
Recommendations for UVA Computer Science Curriculum to Create Industry Ready
Graduates

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Andrea Jerausek

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science



ABSTRACT
The computer science curriculum at the University of
Virginia could be improved to help students build more
practical skills to ensure they are industry ready. Meta
analysis of research relating to the topic of creating
industry ready developers during undergraduate studies
is examined. In this evaluation of the current curriculum,
I define success based on the results of third-party
studies. More specifically, I compare non-traditional
curriculums, such as programs that include open-source
projects or that were created for experimental purposes,
to UVA’s traditional computer science program. Due to
the rapidly changing and expansive nature of technology,
it is impossible to create a curriculum that will fully
satisfy all levels of industry; however, there are
improvements that traditional curricula can make to
create better software engineers, including increasing
focus on soft skills such as collaboration and
communication.

1. INTRODUCTION
Software engineering is a growing field with

extensive technology that is being rapidly invented or
updated resulting in a high demand for skilled
developers. This means that a high supply of competent
new graduates is essential to maintain and continue to
keep pace with technological developments. The need
for competent developers makes one ask what kind of
curriculums produce the most industry ready software
engineers? How does UVA’s computer science program
prepare students for industry in comparison to
curriculums that utilize open source or multi-semester
Capstone projects. Further, how do bootcamps,
programs that attempt to get individuals technically
proficient quickly, compare to four-year degree
programs?

One should also ask whether industry demands
too much from young developers. Expertise in any field
requires years of experience, and asking for high levels
of expertise from new graduates may be more
counterproductive than helpful. Specifically, setting
excessively high expectations for entry level roles may
needlessly discourage people from entering the field.

2. SURVEY OF LITERATURE
Industry has certain expectations for new

developers during interviews and a different set of
expectations for the developers during their long-term
work at a company. Lunn (2021) points out that most of
the time, developers are expected to perform well on
technical interviews that “place emphasis on specific
topics.” These kinds of interviews can only gauge a
candidate's success in the field to a certain degree. In
fact, hiring managers often complain that boot camp

recruits do better in the interview process than those who
have completed a four-year degree program. However,
Wilson (2017) finds that graduates from universities tend
to outperform boot camp recruits after six months
despite their initial ineptitude. This is most likely due to
each student’s training focus. Bootcamp students tend to
focus on learning specific frameworks and doing
interview prep whereas college students tend to focus on
developing general critical thinking skills.

Lunn identifies a number of skills that
industries desire in new hires, including “competencies
in knowledge and abilities” for hard skills and friendly
personalities, critical thinking, and communication for
soft skills. Both Lunn and Almi note that primary
complaints from industry about university education
include graduates’ skill gap due to curricula placing
heavy emphasis on theoretical concepts rather than
practical skills. According to Almi, industry also
complains that graduates have “choosy attitudes” which
influence their willingness to learn new technologies that
they may have not considered yet. He finds this
problematic because adaptability, one of the primary
desired skills in any profession, is particularly relevant in
a profession where tools used for work are constantly
changing.

3. ANALYSIS AND DISCUSSION
Before discussing various curricula, differences

between software engineering versus computer science
majors need to be considered, because there is a
distinction between program styles even though both
typically prepare students for future careers as software
engineers. The distinction can be best explained by
looking at another set of similar majors: physics and
mechanical engineering. Mechanical engineering core
principles are based on concepts from physics; however,
the focus of the mechanical engineering major is the
application of physics (Offutt, 2013). This distinction for
physics and mechanical engineering is so well
established now that when one majors in physics, they
do not become mechanical engineers by default since
they are not well equipped to do that job (Offutt, 2013).
The same concept applies to computer science and
software engineering majors. However, computer
science curricula often attempt to teach practical aspects
of the theory; therefore, most people with that major do
move on to become software engineers in this case
despite an emphasis on theory. Because a computer
science major is more theory-based, homework is
usually an individual task; thus, collaboration is
discouraged, which may negatively affect students when
working in industry due to the highly collaborative
nature of the software engineering profession (Offutt,
2013).

1



Next, four different methods of curriculums will
be addressed: traditional, innovative, open-source project
oriented, and a short term boot camp.

3.1 Traditional
UVA’s curriculum can be described as

traditional. Characteristics of this program include
learning material in class and applying it in a short-term
assignment via exercise, lab or tutorial (Alasbali, 2015).
In this type of curriculum, students typically have a
couple courses in which a semester-long project is
introduced, and seniors in the program also get Capstone
projects that either span either half or their entire final
year (Gary, 2008).

3.2 Innovative
An innovative curriculum is defined at Arizona

State University Polytechnic, where students have two
one year long Capstones that emulate enterprise projects
(Gary, 2008). Students at this university take a course,
try to apply it to their project, and then describe why the
concept learned in the course does or does not apply
(Gary, 2008). This program structure helps demonstrate
true industry experience by projects involve “evolution,
testing, analyzing, designing, and managing” of larger
and continuous pieces of software (Gary, 2008).

3.3 Open Source
Having students participate in open-source

projects forces them to participate in “authentic
learning” (Alasbali, 2015). The primary goal of authentic
learning is forcing students to complete tasks related to
the real world in an environment they would feel
motivated in (Alasbali, 2015). This type of learning
should get students industry-ready as it makes students
work on projects with existing code and with people in
the OS project’s community (Alasbali, 2015). Adding
onto existing software and working/ communicating with
others are both industry-relevant skills.

3.4 Bootcamps
The primary goal of bootcamps is to get

individuals technologically proficient quickly (Wilson,
2017). Bootcamps typically choose to teach students
about niche technologies/software that universities do
not cover, and their style of learning is project-based
(Wilson, 2017). This helps with hiring developers in
specific areas of expertise; however, after six months this
initial expertise soon becomes irrelevant when
comparing performance of recent graduates of a 4-year
program (Wilson, 2017).

4. EXPECTED BENEFITS
Benefits of developing a curriculum that will

create the most industry-ready students have expected
benefits for individual students, universities, and
industries. Individuals will benefit from a better

constructed curriculum because their career prospects
will improve without needing to exert extra effort
outside of working on their university coursework. In
other words, students will be able to minimize the time
they spend doing well with coursework while also
preparing themselves to be well versed in practical skills
that industry looks for.

In an ideal world, this would indicate that when
students are completing coursework for official classes,
they are also working towards developing practical skills
in industry. A better-defined curriculum would also
decrease the slope of the learning curve new graduates
encounter during their first year in industry. This
preparedness should translate into later career successes
as graduates are able to contribute more valuable work to
projects early on.

Curriculums that prepare graduates for industry
benefit universities by creating more career opportunities
for students. This increases a university's value,
consequently increasing prospective students’ interest in
attending that university due to its potential to afford
students greater career opportunities.

Industry would also benefit from a better
structured curriculum, as that would create more
prepared graduates. Better-prepared graduates would
require fewer company resources to train new hires,
suggesting a lower cost to onboard a new hire. Not only
that, but work-ready graduates would contribute
monetarily by producing more worthwhile work sooner.

5. CONCLUSION
This past summer I had the opportunity to work

at Lutron Electronics on the Azure cloud team. While
there, I worked with a variety of common tools used in
industry during development, including Azure Cloud,
Visual Studios, BitBucket, JIRA, Postman, and others. I
was also exposed to more advanced software
architecture used when dealing with code that might be
used to interact with a large number of users. Such
architecture included concepts related to dependency
injection and inversion of control.

At the time, I had limited exposure to the
concept of the cloud and web development. With the
UVA CS curriculum, most students will have zero
exposure to the cloud and how it works unless they
choose to take the cloud class (CS 4740) as an elective.
In essence, there is limited access to gain knowledge
about this essential component to developing software.
Since developing software using the cloud is such an
integral part of modern-day software development, this
technology should be taught as a general education
requirement. Knowing how the cloud works and how to
optimize its usage is an essential skill that most students
will need to have no matter what discipline of software
engineering they pursue. This is especially important
since according to Buloa (2022), platform as a service
(PaaS) and infrastructure as a service (IaaS) are

2



predicted to grow by about 26% and 30% respectively
this year.

Next, learning how to make software scalable is
another essential skill I learned during my internship that
the UVA CS curriculum could improve on. During my
time at UVA, I often wrote code that would pass tricky
test cases, and I am trained to consider various user
inputs and how an individual user will break code that is
implemented. However, what is greatly lacking is
considering what happens if we run our code and a lot of
users are attempting to use the software at once. This is
especially relevant in industry where there might be
thousands of users interacting with software
simultaneously. In those instances, developers must
consider if any latencies are introduced based on how
they choose to implement features.

Both of these skills, cloud computing and
scaling code, could be taught by structuring the
curriculum to have group projects that span multiple
semesters. A long-term homework assignment forces
students to make smart decisions during development
and to deal with problems introduced with their code
sooner rather than later.

This method would better simulate a work
environment. Not only that, but it would cause each
student to learn how to deal with coworkers over a
significant amount of time. Collaboration will be forced
since no single student should be able to carry the
workload of an entire project, and the need for cohesive
software will make students learn to develop technical
communication skills. Technical communication skills
will be promoted in instances where students help each
other. Essentially, a curriculum that is structured similar
to one that Gary (2008) described for Arizona State
University would greatly benefit students at UVA.

6. FUTUREWORK
To ensure competent developers are produced

through 4-year degree programs, universities should
reconsider the structure of their curriculums. In
particular, the CS department at the University of
Virginia should consider adding Cloud Computing as a
required course on its curriculum. Teaching students how
to scale code is another essential skill that would greatly
benefit students when they enter the workforce. Both of

these skills together could be dually applied in
multi-semester long projects. Overall, it is beneficial to
both students and employers if universities would
consider teaching skills that are essential to the
workforce.

REFERENCES
[1] Alasbali, N. and Benatallah, B. 2015. Open source as
an innovative approach in computer science education a
systematic review of advantages and challenges. 2015
IEEE 3rd International Conference on MOOCs,
Innovation and Technology in Education (MITE) (2015).
DOI:http://dx.doi.org/10.1109/mite.2015.7375330
[2] Almi, N., Rahman, N., Purusothaman, D., and
Sulaiman, S. 2011. Software engineering education: The
gap between industry's requirements and graduates'
readiness. 2011 IEEE Symposium on Computers &
Informatics (2011).
DOI:http://dx.doi.org/10.1109/isci.2011.5958974
[3] Bulao, J. How many companies use cloud computing
in 2022? all you need to know. Retrieved October 21,
2022 from
https://techjury.net/blog/how-many-companies-use-cloud
-computing/#gref
[4] Gary, K. 2008. The Software Enterprise: Practicing
Best Practices in Software Engineering Education.
(January 2008). Retrieved October 18, 2022 from
https://www.researchgate.net/publication/263602679_Th
e_Software_Enterprise_Practicing_Best_Practices_in_So
ftware_Engineering_Education
[5] Lunn, S. and Ross, M. 2021. Ready to work:
Evaluating the role of community cultural wealth during
the hiring process in computing. 2021 Conference on
Research in Equitable and Sustained Participation in
Engineering, Computing, and Technology (RESPECT)
(2021).
DOI:http://dx.doi.org/10.1109/respect51740.2021.96206
86
[6] Offutt J. 2013. Putting the engineering into Software
Engineering Education. IEEE Software 30, 1 (January
2013), 96–96. DOI:http://dx.doi.org/10.1109/ms.2013.12
[7] Wilson, G. 2017. Building a new mythology: The
Coding Boot-camp Phenomenon. ACM Inroads 8, 4
(2017), 66–71. DOI:http://dx.doi.org/10.1145/3132706

3


