wigner functions and contours of, top, vacuum;
center, a coherent state; bottom, a phase-diffused coherent state. All plots are
interpolated for 22 amplitude points and 40 phase points.

phase diffusion was obtained by applying a 100 Hz sine waveform to the piezo

mirror. The radial coordinate was obtained from the average number of photons

detected for the blocked signal path. Thus the graphs were parametrized with the

complex variable β =
√
ηα, where α is the probe field reflected at the BS and η is
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the detection efficiency.

Each 0.84 s data packet (see above) was divided into bins of size τ = 0.1 ms long,

which amounted to about 8400 bins per point in phase space. The bin duration

defined the temporal envelope of the measured mode. Like in Banaszek et al.’s

original experiment, this was shorter than the laser’s coherence time (here, 1 ms).

Using a detector temporal envelope which is different from laser coherence can be

an issue when trying to characterize quantum states. For example if the quantum

state generated is a Fock state n=2 with a temporal window 1ms, then using

a 0.1ms window might give us a lot of n=1 and n=0 state components. This

is because, in general, temporal basis vectors are not orthogonal, hence there

is a non-zero, but incomplete, overlap of the signal temporal envelope with the

detector envelope. However this mismatch is of no consequence in the case of

coherent states. Temporal mismatch in case of coherent states only affects the

value of α0 and does not change the nature of the quantum state. Therefore when

characterizing and comparing coherent states it suffices to keeps a uniform detector

temporal bin size across all measurements, which is what we did in this work.

3.3.2 Verification

We investigated the weak coherent state case to verify the accuracy of our state

reconstruction. Here and henceforth, we discard the normalization constant from

the Wigner function, so that the maximum of the function is 1. Therefore the

theoretical Wigner function of a coherent state |α0 〉 becomes

W (α) = e−2|α−α0|2 . (3.4)

Notice the extra factor of 2 in the Gaussian term. The reason the two appears is

because when we go write W (α), we are implying that the integrating variable is

α instead of q, p. Here α = (q + ip)/
√

2 therefore the extra factor 2 is required to

compensate for the
√

2.

This value does not consider the effects of losses and displacement approximation

from section 3.2.1. A more realistic analysis [15, 16] takes into account sub-unity

detector efficiency, losses on the quantum signal and the non-ideal visibility of the

signal-probe interference at the displacement beamsplitter BS2. The measured
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Figure 3.8: Gaussian fit (top) and residuals (bottom) of the coherent-state
tomographic data. The fit function was Wfit(q, p) = a + b exp[−m|(q − q0)2 +
(p− p0)2|]. The correlation coefficient was R2 = 0.966.

Wigner function is given by

W (β) = e−2|β−√V ηtα0|2−2(1−V )ηt2|α0|2 , (3.5)

where

V =
v

2− v
(3.6)

is a measure of the overlap of signal and probe, η is the effective efficiency of

the detector, t is the displacement BS transmissivity and v is the visibility of the

interference of signal and probe.

In this experiment, we had v = 0.98, t2 = 0.99, yielding V = 0.97. We recall

that the measured probe field in Fig. 3.7 is already β. Further, the measured

signal at the time of calibration already takes into account the effect of loss and

mode mismatch, hence the measured signal is |β0|2 = η|α|2 = 2.553, therefore
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Table 3.1: Fit results for model function
Wfit(q, p) = a+ b exp[−m|(q − q0)2 + (p− p0)2|].

Coefficients Fit Theory (3.7)
a 0.000(2) 0
b 0.877(10) 0.867
m 1.72(3) 2
p0 0.248(6)
q0 1.532(6)√
q2

0 + p2
0 1.552(6) 1.567

|β0|=1.567. Thus, our theoretical Wigner function was

Wth(β) = 0.867 e−2|β−1.567|2 , (3.7)

which we compared to a fit of the observed data in Fig. 3.7. The fit is plotted in

Fig. 3.8 and the results are presented in Table 3.1. Note that the actual phase

angle of the coherent state [arctan(p0/q0)] is not relevant here, even though we did

fit it, only the amplitude β0 =
√
q2

0 + p2
0 is. Although the correlation coefficient

of the fit was high (R2 = 0.966), an inspection of Table 3.1 and of the residuals in

Fig. 3.8 show that the agreement is only qualitative.

There are many possible sources of error to consider here. Some lend themselves

to be compensated or corrected, others can only be reduced but not eliminated.

We believe that a large source of errors and noise lies in the phase stability. The

data acquisition lasts for over 4000 s for the complete data and we assume that

the signal phase remains stable during this process. While our experimental setup

is intrinsically very stable, phase and temperature drifts are unavoidable over such

a duration. One way to mitigate these effects would be to lock the optical phases

and path differences to a reference. Another source of error is the effect of power

on any optical element. Any testing and calibration has to be done at powers close

to milliWatts, while the experiment is conducted at femtoWatts. The 12 orders of

magnitude difference might induce some differences in phase and loss in elements

like fibers and EOM’s. This can be mitigated by calibrating all elements relative

to each other rather than in absolute terms. Of course absolute calibrations at

low power is impossible without a method of accurately measuring the detector

efficiency, which itself is another source of error.
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3.4 Conclusion

In conclusion, we experimentally demonstrated, for the first time, quantum to-

mography with PNR measurements of more than one photon. We limited this

initial investigation to the loss immune coherent state and coherent-state mixture

with phase noise and got reasonable agreement with expected values on key pa-

rameters. Since the detector’s non-ideal efficiency cannot be compensated in this

method of measuring the Wigner function [15], it is only possible due to the recent

development of high efficiency PNR detectors.

This work was supported by the U.S. National Science Foundation, under grants

No. PHY-0960047 and PHY-1206029, and by the University of Virginia.



Chapter 4

Conclusion

Quantum physics has been tested in thousands of experiments over the years and

it has stood the test of time. Yet as technological advances open up new areas

of research, exploring the fundamental physical nature in these new frontiers is of

critical importance. The Wigner quasi-probability distribution is a an elegant and

essential tool for characterizing quantum states. Direct detection of the Wigner

function makes their measurement straightforward, without the need for complex

mathematical post-processing. As Antoine Royer put it, ”the method makes the

Wigner function more meaningful and natural” rather than an esoteric mathemat-

ical description [13].

Our experiment demonstrates the experimental viability of this method with pho-

ton number resolving detectors. The logical next project is to measure the Wigner

function of highly non-classical states such as Fock states. To achieve that a much

better calibration of the losses and phase stability of the system is required. As

suggested by Banaszek et al. [16], this method also generalizes very naturally to

multimode tomographic reconstruction, which is a promising direction of research.

Characterization of non-classical states have important applications in quantum

information and quantum computing. Recent proposals have highlighted the re-

quirement for generating highly non-classical ancilla states which are necessary to

circumvent the no-go theorems for all Gaussian quantum computing [8]. Here, we

present a step towards an alternate approach, that of using photon number mea-

surements coupled with CV entangled states to simulate spin entanglement. We

discovered that quadripartite spin states which are entangled to make total spin

zero states can be achieved using quadripartite Gaussian entanglement. Moreover,
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we discovered that the number of entangled spins and the strength of their entan-

glement is independent of the strength of the non-linear squeezing interaction, in

the absence of losses.

These results are intriguing and we believe that a possible avenue to better un-

derstand the underlying theory might be a general group theoretical approach

involving the connections between Sp(4,R) and SU(2). Although well known in

quantum optics [66, 39], this interplay between the SU(1,1) and SU(2) groups is

compelling and its consequences for entanglement have not yet been elucidated, to

the best of our knowledge. A more general description, such as that involving the

symplectic group Sp(4,R) [67], might be useful here as it already has been for the

study of Gaussian entanglement [68], but these theoretical directions are beyond

the scope of this thesis.

We anticipate that this will be a powerful way to generate and simulate not just

Qbit but multipartite high-spin entanglement. Recent theoretical and experimen-

tal demonstrations [69, 70, 71] of scalable generation of large multimode squeezed

states makes this a very promising avenue of research.
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Derivation of the 4 spin entangled

state

The derivation of the post-selected substate for 4-Qbit given in Eq. (2.87) can be

done more rigorously (and considerably less elegantly) -

We know that N1 + N3 = N2 + N4 and N5 + N6 = N7 + N8. Therefore we can

write a general ket of the state as

|ψ〉 =
∞∑
s=0

s∑
n=−s

s−n∑
i,k

s+n∑
j,l

cijklns|ψ〉ijklns (A.1)

=
∞∑
s=0

s∑
n=−s

s−n∑
i,k

s+n∑
j,l

cijklns|s− n− i〉1|s− n− k〉2|i〉3|k〉4

⊗ |s+ n− j〉5|s+ n− l〉6|j〉7|l〉8

We can see trivially that -

J0|ψ〉 = 0; ∆J0|ψ〉 = 0; (A.2)

Jz|ψ〉 = 0; ∆Jz|ψ〉 = 0, (A.3)

since we used these relations to form the state. Now we need to find the conditions

on the coefficients cijklns such that the other 2 nullifiers are satisfied as well. So
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lets focus on Jx first. Now,

Jx = Jx15 + Jx37 − Jx26 − Jx48

= J+15 + J+37 − J+26 − J+48 + J−15 + J−37 − J−26 − J−48

=⇒ 〈Jx〉 = 0 (A.4)

The above result is easy to see since either pair production or pair anihilation

within a square is required for |ψ〉ijklns to become |ψ〉i′j′k′l′n′s′ , neither of which is

present in Jx. They are present, however in (Jx)
2. So lets see what are the non

zero terms in 〈(Jx)2〉. We can simply calculate what this expectation value will be

for the state we initially supposed in terms of the coefficients cijkln. We also know

that this expectation value should be 0 from our earlier proof. Just by inspection

we can see the terms that only half the terms will survive -

〈(Jx)2〉 = 〈(J+15 + J+37 − J−26 − J−48)(J+15 + J+37 − J−26 − J−48)〉

+ 〈(J+15 + J+37 − J−26 − J−48)(J−15 + J−37 − J+26 − J+48)〉

+ 〈(J−15 + J−37 − J+26 − J+48)(J+15 + J+37 − J−26 − J−48)〉

+ 〈(J−15 + J−37 − J+26 − J+48)(J−15 + J−37 − J+26 − J+48)〉

〈(Jx)2〉 = 〈(J+15 + J+37 − J−26 − J−48)(J−15 + J−37 − J+26 − J+48)〉

+ 〈(J−15 + J−37 − J+26 − J+48)(J+15 + J+37 − J−26 − J−48)〉

(A.5)

Both of the terms of the above sum resemble the expression 〈AA†〉. Such terms

can only be real and positive. Therefore both of them must be individually 0 for



Appendix A 73

their sum to be 0.

(J+15 + J+37 − J−26 − J−48)|ψ〉

=(
√

(s− n− i+ 1)(s+ n− j)cijklns|s− n− i+ 1〉1|s− n− k〉2
|i〉3|k〉4|s+ n− j − 1〉5|s+ n− l〉6|j〉7|l〉8

+ (
√

(i+ 1)(j)cijklns|s− n− i〉1|s− n− k〉2|i+ 1〉3|k〉4
|s+ n− j〉5|s+ n− l〉6|j − 1〉7|l〉8

− (
√

(s− n− k)(s+ n− l + 1)cijklns|s− n− i〉1|s− n− k − 1〉2
|i〉3|k〉4|s+ n− j〉5|s+ n− l + 1〉6|j〉7|l〉8

− (
√

(k)(l + 1)cijklns|s− n− i〉1|s− n− k〉2|i〉3|k − 1〉4
|s+ n− j〉5|s+ n− l〉6|j〉7|l + 1〉8

=(
√

(s− n− i+ 1)(s+ n− j)cijklns +
√

(i)(j + 1)ci−1j+1klns

−
√

(s− n− k + 1)(s+ n− l)cijkln−1s −
√

(k + 1)(l)cijk+1l−1n−1s)

|s− n− i+ 1〉1|s− n− k〉2|i〉3|k〉4
|s+ n− j − 1〉5|s+ n− l〉6|j〉7|l〉8

〈(J−15 + J−37 − J+26 − J+48)(J+15 + J+37 − J−26 − J−48)〉 = 0

=⇒ |
√

(s− n− i+ 1)(s+ n− j)cijklns +
√

(i)(j + 1)ci−1j+1klns

−
√

(s− n− k + 1)(s+ n− l)cijkln−1s −
√

(k + 1)(l)cijk+1l−1n−1s|2 = 0

〈(J+15 + J+37 − J−26 − J−48)(J−15 + J−37 − J+26 − J+48)〉 = 0

=⇒ |
√

(s− n− i)(s+ n− j + 1)cijklns +
√

(i+ 1)(j)ci+1j−1klns

−
√

(s− n− k)(s+ n− l + 1)cijkln+1s −
√

(k)(l + 1)cijk−1l+1n+1s|2 = 0

Therefore we have 2 conditions -

|
√

(s− n− i)(s+ n− j + 1)cijklns +
√

(i+ 1)(j)ci+1j−1klns

−
√

(s− n− k)(s+ n− l + 1)cijkln+1s −
√

(k)(l + 1)cijk−1l+1n+1s|2 = 0

(A.6)

|
√

(s− n− i+ 1)(s+ n− j)cijklns +
√

(i)(j + 1)ci−1j+1klns

−
√

(s− n− k + 1)(s+ n− l)cijkln−1s −
√

(k + 1)(l)cijk+1l−1n−1s|2 = 0

(A.7)

Now that is final recurrence relation that can be derived and together with the

definition of ψ and cijklns, defines the state uniquely. Notice that in both the
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conditions, s,i+j and k+l stay constant in all the coefficients in the expression. We

can see that the 4 total spins are s15 = s− i+j
2
, s26 = s− k+l

2
, s37 = i+k

2
, s48 = k+l

2
.

Therefore both conditions give us a way to relate the various coefficients of a fixed

set of 4 spins. This relates to the idea that J0 commutes with Jx. If we consider Jy,

we can easily check that the expansion will get the same two relations. That relates

to the fact that Jx and Jy do not commute and are not independent relations.

Thus we can now derive the 4 Qbit state i.e i+j=1,k+l=1,s=1. There are 12

possible choices for the set of parameters {i, j, k, l, n, s} constrained by {i + j =

1, k + l = 1, n = [−s, s], s = 1}. But only the following 6 terms correspond to

physical states.

c101001, c011001, c100101, c010101, c010111, c1010−11

The other 6 coefficients belong to unphysical (negative photon number) states and

our relations hopefully will not include them.

c101011, c011011, c100111, c0110−11, c1001−11, c0101−11 (A.8)

The other 10 possibilties of arranging 4 Qbits cannot be created in the pairwise

generation scheme outlined above. Then applying the two conditions we can de-

duce the relations between these 12 coefficients.

c100111 = 0; c100111 = 0; c101011 = 0; c011001 + c101001 − c010111 = 0;

c101011 = 0; c100111 = 0; c100111 = 0; c010101 + c100101 − c010111 = 0;

c1001−11 = 0; c1001−11 = 0; c0110−11 = 0; c1010−11 − c011001 − c010101 = 0;

c0110−11 = 0; c011011 = 0; c011011 = 0; c1010−11 − c101001 − c100101 = 0;

c100101 + c010101 − c1010−11 = 0; c101001 + c011001 − c1010−11 = 0;

c010111 − c100101 − c101001 = 0; c010111 − c011001 − c010101 = 0;

c0110−11 = 0; c0110−11 = 0; c0101−11 = 0; c0101−11 = 0.
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Therefore all the non-physical coefficients are zero and the 6 ’good’ coefficients are

related by -

c010111 − c100101 − c101001 = 0; c010111 − c011001 − c010101 = 0;

c100101 + c010101 − c1010−11 = 0; c101001 + c011001 − c1010−11 = 0;

c1010−11 − c101001 − c100101 = 0; c010101 + c100101 − c010111 = 0;

c1010−11 − c011001 − c010101 = 0; c011001 + c101001 − c010111 = 0;

=⇒ c100101 = c011001 = x (A.9)

c101001 = c010101 = y (A.10)

c1010−11 = c010111 = x+ y (A.11)

Now that we have some relations between the various coefficients, we can write

down the state we have obtained in the photon number basis as -

|ψ〉(s = 1, i+ j = 1, k + l = 1) = a(|0〉1|1〉2|1〉3|0〉4|1〉5|0〉6|0〉7|1〉8
+ |1〉1|0〉2|0〉3|1〉4|0〉5|1〉6|1〉7|0〉8)

+ b(|0〉1|0〉2|1〉3|1〉4|1〉5|1〉6|0〉7|0〉8
+ |1〉1|1〉2|0〉3|0〉4|0〉5|0〉6|1〉7|1〉8)

+ (a+ b)(|1〉1|1〉2|1〉3|1〉4|0〉5|0〉6|0〉7|0〉8
+ |0〉1|0〉2|0〉3|0〉4|1〉5|1〉6|1〉7|1〉8) (A.12)

Applying a phase shift on mode 6 and 8 as prescribed above, we get -

|ψ〉(s = 1, i+ j = 1, k + l = 1) = a(|0〉1|1〉2|1〉3|0〉4|1〉5|0〉6|0〉7|1〉8
+ |1〉1|0〉2|0〉3|1〉4|0〉5|1〉6|1〉7|0〉8)

+ b(|0〉1|0〉2|1〉3|1〉4|1〉5|1〉6|0〉7|0〉8
+ |1〉1|1〉2|0〉3|0〉4|0〉5|0〉6|1〉7|1〉8)

− (a+ b)(|1〉1|1〉2|1〉3|1〉4|0〉5|0〉6|0〉7|0〉8
+ |0〉1|0〉2|0〉3|0〉4|1〉5|1〉6|1〉7|1〉8) (A.13)
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Rewriting the above state as 4 spins rather than 8 optical modes, where |0〉|1〉 =⇒
| ↑〉, and |1〉|0〉 =⇒ | ↓〉 we get -

|ψ〉 = a(| ↑〉15| ↓〉26| ↓〉37| ↑〉48 + | ↓〉15| ↑〉26| ↑〉37| ↓〉48)

+ b(| ↑〉15| ↑〉26| ↓〉37| ↓〉48 + | ↓〉15| ↓〉26| ↑〉37| ↑〉48)

− (a+ b)(| ↓〉15| ↓〉26| ↓〉37| ↓〉48 + | ↑〉15| ↑〉26| ↑〉37| ↑〉48)

(A.14)

Now flipping 2 spins by considering spins 62 and 84, we get -

|ψ〉 = a(| ↑〉15| ↑〉62| ↓〉37| ↓〉84 + | ↓〉15| ↓〉62| ↑〉37| ↑〉84)

+ b(| ↑〉15| ↓〉62| ↓〉37| ↑〉84 + | ↓〉15| ↑〉62| ↑〉37| ↓〉84)

− (a+ b)(| ↑〉15| ↓〉62| ↑〉37| ↓〉84 + | ↓〉15| ↑〉62| ↓〉37| ↑〉84)

(A.15)

Finally compare this to the general zero spin state derived through intuition -

|ψ〉 =
y − x

2
(| ↑〉1| ↓〉2| ↑〉3| ↓〉4 + | ↓〉1| ↑〉2| ↓〉3| ↑〉4)

+ x(| ↑〉1| ↑〉2| ↓〉3| ↓〉4 + | ↓〉1| ↓〉2| ↑〉3| ↑〉4)

− y + x

2
(| ↑〉1| ↓〉2| ↓〉3| ↑〉4 + | ↓〉1| ↑〉2| ↑〉3| ↓〉4)

=⇒ x = a;
y − x

2
= −(a+ b);−y + x

2
= b

=⇒ x = a; y = −a− 2b (A.16)

is a valid solution. Since both x and y are completely arbitrary coefficients and

this state violates bell inequality for all non zero x and y, the above results are

valid for any state i.e any values of a and b. Therefore, our elegant derivation

was infact correct and a rigorous derivation yields the same state. This is also the

most general singlet state with 4 Qbits. It contains within its locus all possible

pairings of spins and also all possible ways (|0, 0〉 ⊗ |0, 0〉 and
∑
|1,m〉|1,−m〉) of

making a total spin-0 state with 4 Qbits.



Appendix B

Quantum Computing with

Schwinger Spins

Our attempts to write multimode squeezed states yielded some interesting results.

On the one hand, there is multipartite spin entanglement to be found in such

states. On the other hand, it seems to be hard to make other states besides total

spin zero states, for example cluster states which may be useful for measurement

based quantum computing [50, 72, 52].

To go towards quantum computing with such an architecture, we need to explore

two aspects,

• A general framework is needed to describe optics-spins correspondence for

arbitrary initial states, arbitrary Hamiltonians and measurements.

• A theory and experimental proposal for quantum computing and quantum

error correction using arbitrary spins rather than spin 1/2.

B.1 General optics-spins framework

We did not attempt to formulate such a framework. In our analysis, we only con-

sider initial vacuum states, a few multimode squeezing Hamiltonians and photon

number measurements with beamsplitters. Our collaborator Nick Menicucci and

his student Natasha Gabay also extended it [73] to one large multimode squeezed
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state that was experimentally demonstrated in the lab recently by our group [71].

However we have a couple of educated guesses on future directions for research

in this field. Spin operators belong to the SU(2) group, where the operators pre-

serve the norm of the vector. For spins this means that SU(2) operations preserve

the total spin, which as we have seen means preserving total photon number for

Schwinger spins. However the multimode squeezing transformations we use to cre-

ate photon number correlations does not preserve photon number. They instead

preserve photon number difference putting them in the SU(1,1) group. Therefore

we expect that a general framework to describe the behaviour of spin operators

under squeezing transformations would make use of the Sp(4) group which con-

tains both SU(2) and SU(1,1) groups. Considerable theoretical work has been

done on the symplectic group and its application on optics [66, 74, 67, 47] making

this a promising direction of research.

The goal of this analysis would be to extract a recipe for creating any arbitrary

multipartite spin state using optical systems and optical operations. Using group

theoretical methods perhaps a small set of optical states and operations could be

identified as constituting a ”universal” set, i.e. a set of states and operations that

can generate any arbitrary spin state. If such a ”universal” set is not possible,

then it would be useful to find the set of all multipartite spin states that can be

simulated using optical systems.

B.2 Quantum Computing with Spins

While it is clear that multimode squeezed states can be used to simulate some

spin systems, it is not clear if this is useful for quantum computing.

Qbits have long been the architecture of choice for quantum computing research,

both theoretical and experimental. A major breakthrough in Qbit quantum com-

puting is the development of stabilizer formalism [50]. For Qbits it can be demon-

strated that universal quantum computing can be performed using just the Pauli

operators X and Z and the two Qbit gate C-X and the stabilizer formalism can

be used to do all this in fault-tolerant manner. Experimental demonstrations of

quantum computing and error correction with Qbits is an area of active research.

Many alternate architectures for quantum computing have been suggested. Con-

tinuous variables, Qdits, spins are some of them. As mentioned before, continuous
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variable quantum computing using optical multimode squeezed states has the ad-

vantage of being easy to generate in large scale. However this architecture suffers

from not being easy to error-correct, despite the recent result showing that error

correction is possible below a certain error threshold [8].

Quantum computing with spins larger than Qbits is an interesting conundrum.

One would expect that the elegance of Qbit quantum computing with spin-1/2

would carry over to larger spins. The good news is that Qdits do lend themselves

to the stabilizer formalism allowing for error correction. However the bad news is

that the Qdit Pauli operators X and Z can not be defined using spin x and spin z

operator like in the Qbit case. We found many publications that attempt to define

the Qdit Pauli operators using spins as Qdits, the results can be summarized thus

-

• The d-dimensional Pauli group requires that two operators X and Z and a

basis | s 〉 where s ∈ {0, d} to behave such that -

– | s 〉 is an eigenstate of of Z with unique eigenvalues (−1)s/d.

– X is a flip operator, so that X | s 〉 = | s+ 1 mod d 〉.

– Using the above we get

XZ = ωZX, (B.1)

where ω = (−1)
1
d .

• X and Z are unitary and Hermitian. | ↑ 〉, | ↓ 〉 are eigenstates of Z with

eigenvalue 1,-1 respectively and |+ 〉 = | ↑ 〉 + | ↓ 〉,| − 〉 = | ↑ 〉 − | ↓ 〉 are

eigenstates of X with eigenvalue 1,-1 respectively.

• For d > 1/2, X and Z are unitary, but not Hermitian operation. This means

that X and Z are not directly measurable quantities. | s 〉 is the eigenstate

of Z with eigenvalue ωs and | v 〉 =
∑d

s=0 ω
vs | s 〉 is the eigenstate of X with

eigenvalue ωv where s, v ∈ {0, d− 1}.

With just this much information we can construct the operators and states for any

system that we want to use as Qdits. So lets take spins.

Clearly, for spin-1/2 Qbits, the Pauli operators X and Z correspond to the ex-

ponentiated spin operators σx and σz. Now we can do all Pauli things (thus all

stabilizer things) etc with just spin operations and states so all is well.
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To use spin j = (d − 1)/2 states as Qdits, we now take states | s 〉 = | j, s− j 〉.
These are eigenstates of Jz and Z. Hence even though Z is not Hermitian, Jz is and

can be substituted for Z. However the X eigenstate is | v 〉 =
∑d

s=0 ω
vs | j, s− j 〉.

This is not an eigenstate of Jx for d > 1/2. Therefore X operations for d > 1/2

cannot be done using spin operations.

Q. If not spin operators then what?

A. The state | v 〉 is actually the spin phase state described by A.Vourdas in [74].

Vourdas defines a set of operators θx, θy, θz, θ0 representing a ”dual” representa-

tion [74] for spins than the normal Jx, Jy, Jz, J0 representation.

θz | j, tz 〉 = vz | j, vz 〉 (B.2)

θ+ | j, tz 〉 =
√
j(j + 1)− n(n+ 1) | j, vz + 1 〉 (B.3)

θ− | j, tz 〉 =
√
j(j + 1)− n(n− 1) | j, vz − 1 〉 (B.4)

θ0 | j, tz 〉 = j | j, vz 〉 (B.5)

The two representations can be related by -

| v 〉 = | j, vz 〉 =
m∑

m=−j

e
2πi
j+1

mzvz | j,mz 〉 . (B.6)

Relating these states to the Qdit eigenstates we get,

| j, vz 〉 =
d−1∑
s=0

(−1)
(s−j)v
d | s 〉 , (B.7)

= (−1)−jv/d
d−1∑
s=0

(−1)
sv
d | s 〉 = (−1)−jv/d | v 〉 . (B.8)

This we recognize is exactly the Qdit X eigenstate upto a global phase state.

Therefore the X measurements can be replaced by θz measurements as they have

a one-to-one correspondence for states in their eigenbasis.

Unfortunately while this, in theory, seems like a good idea, in practice the θ

operators are beyond the scope of what is currently possible in the lab. No method

of measuring them on actual spins has been demonstrated.

Q. What about our optical spins? A. So measuring spin phase is not known for

actual spins, what about our simulated spins? Might optical spins allow us to
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measure the spin phase states.

As it turns out the spin phase operators can be written as optical relative phase

eigenstate measurements. These can also be defined mathematically but are hard

to measure.

Writing the spin phase eigenstate in terms of optical states (for simplicity we take

vz = 0), we get -

| j, vz = 0 〉 =

j∑
mz=−j

| j,mz 〉 (B.9)

=

2j∑
n1=0

|n1 〉 |n2 = 2j − n1 〉 (B.10)

Now say we evolve this state under a phase shift on both mode a and b.

U | j, 0 〉 =

2j∑
n1=0

ein1θ1ein2θ2 |n1 〉 |n2 = 2j − n1 〉 (B.11)

= ei(n1+n2)(θ1+θ2)

2j∑
n1=0

ei(n1−n2)(θ1−θ2) |n1 〉 |n2 = 2j − n1 〉 (B.12)

= e2ij(θ1+θ2)

j∑
mz=−j

e2imz(θ1−θ2) | j,mz 〉 (B.13)

= e2ij(θ1+θ2) | j, vz = θ1 − θ2 〉 (B.14)

That is a very interesting result. This means that if we wanted to implement an X

operation, all we have to do is implement a relative phase shift θ1−θ2 = π/(d+1).

This actually is, in principle, not that difficult. Especially if the two modes are

chosen with different frequencies, then simply free evolution for a specific time can

implement X. Of course, in practice, the required precision of control of optical

elements and distance is hard, but that is an engineering problem.

However, creating an X eigenstate or making an X measurement (which can be

considered equivalent problems) is more difficult even in principle. To measure X,

we have to measure the relative phase between the two modes. However this is not

the (classical) phase between two fields. Instead we are talking of the quantized

phase of the Fock state. The quantized phase measurement has been the subject

of much theoretical and experimental research [75, 76, 77, 78, 79]. To the best of
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my knowledge no method exists that can reliably make a single shot, deterministic

measurement of the relative phase operator.

As such, the feasibility of this measurement is a major obstacle for quantum com-

puting with spins larger than 1/2.

B.3 Error Correction with Spin operators

So we know that Pauli operators for Qdits correspond to phase measurements and

phase eigenstates, which are extremely hard to perform/create. So the natural

question to ask is if these Pauli operators are required at all. There are two

important reasons why we use the Pauli group - 1. It can be shown that the

Pauli group is a universal gate set for single Qbits. With the addition of a two

mode entangling gate such as Ctrl-X, we get a universal gate set for any number

of Qbits. 2. The stabilizer formalism and its use in error correction has been

elucidated using Pauli group operations.

In principle there could be ways of achieving both the above conditions using, say,

spin operations and measurements. However no such protocol is currently known.
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Programming and Data Analysis

C.1 ON/OFF script

JumpTTL = 5.0;

ShutterTTL = 5.0;

v1=ShutterTTL;

v2=JumpTTL;

%4 aux channels being used

%Channel 1 -> shutter in front of laser, that lets \\

seed/lockingbeam thru

%Ch 2 -> Locking TTL for the vescent modules

%Ch3 -> shutter in front of the tes heralding beam

%ch4 -> trigger signal sent directly to alazar.

i=1;

pause(5);

reps=100;

timers=zeros(3,reps);

tic

while i<10000

%timers(1,i+1)=toc; %zero clocks here

%Trigger off, not taking data

v4 = 1*mod(i+1,2);
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str=sprintf(’AUXV %d, %d’,4,v4);

fprintf(srlia,str);

%Close TES Shutter

v3 = 5*mod(i+1,2);

str=sprintf(’AUXV %d, %d’,3,v3);

fprintf(srlia,str);

%Open Locking Shutter

v1 = 5*mod(i,2);

str=sprintf(’AUXV %d, %d’,1,v1);

fprintf(srlia,str);

%timers(2,i+1)=toc; %takes roughly 3-4 msec from zero

%Lock on

JumpTTL=5*mod(i+1,2);

v2=JumpTTL;

str=sprintf(’AUXV %d, %d’,2,v2);

fprintf(srlia,str);

%timers(3,i+1)=toc; %takes 6-7 msec from zero

%Hold lock for 0.25 sec

i=i+1;

pause(0.20)

%timers(2,i+1)=toc;

%Lock off

JumpTTL=5*mod(i+1,2);

v2=JumpTTL;

str=sprintf(’AUXV %d, %d’,2,v2);

fprintf(srlia,str);

%timers(1,i+1)=toc;

%Close Locking Shutter and pause for 100 msec for

%tes to come back to life

ShutterTTL = 5*mod(i,2);
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v1 = ShutterTTL;

str=sprintf(’AUXV %d, %d’,1,v1);

fprintf(srlia,str);

pause(0.1)

%Open TES Shutter and take data

v3 = 5*mod(i+1,2);

str=sprintf(’AUXV %d, %d’,3,v3);

fprintf(srlia,str);

%Trigger on, taking data

v4 = 1*mod(i+1,2);

str=sprintf(’AUXV %d, %d’,4,v4);

fprintf(srlia,str);

%The following loop is just used because somehow the

%triggering was not removing some of the cases when

%the trigger was zero throughtout the length of buffer

%file. By forcing the trigger to turn on and off every

%0.2 seconds, every file will have a trigger event.

%It wastes some small amount of data, and should be

%removed if possible to solve the problem.

%But it is not a big deal since this is only for the

%dso, to get a visual approximation of the corelation,

%final measurement will use raw data.

i=i+1;

for j=1:5

pause(.3)

%Trigger off, nottaking data

v4 = 1*mod(i+1,2);

str=sprintf(’AUXV %d, %d’,4,v4);

fprintf(srlia,str);

%Trigger on, taking data

v4 = 1*mod(i,2);

str=sprintf(’AUXV %d, %d’,4,v4);

fprintf(srlia,str);
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end

end

toc

ShutterTTL = 5;

v = ShutterTTL;

str=sprintf(’AUXV %d, %d’,1,v); %locking beam shutter open

fprintf(srlia,str);

str=sprintf(’AUXV %d, %d’,3,v); %tes shutter open

fprintf(srlia,str);

JumpTTL=0.0;

v=JumpTTL;

str=sprintf(’AUXV %d, %d’,2,v); %vescent locking on

fprintf(srlia,str);

str=sprintf(’AUXV %d, %d’,4,v); %trigger off

fprintf(srlia,str);

C.2 Tomography

Tomography in AnalyzeRealtime

if tomography

chname = ’ABCD’;

if S.FIFO

data3D = double(reshape(typecast(uint8(

data.Value(1:numpts)),’uint16’), S.numchannels2record,

S.RecordLength, S.RecsPerChannelPerBuffer))-2^15;

else

data3D = double(reshape(typecast(uint8(

data.Value(1:numpts)),’uint16’), S.RecordLength,

S.numchannels2record, S.RecsPerChannelPerBuffer))-2^15;

end

global Wigner Nsum

numchan = 1;
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data = data3D(1,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load(’photon_limits’);

maxpnumber=size(PB,2)-2; %largest photon we calibrated upto.

Any larger photon will be counted as the maxpnumber size

thresh = PB(1,:);

% thresh(1)=400; %threshold for single photons

% thresh(2)=900; %threshold for 2 photon peak

% thresh(3)=1300; %threshold for 3 photon peak

% thresh(4)=1800; %threshold for 3 photon peak

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

numtosum=6.; %choose s.t highest point lies

%inside num2sum pts after first pt, but next photon lies outside

mat=(0:numtosum-1)’;

L=length(data);

TimeBin = 6; %Time Bin

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%to set the mean of the noise to zero, kill all photons above

thresh then recenter plot.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

noisethresh=-50; %threshold for noise mean to be 0...

datai=data>noisethresh;

data=data-sum(data.*not(datai))/length(data.*not(datai));

%raise level to set avareage noise =0

% data=data.*datai; %only the photons peaks and high noise peaks

%remain in plot.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%A NEW WAY OF CALCULATING PHoTON PEAKS, ONE THAT ALLOWS TIME BINS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

diffthresh=150; %threshold to count a rising edge.

%%%%%%%%%%%%%%%%%%%%%%%%%

%Trying out new algo for rising edge detection

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

numdiff=ceil(S.SampleRate/1250000); %How many points constitute

%rising edge. counting 3 for 2e6 and 5 for 5e6

d=zeros(numdiff+1,length(data)-1);

d(1,:)=diff(data);
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dindex = d(1,:)>0;

for i=1:numdiff

d(i+1,:)=diff([data(1+i:end) zeros(1,i)]).*dindex;

dindex = d(i+1,:)>0;

end

d=sum(d,1);

phindex=find(diff(d>200)>0)+1;

sum(diff(phindex)<numtosum);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%old method of finding phtons/rising edge

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% phindex=find(diff(diff(data)>diffthresh)>0); %photon indices

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dataj=repmat(mat,size(phindex))+repmat(phindex,numtosum,1)+1;

%count numtosum points after first point of photon

size(dataj);

dataj(dataj>length(data))=1;

%if last photon’s length lies after datasize truncate

datat=data(dataj);

if size(dataj,2)==1

datat=datat’;

end

phmax=max(datat,[],1)-max(0,min(datat,[],1)-50);

%take the max point at each photon peak

%phsum=sum(datatt,[],1);

%take the sum of numtosum points at each photon peak

DataFinal=zeros(size(data));

DataFinal(phindex)=phmax;

%set the photon heights to photon indices,

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Discretize photons by thresholding 0, 1, 2, 3 photons

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:(size(thresh,2)-1)

DataFinal(DataFinal>thresh(k) & DataFinal<thresh(k+1))=k-1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%make sure total number of points is divisible by time bin size

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if mod(length(DataFinal),TimeBin)~=0

more = TimeBin-mod(length(DataFinal),TimeBin);

DataFinal(end+(1:more))=zeros([1,more]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

phxx=sum(reshape(DataFinal,TimeBin,[]),1);

%collapse total time into units of time bin size

size(phxx);

sum(phxx);

N=zeros(1,100);

for l=1:100

N(l)=sum(phxx==(l-1));

end

Wig=-sum(diff(reshape(N,2,[])))/length(phxx);

% Parity operator from Banaszek paper

Nsum = Nsum + N;

sum(Nsum.*(0:99));

%sum(Nsum);

Wigner=[Wigner Wig];

end

MainTomo

Vin = 0.00; %starting voltage for the steps

Vfin = 4.000; %final voltage after all the steps

%varray = [0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1];

varray = 3*([0:0.05:1].^2);

points1 = 40.0; % number of steps in the scan betwen Vin and Vfin

points2 = 60.0; % number of steps in the amplitude scan with hwp

global Wigner;

Wfun=zeros(points1,points2);

volts = [[0;0] [0;1] [0;4] [0.4;7] [0.8;12.5] [1.2;21] [1.5;30]

[1.9;43] [2.3;57] [2.6;70] [3;86]];
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varray = 0.075:0.075:3;

step1 = 1.0;

step2 = 1.0;

%volts=fliplr(volts);

%varray=fliplr(varray);

while step1 <= 1%points1

%v1 = volts(1,step1);

%v1=(3*(step1-8.5))/points1;

v1=varray(step1);

setvolt(srlia,1,v1);

pause(2);

while step2 < 2*points2

v2 = Vfin - abs((Vfin-Vin)*((points2-step2)/points2));

setvolt(srlia,2,v2);

filename = strcat(’C:\Users\pfister\Documents

\Alazar_Data\Tomo\Tomography29\Data\’,

num2str(step1),’-’,num2str(step2),’.daq’);

filename = strcat(’C:\Users\pfister\Documents

\Alazar_Data\Tomo\Tomography29\Data\0-’,

num2str(step2),’.daq’);

%pause(.05);

if step2<=points2

TomoMainAlazar();

%pause(2)

%Wfun(step1,step2)=Wigner;

%pause(.01);

else

pause(.05);

end

step2 = step2 + 1;

end

pause(2)

step1 = step1 + 1;

step2 = 1;

end
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Quantum optics in the time

domain

D.1 Introduction

In this section, we consider the quantum theory of optical temporal phase and

instantaneous frequency for slowly varying signals in the continuous time limit.

The frequency domain field operators satisfy the bosonic commutation relation:

[âν , â
†
ν′ ] = δ(ν − ν ′) (D.1)

Time domain field operators can be defined as -

Â(t) =

∫ B/2

−B/2
dνâνexp(−2πiνt) (D.2)

Here, ν, ν ′ represent the frequencies ν0 +ν, ν0 +ν ′. The transform has been shifted

gives us a range of frequencies centered at zero such that |ν| < B/2 and B is the

bandwidth of the optical mode in question. This is only a valid procedure when

assuming a slowly varying envelope approximation, i.e. B/2 << ν0. This is not

a bad assumption since most frequencies in lab are in 100 THz range while the

bandwidth in the experiments is usually in the 100 GHz range.
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Then we can say,

[Ât, Â
†
t′ ] =

∫ B/2

B/2

∫ B/2

B/2

dνdν ′âν â
†
ν′exp(2πi(νt− ν

′t′))

−
∫ B/2

B/2

∫ B/2

B/2

dνdν ′â†ν′ âνexp(2πi(νt− ν
′t′))

=

∫ B/2

B/2

∫ B/2

B/2

dνdν ′δ(ν − ν ′)exp(2πi(νt− ν ′t′))

+

∫ B/2

B/2

∫ B/2

B/2

dνdν ′â†ν′ âν(exp(2πi(νt− ν
′t′))− exp(2πi(νt− ν ′t′)))

= Bsinc(πB(t− t′)) (D.3)

Therefore the annihilation and creation operators at two arbitrary different times

are not orthogonal to each other in general. If we now discretize time into packets

separated by δt = 1/B, so that tj = t0 + jδt then,

[Âtj , Â
†
t′k

] = Bδjk (D.4)

Renormalizing with
√
B, we get the complete description of a temporal mode

operator as a superposition of all time samples

Ât =
√
B

∞∑
j=−∞

âjsinc(πB(t− tj)) =
∞∑

j=−∞

Âtjsinc(πB(t− tj))

âν =
1√
B

∞∑
j=−∞

âjexp(2πiνtj) for ν < B/2

Ât can be considered the annihilation operator at time t in the time domain.

As is clear from the above expansion, when B → 0, or the light is monochromatic,

At becomes a equi-probable summation over all time packets and the width of the

packets δt also tends to infinity. So there is effectively only 1 time packet from

−∞ to ∞.

As B becomes non-zero, At is a superposition of individual time packet operators

aj distributed in a sinc envelope. Therefore a measurement at time t, could have

collapsed into one of the orthogonal packets tj with a probability governed by the

sinc envelope centered at that tj. Conversely it means that if we measure light of

bandwidth B at time t, then the orthogonal time state to that is at time t+nδt for

all non-zero integers n. So, in principle, to measure a state perfectly in the time

domain we should measure time packets at every δt time for all time. In practice,
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of course, the temporal envelope of a mode will be finite.

A fundamental point to recognize here is that the sinc function is the fourier

transform of a square function and hence a square bandwidth gives us sinc tem-

poral pulse shapes. We can substitute arbitrary bandwidth shapes and get the

corresponding fourier transform as the shape of the time envelope. In general all

pulse shapes have to be able to approximated as delta function in the limit of

small bandwidth so many of the results below can be general guidelines for any

waveform. We chose the square bandwidth because it was the choice in the ref-

erence [80]. A Gaussian bandwidth would have been the better choice, both in

relation to our experiment and ease of calculation since the Fourier transform of

a Gaussian is another Gaussian.

D.1.1 Coherent states in time

To describe a coherent state in the time domain, we have -

Ât|αt〉 = αt|αt〉

=
√
B

∞∑
j=−∞

âjsinc(πB(t− tj))|αt〉

=⇒ |αt〉 =
⊗
j

|αj〉, αt =
√
B

∞∑
j=−∞

αjsinc(πB(t− tj)) (D.5)

=⇒ |αt〉 =
∏
j

exp[αj â
†
j − α∗j âj]|0〉

= exp[
∑
j

(−1

2
|αj|2 + αj â

†
j)]|0〉

When describing a coherent state of finite bandwidth, such as in a pulsed laser, we

can speak of a coherent state in time. A coherent state at time t, is a tensor product

of coherent states at each of the orthogonal time packets, where the displacement

of each packet state is governed by the sinc distribution of the packet from the

time t.

Therefore the time domain displacement operator is -

|αt〉 = exp[−1

2

∫ ∞
−∞

dt|αt|2 +

∫ ∞
−∞

dtαtÂ
†
t ]|0〉, 〈N〉 =

∫ ∞
∞

dt|αt|2 (D.6)
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Reader Note:

Up until this point all the information presented has been directly from the ref-

erence [80]. The calculations from here on are mine. These are unpublished and

as such were only used not as results themselves but to gain an understanding of

our experiments.

Also the notation used here can be seen to be slightly different from the reference.

Tsang, Shapiro use A(t) and we use At primarily to avoid confusion with the a(t)

that we use common to denote time evolution of frequency domain annihilation

operators.

D.2 Time evolution in the time domain

We have to find what time evolution does to the mode operator.

Ât =

∫ B/2

−B/2
dνâνexp(−2πiνt), and

Ât+t′ =

∫ B/2

−B/2
dνâνexp(−2πiν(t+ t′)) (D.7)

Therefore when time states evolve they don’t get additional phase terms multi-

plied. The time signature is the phase signature.

D.3 Interesting states in the time domain

D.3.1 Spontaneous Parametric Down-Conversion (SPDC)

In the down-conversion process, we expect two photons to be created simultane-

ously, i.e at the same tj, while their frequencies are only bounded by the bandwidth

and energy conservation. Therefore B is defined as the bandwidth, in our case is

300Ghz. A single SPDC generation hamiltonian can be described as,

Hν = iχβ(â†1,ν â
†
2,−ν − c.c) (D.8)
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Summed over all such possible frequency pairs we get -

Hspdc =

∫
dνHν = −iχβ

∫ B/2

−B/2
dν(â1,ν · â2,−ν − c.c)

Hspdc = −iχβ(

∫ B/2

−B/2

dν

B

∞∑
i,j=−∞

â1iâ2jexp(2πiν(ti − tj))− c.c)

Hspdc = −iχβ(
∞∑

i,j=−∞

â1iâ2jsinc(πB(ti − tj))− c.c)

The difference ti and tj, is tk and sinc(tk) will also be zero for all k 6= 0. Therefore

â1ν · â2,−ν =
∑
â1j â2j; they are produced together or not at all.

Hspdc =
−iχβ
B

(
∞∑

j=−∞

â1j â2j − c.c) =
∑
j

Hj

=⇒ Hspdc = −iχβ(

∫ ∞
−∞

dt(Â1,tÂ2,t − c.c) (D.9)

All the above calculation is valid only if we assume the pump is a high power

monochromatic continuous wave, meaning b†j = β for all j. Then the state after

the Hamiltonian can be given be the propagator on vacuum-

|ψ〉 = exp(iHspdctint)|0〉

=
⊗
|ψj〉 (D.10)

where r is a familiar squeezing parameter, r = χβtint and j is the time quantum

number.

I have used here that the t appearing in propagator eiHt is time of interaction tint

denoting how long the Hamiltonian is turned on for, which in this case happens to

be the time it takes for the pump to traverse the crystal. For the purpose of this

calculation tint has no relation and no bearing on the time variable or the time

eigenstates in any way, and is just a constant affecting the squeezing parameter.

One way tint can affect the time domain calculation is if we take into account

dispersion of the crystal and say that refractive index and hence tint varies with ν.

This is but neglected for now as the pump is assumed to be perfectly monochro-

matic. Incorporating this requires including a frequency dependent factor in χ

and integrating over the pump bandwidth.

Another important consideration is whether tint has an effect on the time domain
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analysis due to the energy uncertainty relation and that changes the Hamilto-

nian to include the effects of the finite crystal. However most SPDC and down-

conversion references ignore this effect, hence we will as well.

Therefore an SPDC output with a finite bandwidth can actually be considered as

a train of SPDC pulses. Even though the emission could be random, we will get

the complete information if our detection resolution is δt since we can decompose

any arbitrary output into a basis of time pulses with separation δt where B is the

bandwidth. In the SPDC case e.g B = 300 GHz, meaning the pulse separation

is 3.33 picoseconds If we make the bandwidth 1 GHz, then the separation is 1

nanosecond.

D.3.2 SPDC with a filter cavity

Now in this case the Hamiltonian is the same as in the SPDC case as derived

above.

Hspdc = −iχβ(

∫ ∞
−∞

dt(Â1,tÂ2,t − c.c)

Now this state encounters the cavity, so first let us look at the effect of a filter

cavity on a mode.

D.3.2.1 Effect of cavity on modes in time domain

The cavity can be treated as a double BS apparatus. Let the mode input to the cav-

ity be At,in, the mode reflected back be At,r, the mode in the cavity be At,m1,At,m2

travelling along at the first mirror and against the input at the second mirror,

respectively, and the mode outside be At,out. Bt,out can be the vacuum mode out

side the cavity and let the length of the cavity be L. As will be derived below, at a

BS the operator in the time domain splits similar to the operator in the frequency

domain, Â1,t → Â1,t + Â2,t. Therefore here, Ât,m1 = τ1Ât,in + ρ1Ât−tc,m2e
iωtc ,

Ât,r = ρ1Ât,in − τ1Ât−tc,m2. Again at the second BS, Ât,out = τ2Ât−tc,m1 − ρ2B̂t,out,

Ât,m2 = ρ2Ât−tc,m1 + τ2B̂t,out. Here tc = L/c, L being the length of the cav-

ity. Now we must find Ât,m1 and Ât,m2 which would allow us to solve for Ât,out.

Ât,m2 = ρ2Ât−tc,m1 + τ2B̂t,out .

=⇒ Ât,m1 = τ1Ât,in + ρ1ρ2Ât−2tc,m1 + ρ1τ2B̂t−tc,out
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=⇒ Ât,m1 =
N∑
n=0

(ρ1ρ2)n(τ1Ât−2ntc,in + ρ1τ2B̂t−(2n+1)tc,out) + (ρ1ρ2)N Ât−2Ntc,m1)

Now in the above expression if N gets very large, then asymptotically, the expres-

sion converges to be, Ât,m1 =
N∑
n=0

(ρ1ρ2)n(τ1Ât−2ntc,in + ρ1τ2B̂t−(2n+1)tc,out). Now,

Ât,out = τ2Ât−tc,m1 − ρ2B̂t,out

=⇒ Ât,out =
N∑
n=0

(ρ1ρ2)n(τ1τ2Ât−(2n+1)tc,in+ρ1τ
2
2 B̂t−(2n+2)tc,out)−ρ2B̂t,out (D.11)

We have thus derived Aout in terms of Ain and vacuum modes B.

Now all that is left is to decide the final shape of the output mode. For an

intuitive idea, we can consider At,out without the vacuum modes. We know that

At =
∑

j αjsinc(πB(t− tj)). Therefore

Ât,out = τ1τ2

N∑
n=0

(ρ1ρ2)n
∑
j

α̂j,insinc(πB(t− 2ntc − tj))

= τ1τ2

∑
j

α̂j,in

N∑
n=0

(ρ1ρ2)nsinc(πB(t− tj − 2ntc))

Understandably, its a little hard to discern the output in an intuitive way from the

above expression. The expression does not have a good simplification for N →∞.

Fortunately its easy to see the behaviour of the expression as a function of the

various parameters numerically. Firstly N does go to infinity, but the ρ1ρ2 term

which is always less than 1 ensures that larger N terms are less significant. The

more interesting variables are the cavity reflectivity ρ, B and tc. For ρ = 1, the

expression is an infinite sum of equal sinc. If the round trip time 2tc is short

enough with respect to the width of the sinc bandwidth B, the sum would convert

to a constant line. A constant line in t would be similar to a sinc with vanishing

bandwidth, i.e a monochromatic beam. This is the effect we commonly think of

a cavity having, i.e it selects a single frequency out of the input and allows it

through. But for a long enough round trip time or short enough B, we would not

have a constant line. In fact in the other extreme we will have a train of sinc

pulses. This is the important insight that will come back later. For now we note

that the cavity is not a single frequency filter. Its frequency spectrum is a comb,

and hence its time spectrum is a train of pulses. The input frequency bandwidth

and the cavity spectral linewidth and FSR together decide whether the output can
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be treated as nearly monochromatic/temporally-constant light or a comb in both

frequency and time.

For ρ→ 0, Aout is just the original Ain. For all ρ in between the two extremes we

can numerically see that the sum turns from a symmetric sinc to a one sided pulse

with maximum at t = tj and an elongated tail towards t > tj. The greater the

reflectivity, and thus the finesse of the cavity, the longer the length of the output

pulse. Conversely we could say that higher the finesse, longer the time bin width,

and hence smaller the bandwidth or the linewidth of the cavity.

Now we come back to look at what happens when we put SPDC into the cavity

filter. Simply replace the mode with the new mode that we have derived.

Ât,out =
N∑
n=0

(ρ1ρ2)n(τ1τ2Ât−(2n+1)tc,in + ρ1τ
2
2 B̂t−(2n+2)tc,out)− ρ2B̂t,out

=
N∑
m=0

cmÂ′t−mtc (D.12)

where cm = −ρ2 for m = 0, (ρ1ρ2)m/2τ1τ2 for odd m and (ρ1ρ2)
m−1

2 ρ1τ
2
2 for even

m and A = A for odd m and A = B for even m.

Hspdc = −iχβ(

∫ ∞
−∞

dt(Â1,tÂ2,t − c.c)

= −iχβ(

∫ ∞
−∞

dt(
N∑
n=0

cnÂ′1,t−ntc)(
N∑
m=0

cmÂ′2,t−mtc)− c.c)

= −iχβ
N∑

n,m=0

cncm

∫ ∞
−∞

dt(Â1,t−mtcÂ2,t−ntc − c.c)

= −iχβ
N∑

n,m=0

cncm
B

∫ ∞
−∞

dt(
∞∑

i,j=0

α̂1,iα̂2,j

sinc(πB(t−mtc − ti))sinc(πB(t− ntc − tj))− c.c)

= −iχβ
N∑

n,m=0

cncm

∞∑
i,j=0

(α̂1,iα̂2,jsinc(π(j − i+ (n−m)
B

2FSR
))− c.c)

For the sake of convenience, we can assume that FSR is small enough that B/FSR

is a large integer. Having it be large also brings sinc to look more and more like

a delta function and the secondary peaks can be ignored and we can only look at
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the central maxima of each sinc, i.e i = j + (n− 2m)B/2FSR. Therefore,

Hfilteredspdc = −iχβ
N∑

n,m=0

cncm

∞∑
j=0

(α̂1,j+(n−m) B
2FSR

α̂2,j − c.c)

Its a complicated sum, perhaps we can get more insight when we do HOM and

detection on it.

D.3.3 Hong-Ou-Mandel interference

Now to see what would happen if we interfere the two down-converted modes and

analyze in the time domain. In the frequency domain, the BS would simply enact

âν → âν + âν , â−ν → â−ν − â−ν .

HHOM1 =
−iχβ

2
(

∫ B/2

−B/2
dν(â1,ν + â2,ν)(â1,−ν − â2,−ν)dt− c.c)

HHOM1 =
−iχβ
2B

(
∑
j

(â1,j â1,j + â2,j â1,j − â1,j â2,j − â2,j â2,j)− c.c)

=
−iχβ
2B

(

∫ ∞
−∞

dt(Â1,tÂ1,t − Â2,tÂ2,t + Â1,tÂ2,t − Â1,tÂ2,t − c.c)

HHOM1 =
−iχβ
2B

(
∑
j

(â1,j â1,j − â2,j â2,j)− c.c)

=
−iχβ

2
(

∫ ∞
−∞

dt(Â1tÂ1t − Â2tÂ2t − c.c) (D.13)

Therefore, Â1,t → Â1,t+Â2,t and Â2,t → Â1,t−Â2,t and it seems fairly obvious that

HOM is happening and there will be no coincidences. But the above simplification

would require the paths to meet such that Â1,t interferes with Â2,t. What if this is

not true? So now consider the arbitrary time Hamiltonian where â1,ν and â2,−ν are

interfered at a BS but in such a way that mode 2 has travelled an extra relative
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time t′ = t+ ∆t. Therefore now,

HHOM2 =
−iχβ

2
(

∫ B/2

−B/2
dν(â1,ν + â2,ν)(â1,−ν − â2,−ν) exp 2πiν∆t− c.c)

HHOM2 =
−iχβ
2B

(
∑
i,j

(â1,iâ1,j − â2,iâ2,j)sincπB(ti − tj + ∆t) + c.c

+

B/2∫
−B/2

dν(â2,j â1,ie
2πiν(−ti+tj+∆t) − â1,iâ2,je

2πiν(ti−tj+∆t))− c.c)

HHOM2 =
−iχβ
2B

∑
i,j

(
(â1,iâ1,j − â2,iâ2,j)sincπB(ti − tj + ∆t)

+ â1,iâ2,j(sincπB(−ti + tj + ∆t)− sincπB(ti − tj + ∆t))− c.c
)

HHOM2 =
−iχβ

2

∫ ∞
−∞

dt(Â1,t′Â1,t − Â2,t′Â2,t + Â1,tÂ2,t′ − Â1,t′Â2,t − c.c) (D.14)

Therefore, now Â1,t′ → Â1,t′ + Â2,t′ and Â2,t → Â1,t − Â2,t. From the above

expression we can clearly see that if ∆t 6= 0 for some k then we will have essentially

all terms of the summation in the output, so we will have to find the matrix

elements to see the time dependence and correlation. Finally we see what happens

if we try HOM with a filtered SPDC.

Hfilteredspdc =
−iχβ

2

N∑
n,m=0

cncm

∞∫
−∞

dt(Â1,t−mtc + Â2,t−mtc)(Â1,t−ntc − Â2,t−ntc)− c.c

This is even less obvious a result and we have to learn detection in the time domain

now before we go any further.
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D.4 Detection

Let us think what happens when we make a measurement. So far we have con-

sidered described states in the form U |0〉 and describing the propagator U =

exp iHtint describes the state completely. Measurements are essentially the op-

erator matrix acting on these states. The operators that we can measure in the

lab are the number operator, â†â and P̂ and Q̂. Therefore, measurement of op-

erator O is equivalent to the finding the matrix element 〈0|U †ÔU |0〉. So to find

the measurement result it suffices to find the evolution of the operator under the

propagator.

An important point to note here is that when we measure P and Q using ho-

modyne detection, we are picking a very sharp frequency line determined by the

frequency of the local oscillator. So in principle we can assume the local oscillator

is a monochromatic continuous wave and we are measuring P̂ν and Q̂ν . (We could

also design our local oscillator to have a non-monochromatic bandwidth). How-

ever when we measure with the TES, we have bandwidth of measurement, and

consequently the measurement has a finite time width given by the time resolution

of the detector. Therefore the measurement is actually D̂†t D̂, where I denote the

time domain creation and annihilation operators of the detector by D̂†t and D̂t.

However since the bandwidth Bd of detection is different from the bandwidth of

creation, while we can still decompose Dt into time bin operators dj, the dura-

tion of these time bins is distinct from the mode creation operator decomposition.

Therefore it has to be carefully understood what the operator is.

So now we want to find matrix elements of the operator, i.e. calculate U †ÔU .

To do that we have find the relation between Dt and At. If we expand Dt in

its time domain basis, we can get a decomposition into time bins just as before.

However the bandwidth and hence the time bins are different now. To see their

commutation relation we can fourier transform back to their frequency components

which is more familiar territory.

aν =

∫ ∞
−∞

dtÂt exp 2πiνt

dν =

∫ ∞
−∞

dtD̂t exp 2πiνt
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Now in the frequency domain the we know the relation is simply, [d̂ν , â
†
ν′ ] = δ(ν−ν ′)

i.e for monochromatic light the detection measures exactly the optical mode.

Therefore we can find,

[Ât, D̂
†
t′ ] =

∫ Bs/2

Bs/2

∫ Bd/2

Bd/2

dνdν ′âν d̂
†
ν′exp(2πi(νt− ν

′t′))

−
∫ Bs/2

Bs/2

∫ Bd/2

Bd/2

dνdν ′d̂†ν′ âνexp(2πi(νt− ν
′t′))

=

∫ Bs/2

Bs/2

∫ Bd/2

Bd/2

dνdν ′δ(ν − ν ′)exp(2πi(νt− ν ′t′))

+

∫ Bs/2

Bs/2

∫ Bd/2

Bd/2

dνdν ′d̂†ν′ âν(exp(2πi(νt− ν
′t′))− exp(2πi(νt− ν ′t′)))

= Bsinc(πB(t− t′)) (D.15)

where B is the min{Bs, Bd}.

However Bd >> Bs is almost always true. That would mean that most detectors

have vanishingly small δt time bins and hence very high time resolution. However

that is also not true, the TES has terrible time resolution, ∼ 1µs. The reason is

that detectors, despite having large bandwidth and tiny theoretical time resolution,

have their speed determined by the response time. The response time of a detectors

depends on machinery of the detector output, which will usually set the resolution

of the detector a value much larger than the minimum theoretical time resolution

set by the bandwidth. The resolution time ends up integrating the operator it

measures over the response time of the detector, since all detection within this time

are considered as one measurement. In the case of the TES, it is the response time

that is 100 ns. Fortunately the TES has no dead time to take into consideration

if we assume the input flux is low enough to not saturate the detector.

Therefore, finally we can write the number operator of a PNR detector as Nt =

D†tDt =
∫ t+Td
t

dtA†tAt, where Td is the response time of the detector. Also the

time bins are now decided by the shorter bandwidth which is simply Bs, and

therefore the theoretical time bins will be simply δt = 1/Bs. However the actual

measurement output will be in time bins of δt = Td.
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So now we are back to the finding the matrix elements, i.e. calculate U †ÔU , where

U = exp iHtint. From the Hadamard lemma we can see simply that -

exp (iHtint)Ô exp (−iHtint) (D.16)

= O + [iHt,O] +
1

2!
[iHt, [iHt,O]] +

1

3!
[iHt, [iHt, [iHt,O]]]..

For a PNR detector, we have Ô =
∫ t+Td
t

dtA†tAt. Now to see how this detector

model fares against various states.

D.4.1 Coherent State

Lets do it first for coherent state, where U is simply the displacement operator,

|αt〉 = exp[
∫∞
−∞ dt(αtÂ

†
t − α∗t Ât)]|0〉.

[iHtint, O] = [

∫ ∞
−∞

dt(αtÂ
†
t − α∗t Ât),

∫ t+Td

t

dtA†tAt]

=

∫ ∞
−∞

∫ tm+Td

tm

dt′dt(αt′Â
†
t [Â
†
t′ , Ât]− α

∗
t′ [Ât′ , Â

†
t ]Ât)

= −
∫ ∞
−∞

∫ tm+Td

tm

dt′dt(αt′Â
†
tBsincπB(t′ − t) + c.c)

= −
∑
i,j

∫ ∞
−∞

∫ tm+Td

tm

dt′dtB2(αiâ
†
jsincπB(t′ − t)

× sincπB(t′ − ti)sincπB(t− tj) + c.c)

= −
∑
i,j

∫ tm+Td

tm

dtB(αiâ
†
jsincπB(t− tj)sincπB(t− ti) + c.c)

= −
∫ tm+Td

tm

dt(αtÂ
†
t + α∗t Ât)

No further simplification is possible, we can simply go ahead and find the second

term of the series D.16. Note the + sign that comes in front of c.c in the above



Appendix D 104

simplification due to the fact that [â, â†] = −[â†, â].

[iHtint, [iHtint, O]] = [

∫ ∞
−∞

dt(αtÂ
†
t − α∗t Ât),−

∫ tm+Td

tm

dt(αtÂ
†
t + α∗t Ât)]

=

∫ ∞
−∞

dt

∫ tm+Td

tm

dt′αtα
∗
t′ + α∗tαt′

= 2

∫ tm+Td

tm

dt′|αt′ |2

This term being a numerical term and not an operator, will commute with H, and

hence all the remaining terms of the series will be zero. Now our measurement

result will now simply be the matrix element of the new operator given by D.16

with the vacuum state. Therefore Ntm = 〈0|
∫ tm+Td
tm

dt(Â†tÂt + αtÂ
†
t + α∗t Ât +

1
2
(2
∫ tm+Td
tm

dt′|αt′|2)|0〉. It is easy to see that all except the last term will gives zero

and therefore the measurement result is in fact

〈N〉 =

∫ tm+Td

tm

dt′|αt′ |2. (D.17)

If we were integrating over all time, essentially using a super slow detector to make

a continuous wave measurement, then we get back
∫∞
−∞ dt

′|αt′|2 = 〈N〉. (tm is an

arbitrary time for start of measurement and can be assumed to be any time without

loss of generality). Therefore a slow detector will be a quasi-cw measurement and

give us the average photon number measurements over multiple time bins and

time statistics would not be discernible.

From all the above calculation we can use a couple of simple notes which will make

our calculations easier.∫ ∞
−∞

ÂtBsinc(πB(t− t′)) dt = Ât′ (D.18)∫ ∞
−∞

Bsinc(πB(t− t′))sinc(πB(t− t′′)) dt = sinc(πB(t′′ − t′)) (D.19)
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D.4.2 SPDC

Now on to the interesting case, two mode down-conversion. Lets say we are just

trying to measure the correlation. Then the measurement is two separate mea-

surements of photon numbers, while the Hamiltonian is simply Hspdc.

Hspdc = −iχβ(

∫ ∞
−∞

dt(Â1,tÂ2,t − c.c)

Ô1 =

∫ t+Td

t

dtÂ†1,tÂ1,t, Ô2 =

∫ t+Td

t

dtÂ†2,tÂ2,t (D.20)

In light of the previous calculation, it is not very difficult to see how this operator

transformation will progress.

[iHspdctint, Ô1] = r(

∫ ∞
−∞

dt

∫ tm+Td

tm

dt′[(Â1,tÂ2,t − c.c), Â†1,t′Â1,t′ ]

= r(

∫ ∞
−∞

dt

∫ tm+Td

tm

dt′(Â1,t′Â2,tBsinc(πB(t− t′)) + c.c)

= r(

∫ tm+Td

tm

dt(Â1,tÂ2,t + c.c)

[iHtint, [iHtint, Ô1]] = r2(

∫ ∞
−∞

dt

∫ tm+Td

tm

dt′[(Â1,tÂ2,t − c.c), (Â1,t′Â2,t′ + c.c)]

= 2r2(

∫ ∞
−∞

dt

∫ tm+Td

tm

dt′[Â1,tÂ2,t, Â
†
1,t′Â

†
2,t′)

= 2r2(

∫ ∞
−∞

∫ tm+Td

tm

dtdt′Â†1,tÂ1,t′ + Â†2,tÂ2,t′

+ [Â1,t, Â
†
1,t′ ][Â2,t, Â

†
2,t′ ])

= 2r2(

∫ tm+Td

tm

dt(Â†1,tÂ1,t + Â†2,tÂ2,t +B))

where, r = χβtint.

We could go on to calculate the remaining terms in the series by brute force, or we

could look at the above calculation and see that a great simplification is possible

here. The matrix element with vacuum of the first term will obviously go to zero

since it is not balanced in creation and annihilation. The final form of the second

term of the series of the form Ô1 + Ô2 + [At, A
†
t ]. This is completely symmetric

in mode 1,2 and we can check easily that Ô2 evolves the same way. Since the
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commutator will be a c number it will commute in future terms. Using all these

implications, and (D.3) we can draw some easily simplifications to figure out what

the measurement will be equal to. All the even terms will go to 0 and odd terms

will survive.

〈(O1 +O2)〉 = 〈0|U †(O1 +O2)U |0〉

= 〈0|
∫ tm+Td

tm

dt

(
Â†1,tÂ1,t + Â†2,tÂ2,t +B(

∞∑
n=0

(2r)2n

(2n)!
)−B

)
|0〉

= 〈0|
∫ tm+Td

tm

dt ((cosh(2r)− 1)B) |0〉

= 2 sinh2 rBTd (D.21)

This is a beautiful result. From frequency domain calculation we know that the

average photon number of an SPDC state is 2 sinh2 r. We saw earlier that a

broadband SPDC state in the time domain is simply a tensor product of time

binned SPDC states, all of which have the squeezing parameter r. Since the

average photon number of each of these SPDC states is 2 sinh2 r, the average

across all time bins should also be the same. But that is only if the detector

time resolution matches exactly the time bin decomposition of the source. If the

detector is slower it will integrate over multiple Fock states, and will therefore

posit an average photon number higher 2 sinh2 r. Therefore if ever we were able to

hook up the TES to bright beams, we should get a large average photon number

even for small r given that Td of the TES is huge.

As we saw earlier, U †O1U=U †O2U . Therefore the subtraction,

〈0|U †(Ô1 − Ô2)U |0〉 = 0 (D.22)

This is expected since all the photons are produced in pairs and photon number

difference is conserved (it is 0 initially for vacuum state).

Now the obvious question is what happens if the 2 detectors are off in time, so now

the O1 and O2 will be characterized by t’ and t”, respectively, where |t′− t′′| = ∆t.

[iHt,O1 +O2] = r

∫ tm+Td

tm

dt′Â1,t′Â2,t′ + c.c+ Â1,t′′Â2,t′′ + c.c
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Therefore we will get

〈(O1 +O2)〉 = 〈0|U †(O1 +O2)U |0〉

= 〈 0 |
tm2+Td∫
tm2

dt′
[
Â†1,t′Â1,t′ + Â†2,t′′Â2,t′′ +

(
∞∑
n=1

(2r)2n

(2n)!

)
×

( ∞∫
−∞

dt
Â†1,t′Â1,t + Â†2,t′Â2,t + [Â1,t′ , Â

†
1,t][Â2,t′ , Â

†
2,t]

2

+

∞∫
−∞

dt
Â†1,t′′Â1,t + Â†2,t′′Â2,t + [Â1,t′′ , Â

†
1,t][Â2,t′′ , Â

†
2,t]

2

)]
|0〉

= 〈0|
tm+Td∫
tm

dt

(
1

2
B(cosh(2r)− 1)

)
+

tm+Td∫
tm

dt

(
1

2
B(cosh(2r)− 1)

)
|0〉

= 〈0| ((cosh(2r)− 1)B)Td|0〉

= 2 sinh2 rBTd (D.23)

This gives the same result as before, as will the difference. That is because the

expectation value of the photon number of a channel is independent of the time

of measurement. For a measure of the time correlation we need to calculate the

variance of these operators 〈∆(Ô1 − Ô2)〉, 〈∆(Ô1 + Ô2)〉 ∝ 〈Ô1Ô2〉 which can be

calculated easily from 〈(Ô1 + Ô2)2〉. Again using t’ and t” to denote the constant

non-zero time delay between the two detectors. Also since tm, the start of the

measurement, is our choice, we can always set tm1 = tm2, i.e the two detectors are

on at the same time.

(O1 +O2)2 = (

∫ tm1+Td

tm1

dt′Â†1,t′Â1,t′ +

∫ tm2+Td

tm2

dt′′Â†2,t′′Â2,t′′)
2

= (

∫ tm+Td

tm

dt′(Â†1,t′Â1,t′ + Â†2,t′′Â2,t′′))
2

[iHtint, (O1 +O2)2] = [iHtint, (O1 +O2)](O1 +O2) + (O1 +O2)[iHtint, (O1 +O2)]

= r

tm+Td∫
tm

dt′((Â1,t′Â2,t′ + Â1,t′′Â2,t′′ + c.c)(Â†1,t′Â1,t′ + Â†2,t′′Â2,t′′)

+ (Â†1,t′Â1,t′ + Â†2,t′′Â2,t′′)(Â1,t′Â2,t′ + Â1,t′′Â2,t′′ + c.c))
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[iHtint, [iHtint, (O1 +O2)2]] = [iHtint, [iHtint, (O1 +O2)]](O1 +O2)

+ (O1 +O2)[iHtint, [iHtint, (O1 +O2)]]

+ 2[iHtint, [iHtint, (O1 +O2)]]2

U †(O1 +O2)2U =
∞∑
n=0

n∑
m=0

Cn
m

n!
[(O1 +O2)]mtimes[(O1 +O2)]n−mtimes

=
∞∑
m=0

∞∑
n=m

Cn
m

(n)!
[(O1 +O2)]mtimes[(O1 +O2)](n−m)times

=
∞∑
m=0

[(O1 +O2)]mtimes

(m)!

∞∑
n=m

[(O1 +O2)](n−m)times

((n−m))!

= (
∞∑
m=0

[(O1 +O2)]mtimes

(m)!
)2 (D.24)

We have already calculated the results of the summation before, so omitting all

the normal ordered terms which will go to zero, we get -

〈0|U †(O1 +O2)2U |0〉 = 〈0|(
∞∑
m=0

[(O1 +O2)]mtimes

(m)!
)2|0〉

= 〈0|(
∞∑
m=0

[(O1 +O2)]2mtimes

(2m)!
)(
∞∑
n=0

[(O1 +O2)]2ntimes

(2n)!
)|0〉

+ 〈0|(
∞∑
m=0

[(O1 +O2)]2m+1times

(2m+ 1)!
)(
∞∑
n=0

[(O1 +O2)]2n+1times

(2n+ 1)!
)|0〉

= 〈(O1 +O2)〉2 +

∫ tm+Td

tm

∫ tm+Td

tm

dt′1dt
′
2〈0|(

∞∑
m=0

∞∑
n=0

(2r)2m+2n+2

4(2m+ 1)!(2n+ 1)!

× (Â1,t′Â2,t′ + Â1,t′′Â2,t′′ + c.c)(Â1,t′Â2,t′ + Â1,t′′Â2,t′′ + c.c))|0〉

= 〈(O1 +O2)〉2 +

∫ tm+Td

tm

∫ tm+Td

tm

dt′1dt
′
2〈0|

sinh2(2r)

4

× (Â1,t′1
Â2,t′1

+ Â1,t′′1
Â2,t′′1

)(Â†1,t′2
Â†2,t′2

+ Â†1,t′′2
Â†2,t′′2

))|0〉

= 〈(O1 +O2)〉2 +
sinh2(2r)

4

∫ tm+Td

tm

∫ tm+Td

tm

dt′1dt
′
2B

2(sinc2(πB(t′1 − t′2))

+ sinc2(πB(t′1 − t′′2)) + sinc2(πB(t′′1 − t′2)) + sinc2(πB(t′′1 − t′′2)))

= 〈(O1 +O2)〉2 +
sinh2(2r)

2
B2

×
∫ Td

0

∫ Td

0

dt′1dt
′
2(sinc2(πB(t′1 − t′2)) + sinc2(πB(t′1 − t′2 + ∆t)))

(D.25)
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This, despite being the accurate result, is not quite as illuminating as it can

be with a few more assumptions and simplifications. The final simplification is

only applicable is we assume Td >> B and Td >> ∆t so that we can set the

measurement integral to be
∫ Td/2
−Td/2

dtBsinc2(πBt) ' 1. This is a pretty good

approximation, since 1
Td

∫ Td/2
−Td/2

∫ Td/2
−Td/2

dt1dt2sinc
2(π(t1− t2)) tends to 1 for large Td.

〈(O1 +O2)2〉 = 〈(O1 +O2)〉2 + sinh2(2r)BTd

=⇒ 〈(O1 +O2)2〉 − 〈O1 +O2〉2 = V 2(O1) + V 2(O2) + 2V (O1, O2) (D.26)

= sinh2(2r)BTd (D.27)

So what is the correlation? A measure of correlation can be the number of photon

that arrive together divided by the total number of photons. If N1 and N2 are the

number of photons arriving at the two channels then (<N1N2>−<N1><N2>)
(<N1>)

is ratio

of photon pair detection events to the individual photon detection events. Then

this is the correlation function, so I shall call it thus for lack of better, perhaps

more correct name.

If we calculate 〈O1 − O2〉 we will get a minus sign between two ’equal’ sinc’s at

the end and the answer will simply be 0. This is good, N1−N2 should be zero for

small ∆t. It also tells us that -

〈(O1 +O2)2〉 − 〈O1 +O2〉2 = V 2(O1) + V 2(O2) + 2V (O1, O2)

= sinh2(2r)BTd (D.28)

〈(O1 −O2)2〉 − 〈O1 +O2〉2 = V 2(O1) + V 2(O2)− 2V (O1, O2)

= 0 (D.29)

=⇒ V 2(O1) = V 2(O2) = V (O1, O2) = (1/4) sinh2(2r)BTd (D.30)

Therefore the correlation is given by -

Correlation(∆t) =
(sinh2(2r)BTd)

4 sinh2 rBTd

= cosh2 r (D.31)

This agrees with the calculation of ∆(N1+N2) and the correlation in the frequency

domain calculation i.e the correlation is independent of ∆t if Td >> ∆t.

If we calculate correlation as the ratio of number of pair ’events’ to number of

individual ’events’, the correlation will go to 1 for perfect correlation. However
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< N1N2 > and < N1 > are not counting detecting events rather photons, or in

other words, detection events weighted by the photon number of the events. In this

case obviously the max is not 1. We can prove easily that the maximum correlation

is in fact as described above cosh2 r. A quick check is that single photon correlation

is equivalent to event correlation because the weights of both N1N2 and N1 events

are equal to 1 (also V (N1), V (N2) → 0). Correspondingly at low squeezing when

all we have is mostly single photon pairs we see that cosh2 r ' 1 for r → 0

supporting the claim.

D.4.3 Hong-Ou-Mandel interference

Now that we have satisfactory analyses of direct correlation, we can look at the

central result towards which we have been driving slowly but inexorably. We have

already calculated the source Hamiltonian in the previous section. Now to see

what we will see at the detector.

The detector operator is again the same, O1 and O2, which is simply the number

operator integrated over the detector time resolution. We have already seen that

small time difference between 2 beams arriving at the 2 detectors is ignored and

integrated over by the detector if Td >> 1/B and Td >> ∆t. For these assump-

tions to be violated for the TES, we would have to have B ' 10MHz or path

difference between the two beams ∆x = c · 100ns = 30m. Neither is a very likely

event for the TES, so for now we can ignore the separation of the detectors in

time. Even if we had a slightly faster detector, this is still of only minor academic

interest since we can always shift one trace in time to get back the correlation.

Thanks to that calculation now we know exactly what the quantification of this

hand-waving reasoning is, how big the Td has to be with respect to B and ∆t, but

we don’t need to do that calculation in future analyses. Therefore the operator

becomes

O1 +O2 =

∫ tm+Td

tm

dt(Â†1,tÂ1,t + Â†2,tÂ2,t)

=

∫ tm+Td

tm

dt(Â†+,tÂ+,t + Â†−,tÂ−,t)
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The general HOM hamiltonian can simply be HHOM2 as calculated in D.14.

HHOM =
−iχβ

2
(

∫ ∞
−∞

dt′(Â1,t′Â1,t′′ + Â2,t′Â1,t′′ − Â1,t′Â2,t′′ − Â2,t′Â2,t′′ + c.c))

= −iχβ(

∫ ∞
−∞

dt′(Â+,t′Â−,t′′ + c.c)) (D.32)

where t′′ = t′+∆t and ∆t is a constant time difference in the path lengths of the 2

beams A1 and A2. This ∆t, is not like the one in the previous paragraph. This is

because this ∆t is not just before the detector but before the BS and the action of

the BS is not integrated and averaged over a large time like in the detector. In the

+/− compact notation, we see that its similar to the shifted two mode correlation.

So here we go again -

[iHtint, O1 +O2] = r

∫ tm+Td

tm

dt

∫ ∞
−∞

dt′[(Â+,t′Â−,t′′ − c.c)(Â†+,tÂ+,t + Â†−,tÂ−,t)]

= 2r

∫ tm+Td

tm

dt′(Â+,t′Â−,t′′ + c.c)

[iHtint, [iHtint, O1 +O2]] = 2r2

tm+Td∫
tm

dt′′
∞∫

−∞

dt[(Â+,tÂ−,t′ + c.c)(Â†+,t′′Â
†
−,t′′′ + c.c)]

= 4r2

∫ tm+Td

tm

dt(Â†+,tÂ+,t′ + Â†−,tÂ−,t′ +B)

=⇒ 〈O1 +O2〉 = 2sinh2rBTd (D.33)

〈(O1 +O2)2〉 = 〈O1 +O2〉2 + sinh2(2r)

tm+Td∫
tm

dt

tm+Td∫
tm

dt′′〈0|Â+,tÂ−,t′Â
†
+,t′′Â

†
−,t′′′ |0〉

= 〈O1 +O2〉2 + sinh2(2r)B2

tm+Td∫
tm

dt

tm+Td∫
tm

dt′′sinc2(πB(t− t′′))

(D.34)

Therefore the variance of O1 +O2, ∆(O1 +O2) = ∆O1 + ∆O2 + 2V (O1, O2) scales

with Td. Before we decry all this work seeing the above result, lets calculate the
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other operator O1 −O2 = Â†+,tÂ−,t + Â†−,tÂ+,t.

[iHtint, O1 −O2] = r

∫ tm+Td

tm

dt

∫ ∞
−∞

dt′[(Â+,t′Â−,t′′ − c.c), Â†+,tÂ−,t + Â†−,tÂ+,t]

= r

∫ tm+Td

tm

dt′(Â+,t′Â+,t′′ + Â−,t′Â−,t′′ + c.c)

[iHtint, [iHtint, O1 −O2]] = 2r2

tm+Td∫
tm

dt′Â+,t′′Â
†
−,t′′ + Â+,t′Â

†
−,t′+2∆t

+ Â†+,t′Â−,t′ + Â†+,t′−∆tÂ−,t′′

[iHtint, [iHtint, [iHtint, O1 −O2]]] = 4r3

∫ tm+Td

tm

dt′(Â+,t′Â+,t′′ + Â−,t′Â−,t′′ + c.c)

=⇒ 〈O1 −O2〉 = 0 (D.35)

〈(O1 −O2)2〉 =
∑
n1,n2

sinh2(2r)B2

4

∫ tm+Td

tm

∫ tm+Td

tm

dtdt′′〈0|Â+,tÂ+,t′Â
†
+,t′′Â

†
+,t′′′

+ Â−,tÂ−,t′Â
†
−,t′′Â

†
−,t′′′ |0〉

=
sinh2(2r)B2

4

∫ tm+Td

tm

dt

∫ tm+Td

tm

dt′′(2sinc2(πB(t− t′′))

+ 2sinc(πB(t′ − t′′))sinc(πB(t− t′′′))) (D.36)

' sinh2(2r)

2
BTd(1 + sinc(2πB∆t)) (D.37)

Therefore

Correlation =
〈∆(O1 +O2)〉 − 〈∆(O1 −O2)2〉

〈O1〉

=
BTd(2 sinh2(2r)− sinh2(2r)(1 + sinc(2πB∆t)))

8 sinh2 rBTd
(D.38)

For small r,

correlation ' 1− sinc(2πB∆t)

2
(D.39)
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This is an important result. First of all this means that when ∆t = 0 there is zero

correlation, which is exactly Hong-Ou-Mandel interference. Even more interesting

however, is that for non zero ∆t, the correlation varies as sinc of B∆t. Therefore

as we increase ∆t from zero, we will restore the zero dip in correlation for non

zero ∆t not once but repeatedly at ∆t = n/B for all n ∈ I. Also interesting is the

fact that the maximum correlation is not 1 but 1/2. This is caused by classical

interference, since I have assumed there is perfect classical interference, only an

additional time lag. The strict correlation without any approximations is -

Correlation =
cosh2(r)

2

∫ tm+Td

tm

dt

∫ tm+Td

tm

dt′′sinc2(πB(t− t′′))

− sinc(πB(t′ − t′′))sinc(πB(t− t′′′)) (D.40)

However, remember that this is just the re-derivation of the simple HOM result.

We get a sinc function because we chose a square bandwidth hence we get the

repeated zero dips. Had we chosen a Gaussian bandwidth, we would get a Gaussian

dip with no recurrence of dips. The non-trivial result is when we put the filter

cavity in.

D.4.4 HOM after filter cavity

Now lets see what happens if we have a filter cavity as well in our HOM experiment

with a ∆t time lag introduced inside the cavity

A1,t =
N∑
n,=0

cnA1,t,n

Hfilteredspdc =
r

2

N∑
n,m=0

(cncm)

∫ ∞
−∞

dt((Â1,t,m + Â2,t,m)(Â1,t′,n − Â2,t′,n)− c.c)

O1 +O2 =

∫ tm+Td

tm

dt(Â†1,tÂ1,t + Â†2,tÂ2,t)

This is an infinite series of the earlier state each with time signature n,m. Therefore

we can treat this as-

Hfilteredspdc =
N∑

n,m=0

cncmHHOM,t,n,t′,m
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where t, n = t − 2ntc, and t′,m = t + δt − 2mtc = t + ∆t. Therefore we can

extrapolate the results of the earlier calculation and we get,

〈O1 +O2〉 =
N∑

n,m=0

cncm〈O1 +O2〉 = 2 sinh2 rBTd (D.41)

〈(O1 +O2)2〉 = (
N∑

n,m=0

cncm〈(O1 +O2)〉)2

+ sinh2(2r)〈(
N∑

n,n′=0

cncn′Â+,tÂ−,t′)(
N∑

n′′,n′′′=0

cn′′c
′
n′′Â

†
+,t′′Â

†
−,t′′′)〉

= (〈(O1 +O2)〉2 + sinh2(2r)
N∑

n,n′,n′′,n′′′=0

cncn′cn′′cn′′′

×
∫ tm+Td

tm

dt

∫ tm+Td

tm

dt′′sinc(πB(t− t′′))sinc(πB(t′ − t′′′)))

(D.42)

〈(O1 −O2〉 = 0

〈(O1 −O2)2〉 =
sinh2(2r)

4

tm+Td∫
tm

dt1

tm+Td∫
tm

dt2〈(
N∑

n,n′=0

cncn′(Â+,tÂ+,t′ + Â−,tÂ−,t′)

× (
N∑

n′′,n′′′=0

(cn′′cn′′′(Â
†
+,t′′Â

†
+,t′′′ + Â†−,t′′Â

†
−,t′′′)

=
sinh2(2r)

4

N∑
n,n′,n′′,n′′′=0

cncn′cn′′cn′′′

∫ tm+Td

tm

dt1

∫ tm+Td

tm

dt2

× (Â+,tÂ+,t′Â
†
+,t′′Â

†
+,t′′′ + Â−,tÂ−,t′Â

†
−,t′′Â

†
−,t′′′)

=
sinh2(2r)

4

N∑
n,n′,n′′,n′′′

cncn′cn′′cn′′′

∫ tm+Td

tm

dt1

∫ tm+Td

tm

dt2

× (2sinc(πB(t− t′′))sinc(πB(t′ − t′′′))

+ 2sinc(πB(t− t′′′))sinc(πB(t′ − t′′))) (D.43)
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Correlation =
〈∆(O1 +O2)〉 − 〈∆(O1 −O2)〉

〈O1〉

=
sinh2(2r)

8 sinh2(r)

N∑
n,n′,n′′,n′′′

cncn′cn′′cn′′′

∫ tm+Td

tm

dt1

×
(∫ tm+Td

tm

dt2sinc(πB(t− t′′))sinc(πB(t′ − t′′′))

− (sinc(πB(t− t′′))sinc(πB(t′ − t′′′))

+ sinc(πB(t− t′′′))sinc(πB(t′ − t′′)))
)

=
cosh2 r

2

N∑
n,n′,n′′,n′′′

cncn′cn′′cn′′′

∫ tm+Td

tm

dt1

∫ tm+Td

tm

dt2

×
(
sinc(πB(t− t′′))sinc(πB(t′ − t′′′))

− sinc(πB(t− t′′′))sinc(πB(t′ − t′′)))
)

(D.44)

Here t = t1− 2ntc, t
′ = t1 + ∆t− 2n′tc, t

′′ = t2− 2n′′tc, t
′′′ = t2 + ∆t− 2n′′′tc. Now

for small r this reduces to,

Correlation =
N∑

n,n′,n′′,n′′′=0

cncn′cn′′cn′′′

2

∫ tm+Td

tm

dt1

∫ tm+Td

tm

dt2

×
(
sinc(πB(t− t′′))sinc(πB(t′ − t′′′))

− sinc(πB(t− t′′′))sinc(πB(t′ − t′′))
)

(D.45)

This is the central result of this analysis.

It is slightly complicated to understand, so lets try to analyse it. So the correlation

goes to zero when the two sinc products are equal, which happens when ∆t = 0.

That’s good.

Now the question is there any other way for the correlation to vanish even with

non zero ∆t? There is none. The zero is attained only for ∆t = 0. The math

shows our intuition clearly that because there is an huge summation over all the

round trips of the initial pulse, each time there is a ”chirped” shift of one mode

with respect to the other by an additional ∆t. This proves that even if ∆t is

tiny but non-zero, (say picosecond delay in one polarization) compared to tc (say

nanosecond for a Ghz filter cavity), it causes major problems for HOM dip because

it adds up on only one mode and spoils the indistinguishability. This is probably

the reason why we cannot see HOM dip (at least not down to 0) in our experiment
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even if all else worked perfectly. The cavity transforms the picosecond pulse into

a train of picosecond pulses in a nanosecond envelope and the two trains have to

still match exactly at the picosecond level.

However now when ∆t = 2ktc, where k ∈ I we find that this sum can have

small values. At these values all the terms where n = n′ or n′′ = n′′′ go to 0.

Therefore even though the sum doesn’t go to 1/2, as ∆t increases the correlation

dips every time ∆t = 2ktc. This gives us a recurring dip at every multiple of

the cavity round trip time. For small k, the contribution of small n, n′, n′′, n′′′ is

greater which are more likely to cancel out and thus the dip is large. For large k,

the greater contribution is from the large n which cancel out rarely and therefore

the dip is much smaller. Therefore now we would see picosecond wide dips in a

nanosecond envelope.

The final exercise is to imagine what would happen if we made tc very small. In

this case the dips would happen very often. In the limiting case, we would see no

recurring dips but a single wide dip representing the sum of many narrow dips.

Thus the dip is broadened to the width of the cavity linewidth, i.e nanosecond.

This is exactly the effect we would want ideally when we use a cavity to filter the

frequency, thus broaden the pulse length and hence broaden the HOM dip.

Thus we conclude that a picosecond time delay inside the cavity will cause the

HOM dip to vanish even though we think that a picosecond is much smaller than

the cavity linewidth of a nanosecond. Secondly if there is no delay inside the

cavity, then we get a series of HOM dips instead of just one, where the dips are

separated by the cavity round trip time. The central dip is the only one that

goes to zero and each subsequent dip is smaller than the previous one. This was

experimentally demonstrated recently [81]. Third it is definitely possible with a

short cavity to actually broaden the dip to a nanosecond. This happens when the

round trip time of the cavity is short enough compared to the pulse width of the

input light that the recurrent dips cannot be distinguished. For that 2tc has to

be of the order of the pulse width δt. In our case the SPDC bandwidth is ∼THz,

δt = ps and the filter cavity was 1 mm or 3ps round trip. This does not quite

satisfy our condition and therefore we would indeed see a large temporal envelopes

with a train of SPDC pulses inside rather than just large temporal modes.
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D.5 Future Work

The first thing is to translate all these calculations to a gaussian envelope. While

the general inferences from this work can be applied to the gaussian case the actual

values cannot. Therefore unless we plan to do experiments using top hat frequency

filters, these calculations cannot be translated to experiments directly.

The second thing to extend these results for fast detectors. The goal of this work

was to establish whether the TES could see HOM in our experiments and the effect

of the filter cavity on this experiment. Therefore I have made the assumption

that Td >> δt,∆t which simplified the final answer in a lot of the calculations.

However in the case of photon subtraction from a bright squeezed state or squeezing

detection, or time domain CV entanglement, the exact opposite case needs to be

investigated, where the input mode is nearly monochromatic but the detector

temporal mode is short. This case has many exciting and interesting results, such

as the splitting of the optical temporal modes into the detector temporal modes.
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Fock state tomography

The experiment we completed and published in JOSA B demonstrated the feasibil-

ity of the direct measurement of Wigner function using photon number resolving

measurement. In this paper we performed the tomography of the vacuum state,

coherent state and a coherent state with phase noise. All of these states have

Wigner functions that are positive everywhere. These states are can be described

by classical and other physical theories besides quantum physics. The most telling

aspect of the classicality of the coherent state is that its qualitative nature is

unaffected by losses.

The main use of Wigner function measurement is for characterization of quantum

states. Particularly in quantum information applications where loss is extremely

destructive to information, characterizing states and ancilla is extremely impor-

tant. Therefore we want to use this method of tomography to characterize novel,

highly non-classical states, specifically those with negative Wigner functions. The

simplest such state is the single photon Fock state.

118
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E.1 Generation of single photon state

E.1.1 Theory

One method of generation of single photon is by using the TMSS. Using Type-II

PPKTP crystal we can generate

|TMSS 〉 =
1

cosh r

∞∑
n=0

tanhn r |n 〉1 |n 〉2

PPKTP
Green pump

Heralding
PNRD

Heralded
Fock state

Figure E.1: Type-II PPKTP crystal down-coverts green photons into infra-red
photon pairs used to create heralded Fock states

Now if we use a photon number resolving detector to measure mode 2, and post

select the state in mode 1 contingent on the measurement of say, n = k on mode

1 then we get

|ψ 〉1 = 〈 k |2

1

cosh r

∞∑
n=0

tanhn r |n 〉1 |n 〉2

=
tanhk r

cosh r
| k 〉1 (E.1)

leaving mode 1 in a Fock state | k 〉. This is known as the heralded Fock state.

E.1.2 Experiment

However the experimental implementation of heralded Fock state has to overcome

several practical hurdles. To prevent the spontaneous parametric down-conversion

(SPDC) emission from being extremely multimode and lossy, we use an optical

parametric oscillator (OPO) and a filter cavity (FC). The details of our attempts

leading up to this installation of these two cavities can be found in Reihaneh

Shahrokhshahi’s doctoral thesis.
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Error 
Signal Detector

Error Signal 
Detector

PPKTP
Green
pump

Heralding
PNRD

Heralded
Fock state

OPO Cavity

Filter 
Cavity

Locking
Beam

Figure E.2: Type-II PPKTP crystal downcoverts green photons into infra-red
photon pairs used to create heralded Fock states

However using these cavity adds additional requirements. First the filter cavity’s

resonant frequency has to be locked on to the resonant frequency of the OPO

so that it allows the resonant mode through while filtering the other frequencies.

Secondly using an OPO increases the PDC emission in the resonant frequency,

but does not eliminate the spontaneous emission in the other modes. Therefore to

maximize the emission into a specific frequency mode, we have to lock the OPO

so that it is doubly resonant. It is not feasible to have two different frequencies

resonant at both cavities. Therefore both cavities must be locked at the same

frequency which is half the pump frequency.

Now, despite the need for active stabilization of both cavities, no locking beam

can be used during the experiment. This is because the TES can detect very low

(fW) of power and gets saturated at fairly low powers as well (pW). Therefore any

locking beam would saturate the TES. The solution for this is to use ON/OFF

locking. First a locking beam is used to lock the cavities and no data is taken

during this time. Then the locking beam is turned off while the voltages on the

locking electronics thus keeping the system as close to the locked state as possible

but without any active stabiization. Without the locking beam the experimental

data can be acquired now. After a short acquisition window, the data acquisition

is stopped and the locking beam and stabilization reactivated. The process is

repeated until all the required data has been acquired.

The locking beam was turned off and on using Thorlabs diaphragm shutter and

controller SBH05T. The switching between active stabilization and passive voltage

was done using the Jump option on the Vescent D2-125 laser servo. Both of these

are controlled using a voltage signal generated by the SR830 lockin amplifier AUX

outputs which are controlled by a computer using Instrument Control Toolbox in
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MATLAB. Using this setup I found that it was possible to keep both the OPO

and FC nearly locked for over an hour, while still being able to block the locking

beam and acquire data for 2/3rd of that time.
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[64] K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase

space,” Phys. Rev. Lett. 82, 2009 (1999).

[65] A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W.

Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses

below one percent,” Opt. Express 19, 9102–9110 (2011).
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