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Abstract

Understanding and quantifying variable graphs from heterogeneous samples is a fundamental and

urgent analysis task thanks to the data explosion in many scientific domains. Such variable graphs

can significantly improve network-driven studies like understanding genetic or neural pathways or

providing valuable tools for the discovery of therapeutic targets or diagnostic markers. One typical

approach is to jointly estimate K di↵erent but related conditional dependency graphs through a

multi-task formulation of the sparse Gaussian Graphical Model (multi-sGGM). Most current studies

of multi-sGGMs, however, involve expensive and di�cult non-smooth optimizations, making them

di�cult to scale up to many dimensions (large p) or with many contexts (large K).

In this dissertation, we aim to fill the gap and have designed a category of novel estimators that can

achieve fast and scalable joint structure estimation of multiple sGGMs.

Three crucial tasks exist when learning multi-sGGMs from heterogeneous samples: (1) to enforce

graph relatedness through structural norms, (2) to estimate the change of variable dependencies

directly, and (3) to incorporate existing knowledge of the variable nodes or about relationships among

nodes. Targeting each, our work introduces fast and parallelizable estimators that largely improves

the computational e�ciency of the state-of-the-art. We have conducted rigorous statistical analysis

and verified that surprisingly the proposed estimators achieve the same statistical convergence rates

as the state-of-art solutions that are much harder to compute. Empirically, our estimators outperform

the speed of the cutting edge significantly while achieving the same or better prediction accuracy. We

have implemented all proposed estimators into publicly accessible tools in the R-CRAN repository.

This suite of toolboxes can help users e↵ectively translate aggregated data into knowledge that take

the form of graphs.
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Chapter 1

Introduction

The past decade has seen a revolution in collecting large-scale heterogeneous data from many scientific

fields. For instance, genomic technologies have delivered fast and accurate molecular profiling data

across many cellular contexts (e.g., cell lines or stages) from national projects like ENCODE [3]. Given

such data, understanding and quantifying variable graphs across multiple contexts is a fundamental

analysis task. Such variable graphs can significantly simplify network-driven studies about diseases

or treatments [4]. The number of contexts those applications need to consider grows extremely

fast. For example, the ENCODE [3] project, being generated over ten years with contributions from

bio-labs across the world, contains expression data from 147 di↵erent human cell types (i.e., the

number of tasks K = 147) in 2016. Besides, the number of variables (denoted as p) is also quite

large, ranging from thousands (e.g., gene) to hundreds of thousands (e.g., SNP [5]). In addition

to the samples themselves, additional information is widely available in real-world applications. In

fact, incorporating the knowledge is of great scientific interest. A prime example is when estimating

the functional brain connectivity networks among brain regions based on fMRI samples, the spatial

position of the regions are readily available. Neuroscientists have gathered considerable knowledge

regarding the spatial and anatomical evidence underlying brain connectivity (e.g., short edges and

certain anatomical regions are more likely to be connected [6]). Another important example is the

problem of identifying gene-gene interactions from patients’ gene expression profiles across multiple

cancer types. Learning the statistical dependencies among genes from such heterogeneous datasets

can help to understand how such dependencies vary from normal to abnormal and help to discover

contributing markers that influence or cause the diseases. Besides the patient samples, state-of-the-art

1



Chapter 1 Introduction 2

bio-databases like HPRD [1] have collected a significant amount of information about direct physical

interactions among corresponding proteins, regulatory gene pairs or signaling relationships collected

from high-qualify bio-experiments.

For homogeneous data samples from a given condition, one typical approach to estimate such variable

graphs in the literature is the sparse Gaussian Graphical Model (sGGM) [7, 8]. sGGM assumes data

samples are independently and identically drawn from Np(µ,⌃), a multivariate normal distribution

with mean µ and covariance matrix ⌃. The graph structure G is encoded by the sparsity pattern

of the inverse covariance matrix, also named precision matrix, ⌦. ⌦ := ⌃�1. In G an edge does

not connect j-th node and k-th node (i.e., conditional independent) if and only if ⌦jk = 0. sGGM

imposes an sparsity penalty (typically `1 regularization) on the parameter ⌦.

For heterogeneous data from many tasks with additional knowledge, there exist three possible

formulations of translating aggregated data from multiple contexts into the knowledge of multiple

connectivity graphs.

• First, we can formulate this data analysis problem as jointly estimating K conditional dependency

graphs G
(1)

, G
(2)

, . . . , G
(K) from data samples accumulated from K distinct conditions. Each

graph G
(i) is decoded by the i-th precision matrix ⌦(i). Rather than estimating sGGM of each

condition separately, a multi-task formulation that jointly estimates K di↵erent but related sGGMs

with a penalty function R
0(·) can lead to a better generalization [9].

b⌦(1)
, b⌦(2)

, . . . , b⌦(K) = argmin
⌦(1),⌦(2),...,⌦(K)

Likelihood(⌦(1)
,⌦(2)

, . . . ,⌦(K))+Penalty(⌦(1)
,⌦(2)

, . . . ,⌦(K))

(1.0.1)

• The second task is to learn both the shared (denote as ⌦S) and the context-specific (denote as ⌦(i)
I )

sub-graphs of multiple sGGMs explicitly and simultaneously from heterogeneous data samples.

We formulate each precision matrix ⌦i as the summation of ⌦S and ⌦(i)
I . Namely,

⌦(i) = ⌦(i)
I + ⌦S (1.0.2)

• Third, many studies focus on estimating sparse changes in the dependency structure of two

p-dimensional GGMs (Np(µc,⌃c) and Np(µd,⌃d)). The goal is to estimate the structural change
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� (defined by [10]) 1:

� = ⌦d � ⌦c (1.0.3)

Where the precision matrix ⌦c := (⌃c)�1 and ⌦d := (⌃d)�1.

Thesis Statement In this research, we aim to design a novel category of estimators that can

achieve fast and scalable joint structure estimation of multiple sGGMs in large-scale settings including

additional knowledge.

With this purpose, we work on the following three tasks at large scale:

Method 1 – FASJEM: Speed-up and scale-up the joint estimation of K conditional

dependency graphs Most previous studies [11–18] for joint estimation of multiple sGGMs relied

on optimizing `1 regularized likelihood function plus an extra penalty function R
0. This extra

regularizer R
0, which varies in di↵erent estimators, enforces similarity among multiple estimated

networks. Since the penalized likelihood framework includes two regularization functions (`1 +R
0),

these approaches cannot avoid the steps like SVD [11] and matrix multiplication [11, 12]. Both steps

need O(Kp
3) time complexity for computation. Besides, most studies in this category require all

tasks’ covariance matrices to locate in the main memory [11–13] (for their optimization). Storing all

elements needs O(Kp
2) memory space. As a result, this category of models are di�cult to scale up

when the dimension p or the number of tasks K are large.

we propose a novel model, namely fast and scalable joint estimator for multiple sGGM (FASJEM), for

estimating multiple sGGMs jointly. Briefly speaking, this estimator presents a new way of learning

multi-task sGGMs by extending the elementary estimator [19]. We optimize FASJEM through

an entry-wise and group-entry-wise manner that can dramatically improve the time complexity

to O(Kp
2). The optimization of our estimators is scalable. We reduce the memory cost to O(K)

(i.e., requiring to store at most K entries in the main memory). We propose two variations of

FASJEM: (1) FASJEM-G uses a group-2 norm to connect multiple sGGMs. (2) FASJEM-I uses a

group-infinite norm to connect multiple related sGGMs. Both methods show better performance over

their corresponded “Joint graphical lasso” (JGL) baselines. In addition, we theoretically prove the

convergence rate of FASJEM as O(log(Kp)/ntot). This rate shows the benefit of joint estimation,

1Using which of the two sample sets as ‘c’ set (or ‘d’ set) does not a↵ect the computational cost and the statistical
convergence rates of our model. For instance, on samples from a controlled disease study, ‘c’ may represent the ‘control’
group and ‘d’ may represent the ‘disease’ group.
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which significantly improves the convergence rate O( log p
n ) of single task sGGM (with n samples).

FASJEM is evaluated using several synthetic datasets and four real-world biomedical datasets. It

performs better than the baselines not only on accuracy but also with respect to the time and storage

requirements.

Method 2 – JEEK: Speed-up and scale-up learning sparse Gaussian graphical models

(sGGMs) with additional knowledge One significant caveat of state-of-the-art joint sGGM

estimators is the fact that little attention has been paid to incorporating existing knowledge of the

nodes or knowledge of the relationships among nodes in the models. Although being strong evidence of

structural patterns we aim to discover, this type of information has rarely been considered in the joint

sGGM formulation of such samples. To the our best knowledge, only one study named as W-SIMULE

tried to extend the constrained `1 minimization in SIMULE into weighted `1 for considering spatial

information of brain regions in the joint discovery of heterogeneous neural connectivity graphs [20].

This method was designed just for the neuroimaging samples and has O(p5K4) time cost, making it

not scalable for large-scale settings (more details in Section 5.1).

We aims to fill this gap by adding additional knowledge most e↵ectively into scalable and fast joint

sGGM estimations. We propose a novel model, namely Joint Elementary Estimator incorporating

additional Knowledge (JEEK), that presents a principled and scalable strategy to include additional

knowledge when estimating multiple related sGGMs jointly. JEEK presents a new way of integrating

additional knowledge in learning multi-task sGGMs in a scalable way. We optimize JEEK through

an entry-wise and group-entry-wise manner that can dramatically improve the time complexity to

O(p2K4). In addition, we theoretically prove the convergence rate of JEEK as O(log(Kp)/ntot).

This rate shows the benefit of joint estimation and achieves the same convergence rate as the

state-of-the-art that are much harder to compute. Finally, we evaluate JEEK using several synthetic

datasets and two real-world data, one from neuroscience and one from genomics. It outperforms

state-of-the-art baselines significantly regarding the speed.

Method 3 – DIFFEE: Speed-up and scale-up the estimation of sparse changes in the

dependency structure of two p-dimensional GGMs A naive approach to detecting structural

changes in GGMs is a two-step procedure in which we estimate b⌦d and b⌦c from two sets of samples

separately and obtain b� = b⌦d �
b⌦c. However, in a high-dimensional setting, this strategy needs

to assume that both ⌦d and ⌦c are sparse (in order to achieve consistent estimation). This is not



Chapter 1 Introduction 5

necessarily true even if the change � is sparse. A motivating example s from identifying the di↵erence

in connectivity networks among brain regions (functional networks) of subjects from di↵erent groups.

Recent literature in neuroscience has suggested functional networks are not sparse. On the other

hand, di↵erences in functional connections across subjects should be sparse [21]. In the application

of estimating genetic networks of two conditions, each individual network might contain hub nodes

and therefore not entirely sparse.

We propose a simple estimator, namely DIFFerential networks via an Elementary Estimator (DIFFEE)

for fast and scalable learning of sparse structural change in high-dimensional GGMs. DIFFEE presents

a novel way of structural change estimation by extending the elementary estimator for sparse GGM [19].

We optimize DIFFEE through a closed-form manner that can dramatically improve its entire time

complexity to O(p3). The closed-form solution makes DIFFEE scalable to much larger values of

p, compared to the aforementioned state-of-the-art. We theoretically prove that DIFFEE achieves

the same sharp convergence rate as the aforementioned regularized convex programs. DIFFEE is

evaluated using several simulated datasets and one real-world neuroscience dataset. It improves

the state-of-the-art baselines with better estimation F-1 scores as well as significant computational

advantages.

The remainder of the proposal is organized as follows: Chapter 2 reviews the Backgrounds, Chapter

3 describes the proposed approach Joint Elementary Estimators, Chapter 4 presents the Method

and results of Method 1 JEEK, Chapter 5 presents the Method and results of Method 2 FASJEM,

Chapter 6 presents the Method and results of Method 3 DIFFEE, Chapter 7 provide the Extensions,

and finally, Chapter 8 lists the conclusions and potential future works.



Chapter 2

Background

List of Symbols

2.1 Sparse Gaussian Graphical Model

Sparse Gaussian Graphical Model(sGGM) [7, 8, 22] assumes data samples are independently and

identically drawn from Np(µ,⌃), a multivariate normal distribution with mean µ and covariance

matrix ⌃. The conditional dependency graph structure among its p random variables is encoded by

the sparsity pattern of the inverse covariance matrix (precision matrix) ⌦. ⌦ := (⌃)�1. An edge does

not connect j-th node (variable) and k-th node (variable) if and only if ⌦jk = 0 (i.e., conditionally

independent). sGGM imposes an `1 penalty on the parameter ⌦.

Regularized MLE: Over the past decade, significant progress has been made on estimating

sGGMs based on samples drawn from the model. Most sGGM estimation [8, 23] are based on

minimizing the `1-regularized Gaussian negative log likelihood:

argmin
⌦

� log det(⌦)+ < ⌦,⌃ > +�n||⌦||1 (2.1.1)

Friedman et al. [24] used a blockwise coordinate descent algorithm called the graphical lasso to

e�ciently solve the regularized MLE formulation. Alternatively, Meinshausen et al. [25] introduced a

6
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⌃ Covariance Matrix
µ Mean vector in the Gaussian distribution
⌦ Precision matrix
X Data sample matrix
⌃(i)

ith Covariance matrix
⌦(i)

ith Precision matrix in a multi-task setting
⌦S Shared pattern among all precision matrices in a multi-task setting

⌦(i)
I Individual part of ith Precision matrix in a multi-task setting

X(i)
ith data sample matrix in a multi-task setting

ni Number of samples in ith data matrix
ntot Total number of samples in a multi-task setting
x A p-dimensional sample
ej (0, . . . , 1, . . . , 0)T

⌃tot (⌃(1)
,⌃(2)

, . . . ,⌃(K)

⌦tot
I (⌦(1)

I ,⌦(2)
I , . . . ,⌦(K)I

⌦tot
S (⌦(1)

S ,⌦(2)
S , . . . ,⌦(K)S

⌦tot (⌦(1)
,⌦(2)

, . . . ,⌦(K)
⌦c The precision matrix for the control case
⌦d The precision matrix for the disease case
⌃c The covariance matrix for the control case
⌃d The covariance matrix for the disease case
�n Tuning parameter
✏ Hyper-parameter

W
tot Weight matrices for additional knowledge

W
tot
I (W (1)

I ,W
(2)
I , . . . ,W

(K)I
W

tot
S (W (1)

S ,W
(2)
S , . . . ,W

(K)S
WS Shared pattern among all Weight matrices in a multi-task setting

W
(i)
I Individual part of ith Weight matrix in a multi-task setting
K Total number of tasks
p Total number of features

Table 2.1: List of Important Notations.

neighborhood selection approach that applies a lasso linear regression on each variable separately

and combines the result to learn the conditional dependency structure.

CLIME: Later Cai et al. [26] proposed a constrained `1 minimization method for inverse matrix

estimation (abbreviated as CLIME) formulated as follows:

argmin
⌦

||⌦||1

subject to: ||⌃⌦� I||1  �n

(2.1.2)

The above formulation can be decomposed into column-wise linear programming. However the

computational cost of this LP formulation gets significantly demanding as p increases.



2.1 Sparse Gaussian Graphical Model 8

EE-sGGM: Recently, Yang et al. [19] proposed a closed-form estimator for learning Gaussian

graphical models through the following form:

argmin
⌦

||⌦||1,,o↵

subject to:||⌦� [Tv(b⌃)]�1
||1,o↵  �n

(2.1.3)

Eq. (2.1.3) is a special case of the elementary estimator for graphical models (GM) of exponen-

tial families proposed in [19], namely Elementary Estimators-GM. It has the following generic

formulation:

argmin
✓

||✓||1

Subject to: ||✓ � B
⇤(b�)||1  �n

(2.1.4)

Here B⇤(b�) is the so-called proxy of backward mapping for the target GM (more details in Section 2.3).

�n is a regularization parameter. b� is the empirical mean of the su�cient statistics. For example, in

the case of Gaussian GM, b� is the sample covariance matrix. More details are in Section 2.4.

M-Estimator with Decomposable Regularizer in High-Dimensional Situations: Re-

cently the seminal study [27] proposed a unified framework for the high-dimensional analysis of the

following general formulation: M-estimators with decomposable regularizers:

argmin
✓

L(✓) + �nR(✓) (2.1.5)

where R(·) represents a decomposable regularization function and L(·) represents a loss function

(e.g., the negative log-likelihood function in sGGM L(⌦) = � log det(⌦)+ < ⌦, b⌃ >). Here �n > 0 is

the tuning parameter.
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2.2 Joint Learning sparse Gaussian Graphical Models (JsG-

GMs)

2.2.1 Penalized MLE based Estimators

Sparse GGM is an extremely active topic in the recent literature including notable studies like [28]

and [23]. We can categories single-task sGGM estimators into three groups: (a) penalized likelihood

( GLasso), (b) neighborhood approach and (c) CLIME estimator.

Most previous methods that estimate multiple sGGMs jointly (on the same set of variables from

aggregated data samples) can be formulated as:

argmin
⌦(i)>0

X

i

(�L(⌦(i)) + �n

X

i

||⌦(i)
||1

+ �2R(⌦(1)
,⌦(2)

, . . . ,⌦(K))

(2.2.1)

where ⌦(i) denotes the precision matrix for the i-th task. L(·) represents log-likelihood or pseudo-

likelihood function.
P
i
||⌦(i)

||1 adds sparsity constraints on each task. P (⌦(1)
,⌦(2)

, . . . ,⌦(K))

enforces certain joint properties among the tasks (like using group sparsity to enforce similarity

among tasks).

The general purpose of the penalty function R(⌦(1)
,⌦(2)

, . . . ,⌦(K)) in Eq. (5.6.2) is to push the

inference of multiple graphs toward a common pattern. Table 2.2 provides a representative list of

penalty functions that have been used previously for the multi-sGGM setting. For example, JGL

uses the fused norm (the 1st row of Table 2.2) to penalize the di↵erence between two graphs with

resulting variation named as JGL-fused. JGL-group uses a {G, 2} norm that pushes multiple graphs

to have the same sparsity patterns (the 2nd row of Table 2.2). SIMONE provides a novel penalty

proposed by the authors (shown as in the 3rd row of Table 2.2) to enforce similar sparsity pattern on

multiple graphs.

There are a lot of existing multi-task sGGMs studies. For example, (a) Fused Joint graphical

lasso (JGL-fused) [11], (b) Group Joint graphical lasso (JGL-group) [11] and (c) SIMONE [13].

JGL-fused and JGL-group are based on the popular “graphical lasso” estimator [8, 24]; (using

L(⌦) = (log det(⌦)� < ⌃,⌦ >) in Eq. (5.6.2)). SIMONE [13] follows neighborhood-selection based

estimator. It can be viewed as using a pseudo-likelihood approximation instead of the full likelihood
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as L(⌦) in Eq. (5.6.2). 1 In addition to these three works, a number of recent studies also perform

multi-task learning of sGGM [14–18]. They all follow the same formulation as Eq. (5.6.2) but

explore a di↵erent second penalty-function P (⌦(1)
,⌦(2)

, . . . ,⌦(K)). As an example, Node-based JGL

proposed a novel penalty, namely RCON [12] (shown as the 4th row of the Table 2.2) or “row-column

overlap norm” for capturing special relationship among graphs. In two recent works, the penalty

function at the 5th row is Table 2.2 has been used by [15] and the penalty function at the 6th row of

Table 2.2 has been used by [14].

Furthermore, there exist studies that explore similar motivations as ours when learning multiple GGM

models from data. (a) [29] proposed to estimate a population graph from multi-block data using a

so-called ”median-graph” idea. It is conceptually similar to ⌦S . However, they do not have ⌦(i)
I to

model individual parts that are specific to each task. (b) Another recent study, CSSL-GGM [30]

also tried to model both the shared and individual substructures in multi-sGGMs. Di↵erent from

ours, their formulation is within the penalized likelihood framework as Eq. (5.6.2). They used

`1,p norm (see last row of Table 2.2) to regularize the task-specific parts, while SIMULE uses `1

norm instead in Eq. (5.6.2). The `1,p norm pushes the individual parts of multiple graphs to be

similar which is contradictory to the original purpose of these parameters. 2 (c) More recently, [31]

proposed to learn population and subject-specific brain connectivity networks via a so-called ”Mixed

Neighborhood Selection” (MSN) method. Following the neighborhood selection framework [25], for

each node v, MSN tried to learn the neighborhood of each v. Similar to SIMULE, they estimated the

neighborhood edges of a given node v in the i-task as �v + eb(i),v. Here �
v represents the neighbor in

the shared part and eb(i),v represents the neighbors that are specific to the i-th graph. Since MSN is

specially designed for brain imaging data, it assumes each individual graph is generated by random

e↵ects, i.e., eb(i),v ⇠ N(0,�v). SIMULE does not have such strong assumptions on either task-specific

or task-shared substructures. Our model is more general while MSN is designed for brain imaging

data. (d) Another line of related studies [32, 33] prosed density-ratio based strategies to estimate a

di↵erential graph between two graphs. Even though this group of methods can handle the unbalance

dataset (i.e., the numbers of samples in two datasets are quite di↵erent), they can only capture the

di↵erence between two graphs (K = 2). SIMULE does not have such a limitation on the number of

tasks. (e) Moreover, several loosely related studies exist in settings di↵erent from ours. For example,

for handling high-dimensional time series data a few recent papers have considered exploring multiple

sGGMs by modeling relationships among networks; e.g., [34] [35].

1 JGL [11] and SIMONE [13] are the two most-cited joint GGM estimators in the literature.
2We can not find CSSL-GGM implementation, therefore can not include it as a baseline.
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Table 2.2: A list of representative multi-sGGM methods and the second penalty functions they have used.

References Penalty Function P (⌦(1)
,⌦(2)

, . . . ,⌦(K)) =
(1) JGL-

Fused [11]

P
ij,i>j

||⌦(i)
� ⌦(j)

||1

(2) JGL-
Group [11]

||⌦(1)
,⌦(2)

, . . . ,⌦(K)
||G,2

(3) SIMONE
[13]

P
i 6=j

((
TP

k=1
(⌦(k)

ij )2+))
1
2 + ((

KP
k=1

(�⌦(k)
ij )2+))

1
2

(4) Node
JGL [12]

P
ij,i>j

RCON(⌦(i)
� ⌦(j))

(5) JEM-
GM [15]

KP
k=1

wk||⌦(k)
||1

(6) MTL-
GGM [14]

||⌦(1)
,⌦(2)

, . . . ,⌦(K)
||G,1

(7) CSSL-
GGM [30]

||⌦S ||1 + ||⌦(1)
I ,⌦(2)

I , . . . ,⌦(K)
I ||1,p

2.2.2 Constrained L1 Minimization based Estimators

One recent study [20] of multi-sGGMs (following ideas from [36]) also assumed that ⌦(i) = ⌦(i)
I +⌦S

and incorporated spatial distance knowledge in their convex formulation for joint discovery of

heterogeneous neural connectivity graphs. This study, with name W-SIMULE (Weighted model

for Shared and Individual parts of MULtiple graphs Explicitly) uses a weighted constrained `1

minimization:

argmin
⌦(i)

I
,⌦S

X

i

||W � ⌦(i)
I ||1 + ✏K||W � ⌦S ||1 (2.2.2)

Subject to: ||⌃(i)(⌦(i)
I + ⌦S)� I||1  �n, i = 1, . . . ,K

W-SIMULE simply includes the additional knowledge as a weight matrix W . 3

3It can be solved by any linear programming solver and can be column-wise paralleled. However, it is very slow
when p > 200 due to the expensive computation cost O(K4

p
5).
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2.3 Backward Mapping

2.3.1 Backward mapping for Exponential Families

The solution of vanilla graphical model MLE can be expressed as a backward mapping [37] for an

exponential family distribution. It estimates the model parameters (canonical parameter ✓) from

certain (sample) moments. We provide detailed explanations about backward mapping of exponential

families, backward mapping for Gaussian special case and backward mapping for di↵erential network

of GGM in this section.

Backward mapping: Essentially the vanilla graphical model MLE can be expressed as a backward

mapping that computes the model parameters corresponding to some given moments in an exponential

family distribution. For instance, in the case of learning GGM with vanilla MLE, the backward

mapping is b⌃�1 that estimates ⌦ from the sample covariance (moment) b⌃.

Suppose a random variable X 2 Rp follows the exponential family distribution:

P(X; ✓) = h(X)exp{< ✓,�(✓) > �A(✓)} (2.3.1)

Where ✓ 2 ⇥ ⇢ Rd is the canonical parameter to be estimated and ⇥ denotes the parameter space.

�(X) denotes the su�cient statistics as a feature mapping function � : Rp
! Rd, and A(✓) is the log-

partition function. We then define mean parameters v as the expectation of �(X): v(✓) := E[�(X)],

which can be the first and second moments of the su�cient statistics �(X) under the exponential

family distribution. The set of all possible moments by the moment polytope:

M = {v|9p is a distribution s.t. Ep[�(X)] = v} (2.3.2)

Mostly, the graphical model inference involves the task of computing moments v(✓) 2 M given the

canonical parameters ✓ 2 H. We denote this computing as forward mapping :

A : H ! M (2.3.3)

The learning/estimation of graphical models involves the task of the reverse computing of the forward
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mapping, the so-called backward mapping [37]. We denote the interior of M as M0. backward

mapping is defined as:

A
⇤ : M0

! H (2.3.4)

which does not need to be unique. For the exponential family distribution,

A
⇤ : v(✓) ! ✓ = rA

⇤(v(✓)). (2.3.5)

Where A
⇤(v(✓)) = sup

✓2H

< ✓, v(✓) > �A(✓).

2.3.2 Backward Mapping: Gaussian Case

If a random variable X 2 Rp follows the Gaussian Distribution N(µ,⌃). then ✓ = (⌃�1
µ,�

1
2⌃

�1).

The su�cient statistics �(X) = (X,XX
T ), h(x) = (2⇡)�

k

2 , and the log-partition function

A(✓) =
1

2
µ
T⌃�1

µ+
1

2
log(|⌃|) (2.3.6)

When performing the inference of Gaussian Graphical Models, it is easy to estimate the mean vector

v(✓), since it equals to E[X,XX
T ].

When learning the GGM, we estimate its canonical parameter ✓ through vanilla MLE. Because ⌃�1

is one entry of ✓ we can use the backward mapping to estimate ⌃�1.

✓ = (⌃�1
µ,�

1

2
⌃�1) = A

⇤(v) = rA
⇤(v)

= ((E✓[XX
T ]� E✓[X]E✓[X]T )�1E✓[X],

�
1

2
(E✓[XX

T ]� E✓[X]E✓[X]T )�1).

(2.3.7)

By plugging in Eq. (2.3.6) into Eq. (2.3.5), we get the backward mapping of ⌦ as (E✓[XX
T ] �

E✓[X]E✓[X]T )�1) = b⌃�1, easily computable from the sample covariance matrix.
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2.3.3 Backward Mapping for Di↵erential Network of Two GGMs

When the random variables Xc, Xd 2 Rp follows the Gaussian Distribution N(µc,⌃c) and N(µd,⌃d),

their density ratio (defined by [32]) essentially is a distribution in exponential families:

r(x,�) =
pd(x)

pc(x)

=

p
det(⌃c) exp

�
�

1
2 (x� µd)T⌃

�1
d (x� µd)

�
p

det(⌃d) exp
�
�

1
2 (x� µc)T⌃

�1
c (x� µc)

�

= exp(�
1

2
(x� µd)

T⌃�1
d (x� µd)

+
1

2
(x� µc)

T⌃�1
c (x� µc)

�
1

2
(log(det(⌃d))� log(det(⌃c))))

= exp

✓
�
1

2
�x

2 + µ�x�A(µ�,�)

◆

(2.3.8)

Here � = ⌃�1
d � ⌃�1

c and µ� = ⌃�1
d µd � ⌃�1

c µc.

The log-partition function

A(µ�,�) =
1

2
µ
T
d⌃

�1
d µd �

1

2
µ
T
c ⌃

�1
c µc+

1

2
log(det(⌃d))�

1

2
log(det(⌃c))

(2.3.9)

The canonical parameter

✓ =

✓
⌃�1

d µd � ⌃
�1
c µc,�

1

2
(⌃�1

d � ⌃�1
c )

◆

=

✓
⌃�1

d µd � ⌃
�1
c µc,�

1

2
(�)

◆ (2.3.10)

The su�cient statistics �([Xc, Xd]) and the log-partition function A(✓):

�([Xc, Xd]) = ([Xc, Xd], [XcX
T
c , XdX

T
d ])

A(✓) =
1

2
µ
T
d⌃

�1
d µd �

1

2
µ
T
c ⌃

�1
c µc+

1

2
log(det(⌃d))�

1

2
log(det(⌃c))

(2.3.11)
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And h(x) = 1.

✓ =

✓
⌃�1

d µd � ⌃
�1
c µc,�

1

2
(⌃�1

d � ⌃�1
c )

◆

=A
⇤(v) = rA

⇤(v)

(2.3.12)

The mean parameter vector v(✓) includes the moments of the su�cient statistics �() under the

exponential distribution. It can be easily estimated through E[([Xc, Xd], [XcX
T
c , XdX

T
d ])].

Therefore the backward mapping of ✓ becomes,

b✓ =(((E✓[XdX
T
d ]� E✓[Xd]E✓[Xd]

T )�1E✓[Xd]

� (E✓[XcX
T
c ]� E✓[Xc]E✓[Xc]

T )�1E✓[Xc]),

�
1

2
((E✓[XdX

T
d ]� E✓[Xd]E✓[Xd]

T )�1
�

(E✓[XcX
T
c ]� E✓[Xc]E✓[Xc]

T )�1)).

(2.3.13)

Because the second entry of the canonical parameter ✓ is (⌃�1
d �⌃�1

c ), we get the backward mapping

of � as

((E✓[XdX
T
d ]� E✓[Xd]E✓[Xd]

T )�1

�(E✓[XcX
T
c ]� E✓[Xc]E✓[Xc]

T )�1)

=b⌃�1
d � b⌃�1

c

(2.3.14)

This can be easily inferred from two sample covariance matrices b⌃d and b⌃c (Att: when under

low-dimensional settings).
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Figure 2.1: Basic idea of elementary estimators for graphical model.

2.4 Elementary Estimator

2.4.1 Elementary Estimators (EE):

Using the analysis framework from [27], recent studies [19,38,39] propose a new category of estimators

named “Elementary estimator” (EE) with the following general formulation:

argmin
✓

R(✓)

subject to:R⇤(✓ � b✓n)  �n

(2.4.1)

Where R
⇤(·) is the dual norm of R(·),

R
⇤(v) := sup

u 6=0

< u, v >

R(u)
= sup

R(u)1
< u, v > . (2.4.2)

The solution of Eq. (3.2.1) achieves the near optimal convergence rate as Eq. (2.1.5) when satisfying

certain conditions. R(·) represents a decomposable regularization function (e.g., `1-norm) and

R
⇤(·) is the dual norm of R(·) (e.g., `1-norm is the dual norm of `1-norm). �n is a regularization

parameter.

The basic motivation of Eq. (3.2.1) is to build simpler and possibly fast estimators, that yet come with

statistical guarantees that are nonetheless comparable to regularized MLE. b✓n needs to be carefully

constructed, well-defined and closed-form for the purpose of simpler computations. The formulation

defined by Eq. (3.2.1) is to ensure its solution having the desired structure defined by R(·). For cases

of high-dimensional estimation of linear regression models, b✓n can be the classical ridge estimator that

itself is closed-form and with strong statistical convergence guarantees in high-dimensional situations.

Related previous studies based on elementary estimators are summarized in Table 3.1.
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2.4.2 EE-sGGM:

[19] proposed elementary estimators for graphical models (GM) of exponential families, in which b✓n

represents so-called proxy of backward mapping for the target GM (more details in Section 2.3). The

key idea (summarized in Figure 2.1) is to investigate the vanilla MLE and where it breaks down for

estimating a graphical model of exponential families in the case of high-dimensions [19]. Essentially

the vanilla graphical model MLE can be expressed as a backward mapping that computes the model

parameters from some given moments in an exponential family distribution. For instance, in the case

of learning Gaussian GM (GGM) with vanilla MLE, the backward mapping is b⌃�1 that estimates ⌦

from the sample covariance matrix (moment) b⌃. We introduce the details of backward mapping in

Section 2.3.

However, even though this backward mapping has a simple closed form for GGM, the backward

mapping is normally not well-defined in high-dimensional settings. When given the sample covariance

b⌃, we cannot just compute the vanilla MLE solution as [b⌃]�1 for GGM since b⌃ is rank-deficient when

p > n. Therefore Yang et al. [19] used carefully constructed proxy backward maps as b✓n = [Tv(b⌃)]�1

that is both available in closed-form, and well-defined in high-dimensional settings for GGMs. We

introduce the details of [Tv(b⌃)]�1 and its statistical property in Section 2.3. Now Eq. (3.2.1) becomes

the following closed-form estimator for learning sparse Gaussian graphical models [19]:

argmin
⌦

||⌦||1,,o↵

subject to:||⌦� [Tv(b⌃)]�1
||1,o↵  �n

(2.4.3)

Eq. (2.4.3) is a special case of Eq. (3.2.1), in which R(·) is the o↵-diagonal `1-norm and the precision

matrix ⌦ is the ✓ we search for. When R(·) is the `1-norm, the solution of Eq. (3.2.1) (and Eq. (2.4.3))

just needs to perform entry-wise thresholding operations on b✓n to ensure the desired sparsity structure

of its final solution.



Chapter 3

Joint Elementary Estimator and

Theoretical Properties

3.1 Joint Elementary Estimator (JEE)

We aims to propose simple, scalable and theoretically-guaranteed joint estimators for estimating

multiple sGGMs with additional knowledge in large-scale situations. We first propose to jointly

estimate multiple related sGGMs from K data blocks using the following formulation:

argmin
⌦(1),⌦(2),...,⌦(K)

KX

i=1

L(⌦(i)) + �nR(⌦(1)
,⌦(2)

, . . . ,⌦(K)) (3.1.1)

where ⌦(i) denotes the precision matrix for i-th task. L(⌦) = � log det(⌦)+ < ⌦, b⌃ > describes the

negative log-likelihood function in sGGM. ⌦(i)
� 0 means that ⌦(i) needs to be a positive definite

matrix. R(·) represents a decomposable regularization function enforcing sparsity and structure

assumptions.

For ease of notation, we denote that ⌦tot = (⌦(1)
,⌦(2)

, . . . ,⌦(K)) and ⌃tot = (⌃(1)
,⌃(2)

, . . . ,⌃(K)).

⌦tot and ⌃tot are both p⇥Kp matrices (i.e., Kp
2 parameters to estimate). Now define an inverse

function as inv(Atot) := (A(1)�1
, A

(2)�1
, . . . , A

(K)�1
), where Atot is a given p⇥Kp matrix with the

18
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same structure as ⌃tot. Then we rewrite Eq. (3.1.1) into the following form:

argmin
⌦tot

L(⌦tot) + �nR(⌦tot) (3.1.2)

Now connecting Eq. (3.1.2) to Eq. (2.1.5) and Eq. (3.2.1), we propose the following joint elementary

estimator (JEE) for learning multiple sGGMs:

argmin
⌦tot

R(⌦tot)

subject to: R⇤(⌦tot
� b⌦tot

ntot
)  �n

(3.1.3)

The fundamental component in Eq. (3.2.1) for the single context sGGM was to use a well-defined

proxy function to approximate the vanilla MLE solution (named as the backward mapping for

exponential family distributions) [19]. The proposed proxy b✓n = [Tv(b⌃)]�1 is both well-defined under

high-dimensional situations and also has a simple closed-form. Following a similar idea, when learning

multiple sGGMs, we propose to use inv(Tv(b⌃tot)) for b⌦tot
ntot

and get the following joint elementary

estimator:

argmin
⌦tot

R(⌦tot)

Subject to: R⇤(⌦tot
� inv(Tv(b⌃tot)))  �n

(3.1.4)

3.2 Theoretical Properties of EE and JEE

JEE formulation Eq. (3.1.4) and EE-sGGM Eq. (2.4.3) are special cases of the following generic

formulation:

argmin
✓

R(✓)

subject to:R⇤(✓ � b✓n)  �n

(3.2.1)

Where R
⇤(·) is the dual norm of R(·),

R
⇤(v) := sup

u 6=0

< u, v >

R(u)
= sup

R(u)1
< u, v > . (3.2.2)
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Connecting Eq. (3.1.4) and Eq. (3.2.1), R() is the kw-norm. b✓n represents a close approximation of

✓
⇤.

Following the unified framework [27], we first decompose the parameter space into a subspace

pair(M,M̄
?), where M̄ is the closure of M. Here M̄

? := {v 2 Rp
| < u, v >= 0, 8u 2 M̄}. M is

the model subspace that typically has a much lower dimension than the original high-dimensional

space. M̄
? is the perturbation subspace of parameters. For further proofs, we assume the

regularization function in Eq. (3.2.1) is decomposable w.r.t the subspace pair (M,M̄
?).

(C1) R(u+ v) = R(u) +R(v), 8u 2 M, 8v 2 M̄
?.

[27] showed that most regularization norms are decomposable corresponding to a certain subspace

pair.

Definition 3.2.1. Subspace Compatibility Constant

Subspace compatibility constant is defined as  (M, | · |) := sup
u2M\{0}

R(u)
|u| which captures the relative

value between the error norm | · | and the regularization function R(·).

For simplicity, we assume there exists a true parameter ✓
⇤ which has the exact structure w.r.t a

certain subspace pair. Concretely:

(C2) 9 a subspace pair (M,M̄
?) such that the true parameter satisfies proj

M?(✓⇤) = 0

Then we have the following theorem.

Theorem 3.2.2. Suppose the regularization function in Eq. (3.2.1) satisfies condition (C1), the

true parameter of Eq. (3.2.1) satisfies condition (C2), and �n satisfies that �n � R
⇤(b✓n�✓

⇤). Then,

the optimal solution b✓ of Eq. (3.2.1) satisfies:

R
⇤(b✓ � ✓

⇤)  2�n (3.2.3)

||b✓ � ✓
⇤
||2  4�n (M̄) (3.2.4)

R(b✓ � ✓
⇤)  8�n (M̄)2 (3.2.5)

3.2.1 Proof of Theorem (3.2.2)

Proof. Let � := b✓ � ✓
⇤ be the error vector that we are interested in.
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R
⇤(b✓ � ✓

⇤) = R
⇤(b✓ � b✓n + b✓n � ✓

⇤)

 R
⇤(b✓n � b✓) +R

⇤(b✓n � ✓
⇤)  2�n

(3.2.6)

By the fact that ✓⇤
M? = 0, and the decomposability of R with respect to (M,M̄

?)

R(✓⇤)

= R(✓⇤) +R[⇧M̄?(�)]�R[⇧M̄?(�)]

= R[✓⇤ +⇧M̄?(�)]�R[⇧M̄?(�)]

 R[✓⇤ +⇧M̄?(�) +⇧M̄(�)] +R[⇧M̄(�)]

�R[⇧M̄?(�)]

= R[✓⇤ + �] +R[⇧M̄(�)]�R[⇧M̄?(�)]

(3.2.7)

Here, the inequality holds by the triangle inequality of norm. Since Eq. (3.2.1) minimizes R(b✓), we

have R(✓⇤ +�) = R(b✓)  R(✓⇤). Combining this inequality with Eq. (6.3.2), we have:

R[⇧M̄?(�)]  R[⇧M̄(�)] (3.2.8)

Moreover, by Hlder’s inequality and the decomposability of R(·), we have:

||�||
2
2 = h�, �i  R

⇤(�)R(�)  2�nR(�)

= 2�n[R(⇧M̄(�)) +R(⇧M̄?(�))]  4�nR(⇧M̄(�))

 4�n (M̄)||⇧M̄(�)||2

(3.2.9)

where  (M̄) is a simple notation for  (M̄, || · ||2).

Since the projection operator is defined in terms of ||·||2 norm, it is non-expansive: ||⇧M̄(�)||2  ||�||2.

Therefore, by Eq. (6.3.4), we have:
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||⇧M̄(�)||2  4�n (M̄), (3.2.10)

and plugging it back to Eq. (6.3.4) yields the error bound Eq. (3.2.4).

Finally, Eq. (3.2.5) is straightforward from Eq. (6.3.3) and Eq. (6.3.5).

R(�)  2R(⇧M̄(�))

 2 (M̄)||⇧M̄(�)||2  8�n (M̄)2.
(3.2.11)

3.2.2 Connecting to Previous Studies:

Most previous studies of multi-sGGMs follow the penalized MLE framework. Few works of Multi-task

sGGM follow the CLIME formulation, since it is not easy to transfer two regularizers into the CLIME

formulation (summarized in Table 3.1). Based on the authors’ knowledge, no previous multi-sGGM

studies have followed the elementary estimators(EE) formulation. As a simple soft-thresholding based

estimator, elementary estimators (EE) have been used for other tasks as well. Table 3.1 summarizes

three di↵erent types of previous tasks for which EE can be applied: high-dimensional regression,

single sGGM and multi-sGGM. For comparison, we show how these tasks have been solved through

the penalized likelihood framework in the second column and use the the third column to show

studies following the CLIME formulation.

Table 3.1: Two categories of relevant studies di↵er over learning based on “penalized log-likelihood” or learning based
on“elementary estimator”

Problems Penalized Likelihood Elementary Estimator
High dimensional
linear regression

Lasso: argmin
�

|Y � �X|F + �|�|1 argmin
�

|�|1 subject to : |� �

(XT
X + ✏I)�1

X
T
y|1  �n

sparse Gaussian
Graphical Model

GLasso: argmin
⌦�0

�logdet(⌦)+ < ⌦,⌃ >

+�|⌦|1

argmin
⌦�0

|⌦|1 subject to: |⌦ �

[Tv(⌃)]�1
|1  �n

Multi-task sGGM Di↵erent Choices for Penalty R
0

argmin
⌦>0

P
i
(�L(⌦tot) + �1

P
i ||⌦

(i)
||1 +

�2R
0(⌦tot)

Our methods:
FASJEM, JEEK, DIF-
FEE



Chapter 4

Method I: FASJEM – JEE for

Enforcing Structural

Assumptions

4.1 Method: A fast and scalable joint estimator for multi-

sGGM

In this Chapter, we propose another novel model, namely fast and scalable joint estimator for multiple

sGGM (FASJEM), for estimating multiple sGGMs jointly.

The penalized likelihood framework for multi-task sGGMs in Eq. (5.6.2) involves a hybrid of two

regularization functions (`1 +R
0). Studies in this direction cannot avoid the expensive steps like

SVD and matrix multiplication and also require to store K covariance matrices in the main memory.

Since this paper aims to design a scalable joint estimator for multi-sGGM under large-scale settings,

extending the elementary estimator of single-task sGGM [19] to multi-task formulation becomes a

natural choice.

For multi-task sGGMs, we can denote that ⌦tot = (⌦(1)
,⌦(2)

, . . . ,⌦(K)) and ⌃tot = (⌃(1)
,⌃(2)

, . . . ,⌃(K)).

⌦tot and ⌃tot are both p⇥Kp matrices (i.e., Kp
2 parameters to estimate). Now define an inverse

23
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function as inv(Atot) := (A(1)�1
, A

(2)�1
, . . . , A

(K)�1
), where Atot is a given p⇥Kp matrix with the

same structure as ⌃tot. Furthermore, we add a new hyperparameter variable ✏ = �0
n

�n

.

Let I = {1, 2} and ✓1 = ✓2 = 1
2⌦tot. We can clearly tell that Eq. (5.6.2) is a special case

of the superposition structured estimation in Eq. (4.4.1). The ESS (elementary superposition

structured) moment estimator (Eq. (4.4.2)) extends the elementary estimator of structured covariance

matrix to elementary superposition-structured estimator for estimating covariance matrices with a

hybrid structure (e.g., sparse + low rank). This motivates us to propose the following elementary

superposition estimator for learning multi-task sGGM:

argmin
⌦tot

||⌦tot||1 + ✏R
0(⌦tot)

s.t.||⌦tot � inv(Tv(b⌃tot))||1  �n

R
0⇤(⌦tot � inv(Tv(b⌃tot)))  ✏�n

(4.1.1)

Here || · ||
⇤

1 = || · ||1 (the dual norm of l1-norm is l1-norm). R0(·) represents a regularizer on ⌦tot to

enforce that {⌦(i)
} share certain similarity. R

0
⇤(·) is the dual norm of R0(·). We name this novel

formulation as FASJEM. By varying R
0(·), we can get a variety of FASJEM estimators.

Section 4.2 theoretically proves the convergence rate of FASJEM as O(log(Kp)/ntot). Our theory proof

is inspired by the ESS moment estimator [39], the SS estimator [40] and the EE-sGGM [19].

4.1.1 Method I: FASJEM-G

For multi-task regularization, the first R
0(·) we try is the G, 2-norm (i.e., R0(·) = || · ||G,2). This

norm is inspired by JGL-group lasso [11]. G, 2-norm constrains the parameters in the same group

to have the same level of sparsity. In multi-task sGGMs, group set G := {gj,k}, where gj,k =

{⌦(i)
j,k|i = 1, . . . ,K}. Suppose g is an arbitrary group in group set G and totally we have p

2 groups.

||⌦tot||G,2 =
pP

j=1

pP
k=1

||(⌦(1)
j,k,⌦

(2)
j,k, . . . ,⌦

(i)
j,k, . . . ,⌦

(K)
j,k )||2. When R

0(·) = || · ||G,2, we name Eq. (4.1.1)

as FASJEM-G (short form of FASJEM-Group2). We solve FASJEM-G using a parallel proximal

based optimization formulation from [41]. Algorithm 1 summarizes the detailed optimization steps

and the four proximity operators implemented on GPU are listed in Table 4.11. The optimization

sequence of Algorithm 1 converges Q-linearly (See Eq. (4.1.13)).

1The non-GPU version of the four proximity operators are in Eq. (4.1.5) to Eq. (4.1.8).
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4.1.2 Proximal Algorithm for Optimization

Eq. (4.1.1) includes a convex programming task since the norms we choose are convex. By simplifying

notations and adding another parameter, we reformulate it to:

argmin
✓1,✓2

f1(✓1) + f2(✓2)

subject to :||✓1 � inv(Tv(b⌃tot))||1  �n

R
0⇤(✓2 � inv(Tv(b⌃tot)))  ✏�n

✓1 = ✓2

(4.1.2)

Where f1(·) = || · ||1 and f2(·) = ✏|| · ||G,2. Then we convert Eq. (4.1.2) to the following equivalent

and distributed formulation:

argmin
✓1,✓2,✓3,✓4

f1(✓1) + f2(✓2) + f3(✓3) + f4(✓4)

subject to: ✓1 = ✓2 = ✓3 = ✓4

(4.1.3)

Here f3(✓) = I{||✓�inv(Tv(⌃tot))||1�n}
(✓) and f4(✓) = I{||✓�inv(Tv(⌃tot))||⇤G,2✏�n}

(✓). IC(·) represents

the indicator function of a convex set C as IC(x) = 0 when x 2 C. Otherwise IC(x) = 1. To

solve Eq. (4.1.3), we choose a parallel proximal based algorithm [41] summarized in Algorithm 1.

Besides the distributed nature, the proximal algorithm also bring in the benefit that many proximity

operators are entry-wise operators for the targeted parameters. The four proximal operators for

four functions {f1, f2, f3, f4} (for CPU platform implementation) are included in the Equations

Eq. (4.1.5) to Eq. (4.1.8) in Section 4.1. With the benefits as proximal operators, Eq. (4.1.5) and

Eq. (4.1.7) are entry-wise and Eq. (4.1.6) and Eq. (4.1.8) are group entry-wise.

Proximal Optimization: The proximal algorithm only needs to calculate the proximity operator

of the parameters to be optimized. The proximity operator in proximal algorithms is defined as:

prox�f (x) = argmin
y

(f(y) + (
1

2�
||x� y||

2
2)). (4.1.4)

The benefit of the proximal algorithm is that many proximity operators are entry-wise operators for

the targeted parameters. The parallel proximal (initially called proximity splitting) algorithm [41]

belongs to the general family of distributed convex optimization that optimizes in such a way that
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each term (in this case, each proximity operator) can be handled by its own processing element, such

as a thread or processor.

Figure 4.1: A simple figure to show how our optimization method works. Our optimization approach is a method with
linear convergence rate in finding the optimal point. It considers four properties : (1) information from the raw data;
(2) information from the group data; (3)sparsity property; (4) group sparsity property.

Four proximity operators for CPU implementation of FASJEM-G: In the following, we

denote x = ⌦tot, a = ⌃tot and g 2 G to simply notations. Eq. (4.1.5) and Eq. (4.1.7) are entry-wise

operators and Eq. (4.1.6) and Eq. (4.1.8) are group entry-wise. Group entry-wise means in calculation,

the operator can compute each group of entries independently from other groups. Entry-wise means

the calculation of each entry is only related to itself). The optimization process of Algorithm 1

iterating among four proximal operators is visualized by Figure 4.1.

For f1(·) = || · ||1.

prox�f1(x) = prox�||·||1(x)

=

8
>>>><

>>>>:

x
(i)
j,k � �, x(i)

j,k > �

0, |x(i)
j,k|  �

x
(i)
j,k + �, x(i)

j,k < ��

(4.1.5)

Eq. (4.1.5) is the closed form solution of Eq. (4.1.4) when f = | · |1. Here j, k = 1, . . . , p and

i = 1, . . . ,K. This is an entry-wise operator (i.e., the calculation of each entry is only related to

itself).

Similarly, f2(·) = || · ||G,2

prox�f2(xg) = prox�||·||G,2
(xg)

=

8
><

>:

xg � �
xg

||xg||2
, ||xg||2 > �

0, ||xg||2  �

(4.1.6)



4.1 Method: A fast and scalable joint estimator for multi-sGGM 27

Here g 2 G. This is a group entry-wise operator (computing a group of entries is not related to other

groups).

f3(·) and f4(·) include function forms of If(·)<D and prox
I{f(·)<D}

= proj
{f(·)<D}

, where projC means

the projection function to the convex set C. We can obtain

prox�f3(x) = proj
||x�a||1�

=

8
>>>><

>>>>:

x
(i)
,k , |x(i)

j,k � a
(i)
j,k|  �

a
(i)
,k + �, x(i)

j,k > a
(i)
j,k + �

a
(i)
,k � �, x(i)

j,k < a
(i)
j,k � �

(4.1.7)

where j, k = 1, . . . , p and i = 1, . . . ,K. This operator is entry-wise (i.e., only related to each entry of

x and a).

prox�f4(xg) = proj
||x�a||⇤G,2�

=

8
><

>:

xg, ||xg � ag||2  �

�
xg�ag

||xg�ag||2
+ ag, ||xg � ag||2 > �

(4.1.8)

This operator is group entry-wise.

Four proximity operators for GPU parallel implementation of FASJEM-G: The four

proximity operators on GPU are summarized in Table 4.1. More details as following:

For Eq. (4.1.5),

prox�f1(x) = prox�||·||1(x)

= max((x(i)
j,k � �), 0) + min(0, (x(i)

j,k + �))
(4.1.9)

For Eq. (4.1.6)

prox�f2(xg) = prox�||·||G,2
(xg)

= xg max((1�
�

||xg||2
), 0)

(4.1.10)
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Table 4.1: Four proximity operators implemented on GPU platform.

[prox�f1(x)]
(i)
j,k max((x(i)

j,k � �), 0) + min(0, (x(i)
j,k + �))

prox�f2(xg) xg max((1� �
||xg||2

), 0)

[prox�f3(x)]
(i)
j,k min(max(x(i)

j,k � a
(i)
j,k,��n),�n) + a

(i)
j,k

prox�f4(xg) max( �n

||xg�ag||2
, 1)(xg � ag) + ag

For Eq. (4.1.7)

prox�f3(x) = proj
||x�a||1�

= min(max(x(i)
j,k � a

(i)
j,k,��),�) + a

(i)
j,k

(4.1.11)

For Eq. (4.1.8)

prox�f4(x) = proj
||x�a||⇤G,2�

= max(
�

||xg � ag||2
, 1)(xg � ag) + ag

(4.1.12)

Here j, k = 1, . . . , p, i = 1, . . . ,K and g 2 G.

Q-linearly Convergence of Optimization: The proposed optimization is a first-order method.

Based on the recent study [42], the optimization sequence {⌦i
}(for i = 1 to t iteration) converges

Q-linearly. Q-linearly means:

lim sup
k!1

||⌦k+1
� ⌦⇤

||

||⌦k � ⌦⇤||
 ⇢ (4.1.13)
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Algorithm 1 Parallel proximal algorithm2

input K given data blocks X
(1)

, X
(2)

, . . . , X
(K). Hyper-parameter:↵, ✏, v, �n and �. Learning rate: 0 < ⇢ < 2. Max

iteration number iter.

output ⌦tot

1: Compute ⌃tot from X
(1)

, X
(2)

, . . . , X
(K)

2: Initialize ✓
0 = inv(Tv(⌃tot)), ✓0j = inv(Tv(⌃tot)) for j 2 {1, 2, 3, 4} and a = inv(Tv(⌃tot)).

3: for i = 0 to iter do

4: p
i
1 = prox4�f1✓

i
1

5: p
i
2 = prox4�f2✓

i
2

6: p
i
3 = prox4�f3✓

i
3

7: p
i
4 = prox4�f4✓

i
4

8: p
i = 1

4 (
4P

j=1
✓
i
j)

9: for j = 1, 2, 3, 4 do

10: ✓
i+1
j = ✓

i
j + ⇢(2pi � ✓

i � p
i
j)

11: end for

12: ✓
i+1 = ✓

i + ⇢(pi � ✓
i)

13: end for

14: ⌦tot = ✓
iter

output ⌦tot

4.1.3 Method II: FASJEM-I

As shown in Section 4.4, most previous models for multi-task sGGMs varied the second norm R
0 to

obtain di↵erent models. Similarly we can easily change R0(·) in Eq. 4.1.1 into any other desired norm

to extend our FASJEM. For instance, we can change R
0(·) to group-infinity norm || · ||G,1.

||⌦tot||G,1 =
pP

j=1

pP
k=1

||(⌦(1)
j,k,⌦

(2)
j,k, . . . ,⌦

(i)
j,k, . . . ,⌦

(K)
j,k )||1. This norm is inspired by a multi-task

sGGM proposed by [14]. When using group-infinity norm, we get FASJEM-I(short for FASJEM-

Groupinf). We can derive the optimization for FASJAM-I by changing two proximities in Algorithm 1.

Considering that the original formulation in [14] is similar with JGL [11], in the rest of this paper, we

call the model from [14] as JGL-groupinf or JGL-I (the corresponded baseline for FASJEM-I).

2Four proximity operators used on GPU are defined in Table 4.1. Hyperparameters are explained in Section 4.5.
Here j, k = 1, . . . , p, i = 1, . . . ,K and g 2 G.
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4.1.4 FASJEM with Additional Knowledge

We can also extend FASJEM by adding the additional knowledge into the formulation. By replacing

the weighted-`1 norm into the formulation, we have the FASJEM-K as follows:

argmin
⌦tot

||Wtot � ⌦tot||1 + ✏R
0(⌦tot)

s.t.||Wtot � (⌦tot � inv(Tv(b⌃tot)))||1  �n

R
0⇤(⌦tot � inv(Tv(b⌃tot)))  ✏�n

(4.1.14)

4.2 Theoretical Analysis

In this section, we prove that our estimator can be optimized asynchronously in a group entry-wise

manner. We also provide the proof of the theoretical error bounds of FASJEM.

4.2.1 Group entry-wise and parallelizing optimizable

Theorem 4.2.1. (FASJEM is Group entry-wise optimizable) Suppose we use FASJEM to

infer multiple inverse of covariance matrices summarized as b⌦tot. {b⌦(i)
j,k|i = 1, . . . ,K} describes a

group of K entries at (j, k) position. Varying j 2 {1, 2, . . . , p} and k 2 {1, 2, . . . , p}, we have totally

p⇥ p groups. If these groups are independently estimated by FASJEM, then we have,

p[

j=1

p[

k=1

{b⌦(i)
j,k|i = 1, . . . ,K} = b⌦tot. (4.2.1)

Proof. Eq. (4.1.9) and Eq. (4.1.11) are soft-thresholding based operators on each entry. Eq. (4.1.10)

and Eq. (4.1.12) are soft-thresholding operators on each group of entries.

Corollary 4.2.2. We can decompose FASJEM into p⇥ p subproblems that are independent from

each other, and solve each subproblem at a time. Therefore our estimator only requires O(K) memory

storage for computation.
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This corollary proves the claims we showed in section 4.4. Through Theorem (5.2.1), it is important

to notice that the optimization on multiple groups of entries can be totally parallelized.

4.2.2 Theoretical error bounds

In this subsection, we first provide the error bounds for elementary super-position estimator (ESS

estimator) under I = {1, 2}. We then use this general bound to prove the error bound for FASJEM-G.

All the proofs are included in Section 4.3. We also include the error bounds for elementary estimator

(EE) in Section 2.4.

Extension to ESS: For the multiple-task case, we need to consider two or more regularization

functions. For instance, in FASJEM-G we assume the sparsity of parameter and the group sparsity

among tasks. Since we only consider the models with two regularization function, we consider the

error bounds of the following elementary super-position estimator formulation in the rest of the

section.

argmin
✓1,✓2

�1R1(✓1) + �2R2(✓2)

subject to:R⇤

i (b✓n � (✓1 + ✓2))  �i ,i = 1, 2

(4.2.2)

This equation restricts the number of penalty functions to 2. Similar to the single-task error bounds

(in Section 2.4) , we naturally extend condition (C2) to the following condition:

(C3) proj
M

?
i

(✓⇤i ) = 0, i = 1, 2.

We borrow the following condition from [40], which is a structural incoherence condition ensuring

that the non-interference of di↵erent structures.

(C4) Let � := max{2 + 3�1 1(M̄1)
�2 2(M̄2)

, 2 + 3�2 2(M̄2)
�1 1(M̄1)

}.

max{�max(PM̄1
PM̄2

),

�max(PM̄1
P
M̄

?
2
)�max(PM̄

?
1
P
M̄

?
2
)} 

1
16�2

where PM̄ is the matrix corresponding to the projection operator for the subspace M̄. The definition

of  (·) are included in Definition (3.2.1).

With these two conditions, we have the following theorem:
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Theorem 4.2.3. Suppose that the true parameter ✓
⇤ satisfies the conditions (C3)(C4) and �i �

R
⇤

i (b✓ � ✓
⇤), then the optimal point b✓ of Eq. (4.2.2) has the following error bounds:

R
⇤

i (b✓ � ✓
⇤)  2�i, i = 1, 2 (4.2.3)

Ri(b✓ � ✓
⇤) 

32

�i
(max

i
�i (M̄i))

2, i = 1, 2 (4.2.4)

||b✓ � ✓
⇤
||F  8max

i
�i (M̄i) (4.2.5)

Notice that for FASJEM-G model, R1 = || · ||1 and R2 = || · ||G,2. Based on the results in [27],

 (M̄1) =
p
s and  (M̄2) =

p
sG , where s is the number of nonzero entries in ⌦tot and sg is the

number of groups in which there exists at least one nonzero entry. Clearly s > sg. Also in practice,

to utilize group information, we have to choose hyperparameter �n > �
0

n (�1 > �2 in Eq. (4.2.5)).

Therefore by Theorem (4.2.3), we have the following theorem,

Theorem 4.2.4. Suppose that R1 = || · ||1 and R2 = || · ||G,2 and the true parameter ⌦⇤

tot satisfies

the conditions (C3)(C4) and �i � R
⇤

i (b⌦tot � ⌦⇤

tot), then the optimal point b⌦tot of Eq. (4.1.1) has

the following error bounds: ||b⌦tot � ⌦⇤

tot||F  8
p
s�n.

We then derive a corollary of Theorem (6.3.1) for FASJEM-G. A prerequisite is to show that

inv(Tv(b⌃tot)) is well-defined. The following conditions define a broad class of sGGM that satisfy the

requirement. Similar results are also introduced by [19].

Conditions for elementary estimator of sGGM: C-MinInf⌃ The true parameter ⌦⇤

tot of

Eq. (4.2.2) has bounded induced operator norm, i.e., |||⌦(i)⇤
|||1 := sup

w 6=02Rp

||⌃(i)⇤w||1
|w|1

 18i.

C-Sparse⌃ The true multiple covariance matrices ⌃⇤

tot := inv(⌦⇤

tot) are “approximately sparse”

along the lines [43] : for some positive constant D, ⌃(i)
j,j

⇤

 D for all diagonal entries. Moreover,

for some 0  q < 1 and c0(p), max
i

pP
j=1

|⌃(i)
j,k

⇤

|
q
 c0(p)8i. If q = 0, then this condition reduce to ⌃⇤

being sparse. We additionally require inf
w 6=02Rp

|⌦(i)⇤w|1
|w|1

� 2.

Error bounds of FASJEM-group: In FASJEM, ✓⇤1 = ✓
⇤

2 = 1
2✓

⇤. ✓i is the parameter w.r.t a

subspace pair(Mi,M̄
?

i ), where i = 1, 2.
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Here R1 = || · ||1 and R2 = || · ||G,2. We assume the true parameter ✓
⇤ satisfies C-MinInf⌃ and

C-Sparse⌃ conditions. Using the above theorems, we have the following corollary:

Corollary 4.2.5. If we choose hyperparameters �
0

n < �n. Let v := a

q
log p0

ntot

for p
0 = max(Kp, ntot).

Then for �n := 41a
2

q
log p0

ntot

and ntot > c log p0, with a probability of at least 1�2C1 exp(�C2Kp log(Kp)),

the estimated optimal solution b⌦tot has the following error bound:

||b⌦tot � ⌦⇤

tot||F  32 41a
2

q
s log p0

ntot

}

where a, c, 1 and 2 are constants.

The convergence rate of single-task sGGM is O(log p/ni). In high-dimensional setting, p0 = Kp since

Kp > ntot. Assuming ni =
ntot

K , the convergence rate of single sGGM is O(K log p/ntot). Clearly,

since K log p > log(Kp), the convergence rate of FASJEM is better than single-task sGGM.

4.3 Proof

Proof of Theorem (3.2.2)

Proof. Let � := b✓ � ✓
⇤ be the error vector that we are interested in.

R
⇤(b✓ � ✓

⇤) = R
⇤(b✓ � b✓n + b✓n � ✓

⇤)

 R
⇤(b✓n � b✓) +R

⇤(b✓n � ✓
⇤)  2�n

(4.3.1)

By the fact that ✓⇤
M? = 0, and the decomposability of R with respect to (M,M̄

?)

R(✓⇤)

= R(✓⇤) +R[⇧M̄?(�)]�R[⇧M̄?(�)]

= R[✓⇤ +⇧M̄?(�)]�R[⇧M̄?(�)]

 R[✓⇤ +⇧M̄?(�) +⇧M̄(�)] +R[⇧M̄(�)]

�R[⇧M̄?(�)]

= R[✓⇤ +�] +R[⇧M̄(�)]�R[⇧M̄?(�)]

(4.3.2)
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Here, the inequality holds by the triangle inequality of norm. Since EE minimizes R(b✓), we have

R(✓⇤ +�) = R(b✓)  R(✓⇤). Combining this inequality with Eq. (6.3.2), we have:

R[⇧M̄?(�)]  R[⇧M̄(�)] (4.3.3)

Moreover, by Hlder’s inequality and the decomposability of R(·), we have:

||�||
2
2 = h�,�i  R

⇤(�)R(�)  2�nR(�)

= 2�n[R(⇧M̄(�)) +R(⇧M̄?(�))]  4�nR(⇧M̄(�))

 4�n (M̄)||⇧M̄(�)||2

(4.3.4)

where  (M̄) is a simple notation for  (M̄, || · ||2).

Since the projection operator is defined in terms of ||·||2 norm, it is non-expansive: ||⇧M̄(�)||2  ||�||2.

Therefore, by Eq. (6.3.4), we have:

||⇧M̄(�)||2  4�n (M̄), (4.3.5)

and plugging it back to Eq. (6.3.4) yields the error bound Eq. (3.2.4).

Finally, Eq. (3.2.5) is straightforward from Eq. (6.3.3) and Eq. (6.3.5).

R(�)  2R(⇧M̄(�))

 2 (M̄)||⇧M̄(�)||2  8�n (M̄)2.
(4.3.6)

Proof of Theorem (4.2.3)
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Proof. In this proof, we consider the matrix parameter such as the covariance. I = {1, 2} in the

following contents. Basically, the Frobenius norm can be simply replaced by `2 norm for the vector

parameters. Let �i := b✓i � ✓
⇤

i , and � = b✓ � ✓
⇤ = ⌃i2I�i. The error bound Eq. (4.2.3) can be easily

shown from the assumption in the statement with the constraint of Eq. (4.2.2). For every i 2 I,

R
⇤

i (�) = R
⇤

i (b✓ � ✓
⇤) = R

⇤

i (b✓ � b✓n + b✓n � ✓
⇤)

 R
⇤

i (b✓n � b✓) +R
⇤

i (b✓n � ✓
⇤)  2�i.

(4.3.7)

By the similar reasoning as in Eq. (6.3.2) with the fact that ⇧
M

?
i

(✓⇤i ) = 0 in C3, and the decompos-

ability of Ri with respect to (Mi,
cM?

i ), we have:

Ri(✓
⇤

i ) Ri[✓
⇤

i +�i] +Ri[⇧M̄i
(�i)]

�Ri[⇧M̄
?
i

(�i)].
(4.3.8)

Since
n
b✓i
o

i2I
minimizes the objective function of Eq. (4.2.2),

X

i2I

�iRi(b✓i) 
X

i2I

�i{Ri(✓
⇤

i +�i)

Ri[⇧M̄i
(�i)]�Ri[⇧M̄

?
i

(�i)]},

(4.3.9)

Which implies

X

i2I

�iRi[⇧M̄
?
i

(�i)] 
X

i2I

�iRi[⇧M̄i
(�i)] (4.3.10)

Now, for each structure i 2 I, we have an application for Hlder’s inequality: |h�,�ii|  R
⇤

i (�)Ri(�i) 

2�iRi(�i) where the notation hhA,Bii denotes the trace inner product, trace(AT
B) = ⌃i⌃jAijBij ,

and we use the pre-computed bound in Eq. (4.3.7). Then, the Frobenius error ||�||F can be

upper-bounded as follows:
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||�||
2
F = hh�,�ii =

X

i2I

hh�,�iii 

X

i2I

|hh�,�iii|

 2
X

i2I

�iRi(�i)  2
X

i2I

{�iRi[⇧M̄i
(�i)]+

�iRi[⇧M̄
?
i

(�i)]}  4
X

i2I

�iRi[⇧M̄i
(�i)]

 4
X

i2I

�i (M̄i)||⇧M̄i
(�i)||F

(4.3.11)

where  (M̄i) denotes the compatibility constant of space M̄i with respect to the Frobenius norm:

 (M̄i, || · ||F ).

Here, we define a key notation in the error bound:

� := max
i2I

�i (M̄i). (4.3.12)

Armed with this notation, Eq. (4.3.11) can be written as

||�||
2
F  4�

X

i2I

||⇧M̄i
(�i)||F (4.3.13)

At this point, we directly appeal to the result in Proposition 2 of [40] with a small modification:

Proposition 4. Suppose that the structural incoherence condition (C4) as well as the condition

(C3) hold. Then, we have

2|
X

i<j

hh�i,�jii| 
1

2

X

i2I

||�i||
2
F . (4.3.14)

By this proposition, we have
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X

i2I

||�i||
2
F  ||�||

2
F + 2|

X

i<j

hh�i,�jii|

 ||�||
2
F +

1

2

X

i2I

||�i||
2
F ,

(4.3.15)

which implies ⌃i2I ||�i||
2
F  2||�||

2
F .

Moreover, since the projection operator is defined in terms of the Frobenius norm, it is non-expansive

for all i : ||⇧M̄i
(�i)||F  ||�i||F . Hence, we finally obtain:

(
X

i2I

||⇧M̄i
(�i)||F )

2
 (

X

i2I

||�i||F )
2

 |I|

X

i2I

||�i||
2
F  8|I|�

X

i2I

||⇧M̄i
(�i)||F

(4.3.16)

and therefore,

X

i2I

||⇧M̄i
(�i)||F  8|I|� (4.3.17)

The Frobenius norm error bound Eq. (4.2.5) can be derived by plugging Eq. (4.3.17) back into

Eq. (4.3.13):

||�||
2
F  32|I|�2

. (4.3.18)

Therefore, we have

||�||F  8� (4.3.19)

Which is exactly Eq. (4.2.5)
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The proof of the final error bound Eq. (4.2.4) is straightforward from Eq. (4.3.10) and Eq. (4.3.17) as

follows: for each fixed i 2 I,

Ri(�i)


1

�i
{�iRi[⇧M̄i

(�i)] + �iRi[⇧M̄
?
i

(�i)]}


1

�i
{�iRi[⇧M̄i

(�i)] +
X

j2I

�jRj [⇧M̄j
(�j)]}


2

�i

X

j2I

�jRj [⇧M̄j
(�j)]


2

�i

X

j2I

�j (M̄j)||⇧M̄j
(�j)||F


2�

�i

X

j2I

||⇧M̄j
(�j)||F 

16|I|�2

�i
=

32�2

�i

(4.3.20)

which completes the proof.

Proof of Theorem (6.3.1)

Proof. Since �n > �
0

n and
p
s >

p
sG , We have that

�n
p
s > �

0

n
p
sG .

By Theorem (4.2.3),

||b⌦tot � ⌦⇤

tot||F  8max(�n
p
s,�

0

n
p
sG)  8

p
s�n.

4.3.1 Useful lemma(s)

Lemma 4.3.1. (Theorem 1 of [44]). Let � be maxij |[
XTX

n ]ij � ⌃ij |. Suppose that ⌫ > 2�. Then,

under the conditions (C-Sparse⌃), and as ⇢v(·) is a soft-threshold function, we can deterministically

guarantee that the spectral norm of error is bounded as follows:

|||Tv(b⌃)� ⌃|||1  5⌫1�q
c0(p) + 3⌫�q

c0(p)� (4.3.21)
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Lemma 4.3.2. (Lemma 1 of [45]). Let A be the event that

||
X

T
X

n
� ⌃||1  8(max

i
⌃ii)

r
10⌧ log p0

n
(4.3.22)

where p
0 := maxn, p and ⌧ is any constant greater than 2. Suppose that the design matrix X is i.i.d.

sampled from ⌃-Gaussian ensemble with n � 40maxi ⌃ii. Then, the probability of event A occurring

is at least 1� 4/p0⌧�2.

Proof of Corollary (6.2.2)

Proof. In the following proof, we re-denote the following two notations: ⌃tot :=

0

BBBBBBB@

⌃(1) 0 · · · 0

0 ⌃(2)
· · · 0

...
...

. . .
...

0 0 · · · ⌃(K)

1

CCCCCCCA

and

⌦tot :=

0

BBBBBBB@

⌦(1) 0 · · · 0

0 ⌦(2)
· · · 0

...
...

. . .
...

0 0 · · · ⌦(K)

1

CCCCCCCA

The condition (C-Sparse⌃) and condition (C-MinInf⌃) also hold for ⌦⇤

tot and ⌃⇤

tot. In order to

utilize Theorem (6.3.1) for this specific case, we only need to show that ||⌦⇤

tot � [T⌫(b⌃tot)]�1
||1  �n

for the setting of �n in the statement:

||⌦⇤

tot � [T⌫(b⌃tot)]
�1

||1 = ||[T⌫(b⌃tot)]
�1(T⌫(b⌃tot)⌦

⇤

tot � I)||1

 |||[T⌫(b⌃tot)w]|||1||T⌫(b⌃tot)⌦
⇤

tot � I||1

= |||[T⌫(b⌃tot)]
�1

|||1||⌦⇤

tot(T⌫(b⌃tot)� ⌃
⇤

tot)||1

 |||[T⌫(b⌃tot)]
�1

|||1|||⌦⇤

tot|||1||T⌫(b⌃tot)� ⌃
⇤

tot||1.

(4.3.23)
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We first compute the upper bound of |||[T⌫(b⌃tot)]�1
|||1. By the selection ⌫ in the statement,

Lemma (6.3.2) and Lemma (6.3.3) hold with probability at least 1� 4/p0⌧�2. Armed with Eq. (6.3.7),

we use the triangle inequality of norm and the condition (C-Sparse⌃): for any w,

||T⌫(b⌃tot)w||1 = ||T⌫(b⌃tot)w � ⌃w + ⌃w||1

� ||⌃w||1 � ||(T⌫(b⌃tot)� ⌃)w||1

� 2||w||1 � ||(T⌫(b⌃tot)� ⌃)w||1

� (2 � ||(T⌫(b⌃tot)� ⌃)w||1)||w||1

(4.3.24)

Where the second inequality uses the condition (C-Sparse⌃). Now, by Lemma (6.3.2) with the

selection of ⌫, we have

|||T⌫(b⌃tot)� ⌃|||1  c1(
log p0

ntot
)(1�q)/2

c0(p) (4.3.25)

where c1 is a constant related only on ⌧ and maxi ⌃ii. Specifically, it is defined as 6.5(16(maxi ⌃ii)
p
10⌧)1�q.

Hence, as long as ntot > ( 2c1c0(p)2
)

2
1�q log p0 as stated, so that |||T⌫(b⌃tot)�⌃|||1 

2
2 , we can conclude

that ||T⌫(b⌃tot)w||1 �
2
2 ||w||1, which implies |||[T⌫(b⌃tot)]�1

|||1 
2
2
.

The remaining term in Eq. (6.3.9) is ||T⌫(b⌃tot)�⌃⇤

tot||1; ||T⌫(b⌃tot)�⌃⇤

tot||1  ||T⌫(b⌃tot)� b⌃tot||1+

||b⌃tot � ⌃⇤

tot||1. By construction of T⌫(·) in (C-Thresh) and by Lemma (6.3.3), we can confirm that

||T⌫(b⌃tot)� b⌃tot||1 as well as ||b⌃tot � ⌃⇤

tot||1 can be upper-bounded by ⌫.

By combining all together, we can confirm that the selection of �n satisfies the requirement of Theo-

rem (6.3.1), which completes the proof.
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4.4 Related works

Superposition structured estimator (SS estimator) : The above Eq. (5.6.2) is a special

case (explained in Section 4.1) of the following superposition structured estimators [27]:

argmin
(✓↵)↵2I

L(
X

↵2I

✓↵) +
X

↵2I

�↵R↵(✓↵). (4.4.1)

{R↵(·)|↵ 2 I} are a set of regularization functions and (�↵)↵2I are the regularization penalties. The

target parameter is ✓ =
P
↵2I

✓↵, a superposition of ✓↵.

Elementary superposition-structured moment estimator (ESS moment estimator): Sim-

ilar to Eq. (3.2.1), a recent study [39] extends the elementary estimator for sparse covariance matrices

to the case of superposition-structured moments and named this extension as “Elem-Super-Moment”

(ESM) estimator. 3

argmin
✓1,✓2,...,✓|I|

X

↵2I

�↵R↵(✓↵)

Subject to: R⇤

↵(b✓ �
X

↵2I

✓↵)  �↵ 8↵ 2 I.

(4.4.2)

Optimization and Computational Comparison: We use JGL-group and the model proposed

by [14] (we name it as JGL-groupInf) as baselines in our experiments. As we mentioned in Section 1,

the bottleneck of optimizing multi-sGGM in JGL-group is the step of SVD that needs O(Kp
3)

time complexity and requires storing K covariance matrix (O(Kp
2) memory cost). Di↵erently,

JGL-Groupinf chose a coordinate descent method and proved that their optimization is equivalent to

p sequences of quadratic subproblems, each of which costs O(K3
p
3) computation. Therefore the total

computational complexity of JGL-Groupinf is O(K3
p
4). Besides, this coordinate descent method

needs to store all K covariance matrices in the main memory( O(Kp
2) memory cost). Table 4.2

compares our model with two baselines in terms of time and space cost. Solving our model relies

totally on entry-wise and group-entry-wise procedures. Its time complexity is O(Kp
2). This is much

faster than the baselines, especially in high-dimensional settings (Table 4.2). 4 Moreover, in our

3 [39] has proved that this class of ESM estimators achieves the same convergence rate as the corresponding
estimators (with the same superposition of structures) using the penalized MLE formulation under certain conditions.

4Note that the discussion of time complexity is for each iteration in optimization. We show the Q-linear convergence
for all first-order multi-task sGGM estimators in Eq. (4.1.13). Since the baselines and our methods all use first-order
optimization, we assume the number of iterations is the same among all methods.
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Table 4.2: Comparison to Previous multi-sGGM methods

References Computational
Complexity

Memory
Cost

JGL-
Group [11]

O(Kp
3) O(Kp

2)

JGL-
GroupInf [14]

O(K3
p
4) O(Kp

2)

FASJEM
Models

O(Kp
2) (if paral-

leling completely,
O(K) )

O(K)

optimization, learning the parameters for each group {⌦(i)
j,k|i = 1, . . . ,K} does not rely on other

groups. This means we only need to store K entries of the same group in the memory for computing

Eq. (4.1.7) and Eq. (4.1.8). The space complexity O(K) is much smaller than previous methods’

O(Kp
2) requirement. 5 The comparisons are in Table 4.2.

Convergence Rate Analysis: Although previous joint sGGMs work well on datasets whose K

and p are relatively small, two important questions remain unanswered: (1) what’s the statistical

convergence rate of these joint estimators? and (2) what’s the benefits of joint learning? The

convergence rate of estimating single-task sGGM has been well investigated [8, 23, 46, 47]. These

studies proved that the estimator of single-task sGGM holds a consistent convergence rate O(
q

log p
n )

if given n data samples. However, none of the previous joint-sGGM studies provide such theoretical

analysis. Experimental evaluations in previous joint-sGGM papers have shown better performance

of running joint estimators over running single-task sGGM estimators on each dataset separately.

However, it hasn’t been proven that theoretically this joint estimation is better. We successfully

answer these two remaining questions in Section 4.2.

4.5 Experiment

Multiple simulated datasets and four real-world biomedical datasets are used to evaluate FAS-

JEM.
5We have provided a GPU implementation of FASJEM in Section 4.1.2. Although SVD or matrix inversion can also

be speed up by GPU parallelization, these method cannot avoid the O(Kp
2) memory cost, which is a huge bottleneck

for large-scale problems. In Section 4.2 we prove that our estimator is completely group entry-wise and asynchronously
optimizable, this makes FASJEM only require O(K) memory storage.
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4.5.1 Experimental Settings

Baseline: We compare (1)FASJEM-G versus JGL-group [11]; (2)FASJEM-I versus JGL-groupinf

[14]. This is because the specific FASJEM estimator and its baseline share the same second-penalty

function. 6 Three evaluation metrics are used for such comparisons.

• Precision: We use the edge-level false positive rate (FPR) and true positive rate (TPR) to

measure the predicted graphs versus true graph. Repeating the process 10 times, we obtain average

metrics for each method we tests. Here, FPR = FP
FP + TN and TPR = TP

TP + FN . TP (true positive)

and TN (true negative) mean the number of true nonzero entries and the number of true zero

entries estimated by the predicted precision matrices. The FPR vs. TPR curve shows multi-point

performance of a method over a range of the tuning parameter. The bigger the area under a

FPR-TPR curve, the better a method has achieved overall.

• Speed: The time (log(second)) between the whole program’s start and end indicates the speed of

a certain method under a specific configuration of hyper-parameters. To be fair, we set up two

types of comparisons. The first one fixes the number of tasks (K) but varies the dimension (p).

This shows the performance of each method under a high-dimensional setting. The other type

fixes the dimension (p) but varies the number of tasks (K). This measures the performance of

each method when having a large number of tasks.

• Memory: For each method, we vary the number of tasks (K) and the dimension (p) until a

specific method terminates due to the “out of memory” error. This measures the memory capacity

of the corresponding method.

Our implementation: We implement FASJEM on two di↵erent architectures: (1)CPU only and

(2)GPU 7. Similar to the JGL-group from [11], we implement the CPU version FASJEM-G and

FASJEM-I with R. We choose torch7 [48] (LUA based) to program FASJEM on GPU machine.

8

6Since single-sGGM EE has a closed-form solution (i.e., no iterative steps are needed in optimization), we do not
include it as baseline.

7Information of Experiment Machines: The machine that we use for experiments includes Intel(R) Core(TM)
i7-3770 CPU @ 3.40GHz with a 8GB memory. The GPU that we use for experiments is Nvidia Tesla K40c with 2880
cores and 12GB memory.

8Though the ideal memory requirement of FASJEM is only O(K), IO costs should also be taken into account in
real implementations. As being proved, ⌦tot is group-entry-wise optimizable. The parameter groups are independently
estimated in the parallelized style. When implementing FASJEM in a single machine (our experimental setting), we
prefer to choose smaller m to make full use of the main memory, where m is the number of parameter groups which
are estimated at the same time.
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Selection of hyper-parameters: In this experiment, we need to choose the value of three

hyper-parameters. The first one v is unique for elementary-estimator based sGGM models. The

second �n(in some models also noted as �1) is the main hyper-parameter we need to tune. The third

✏ equals to �0
n

�n

(The notation �2 is normally used in related works instead of �0

n).

• v: We pre-choose v in the set {0.001i|i = 1, 2, . . . , 1000} to guarantee Tv(⌃tot) is invertible.

• �n
9: Recent research studies from [27] and [19] conclude that the regularization parameter �ni

of

a single task with ni samples should be chosen with �ni
/

q
log p
ni

. Combining this result and our

convergence rate analysis in Section 4.2, we choose �n = ↵

q
logKp
ntot

where ↵ is a hyper-parameter.

The hyperparameter � in Algorithm 1 equals to �n.

• ✏: We select the best ✏ from the set {0.1i|i = 1, 2, . . . , 10} using cross-validation.

Figure 4.2: FASJEM-G versus JGL-group with respect to accuracy, speed and memory capacity. (a): FPR-TPR
curves of two methods and two single-sGGM baselines on the simulated dataset using Random Graph Model when
p = 2000 and K = 2. (AUC number–FASJEM-G:0.9332, JGL-group:0.5803, EE for sGGM:0.7852, GLasso:0.8504)
(c) and (e): Time versus p(the number of variables) curves from FASJEM-G, JGL-group and FASJEM-G’s GPU
implementation. (c) uses ni = p/2 and (e)ni = p/4. (b), (d) and (f): the time versus K(the number of tasks) curves
for two methods plus FASJEM-G-GPU. (b) uses p = 2000 and ni = p/2, (d) uses p = 4000 and ni = p/2 and (f) uses
p = 4000 and ni = p/4.

4.5.2 Experiments on simulated datasets

Using the following “Random Graph Model”(RGM), we first generate a set of synthetic multivariate

Gaussian datasets, each of which includes samples of K tasks described by p variables. From [47], this

“Random Graph Model” assumes ⌦(i) = B
(i)+�

(i)
I, where each o↵-diagonal entry in B

(i) is generated

independently, equals to 0.5 with probability 0.05i and, equals to 0 with probability 1� 0.05i. �(i) is

selected large enough to guarantee the positive definiteness of precision matrix.

9
�n = 0.1 used for time and memory experiments



4.5 Experiment 45

Figure 4.3: Comparison between FASJEM-I and JGL-groupinf using accuracy, speed and memory capacity. (a)
FPR-TPR curves of two methods on the simulated dataset using Random Graph Model when p = 2000 and K = 2.
(c) and (e) Time versus p(the number of variables) curves from FASJEM-G, JGL-group and FASJEM-I’s GPU
implementation. (c) uses ni = p/2 and (e)ni = p/4 (b), (d) and (f) include the time versus K(the number of tasks)
curves for two methods plus FASJEM-I-GPU. (b) uses p = 2000 and ni = p/2, (d) uses p = 4000 and ni = p/2 and (f)
uses p = 4000 and ni = p/4.

For each case of p, we use this model to generate K random sparse graphs. For each graph (task),

n = p/2 data samples are generated randomly by following N(0, (⌦(i))�1). For each (K, p) parameter

setting we test in the experiment, we use this RGM process to generate 10 di↵erent datasets (with

di↵erent random seeds). Then we apply our methods and baseline methods on these datasets to

obtain estimated sGGM networks. All results or curves we show in the rest of this section are average

scores/curves over 10 trials for each case of parameter configuration.

Figure 4.2(a) and 4.3(a) present FPR vs. TPR curves of two proposed methods: FASJEM-G and

FASJEM-I versus their corresponding baselines: JGL-group and JGL-groupinf, on the simulated

datasets. We choose p = 2000 and K = 2. FPR-TPR curve plots are obtained by varying its tuning

parameter �n over a range of {0.05⇥
q

logKp
ntot

⇥ i|i 2 {1, 2, 3, . . . , 30}} and interpolating the obtained

performance points (We pre-choose v and ✏ and the methods are introduced in Section 4.5.1). The

two subfigures of “ROC curve” clearly show that FASJEM-G and FASJEM-I obtain better under-plot

areas than corresponding JGL-group and JGL-groupinf.

Then in Figure 4.2(c)(e) and 4.3(c)(e) we show the curves of Time vs. Dimension p comparing
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FASJEM-G and FASJEM-I versus their baselines. Sub-figure 4.2(c) and 4.3(c) choose ni = p/2.

Sub-Figures 4.2(e) and 4.3(e) use ni = p/4. The CPU curves are obtained by varying p in the set

of {1000i|i = 0.5, 1, 2, 3, . . . , 8}. GPU curves are obtained by varying p in the set of {1000i|i =

4, 5, 6, . . . , 10}. The subfigure (c) “p versus time-[K = 2, ni = p/2]” and subfigure (e) “p versus

time-[K = 2, ni = p/4]” in Figure 4.2 show that though JGL-group obtains a slightly better

performance than our method under lower-dimension cases, when reaching high dimensional stages,

FASJEM-G performs similarly and trains much faster than the baseline method. Figure 4.3(c) and

Figure 4.3(e) provide similar conclusions for FASJEM-I vs JGL-groupinf. In addition, the baselines

cannot handle p � 8000 because these approaches require too much memory. Clearly our proposed

FASJEM methods can still perform reasonable well for the large-scale cases. This shows that our

methods makes better usage of memory. Moreover, both FASJEM-G-GPU and FASJEM-I-GPU

implementations spend only 1
10 of train time against its CPU implementations. This proves that

GPU parallelization can speed up FASJEM significantly.

Figure 4.2(b)(d)(f) and 4.3(b)(d)(f) show the curves about “Time vs. Number of tasks-K” comparing

our methods FASJEM-G and FASJEM-I versus two baseline methods JGL-group and JGL-groupinf

respectively. These sub-figures use the varying K as the x-axis over a range of {2, 3, . . . , 8}. Sub-

figures (b) use p = 2000, ni = p/2, sub-figures (d) use p = 4000, ni = p/2 and sub-figures (f) choose

p = 4000, ni = p/4. These figures show that the JGL-group and JGL-groupinf obtain a slightly

better speed than two FASJEM, under small K cases. For larger K, our methods perform faster

than the baseline methods. The conclusion hold across three cases with di↵erent pairs of (p, ni),

indicating that the advantage of our methods do not change by working on graphs and datasets of

di↵erent sizes. In addition, when p = 4000, JGL-group and JGL-groupinf cannot handle K � 5 (i.e.,

the R program died) due to the memory issue on our experiment machine, while both FASJEM-G

and FASJEM-I can. This proves that FASJEM requires a lower memory cost than the baselines. In

all subfigures (b), (d) and (f), FASJEM curves are roughly linear. The experimental results match

with the computational complexity analysis we have performed in Table 4.2 (the computation cost of

FASJEM is linear to K). Moreover, subfigures (b), (d) and (f) show that both FASJEM-G-GPU and

FASJEM-I-GPU implementations spend only 1
10 time of their CPU implementations respectively.

This confirms that GPU-parallelization can speed up FASJEM significantly.

Figure 4.4 represents a comparison between the single-task EE estimator for sGGM and GLasso

estimator. We choose the ⌦(i) in the random graph model as the true graph. We obtain the two

subfigures by varying p in a set of {100, 200, 300, 400, 500}. The left subfigure is “AUC vs. p (number
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Figure 4.4: Comparison between elementary estimator for sGGM and GLasso for single-task sGGM. The left figure is
the curve of AUC number by varying p. The number of sample n = p/2. The right figure is the curve of computation
time by varying p. Other settings are the same as the left one. Clearly, elementary estimator has the similar accuracy
performance as GLasso but is much faster and scalable than it.

of features)” while the right subfigure is “Time vs. p (number of features)”. Figure 4.4 shows that

the elementary estimator has achieved similar performance of GLasso among di↵erent p while the

computation time of EE is much less than the GLasso.

Furthermore in Section 4.5.3, we compare FASJEM-G and JGL-group on four di↵erent real-world

datasets. FASJEM-G consistently outperforms JGL-group on all four datasets in recovering more

known edges.

4.5.3 Experiments on Real-world Datasets

We apply FASJEM-G and JGL-group on four di↵erent real-world datasets: (1) the breast/colon

cancer data [49] (with 2 cell types and 104 samples, each having 22283 features); (2) Crohn’s disease

data [50] ( with 3 cell types, 127 samples and 22283 features) , (3) the myeloma and bone lesions

data set [51] (with 2 cell types, 173 samples and 12625 features) and (4) Encode project dataset [3]

(with 3 cell types, 25185 samples and 27 features). For the first three datasets, we select its top 500

features based on the variance of the variables. After obtaining estimated dependency networks, we

compare all methods using two major existing databases [1, 2] archiving known gene interactions.

The number of known gene-gene interactions predicted by each method has been shown as bar graphs

in Figure 4.5. These graphs clearly show that FASJEM-G outperforms JGL-group on all three

datasets and across all cell conditions within each of the three datasets. This leads us to believe that

the proposed FASJEM-G is very promising for identifying variable interactions in a wider range of

applications as well.
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Figure 4.5: Compare predicted dependencies among genes or proteins using existing databases [1, 2] with known
interactions (biologically validated) in human. The number of matches among predicted interactions and known
interactions is shown as bar lines.



Chapter 5

Method II: JEEK – JEE for

Adding Knowledge Explicitly

5.1 Proposed Method: JEEK

In applications of Gaussian graphical models, we typically have more information than just the data

samples themselves.

5.1.1 Knowledge as Weight (KW-Norm)

The main goal of this work is to design a principled strategy to incorporate existing knowledge (other

than samples or structured assumptions) into the multi-sGGM formulation. We consider two factors

in such a design:

(1) When learning multiple sGGMs jointly from real-world applications, it is often of great scientific

interests to model and learn context-specific graph variations explicitly, because such variations can

“fingerprint” important markers in domains like cognition [4] or pathology [52]. Therefore we design

to share parameters between di↵erent contexts. Mathematically, we model ⌦(i) as two parts:

⌦(i) = ⌦(i)
I + ⌦S (5.1.1)

49
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where ⌦(i)
I is the individual precision matrix for context i and ⌦S is the shared precision matrix

between contexts. Again, for ease of notation we denote ⌦tot
I = (⌦(1)

I ,⌦(2)
I , . . . ,⌦(K)

I ) and ⌦tot
S =

(⌦S ,⌦S , . . . ,⌦S).

(2) We represent additional knowledge as positive weight matrices from Rp⇥p. More specifically, we

represent the knowledge of the task-specific graph as weight matrix {W
(i)
} and WS representing

existing knowledge of the shared network. The positive matrix-based representation is a powerful and

flexible strategy that can describe many possible forms of existing knowledge. In Section (5.3), we

provide four di↵erent designs of {W (i)
} and WS for real-world applications. In total, we have weight

matrices {W (1)
I ,W

(2)
I , . . . ,W

(K)
I ,WS} to represent additional knowledge. To simplify notations, we

denote W
tot
I = (W (1)

I ,W
(2)

, . . . ,W
(K)
I ) and W

tot
S = (WS ,WS , . . . ,WS).

Now we propose the following knowledge as weight norm (kw-norm) combining the above two:

R(⌦tot) = ||W
tot
I � ⌦tot

I ||1 + ||W
tot
S � ⌦tot

S ||1 (5.1.2)

Here the Hadamard product � is the element-wise product between two matrices i.e. [A � B]ij =

AijBij .

The kw-norm( Eq. (5.1.2)) has the following three properties:

• (i) kw-norm is a norm function if and only if any entries in W
tot
I and W

tot
S do not equal to 0.

• (ii) If the condition in (i) holds, kw-norm is a decomposable norm.

• (iii) If the condition in (i) holds, the dual norm of kw-norm is R⇤(u) = max(||W tot
I � u||1, ||W

tot
S �

u||1).

Section 5.5.1 provides proofs of the above claims.
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5.1.2 JEE with Knowledge (JEEK)

Plugging Eq. (5.1.2) to Eq. (3.1.4), we obtain the following formulation of JEEK for learning multiple

related sGGMs from heterogerous samples:

argmin
⌦tot

I
,⌦tot

S

||W
tot
I � ⌦tot

I ||1 + ||W
tot
S � ⌦tot

S ||

Subject to: ||W tot
I � (⌦tot

� inv(Tv(b⌃tot)))||1  �n

||W
tot
S � (⌦tot

� inv(Tv(b⌃tot)))||1  �n

(5.1.3)

In Section 4.2, we theoretically prove that the statistical convergence rate of JEEK achieves the

same sharp convergence rate as the state-of-the-art estimators for multi-task sGGMs. Our proofs are

inspired by the unified framework of the high-dimensional statistics [27].

5.2 Solution of JEEK:

A huge computational advantage of JEEK (Eq. (5.1.3)) is that it can be decomposed into p ⇥ p

independent small linear programming problems. To simplify notations, we denote ⌦(i)
I j,k (the

{j, k}-th entry of ⌦(i)) as ai. Similarly we denote ⌦Sj,k as b and [Tv(b⌃(i))]�1
j,k be ci. Similarly we

denote W
(i)
j,k = wi and W

S
j,k = ws. ”A group of entries” means a set of parameters {a1, . . . , aK , b} for

certain j, k.

JEEK (Eq. (5.1.3)) can be decomposed into the following formulation for a certain j, k to estimate

{a1, . . . , aK , b} :

argmin
ai,b

X

i

|wiai|+K|wsb|

Subject to: |ai + b� ci| 
�n

min(wi, ws)
,

i = 1, . . . ,K

(5.2.1)

Eq. (5.2.1) can be easily converted into a linear programming form of Eq. (5.2.2) with only K + 1

variables. The time complexity of Eq. (5.2.1) is O(K4). Considering JEEK has a total p(p� 1)/2 of
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Algorithm 2 Joint Elementary Estimator with additional knowledge (JEEK) for Multi-task sGGMs
Input: Data sample matrix X(i) ( i = 1 to K), regularization hyperparameter �n, Knowledge weight

matrices {W (i)
I ,WS} and LP(.) (a linear programming solver)

Output: {⌦(i)
} ( i = 1 to K)

1: for i = 1 to K do
2: Initialize b⌃(i) = 1

ni�1

Pni

s=1(X
(i)
s, � bµ(i))(X(i)

s, � bµ(i))T (the sample covariance matrix of X(i))

3: Initialize ⌦(i) = 0p⇥p

4: Calculate the proxy backward mapping [Tv(b⌃(i))]�1

5: end for
6: for j = 1 to p do
7: for k = 1 to j do

8: ai = ⌦
(i)
I j,k

9: b = ⌦Sj,k

10: [Tv(b⌃(i))]�1
j,k = ci

11: wi = W
(i)
j,k

12: ws = WSj,k

13: ai, b = LP(wi, ws, ci,�n) where i = 1, . . . ,K and LP(.) solves Eq. (5.2.1)
14: for i = 1 to K do
15: ⌦(i)

j,k = ⌦(i)
k,j = ai + b

16: end for
17: end for
18: end for

such subproblems to solve, the computational complexity of JEEK (Eq. (5.1.3)) is therefore O(p2K4).

We summarize the algorithm of JEEK in Algorithm 2 (details in Section (5.2.2)).

5.2.1 Detailed solution

Notations: X
(i)
ni⇥p is the data matrix for the i-th task, which includes ni data samples being

described by p di↵erent feature variables. Then ntot =
KP
i=1

ni is the total number of data samples.

We use notation ⌦(i) for the precision matrices and b⌃(i) for the estimated covariance matrices. Given

a p-dimensional vector x = (x1, x2, . . . , xp)T 2 Rp, we denote the l1-norm of x as ||x||1 =
P
i
|xi|.

||x||1 = max
i

|xi| is the l1-norm of x. Similarly, for a matrix X, let ||X||1 =
P
i,j

|Xi,j | be the `1-norm

of X and ||X||1 = max
i,j

|Xi,j | be the `1-norm of X.

In Eq. (5.2.1), let ai = a
+
i � a

�

i and b = b
+
� b

�. If ai � 0, then a
+
i = ai and a

�

i = 0. If ai < 0,

then a
+
i = 0 and a

�

i = �ai. The b
+ and b

� have the similar definition. Then Eq. (5.2.1) can be
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solved by the following small linear programming problem.

argmin
ai,b

X

i

(wia
+
i + wia

�

i ) +Kwsb
+ +Kwsb

�

Subject to: a+i � a
�

i + b
+
� b

�
 ci +

�n

min(wi, ws)
,

a
+
i � a

�

i + b
+
� b

�
� ci �

�n

min(wi, ws)
,

a
+
i , a

�

i , b
+
, b

�
� 0

i = 1, . . . ,K

5.2.2 JEEK is Group entry-wise and parallelizing optimizable

JEEK can be easily paralleled. Essentially we just need to revise the “For loop” of step 6 and step 7

in Algorithm 2 into, for instance, “entry per machine” “entry per core”. Now We prove that JEEK

is group entry-wise and parallelizing optimizable. We prove that our estimator can be optimized

asynchronously in a group entry-wise manner.

Theorem 5.2.1. (JEEK is Group entry-wise optimizable) Suppose we use JEEK to infer

multiple inverse of covariance matrices summarized as b⌦tot. {[b⌦(i)
I ]j,k, [b⌦S ]j,k|i = 1, . . . ,K}. describes

a group of K + 1 entries at (j, k) position. Varying j 2 {1, 2, . . . , p} and k 2 {1, 2, . . . , p}, we have a

total of p⇥ p groups. If these groups are independently estimated by JEEK, then we have,

p[

j=1

p[

k=1

{([b⌦(i)
I ]j,k + [b⌦S ]j,k)|i = 1, . . . ,K} = b⌦tot. (5.2.2)

Proof. Eq. (5.2.1) are the small sub-linear programming problems on each group of entries.
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5.2.3 Di�culties in the JEEK’s extension

We can also add more flexibility into the JEEK such as the second normalization function in JGL. It

has the following formulation:

argmin
⌦tot

I
,⌦tot

S

||W
tot
I � ⌦tot

I ||1 + ||W
tot
S � ⌦tot

S ||+ ✏R
0(⌦tot)

Subject to: ||W tot
I � (⌦tot

� inv(Tv(b⌃tot)))||1  �n

||W
tot
S � (⌦tot

� inv(Tv(b⌃tot)))||1  �n

R
⇤0(⌦tot)  ✏�n

(5.2.3)

We have two ways to solve Eq. (7.2.1). The first one is the parallelized proximal algorithm. However,

this algorithm requires the kw-norm has a closed-form proximity, which has not been discovered. The

other way assume each `1 norm as the indepedent regularizer. However, this increases the number of

proximities need to calculate to K + 1. Moreover, R0 is for ⌦tot while each `1 is for either ⌦(i)I or

⌦S . Therefore, none of these solutions can keep the algorithm be fast and scalable. We choose not to

introduce this work.

5.3 Design WS and W (i)
I
: connections with related work and

real-world applications

In this section, we showcase with specific examples that our proposed model JEEK can easily

incorporate edge-level (like distance) as well as node-based (like hubs or groups) knowledge for the

joint estimation of multiple graphs. To this end, we introduce four di↵erent choices of W tot
S and

W
tot
I in our formulation Eq. (5.1.3). By simply designing di↵erent choices of W tot

S and W
tot
I , we

can express di↵erent kinds of additional knowledge explicitly without changing the optimization

algorithm.

Specifically, we design WS and W
(i)
I for cases like:

• (1) the additional knowledge is available in the form of a p ⇤ p matrix W . For instance distance

matrix among brain regions in neuroscience study belongs to this type;
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• (2) the existing knowledge is not in the form of matrix about nodes. We need to design W for

such cases, for example the information of known hub nodes or the information of how nodes fall

into groups (e.g., genes belonging to the same pathway or locations).

For the second kind, we showcase three di↵erent designs of weight matrices for representing (a) known

co-Hub nodes, (b) perturbed hub nodes, and (c) node grouping information.

The design of knowledge matrices is loosely related to the di↵erent structural assumptions used by

he JGL studies as ( [12], [11]). For example, JGL can use specially designed norms like the one

proposed in [12] to push multiple graphs to have a similar set of nodes as hubs. However JGL can

not model additional knowledge like a specific set of nodes are hub nodes (like we know node j is a

hub node). Di↵erently, JEEK can design {W
(i)
I ,WS} for incorporating such knowledge. Essentially

JEEK is complementary to JGL because they capture di↵erent type of prior information.

5.3.1 Case study I: Knowledge as matrix form like a distance matrix or

some known edges

The first example we consider is exploiting a spatial prior to jointly estimate brain connectivity for

multiple subject groups. Over time, neuroscientists have gathered considerable knowledge regarding

the spatial and anatomical information underlying brain connectivity (i.e. short edges and certain

anatomical regions are more likely to be connected [6]). Previous studies enforce these priors via a

matrix of weights, W , corresponding to edges. To use our proposed model JEEK for such tasks, we

can similarly choose W = W
(i)
I = WS in Eq. (5.1.3)).

5.3.2 Case study II: Knowledge of co-hub nodes

The structure assumption we consider is graphs with co-hub nodes. Namely, there exists a set of

nodes NId = {j|j 2 {1, 2, . . . , p}} such that ⌦(i)
j,k 6= 0, 8i 2 {1, 2, . . . ,K} and k 2 {1, . . . , p}. The

above sub-figure of Figure 5.6 is an example of the co-hub nodes.

A so-called JGL-hub [12] estimator chooses R0(·) =
P
i<i0

Pq(⌦(i)
� ⌦(i0)) in Eq. (5.6.2) to account for

the co-hub structure assumption. Here Pq(⇥1,⇥2, . . . ,⇥k) = 1/2||⇥1, . . . ,⇥k||`1,`q . ⇥i is a symmetric

matrix and || · ||`1,`q is the notation of `1, `q-norm. JGL-hub formulation needs a complicated ADMM

solution with computationally expensive SVD steps.
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Figure 5.1: co-hub. Top: An example of the co-hub node structure. Bottom: The designed WS for the co-hub structure
case.

We design WS and W
(i)
I for the co-hub type knowledge in JEEK via: (1) We initialize {W

(i)
I ,WS}

with 1p⇥p; (2) WSj,k = 1
� , 8j 2 NId and k 2 1, . . . , p where � is a hyperparameter. Therefore, the

smaller weights for the edge connecting to the node j of all the graphs enforce the co-hub structure.;

(3). After this process, each entry of {W (i)
I ,WS} equals to either 1

� or 1. The below sub-figure of

Figure 5.6 is an example of the designed WS .

5.3.3 Case study III: Knowledge of the perturbed hub nodes

Another structure assumption we study is graphs with perturbed nodes. Namely, there exists a set

of nodes NId = {j|j 2 {1, 2, . . . , p}} so that there exists i, i0 ⌦(i)
j,k 6= 0, and ⌦(i0)

j,k = 0, 8k 2 {1, . . . , p}.

The above sub-figure of Figure 5.7 is an example of the perturbed nodes. A so-called JGL-perturb [12]

estimator chose R
0(·) =

P
i<i0

Pq((⌦(1)
� diag(⌦(1))), . . . , (⌦(K)

� diag(⌦(K)))) in Eq. (5.6.2). Here

Pq(·) has the same definition as mentioned previously. This JGL-perturb formulation also needs a

complicated ADMM solution with computationally expensive SVD steps.

To design WS and W
(i)
I for this type of knowledge in JEEK, we use a similar strategy as the above

strategy: (1) We initialize {W (i)
I ,WS} with 1p⇥p; we let W

(i)
I j,k = 1

� ,W
(i0)
I j,k = �, 8j 2 NId and k 2

1, . . . , p. Therefore, the di↵erent weights for the edge connecting to the node j in di↵erent W
(i)
I
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Figure 5.2: Perturb hub nodes. Top: An example of the perturbed node structure. Bottom: The designed WI for the
perturbed case.

enforce the node-perturbed structure. ; (3). After this process, each entry of {W (i)
I ,WS} equals to

either 1
� ,� or 1. The below sub-figure of Figure 5.7 is an example of the designed {W

(i)
I }.

5.3.4 Case study IV: Knowledge of group information about nodes

To design WS and W
(i)
I for the group information about a set of nodes, we use a simple three-step

strategy: (1) We initialize {W
(i)
I ,WS} with 1p⇥p; (2) We let WSj,k = 1

� , 8(j, k) 2 Id where � is a

hyperparameter. Therefore, the smaller weights for the edge (j, k) in all the graphs favors the edges

among nodes in the same group. ; (3). After this process, each entry of {W (i)
I ,WS} equals to either

1
� or 1. The below sub-figure of Figure 5.3 is an example of the designed WS (extra knowledge is

that X2, X3, X4 belong to the same group).

Figure 5.3: Co-group
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Figure 5.4: Basic idea of JEEK.

5.4 Theoretical Analysis

KW-Norm: We presented the three properties of kw-norm in Section 5.1.1. The proofs of these

three properties are included in the next Section.

Theoretical error bounds of Proxy Backward Mapping: [19] proved that when (p � n), the

proxy backward mapping [Tv(b⌃)]�1 used by EE-sGGM achieves the sharp convergence rate to its

truth (i.e., by proving ||Tv(b⌃))�1
�⌃⇤�1

||1 = O(
q

log p
n )). The proof was extended from the previous

study [44] that devised Tv(b⌃) for estimating covariance matrix consistently in high-dimensional

situations. To derive the statistical error bound of JEEK, we need to assume that inv(Tv(b⌃tot))

are well-defined. This is ensured by assuming that the true ⌦(i)⇤ satisfy the conditions defined in

Section (5.5.1).

Theoretical error bounds of JEEK: We now use the high-dimensional analysis framework

from [27], three properties of kw-norm, and error bounds of backward mapping from [19,44] to derive

the statistical convergence rates of JEEK. Detailed proofs of the following theorems are in Section 5.4

.

Before providing the theorem, we need to define the structural assumption, the IS-Sparsity, we

assume for the parameter truth.

(IS-Sparsity): The ’true’ parameter of ⌦tot⇤ can be decomposed into two clear structures–⌦tot
I

⇤

and ⌦tot
S

⇤
. ⌦tot

I
⇤
is exactly sparse with ki non-zero entries indexed by a support set SI and ⌦tot

S
⇤
is

exactly sparse with ks non-zero entries indexed by a support set SS . SI
T
SS = ;. All other elements
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equal to 0 (in (SI
S
SS)c).

Theorem 5.4.1. Consider ⌦tot whose true parameter ⌦tot⇤ satisfies the (IS-Sparsity) assumption.

Suppose we compute the solution of Eq. (5.1.3) with a bounded �n such that �n � max(||W tot
I �

(⌦tot⇤
�inv(Tv(b⌃tot)))||1, ||W

tot
S �(⌦tot⇤

�inv(Tv(b⌃tot)))||1), then the optimal solution b⌦tot satisfies

the following error bounds:

||b⌦tot
� ⌦tot⇤

||F  4
p
ki + ks�n

max(||W tot
I � (b⌦tot

� ⌦tot⇤)||1, ||W
tot
S � (b⌦tot

� ⌦tot⇤
||1)

 2�n

||W
tot
I � (b⌦tot

I � ⌦tot
I

⇤
)||1 + ||W

tot
S � (b⌦tot

S � ⌦tot
S

⇤
)||1

 8(ki + ks)�n

(5.4.1)

Proof. See detailed proof in Section 5.5.2

Theorem (5.4.1) provides a general bound for any selection of �n. The bound of �n is designed by

the distance between ⌦tot⇤ and inv(Tv(b⌃tot)). We then use Theorem (5.4.1) to derive the statistical

convergence rate of JEEK. This gives us the following corollary:

Corollary 5.4.2. Suppose the high-dimensional setting, i.e., p > max(ni). Let v := a

q
log(Kp)
ntot

. Then

for �n := 81a
2

q
log(Kp)
ntot

and ntot > c logKp, with a probability of at least 1�2C1 exp(�C2Kp log(Kp)),

the estimated optimal solution b⌦tot has the following error bound:

||b⌦tot�⌦tot⇤||F


161amax

j,k
(W tot

I j,k,W
tot
S j,k)

2

r
(ki + ks) log(Kp)

ntot

(5.4.2)

where a, c, 1 and 2 are constants.

Proof. See detailed proof in Section 6.3 (especially from Eq. (6.3.2) to Eq. (5.5.14)).
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5.5 Proofs

5.5.1 Theorems and Proofs of three properties of kw-norm

In this sub-section, we prove the three properties of kw-norm used in Section 5.1.1. We then provide

the convergence rate of our estimator based on these three properties.

• (i) kw-norm is a norm function if and only if any entries in W
tot
I and W

tot
S do not equal to 0.

• (ii) If the condition in (i) holds, kw-norm is a decomposable norm.

• (iii) If the condition in (i) holds, the dual norm of kw-norm is R⇤(u) = max(||W tot
I � u||1, ||W

tot
S �

u||1).

Norm:

First we prove the correctness of the argument that kw-norm is a norm function by the following

theorem:

Theorem 5.5.1. Eq. (5.1.2) is a norm if and only if 81 � j, k  p,W
(i)
I jk 6= 0, and WSj,k 6= 0.

This theorem gives the su�cient and necessary conditions to make kw-norm ( Eq. (5.1.2)) a norm

function.

Decomposable Norm:

Then we show that kw-norm is a decomposable norm within a certain subspace. Before providing

the theorem, we give the structural assumption of the parameter.

(IS-Sparsity): The ’true’ parameter for ⌦tot⇤ ( multiple GGM structures) can be decomposed into

two clear structures–⌦tot
I

⇤
and ⌦tot

S
⇤
. ⌦tot

I
⇤
is exactly sparse with ki non-zero entries indexed by a

support set SI and ⌦tot
S

⇤
is exactly sparse with ks non-zero entries indexed by a support set SS .

SI
T
SS = ;. All other elements equal to 0 (in (SI

S
SS)c).

Definition 5.5.2. (IS-subspace)

M(SI

[
SS) = {✓j = 0|8j /2 SI

[
SS} (5.5.1)
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Theorem 5.5.3. Eq. (5.1.2) is a decomposable norm with respect to M and M̄
?

Dual Norm of kw-Norm:

To obtain the final formulation Eq. (5.1.3) and its statistical convergence rate, we need to derive the

dual norm formulation of kw-norm.

Theorem 5.5.4. The dual norm of kw-norm ( Eq. (5.1.2)) is

R
⇤(u) = max(||W tot

I � u||1, ||W
tot
S � u||1) (5.5.2)

The details of the proof are as follows.

Proof of Theorem (5.5.1)

Lemma 5.5.5. For kw-norm, W tot
I j,k 6= 0 and W

tot
S j,k 6= 0 equals to W

tot
I j,k > 0 and W

tot
S j,k > 0.

Proof. If W tot
I j,k < 0, then |W

tot
I j,k⌦

tot
I j,k| = |W

tot
I j,k||⌦

tot
I j,k| = | � W

tot
I j,k⌦

tot
I j,k|. Notice that

�W
tot
I j,k > 0.

Proof. To prove the kw-norm is a norm, by Lemma (6.3.2) the only thing we need to prove is that

f(x) = ||W � x||1 is a norm function if Wi,j > 0. 1. f(ax) = ||aW � x||1 = |a|||W � x||1 = |a|f(x). 2.

f(x+ y) = ||W � (x+ y)||1 = ||W � x+W � y||1  ||W � x||1 + ||W � y||1 = f(x) + f(y). 3. f(x) � 0

4. If f(x) = 0, then
P

|Wi,jxi,j | = 0. Since Wi,j 6= 0, xi,j = 0. Therefore, x = 0. Based on the

above, f(x) is a norm function. Since summation of norm is still a norm function, kw-norm is a

norm function.

Futhurmore, we have the following Lemma:

Lemma 5.5.6. The dual norm of f(x) is ||W � x||1.

Proof. f
⇤(u) = sup

x

<u,x>
||W�x||1

= sup
x
{< u, x > |||W � x||1  1} = ||W � u||1.
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Proof of Theorem (5.5.3)

Proof. Assume u 2 M and v 2 M̄
?, R(u + v) = ||W

tot
I � (uI + vI)||1 + ||W

tot
S � (uS + vS)||1 =

||W
tot
I � uI ||1 + ||W

tot
S � uS ||1 + ||W

tot
I � vI ||1 + ||W

tot
S � vS ||1 = R(u) +R(v). Therefore, kw-norm is

a decomposable norm with respect to the subspace pair (M,M̄
?).

Proof of Theorem (5.5.4)

Proof. Suppose R(✓) =
P
↵2I

c↵R↵(✓↵), where
P
↵2I

✓↵ = ✓. Then the dual norm R
⇤(·) can be derived

by the following equation.

R
⇤(u) = sup

✓

< ✓, u >

✓

= sup
✓↵

P
↵

< u, ✓↵ >

P
↵
c↵R↵(✓↵)

= sup
✓↵

P
↵

< u/c↵, ✓↵ >

P
↵
R↵(✓↵)

 sup
✓↵

P
↵
R

⇤

↵(u/c↵)R(✓↵)
P
↵
R↵(✓↵)

 max
↵2I

R
⇤

↵(u)/c↵.

(5.5.3)

Therefore by Lemma (5.5.6), the dual norm of kw-norm is R
⇤(u) = max(||W tot

I � u||1, ||W
tot
S �

u||1).

5.5.2 Proofs of Theorems about All Error Bounds of JEEK

For the proposed JEEK model, R(⌦tot) = ||W
tot
I � ⌦tot

I ||1 + ||W
tot
S � ⌦tot

S ||1. Based on the results

in [27],  (M̄) =
p
ki + ks, where ki and ks are the total number of nonzero entries in ⌦tot

I and ⌦tot
S .

Using R(⌦tot) = ||W
tot
I �⌦tot

I ||1 + ||W
tot
S �⌦tot

S ||1 in Theorem (3.2.2), we have the following theorem

(the same as Theorem (5.4.1)),

Theorem 5.5.7. Suppose that R(⌦tot) = ||W
tot
I � ⌦tot

I ||1 + ||W
tot
S � ⌦tot

S ||1 and the true parameter

⌦tot⇤ satisfy the conditions (C1)(C2) and �n � R
⇤(b⌦tot

� ⌦tot⇤), then the optimal point b⌦tot of
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Eq. (5.1.3) has the following error bounds:

max(||W tot
I � (b⌦tot

� ⌦tot⇤)||1, ||W
tot
S � (b⌦tot

� ⌦tot⇤
||1)

 2�n

||b⌦tot
� ⌦tot⇤

||F  4
p
ki + ks�n

||W
tot
I � (b⌦tot

I � ⌦tot
I

⇤
)||1 + ||W

tot
S � (b⌦tot

S � ⌦tot
S

⇤
)||1

 8(ki + ks)�n

(5.5.4)

Proof of Theorem (3.2.2)

Proof. Let � := b✓ � ✓
⇤ be the error vector that we are interested in.

R
⇤(b✓ � ✓

⇤) = R
⇤(b✓ � b✓n + b✓n � ✓

⇤)

 R
⇤(b✓n � b✓) +R

⇤(b✓n � ✓
⇤)  2�n

(5.5.5)

By the fact that ✓⇤
M? = 0, and the decomposability of R with respect to (M,M̄

?)

R(✓⇤)

= R(✓⇤) +R[⇧M̄?(�)]�R[⇧M̄?(�)]

= R[✓⇤ +⇧M̄?(�)]�R[⇧M̄?(�)]

 R[✓⇤ +⇧M̄?(�) +⇧M̄(�)] +R[⇧M̄(�)]

�R[⇧M̄?(�)]

= R[✓⇤ + �] +R[⇧M̄(�)]�R[⇧M̄?(�)]

(5.5.6)

Here, the inequality holds by the triangle inequality of norm. Since Eq. (3.2.1) minimizes R(b✓), we

have R(✓⇤ +�) = R(b✓)  R(✓⇤). Combining this inequality with Eq. (6.3.2), we have:
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R[⇧M̄?(�)]  R[⇧M̄(�)] (5.5.7)

Moreover, by Hlder’s inequality and the decomposability of R(·), we have:

||�||
2
2 = h�, �i  R

⇤(�)R(�)  2�nR(�)

= 2�n[R(⇧M̄(�)) +R(⇧M̄?(�))]  4�nR(⇧M̄(�))

 4�n (M̄)||⇧M̄(�)||2

(5.5.8)

where  (M̄) is a simple notation for  (M̄, || · ||2).

Since the projection operator is defined in terms of ||·||2 norm, it is non-expansive: ||⇧M̄(�)||2  ||�||2.

Therefore, by Eq. (6.3.4), we have:

||⇧M̄(�)||2  4�n (M̄), (5.5.9)

and plugging it back to Eq. (6.3.4) yields the error bound Eq. (3.2.4).

Finally, Eq. (3.2.5) is straightforward from Eq. (6.3.3) and Eq. (6.3.5).

R(�)  2R(⇧M̄(�))

 2 (M̄)||⇧M̄(�)||2  8�n (M̄)2.
(5.5.10)

Conditions of Proving Error Bounds of JEEK

JEEK achieves similar convergence rates as the SIMULE [36] (W-SIMULE with no additional

knowledge) and FASJEM estimator [53]. The other multiple sGGMs estimation methods have not

provided such convergence rate analysis.
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To derive the statistical error bound of JEEK, we need to assume that inv(Tv(b⌃tot)) are well-defined.

This is ensured by assuming that the true ⌦(i)⇤ satisfy the following conditions [19]:

(C-MinInf�⌃): The true ⌦(i)⇤ Eq. (5.1.3) have bounded induced operator norm, i.e., |||⌦(i)⇤
|||1 :=

sup
w 6=02Rp

||⌃(i)⇤w||1
||w||1

 1 .

(C-Sparse-⌃): The true covariance matrices ⌃(i)⇤ are “approximately sparse” (following [43]). For

some constant 0  q < 1 and c0(p), max
i

pP
j=1

|[⌃(i)⇤]ij |q  c0(p). 1

We additionally require inf
w 6=02Rp

||⌦(i)⇤w||1
||w||1

� 2.

Proof of Corollary (6.2.2)

Proof. In the following proof, we re-denote the following two notations: ⌃tot :=

0

BBBBBBB@

⌃(1) 0 · · · 0

0 ⌃(2)
· · · 0

...
...

. . .
...

0 0 · · · ⌃(K)

1

CCCCCCCA

and

⌦tot :=

0

BBBBBBB@

⌦(1) 0 · · · 0

0 ⌦(2)
· · · 0

...
...

. . .
...

0 0 · · · ⌦(K)

1

CCCCCCCA

The condition (C-Sparse⌃) and condition (C-MinInf⌃) also hold for ⌦⇤

tot and ⌃⇤

tot. In order to

utilize Theorem (6.3.1) for this specific case, we only need to show that ||⌦⇤

tot � [T⌫(b⌃tot)]�1
||1  �n

for the setting of �n in the statement:

1This indicates for some positive constant d, [⌃(i)⇤]jj  d for all diagonal entries. Moreover, if q = 0, then this

condition reduces to ⌃(i)⇤.
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||⌦⇤

tot � [T⌫(b⌃tot)]
�1

||1

= ||[T⌫(b⌃tot)]
�1(T⌫(b⌃tot)⌦

⇤

tot � I)||1

 |||[T⌫(b⌃tot)w]|||1||T⌫(b⌃tot)⌦
⇤

tot � I||1

= |||[T⌫(b⌃tot)]
�1

|||1||⌦⇤

tot(T⌫(b⌃tot)� ⌃
⇤

tot)||1

 |||[T⌫(b⌃tot)]
�1

|||1|||⌦⇤

tot|||1||T⌫(b⌃tot)� ⌃
⇤

tot||1.

(5.5.11)

We first compute the upper bound of |||[T⌫(b⌃tot)]�1
|||1. By the selection ⌫ in the statement,

Lemma (6.3.2) and Lemma (6.3.3) hold with probability at least 1� 4/p0⌧�2. Armed with Eq. (6.3.7),

we use the triangle inequality of norm and the condition (C-Sparse⌃): for any w,

||T⌫(b⌃tot)w||1 = ||T⌫(b⌃tot)w � ⌃w + ⌃w||1

� ||⌃w||1 � ||(T⌫(b⌃tot)� ⌃)w||1

� 2||w||1 � ||(T⌫(b⌃tot)� ⌃)w||1

� (2 � ||(T⌫(b⌃tot)� ⌃)w||1)||w||1

(5.5.12)

Where the second inequality uses the condition (C-Sparse⌃). Now, by Lemma (6.3.2) with the

selection of ⌫, we have

|||T⌫(b⌃tot)� ⌃|||1  c1(
log(Kp

0)

ntot
)(1�q)/2

c0(p) (5.5.13)

where c1 is a constant related only on ⌧ and maxi ⌃ii. Specifically, it is defined as 6.5(16(maxi ⌃ii)
p
10⌧)1�q.

Hence, as long as ntot > ( 2c1c0(p)2
)

2
1�q log p0 as stated, so that |||T⌫(b⌃tot)�⌃|||1 

2
2 , we can conclude

that ||T⌫(b⌃tot)w||1 �
2
2 ||w||1, which implies |||[T⌫(b⌃tot)]�1

|||1 
2
2
.

The remaining term in Eq. (6.3.9) is ||T⌫(b⌃tot)�⌃⇤

tot||1; ||T⌫(b⌃tot)�⌃⇤

tot||1  ||T⌫(b⌃tot)� b⌃tot||1+

||b⌃tot � ⌃⇤

tot||1. By construction of T⌫(·) in (C-Thresh) and by Lemma (6.3.3), we can confirm that

||T⌫(b⌃tot)� b⌃tot||1 as well as ||b⌃tot � ⌃⇤

tot||1 can be upper-bounded by ⌫.
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Table 5.1: Compare JEEK versus baselines. Here T is the number of iterations.

Method JEEK W-SIMULE JGL FASJEM NAK (run K times)
Time Complexity O(K4

p
2) () O(K4)

if parallelizing com-

pletely)

O(K4
p
5) O(T ⇥Kp

3) O(T ⇥Kp
2) O(Knp

3 +Kp
4)

Additional Knowledge YES YES NO NO YES

Therefore,

max(||W tot
I � (⌦tot⇤

� inv(Tv(b⌃tot)))||1,

||W
tot
S � (⌦tot⇤

� inv(Tv(b⌃tot)))||1)

 O(maxmax
j,k

(W tot
I j,k,W

tot
S j,k)

s
log(Kp)

ntot
)

(5.5.14)

By combining all together, we can confirm that the selection of �n satisfies the requirement of Theo-

rem (6.3.1), which completes the proof.

5.6 Related works

5.6.1 Connecting to Relevant Studies

JEEK is closely related to a few state-of-the-art studies summarized in Table 6.1. We compare the

time complexity and functional properties of JEEK versus these studies.

NAK: [54] For the single task sGGM, one recent study [54] (following ideas from [55]) proposed

to integrating Additional Knowledge (NAK)into estimation of graphical models through a weighted

Neighbourhood selection formulation (NAK) as: b�j = argmin
�,�j=0

1
2 ||X

j
�X�||

2
2 + ||rj � �||1. NAK is

designed for estimating brain connectivity networks from homogeneous samples and incorporate

distance knowledge as weight vectors. 2 In experiments, we compare JEEK to NAK (by running

NAK R package K times) on multiple synthetic datasets of simulated samples about brain regions.

The data simulation strategy was suggested by [54]. Same as the NAK [54], we use the spatial

distance among brain regions as additional knowledge in JEEK.

2Here b�j indicates the sparsity of j-th column of a single b⌦. Namely, b�j
k = 0 if and only if b⌦k,j = 0. rj is a weight

vector as the additional knowledge The NAK formulation can be solved by a classic Lasso solver like glmnet.
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W-SIMULE: [20] Like JEEK, one recent study [20] of multi-sGGMs (following ideas from [36])

also assumed that ⌦(i) = ⌦(i)
I + ⌦S and incorporated spatial distance knowledge in their convex

formulation for joint discovery of heterogeneous neural connectivity graphs. This study, with name

W-SIMULE (Weighted model for Shared and Individual parts of MULtiple graphs Explicitly) uses a

weighted constrained `1 minimization:

argmin
⌦(i)

I
,⌦S

X

i

||W � ⌦(i)
I ||1 + ✏K||W � ⌦S ||1 (5.6.1)

Subject to: ||⌃(i)(⌦(i)
I + ⌦S)� I||1  �n, i = 1, . . . ,K

W-SIMULE simply includes the additional knowledge as a weight matrix W . 3

Di↵erent from W-SIMULE, JEEK separates the knowledge of individual context and the shared

using di↵erent weight matrices. While W-SIMULE also minimizes a weighted `1 norm, its constraint

optimization term is entirely di↵erent from JEEK. The formulation di↵erence makes the optimization

of JEEK much faster and more scalable than W-SIMULE (Section (4.5)). We have provided a complete

theoretical analysis of error bounds of JEEK, while W-SIMULE provided no theoretical results.

Empirically, we compare JEEK with W-SIMULE R package from [20] in the experiments.

JGL: [11]: Regularized MLE based multi-sGGMs Studies mostly follow the so called joint graphical

lasso (JGL) formulation as Eq. (5.6.2):

argmin
⌦(i)�0

KX

i=1

(�L(⌦(i)) + �n

KX

i=1

||⌦(i)
||1

+ �
0

nR
0(⌦(1)

,⌦(2)
, . . . ,⌦(K))

(5.6.2)

R
0(·) is the second penalty function for enforcing some structural assumption of group property

among the multiple graphs. One caveat of JGL is that R
0(·) cannot model explicit additional

knowledge. For instance,it can not incorporate the information of a few known hub nodes shared

by the contexts. In experiments, we compare JEEK to JGL-co-hub and JGL-perturb-hub toolbox

provided by [12].

3It can be solved by any linear programming solver and can be column-wise paralleled. However, it is very slow
when p > 200 due to the expensive computation cost O(K4

p
5).
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FASJEM: [53] One very recent study extended JGL using so-called Elementary superposition-

structured moment estimator formulation as Eq. (5.6.3):

argmin
⌦tot

||⌦tot||1 + ✏R
0(⌦tot)

s.t.||⌦tot � inv(Tv(b⌃tot))||1  �n

R
0⇤(⌦tot � inv(Tv(b⌃tot)))  ✏�n

(5.6.3)

FASJEM is much faster and more scalable than the JGL estimators. However like JGL estimators

it can not model additional knowledge and its optimization needs to be carefully re-designed for

di↵erent R0(·). 4

Both NAK and W-SIMULE only explored the formulation for estimating neural connectivity graphs

using spatial information as additional knowledge. Di↵erently our experiments (Section (4.5)) extend

the weight-as-knowledge formulation on weights as distance, as shared hub knowledge, as perturbed

hub knowledge, and as nodes’ grouping information (e.g., multiple genes are known to be in the same

pathway). This has largely extends the previous studies in showing the real-world adaptivity of the

proposed formulation. JEEK elegantly formulates existing knowledge based on the problem at hand

and avoid the need to design knowledge-specific optimization.

5.6.2 Connecting to the Bayesian statistics

Our approach has a close connection to a hierarchical Bayesian model perspective. We show that the

additional knowledge weight matrices are also the parameters of the prior distribution of ⌦(i)
I ,⌦S .

In our formulationEq. (5.1.3), W (i)
I ,WS are the additional knowledge weight matrices. From a

hierarchical Bayesian view, the first level of the prior is a Gaussian distribution and the second level

is a Laplace distribution. In the following section, we show that W (i)
I ,WS are also the parameters of

Laplace distributions, which is a prior distribution of ⌦(i)
I ,⌦S .

Since by the definition, ⌦(i)
I j,k⌦Sj,k = 0. There are only two possible situations:

Case I (⌦(i)
I j,k = 0):

X
(i)
|µ

(i)
,⌦(i)

⇠ N(µ(i)
, (⌦(i))�1) (5.6.4)

4FASJEM extends JGL into multiple independent group-entry wise optimization just like JEEK. Here R0⇤(·) is the
dual norm of R0(·). Because [53] only designs the optimization of two cases (group,2 and group,inf), we can not use it
as a baseline.
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⌦(i)
j,k|µ

(i)
,W

(i)
I j,k,WSj,k = ⌦Sj,k|µ

(i)
,WSj,k (5.6.5)

p(⌦Sj,k|µ
(i)
,WSj,k)

/ e
�(WSj,k|⌦Sj,k|)

(5.6.6)

Here ⌦Sj,k|µ
(i)
,WSj,k follows a Laplace distribution with mean 0. 1/WSj,k > 0 is the diversity

parameter. The larger WSj,k is, the distribution of ⌦Sj,k|µ
(i)
,WSj,k more likely concentrate on the

0. Namely, there will be the higher density for ⌦Sj,k = 0|µ(i)
,WSj,k.

Case II (⌦Sj,k = 0):

X
(i)
|µ

(i)
,⌦(i)

⇠ N(µ(i)
, (⌦(i))�1) (5.6.7)

⌦(i)
j,k|µ

(i)
,W

(i)
I j,k,WSj,k = ⌦(i)

I j,k|µ
(i)
,W

(i)
I j,k

(5.6.8)

p(⌦(i)
I j,k|µ

(i)
,W

(i)
I j,k)

/ e
�(W (i)

I j,k
|⌦(i)

I j,k
|)

(5.6.9)

Here ⌦(i)
I j,k|µ

(i)
,W

(i)
I j,k follows a Laplace distribution with mean 0. 1/W (i)

I j,k > 0 is the diversity

parameter. The larger W (i)
I j,k is, the distribution of ⌦(i)

I j,k|µ
(i)
,W

(i)
I j,k more likely concentrate on

the 0. Namely, there will be the higher density for ⌦(i)
I j,k = 0|µ(i)

,W
(i)
I j,k.

Therefore, we can combine the above two cases into the following one equation.

p(⌦(i)
j,k|µ

(i)
,W

(i)
I j,k,WSj,k)

/ e
�(W (i)

I j,k
|⌦(i)

I j,k
|+WSj,k|⌦Sj,k|)

(5.6.10)

Our final hierarchical Bayesian formulation consists of the Eq. (5.6.4) and Eq. (5.6.10). This model
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is a generalization of the model considered in the seminal paper on the Bayesian lasso [56]. The

parameters W (i)
I j,k,WSj,k in our general model are hyper-parameters that specify the shape of the

prior distribution of each edges in ⌦(i). The negative log-posterior distribution of ⌦(i) is now given

by:

� log(P(⌦(i)
|X

(i)
, µ

(i)
,W

(i)
I j,k,WSj,k))

/ � log(det(⌦(i)�1
))+ < ⌦(i)

, b⌃(i)
>

+
X

j,k

(W (i)
I j,k|⌦

(i)
I j,k|+WS |⌦Sj,k|)

(5.6.11)

Eq. (5.6.11) follows a weighted variation of Eq. (5.6.2).

5.7 Experiments

We empirically evaluate JEEK and baselines on four types of datasets, including two groups of

synthetic data, one real-world fMRI dataset for brain connectivity estimation and one real-world

genomics dataset for estimating interaction among regulatory genes. In order to incorporating various

types of knowledge, we provide five di↵erent designs of the weight matrices in Section 5.3. Details of

experimental setup, metrics and hyper-parameter tuning are included in Section (5.7.1). Baselines

used in our experiments have been explained in details by Section (5.6.1). We also use JEEK with

no additional knowledge (JEEK-NK) as a baseline.

JEEK is available as the R package ’jeek’ in CRAN.

5.7.1 Experimental Setup

On four types of datasets, we focus on empirically evaluating JEEK with regard to three aspects: (i)

e↵ectiveness, computational speed and scalability in brain connectivity simulation data; (ii) flexibility

in incorporating di↵erent types of knowledge of known hub nodes in graphs; (iii) e↵ectiveness and

computational speed for brain connectivity estimation from real-world fMRI.
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5.7.2 Evaluation Metrics

• AUC-score: The edge-level false positive rate (FPR) and true positive rate (TPR) are used to

measure the di↵erence between the true graphs and the predicted graphs. We obtain FPR vs.

TPR curve for each method by tuning over a range of its regularization parameter. We use the

area under the FPR -TPR curve (AUC-Score) to compare the predicted versus true graph. Here,

FPR =
FP

FP + TN
and TPR =

TP

FN+ TP
. TP (true positive) and TN (true negative) means the

number of true edges and non-edges correctly estimated by the predicted network respectively. FP

(false positive) and FN (false negative) are the number of incorrectly predicted nonzero entries and

zero entries respectively.

• F1-score: We first use the edge-level F1-score to compare the predicted versus true graph. Here,

F1 = 2·Precision·Recall
Precision+Recall , where Precision = TP

TP+FP and Recall = TP
TP+FN . The better method achieves

a higher F1-score.

• Time Cost: We use the execution time (measured in seconds or log(seconds)) for a method as a

measure of its scalability. To ensure a fair comparison, we try 30 di↵erent �n (or �2) and measure

the total time of execution for each method. The better method uses less time5

Evaluations: For the first experiment on brain simulation data, we evaluate JEEK and the

baseline methods on F1-score and running time cost. For the second experiment, we use AUC-score

and running time cost.6 For the third experiment, our evaluation metrics include classification

accuracy, likelihood and running time cost.

• The first set of experiments evaluates the speed and scalability of our model JEEK on simulation

data imitating brain connectivity. We compare both the estimation performance and computational

time of JEEK with the baselines in multiple simulated datasets.

• In the second experiment, we show JEEK’s ability to incorporate knowledge of known hubs in

multiple graphs. We also compare the estimation performance and scalability of JEEK with the

baselines in multiple simulated datasets.

5The machine that we use for experiments is an AMD 64-core CPU with a 256GB memory.
6We cannot use AUC-score for the first set of experiments as the baseline NAK only gives us the best adjacency

matrix after tuning over their hyperparameters. It does not provide an option for tuning the �n.
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• Thirdly, we evaluate the ability to import additional knowledge for enhancing graph estimation in

a real world dataset. The dataset used in this experiment is a human brain fMRI dataset with two

groups of subjects: autism and control. Our choice of this dataset is motivated by recent literature

in neuroscience that has suggested many known weights between di↵erent regions in human brain

as the additional knowledge.

5.7.3 Hyper-parameters:

We need to tune four hyper-parameters v, �n, �2 and �:

• v is used for soft-thresholding in JEEK. We choose v from the set {0.001i|i = 1, 2, . . . , 1000} and

pick a value that makes Tv(b⌃(i)) invertible.

• �n is the main hyper-parameter that controls the sparsity of the estimated network. Based on our

convergence rate analysis in Section 5.4, �n � C

q
logKp
ntot

where ntot = Kn and n = ni. Accordingly,

we choose �n from a range of {0.01⇥
q

logKp
ntot

⇥ i|i 2 {1, 2, 3, . . . , 30}}.

• �2 controls the regularization of the second penalty function in JGL-type estimators. We tune �2

from the set {0.01, 0.05, 0.1} for all experiments and pick the one that gives the best results.

• � is a hyperparameter used to design the W
(i)
I ,WS (5.6.1). The value of � intuitively indicates the

confidence of the additional knowledge weights. In the second experiment, we choose � = {2, 4, 10}.
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Figure 5.5: Performance comparison on simulation Datasets using co-Hub Knowledge: AUC vs. Time when varying
number of nodes p.

5.7.4 Experiment I:Simulate Samples with Known Hubs as Knowledge

In this set of experiments, we show empirically JEEK’s ability to model knowledge of known hub

nodes across multiple sGGMs and its advantages in scalability and e↵ectiveness. We generate multiple

simulated Gaussian datasets for both the co-hub and perturbed-hub graph structures.
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Simulation Protocol to generate simulated datasets: We generate multiple sets of

synthetic multivariate-Gaussian datasets. First, we generate random graphs following the Random

Graph Model [47]. This model assumes ⌦(i) = B(i)
I + BS + �I, where each o↵-diagonal entry in

B(i) is generated independently and equals 0.5 with probability 0.1i and 0 with probability 1� 0.1i.

The shared part BS is generated independently and equal to 0.5 with probability 0.1 and 0 with

probability 0.9. � is selected large enough to guarantee positive definiteness. We generate cohub and

perturbed structure simulations, using the following data generation models:

• Random Graphs with cohub nodes: After we generate the random graphs using the aforemen-

tioned Random Graph Model, we randomly generate a set of nodes NId = {j|j 2 {1, 2, . . . , p}} as

the cohub nodes among all the random graphs. The cardinal number of this set equals to 5%p. For

each of these nodes j, we randomly select 90% edges Ej = {(j, k)|k 2 {1, 2, . . . , p}} to be included

in the graph. Then we set ⌦(i)
j,k = ⌦(i)

k,j = 0.5, 8i 2 {1, 2, . . . ,K} and (j, k) 2 Ej .

• Random Graphs with perturbed nodes: After we generate the random graphs using the

aforementioned Random Graph Model, we randomly generate a set of nodes NId = {j|j 2

{1, 2, . . . , p}} as the perturbed hub nodes for the random graphs. The cardinal number of

this set equals to 5%p. For all graphs {⌦(i)
|i is odd}, for each of these nodes j 2 NId, we

randomly select 90% edges Ej = {(j, k)|k 2 {1, 2, . . . , p}} to be included in the graph. We set

⌦(i)
j,k = ⌦(i)

k,j = 0.5, 8 odd i 2 {1, 2, . . . ,K} and (j, k) 2 Ej . For all graphs {⌦(i)
|i is even} and

nodes j 2 NId, we randomly select 10% edges E
0

j = {(j, k)|k 2 {1, 2, . . . , p}} to be included in

the graph. We set ⌦(i)
j,k = ⌦(i)

k,j = 0.5, 8 even i 2 {1, 2, . . . ,K} and (j, k) 2 E
0

j . This creates a

perturbed node structure in the multiple graphs.

Experimental baselines: We employ JGL-node for cohub and perturbed hub node structure

(JGL-hub and JGL-perturb respectively) and W-SIMULE as the baselines for this set of experiments.

The weights in {W
tot
I ,W

tot
S } are designed by the strategy mentioned in Section 5.3.

Experiment Results: We assess the performance of JEEK in terms of e↵ectiveness (AUC score)

and scalability (computational time cost) through baseline comparison as follows:

(a) E↵ectiveness: We plot the AUC-score for a number of multiple simulated datasets generated

by varying the number of features p, the number of tasks K and the number of samples n. We
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Figure 5.6: Cohub node structure: (a) AUC-score vs the number of features (p). (b) AUC-score vs the number of
tasks (K). (c) Time cost (log(seconds)) vs the number of features (p). (d) Time cost (log(seconds)) vs the number
of tasks (K). For p > 300 and n = p/2 W-SIMULE takes more than one month and JGL takes more than one day
(indicated by dotted blue line). JGL package can only run for K = 2.

calculate AUC by varying �n. For the JGL estimator, we additionally vary �2 and select the

best AUC (section 5.7.1). In Figure 5.6 (a) and Figure 5.6 (b), we plot the AUC-Score for the

cohub node structure vs varying p and K, respectively. Figure 5.7 (a) and Figure 5.7 (b) plot the

same for the perturbed node structure. In Figure 5.6 (a) and Figure 5.7 (a), we vary p in the set

{100, 200, 300, 400, 500} and set K = 2 and n = p/2. For p > 300 and n = p/2, W-SIMULE takes

more than one month and JGL takes more than one day. Therefore we can not show their results

for p > 300. For both the cohub and perturbed node structures, JEEK consistently achieves better

AUC-score than the baseline methods as p is increased. For Figure 5.6(b) and Figure 5.7 (b), we

vary K in the set {2, 3, 4} and set p = 200 and n = p/2. JEEK consistently has a higher AUC-score

than the baselines JGL and W-SIMULE as K is increased.

(b) Scalability: In Figure 5.6 (c) and (d), we plot the computational time cost for the cohub node

structure vs the number of features p and the number of tasks K, respectively. Figure 5.7 (c) and (d)

plot the same for the perturbed node structure. We interpolate the points of computation time of

each estimator into curves. For each simulation case, the computation time for each estimator is the

summation of a method’s execution time over all values of �n. In Figure 5.6(c) and Figure 5.7(c), we

vary p in the set {100, 200, 300, 400, 500} and set K = 2 and n = p/2. When p > 300 and n = p/2,

W-SIMULE takes more than one month and JGL takes more than one day. Hence, we have omitted

their results for p > 300. For both the cohub and perturbed node structures, JEEK is consistently
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Figure 5.7: Perturbed node structure: (a) AUC-score vs the number of features (p). (b) AUC-score vs the number of
tasks (K). (c) Time cost (log(seconds)) of JEEK and the baseline methods vs the number of features (p). (d) Time
cost (log(seconds)) vs the number of tasks (K). for p > 300 and n = p/2, W-SIMULE takes more than one month and
JGL takes more than one day (indicated by dotted blue line). JGL package can only run for K = 2.

more than 5 times faster as p is increased. In Figure 5.6(d) and Figure 5.7 (d), we vary K in the set

{2, 3, 4} and fix p = 200 and n = p/2. JEEK is 50 times faster than the baselines for all cases with

p = 200 and as K is increased. In summary, JEEK is on an average more than 10 times faster than

all the baselines.

(c) Stability of Results when varying W matrices: Additionally, to account for JEEK’s

explicit structure assumption, we also vary the ratio of known hub nodes to the total number of hub

nodes. The known hub nodes are used to design the {W
i
I ,WS} matrices(details in Section 5.6.1). In

Figure 5.8(a) and (b), AUC for JEEK increases as the ratio of the number of known to total hub

nodes increases. The initial increase in AUC is particularly significant as it confirms that JEEK is

e↵ective in harvesting additional knowledge for multiple sGGMs. The increase in AUC is particularly

significant in the perturbed node case (Figure 5.8(b)). The AUC for the hub case does not have

a correspondingly large increase with an increase in ratio because the total number of hub nodes

are only 5% of the total nodes. In comparison, an increase in this ratio leads to a more significant

increase in AUC because the perturbed node assumption has more information than the cohub node

structure. We show in Figure 5.8(c) and (d) that the computational cost is largely una↵ected by this

ratio for both the cohub and perturbed node structure.

We also empirically check how the parameter r in the designed knowledge weight matrices influences

the performance. In Figure 5.9(a) and (b), we show that the designed strategy for including additional
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Figure 5.8: AUC-Score vs. ratio of number of known hub nodes to number of total hub nodes for (a) Cohub node
structure (b) perturbed node structure. Computational Time Cost vs. ratio of number of known hub nodes to number
of total hub nodes for (a) Cohub node structure (b) perturbed node structure.

knowledge as W is not a↵ected by variations of �. We vary � in the set of {2, 4, 10}. In summary,

the AUC-score(Figure 5.9(a),(b)) and computational time cost(Figure 5.9(c),(d)) remains relatively

una↵ected by the changes in � for both co-hub and perturbed-hub case.

5.7.5 Experiment II: Gene Interaction Network from Real-World Ge-

nomics Data

Next, we apply JEEK and the baselines on one real-world biomedical data about gene expression

profiles across two di↵erent cell types. We explored two di↵erent types of knowledge: (1) Known

edges and (2) Known group about genes. Figure 5.10(c) shows that JEEK has lower time cost

and recovers more interactions than baselines (higher number of matched edges to the existing

bio-databases.).

Advancements in genome-wide monitoring have resulted in enormous amounts of data across most of

the common cell contexts, like multiple common cancer types [57]. Complex diseases such as cancer

are the result of multiple genetic and epigenetic factors. Thus, recent research has shifted towards the

identification of multiple genes/proteins that interact directly or indirectly in contributing to certain

disease(s). Structure learning of sGGMs on such heterogeneous datasets can uncover statistical

dependencies among genes and understand how such dependencies vary from normal to abnormal or
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Figure 5.9: AUC-Score vs. � (a) Cohub node structure for (b) perturbed node structure. Computational Time Cost vs.
� for (a) Cohub node structure (b) perturbed node structure.

across di↵erent diseases. These structural variations are highly likely to be contributing markers that

influence or cause the diseases.

Two major cell contexts are selected from the human expression dataset provided by [58]: leukemia

cells (including 895 samples and normal blood cells (including 227 samples). Then we choose the top

1000 features from the total 12,704 features (ranked by variance) and perform graph estimation on

this two-task dataset. We explore two type of knowledge in the experiments.

The first kind (DAVID) is about the known group information about nodes, such as genes belonging

to the same biological pathway or cellular location. We use the popular “functional enrichment”

analysis tool DAVID [59] to get a set of group information about the 1000 genes. Multiple di↵erent

types of groups are provided by DAVID and we pick the co-pathway. We only use the grouping

information covering 20% of the nodes (randomly picked from 1000). The derived dependency

graphs are compared by using the number of predicted edges being validated by three major existing

protein/gene interaction databases [1, 2, 60] (average over both cell contexts).

The second type (PPI) is using existing known edges as the knowledge, like the known protein

interaction databases for discovering gene networks (a semi-supervised setting for such estimations).

We use three major existing protein/gene interaction databases [1, 2, 60]. We only use the known

interaction edge information covering 20% of the nodes (randomly picked from 1000). The derived

dependency graphs are compared by using the number of predicted edges that are not part of

the known knowledge and are being validated by three major existing protein/gene interaction
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databases [1, 2, 60] (average over both cell contexts).

We would like to point out that the interactions JEEK and baselines find represent statistical

dependencies between genes that vary across multiple cell types. There exist many possibilities

for such interactions, including like physical protein-protein interactions, regulatory gene pairs or

signaling relationships. Therefore, we combine multiple existing databases for a joint validation. The

numbers of matches between interactions in databases and those edges predicted by each method

have been shown as the y-axis in Figure 5.10(c). It clearly shows that JEEK consistently outperforms

two baselines.
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Figure 5.10: (a)(b) Performance comparison on simulation Datasets about hubs: AUC vs. Time when varying number
of tasks K. (a) is the perturbed hub cases and (b) is for the co-hub cases. (c) Performance comparison on one
real-world gene expression dataset with two cell types. Two type knowledge are used to cover one fifth of the nodes,
therefore each method corresponds to two performance points.

5.7.6 Experiment III: Simulated Data about Brain Connectivity with Dis-

tance as Knowledge

Following [54], we use one known Euclidean distance between human brain regions as additional

knowledge W and use it to generate multiple simulated datasets. We compare JEEK with the

baselines regarding (a) Scalability (computational time cost), and (b) e↵ectiveness (F1-score, because
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NAK package does not allow AUC calculation). For each simulation case, the computation time for

each estimator is the summation of a method’s execution time over all values of �n.

In this set of experiments, we confirm JEEK’s ability to harvest additional knowledge using brain

connectivity simulation data. Following [54], we employ the known Euclidean distance between brain

regions as additional knowledge W to generate simulated datasets. To generate the simulated graphs,

we use pj,k = inv.logit(10 � Wj,k/3) as the probability of an edge between nodes j and k in the

graphs, where Wj,k is the Euclidean distance between regions j and k of the brain.

The generate datasets all have p = 116 corresponding to the number of brain regions in the distance

matrix shared by [54]. We vary K from the set {2, 3, 4} with n = p/2. The F1-scores for JEEK,

JEEK-NK and W-SIMULE is the best F1-score after tuning over �n. The hyperparameter tuning

for NAK is done by the package itself.

Simulated brain data generation model: We generate multiple sets of synthetic multivariate-

Gaussian datasets. To imitate brain connectivity, we use the Euclidean distance between the brain

regions as additional knowledge W where Wj,k is the Euclidean distance between regions j and k. We

fix p = 116 corresponding to the number of brain regions [54]. We generate the graph ⌦(i) following

⌦(i) = B(i)
I +BS +�I, where each o↵-diagonal entry in B(i)

I is generated independently and equals 0.5

with probability pj,k = inv.logit(10�Wj,k/3) and 0 with probability 1�pj,k [54]. Similarly, the shared

part BS is generated independently and equal to 0.5 with probability pj,k = inv.logit(10�Wj,k/3)

and 0 with probability 1 � pj,k. � is selected large enough to guarantee the positive definiteness.

This choice ensures there are more direct connections between close regions, e↵ectively simulating

brain connectivity. For each case of simulated data generation, we generate K blocks of data samples

following the distribution N(0, (⌦(i))�1). Details see Section 5.7.1.

Experimental baselines: We choose W-SIMULE, NAK and JEEK with no additional knowledge(JEEK-

NK) as the baselines. (see Section 5.6.1).

Experiment Results: We compare JEEK with the baselines regarding two aspects– (a) Scala-

bility (Computational time cost), and (b) E↵ectiveness (F1-score). Figure 5.11(a) and Figure 5.11(b)

respectively show the F1-score vs. computational time cost with varying number of tasks K and the

number of samples n. In these experiments, p = 116 corresponding to the number of brain regions in
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the distance matrix provided by [54]. In Figure 5.11(a), we vary K in the set {2, 3, 4} with n = p/2.

In Figure 5.11(b), we vary n in the set {p/2, p, 2p} and fix K = 2. The F1-score plotted for JEEK,

JEEK-NK and W-SIMULE is the best F1-score after tuning over �n. The hyperparameter tuning

for NAK is done by the package itself. For each simulation case, the computation time for each

estimator is the summation of a method’s execution time over all values of �n. The points in the

top left region of Figure 5.11 indicate higher F1-score and lower computational cost. Clearly, JEEK

outperforms its baselines as all JEEK points are in the top left region of Figure 5.11. JEEK has a

consistently higher F1-Score and is almost 6 times faster than W-SIMULE in the high dimensional

case. JEEK performs better than JEEK-NK, confirming the advantage of integrating additional

knowledge in graph estimation. While NAK is fast, its F1-Score is nearly 0 and hence, not useful for

multi-sGGM estimation.
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Figure 5.11: Experimental Results on Simulated Brain Datasets and on ABIDE. (a) Performance obtained on simulated
brain samples with respect to F1-score vs. computational time cost when varying the number of tasks K. (b)
Performance obtained on simulated brain samples with respect to F1-score vs. computational time cost when varying
the number of samples n. In both (a) and (b) the smaller box shows an enlarged view comparing JEEK and JEEK-NK
points. All JEEK points are in the top left region indicating higher F1-score and lower computational cost. (c). On
ABIDE, JEEK outperforms the baseline methods in both classification accuracy and running time cost. JEEK and
JEEK-NK points in the top left region and JEEK points are higher in terms of y-axis positions.
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5.7.7 Experiment IV: Functional Connectivity Estimation from Real-World

Brain fMRI Data

We evaluate JEEK and relevant baselines for a classification task on one real-world publicly available

resting-state fMRI dataset: ABIDE [61]. The ABIDE data aims to understand human brain

connectivity and how it reflects neural disorders [62]. ABIDE includes two groups of human subjects:

autism and control, and therefore we formulate it as K = 2 graph estimation. We utilize the

spatial distance between human brain regions as additional knowledge for estimating functional

connectivity edges among brain regions. We use Linear Discriminant Analysis (LDA) for a downstream

classification task aiming to assess the ability of a graph estimator to learn the di↵erential patterns

of the connectome structures.

Figure 5.11(c) compares JEEK and three baselines: JEEK-NK, W-SIMULE and W-SIMULE with

no additional knowledge (W-SIMULE-NK). JEEK yields a classification accuracy of 58.62% for

distinguishing the autism subjects versus the control subjects, clearly outperforming JEEK-NK

and W-SIMULE-NK. JEEK is roughly 7 times faster than the W-SIMULE estimators, locating at

the top left region in Figure 5.11(c) (higher classification accuracy and lower time cost). We also

experimented with variations of the W matrix and found the classification results are fairly robust to

the variations of W .

Experimental Baselines: We choose W-SIMULE as the the baseline in this experiment. We also

compare JEEK to JEEK-NK and W-SIMULE-NK to demonstrate the need for additional knowledge

in graph estimation.

ABIDE Dataset: This data is from the Autism Brain Imaging Data Exchange (ABIDE) [61], a

publicly available resting-state fMRI dataset. The ABIDE data aims to understand human brain

connectivity and how it reflects neural disorders [62]. The data is retrieved from the Preprocessed

Connectomes Project [63], where preprocessing is performed using the Configurable Pipeline for the

Analysis of Connectomes (CPAC) [64] without global signal correction or band-pass filtering. After

preprocessing with this pipeline, 871 individuals remain (468 diagnosed with autism). Signals for the

160 (number of features p = 160) regions of interest (ROIs) in the often-used Dosenbach Atlas [65]

are examined.
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Distance as Additional Knowledge: To select the weights {W
(i)
I ,WS}, two separate spatial

distance matrices W were derived from the Dosenbach atlas. The first, referred to as anatomicali,

gives each ROI one of 40 well-known, anatomic labels (e.g. “basal ganglia”, “thalamus”). Weights

Wj,k take the low value i if two ROIs have the same label, and the high value 10� i otherwise. The

second additional knowledge matrix, referred to as disti, sets the weight of each edge (Wj,k) to its

spatial length, in MNI space7, raised to the power i. Then W
(i)
I = WS = W .

Cross-validation: Classification is performed using the 3-fold cross-validation suggested by the

literature [66] [67]. The subjects are randomly partitioned into three equal sets: a training set, a

validation set, and a test set. Each estimator produces b⌦(1)
� b⌦(2) using the training set. Then,

these di↵erential networks are used as inputs to linear discriminant analysis (LDA), which is tuned

via cross-validation on the validation set. Finally, accuracy is calculated by running LDA on the

test set. This classification process aims to assess the ability of an estimator to learn the di↵erential

patterns of the connectome structures. We cannot use NAK to perform classification for this task, as

NAK outputs only an adjacency matrix, which cannot be used for estimation using LDA.

Parameter variation: The results are fairly robust to variations of the W . (see Table 5.2). The

e↵ect of changing W seems to have a fairly small e↵ect on the log-likelihood of the model. This

is likely because both penalize picking physically long edges, which agrees with observations from

neuroscience. The dist W e↵ectively encourages the selection of short edges, and the anatomical W

also has substantial spatial localization.

Table 5.2: Variations of the W and multi-task component yield fairly stable results.

Prior Sparsity=8% Sparsity=16%
Log-Likelihood Test Accuracy Log-Likelihood Test Accuracy

No Additional Knowledge -294.34 0.56 -283.27 0.55
dist -289.12 0.53 -285.69 0.55
dist2 -283.78 0.54 -282.92 0.54

anatomical1 -292.42 0.56 -289.34 0.57
anatomical2 -291.29 0.58 -285.63 0.56

7MNI space is a coordinate system used to refer to analagous points on di↵erent brains.



Chapter 6

Method III: DIFFEE – JEE for

Learning Sparse Structural Change

Directly

In last line of the works, we propose a simple estimator, namely DIFFerential networks via an

Elementary Estimator (DIFFEE) for fast and scalable learning of sparse structural change in

high-dimensional GGMs.

6.1 Proposed Method: DIFFEE

The aforementioned studies cannot avoid certain steps involving expensive computation in their

iterative optimization, such as SVD operations in the FusedGLasso, linear programming in the

Di↵-CLIME, and calculating the normalization term in the Density-Ratio estimator. We aim to

propose a scalable and theoretically-guaranteed estimator for estimating sparse di↵erential network

under large-scale settings.

Di↵erential Network by Elementary Estimators (DIFFEE): Computationally elementary

estimators are much faster than their regularized convex program peers for graphical model estimation.

84



6.1 Proposed Method: DIFFEE 85

Therefore we extend it to the following general estimator for estimating sparse change in GGM

structure:

argmin
�

||�||1

Subject to: ||�� B
⇤(b⌃d,

b⌃c)||1  �n

(6.1.1)

The basic idea in Eq. (6.1.1) is to use a well-defined proxy function B
⇤(b⌃d,

b⌃c) to approximate

the backward mapping (the vanilla graphical model MLE solution), so that B
⇤(b⌃d,

b⌃c) is both

well-defined under high-dimensional situations and also has a simple closed-form.

As shown by Figure 2.1, there are three components in the estimation pipeline of elementary estimator

for GM: (1) Backward mapping that is the vanilla MLE solution for estimating an exponential

graphical model; (2) Proxy backward mapping B
⇤(b⌃d,

b⌃c for dimensional settings; and (3) The

closed-form solution of Eq. (6.1.1) as the final estimator.

(1) Backward Mapping: The density ratio of two Gaussian distributions is naturally an

exponential-family distribution (see Section 2.3.3). Based on [37], learning an exponential family

distribution from data means to estimate its canonical parameter. For an exponential family

distribution, computing the canonical parameter through vanilla graphical model MLE can be

expressed as a backward mapping (the first step in Figure 2.1). Through simple derivations in

Eq. (2.3.8), we can easily conclude that the di↵erential network � is one entry of the canonical

parameter for this distribution. When using vanilla MLE to learn this exponential distribution (i.e.,

estimating canonical parameter), the backward mapping of � can be easily inferred from the two

sample covariance matrices using
�b⌃�1

d � b⌃�1
c )(Section 2.3).

(2) Proxy Backward Mapping: Now the key is to find a closed-form and statistical guaranteed

estimator as proxy backward mapping of � under high-dimensional cases. Inspired by the elementary

estimator for sGGM, we choose [Tv(b⌃d)]�1
� [Tv(b⌃c)]�1) as the proxy backward mapping for �.

Here

[Tv(A)]ij := ⇢v(Aij) (6.1.2)
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where ⇢v(·) is chosen to be a soft-thresholding function. We therefore obtain the following DIFFEE

objective function for estimating sparse changes in GGM structure:

argmin
�

||�||1

Subject to: ||��

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘
||1  �n

(6.1.3)

Here �n > 0 is the tuning parameter.

The optimization in Eq. (6.1.3) seeks an estimator with minimum complexity with regard to the `1

regularization, at the same time being close enough to the ’initial estimator’ [Tv(b⌃d)]�1
� [Tv(b⌃c)]�1

according to the element-wise `1 norm. This formulation ensures that the final estimator (solution

of Eq. (6.1.3)) has the desired sparse structure.

Theoretically, the choice of `1 and `1 in Eq. (6.1.1) connects to the asymptotic error bounds of

the final estimators. In Section 6.2, we theoretically prove that the statistical convergence rate of

DIFFEE achieves the same sharp convergence rate as the state-of-the-art estimators for di↵erential

network. Our proofs are inspired by the unified framework of the high-dimensional statistics [27] and

EE for sGGM [19].

[19] proved that when (p¿n), the proxy backward mapping [Tv(b⌃)]�1 in their EE-sGGM achieves

the sharp convergence rate to its truth (i.e., by proving ||Tv(b⌃))�1
� ⌃⇤�1

||1 = O(
q

log p
n )). The

proof was extended from the previous study [44] who devised Tv(b⌃) for estimating covariance matrix

consistently under high-dimensional cases. We use the convergence results from [44] and [19] in

Section 6.2 for deriving the statistical convergence rates of DIFFEE (details in Section 6.3).

(3) Closed Form Solution: To solve Eq. (6.1.3), we get the following closed form solution:

b� = S�n
([Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1) (6.1.4)

Where [Tv(b⌃d)]�1
� [Tv(b⌃c)]�1 is the pre-computed proxy backward mapping. Here [S�(A)]ij =

sign(Aij)max(|Aij |� �, 0) is the soft-thresholding function. Algorithm 3 shows the detailed steps

of the DIFFEE estimator. Being non-iterative, the closed form solution helps DIFFEE achieve

significant computational advantages over other estimators.
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Algorithm 3 DIFFEE
input Two data matrices Xc and Xd.
input Hyper-parameter: �n and v

output �
1: Compute [Tv(b⌃c)]�1 and [Tv(b⌃d)]�1 from b⌃c and b⌃d.

2: Compute � = S�n
([Tv(b⌃d)]�1 � [Tv(b⌃c)]�1)

output �

6.1.1 Analysis of Computational Complexity

The closed form solution (Eq. (6.1.4)) brings significant advantages in hyper-parameter tuning. This

is because we only need to compute the proxy backward mapping [Tv(b⌃d)]�1
� [Tv(b⌃c)]�1 once.

Then the model selection just executes a fast and simple element-wise soft-thresholding operator

using di↵erent values of hyper-parameter �n ( Eq. (6.1.4)).

In details, DIFFEE includes four non-iterative operations in its computation:

1. Estimating two covariance matrices. The computational complexity is O(max(nc, nd)p2).

2. The element-wise soft-thresholding operations [Tv(·)], that cost O(p2).

3. The matrix inversions 1 [Tv(·)]�1 to get the proxy backward mapping, that cost O(p3).

4. The element-wise soft-thresholding operation S�n
that costs O(p2).

Therefore, the total asymptotic computational complexity of DIFFEE estimator is O(p3) .

In Table 6.1, we compare the asymptotic computational complexity of our method to the baselines.

DIFFEE achieves the best computational complexity compared to the state-of-the-art baselines. This

is because:

• All existing estimators for di↵erential network estimation have used an iterative optimization proce-

dure to find the solution. In each iteration, their estimations require at least O(p3) computational

cost.

• For tuning the sparsity hyperparameter �n, DIFFEE only needs to re-run its element-wise soft-

thresholding operation S�n
that cost O(p2). In contrast, all the baselines have to re-run the whole

algorithm for each value of the hyper-parameter �n.

1Many faster algorithms exist for speeding up matrix inversion and matrix multiplication. The best known
asymptotic cost of matrix inversion is O(p2.373) (Wikipedia). Besides both operations can be further improved up by
parralelization
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Table 6.1: Compare the asymptotic time complexity. DIFFEE is the best among all the estimators. Here T is the
number of iterations.

DIFFEE FusedGLasso
Density
Ratio

Di↵-CLIME

O(p3) O(T ⇤ p
3) O((nc + p

2)3) O(p8)

• Most estimators have two hyperparameters for tuning. FusedGlasso (Eq. (6.4.1)) and DensityRatio

(Eq. (6.4.3)) both need to tune the hyperparameter �2
2. Both tuning are much more expensive

than DIFFEE in computation. DIFFEE needs to tune the hyperparamter v, but it costs only

O(p2).

• Di↵-CLIME has one hyperparameter �n for tuning, however, its asymptotic time cost (O(p8)) is

significantly more demanding than DIFFEE 3. In summary, Di↵-CLIME can not handle large-scale

cases, like p > 100. For example, in our experiments Di↵-CLIME can not even finish on a case of

p = 200 after two days of running.

6.1.2 DIFFEE-K: DIFFEE with additional knowledge

Similar to JEEK, We can also extend our model DIFFEE by adding additional knowledge into the

model.

Incorporating knowledge with a new norm function: kEV norm

The main goal of this paper is to design a principled strategy to incorporate existing knowledge

(other than samples or structured assumptions) into the di↵erential network estimation formulation.

We consider two alternative choices in such a design:

(1) Knowledge as Weight Matrix: We represent additional knowledge as positive weight matrices

from Rp⇥p. More specifically, we represent the edge-level knowledge of the di↵erential graph as

weight matrix WE . We use the weights to increase or decrease the sparsity penalty on certain edges.

The larger a weight, the more likely its corresponding edge to be sparse.

2The optimization problem of DensityRatio is a quadratic programming problem with nc + p
2 variables. Based on

the result from [68], the computational complexity of quadratic problem with b variables is O(b3). Therefore, the time
complexity of DensityRatio is O((nc + p

2)3).
3The optimization problem of Di↵-CLIME is a linear programming problem with p

2 variables. Based on the result
from [69], the computational complexity of linear problem with b variables is O(b4). Therefore, the time complexity of
Di↵-CLIME is O((p2)4).
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The positive matrix-based representation is a powerful and flexible strategy that can describe many

possible forms of existing knowledge. For instance, it can describe spatial or anatomy knowledge

about brain regions. Over time, neuroscientists have gathered considerable knowledge regarding

the spatial and anatomical information underlying brain connectivity (i.e. short edges and certain

anatomical regions are more likely to be connected [70]). Such a weight matrix WE can also include

existing known edges as the knowledge, like the known protein interaction databases for discovering

gene networks (a semi-supervised setting for such estimations).

(2) Knowledge as Node Groups: In many real-world applications, there exists known group

knowledge about feature variables. For example, when working with genomics data “functional

enrichment” analysis [59] can provide a rich set of group information about genes belonging to the

same biological pathway or cellular locations. Genes in the same biology pathway tend to have

interactions among them in one cellular context or tend to not interact with each other (shared

sparsity) at some other cellular condition.

This type of node group information can not be represented through the weight matrix because even

though it is safe to assume nodes in the same group share similar interaction pattern, but we do

not know if we should enforce more sparsity or enforce less sparsity on the whole group of nodes.

Therefore this work uses a node-level group norm to describe such extra knowledge. We represent

the group knowledge as a set of feature variable (vertex in the graph) groups Gp. 8gk 2 Gp, gk = {i}

where i indicates the i-th node in the graph. Moreover, we can generate an edge (matrix index) set

group GV from Gp. Concretely, GV = {g
0

k|(i, j) 2 g
0

k, i, j 2 gk}. We also denote E is the whole edge

set.

Now we propose the following knowledge for Edges and Vertex norm (kEV-norm) combining the

above two choices:

R(�) = ||WE ��E\GV
||1 + ✏||�GV

||GV ,2 (6.1.5)

Here � = �GV

S
E\GV

. The Hadamard product � is the element-wise product between two matrices

i.e. [A �B]ij = AijBij and || · ||GV ,2 =
P
k
||�g0

k
||2.

Notice that when ✏ > 0, we can simplify the Eq. (6.1.5) into R(�) = ||
WE

✏ ��E\GV
||1 + ||�GV

||GV ,2

and we let the WE

✏ as the new WE . If ✏ = 0, R(�) reduces to a weighted `1 norm. Therefore, in the

experiments we set ✏ either 1 or 0.
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The kEV-norm( Eq. (6.1.5)) has the following three properties:

• (i) kEV-norm is a norm function.

• (ii) kEV-norm is a decomposable norm.

• (iii) The dual norm of kEV-norm is R⇤(u) = max(||WE � u||1, ✏||u||
⇤

GV ,2).

Where ||u||
⇤

G,2 := max
g2G

||ug||2.

DIFFEE with Knowledge (DIFFEE-K)

Plugging Eq. (6.1.5) to Eq. (3.2.1), we obtain the following formulation of DIFFEE-K for learning

sparse changes between two GGMs:

argmin
�

||WE ��E\GV
||1 + ✏||�GV

||GV ,2

Subject to: ||WE �

⇣
��

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘⌘

||1  �n

✏||��

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘
||
⇤

GV ,2  �n

(6.1.6)

6.2 Strong Statistical Guarantees of DIFFEE

In this section, we provide a statistical convergence analysis of DIFFEE Eq. (6.1.1) under the following

structural assumption:

(C-Sparsity): The ’true’ canonical exponential family parameter for �⇤ (sparse change between

two GGM structures) is exactly sparse with k non-zero entries indexed by a supported set S. All

other elements equal to 0 (in S
c).

Theorem 6.2.1. Consider any di↵erential network in Eq. (1.0.3) whose sparse canonical parameter

�⇤ satisfies the (C-Sparsity) assumption. Suppose we compute the solution of Eq. (6.1.1) with a

bounded �n such that �n � ||�⇤
� B

⇤(b⌃d,
b⌃c)||1, then the optimal solution b� satisfies the following

error bounds:
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||b���⇤||1  2�n

||b���⇤||F  4
p
k�n

||b���⇤||1  8k�n

(6.2.1)

Proof. See detailed proof in Section 6.3

Theorem (6.2.1) provides a general bound for any selection of �n and B
⇤(b⌃d,

b⌃c). We then use Theo-

rem (6.2.1) to derive the statistical convergence rate of DIFFEE whose choice of the proxy backward

mapping is B⇤(b⌃d,
b⌃c) = [Tv(b⌃d)]�1

� [Tv(b⌃c)]�1. This gives us the following corollary:

Corollary 6.2.2. Suppose the high-dimensional setting, i.e., p > max(nc, nd). Let v := a

q
log p

min(nc,nd)
.

Then for �n := 81a
2

q
log p

min(nc,nd)
and min(nc, nd) > c log p, with a probability of at least 1 �

2C1 exp(�C2Kp log(Kp)), the estimated optimal solution b� has the following error bound:

||b���⇤
||1 

161a

2

s
log p

min(nc, nd)

||b���⇤
||F 

321a

2

s
k log p

min(nc, nd)

||b���⇤
||1 

641a

2
k

s
log p

min(nc, nd)

(6.2.2)

where a, c, 1 and 2 are constants.

Proof. See detailed proof in Section 6.3 (especially from Eq. (6.3.12) to Eq. (6.3.17)).

DIFFEE has achieved the same convergence rates as the Di↵-CLIME [10] and the DensityRatio

estimator [71]. The FusedGLasso estimator has not provided such convergence rate analysis.

To derive the statistical error bound of DIFFEE, we need to assume that [Tv(b⌃c)]�1 and [Tv(b⌃d)]�1

are well-defined. This is ensured by assuming that the true ⌦⇤

c and ⌦⇤

d satisfy the following

conditions [19]:

(C-MinInf�⌃): The true ⌦⇤

c and ⌦⇤

d of Eq. (1.0.3) have bounded induced operator norm, i.e.,

|||⌦c
⇤
|||1 := sup

w 6=02Rp

||⌃c
⇤w||1

||w||1
 1 and |||⌦d

⇤
|||1 := sup

w 6=02Rp

||⌃d
⇤w||1

||w||1
 1.
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(C-Sparse-⌃): The two true covariance matrices ⌃⇤

c and ⌃⇤

d are “approximately sparse” (following

[43]). For some constant 0  q < 1 and c0(p), max
i

pP
j=1

|[⌃⇤

c ]ij |
q
 c0(p) and max

i

pP
j=1

|[⌃⇤

d]ij |
q
 c0(p).

4

We additionally require inf
w 6=02Rp

||⌦⇤
c
w||1

||w||1
� 2 and inf

w 6=02Rp

||⌦⇤
d
w||1

||w||1
� 2.

6.3 Proofs

For the proposed DIFFEE model, R = || · ||1. Based on the results in [27],  (M̄) =
p
k, where k is

the total number of nonzero entries in �. Using R = || · ||1 in Theorem (3.2.2), we have the following

theorem (the same as Theorem (6.2.1)),

Theorem 6.3.1. Suppose that R = ||·||1 and the true parameter �⇤ satisfy the conditions (C1)(C2)

and �n � R
⇤(b� � �⇤), then the optimal point b� of Eq. (6.1.3) has the following error bounds:

||b���⇤
||1  2�n, ||b���⇤

||2  4
p
k�n, and ||b���⇤

||1  8k�n

Proof of Theorem (3.2.2)

Proof. Let � := b✓ � ✓
⇤ be the error vector that we are interested in.

R
⇤(b✓ � ✓

⇤) = R
⇤(b✓ � b✓n + b✓n � ✓

⇤)

 R
⇤(b✓n � b✓) +R

⇤(b✓n � ✓
⇤)  2�n

(6.3.1)

By the fact that ✓⇤
M? = 0, and the decomposability of R with respect to (M,M̄

?)

4This indicates for some positive constant d, [⌃⇤
c ]jj  d and [⌃⇤

d]jj  d for all diagonal entries. Moreover, if q = 0,
then this condition reduces to ⌃⇤

d and ⌃⇤
c being sparse.
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R(✓⇤)

= R(✓⇤) +R[⇧M̄?(�)]�R[⇧M̄?(�)]

= R[✓⇤ +⇧M̄?(�)]�R[⇧M̄?(�)]

 R[✓⇤ +⇧M̄?(�) +⇧M̄(�)] +R[⇧M̄(�)]

�R[⇧M̄?(�)]

= R[✓⇤ + �] +R[⇧M̄(�)]�R[⇧M̄?(�)]

(6.3.2)

Here, the inequality holds by the triangle inequality of norm. Since Eq. (3.2.1) minimizes R(b✓), we

have R(✓⇤ +�) = R(b✓)  R(✓⇤). Combining this inequality with Eq. (6.3.2), we have:

R[⇧M̄?(�)]  R[⇧M̄(�)] (6.3.3)

Moreover, by Hlder’s inequality and the decomposability of R(·), we have:

||�||
2
2 = h�, �i  R

⇤(�)R(�)  2�nR(�)

= 2�n[R(⇧M̄(�)) +R(⇧M̄?(�))]  4�nR(⇧M̄(�))

 4�n (M̄)||⇧M̄(�)||2

(6.3.4)

where  (M̄) is a simple notation for  (M̄, || · ||2).

Since the projection operator is defined in terms of ||·||2 norm, it is non-expansive: ||⇧M̄(�)||2  ||�||2.

Therefore, by Eq. (6.3.4), we have:

||⇧M̄(�)||2  4�n (M̄), (6.3.5)

and plugging it back to Eq. (6.3.4) yields the error bound Eq. (3.2.4).

Finally, Eq. (3.2.5) is straightforward from Eq. (6.3.3) and Eq. (6.3.5).
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R(�)  2R(⇧M̄(�))

 2 (M̄)||⇧M̄(�)||2  8�n (M̄)2.
(6.3.6)

Useful lemma(s)

Lemma 6.3.2. (Theorem 1 of [44]). Let � be maxij |[
XTX

n ]ij � ⌃ij |. Suppose that v > 2�. Then,

under the conditions (C-Sparse⌃), and as ⇢v(·) is a soft-threshold function, we can deterministically

guarantee that the spectral norm of error is bounded as follows:

|||Tv(b⌃)� ⌃|||1  5v1�q
c0(p) + 3v�q

c0(p)� (6.3.7)

Lemma 6.3.3. (Lemma 1 of [45]). Let A be the event that

||
X

T
X

n
� ⌃||1  8(max

i
⌃ii)

r
10⌧ log p0

n
(6.3.8)

where p
0 := maxn, p and ⌧ is any constant greater than 2. Suppose that the design matrix X is i.i.d.

sampled from ⌃-Gaussian ensemble with n � 40maxi ⌃ii. Then, the probability of event A occurring

is at least 1� 4/p0⌧�2.

To prove the bound of ||�⇤
� ([Tv(b⌃d)]�1

� [Tv(b⌃c)]�1)||1 , we first prove the bound of ||⌦⇤

c �

[Tv(b⌃c)]�1
||1. In the following proof, we first derive the inequality

||⌦⇤

c � [Tv(b⌃c)]�1
||1  |||[Tv(b⌃c)]�1

|||1|||⌦⇤

c |||1||Tv(b⌃c)�⌃⇤

c ||1, which is bounded by multiplication

of three parts. Then we use the above Lemmas and two conditions to prove the bound of each part.

Finally, we combine the three results to have the whole bound of ||⌦⇤

c � [Tv(b⌃c)]�1
||1.

Proof of Corollary (6.2.2)

Proof. In the following proof, we first prove ||⌦⇤

c � [Tv(b⌃c)]�1
||1  �nc

. Here �nc
= 41a

2

q
log p0

nc

and

p
0 = max(p, nc)
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The condition (C-Sparse⌃) and condition (C-MinInf⌃) also hold for ⌦⇤

c and ⌃⇤

c . In order to

utilize Theorem (6.3.1) for this specific case, we only need to show that ||⌦⇤

c � [Tv(b⌃c)]�1
||1  �nc

for the setting of �nc
= 41a

2

q
log p0

nc

:

||⌦⇤

c � [Tv(b⌃c)]
�1

||1 = ||[Tv(b⌃c)]
�1(Tv(b⌃c)⌦

⇤

c � I)||1

 |||[Tv(b⌃c)w]|||1||Tv(b⌃c)⌦
⇤

c � I||1

= |||[Tv(b⌃c)]
�1

|||1||⌦⇤

c(Tv(b⌃c)� ⌃
⇤

c)||1

 |||[Tv(b⌃c)]
�1

|||1|||⌦⇤

c |||1||Tv(b⌃c)� ⌃
⇤

c ||1.

(6.3.9)

We first compute the upper bound of |||[Tv(b⌃c)]�1
|||1. By the selection v in the statement,

Lemma (6.3.2) and Lemma (6.3.3) hold with probability at least 1� 4/p0⌧�2. Armed with Eq. (6.3.7),

we use the triangle inequality of norm and the condition (C-Sparse⌃): for any w,

||Tv(b⌃c)w||1 = ||Tv(b⌃c)w � ⌃w + ⌃w||1

� ||⌃w||1 � ||(Tv(b⌃c)� ⌃)w||1

� 2||w||1 � ||(Tv(b⌃c)� ⌃)w||1

� (2 � ||(Tv(b⌃c)� ⌃)w||1)||w||1

(6.3.10)

Where the second inequality uses the condition (C-Sparse⌃). Now, by Lemma (6.3.2) with the

selection of v, we have

|||Tv(b⌃c)� ⌃|||1  c1(
log p0

nc
)(1�q)/2

c0(p) (6.3.11)

where c1 is a constant related only on ⌧ and maxi ⌃ii. Specifically, it is defined as 6.5⇥(16(maxi ⌃ii)
p
10⌧)1�q.

Hence, as long as nc > ( 2c1c0(p)2
)

2
1�q log p0 as stated, so that |||Tv(b⌃c)� ⌃|||1 

2
2 , we can conclude

that ||Tv(b⌃c)w||1 �
2
2 ||w||1, which implies |||[Tv(b⌃c)]�1

|||1 
2
2
.

The remaining term in Eq. (6.3.9) is ||Tv(b⌃c) � ⌃⇤

c ||1; ||Tv(b⌃c) � ⌃⇤

c ||1  ||Tv(b⌃c) � b⌃c||1 +

||b⌃c � ⌃⇤

c ||1. By construction of Tv(·) in (C-Thresh) and by Lemma (6.3.3), we can confirm that
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||Tv(b⌃c)� b⌃c||1 as well as ||b⌃c � ⌃⇤

c ||1 can be upper-bounded by v.

Similarly, the [Tv(b⌃d)]�1 has the same result.

Finally,

||�⇤
�

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘
||1 (6.3.12)

||⌦d � [Tv(b⌃d)]
�1

||1 + ||⌦c � [Tv(b⌃c)]
�1

||1 (6.3.13)


41a

2

r
log p0

nc
+

41a

2

r
log p0

nc
(6.3.14)

Suppose p > max(nc, nd), we have that

||�⇤
�

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘
||1 

81a

2

s
log p

min(nc, nd)

(6.3.15)

Similarly, we also have that

||�⇤
�

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘
||F 

321a

2

s
k log p

min(nc, nd)

(6.3.16)

, and

||�⇤
�

⇣
[Tv(b⌃d)]

�1
� [Tv(b⌃c)]

�1
⌘
||1 

641a

2
k

s
log p

min(nc, nd)

(6.3.17)

By combining all together, we can confirm that the selection of �n satisfies the requirement of Theo-

rem (6.3.1), which completes the proof.

6.3.1 Support Recovery Analysis

Theorem 6.3.4. The support set of b� is a subset of the support set of �⇤. Moreover, under the

additional assumption that min
s2supp(�⇤)

|�⇤

s| � 3||�⇤
� B

⇤(b⌃d,
b⌃c)||1, it correctly includes all non-zero
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coordinates of �⇤

Proof. In Theorem (6.3.1), we prove that ||�⇤
� B

⇤(b⌃d,
b⌃c)||1  �n. Therefore, if �⇤

i,j = 0, then

|B
⇤(b⌃d,

b⌃c)i,j |  �n.

Thus, if �⇤

i,j = 0, then b�i,j = 0. In another word the zero set of �⇤ is the subset of the zero set of b�.

Finally, we have that supp(b�) ✓ supp(�⇤)

If min
s2supp(�⇤)

|�⇤

s| � 3||�⇤
� B

⇤(b⌃d,
b⌃c)||1, then supp(�⇤) ✓ supp(b�).

Thus, supp(�⇤) = supp(b�)

6.4 Related Works

6.4.1 Previous Estimators for Change Estimation in GGM Structure

Multiple estimators have been proposed to estimate sparse di↵erential network from two sets of

samples.

FusedGLasso (Regularized MLE): The most straightforward estimator for di↵erential network

was to extend the classic Graphical lasso estimator [8] for sparse GGM with an added sparsity penalty

on the di↵erential network (i.e., fused norm).

argmin
⌦c,⌦d�0,�

nc(� log det(⌦c)+ < ⌦c,
b⌃c >)

+nd(� log det(⌦d)+ < ⌦d,
b⌃d >)

+�2(||⌦c||1 + ||⌦d||1) + �n||�||1

(6.4.1)

This was solved by block coordinate descent algorithms in [16]. Later the alternating direction

method of multipliers (ADMM) was used to solve Eq. (6.4.1) that needs to run SVD in one sub-

procedure [11].
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Di↵-CLIME: Another recent study [10] extended the CLIME estimator to directly learn the �

through a constrained optimization formulation.

argmin
�

||�||1

Subject to: ||b⌃c�b⌃d � (b⌃c �
b⌃d)||1  �n

(6.4.2)

This reduces the estimation to solving multiple linear programming problems.

DensityRatio: The third category of estimators optimizes the following loss:

argmax
�

LKLIEP(�)� �n k � k1 ��2 k � k2 (6.4.3)

Here KLIEP minimizes the KL divergence between the true probability density pd(x) and the

estimated bpd(x) = r(x;�)pc(x) without explicitly modeling the true pc(x) and pd(x). Its key idea is

the formulation of density ratio term r(x;�) for directly estimating sparse di↵erential network of

graphical models in exponential families. This DensityRatio estimator uses the elastic-net penalty

for enforcing � to be sparse. The resulting optimization was solved using proximal gradient descent

methods in [71].

6.5 Experiments

We use two models of simulated datasets as well as a real world dataset for empirical compar-

isons.

• The first model mimics real world networks with a sparse di↵erential network containing only hub

nodes. This model can evaluate whether the method can e�ciently infer the hub nodes in the

di↵erential network or not. In [10], the authors claim that if the change estimator also assumes

the sparsity structure in ⌦c and ⌦d, then the estimator cannot achieve a good result on datasets

generated by this data model.

• The second data simulation model, in contrast, generates random graphs that di↵er by a sparse

random di↵erential network. It evaluates the estimation performance of a certain estimator for

inferring the randomly-generated di↵erential networks.
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• The real world dataset is a human brain fMRI dataset with two groups of subjects: autism and

control. Our choice of this dataset is motivated by the recent literature in neuroscience that

has suggested functional networks are not sparse. On the other hand, di↵erences in functional

connections across subjects should be sparse [21].

The two simulation models allow for a thorough evaluation of DIFFEE vs the baseline methods. The

real-world data allows us to compare DIFFEE versus the baselines through classification using the

estimated di↵erential graph.

6.5.1 Experimental Setup

Baselines: We compare DIFFEE with (1) FusedGLasso [11], (2) DensityRatio [32], and (3)

Di↵-CLIME [10].

Hyper-parameters: We need to tune the value of three hyper-parameters in these experiments:

v, �n and �2. In detail:

• v is used for soft-thresholding in DIFFEE. We choose v from the set {0.001i|i = 1, 2, . . . , 1000}

and pick a value that makes Tv(⌃c) and Tv(⌃d) invertible.

• �n is the main hyper-parameter that control the sparsity of the estimated di↵erential network.

Based on our convergence rate analysis in Section 6.2, �n � C

q
log p

min(nc,nd)
. Accordingly, we choose

�n from a range of {0.01 ⇥
q

log p
min(nc,nd)

⇥ i|i 2 {1, 2, 3, . . . , 30}}. The �n in the DensityRatio is

tuned by their package.

• �2 controls individual graph’s sparsity in FusedGLasso. We choose �1 = 0.0001 (a very small

value) for all experiments to ensure only the di↵erential network is sparse. �2 in the DensityRatio

is set to 0.2 according to their package.

Evaluation Metrics: We evaluate DIFFEE and the baseline methods on both contexts of

e↵ectiveness and scalability.

• F1-score: We first use the edge-level F1-score to compare the predicted versus true di↵erential

graph. Here, F1 = 2·Precision·Recall
Precision+Recall , where Precision = TP

TP+FP and Recall = TP
TP+FN . TP (true

positive) means the number of true edges correctly estimated by the predicted di↵erential network.

FP (false positive) and FN (false negative) are the number of incorrectly predicted nonzero entries
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and zero entries respectively. We repeat the experiment 10 times for each method and use the

average metrics for comparison. The better method achieves a higher F1-score.

• Time Cost: We use the execution time (measured in seconds or log(seconds)) for a method as a

measure of its scalability. To ensure a fair comparison, we try 30 di↵erent � (or �2) and measure

the total time of execution for each method. The better method uses less time5.

• Low F1 values on Model 1 datasets: The F1-score of all cases in Figure 6.2(a) appear quite low.

This is due to the fact that simulated di↵erential networks from Model 1 are extremely sparse

(e.g., only 0.1% non-zero edges among all possible edges). For example, if the estimated b� only

predicts 5% zero entries incorrectly (i.e., FP=5%) and correctly predicts all the rest entries (TP =

0.1%, TN = 94.9%). The precision equals to TP
TP + FP = 0.1%

0.1%+5% ⇡ 0.02, which is a small number.

The recall equals to TP
TP + FN = 0.1%

0.1%+0% = 1. Then F1 = precision·recall
2(precision+recall) ⇡ 0.01, which is also

a relatively small number. However, the estimator only wrongly inferred 5% zero entries, which

is still a good result. Therefore, low F1-score doesn’t mean that the estimator is bad when the

di↵erential network is extremely sparse.

This extreme sparsity also influences other evaluation metrics. For instance, if the estimated b� only

includes 1% zero entries and 0.05% non-zero entries incorrectly (i.e., FP=5% and FN=0.05%) and

correctly predicts all the rest entries (TP=0.05% and TN=94.9%). The TPR = 0.05%
0.05%+0.05% = 0.5

and FPR = 5%
5%+94.9% ⇡ 0.2. If you plot this point in the FPR vs. TPR curve, it is not good.

However from the angle of accuracy, this method only predicts wrongly around 5% edges, which

indicates that it performs well.

Simulated Data Generation: We first simulate precision matrices ⌦c and ⌦d by Model 1 or

Model 2. To simulate data for the control block, we generate nc data samples following multivariate

gaussian distribution with mean 0 and covariance matrix (⌦c)�1. We use the multivariate distribution

method from stochastic simulation [72] to sample the simulated data blocks. In our implementation,

we directly use the R function “mvrnorm” in MASS package. We repeat the same process for

the case group with ⌦d. Then, we apply DIFFEE and baseline methods to obtain the estimated

di↵erential networks.
5The machine that we use for experiments is an Intel(R) Core(TM) i7-6850k CPU @ 3.60GHz with a 64GB memory.
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Figure 6.1: F1-score versus Time Cost(log(seconds)) for di↵erent methods and synthetic data models (a) F1-score vs.
Time for Model 1. (b)F1-score vs. Time for Model 2.
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Two models to generate simulated datasets: Using the following two graph models, we

generate multiple sets of synthetic multivariate-Gaussian datasets.

• Model 1 – mimic real-world networks with hub nodes: Inspired by [10], this model assumes

that the graphs mimic real-world networks [73]. We first generate ⌦d as a network with s ·
p(p�1)

2

edges following a power-law degree distribution with an expected power parameter of 2. Here s is

a parameter that controls the sparsity of the two graphs. A larger value of s corresponds to denser

graphs. Next, the value of each nonzero entry of ⌦d is generated from a uniform distribution

with [�10/p,�4/p] [ [4/p, 10/p], where division by p ensures the positive definiteness of ⌦c and

⌦d. The diagonals are then set to 1 and ⌦d is symmetrized by averaging it with its transpose

( 12 (⌦d + ⌦T
d )). The di↵erential network � is generated by the top 20% edges of the top 2 hub

nodes in ⌦d. ⌦c = ⌦d ��.

• Model 2 – random graph model: Following [47], this model assumes ⌦c = Bc +BS + �cI and

⌦d = Bd +BS + �dI, where each o↵-diagonal entry in Bc and Bd are generated independently
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and equals 0.5 with probability 0.1 and 0 with probability 0.9. The shared part BS is generated

independently and equal to 0.5 with probability 0.1s and 0 with probability 1� 0.1s. Similar to

Model 1, s controls the sparsity of the two graphs. �c and �d are selected large enough to guarantee

the positive definiteness. A clear di↵erential network structure � = Bd �Bc exists between these

two graphs.

Following Model 1 or Model 2, for each case of simulated data generation, we generate two blocks of

data samples following the distribution N(0, (⌦c)�1) and N(0, (⌦d)�1).

6.5.2 Experiments on Simulated Datasets

Experimental Design: By varying the number of features p, amount of sparsity s, and the

number of samples (nc,nd), we can generate many cases of simulated datasets. This allows us to

comprehensively evaluate DIFFEE across a wide range of data situations. To this end, we design the

following three sets of synthetic experiments by varying p, s, nc, and nd:

• p (the number of features): The first set of experiments varies p in the set of {50, 100, 200, 300, 400, 500}

while setting nc and nd as p/2 and the sparsity parameter s = 0.2.

• s (the sparsity): In the second set of experiments, we vary the value of the sparsity parameter s in

the set of {0.1, 0.2, . . . , 0.7}, while using p = 200 and nc = nd = p/2.

• nc and nd (the number of samples): In the third set, we vary the number of samples in both groups

and set p = 200 and s = 0.2. We group this set of experiments into two categories: low-dimensional

cases, and high-dimensional cases. For the high dimensional case, we vary nc and nd from the

value set of {p/4, p/2}. Similarly, for the low dimensional case, we vary nc and nd from the value

set of {p, 2p, 3p}.

Experiment Results: We compare DIFFEE with the baselines regarding two aspects– (a)

E↵ectiveness, and (b) Scalability.

(a) E↵ectiveness : We evaluate the prediction e↵ectiveness of using F1-Score. Figure 6.2 presents

the summarized results of our DIFFEE versus baselines on all 50 cases of simulated datasets. As

explained above, the simulated datasets are generated by varying the parameters p, s, nc, and nd

by data Model 1 and Model 2. In Figure 6.2 (a) and (b), we plot the F1-Score of DIFFEE vs
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Figure 6.2: F1-Score of DIFFEE vs the F1-Score of the best performing baseline. The more points below the diagonal
line, the better. (a) On simulated datasets from Model 1 (b) On simulated datasets from Model 2. (Black up-triangles
describe ’varying (nc, nd) in low dimensions’; Black down-triangles describe ’varying (nc, nd) in high-dimensions; Red
diamonds represent ’varying s’; and Blue stars represent ’varying p’.)
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the F1-Score of the best performing baseline on each simulated case from Model 1 and Model 2,

respectively. Each point in the two figures is obtained by comparing DIFFEE vs. the best baseline

among all baselines on one simulated case. Each point below the line y = x indicates that DIFFEE

achieves better performance over baselines. Overall Figure 6.2 shows that DIFFEE outperforms

the corresponding best baseline in almost all cases. The only two points for which DIFFEE doesn’t

do as well as the corresponding best baseline DensityRatio are two low dimensional cases. This is

as expected because the design of DIFFEE is for high-dimensional cases (i.e., the choices of proxy

backward mapping). Details of F1-Scores from all simulation cases and discussions of low F1 values

on Model 1 are in Appendix.

(b) Scalability : To evaluate DIFFEE and the baselines on scalability, Figure 6.3 presents the

time cost vs. varying p, varying sparsity (s) and varying number of samples in the ‘c’ group (nc).

Figure 6.3 (a),(c) and (e) show time results from data Model 1. Figure 6.3 (b),(d) and (f) correspond

to datasets from Model 2. We interpolate the points of computation time from each estimator into

curves. For each simulation case, the computation time for each estimator is the summation of a

method’s execution time over all values of �n. Figure 6.3 shows that in general the time costs of

FusedGLasso and DensityRatio are roughly comparable. DIFFEE is about 100 times better than

both (detailed numbers are provided in Table 6.3 to Table 6.10). Di↵-CLIME is extremely slow when

p increases. Because Figure 6.3 (c),(d),(e) and (f) are about data cases with p = 200, we can not run

Di↵-CLIME on these cases (it cannot finish any p = 200 case for a single value of �n by one day).
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Interestingly, the empirical time results match the computational analysis in Table 6.1. Especially

DensityRatio’s time cost grows quickly when nc increases. In contrast the running time of DIFFEE

and FusedGLasso are not connected strongly to the size of samples. Overall DIFFEE costs much less

computation time than the baselines and can significantly scale up to larger p.

6.5.3 A Real-World Dataset about Functional Connectivity among Brain

Regions

We then use DIFFEE for a classification task on a well-known human brain fMRI dataset: ABIDE

[61].

ABIDE Dataset: This data is from the Autism Brain Imaging Data Exchange (ABIDE) [61], a

publicly available resting-state fMRI dataset. The ABIDE data aims to understand human brain

connectivity and how it reflects neural disorders [62]. The data is retrieved from the Preprocessed

Connectomes Project [63], where preprocessing is performed using the Configurable Pipeline for the

Analysis of Connectomes (CPAC) [64] without global signal correction or band-pass filtering. After

preprocessing with this pipeline, 871 individuals remain (468 diagnosed with autism). Signals for the

160 (number of features p = 160) regions of interest (ROIs) in the often-used Dosenbach Atlas [65]

are examined.

Cross-validation: Classification is performed using the 3-fold cross-validation suggested by the

literature [66] [67]. The subjects are randomly partitioned into three equal sets: a training set,

a validation set, and a test set. Each estimator produces b� using the training set. Then, these

di↵erential networks are used as inputs to linear discriminant analysis (LDA), which is tuned via

cross-validation on the validation set. Finally, accuracy is calculated by running LDA on the test set.

This classification process aims to assess the ability of an estimator to learn the di↵erential patterns

of the connectome structures. Notably, the DensityRatio method cannot be compared on this data,

because the method does not provide the precision matrices necessary for LDA.

Classification Results: Table 6.2 displays the maximum accuracy achieved by DIFFEE,

FusedGLasso, and Di↵-CLIME, after tuning over hyperparameters. DIFFEE yields a classification
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Table 6.2: Classification accuracy obtained on the ABIDE dataset using DIFFEE, FusedGLasso, and Di↵-CLIME.
DIFFEE achieves the highest classification accuracy.

Method DIFFEE FusedGLasso Di↵-CLIME
Accuracy (%) 57.58% 56.90% 53.79%

accuracy of 57.58% distinguishing the autism and control groups, outperforming the FusedGLasso

and Di↵-CLIME estimators.

6.5.4 Detailed Empirical Results

Figure 6.1 (a) and (b) summarize DIFFEE’s better performance in both scalability and e↵ectiveness

for all experiment settings in Model 1 and Model 2, respectively. Each point in Figure6.1 represents

both the F1-Score and Time Cost of a method. Most of the DIFFEE points lie in the top left area,

indicating lesser Time Cost and higher F1-scores compared to the other baselines.

Table 6.3 and Table 6.4 present the detailed results on the simulated datasets, comparing the

scalability to p of our proposed method DIFFEE with the baselines FusedGLasso, Density Ratio,

and Di↵-CLIME. The Table 6.3 and Table 6.4 are obtained by experimental settings under Model 1

and Model 2 respectively. We vary number of features p in the set of {100, 200, 300, 400, 500}. The

computation time for each case is the summation of the computational time for the method over a

range of �n 2 {0.01⇥
q

log p
min(nc,nd)

⇥ i|i 2 {1, 2, 3, . . . , 30}}. The F1-score for each case is the best

result over a range of �n 2 {0.01 ⇥
q

log p
min(nc,nd)

⇥ i|i 2 {1, 2, 3, . . . , 30}}. The Di↵-CLIME cannot

finish any tasks in one day. So all the results in the column “Di↵-CLIME” are indicated by “NA”.

In most of the synthetic datasets, DIFFEE achieves a higher F1-Score and less computation time

than other baselines. This proves that DIFFEE outperforms the baselines in both e↵ectiveness and

scalability.

Table 6.5 and Table 6.6 present the detailed performance results of our proposed method DIFFEE

and others by varying the sparsity level s. The Table 6.5 and Table 6.6 are obtained by Model 1

and Model 2 respectively. We vary the sparsity parameter s in the set of {0.1, 0.2, . . . , 0.7}. The

computation time and F1-Score are measured similar to Table 6.3 and Table 6.4. In all of the synthetic

datasets, DIFFEE performs better as indicated by its higher F1-score and lesser computation time

than other baselines.

Table 6.7 and Table 6.8 present the detailed results of our proposed method–DIFFEE versus the

corresponding baselines FusedGLasso, Density Ratio, and Di↵-CLIME on the simulated datasets
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Table 6.3: Model 1 varying p

Model DIFFEE FusedGLasso Slower Density Ratio Slower Di↵-CLIME Slower
6*F1-score p = 50 0.029 0 0.027 0.016

p = 100 0.017 0.015 0.015 0.012
p = 200 0.009 0.008 0.009 NA
p = 300 0.005 0.002 0.006 NA
p = 400 0.004 0.003 0.004 NA
p = 500 0.004 0.003 0.003 NA

6*Time (s) p = 50 0.296 45.61 154⇥ 24.903 84⇥ 56.37 190⇥
p = 100 0.748 121.537 162⇥ 122.596 163⇥ 5094.796 6811⇥
p = 200 3.645 715.672 196⇥ 611.341 167⇥ NA
p = 300 11.064 2106.681 190⇥ 1584.262 143⇥ NA
p = 400 24.763 4551.419 183⇥ 4159.019 167⇥ NA
p = 500 44.54 8008.809 179⇥ 8575.529 192⇥ NA

Table 6.4: Model 2 varying p

Model DIFFEE FusedGLasso Slower Density Ratio Slower Di↵-CLIME Slower
6*F1-score p = 50 0.581 0.401 0.082 0.422

p = 100 0.444 0.335 0.071 0.406
p = 200 0.45 0.311 0.066 NA
p = 300 0.444 0.265 0.073 NA
p = 400 0.449 0.229 0.078 NA
p = 500 0.45 0.203 0.075 NA

6*Time (s) p = 50 0.274 43.57 159⇥ 19.35 70⇥ 116.712 425⇥
p = 100 0.751 115.049 153⇥ 104.53 139⇥ 11640.82 15500⇥
p = 200 3.528 657.147 186⇥ 538.842 152⇥ NA
p = 300 10.887 2106.415 193⇥ 1780.176 163⇥ NA
p = 400 23.462 4406.156 187⇥ 3859.082 164⇥ NA
p = 500 44.163 8164.19 184⇥ 9054.507 205⇥ NA

Table 6.5: Model 1 varying sparsity

Model DIFFEE FusedGLasso Slower Density Ratio Slower
7*F1-score s = 0.1 0.008 0.003 0.009

s = 0.2 0.009 0.008 0.009
s = 0.3 0.008 0.008 0.008
s = 0.4 0.011 0.008 0.008
s = 0.5 0.008 0.006 0.008
s = 0.6 0.008 0.008 0.008
s = 0.7 0.008 0.007 0.008

7*Time (s) s = 0.1 3.606 712.682 197⇥ 631.582 175⇥
s = 0.2 3.993 712.365 178⇥ 598.191 149⇥
s = 0.3 3.97 719.859 181⇥ 595.246 149⇥
s = 0.4 3.65 721.785 197⇥ 598.009 163⇥
s = 0.5 3.632 679.94 187⇥ 631.062 173⇥
s = 0.6 3.693 679.263 183⇥ 608.358 164⇥
s = 0.7 3.679 686.979 186⇥ 624.632 169⇥

varying di↵erent nc and nd in a high-dimensional setting (p > max(nc, nd)). The Table 6.7 and

Table 6.8 are obtained by Model 1 and Model 2, respectively. We vary the number of samples

nc and nd in the set of {p/2, p/4}. The computation time and F1-Score are measured similar to
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Table 6.6: Model 2 varying sparsity

Model DIFFEE FusedGLasso Slower Density Ratio Slower
7*F1-score s = 0.1 0.165 0.089 0.066

s = 0.2 0.158 0.073 0.059
s = 0.3 0.15 0.057 0.05
s = 0.4 0.144 0.053 0.044
s = 0.5 0.137 0.042 0.036
s = 0.6 0.13 0.046 0.033
s = 0.7 0.124 0.043 0.027

7*Time (s) s = 0.1 3.817 671.255 175⇥ 564.679 147⇥
s = 0.2 3.763 671.499 178⇥ 559.455 148⇥
s = 0.3 3.62 674.941 186⇥ 609.633 168⇥
s = 0.4 3.741 664.363 177⇥ 635.302 169⇥
s = 0.5 3.691 662.802 179⇥ 603.838 163⇥
s = 0.6 3.619 659.336 182⇥ 611.441 168⇥
s = 0.7 3.596 648.885 180⇥ 689.137 191⇥

Table 6.7: model1 varying nc and nd in high-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower
4*F1-score nc = p/4, nd = p/4 0.008 0.008 0

nc = p/4, nd = p/2 0.008 0.008 0
nc = p/2, nd = p/4 0.016 0.008 0
nc = p/2, nd = p/2 0.009 0.008 0.009

4*Time (s) nc = p/4, nd = p/4 3.647 696.742 191⇥ 398.226 109⇥
nc = p/4, nd = p/2 3.61 704.943 195⇥ 590.044 163⇥
nc = p/2, nd = p/4 3.609 697.858 193⇥ 408.149 113⇥
nc = p/2, nd = p/2 3.582 654.147 182⇥ 642.168 179⇥

Table 6.8: model2 varying nc and nd in high-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower
4*F1-score nc = p/4, nd = p/4 0.45 0.221 0.065

nc = p/4, nd = p/2 0.45 0.226 0.063
nc = p/2, nd = p/4 0.45 0.29 0.065
nc = p/2, nd = p/2 0.45 0.203 0.066

4*Time (s) nc = p/4, nd = p/4 3.74 654.227 174⇥ 381.686 102⇥
nc = p/4, nd = p/2 3.748 654.822 174⇥ 484.77 129⇥
nc = p/2, nd = p/4 3.717 653.657 175⇥ 346.148 93⇥
nc = p/2, nd = p/2 3.528 657.147 186⇥ 494.066 140⇥

Table 6.3 and Table 6.4. In most of the synthetic datasets, DIFFEE achieves a higher F1-Score and

less computation time than other baselines.

Table 6.9 and Table 6.10 present the performance of our proposed method–DIFFEE and other

methods with varying nc and nd in a low-dimensional setting (p > max(nc, nd)). The Table 6.9

and Table 6.10 correspond to Model 1 and Model 2, respectively. We vary the number of samples

nc and nd in the set of {p, 2p, 3p}. The computation time and F1-Score are measured similar to

Table 6.3 and Table 6.4. In most of the synthetic datasets, DIFFEE achieves a higher F1-Score and
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less computation time than other baselines.

Table 6.9: model1 varying nc and nd in low-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower
9*F1-score nc = p, nd = p 0.01 0.008 0.008

nc = p, nd = 2p 0.011 0.008 0.008
nc = p, nd = 3p 0.008 0.007 0.008
nc = 2p, nd = p 0.015 0.008 0.011
nc = 2p, nd = 2p 0.01 0.008 0.016
nc = 2p, nd = 3p 0.009 0.008 0.014
nc = 3p, nd = p 0.008 0.004 0.008
nc = 3p, nd = 2p 0.008 0.007 0.008
nc = 3p, nd = 3p 0.008 0.003 0.009

9*Time (s) nc = p, nd = p 3.643 691.581 189⇥ 838.863 230⇥
nc = p, nd = 2p 3.569 1023.507 286⇥ 1468.593 411⇥
nc = p, nd = 3p 3.62 1319.354 364⇥ 2054.228 567⇥
nc = 2p, nd = p 3.578 700.539 195⇥ 932.511 260⇥
nc = 2p, nd = 2p 3.568 875.55 245⇥ 1291.795 362⇥
nc = 2p, nd = 3p 3.553 1406.44 395⇥ 2224.744 626⇥
nc = 3p, nd = p 3.587 696.087 194⇥ 882.885 246⇥
nc = 3p, nd = 2p 3.578 725.195 202⇥ 1464.343 409⇥
nc = 3p, nd = 3p 3.592 1264.346 351⇥ 2191.003 609⇥

Table 6.10: model2 varying nc and nd in low-dimensional setting

Model DIFFEE FusedGLasso Slower Density Ratio Slower
9*F1-score nc = p, nd = p 0.45 0.372 0.076

nc = p, nd = 2p 0.453 0.394 0.081
nc = p, nd = 3p 0.452 0.39 0.092
nc = 2p, nd = p 0.451 0.426 0.093
nc = 2p, nd = 2p 0.477 0.471 0.111
nc = 2p, nd = 3p 0.488 0.479 0.131
nc = 3p, nd = p 0.452 0.445 0.103
nc = 3p, nd = 2p 0.488 0.484 0.143
nc = 3p, nd = 3p 0.546 0.508 0.148

9*Time (s) nc = p, nd = p 3.658 707.735 193⇥ 714.371 195⇥
nc = p, nd = 2p 3.746 688.608 183⇥ 1192.792 318⇥
nc = p, nd = 3p 3.673 676.806 184⇥ 1707.516 464⇥
nc = 2p, nd = p 3.69 673.112 182⇥ 723.656 196⇥
nc = 2p, nd = 2p 3.691 676.597 183⇥ 1164.175 315⇥
nc = 2p, nd = 3p 3.57 677.65 189⇥ 1830.678 512⇥
nc = 3p, nd = p 3.692 673.364 182⇥ 717.752 194⇥
nc = 3p, nd = 2p 3.692 682.499 184⇥ 1090.64 295⇥
nc = 3p, nd = 3p 3.732 719.733 192⇥ 1739.274 466⇥
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Figure 6.3: Time Cost(log(seconds)) of DIFFEE versus the baseline methods (a) Time vs. number of features(p)
for Model 1. (b)Time vs. number of features(p) for Model 2. (c) Time vs. sparsity(s) for Model 1. (d) Time vs.
sparsity(s) for Model 2. (e)Time vs. number of samples in ‘c’ case (nc) for Model 1. (f) Time vs. number of samples
in the ‘c’ case (nc) for Model 2.
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Chapter 7

Variations and Extensions

7.1 Nonparanormal Graphical Models

Though sGGM is powerful, its normality assumption is commonly violated in real applications (e.g.,

for the TF ChIP-Seq data). the histogram of one of its TF variables is clearly not following Gaussian

distribution (across samples, shown as the right distribution graph in Figure 7.1). After a univariate

log-transformation of the same feature, we obtain its distribution histogram as the left graph in

Figure 7.1. The transformed data samples are approximately normally distributed. This motivates

us to adopt a more generalized UGM (recently proposed in [74]) to overcome the limitation of sGGM.

This so-called “nonparanormal graphical model” (NGM) [74] assumes that data samples follow a

multivariate nonparanormal distribution, which is a strict superset of the Gaussian distribution.

We extend our models to the nonparanormal family and name these novel variations “NJEEK”,

“NFASJEM”, and “NDIFFEE”.

7.1.1 Background: Nonparanormal Graphical Model

A random variable Z = (Z1, . . . , Zp)T is said to follow a nonparanormal distribution

Z ⇠ NPNp(µ,S; f1, . . . , fp)
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Figure 7.1: A simple example showing nonparanormal graphical model and its unobserved latent Gaussian graphical
model. The leftmost sub-figure shows X ⇠ Np(µ,S). The rightmost sub-figure shows Z ⇠ NPNp(µ,S; f1, . . . , fp).
The right distribution graph shows the histogram of one feature zi (one TF variable) from a real TF binding dataset.
The left histogram graph shows the distribution of a log-transformation of the same feature (zi). Because we can
clearly see that the left histogram roughly follows a Gaussian distribution, this indicates zi follows a nonparanormal
distribution. This shows the need to extend SIMULE to the nonparanormal distribution that is a strict superset of the
Gaussian distribution.

if and only if there exists a set of univariate strictly increasing transformations f = {fj}
p
j=1 such

that:

f(Z) = (f1(Z1), . . . , fp(Zp))
T := X ⇠ N(µ,S)

Figure 7.1 shows a simple example of nonparanormal graphical model (NGM) (inside the rightmost

sub-figure) and its unobserved latent Gaussian graphical model ( inside the leftmost sub-figure).

Assume that we are given a dataset including n observations that are independently and identically

drawn from NPNp(µ,S; f1, . . . , fp), a multivariate nonparanormal distribution. The conditional

independence graph G among Zi variables can be modeled with a corresponding NGM [74]. The

graph structure of NGM is encoded through the sparsity pattern of the inverse covariance matrix

� := S�1, where S denotes the covariance matrix of NPNp.

7.1.2 Background: Estimate S through Rank-based Measures of Correla-

tion Matrix S0

Since the direct estimation of covariance matrix S is di�cult in nonparanormal distribution, recent

studies have proposed an e�cient nonparametric estimator [74] for S. This estimator is derived

from the correlation matrix S0. Because the covariance matrix S = diag(Si)S0diag(Si), S�1 =

diag(Si)�1S�1
0 diag(Si)�1. Here Si =

p
Cov(Zi, Zi) and diag(Si) = diag(S1,S2, . . . ,Sp). Therefore,

the inverse of correlation matrix (S�1
0 ) and the inverse of covariance matrix (S�1) have the same

nonzero and zero entries. Based on this observation, [74] proposed a nonparametric method to
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estimate the correlation matrix S0, instead of estimating the covariance matrix S for the purpose of

structure inference.

In [74] the authors proposed using the population Kendall’s tau correlation coe�cients ⌧jk to estimate

S0, based upon the explicit relationship between this rank-based measure ⌧jk and the correlation

measure (Sjk)0 for a given nonparanormal dataset Z ⇠ NPNp(µ,S, f1, . . . , fp) (discussed in [75]).

Figure 7.1 presents the simple relationship between Z ⇠ NPNp(µ, S; f1, . . . , fp) and its latent

X ⇠ N(µ, S). To simplify notations, we use S to represent the correlation matrix for the remainder

of this paper.

Theorem 7.1.1. Given Z ⇠ NPNp(µ, S, f1, . . . , fp) , a nonparanormal distribution, we have that

Sjk = sin(
⇡

2
⌧(Zj , Zk)). (7.1.1)

where the Kendall’s tau can be estimated as:

b⌧jk =
1

n(n� 1)

X

1ii0n

sign((zij � zi
0

j )(z
i
k � zi

0

k ))

Proof. The proof is provided in [74].

Therefore, the correlation matrix S can be estimated as:

bSjk = sin(
⇡

2
b⌧jk).

We can then plug in the estimated bS for learning the dependency graph structure in the corresponding

NGM.

7.1.3 JEE for Learning Multiple Nonparanormal Graphical Models

We can now substitute each sample covariance matrix b⌃(i) or b⌃c,d used in our works from each task

with its corresponding correlation matrix S(i) as estimated above. The rest of the computations

are the same as our estimators. We refer to this whole process as “NJEEK”, “NFASJEM”, and

“NDIFFEE”.
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Theorem 7.1.2. If X,Y are two independent random variables and f ,g : R ! R are two measurable

functions, then f(X) and g(Y ) are also independent.

Through the above theorem, the monotone functions f in NPNp will not change the conditional

dependency among variables. As proved in [74], the conditional dependency network among the

latent Gaussian variables X (in this NPNp) is the same as the conditional dependency network

among the nonparanormal variables Zi, with a parametric asymptotic convergence rate. Therefore,

we can use the estimated correlation matrices S(i) for the joint network inference of multiple sNGMs

in our estimators. This is also because we have shown that the inverse of the correlation matrix and

the inverse of the covariance matrix share the same nonzero and zero patterns.

7.2 Di�culty in combining the above estimators

We can also add more flexibility into the JEEK such as the second normalization function in FASJEM.

It has the following formulation:

argmin
⌦tot

I
,⌦tot

S

||W
tot
I � ⌦tot

I ||1 + ||W
tot
S � ⌦tot

S ||+ ✏R
0(⌦tot)

Subject to: ||W tot
I � (⌦tot

� inv(Tv(b⌃tot)))||1  �n

||W
tot
S � (⌦tot

� inv(Tv(b⌃tot)))||1  �n

R
⇤0(⌦tot)  ✏�n

(7.2.1)

We have two ways to solve Eq. (7.2.1). The first one is the parallelized proximal algorithm. However,

this algorithm requires the kw-norm has a closed-form proximity, which has not been discovered. The

other way assume each `1 norm as the indepedent regularizer. However, this increases the number of

proximities need to calculate to K + 1. Moreover, R0 is for ⌦tot while each `1 is for either ⌦(i)I or

⌦S . Therefore, none of these solutions can keep the algorithm be fast and scalable. We choose not to

introduce this work in this paper.



Chapter 8

Conclusion and Future Works

8.1 Intellectual Merit

The three proposed models – JEEK, FASJEM, and DIFFEE are novel approaches speeding-up and

scaling-up the joint estimation of multiple sGGMs from large-scale data. To the best of our knowledge,

these methods are the first suite of tools using the elementary estimator mechanism to achieve a

scalable and fast estimation of multi-sGGMs. The expected outcome will be a powerful toolkit that

not only provides accurate edge detection but also allows fast computation on the datasets with a

large number of features p.

8.2 Broader Impact

The proposed methods and tools are expected to impact scientific domains that need to manipulate

massive high-dimensional and heterogeneous data sets. This set of potential tools will enable

researchers like those working in network biology or brain connectivity to e↵ectively extract novel

network-driven hypotheses or knowledge from their scientific data-sets. In our experiments of finding

connectivity among di↵erent genes, proteins or regions of the human brain from data, our method

FASJEM and JEEK find more existing interactions between important entities when compared with

the state-of-the-art baselines. On one human brain imaging dataset, our proposed method DIFFEE

and JEEK achieved better classification accuracy than the state-of-art methods using the searched
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edges as evidence in classification. We hope to provide a suite of faster and more scalable “data !

connectivities” tools when data sets in many application fields become more heterogeneous and grow

at a faster scale than computational capabilities.

8.3 Future works

As we stated above, the next step we make is including additional knowledge for the FASJEM.

Furthermore, we are also interested in overcoming the di�culty stated in the Section 7.2.

8.4 Related works in a broader context

In this section, we also introduce some loosely related works.

8.4.1 Partial Correlation

Partial correlation measures the degree of association between two random variables, with the e↵ect

of a set of chosen random variables removed. If given the correlation matrix S, the partial correlation

⇢i,j without other variables can be calculated by P = S
�1.

⇢i,j = �
Pijp
PiiPjj

(8.4.1)

Therefore, the partial correlation matrix has the same sparsity pattern as the precision matrix.

8.4.2 Learning other Graphical Models

We focus on the sparse Gaussian Graphical model. However, there still exist other types of graphical

models. For example, the Bayesian Network (BN) also captures the conditional dependency structure.

Unlike the sGGM, it represents the conditional dependency relationships via a directed acyclic graph

(DAG). It is important to point out that the BN and sGGM are similar, but they both have a certain

type of relationship that the other type cannot represent. The classic BN model is the topic model,

which discovers the abstract ”topics” that occur in a collection of documents.
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The inference algorithms of BN include stochastic MCMC simulation, loopy belief propagation,

generalized belief propagation, and variational methods.

8.4.3 Learning Graphical Models from Temporal Data

Our works do not consider the temporal dependencies among variables. There exist many other works

considering the temporal relationship. For example, a few recent papers have considered exploring

multiple sGGMs by modeling relationships among networks; e.g., [34] [35]. [35] estimates the sparse

Gaussian Graphical model at the first time step.

8.4.4 Discrete Markov Random Field

The discrete Markov Random Field (MRF) [76] is similar to the sparse Gaussian Graphical Model.

However, they consider the random vector X as a binary random vector X 2 {0, 1}p. The density

function of X can be reformulated as:

q✓(x1, . . . , xp) = exp {
X

s2V

✓sxs +
X

s,t2E

✓stxsxt � �(✓)} (8.4.2)

The Graph structure of discrete MRF can be estimated by estimation of a generalized covariance

matrix [76].
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