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Abstract

Thresholds have been defined for many water quality indicators (WQIs) which 

separate the measurement space of the indicator into two states, one of which, the 

exceedance or violation state, has undesirable consequences.  Observations are often 

made at unevenly spaced intervals, are usually uncoordinated with the timing of state 

changes, and are usually made asynchronously at multiple locations.  These typical 

observation protocols have hindered estimation of violation-state properties.  To address 

this problem, six hierarchical two-state continuous-time Markov chain (CTMC) models 

were developed and tested.  These allow estimation of duration, frequency, and limiting 

probabilities from asynchronous, uncoordinated, and unevenly spaced observations. 

Three of these models were developed for single Markov processes but can be modified 

to handle multiple processes.  Three of the models were developed for multiple processes. 

Two of the models were homogeneous; the other four were non-homogeneous with 

sinusoidally varying components.  Model parameters were estimated with Bayesian 

MCMC methods.  

In each of three experiments, processes were simulated at high-frequency time 

steps.  Asynchronous, infrequent, uncoordinated, and unevenly spaced observations of 

these processes were then extracted using protocols specified with varying observation 
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period length, quasi-regular observation interval, and violation-state observation 

probability.  Models were estimated from the simulated observations, and compared on 

nominal parameter value recovery, predictive performance, and frequency and duration 

distribution error.  Effects of process and observation protocol characteristics on recovery, 

prediction performance and distribution estimation error were measured.

In the first experiment, simulated observations of single-chain two-state CTMCs 

were made and modeled.  First, choice of prior distribution model was evaluated. 

Uniform and Gamma priors were found to be roughly equivalent in terms of 

performance, and both were found to perform substantially better than a Jeffrey's prior. 

Next, recovery, prediction, and distribution estimation error were evaluated.  Duration, 

frequency, and violation-state probability were overestimated.  Lower distribution 

estimation error was associated with longer observation period and more observations. 

Lower prediction and distribution estimation error was associated with more non-

homogeneous processes.

In the second experiment, observation and modeling of multiple correlated WQI 

processes was simulated by mimicking WQIs with dual correlated two-state continuous 

time Markov chains.  Estimates were made both jointly and individually, using the 

homogeneous model from the first experiment modified for multiple chains.  Duration, 

frequency, and long-term violation-state probability were overestimated.  Joint and 

individual estimates produced nearly equal results.  Positively correlated and relatively 

low transition-rate processes were more-accurately predicted.  Several observation 
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characteristics were related to better prediction: greater event observation intensity, 

greater quasi-regular observation intensity, and longer observation period.

In the third experiment, two methods were compared for estimating threshold 

exceedance frequency and duration properties.  One method was adapted from the Partial 

Duration Series (PDS) method popular in flood frequency analysis.  The second method 

was based on three multiple-chain CTMC models.  Simulations of WQI time series were 

generated using a sinusoidal model with autocorrelated errors adapted from the literature. 

Duration and violation-state probability were overestimated.  Frequency was 

underestimated.  A multiple-chain homogeneous CTMC model produced lower error 

estimates of frequency and duration than did the PDS method.  Results were mixed for 

the two non-homogeneous multiple-chain CTMC models.  For all CTMC models 

considered, more-positively correlated processes were easier to predict.  Higher 

observation rates were found to improve predictive performance.  The multiple-chain 

CTMC models were shown to be extend-able to allow for prediction of frequency and 

duration properties from watershed characteristics or to allow these properties to vary 

with time.

The bias in recovery of nominal parameter values seen in all three experiments 

appeared to be related to the observation protocol characteristics and not to the models or 

estimation method.  The sources of this bias were not fully investigated.
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Table of important symbols

 Symbols Description
 , , λ and μ are transition rates. γ is the renewal rate.

X, Y, Z
X and Y are random variables for the times spent in state '0' and state 
'1' of a two-state continuous time Markov chain. Z is a random 
variable for the renewal period.

Sn The state of the process at observation n
P0, P1 Limiting probabilities for state '0' and state '1'

A, B Coefficients of a sinusoid, as in A sinB cos 

K A constant relating λ and μ, as in =K 
 Generally a precision for a normal distribution 
 A radian
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 1 Introduction

At a very general level, managers often seek information in the form of 

assessments of the risk to valuable resources from identified threats.  In the natural 

resource management field, and in particular in the aquatic natural resource field, threats 

to the biological resource arise from frequent and/or lengthy exposure to chemical or 

physical changes in the aquatic environment (Baldigo, Lawrence 2000, Baldigo, 

Murdoch 1997, Bulger, Cosby & Webb 2000, Davies et al. 1992, DeWalle, Swistock & 

Sharpe 1995, Laio et al. 2001, Sickle et al. 1996).  A large number of chemical and 

physical water quality indicators (WQIs) are monitored and for many of them, thresholds 

have been determined for which violation of the threshold implies risk of significant 

ecological harm.  Quantification of such risk provides the kind of information 

management seeks for decision support.

A map color-coded on a scale from green (no risk) to red (high risk) that conveys 

the risk of exposure to a given threat or combination of threats fulfills the conceptual 

information requirement for management.   For example, a resource manager might ask, 

“Do I have any red areas, and if so, how much of my area is colored red?”  Or more 

specifically, “What is the probability of a consecutive four-year sequence of springtime 
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violation events of at least three days duration occurring at least once in the next 50 

years?”  If this probability can be estimated then this map can be made.

Depending on the parameter, a violation period may be defined as either a period 

where the parameter level is above the threshold (an exceedance) or a period where the 

parameter is below the threshold (but not both).  Risk arises not only from the overall 

long-term probability of violation, but also from the frequency and duration of such 

violations.  For example, violations might occur on average once per year and last on 

average 6 months, or they might occur on average once per day and last on average 12 

hours.  Both scenarios yield the same long-term probability of violation, yet have 

potentially different ecological implications.  Seasonal differences in violation risk are 

also important, depending on the extent to which they coincide with critical life stages of 

organisms.

If there were a high density of locations where WQIs were observed frequently at 

evenly spaced intervals of time, then methodology already developed for characterizing 

flood frequency and magnitude might be adapted for characterizing violation duration, 

frequency, and long-term probability.  First of all, however, many parameters of interest 

are not practical to observe in situ.  Typically what we have is a sparse network of sites 

where WQIs are observed at asynchronous, infrequent, uncoordinated (with threshold 

crossings), and unevenly spaced intervals.  For example, whereas discharge is often 

observed at 15 minute intervals, WQIs are often observed on a monthly or weekly 

schedule possibly with occasional high-frequency observations made during high–water 
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events. It is unusual to find locations where the total number of WQI observations made 

in one year exceeds 100, except for those few locations where in-situ probes are used to 

measure a few parameters such as pH, dissolved oxygen, temperature, and conductivity.

Secondly, flood-frequency methods, and in general other existing methods for 

modeling threshold violation behavior are based on extreme value theory.  These 

approaches typically assume that thresholds are important only with respect to the 

variance of the process, whereas defined thresholds are typically absolute and without 

respect to process variance.  Violations of defined thresholds may in fact be rather 

commonplace, and within a region of interest, a specific threshold may have a different 

relationship with respect to the variance of the process at one location than with that at 

another.    

With respect to regional assessment of risk, one might want to leverage 

information from surrounding sites by exploiting common characteristics or other factors 

leading to correlation among them.  And while it is reasonable to think that time series of 

WQIs at different locations might be correlated, the lack of data collected simultaneously 

makes traditional estimates of correlation impractical.  Nor is it then a simple matter to 

construct multivariate time-series models that leverage that correlation. 

The broad objective of this dissertation was to develop and evaluate models for 

estimating the frequency and duration of violation events and their long-term probability, 

given arbitrary thresholds and availability only of asynchronous, infrequent, 

uncoordinated, and unevenly spaced observations.  This broad objective was approached 
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through the pursuit of three subordinate objectives: 1) to develop and test models for 

single sites, 2) to develop and test models for multiple-sites, and 3) to develop and 

compare multiple-site models with an adapted flood-frequency approach.

Clearly the universe of possible models to consider is too large to undertake a 

complete assessment in one dissertation.  While the notion that many important 

ecological processes are non-stationary in nature (Milly et al. 2008) is a compelling one, 

as a starting point only stationary, or to be more accurate seasonally stationary, models 

are considered in this work.  It is expected that insights gained from this work will assist 

future researchers in developing models for this problem that address non-stationarity, 

and thereby facilitate attainment of the broad objective. 

The remainder of this dissertation is organized as follows.  In Chapter 2 relevant 

literature is reviewed related to the problem, which comes from the fields of stochastic 

processes, extreme value theory, experimental design, and flood-frequency estimation.  In 

Chapter 3, a number of models and estimation methods are described.  In Chapter 4 three 

models for single site processes are developed and tested.  In Chapter 5 one of the single 

site models is extended to permit multiple-site models and the single-site model is 

compared to the multiple-site model.  In Chapter 6 additional multiple site models are 

developed and are compared with an adaptation to the Peaks Over Threshold method 

from the flood-frequency literature.  In Chapter 7 conclusions and contributions from the 

research are presented.
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 2 Literature Review

Relatively little work has been done in the specific target application area.  

However, considerable work has been done in the broader area of threshold violation.  In 

particular, hydrologists have worked for decades to couple extreme value theory with the 

theory of stochastic processes, motivated by the need to be able to predict the likelihood 

of occurrence of disastrous but infrequent and random events within typically long 

management horizons such as the lifetime of a structure.  For these analyses, hydrologists 

are generally blessed with the availability of relatively high-frequency, evenly spaced 

observations of water flow.  In this section a few of the more-popular flood-frequency 

methods, Markov chains, time series methods, and other subjects related to the problem 

are reviewed.

 2.1 Flood-frequency analysis and methods

A number of flood-frequency methods have been developed over the decades.  In 

general, they build on theories of extreme values and Poisson processes to yield 

distributions for the frequency and magnitude of flood exceedance events.  A popular 
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legacy method referred to as the Annual Maxima Series (AMS) method builds 

distributions from the annual maximum flow level observed.  An increasingly popular 

newer method is commonly referred to as either the Partial Duration Series (PDS) or the 

Peaks Over Threshold (POT) method (Madsen, Pearson & Rosbjerg 1997, Madsen, 

Rasmussen & Rosbjerg 1997, Madsen, Rosbjerg 1997, Rosbjerg, Funder Rasmussen & 

Madsen 1991, Rosbjerg, Madsen & Rasmussen 1992, Wang 1991 and references 

therein).  In this method a threshold of discharge is specified.  Various suggestions have 

been made, but generally these thresholds end up being in the upper tails of the 

distribution for discharge.  For example, (Rasmussen, Rosbjerg 1991) suggested the mean 

plus 3-3.5 times the standard deviation.  In setting the threshold, the objective is generally 

to obtain 1-2 exceedance events per year.  Up-crossings of the threshold demarcate the 

onsets of exceedances and down-crossings demarcate their ends.  The magnitude of an 

exceedance may be defined as the peak exceedance value, the area above the threshold 

associated with the exceedance, or some other function of the exceedance period.  The 

number of exceedance events per year is thought to be Poisson-distributed.  The 

associated magnitudes are thought to have a generalized Pareto (GP) distribution.  The 

GP distribution implies that annual maxima will have a generalized extreme value (GEV) 

distribution.  This relates the PDS method to the AMS method.  In practice data-reduction 

rules must be implemented because exceedance events do not generally obey the Poisson 

assumption of independence.

The Poisson probability of n events in time t is given by
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P [N t =n]= t n

n!
e−t , n=0,1,2,. ..  (1)

where l is the rate per unit of time and the estimator of l is

=N
t  (2)

 

The GP distribution for discharge (Madsen, Rasmussen & Rosbjerg 1997, 

Madsen, Rosbjerg 1997) has one of two possible cumulative distribution functions 

(CDFs)

F q=1−e

−q−q0




,=0  (3)

F q=1−1−
q−q0

 
1/ 

,≠0  (4)

where α is the scale parameter, k is the shape parameter, and q0 is the discharge threshold 

level.  Several methods have been suggested for estimating the GP distribution 

parameters.  The Method of Moments (Hosking, Wallis 1987) (MOM) estimators are

=1
2
 2

 2
1  (5)
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= 1
2  2

2
−1  (6)

 

where   and   are the sample mean and sample variance, respectively.  Other 

estimators include the probability-weighted moments (PWM) estimators and the 

maximum likelihood (ML) estimators (Hosking, Wallis 1987).  The significance of a 

negative   is that theoretically the range of duration is unbounded above, while a 

positive   indicates a bounded distribution.  The mean and variance are given by 

(Madsen, Rosbjerg 1997)

=E [q−q0]=


1  (7)

and

2=var [q−q0]=
2

1212
 (8)

The median duration is given by the value of d that yields 0.5=F(d).  The formula 

for this value is:

median= 1−2−  (9)
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 2.2 Applications of flood-frequency methodology to WQIs

Greb and Graczyk (1995) used flood-frequency methods to analyze continuously 

collected (every fifteen minutes for one year) dissolved oxygen (DO) data from two 

streams in Wisconsin.  They applied the AMS method, using periods of one week instead 

of years.  They found that confidence intervals and errors of CDFs of DO were 

substantially affected by sub-sampling at a rate of one or two samples per day.  They 

demonstrated the utility of their analysis for predicting recurrence probabilities for low-

DO conditions likely to cause mortality in smallmouth bass larvae.

Behera and Adams (2000) performed a frequency analysis by constructing PDFs 

of one year’s event mean concentration data from urban runoff events from two sewer 

catchments in Toronto, Canada.  For fifteen different water quality parameters, they 

found that event mean concentrations could be modeled using either the exponential, 

gamma, or lognormal distributions.  They compared goodness of fit for these 

distributions using the Kolmogorov-Smirnov test.  They extended their analysis to a 

regional subpopulation of sixteen waterfront outfalls along the Metropolitan Toronto 

Waterfront (the other fourteen were only sampled during the Fall) by an aggregation of 

data.

Deviney et al. (2006) extrapolated recurrence interval distribution models 

(essentially cumulative distribution functions) for episodic acidification in five 

catchments in Shenandoah National Park (SHEN) to 226 other catchments.  Hourly 

concentration time series for the five sites were obtained using a transfer function to 
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predict hourly concentration from hourly discharge and intermittent concentrations.  The 

AMS method, applied to these hourly predictions, was used to estimate parameters of 

exponential distributions for recurrence intervals for these sites.  Regression of 

distribution parameters on physical catchment attributes was used to extrapolate 

recurrence interval distribution models to other catchments.

 

 2.3 Markov Chains

Markov processes have been widely discussed in hydrology (Lu, Berliner 1999, 

Szilagyi, Balint & Csik 2006 and references therein).  For more-general primers see 

(Ross 2006) or (Gallagher 1996).  A continuous-time Markov chain (CTMC) is a Markov 

chain where the conditional distribution of some future state of the chain X(t+s) is only 

dependent on the present state of the chain X(s) .  If the transition probabilities from X(s) 

to X(t+s) are invariant with time (independent of s) we say that the process is 

homogeneous.  If these probabilities vary with time we say the process is 

nonhomogeneous.  A number of researchers have developed models for threshold 

violations that leverage extreme value theory and Markov chains (Smith, Tawn & Coles 

1997 and references therein). 

 



Page 23 of 215

 2.4 Time series models

Time series models are useful in threshold violation characterization as a 

preliminary step to create an evenly spaced time series for event extraction when missing 

data are present.  The time series literature is deep; for example, see (Brockwell, Davis 

1996, Brockwell, Davis 1991, Chatfield 1989, Hamilton 1994).  Many time series models 

have been used in hydrology, including seasonal or periodic autoregressive integrated 

moving average (SARIMA or PARIMA) models or in some cases simpler versions such 

as SARMA or ARMA models (Chu, Katz & Ding 1995, Bender, Simonovic 1994, 

Vecchia 1985, Vecchia et al. 1983, Stedinger, Lettenmaier & Vogel 1985, Salas, 

Obeysekera 1992, Obeysekera, Salas 1986).  Long-term persistence has been modeled 

using fractionally differenced ARIMA models (Montanari, Rosso & Taqqu 1997).  Non-

normality has been addressed using gamma-autoregressive models (Fernandez, Salas 

1990).  Changes in chemical concentration have been modeled using intervention 

analysis (Rasmussen et al. 1993) and quality-control approaches (MacNally, Hart 1997).  

State space models admit a wider class of processes than SARIMA models, 

although SARIMA models can also be formulated as state space models.  In particular, 

state space models are not restricted to time-invariance to the same degree as SARIMA 

models (Brockwell, Davis 1996).  State space models are also referred to as Dynamic 

Linear Models (West, Harrison 1997, Harrison, Stevens 1976).

Typically, the Kalman filter is used in state space applications to compute 

estimates of the state vector (Harvey 1990).  These estimates are optimal if the 
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disturbances and initial state vector are normally distributed.  The standard Kalman filter 

is a linear estimator.  The Extended Kalman filter (EKF) , as its name suggests, admits 

non-linear models by basing estimation on the partial derivatives of the process function, 

the objective being to linearize the process in the region of the current state.  The 

Unscented Kalman Filter (Wan, Van Der Merwe 2000) purports to reduce error in the 

EKF from the first-order approximation.  Hydrological applications of these methods 

have been published for WQIs from the River Cam (Young 1999) and the Bedford Ouse 

river system (Whitehead, Beck & O'Connell 1981).

 

 2.5 Bayesian inference

Bayesian models provide an approach to modeling uncertainty in threshold 

violation models.  Techniques and software for performing Bayesian inference have 

improved dramatically over the last twenty years (Gelman et al. 2004, Gelman, Hill 

2007).  This is in no small part due to growth and availability of sufficient computational 

capability to implement algorithms for inference such as Gibbs sampling and Metropolis-

Hastings using the Markov chain Monte Carlo (MCMC) technique (Gamerman 1997).   

Bayesian inference is applicable in situations of complex, nonlinear models and sparse 

data (Scipione, Berliner 1992).  Increasingly, the choice of Bayesian vs. frequentist 

inference is based on pragmatism rather than philosophy (Clark 2005).  In particular, the 

BUGS (Bayesian inference Using Gibbs Sampling) software package provides the 
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capability to perform Bayesian inference for a wide range of potential models 

(Spiegelhalter et al. 1994).
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 3 Continuous-time Markov models for threshold 

violations

In this section the development of several models for threshold violations and the 

method used for estimating model parameters are described.  These are used throughout 

the dissertation to address the primary objectives.  A requirement for model development 

was to be able to estimate the distributions of renewal time (the inverse of frequency), 

duration of threshold violation events, and limiting probabilities starting only from a set 

of asynchronous, infrequent, uncoordinated, and unevenly spaced observations (the 

AIUUS observations).  Section  3.1  describes the development of a homogeneous two-

state continuous-time Markov chain (CTMC) (Model #1). Sections  3.2  and  3.3  

describe extensions of Model #1 that result in the specification of two non-homogeneous 

models.  These three models are used in Chapter 4, and a variant of the homogeneous 

model is used in Chapter 5.  Section  3.4  describes a four-state CTMC that can be used to 

simulate or model dual correlated CTMC processes.  Sections  3.5 ,  3.6 , and  3.7  

describe modifications of the first three models to accommodate multiple processes. 

These three models are used in Chapter 6.
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A homogeneous two-state CTMC is a reasonable first choice for a model of 

threshold exceedance.  Homogeneous simply means that the transition rates of the 

process are invariant with time.  Such a process might be expected where seasonal 

influences are not present.  Seasonal influences are present, however, in many WQIs. 

Two possible modifications of the homogeneous model (among many such possible 

modifications) are entertained to allow for the presence of seasonal influences.  These 

modifications result in non-homogeneous CTMCs (where the transition rates are a 

function of time).  The rationale for these two modifications are provided in the 

appropriate sections.

 3.1 Single-process CTMC – Model #1 (homogeneous )

A Bayesian model specification for a simple two-state homogeneous CTMC 

model (Figure 1) is described that allows estimation of model parameters and properties 

from AIUUS observations.  Without loss of generality, define state “0” to represent the 

condition “below threshold” and state “1” the condition “above threshold”.  The 

transition probabilities from “0” to “1” and from “1” to “0” are both 1, but the time spent 

in each state before the next transition is assumed to be exponentially distributed with 

potentially different transition rates  (for state “0”) and µ (for state “1”).  That is, upon 

entering state “0”, the process waits a random amount of time according to the Exp() 

distribution before transitioning to state “1”.  Upon entering state “1”, the process waits a 
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random amount of time according to the Exp(µ) distribution before transitioning back to 

state “0”.  This process model has nice properties that derive from the process parameters 

 and µ that speak directly to the renewal rate and the duration of time spent in each state, 

as well as to the long-term probabilities of state residence.

In fact, parameter estimation is simple when the process can be observed in such a 

way that the exact times of transitions between states are known (Figure 2).  The rates can 

be estimated by averaging the lengths of time of excursions into each state.  However, 

when the process is only observed at intermittent points in time not coincident with state 

changes (the points plotted in Figure 2), the estimation is not so easy.  Given an 

appropriate observation schedule, the limiting probabilities (the long-term proportions of 

time spent in each state) can be estimated by averaging, but the rates cannot.  

Figure 1: Two-state homogeneous CTMC

'1'

'0'

X~Exp(λ) Y~Exp(μ)
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Figure 2:  Simulation of a 2-state homogeneous CTMC versus time

Transition rates are =20 and =30. Ten simulated observations made at random 
intervals are plotted as points.

Ross (1993)  showed how the two-state homogeneous CTMC model and the 

Kolmogorov Backward Equation lead to equations that predict the probability of being in 

state “0” having been in state “0” or having been in state “1” some time previous.  Ross 

gives these equations respectively as:
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P00t =



e− t 


P10t =



− 


e−t
 (10)

Complementary equations can be derived for P11 t   and P01t  .  For two 

points in time indexed by n-1 and n, separated by an interval of time  t=t n−t n−1 , 

and with some re-arrangement of terms, these can be written:

P01tn=P1 Fn

P11tn=1−1−P1F n

P1=



F n=1−e−t

 t= tn−tn−1

 (11)

Note that 1) P1  is the limiting probability of being in state “1” given  

and , and 2)  F n  is the CDF of an exponential random variable with rate +.  It 

should be noted that this rate is not the renewal rate.

The product P1 F n  is simply the probability of being in state “1” at time t n  

having been in state “0”  t  time intervals previous.  The expression 

1−1−P1nF n  is the probability of being in state “1” at time t n  having been in 

state “1”  t  time intervals previous.  For small t,  P01 will be close to 0 and 

P11  will be close to 1.  For large t, both P01  and P11  will be close to P1 , 

the limiting probability of being in state “1”.  That is, when observations are relatively 

close together, the previous state observed is somewhat predictive of the subsequent state 



Page 31 of 215

observed; it is likely to be the same as the previous state.  When observations are 

relatively far apart, the previous state observed is not predictive of the subsequent state.  

Note that any number of transitions may have occurred between observations. 

The value of these equations is that they express the behavior of the process in terms of 

observations made at arbitrary times not necessarily coincident with changes in state.  All 

that is required is knowledge of the beginning and ending states and the time between. 

This model does not require that the time of state transitions be observed.  This is 

advantageous as shall be seen because, in the water quality monitoring field, the exact 

times of state transitions are never observed.    

If Sn  is defined as the state of the system at the time t n , then the probability 

that Sn  is “1” can be written, having observed the state at n−1 , as

Prob S n=' 1 ' ={ P1 F n , Sn−1=' 0 '
1−1−P1F n , S n−1=' 1 ' }  (12)

However, this can be written in a more general form as

Prob S n=' 1' =P1 Fn1−F n ProbS n−1=' 1 '   (13)

which can be seen as a weighted average between P1 , the limiting probability for state 

“1”, and the state at n-1.  When little time has elapsed, F n≈0 , and more weight is 

given to the previous state.  When much time has elapsed, more weight is given to the 

limiting probability.  This form also holds when Sn−1  has not been observed but has 

been estimated as a probability from a previous observation. 
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A quantity of interest is the sum of the random variables representing the times 

spent in each state, since this sum represents the distribution of renewal times, or the 

times between the onsets of violation events.  If X is the random variable representing the 

time spent in state “0” and Y is the random variable representing the time spent in state 

“1”, then the CDF of Z=XY  is given by

F Z  z ={1−e − z −1−e− z 
−

,≠

1−e − z 1 z  ,=}  (14)

The PDF of Z is then

f Z  z ={ − e − z −e− z  ,≠

 z e− z ,=}  (15)

The expected value of Z is

E [Z ]=E [X ]E [Y ]= 1

 1
  (16)

The renewal rate γ is the inverse of E[Z], but Z is not exponential.  See Figure 3 for an 

example CDF and PDF.
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Figure 3:  CDF and PDF of the renewal interval of a two-state homogeneous CTMC

CDF on left. PDF on right.  Transition rates: =20 and =30.

Given observations of a two-state homogeneous CTMC that include the time of 

the observation and the state, the process parameters may be estimated using OpenBUGS 

(Thomas et al. 2006)  in R and the following model specification:

Prob S n=' 1 ' ~ Bernoulli P1 F n1−F n ProbS n−1=' 1 ' 

Prob S n−1=' 1 ' ={1, Sn−1=' 1 '
0, S n−1=' 0 '}

P1=/
Fn=1−e− tn 

 t n=t n−t n−1

 (17)

WinBUGS model code for this model is located in Appendix A, Single-process

CTMC – Model #1 (homogeneous ) and code for a multi-variate version is located in 
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Appendix A, Multiple-process CTMC – Model #1 (homogeneous ), simple version. 

Potential priors for λ and μ can be specified in multiple ways, including the following:

 ,~ Uniform min , max
 ,~ Gamma shape , rate=1/scale 
 ,~ Jeffreys min ,max

 (18)

  

The hyper-parameters min and max for the uniform and Jeffreys priors should be 

chosen to be far outside the rates specified by the nominal parameters λ and μ.  The 

hyper-parameters shape and rate for the Gamma priors should be chosen  to provide a 

relatively flat prior (although it will be weakly informative).  The advantage of the 

Gamma prior is that it is unbounded above, unlike the uniform or Jeffreys priors, as 

implemented here.  The Gamma distribution is also a natural conjugate prior for the 

exponential distribution rate parameter (Gelman et al. 2004).  The differences between 

these priors are shown in Figure 4 over the range from 0.01 to 10,000 with the Gamma 

priors shape and rate set to 0.001.  
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 3.2 Single-process CTMC with varying rate – Model #2 (non-

homogeneous )

Many water quality indicator processes in the target application area  exhibit 

annual and/or daily periodicity which can be approximated with a sinusoid.  It therefore 

seems natural to explore modification of the CTMC discussed in Section  3.1  to allow 

the transition rates to vary with time.  Two such modifications are described in this and 

Section  3.3 .  First, letting the transition rates evolve periodically as sinusoids while 

Figure 4: Prior distributions for rate parameters

1e-02 1e+00 1e+02 1e+04

1e
-1

1
1e

-0
5

1e
+0

1

rate parameter

P
ro

ba
bi

lit
y

uniform
Gamma
Jeffreys



Page 36 of 215

holding the ratio between them (the limiting probabilities) constant is described.  This 

corresponds to a process where the limiting probabilities are invariant with time, but the 

expected rates of transition from either state to the other are higher or lower depending on 

the time of year.  In the target application area, this might be observed in a location where 

the pattern of precipitation varied seasonally or where there was substantial snowpack.

The Bayes specification for Model #2 follows:

Prob S n=' 1 ' ~ Bernoulli P1 F n1−F n ProbS n−1=' 1 ' 

Prob S n−1=' 1 ' ={1, Sn−1=' 1 '
0, S n−1=' 0 '}

P1=1 /1K 
F n=1−e−1K nt n

n=Asin nB cosn
 t n=t n−t n−1

n=K n

A ~ Uniform− ,
B ~ Uniform −2−A2 ,2−A2

K ~ LogNormal 0,1

 (19)

 
WinBUGS model code for this model is located in Appendix A, Single-process

CTMC with varying rate – Model #2 (non-homogeneous ).  Potential priors for λ include 

the following three:

 ,~ Uniform min , max
 ,~ Gamma shape , rate=1/scale 
 ,~ Jeffreys min , max

 (20)

The priors for A and B are dependent on λ:
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A ~ Uniform − ,
B ~ Uniform −2−A2 ,2−A2

 (21)

The variable n  is a sinusoid with mean λ and amplitude 2 A2B2 .  A and 

B are constrained so that n is non-negative.  The effect of K is to shrink or expand 

n  and n  by the same multiplicative factor at any point in time, thus maintaining 

constant the instantaneous limiting probabilities P0  and P1  but allowing the 

instantaneous renewal rate to vary.  The instantaneous renewal rate n  is the inverse of 

the expected value of Zn , which is given by

E [Zn]=
1
n
 1
n
=K1

K n
 (22)

 3.3 Single-process CTMC with varying limiting probabilities - 

Model #3 (non-homogeneous )

In the second modification, the renewal rate was held constant but the limiting 

probabilities P0  and P1  were allowed to evolve periodically as sinusoids.  This is a 

process where the distribution of times between events is invariant with time but the 

instantaneous transition rates vary, with an increase in transition rate from one state being 

balanced in some way by a decrease in transition rate from the other state.  In hydrology, 

it might be expected to see this behavior in any periodic process in general, and perhaps 
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even more so in processes which have a diurnal cycle super-positioned on an annual 

cycle.

There are multiple ways to formulate a model which incorporates the desired 

properties.  To hold the renewal rate constant means that the sum 
1
n
 1
n

 , or E[Z], 

must be constant.  Given values for P1n  and E[Z],  n  and n  may be specified 

according to the following:

n=


1−P1n

n=


P1n

= 1
E [Z ]

 (23)

The Bayes specification for Model #3 follows:
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Prob S n=' 1' ~ Bernoulli  pn
pn=P1, n F n1−Fn ProbSn−1=' 1 ' 

Prob S n−1=' 1' ={1, Sn−1=' 1 '
0, S n−1=' 0 ' }

F n=1−e−nn t

n=/P1,n

n=/1−P1, n
P1,n=P1A sinB cos 

P1 ~ Beta 0.999,0.999
P0=1−P1

C=minP0, P1
A ~ Uniform−C ,C 

B ~ Uniform −C2−A2 ,C2−A2

 (24)

 

WinBUGS model code for this model is located in Appendix A, Single-process

CTMC with varying limiting probabilities - Model #3 (non-homogeneous ).

 3.4 Correlated Continuous Time Markov Chains - Model #4

There are many situations in water quality monitoring where observations of 

water quality indicators exist at multiple locations but are not observed simultaneously.  It 

would be desirable to develop models capable of exploiting correlation between such 

processes, based on the two-state CTMC models already developed for single locations.  

As an example of one such model, suppose that for two locations A and B there exists the 

following state diagram (Figure 5) where the state is the ordered pair S A , S B .  It is 

assumed that the probabilities of both elements changing at precisely the same time (that 
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is, from (0,0) to (1,1) or from (0,1) to (1,0)) are zero.  If the transition rate from 

 to ~ S A , S B  or from S A , S B  to S A ,~ S B  is independent of the 

status of the non-changing element, then S A  and S B  are uncorrelated.  That is, if 

A0=A1  and B0=B1  and A0=A1  and B0=B1 .  S A  and S B  are 

correlated if the transition rates for one element depend on the state of the other element.  

That is, if at least one of the above equalities does not hold.

The measure of correlation r is given by

=
P[ S A=' 1' , S B=' 1 ' ]−P[ S A=' 1' ]P [S B=' 1 ' ]
P [S A=' 1 ' ]P [S A=' 0 ' ]P [S B=' 1 ' ]P [S B=' 0' ]

 (25)

Figure 5: Correlated dual process CTMC
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The limiting probabilities are solved for using the balance equations, which 

assume that the rate of transitions into any state is equal to the rate out of the state, and 

using the property that the sum of the limiting probabilities is equal to one.  Solving the 

following system of equations gives the limiting probabilities P 0,0  , P 1,0  , P 1,1

, and P 0,1   for the chain in Figure 5.

[−A0B0 A0 0 B0

A0 −A0B1 B1 0
0 B1 −A1B1 A1

1 1 1 1
][P 0,0 

P 1,0 

P 1,1 

P 0,1 
]=[0001]  (26)

The probabilities needed to calculate r can then be determined from the limiting 

probabilities:

P [S A=' 1 ' , S B=' 1' ]=P 1,1

P [S A=' 1 ' ]=P1,0 P 1,1 

P [S A=' 0 ' ]=P 0,0 P0,1

P [S B=' 1 ' ]=P1,1P 0,1 

P [S B=' 0 ' ]=P 1,0 P0,0

 (27)
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This leads to the following Bayesian specification for Model #4.  

Sn
A ~ bernoulliP10

A Fn0
A 1−F n0

A  P [S n−1
A =' 1' ] P [S n−1

B =' 0 ' ]
P11

A F n1
A1−F n1

A P [ S n−1
A =' 1 ' ]P [S n−1

B =' 1' ]
Sn

B ~ bernoulliP10
B F n0

B 1−F n0
B P [S n−1

B =' 1' ] P [S n−1
A =' 0 ' ]

P11
B F n1

B 1−F n1
B  P[ S n−1

B =' 1 ' ]P [S n−1
A =' 1' ]

P10
A=A0 /A0A0

F n0
A =1−e−A0A0  t

P11
A=A1 /A1A1

F n1
A =1−e −A1A1 t

P10
B =B0 /B0B0

F n0
B =1−e−B0B0t 

P11
B =B1/ B1B1

F n1
B =1−e −B1 B1t 

ij , ij ~Gamma 0.001,0 .001

 (28)
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 3.5 Multiple-process CTMC Model #1 (homogeneous)

The specification for multiple-process Model #1 is as follows:

Prob S j , n=' 1' ~ Bernoulli P j ,1 F j , n1−F j ,nProb S j ,n−1=' 1' 

Prob S j ,n−1=' 1 ' ={1, S j , n−1=' 1 '
0, S j ,n−1= ' 0 ' }

F j ,n=1−e − j jt n

 j=C j P j ,1

 j=C j 1−P j ,1
logit P j , 1~ Normal   j ,

 j ~ Normal  ,
log C j~ Normal   j ,
 j ~ Normal  ,
~ Gamma 0.5,0.5
~ Gamma 0.5,0.5
~ Gamma0.5,0.5
~ Gamma0.5,0.5
~ Normal 0,0.0001
~ Normal 0,0.0001

 t n=t n−tn−1

 (29)

where λj and μj are the transition rates from states '0' to '1' and '1' to '0' respectively for 

process j and C j= j j .  WinBUGS model code for this model is located in 

Appendix A, Multiple-process CTMC Model #1 (homogeneous), hierarchical version.  By 

specifying the logit transformation of the limiting probability of process j being in state 

'1' (Pj,1) as having a normal distribution, the capability to add regressors to predict its 

value is facilitated.  Similarly for the constant Cj, a log transformation modeled as having 

a normal distribution facilitates a similar capability.  Since the range of possible 
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predictors is virtually unlimited, that feature is not explored here.  The model as specified 

simply allows for different intercept parameters for each process.

The shape and inverse-rate parameters that are set here to 0.5 lead to reliable 

convergence when there are two processes but would need to be reduced for more than 

two processes.  Another approach is to make the shape and inverse-rate hyper-parameters 

with prior distributions of their own, say for example a uniform prior over the range 

[0.001, 0.5].  That was not found to be necessary in this work.

 3.6 Multiple-process CTMC Model #2 (non-homogeneous)

Multiple-process Model #2 lets the transition rates evolve periodically as 

sinusoids while holding the ratio between them (the limiting probabilities) constant.  This 

corresponds to a process where the limiting probabilities are invariant with time, but the 

expected rates of transition from either state to the other are higher or lower depending on 

the time during the period.  The Bayes specification for multiple-process Model #2 

follows:
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Prob S j , n=' 1' ~ Bernoulli P j ,1 F j , n1−F j ,nProb S j ,n−1=' 1' 

Prob S j ,n−1=' 1 ' ={1, S j , n−1=' 1 '
0, S j ,n−1= ' 0 ' }

F j ,n=1−e−1K j  j ,nt n

 j ,n= jA j sin2 tnB j cos2 tn
 j=C j P j ,1

K j=1−P j , 1/P j ,1

logit P j , 1~ Normal   j ,
 j ~ Normal  ,

log C j~ Normal   j ,
 j ~ Normal  ,
~ Gamma 0.5,0.5

r j ~ Uniform0,1
A j=r j j cos 
B j=r j j sin 

~ Gamma 0.5,0.5
~ Gamma0.5,0.5
~ Gamma0.5,0.5
~ Normal 0,0.0001
~ Normal 0,0.0001
~ Uniform − ,
 t n=t n−tn−1

 (30)

WinBUGS model code for this model is located in Appendix A, Multiple-process

CTMC Model #2 (non-homogeneous).  A number of other approaches for modeling the 

two sinusoidal amplitude variables Aj and Bj, including that of Section  3.2  were tried, 

but none were found to converge as reliably as the one specified above.
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 3.7 Multiple-process CTMC Model #3 (non-homogeneous)

In the second modification, the renewal rate is held constant but the limiting 

probabilities P0 and P1 are allowed to evolve periodically as sinusoids.  This is a 

process where the distribution of times between events is invariant with time but the 

instantaneous transition rates vary, with an increase in transition rate from one state being 

balanced in some way by a decrease in transition rate from the other state. 

There are multiple ways to formulate a model which incorporates the desired 

properties.  To hold the renewal rate constant means that the sum 
1
n
 1
n

 , or E[Z], 

must be constant.  Given values for P1n  and E[Z],  n  and n  may be specified 

according to the following:

n=


1−P1n

n=


P1n

= 1
E [Z ]

 (31)

The Bayes specification for multiple-process Model #3 follows:
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Prob S j , n=' 1' ~ Bernoulli P j ,1, n F j ,n1−F j , n ProbS j , n−1=' 1 ' 

ProbS j , n−1=' 1 ' ={1, S j , n−1=' 1'
0, S j , n−1=' 0' }

F j , n=1−e− j ,n j ,nt n

 j , n= j /1−P j ,1, n
 j ,n= j /P j ,1,n

P j , 1,n=P j ,1A j sin2 t nB j cos 2 t n
 j=C j1−P j ,1P j ,1

logit P j ,1~ Normal   j ,
 j ~ Normal  ,

log C j~ Normal   j ,
 j ~ Normal  ,
~ Gamma 0.5,0.5

Ampmax j
=0.5−P j , 1−0.52

r j ~ Uniform0,1
A j=r j Ampmax j

cos 
B j=r j Ampmax j

sin
~ Gamma 0.5,0.5
~ Gamma 0.5,0.5
~ Gamma 0.5,0.5
~ Normal 0,0.0001
~ Normal 0,0.0001
~ Uniform − ,
 t n=tn−t n−1

 (32)

WinBUGS model code for this model is located in Appendix A, Multiple-process

CTMC Model #3 (non-homogeneous).
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 4 Single-chain Markov models for threshold 

exceedance

 4.1 Abstract

Thresholds have been defined for many water quality indicators (WQIs) which 

separate the measurement space of the indicator into two states, one of which (the 

exceedance or violation state) has undesirable consequences.  Observations of the 

indicator are often made at relatively infrequent, unevenly spaced intervals and are 

uncoordinated with the precise timing of changes in state.   As a first attempt at 

constructing models to allow estimation of the process properties of frequency, duration, 

and long-term probability of violation from such observations, and to permit 

extrapolation to data-poor locations, three different two-state continuous-time Markov 

chain (CTMC) models based on the Kolmogorov Backward Equation were evaluated 

under simulated observation conditions.  Two of the models were non-homogeneous 

CTMCs with sinusoidally varying components; the third was a standard homogeneous 

CTMC.  WQIs were simulated as if they were known to follow CTMC models.  The 
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observation process was simulated resulting in unevenly spaced observations.  The 

modeling process was simulated using random model selection.  Estimations of model 

parameters were made with OpenBUGS software and Bayesian MCMC methods.   First, 

three different prior distributions for the rate parameters were compared.  Next, a 

response surface analysis was conducted to assess nominal process model parameter 

recovery.  Last, a principal components regression analysis was employed to evaluate the 

effects of process, observation, and modeling on various performance metrics.  Uniform 

and Gamma priors were found to be roughly equivalent in terms of performance, and 

both were found to perform substantially better than a Jeffrey's prior.  Duration, 

frequency, and long-term probability of violation were overestimated more often than 

not.  Not surprisingly, lower estimation error was associated with longer observation 

period and more observations, regardless of observation type (violation-state or routine). 

However, estimation error was also associated with degree and type of process 

homogeneity.

  

 4.2 Introduction

Aquatic resource professionals recognize that serious harm can come to aquatic 

ecosystems when water quality thresholds are violated too often or for excessively long 

periods of time (Baldigo, Murdoch 1997, Bulger, Cosby & Webb 2000, Davies et al. 

1992, DeWalle, Swistock & Sharpe 1995, Laio et al. 2001, Sickle et al. 1996).  However, 

for many WQIs the high-frequency observations necessary to identify and to time periods 
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of violation are not available.  In addition, these thresholds are generally absolute and 

independent of the range of values of a specific indicator, so that in a regional context, a 

threshold may have a different relative relationship at each location where observations 

are made.  These characteristics of the problem are inconsistent with the assumptions of 

current threshold violation methodologies used in hydrology, which are that observations 

have been made frequently and at evenly spaced time steps, and that thresholds are 

relative.  So under these more realistic assumptions the distributions of return period and 

duration of threshold violation events have not been well-characterized.  

Relatively little work has been done in this specific area.  However, considerable 

work has been done in the broader area of threshold violation.  In particular, hydrologists 

have worked for decades to couple extreme value theory with the theory of stochastic 

processes, motivated by the need to be able to predict the likelihood of occurrence of 

disastrous but infrequent and random flood events within typically long management 

horizons such as the lifetime of a structure.  For these analyses, hydrologists are generally 

blessed with the availability of relatively high-frequency, evenly spaced observations of 

water flow.

Markov processes have been widely discussed in hydrology (Lu, Berliner 1999, 

Szilagyi, Balint & Csik 2006 and references therein).  A number of researchers have 

developed models for threshold violations that leverage extreme value theory and 

Markov chains (Smith, Tawn & Coles 1997 and references therein).  Others have used 

statistical (Deviney, Rice & Hornberger 2006) or process (Zhang, Arhonditsis 2008) 
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models to make time series predictions from which threshold violation properties can be 

estimated.

The purpose of this paper was to evaluate three different two-state continuous-

time Markov chain (CTMC) models based on the Kolmogorov Backward Equation under 

simulated observation conditions.  These models allow estimation of transition rates and 

limiting probabilities from uncoordinated and unevenly spaced observations.  The 

evaluation consisted of assessments of nominal parameter recovery, of out-of-sample 

prediction performance, and of the effect of various process and observation 

characteristics on said performance.  The purpose of these assessments was to establish 

the conditions under which the methodology could be applied, assuming that successful 

application would be a function of both process characteristics and of observation 

protocol characteristics.

In the following three sub-sections three two-state Markov chain models for 

threshold exceedance are presented that allow the estimation of frequency and duration 

properties from uncoordinated and unevenly spaced observations of a process.  The first 

model is homogeneous while the second and third are non-homogeneous.  The latter two 

models allow transition rates to vary periodically.

 4.2.1 Model #1: homogeneous two-state CTMC

A homogeneous two-state CTMC is a reasonable first choice for a model of 

threshold exceedance.  Let one state (say state '0') represent the below-threshold 
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condition and the other state (state '1') represent the above-threshold condition.  Let state 

'0' represent the exceedance or violation state.  Assume that upon entering one state, a 

random amount of time passes before the process transits to the other state.  Once in the 

other state, a random amount of time passes before the process returns to the original 

state.  Assume these random times have exponential distributions with rates λ and μ that 

are not necessarily equal.  Such a process is depicted in Figure 6.

Some important properties of the process in Figure 6 are given in Equation (33), 

where E[X] represents the expectation of the amount of time spent in state '0' on a typical 

excursion into that state, E[Y] represents the same expectation for state '1', E[Z] is the 

expectation of the time between entrances into either state, P0 is the long-term proportion 

of time spent in state '0', and P1 is the long-term proportion of time spent in state '1'.

Figure 6: Two-state CTMC

'1'

'0'

X~Exp(λ) Y~Exp(μ)
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E [ X ]=1


E [Y ]=1


E [Z ]=E [X ]E [Y ]
P0=




P1=



 (33)

Ross (1993) showed how the two-state homogeneous CTMC model and the 

Kolmogorov Backward Equation lead to equations that predict the probability of being in 

state “0” having been in state “0” or having been in state “1” some time previous.  Ross 

gave these equations respectively as:

P00t =



e− t 


P10t =



− 


e−t
 (34)

With some re-arrangement of terms, a Bayesian specification can be written as

Prob S n=' 1 ' ~ Bernoulli P1 F n1−F n ProbS n−1=' 1 ' 

Prob S n−1=' 1 ' ={1, Sn−1=' 1 '
0, S n−1=' 0 '}

P1=/
Fn=1−e− tn 

 t n=t n−t n−1

 (35)

where λ and μ are the transition rates from '0' to '1' and '1' to '0' respectively.  Prior 

distributions for  λ and μ need only to be determined.  Several choices are reasonable 

including exponential, Gamma, uniform, and Jeffreys.
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 4.2.2 Model #2: varying transition rates

Model #2 lets the transition rates evolve periodically as sinusoids while holding 

the ratio between them (the limiting probabilities) constant.  This corresponds to a 

process where the limiting probabilities are invariant with time, but the expected rates of 

transition from either state to the other are higher or lower depending on the time during 

the period.  A Bayes specification for Model #2 follows:

Prob S n=' 1 ' ~ Bernoulli P1 F n1−F n ProbS n−1=' 1 ' 

Prob S n−1=' 1 ' ={1, Sn−1=' 1 '
0, S n−1=' 0 '}

P1=1 /1K 
F n=1−e−1K nt n

n=Asin nB cosn
 t n=t n−t n−1

n=K n

A ~ Uniform− ,
B ~ Uniform −2−A2 ,2−A2

K ~ LogNormal 0,1

 (36)

Other than the distributions given, a prior only needs to be specified for λ.

 4.2.3 Model #3: varying limiting probabilities

Model #3 holds the renewal rate constant but lets the limiting probabilities P0  

and P1  evolve periodically as sinusoids.  This is a process where the distribution of 

event inter-arrival times is invariant but the instantaneous transition rates vary, with an 
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increase in transition rate from one state being balanced in some way by a decrease in 

transition rate from the other state. 

There are multiple ways to formulate a model which incorporates the desired 

properties.  To hold the renewal rate constant means that the sum 
1
n
 1
n

 , or E[Z], 

must be constant.  Given instantaneous values for P1n  and the constant E[Z],  n  

and n  may be specified according to the following:

n=


1−P1n

n=


P1n

= 1
E [Z ]

 (37)

A Bayes specification for Model #3 follows:
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Prob S n=' 1' ~ Bernoulli  pn
pn=P1, n F n1−Fn ProbSn−1=' 1 ' 

Prob S n−1=' 1' ={1, Sn−1=' 1 '
0, S n−1=' 0 ' }

F n=1−e−nn t

n=/P1,n

n=/1−P1, n
P1,n=P1A sinB cos 

P1 ~ Beta 0.999,0.999
P0=1−P1

C=minP0, P1
A ~ Uniform−C ,C 

B ~ Uniform −C2−A2 ,C2−A2

 (38)

For Model #3 a prior only needs to be specified for γ, the inverse of the expected 

inter-arrival interval.

The remainder of the paper proceeds as follows: In Section  4.3  methods are 

presented for process, observation, and modeling simulation.  An experimental design is 

given for testing the performance of three different two-state Markov Chain models that 

allow the estimation of process properties from unevenly spaced data.  The performance 

metrics used are introduced, and the methods used to 1) evaluate the relative performance 

of the models given different priors, 2) evaluate nominal parameter recovery 

performance, and 3) relate performance to process and observation protocol 

characteristics are described.  In Section  4.4  analytical results are presented, and in 

Sections  4.5  and  4.6  discussion and conclusions are provided.
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 4.3 Method

In this Section the methods used to perform the experiment and evaluate the 

results are described.  In all, 9,000 trials were run, 3,000 using uniform priors for the rate 

parameters, 3,000 using Gamma priors, and 3,000 using Jeffreys priors.  The exponential 

prior was not used explicitly because the exponential and Gamma distributions are 

conjugates and the exponential is simply a degenerate form of the Gamma.  Individual 

trials varied with respect to process and observation protocol characteristics, and with 

respect to the model chosen for process simulation and the model chosen for estimation. 

The same set of 3,000 simulated process observations was used for each set of prior 

distributions.  

 4.3.1 Experimental design

A design was created to simulate a range of processes, a range of process 

observation protocols, and to simulate modeling, or modeling selection.  Choices for 

nominal parameter levels describing the processes, observation protocols, and model 

selection were generated using leaped Halton sequences (Kocis, Whiten 1997).  To 

reduce the chance of correlation between parameters, the leaped Halton sequence for 

each parameter was generated using a different prime number as the base, and a common 

leap parameter of the next prime number greater than the maximum base value.  Fifteen 

hundred sets of nominal parameter values were generated.  For each parameter set, two 
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separate process simulations were generated.  In total, 3000 scenarios were created, each 

using one of the three models to generate the simulated observations and one of the three 

models for parameter estimation.    

 4.3.2 Process Simulation

Processes were simulated using the three CTMC process models described in 

Section  4.2 .  Simulations were designed to exhibit a range of process behaviors typical 

of and of interest in the water-quality monitoring field (Table 1).  Parameters were set so 

that the mean duration of the violation state (state '0') was between 0.005 periods and 

0.05 periods (roughly between 40 hours and 2.5 weeks).  Parameters were set so that 

processes had a nominal mean renewal time of between 1 and 0.1 (between once per 

period and ten times per period, or roughly from annually to monthly).  For Model #2 

parameters were set so that the sinusoidal amplitude (peak to trough) ranged from zero to 

2λ, the maximum value that preserves the constraint that instantaneous λ must be greater 

than zero.  For Model #3 parameters were set so that the sinusoidal amplitude ranged 

from zero to 2min P0, P1 , the maximum value that preserves the constraint that 

P0 must be between zero and one.  With amplitude set to zero, the non-homogeneous 

models reduce to the homogeneous model. 
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Table 1: Ranges of important process characteristics of CTMCs used in simulations

Applies to 
Model

#1 #2 #3

Property Range Description

√ √ √ Mean duration 
E[X]

E[X]: [0.005, 0.05]

Set l=1/E[X]

Expected length of 
time in the event state

√ Mean renewal 
interval E[Z]

E[Z]: [0.1, 1.0]

Set m=l/(lE[Z]-1)

Expected time between 
event onsets

√ A, B A: [-λ,  λ]
B: [−2−A2 ,2−A2 ]

Determine amplitude 
and phase shift

√ A, B Set P0=/
Set P1=1−P0

Set Amax=minP0, P1

A: [−Amax , Amax]
B: [−Amax

2 −A2 ,Amax
2 −A2]

Determine amplitude 
and phase shift

Simulated high-frequency observations (the HF observations) were spaced 0.0001 

time units apart (10,000 data points per period).  Compared to the solar year, that is 

roughly equivalent to 1 data point per hour.  It was assumed that more-frequently 

simulated observations would not be necessary to capture state changes important in 

water-quality monitoring.  In any case it is unusual for water-quality indicator 

observations to be made this frequently except by sondes located in-situ. These are 

typically only capable of measuring a few parameters and are not used to make 

observations at as many locations as grab sampling (collecting samples manually), and 
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not used at all for all but a few important water-quality indicators such as temperature, 

dissolved oxygen, pH, and conductivity.

 4.3.3 Observation simulation

In the context of this experiment, the measurement process has two major 

components, observation and model selection.  Both components were simulated by first 

simulating the observation of the HF process described in Section  4.3.2 , and then 

simulating model selection.  Three minor components were defined associated with the 

observation protocol (Table 2).  For the first component observation period length, 

lengths of between 5 and 30 periods were specified, as the lower limit corresponds 

roughly to a generally accepted minimum time period for analysis of stochastic processes 

with a seasonal component (Hirsch, Slack & Smith 1982), and the upper limit 

corresponds roughly to the maximum length of observed data available in water-quality 

monitoring.  The HF observations were sub-sampled by mimicking observation practices 

in water-quality monitoring; that is, a mixture of infrequent but approximately evenly 

spaced observations along with even more-infrequent bursts of high-frequency sampling 

during the violation state.  This mimics many water-quality monitoring programs where 

samples are obtained during routine visits to the site on a weekly or monthly basis, and 

automated samplers are set up to collect samples every few hours during storm events 

that occur several times per year, but not on an otherwise predictable basis.  The second 

component of the observation policy quasi-regular observation interval mimicked a 
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regular collection spaced at intervals of 0.01 to 1 period (~100 - 1 observations per 

period), where the actual interval lengths were allowed to vary with a standard deviation 

equal to one one-hundredth of the mean interval length.  For example, for a mean interval 

of one week (168 hours), the standard deviation would have been 1.68 hours.  The third 

component of the observation policy event observation probability mimicked typical 

violation state observation protocols by “taking” samples while the process was in the 

violation state with a probability between zero and a probability which would yield on 

average 100 samples per year given the nominal transition rates specified for the 

simulation.   

Table 2: Ranges of important process observation characteristics

Characteristic Range Description
Observation period length [5, 30] Total # of periods observed

quasi-regular observation 
interval [0.01, 1.0] Quasi-regular spacing.  That is, spacing is equal ± 

a small perturbation

Event observation 
probability [0, 1]

Event observation probability.  Probability is set 
such that the expected number of event samples 

per period is less than 100.

 4.3.4 Modeling simulation

Model selection was simulated by selecting one of the three models at random for 

estimation of process parameters, irrespective of which model was used to generate the 

sub-sampled observations.  Posterior distributions of model parameters were generated 

using the sub-sampled observations and OpenBUGS (Thomas et al. 2006), a Bayesian 

estimation software package that can be run from R using the BRugs package (Thomas et 
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al. 2006).  All trials were run on the Cross-Campus Grid (XCG) at the University of 

Virginia (Morgan, Grimshaw 2007).  Convergence was determined by requiring that the 

Gelman-Rubin statistic R for all monitored parameters be less than 1.1, a threshold 

suggested by Gelman and Hill (2007).  In addition, the slopes of all chains were required 

to be trend-free.  To check this, a regression of chain values versus their iteration index, 

modeling residuals to be first-order autocorrelated, was performed.  A conservative p-

value of 0.01 divided by the total number of chains was used for rejection of the null 

hypothesis of no trend to compensate for the number of tests.  

Estimations were performed using three chains.  After burn-in, sufficient 

iterations were run to obtain 350 values from each chain, for a total of 1050  samples 

from the posterior distributions. Each estimation run was initialized with a relatively 

small burn-in period and thinning parameter.  Then, if convergence was not attained, the 

thinning parameter was increased and the procedure ran again, starting from the last 

iteration's values of the previous run, and considering all iterations of the algorithm up to 

that point to be burn-in.  

The priors for  λ, μ, and γ were given respectively by one of the three following 

specifications:

 , ,~ Uniform0.01,10000
or
 , , ~Gamma 0.001, 0.001
or
 , ,~ Jeffreys0.01,10000

 (39)
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The hyper-parameters 0.01 and 10,000 for the uniform and Jeffreys priors were 

chosen to be far outside the rates specified by the nominal parameters (20 to 200 for λ 

and 1 to 17 for μ).  The hyper-parameters (both 0.001) for the Gamma priors were chosen 

to provide a relatively flat, but weakly informative prior.  The advantage of the Gamma 

prior is that it is unbounded above, unlike the uniform or Jeffreys priors, as implemented 

here.  The Gamma distribution is also a natural conjugate prior for the exponential 

distribution rate parameter (Gelman et al. 2004).  The differences between these priors 

are shown in Figure 7 over the range from 0.01 to 10,000.  The vertical lines indicate the 

combined range of the two rate parameters.

Figure 7: Prior distributions of rate parameters
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 4.3.5 Determination of metrics

Performance was evaluated on a set of metrics which included Integrated Squared 

Error, or ISE (Scott 1992, Bowman, Azzalini 1997) , Deviance Information Criteria, or 

DIC (Spiegelhalter et al. 2002), the area under the ROC curve, or AUC (Hanley, McNeil 

1982), and a binary parameter recovery metric which indicated whether or not the 

nominal parameter value was within a 95% credible interval determined from the 

posterior distribution for the parameter.  

To measure the recovery of these nominal parameter values by the estimation 

process, they were compared to their corresponding posterior distributions.  As the 

posterior distributions might not be normally distributed, the percentile for each nominal 

value corresponding to the posterior distribution was calculated.  That yielded a set of 

values between 0 and 100.  A 0 indicates that the nominal lies to the left of the posterior 

(it was over-estimated) and a 100 indicates the nominal lies to the right of the posterior (it 

was under-estimated).  A 95% credible interval for the posterior was defined as the 

percentiles between 2.5 and 97.5, and used to determine the value of the binary metric.  

DIC and AUC are useful for evaluating performance on the prediction of future 

states of the process.  The distributions of the renewal interval and of the duration with 
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respect to the violation state are the stochastic properties of primary interest, so the ISE 

was used as the index of performance for these properties. 

The first half (the training set) of each set of sub-sampled observations was used 

for parameter estimation.  The second half (the test set) was used for determination of the 

AUC metric.  AUC was calculated using the ROCR package in R (Sing et al. 2005). 

Predictions of observed states were made using the maximum a posteriori (MAP) value 

drawn from the posterior distributions of parameter values and the times between 

observations in the test set.  

The deviance information criterion, or DIC (Spiegelhalter et al. 2002) is a 

measure of predictive capability similar to the Akaike Information Criterion (AIC).  It is 

the sum of a reward term based on the likelihood of the data given the model, and a 

penalty term based on the number of effective parameters.  Like the AIC, smaller is 

better.  DIC is returned by the OpenBUGS procedure.  

ISE was evaluated using the nominal parameter values and the posterior values of 

the estimated parameters associated with the minimum deviance.  For Model #1 the 

densities of duration and renewal period are easily derived from the rate parameters λ and 

μ.  Duration is exponentially distributed with rate parameter  λ.  Renewal period has a 

distribution given by

f Z  z ={ − e − z −e− z  ,≠

 z e− z ,=}  (40)
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However, for the other two models these densities are difficult to derive, if at all 

possible.  These densities were therefore approximated for these two models.  Points of 

the densities were determined by averaging numerically over the values the density could 

take over two time periods.  The ISEs for the CTMC methods were then calculated from 

the nominal and CTMC densities for duration and renewal period.

 4.3.6 Comparison of priors

Each set of sub-sampled observations was modeled three times with the same 

model, but each time using a different prior distribution for the parameters λ, μ, and γ. 

The paired Wilcoxon test for differences in location was used for each of the metrics on a 

pairwise basis.  That is, uniform vs. Gamma, uniform vs. Jeffreys, and Gamma vs. 

Jeffreys.  

 4.3.7 Recovery of nominal parameter values

Recovery of nominal parameter values was assessed by first computing a  metric 

indicating whether parameter recovery was obtained or not.  The three primary process 

characteristics of interest assessed in this step were 1) the expected duration period E[X], 

2) the expected renewal interval E[Z], and 3) the limiting probability for state “1” P1. 

The metric computed was determined from the percentile of the posterior distribution 

corresponding to the nominal parameter value.  Percentile values between 2.5 and 97.5 
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were considered to be representative of cases where the nominal parameter value was 

recovered.  This binary metric was then used as the dependent variable in a logistic 

regression with the process characteristics and observation protocol characteristics as 

regressors.  This model allows assessment of the predicted recovery rate associated with 

different regions of the experimental design space, and through analysis of the steepest 

gradient of the response surface (Myers, Montgomery 1995) , the direction in which 

greater or lesser recovery rate occurs.  The 0.95 contour of the response surface 

represents the line at which the nominal value can be expected to be found within the 

95% credible interval of the posterior distribution 95% of the time.

 4.3.8 Evaluation of effect of characteristics on metrics

The principal components associated with the process definition characteristics 

and the observation protocol definition characteristics were used as independent 

regressors against suitable transformations of three of the four metrics.  DIC was not 

included because DIC should only be used to compare models on the same dataset.  The 

three characteristics defining the observation process (observation period length, quasi-

regular observational  interval, and event observation probability) coincide with the 

choices researchers and managers have when establishing a monitoring program. 

However, there are typically constraints involved, otherwise the default choice would be 

to make observations quasi-continuously for long periods of time.  For example, a choice 

might need to be made between frequent observations for a short period of time or 
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infrequent observations over a longer period of time.  Or, process characteristics could 

influence the way observations are made.  PCA allowed the identification of 

combinations of these characteristics that would correspond to different observation 

strategies and different process characteristics.    

Suitable transformations of the metrics were regressed against a subset of the 

principal components explaining a significant proportion of the variance represented by 

the process and observation characteristics.  In each regression, components with 

insignificant coefficient scores were removed from the model.  Test model identity was 

also included as a categorical regressor.

  

 4.4 Results

In this Section, results are reported for the simulated observation and 

measurement of process properties.  First, observations of processes were simulated from 

each of the models at high-frequency, evenly spaced time steps.  Next, typical 

observation protocols were mimicked by sub-sampling the high-frequency time series. 

Model parameters were estimated and performance metrics calculated.  Modeling results 

were compared using various priors for the rate parameters, and then the effects of 

process and observation protocol characteristics on the performance metrics were 

determined.  

Of the 9000 trials performed, 8994 completed successfully.  Some scenarios 

required multiple runs to achieve convergence; however, it was not determined which 
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required multiple runs because of the operating environment and which required multiple 

runs because of problems with the estimation process, such as poor starting values.  The 

operating environment consisted of computers in public labs at the University of Virginia, 

which were subject to students and other users logging in and disrupting a scenario 

estimation in progress, requiring a re-start.  The probability of this happening increased 

with running time, so scenarios requiring longer running time to reach convergence were 

more subject to interruption.  The six scenarios that never reached convergence were run 

enough times that it appeared that the training data were simply insufficient to allow the 

estimation process to reach convergence.

 4.4.1 Comparison of priors

The DICs, AUCs, duration ISEs, and renewal ISEs resulting from using different 

priors were compared using the Wilcoxon signed rank test.  Since the estimation of AUC 

was based on performance on new data, use of this metric for comparison of priors has 

some aesthetic appeal over the other metrics, which are in-sample results.  However, the 

AUC doesn't directly measure the error on two important process properties, duration and 

renewal distributions.  The results (Table 3) indicate that the uniform prior outperformed 

both the Gamma and Jeffreys priors on AUC in a statistical sense. There was no statistical 

difference between the Gamma and the Jeffreys.  The pseudomedians (Hollander, Wolfe 

1973), which are robust estimators of the central locations, are all very small. 
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Table 3: Wilcoxon signed rank test on AUC – MAP (bigger is better)

Test 95 percent confidence interval:

Lower Upper

(pseudo) 

median

p-value

Gamma - uniform -1.36E-004 -7.08E-005 -6.90E-005 0.0000
Gamma - Jeffreys -1.74E-005 5.26E-006 3.60E-005 0.0652
Uniform - Jeffreys 1.56E-005 1.35E-004 8.85E-005 0.0000

The DIC has been touted as a reasonable information-based performance criterion 

that, like the AIC and others, rewards good fit while penalizing model complexity 

(Gelman, Hill 2007, Spiegelhalter et al. 2002).    Both the Gamma and uniform priors 

resulted in significantly lower DICs than the Jeffreys prior (Table 4),  and the Gamma 

prior performed slightly better than the uniform.  Comparisons of DIC are appropriate in 

this instance since the same training sets were used in each pair of comparisons made in 

the paired test.  The reason for the much larger DIC values associated with the Jeffrey's 

prior is unknown; however, it is suspected to be related to the fact that the Jeffrey's prior 

is not a built-in prior in WinBUGS but has to be constructed using a “zeros trick”.  This 

construction is known to result in highly correlated chains.

Table 4: Wilcoxon signed rank test on DIC (smaller is better)

Test 95 percent confidence interval
Lower Upper

(pseudo) median p-value

Gamma - uniform -4.01E-002 -1.00E-005 -1.50E-002 0.0686
Gamma - Jeffreys -1.91E+001 -1.86E+001 -1.89E+001 0.0000
Uniform - Jeffreys -1.89E+001 -1.82E+001 -1.86E+001 0.0000
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In the case of the duration ISE the Gamma and uniform priors resulted in 

significantly lower duration ISE than the Jeffrey's prior (Table 5).  There was no 

significant difference between the uniform prior and the Gamma prior. 

Table 5: Wilcoxon signed rank test on duration ISE (smaller is better)

Test 95 percent confidence interval:
Lower Upper

(pseudo) median p-value

Gamma - uniform -4.99E-003 1.53E-002 5.09E-003 0.3181
Gamma - Jeffreys -8.55E-001 -7.76E-001 -8.14E-001 0.0000
Uniform - Jeffreys -8.39E-001 -7.60E-001 -7.98E-001 0.0000

The Jeffreys prior resulted in significantly lower renewal ISE than the Gamma 

prior.  The Gamma prior resulted in significantly lower renewal ISE than the uniform 

prior (Table 6).   

Table 6: Wilcoxon signed rank test on renewal ISE (smaller is better)

Test 95 percent confidence interval:
Lower Upper

(pseudo) median p-value

Gamma - uniform -4.40E-003 -3.48E-004 -2.30E-003 0.0203
Gamma - Jeffreys 1.27E-001 1.45E-001 1.36E-001 0.0000
Uniform - Jeffreys 1.34E-001 1.52E-001 1.43E-001 0.0000
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There appeared to be no clearly preferable prior, although the Jeffreys could be 

rationalized as the worst choice among the three based on the size of the pseudomedians 

resulting from tests involving the Jeffreys prior.

 4.4.2 Nominal parameter recovery

There were three primary nominal attributes of interest: 1) E[X] – the expected 

value of time spent in the violation state, 2) E[Z] – the expected value of the renewal 

interval (time between re-entries to the violation state, or the inverse of frequency of 

occurrence), and 3) P1 – the limiting probability for the non-violation state.  Very few of 

the nominal parameter percentiles fell within the credible interval (Table 7).  There was a 

tendency to overestimate the expected duration period E[X] and underestimate the 

expected renewal period E[Z] and the limiting probability P1.  This is equivalent to 

overestimating the frequency and the long-term violation state probability.  These 

patterns favor the conservationist.  The estimates for E[Z] fell in the credible interval 

(c.i.) more often than for the other two.  The estimates for P1 fell in the credible interval 

rarely.  This is interesting since P1 is a function of the other two (P1=(E[Z]-E[X])/E[Z]). 
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Table 7: Counts of recovered nominal values across all priors

Group # below c.i.
(nominal was 

overestimated)

# inside c.i. # above c.i.
(nominal was 

underestimated)

total % inside

E[X] 7044 1755 195 8994 19.51

E[Z] 213 2226 6555 8994 24.75

P1 0 189 8805 8994 2.1

To gain understanding of the relationship  between recovery and 

process/observation characteristics, a basic response surface methodology (RSM) 

analysis was performed using logistic regression and a first-order model without 

interaction.  Independent variables included the following (nominal values): E[X], P1, 

E[Z], observation period, quasi-regular observation interval, and event observation 

probability.  Variables were transformed for the analysis because they need to be on 

unbounded scales in order to make predictions at any point along the path of steepest 

ascent.  The observation protocol properties were included to avoid masking effects.  In a 

preliminary model fit, simulation model, test model, and variable name had significant 

effects but did not change magnitudes, signs, or significance of the other variables much. 

Choice of prior distribution had no effect.  These other variables were not included in the 

final logistic regression because recovery was generally poor in the experimental design 

space and because they were not helpful in determining sufficient conditions for recovery. 

All variables were found to be highly significant (Table 8).
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The mean vector of the transformed experimental design space is given in Table

9.

The probability of recovery associated with this vector was 0.1226232.  The unit 

vector in the direction of steepest ascent is given in Table 10.

Table 8: RSM regression results
> summary(glm.RSM)

Call:
glm(formula = In ~ log_E_X + logit_P1 + log_E_Z + log_oP + log_rS + 
    logit_eP, family = "binomial", data = merged.All)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6818  -0.6010  -0.4459  -0.2871   3.1267  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.71072    0.22570  12.010  < 2e-16 ***
log_E_X      2.88860    0.45468   6.353 2.11e-10 ***
logit_P1     2.04172    0.41790   4.886 1.03e-06 ***
log_E_Z     -2.65015    0.46738  -5.670 1.43e-08 ***
log_oP      -0.95406    0.03563 -26.778  < 2e-16 ***
log_rS      -0.53715    0.01770 -30.342  < 2e-16 ***
logit_eP    -0.13067    0.01569  -8.326  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 23232  on 26981  degrees of freedom
Residual deviance: 20681  on 26975  degrees of freedom
AIC: 20695

Number of Fisher Scoring iterations: 5

Table 9: Experimental design space mean vector
> mean.vector
    log_E_X logit_P1    log_E_Z   log_oP    log_rS  logit_eP
1 -3.740215 2.919782 -0.7446788 2.759322 -0.954003 -2.377568
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Movement from any point in the direction of this vector results in a higher 

probability of recovery.  Predicted recovery rate reaches 0.95 between 1 and 1.5 units 

along the steepest path from the mean vector (Figure 8) , rising quickly from the 

predicted value associated with the mean vector .

The following plots (Figure 9, Figure 10, and Figure 11) show the experimental 

design-space regions, two variables at a time, and plot points along the vector in either 

direction from the mean vector (the same points that were plotted in Figure 8).  Solid 

Table 10: Unit vector in direction of steepest gradient
> unit.vector
    log_E_X  logit_P1    log_E_Z     log_oP     log_rS    logit_eP
1 0.6341031 0.4481966 -0.5817588 -0.2094356 -0.1179138 -0.02868556

Figure 8: Predicted recovery rate along steepest path gradient
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points indicate a probability of recovery in excess of 0.95.  The area of predicted recovery 

rate greater than 0.95 includes the portion of the plot perpendicular to the steepest ascent 

line on either side of the solid points.  These plots suggest that the experimental design 

space was largely outside of the space where recovery in excess of 95% could be 

expected.  In particular, they suggest that the dimensions of the experimental design 

space should have been larger.  Increasing the maximum of E[X] would decrease the 

range of E[Z] without adjusting its maximum value.  There is also some suggestion that 

the observation period range should include smaller values, although this seems 

counterintuitive.  The bottom line is that the experimental design space should be 

modified in a repeat experiment in order to obtain more scenarios where recovery was 

achieved.  The objective would be to explore the region around the 0.95 contour of the 

response surface rather than to follow the gradient.
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There is not much graphical evidence (see particularly Figure 9 and Figure 11) to 

support changes to the ranges of event observation probability or to quasi-regular spacing 

interval, although one would think more-frequent observations would help in any 

scenario.  Again, it should be remembered that a first order response surface model, when 

the input space is outside of the target response zone, is at best a crude approximation and 

is useful primarily for determining how to re-configure the experimental design space.

Figure 9: Steepest ascent gradient vs. process/observation characteristics I

-7 -5 -3 -1

0
1

2
3

4
5

log_E_X

lo
gi

t_
P1

-7 -5 -3 -1

-3
-1

1

log_E_X

lo
g_

E_
Z

-7 -5 -3 -1

2.
0

3.
0

log_E_X

lo
g_

oP

-7 -5 -3 -1

-4
-2

0

log_E_X

lo
g_

rS

-7 -5 -3 -1

-5
0

5
10

log_E_X

lo
gi

t_
eP

0 1 2 3 4 5

-3
-1

1

logit_P1

lo
g_

E_
Z



Page 78 of 215

Figure 10: Steepest ascent gradient vs. process/observation characteristics II
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Figure 11: Steepest ascent gradient vs. process/observation characteristics III
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 4.4.3 Predictive performance

Predictive performance measured with AUC was very nearly equal for each of the 

three prior distributions tested (Table 11).  The AUC was generally high in all three cases, 

exceeding 0.9 on over 84% of all successful evaluations and exceeding 0.8 on over 93% 

of them.  In some cases, AUC was not successfully evaluated.  The mean AUC values to 

four significant figures were 0.9388 (Gamma), 0.9374 (uniform), 0.9392 (Jeffreys).  The 

maximum AUC values are 0.9973, 0.9973, and 0.9972 respectively.  Less than one 

percent of the trials resulted in AUC values less than 0.5.

Table 11: Cumulative distribution of AUC values

AUC >0.9 >0.8 >0.7 >0.6 >0.5 >0.4 >0.3 >0.2 >0.1 >0 N
Gamma 0.847 0.939 0.972 0.988 0.993 0.995 0.998 0.999 0.999 1.000 2998
Uniform 0.845 0.935 0.964 0.978 0.990 0.998 1.000 1.000 1.000 1.000 2998
Jeffrey's 0.847 0.939 0.971 0.988 0.994 0.997 0.999 0.999 1.000 1.000 2998

ISE can vary greatly.  To give an idea of how ISE varies with distributional 

differences, Figure 12 shows the four most extreme cases for duration ISE and renewal 

ISE based on results using the Gamma prior and the two 95th percentile cases.  For both 

duration ISE and renewal ISE, the minimum ISE cases appear to be very close matches 

between the nominal and estimated distributions.  For the maximum ISE cases, the 

estimated distribution for duration ISE appears to be a reasonable match, yet its ISE is 

larger than that for the renewal ISE, which doesn't appear to be a close match at all.
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 4.4.4 Effects of process and measurement process 

characteristics on predictive performance

Using the results from the Gamma prior trials, principal components regression 

analysis was used to relate metric performance to process and observation protocol 

characteristics and to model selection.   The process characteristic values used in the 

principal components analysis were the expected duration time, the expected renewal 

Figure 12: Nominal versus estimated distributions od duration and renewal period

Solid line is the nominal distribution. Dashed line is the estimated distribution. (a) 
minimum duration ISE (b) 95th percentile duration ISE (c) maximum duration ISE (d)  
minimum renewal ISE (e) 95th percentile renewal ISE (f) maximum renewal ISE.
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time, and the magnitudes of the sinusoidal components of Model #2 and Model #3.  The 

expected duration time and the expected renewal time are measures of the overall activity 

level within the system.  The loadings from the principal components analysis are given 

in Table 12.  

The interpretation of the components (Table 13) suggests that three of the 

components are process based, two are observation based, and two are a mix of the two. 

Component #1 is a mix interpreted as the experimental design constraint on the number 

of permissible violation-state observations per period.  Thus, processes spending a lot of 

time in the violation state were limited to low violation-state observation probabilities. 

Processes spending little time in the violation state could have violation-state 

probabilities as high as one without exceeding the constraint.  This is an equal effort 

component in that the interaction of the variables tends to maintain a constant periodic 

observation rate.  Component #7 is a mix interpreted as a contrast between intensive 

Table 12: PCA loadings for process and observation characteristics
Loadings:
           Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
obsPeriod                        0.999                     
regSpacing               -0.187         0.979              
eventProb  -0.568  0.417  0.126                0.120 -0.686
E_X         0.489        -0.623        -0.122  0.210 -0.551
E_Z        -0.344  0.442 -0.666                0.169  0.454
sqrt.amp.2 -0.378 -0.623                       0.682       
sqrt.amp.3  0.421  0.477  0.341         0.115  0.670  0.131

Importance of components:
                       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
Standard deviation       1.37   1.09   1.01   1.00   1.00  0.762  0.583
Proportion of Variance   0.27   0.17   0.15   0.14   0.14  0.083  0.049
Cumulative Proportion    0.27   0.44   0.58   0.73   0.87  0.951  1.000
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event observation and extensive event observation.  High scores on this component 

correspond to both events of short duration and a low event observation probability, 

resulting in relatively few event observations.

Components #2, #3, and #6 are all process based components.  Component #2 

identifies the Model type.  High scores are associated with a Model #3-like process, low 

scores with a Model #2-like process, and score near zero with Model #1 (or 

homogeneous processes).  Component #3 is interpreted as differentiating between low 

transition rate processes (negative scores) and high transition rates (positive scores). 

Component #6 is interpreted as quantifying homogeneity, with more-negative scores 

indicating a more-homogeneous process and more-positive scores indicating a more non-

homogeneous process (without regard to model type).

Components #4 and #5 are observation-based.  Component #4 corresponds to 

observation period length (negative scores corresponding to shorter periods), and 

Component #5 corresponds to quasi-regular observation interval (negative scores 

corresponding to shorter (more intense) observation intervals).
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Table 13: Interpretation of principal components

Compon

ent

Interpretation Low score High score

#1 Violation state 
observation constraint 
(equal effort) 

Shorter event duration, 
higher observation 
probability 

Longer event duration, 
lower observation 
probability 

#2 Non-homogeneity type Like Model #2 Like Model #3 
#3 Transition rates Lower Higher
#4 Observation period 

length
Shorter Longer

#5 quasi-regular 
observation interval

Shorter Longer

#6 Homogeneity Homogeneous Non-homogeneous
#7 Violation state 

observations
Longer duration, higher 
observation probability 
=> more observations

Shorter duration, lower 
observation probability 
=> less observations

AUC was logit-transformed for this regression.  Component #4 was dropped from 

the regression because it was not statistically significant.  The resulting model was 

statistically significant although it left a substantial proportion of the variance 

unexplained (Table 14).  Higher AUC was associated with shorter duration, higher event 

observation probability, Model #3-like non-homogeneity, lower transition rates,  shorter 

quasi-regular observation intervals, more non-homogeneous processes, and more event 

observations.  Higher AUCs were obtained when Model #3 was the test model than when 

the test model was either of the other two.  The intercept value is associated with an AUC 

of 0.9603 for datasets fit with Model #1.  This rises to 0.9678 for datasets fit with Model 
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#3.  If the dataset arose from a Model #3-like process indicated by positive scores on 

Components #2 and #6, the AUC could be expected to be even higher.

The ISE statistics were log-transformed for these regressions.  The implication of 

a log transformation is that the model becomes a multiplicative model.  The 

multiplicative power of each variable is equal to the value of e raised to its coefficient 

value.  If the coefficient value is equal to zero the multiplicative value is one, that is it 

does not change the dependent variable.  Coefficient values greater than zero increase the 

dependent value; values less than zero decrease it.

Component #2 was removed from the regression for duration ISE because it was 

not statistically significant.  Again this model was significant but left a substantial 

proportion of the log duration ISE variation unexplained.  Low duration ISE was 

associated with longer event duration and lower event observation probability, lower 

Table 14: Regression results for AUC
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)             3.1861     0.0249  127.99  < 2e-16 ***
Comp.1                 -0.2933     0.0105  -27.95  < 2e-16 ***
Comp.2                  0.3372     0.0132   25.47  < 2e-16 ***
Comp.3                 -0.2725     0.0143  -19.10  < 2e-16 ***
Comp.5                  0.0691     0.0144    4.79  1.7e-06 ***
Comp.6                  0.1850     0.0189    9.79  < 2e-16 ***
Comp.7                 -0.5257     0.0247  -21.31  < 2e-16 ***
as.factor(testModel)2   0.0541     0.0352    1.53     0.12    
as.factor(testModel)3   0.2173     0.0353    6.16  8.1e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.79 on 2986 degrees of freedom
Multiple R-squared: 0.447,      Adjusted R-squared: 0.445 
F-statistic:  301 on 8 and 2986 DF,  p-value: <2e-16 
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transition rates, longer observation period length, shorter quasi-regular observation 

intervals, more non-homogeneous behavior, and more event observations (Table 15). 

Duration ISE statistics associated with estimations based on Model #3 were significantly 

higher than those associated with Model #1, which were significantly higher than those 

associated with Model #2.  The mean duration ISE for Models #1, #2, and #3 was 5.777, 

5.018, and 7.127 respectively.

Components #4 and #5 were removed from the regression for renewal ISE as was 

the categorical variable for the model because they were not statistically significant. 

Although this model was statistically significant, it only explained about 27% of the total 

variation in log renewal ISE.  However, the coefficient values were highly significant. 

Lower renewal ISE was associated with longer violation-state duration and lower 

violation-state observation probability, Model #2-like non-homogeneity, lower transition 

Table 15: Regression results for duration ISE
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)             1.7539     0.0311   56.42  < 2e-16 ***
Comp.1                 -0.3828     0.0131  -29.21  < 2e-16 ***
Comp.3                  0.5243     0.0178   29.43  < 2e-16 ***
Comp.4                 -0.0403     0.0180   -2.24   0.0249 *  
Comp.5                  0.9510     0.0180   52.87  < 2e-16 ***
Comp.6                 -0.1262     0.0236   -5.35  9.6e-08 ***
Comp.7                  0.1734     0.0308    5.63  2.0e-08 ***
as.factor(testModel)2  -0.1408     0.0440   -3.20   0.0014 ** 
as.factor(testModel)3   0.2100     0.0440    4.77  1.9e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.98 on 2986 degrees of freedom
Multiple R-squared: 0.609,      Adjusted R-squared: 0.608 
F-statistic:  581 on 8 and 2986 DF,  p-value: <2e-16 
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rates, more non-homogeneous processes, and more event observations (Table 16).  The 

renewal ISE associated with the intercept was 0.4218.

 4.5 Discussion

In this paper three different two-state continuous-time Markov chain (CTMC) 

models based on the Kolmogorov Backward Equation were evaluated using simulations 

of infrequent, unevenly spaced, and uncoordinated observations.  The evaluation 

consisted of assessments of prior distribution selection, of nominal parameter recovery, of 

out-of-sample prediction performance, and of the effect of various process and 

observation characteristics on said performance.  The purpose of these assessments was 

to establish the conditions under which the methodology could be applied, assuming that 

successful application would be a function of both process characteristics and of 

observation protocol characteristics.

Table 16: Regression results for renewal ISE
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.8632     0.0213  -40.55  < 2e-16 ***
Comp.1       -0.4077     0.0155  -26.27  < 2e-16 ***
Comp.2        0.2320     0.0196   11.85  < 2e-16 ***
Comp.3        0.2400     0.0211   11.37  < 2e-16 ***
Comp.6       -0.1296     0.0279   -4.64  3.7e-06 ***
Comp.7        0.4366     0.0365   11.96  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.2 on 2989 degrees of freedom
Multiple R-squared: 0.273,      Adjusted R-squared: 0.272 
F-statistic:  225 on 5 and 2989 DF,  p-value: <2e-16 
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There was no strong consensus among the results as to the preferable prior, 

although the Jeffreys prior yielded fairly clearly inferior results.  The Gamma distribution 

at least is a conjugate prior for the exponential distribution, the distribution of the 

duration periods associated with parameters λ and μ, and outperforms the uniform prior 

2-to-1 on head-to-head comparisons.  The uniform distribution outperforms the Gamma 

on the AUC, which is the only metric based on an out-of-sample evaluation.  However, 

the AUC as used here may not be the ideal metric, as discussed previously.

Nominal parameter recovery was found to be biased towards overestimation of 

duration, frequency, and long-term violation state probability.  This bias favors the 

conservationist.  The lack of a large number of scenarios where recovery was obtained on 

all parameters of interest casts some doubt on the inferences that can be made from the 

other analyses.  An analyst could get good performance on a cross-validation test of 

prediction performance and be misled into thinking that the true process characteristics 

had been adequately estimated.  Good performance on traditional validation tests is 

necessary but not sufficient to obtain good recovery of true process parameter values. 

With real data the true value is usually not known, however.

Quasi-regular observation interval, event observation probability, expected 

violation-state duration, and expected renewal interval were set to ranges that would 

produce anywhere from ~40 to ~200 observations per period, which is a reasonable 

number for a long-term monitoring project with multiple sites.  The recovery results 
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suggest that either the overall observation rate was insufficient, or that the preferential 

observation of the violation state biased the results.

A natural expectation is that those process and observation protocol characteristics 

that lead to better predictive performance as measured by higher AUC should lead to 

lower duration and renewal ISE.  One indication of that would be that the component 

coefficients would differ in sign between the AUC regression and the ISE regressions. 

However, that was not the case for three of the six components where such a comparison 

could be made (component #4 was not included in the models for AUC or renewal ISE). 

Opposite signs were found for components #3 (transition rates), #6 (homogeneity), and 

#7 (violation-state observations), but not for components #1 (violation-state observation 

effort), #2 (model type), or #5 (quasi-regular observation interval).  There was agreement 

between the coefficient signs for duration and renewal ISE for all four components shared 

by both (#1, #3, #6, and #7).  

One possible explanation for this discrepancy is that the ISE statistics are based 

on a comparison between the nominal and estimated distributions for duration and 

renewal times, whereas the AUC is based on an out-of-sample prediction of observations 

made using the same protocol as the observations used in the estimation, and not from 

predictions of out-of-sample observations made at a high frequency, which would more 

faithfully replicate the properties of the nominal process.  It is not clear how this 

difference could explain the results found.  However, one could speculate that the out-of-

sample observations simulated using an observation protocol that resulted in a sparse set 
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of observations, even if some were spaced relatively closely in time, might lack features 

of the full process that would be represented in a nominal distribution.  That is, the 

observation process is a sort of filter that transforms the underlying process into a new 

process, with possibly different properties.  However, it could be speculated that an 

observation process with invariant properties, applied to an underlying process with 

invariant properties, would result in a new process with invariant properties.  This would 

explain the good performance on AUC.

Typically in a classification problem the costs due to Type I and Type II errors can 

be minimized by a judicious choice of the cutoff value used in prediction of cases of 

unknown class.  The proper cutoff value can be determined from expected error costs and 

the same ROC curve used to calculate AUC, the metric used in much of this work.  The 

conservationist, in the context of this experiment where the violation state is state “0”, 

prefers a false negative error to a false positive error.  That is they assume the cost of a 

false prediction of violation is less than a false prediction of non-violation.  The overall 

cost given such a preference can be minimized by using a cutoff value greater than what 

would be optimal given equal costs.  In many classification procedures knowledge of the 

error cost structure can be built in to the model.  It was not obvious how to do that in this 

case.  However, one wonders if the choice of observation protocol did not have a similar, 

if difficult to quantify, effect.  Given just quasi-regularly spaced observations, one might 

expect transition rates to be underestimated, resulting in overestimates of duration and 

underestimates of frequency, but one would expect long-term probability to be estimated 
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without bias, if not without precision.  The fact that long-term violation state probability 

was overestimated could be a result of the choice to preferentially observe that particular 

state.  In actual practice event observation cannot normally be governed to only observe 

one state; some event-based observation of both states generally occurs.  Unresolved 

questions are whether this difference would result in less recovery bias, and whether there 

might be modifications to the observation protocol that would result in less bias.

While five periods (if periods are years)  is pretty short for a typical long-term 

monitoring project, it is pretty long for a typical research project.  Therefore these results 

may not extrapolate well to shorter research projects, although it is expected general 

tendencies would still hold.  There also may be situations where an event occurring much 

less frequently than once a period could have a significant impact on some ecosystems. 

While expected duration and renewal periods were specified to be less than one period, 

these results could be adapted to both such situations by a suitable definition of the length 

of one period, however the usual caveats concerning extrapolation apply.

Does model selection matter?  Clearly the two non-homogeneous two-state 

CTMCs models advanced here do not exhaust the possibilities.  Model selection may not 

matter that much given the constraints imposed by the observation protocols considered, 

which generally result in very sparse observations of the process, making processes 

indistinguishable.  Initially the regression results appear to be conflicting.  However, a 

careful examination reveals consistent differences in predictive performance depending 

on the process generating the observations and the model selected.  Components #2 and 
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#6 have been interpreted as describing process type and degree of homogeneity 

respectively.  A reasonable approach would be to form subsets of the data corresponding 

to scores on these two components.  Homogeneous processes should score near zero (say 

within the middle tercile) on component #2 and below zero on component #6.  Non-

homogeneous processes following Model #2 should score in the negative (say the bottom 

tercile) on component #2 and above zero on component #6.  Non-homogeneous processes 

following Model #3 should score in the positive (say within the upper tercile) on 

component #2 and above zero on component #6.  

Grouping the results following these criteria and performing signed rank tests on 

transformations of AUC, duration ISE, and renewal ISE indicates significant differences 

between groups in all three cases, and also indicates that in all three cases, predictive 

performance is worse for the homogeneous processes than for the non-homogeneous 

processes, and best for non-homogeneous processes following Model #3 (Table 17). 

Predictive performance for non-homogeneous processes following Model #2 is generally 

better than for homogeneous processes and worse than non-homogeneous processes 

following Model #3.
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Table 17: 

Metric Group
95% 

confidence 
interval

(pseudo) 
median p-value

logit(AUC)

#1 - #2 -0.15001 
0.05933

-0.0445 0.399

#1 - #3 -0.5043 -0.2952 -0.3994 2.831e-13
#2 - #3 -0.4507 -0.2575 -0.3546 1.211e-12

log(duration 
ISE)

#1 - #2 -1.2982  0.1931 -0.5223 0.1549
#1 - #3 -0.08295 

1.19495
0.5417 0.08986

#2 - #3 0.5167 1.7735 1.135 0.0002107

log(renewal 
ISE)

#1 - #2 0.05335 
0.15981

0.1049 3.918e-05

#1 - #3 0.04071 
0.14320

0.08993 0.0002489

#2 - #3 -0.05612 
0.02015

-0.01724 0.3668

 4.6 Conclusions/Recommendations

Two-state continuous time Markov chains are simple processes which are 

nonetheless useful for modeling a wide variety of phenomena.  Non-homogeneous 

versions are a bit more complicated but extend the range of phenomena which can be 

modeled considerably beyond the homogeneous case.  The objective of this experiment 

was to evaluate the performance of  three two-state hierarchical CTMC models (one 

homogeneous and two non-homogeneous), as components of a measurement process that 
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includes observation and modeling, on simulated observations of WQIs.  The modeling 

phase included a Bayesian estimation procedure.  

This work began with a few simple equations relating observations of a two-state 

CTMC and established a baseline for development of a general hierarchical model for 

regional, or multi-process, threshold exceedance behavior of WQIs.  Some insight into 

the general problem was established by conducting experiments with single-process 

simulations looking at not only the effect of model selection, but also the effect of various 

process observation protocols on the ability of the measurement process to make accurate 

and precise measurements of important process characteristics, in this case the 

distributions of time spent in the violation state and the frequency with which such 

excursions occur. 

Three processes were simulated to represent WQIs: 1) a two-state homogeneous 

CTMC, 2) a two-state non-homogeneous CTMC with varying transition rates but 

constant limiting probabilities; and 3) a two-state non-homogeneous CTMC with varying 

limiting probabilities but constant expected renewal period.

 In a preliminary step the impact of using three different prior distributions for the 

transition rate and renewal rate parameters was examined.  The Wilcoxon signed rank test 

was used to make pairwise comparisons between performance metrics resulting from the 

use of uniform, Gamma, and Jeffrey's prior distributions.  Gamma and uniform 

distributions used as priors for transition rate parameters were found to outperform a 
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Jeffreys prior.  The under-performance of the Jeffrey's prior may be due to the 

implementation method required by the software.

Nominal parameter recovery analysis indicated that the experimental design space 

did not result in a large number of scenarios where nominal parameter values were 

recovered.  Duration, frequency, and long-term violation state probability were all 

overestimated.  First, this qualifies the other analyses.  Second, it suggests that the 

experiment should be repeated in order to better define the suitable conditions under 

which the method may be used.  Currently the optimal operating conditions of the 

method cannot be defined with any precision.

The Gamma prior results were selected and a principal components regression 

analysis performed on the effects of process and measurement process characteristics on 

the performance metrics.  Differences were noted in the performance metrics simply 

related to the process characteristics.  Homogeneous processes produced lower AUC and 

higher ISE metrics than the two non-homogeneous processes.  The varying limiting-

probability (Model #3) processes produced higher AUC and lower ISE metrics than the 

other two processes.  

Observation protocols had a substantial impact on predictive performance and 

distribution estimation error.  As would be expected, longer observation period and more 

observations, whether event-based or routine,  lead to reduced ISE for violation-state 

duration and expected renewal period distributions.  Results for AUC were inconsistent 
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with those for ISE.  This inconsistency needs to be investigated further, but may be 

related to the recovery results.

Benchmarks were established for model estimation performance given processes 

arising from the models considered and observation protocols that would result in a 

sequence of infrequent and unevenly spaced observations.  Predictive performance was 

good despite sparse observations of the process.  Regardless of the model simulated or 

selected for estimation, AUC exceeded 0.8 in over 93% of the cases and over 0.9 in over 

84% of cases.  Duration ISE ranged from near 0 to over 697 with a 95th percentile value 

of 44.38.  Renewal ISE ranged from near 0 to over 172 with a 95th percentile value of 

2.61.

Future research should first determine the conditions under which good nominal 

parameter value recovery occurs.  Additional research should test further extensions of 

these models in a multiple process framework, test them against simulated observations 

more closely resembling those of WQIs, test them against existing methods used in 

hydrology, and further develop the hierarchical levels of the models to allow for 

prediction of process parameters using physical characteristics predictive of WQIs.
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 5 Multiple-chain Markov models for threshold 

exceedance

 5.1 Abstract

Thresholds have been defined for many water quality indicators (WQIs) that 

separate the measurement space of the indicator into two states, one of which, the 

exceedance or violation-state, has undesirable consequences.  Observations of the 

indicator are often made at relatively infrequent and unevenly spaced intervals and are 

uncoordinated with the precise timing of changes in state.  In addition, observations made 

at different locations are usually asynchronous as well.  These typical observation 

protocols make estimation of frequency, duration, and long-term probability properties 

difficult.  To address this problem, a hierarchical model was developed for multiple two-

state CTMCs based on the Kolmogorov Backward Equation.  Observation and modeling 

of WQI processes was simulated using dual correlated two-state continuous time Markov 

chains.  Each process was given different stochastic properties.  Simulated asynchronous, 

uncoordinated, and unevenly spaced observations of each process were made using 

observation protocols comprising a common observation period but different quasi-
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regular observation intervals and violation-state observation probabilities.  Model 

parameters for both processes were estimated from a training set of simulated 

observations both separately and jointly using a Bayesian MCMC method.  A response 

surface analysis was conducted to assess nominal process model parameter recovery. 

Predictive performance was assessed on test datasets using the area under the ROC curve. 

Recovery was equally poor over the experimental design space regardless of method, and 

indicated a bias favoring conservationists: overestimation of violation-state properties 

(longer duration, higher frequency, and higher long-term violation-state probability). 

Both methods exhibited generally good predictive performance, but neither was superior 

to the other.  Positively correlated and relatively low transition-rate processes were easier 

to predict.  Several observation characteristics resulted in better prediction: event 

observation intensity, quasi-regular observation intensity, and length of observation 

period.

 5.2 Introduction

Regulators have long used thresholds to define water-quality standards because 

serious harm can come to aquatic ecosystems when water-quality thresholds are violated 

too often or for excessively long periods of time.  Typically, standards require that WQI 

concentrations remain on one side of the threshold (above or below) at least a specified 

percentage of time during some period such as a year or a defined season.  Recently 

ecologists also have begun to look at thresholds as indicators of climate change (Lenton 
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et al. 2008, Rosenzweig et al. 2008, Keller, Yohe & Schlesinger 2008).  Changes in the 

stochastic properties of a process with respect to a threshold could indicate change in 

climatic conditions.  However, for many WQIs the high-frequency observations 

necessary to identify and to time periods of violation are not available.  In some cases 

only a subset of locations within a region of interest may actually have observations.  And 

although two WQI processes might be correlated, observations typically are not made 

simultaneously on both processes.  All of this makes it difficult to determine violation-

state properties for specific locations and to extrapolate from data-rich locations to data-

poor locations.  

Eventually it will be desirable to be able to model many processes at one time 

because often processes within a region (a population of processes) move together 

roughly as a group or set of groups, and it will be desirable to be able to take advantage 

of common characteristics among processes and to make predictions for processes within 

a region for which there is little or no water-quality data, perhaps using other 

characteristics common to all member processes in the region other than water quality 

itself.  However, devising an all-inclusive experimental framework for testing models for 

such a problem is difficult.  

Markov processes have been widely discussed in hydrology (Lu, Berliner 1999, 

Szilagyi, Balint & Csik 2006 and references therein).  A number of researchers have 

developed models for threshold violations that leverage extreme value theory and 

Markov chains (Smith, Tawn & Coles 1997 and references therein).  Others have used 
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statistical (Deviney, Rice & Hornberger 2006) or process (Zhang, Arhonditsis 2008) 

models to make time series predictions from which threshold violation properties can be 

estimated.

The objective of this paper, as a first step, was to evaluate models for dual process 

CTMCs under simulated observation conditions, and to compare performance under 

individual and joint estimation, leaving the additional complexities mentioned above for 

later work.  The evaluation consisted of assessments of nominal parameter recovery, of 

out-of-sample prediction performance, and of the effect of various process and 

observation characteristics on said performance.  The purpose of these assessments was 

to compare the two estimation methods used and to establish the operational 

characteristics of the methodology, assuming that performance would be a function of 

both process characteristics and of observation protocol characteristics.

Following in this section, a model for dual correlated CTMCs is presented which 

can be used for process simulation.  Next the derivation of a two-state model for multiple 

CTMC processes is developed which will be used for estimation.

 5.2.1 Correlated CTMCs

Suppose  that  for  two locations  A and  B we have  the  following state  diagram 

(Figure 13) where the state is the ordered pair S A , S B .  Assume that the probabilities 

of both elements changing at precisely the same time (that is, from (0,0) to (1,1) or from 

(0,1) to (1,0)) are zero.  If the transition rate from S A , S B  to ~ S A , S B  or from 
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S A , S B  to  S A , ~ S B  is independent of the status of the non-changing element, 

then  S A  and  S B  are  uncorrelated.  That is,  if  A0=A1  and  B0=B1  and 

A0=A1  and B0=B1 .  S A  and S B  are correlated if the transition rates for 

one element depend on the state of the other element.  That is, if at least one of the above 

equalities does not hold.

The measure of correlation r between A and B is given by

=
P[ S A=' 1 ' , S B=' 1 ' ]−P[ S A=' 1 ' ]P [S B=' 1' ]
P [S A=' 1 ' ]P [S A=' 0 ' ]P [S B=' 1 ' ]P [S B=' 0' ]

 (41)

Figure 13: Correlated dual process CTMCs
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where the terms of the numerator and denominator can be determined from the balance 

equations and the limiting probabilities.  Prediction equations for the state of each process 

are given in Equation (42).

Prob S n
A=' 1 ' =P10

A F n0
A1−F n0

A P [ S n−1
A =' 1 ' ]P [S n−1

B =' 0 ' ]
P11

A F n1
A1−Fn1

A P [S n−1
A =' 1' ] P [S n−1

B =' 1 ' ]
Prob S n

B=' 1 ' =P10
B F n0

B1−Fn0
B  P [S n−1

B =' 1 ' ]P [S n−1
A =' 0 ' ]

P11
B F n1

B1−Fn1
B P [S n−1

B =' 1' ] P [S n−1
A =' 1 ' ]

P10
A=A0 /A0A0

F n0
A =1−e−A0A0  t

P11
A=A1 /A1A1

F n1
A =1−e −A1A1 t

P10
B =B0 /B0B0

F n0
B =1−e−B0B0t 

P11
B =B1 / B1B1

F n1
B =1−e −B1 B1t 

 (42)

 5.2.2 The two-state CTMC Model

A two-state CTMC is a reasonable first choice for a model of threshold 

exceedance.  Let one state (say state '0') represent the below-threshold condition and the 

other state (state '1') represent the above-threshold condition.  Let state '0' represent the 

violation state.  Assume that upon entering one state, a random amount of time passes 

before the process transits to the other state.  Once in the other state, a random amount of 
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time passes before the process returns to the original state.  Assume these random times 

have exponential distributions with rates λ and μ that are not necessarily equal.  

Some important properties of the process are given in Equation (43), where E[X] 

represents the expectation of the amount of time spent in state '0' on a typical excursion 

into that state, E[Y] represents the same expectation for state '1', E[Z] is the expectation 

of the time between entrances into either state, P0 is the long-term proportion of time 

spent in state '0', and P1 is the long-term proportion of time spent in state '1'.

E [ X ]=1


E [Y ]=1


E [Z ]=E [X ]E [Y ]
P0=




P1=



 (43)

Ross  (1993) showed how the two-state homogeneous CTMC model and the 

Kolmogorov Backward Equations lead to equations that predict the probability of being 

in state “0” having been in state “0” or having been in state “1” some time previous. 

Ross gives these equations respectively as:

P00t =



e− t 


P10t =



− 


e−t
 (44)
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If we define Sn  as the state of the system at the time t n , then with some re-

arrangement of terms we can write the probability that Sn  is “1”, having observed the 

state at n−1 , as

Prob S n=' 1 ' ={ P1 F n , Sn−1=' 0 '
1−1−P1F n , S n−1=' 1 ' }  (45)

where 1) P1  is the limiting probability of being in state “1” given  and , and 2) 

F n  is the CDF of an exponential random variable with rate +.  Note that this rate is 

not the renewal rate.  Equation (45) can be written in a more general form as

Prob S n=' 1' =P1 Fn1−F n ProbS n−1=' 1 '   (46)

which can be seen as a weighted average between P1 , the limiting probability 

for state “1”, and the state at n-1.  Given independent observations of multiple two-state 

homogeneous CTMCs that include the time between observations and the previous and 

current states, the process parameters may be determined with Bayesian estimation 

methods using OpenBUGS software (Thomas et al. 2006) in R and the following joint 

model specification:

S j ,n ~ Bernoulli P j ,1 F j ,n1−F j , nS j , n−1
P j ,1= j / j j

F j , n=1−e− j j  t j ,n 

 t j ,n=t j , n−t j , n−1

 j , j ~ Uniform 0.01,10000

 (47)
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Note that the only difference between the individual specification and the joint 

specification is the presence of the subscript j to indicate parameters for different 

processes.  The choice of a uniform prior was justified in the preceding chapter.  It is non-

informative and results in maximum-likelihood estimates, theoretically.  The choices of 

0.01 and 10,000 for the limits of the distribution are justified as being well outside the 

expected rate values, which range from 1 to 200 times per period, as they correspond to 

rates equivalent to once per hundred periods and 10,000 times per period, respectively.

The rest of this paper proceeds as follows: In Section  5.3  the method used in this 

experiment is described.  The method included three levels of simulation, model 

estimation, determination of performance metrics, and results analysis.  In Section  5.4  

results are presented.  In Section  5.5  the results,  implications of this work, and 

shortcomings are discussed.  In Section  5.6   conclusions are presented.   

 5.3 Method

High-frequency (HF) observations of dual correlated CTMC processes with 

different stochastic properties were simulated.  These HF observations were sub-sampled 

at asynchronous, uncoordinated and unevenly spaced (AUUS) intervals to produce a set 

of AUUS observations for both processes typical of real-world observations of WQIs 

made with respect to a threshold.  These AUUS observations were divided into a training 

set and a test set.  The process properties of models for both processes were estimated 
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both individually and jointly using Bayesian estimation methods.  Predictions of the test 

set were made and performance metrics calculated.  These results were evaluated to 

compare the individual versus the joint estimation methods.  Recovery of nominal 

parameter values was assessed for bias and to determine the operational conditions of 

good recovery.  Effects of process and observation protocol characteristics on predictive 

performance were also evaluated.

 5.3.1 Experimental design

Nominal parameter value sets for individual scenarios of the experiment were 

determined using a combination of leaped Halton sequences (Kocis, Whiten 1997) and 

random selection. Initially 10,000 parameter sets were generated for the following design 

parameters: observation period length, quasi-regular observation interval for process A, 

quasi-regular observation interval spacing for process B, event observation probability 

for process A, event observation probability for process B, expected violation-state 

duration for process A given process B in state '0' (1/λA0 in Figure 13), expected 

violation-state duration for process A given process B in state '1' (1/λA1 in Figure 13), 

expected renewal period of process A given process B in state '0' (
1
A0
 1
A0

 in Figure
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13), and expected renewal period of process A given process B in state '1' (
1
A1
 1
A1

 in Figure 13).  Leaped Halton sequences were generated with the sfsmisc package in R.

Levels for the four parameters associated with process B were determined by 

sampling from uniform distributions about their equivalents for process A.  The endpoints 

of these intervals were chosen so that the range of ratios between the two equivalent 

parameters was the same.  In other words, max X A

X B
,

X B

X A ~ Uniform1, K  .

 5.3.2 Process simulation

Dual two-state correlated CTMC processes A and B were simulated for each 

scenario.  Each process was simulated by generating simulated observations of the 

process at the rate of 10,000 per unit time.  Compared to the solar year, this is roughly 

equivalent to once an hour.  The expected duration in the violation state ( E [ X S A∣S B] ) 

was chosen from a range of 0.005 to 0.05, corresponding roughly to a range of a few 

hours to a few weeks (Table 18).  The expected renewal period ( E [Z S A∣S B ] ) was 

chosen from a range of the expected duration up to 1 full period.  From these values the 

transition rates necessary for the simulation and limiting state probabilities can be 

calculated.   
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Table 18: Levels of important process characteristics of dual CTMCs

Variable Range Description

E [ X S A∣S B ] 0.005 to 0.05 time units expected value of duration in the violation state of 

process A given the state of process B

E [Z S A∣S B ] E [ X S A∣S B ]  to 1 

time units

expected value of the renewal period of process A 

given the state of process B

Correlation -1 to 1 Correlation between process A and process B

It is difficult to specify transition rates for the two processes a priori that will 

yield a desired correlation value precisely, although it is easy enough to calculate the 

expected correlation either from a set of transition rate specifications or from simulated 

data.  Parameter sets for 10,000 pairs of processes were generated and the correlation 

between each pair was calculated using Equation (41).  Correlations spanned the range 

from negative one to one, but the vast majority of pairs had correlations near zero.  One 

thousand of these pairs were then selected without replacement using an inclusion 

probability weight equal to the absolute value of the correlation between the pairs. These 

1,000 were used for the subsequent estimation experiment.  Replicate simulated 

observations were generated for each of the 1,000 parameter sets, yielding 2,000 

scenarios.  Characteristics retained their distributions except for correlation and event 

observation probability (Figure 14).
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Figure 14: Distributions of process and observation protocol characteristics

Characteristic distributions before (1,3,5) and after (2,4,6) selection based on 
correlation. 1&2 – correlation between A and B, 3&4 – event observation probability – 
A, 5&6 – event observation probability – B. 
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 5.3.3 Observation simulation

The observation process was simulated by selecting a single observation period 

length for both processes but a different quasi-regular observation interval and a different 

event observation probability (Table 19).  The observation period length is the total 

number of units of time that the processes are to be “observed” in simulation.  The quasi-

regular observation interval is the interval at which quasi-regular observations are to be 

made, meaning the exact interval size is a random variable.  The event observation 

probability  is the probability that an observation will be made at a given observation 

opportunity during an excursion into the violation state.  Synchronous simulated 

observation of both processes occurred only by chance and generally with very low 

probability.  This mimics to some extent how observations are made in actual practice.  

Table 19: Observation protocol characteristics

Characteristics Range Description

Observation period length 5 to 30 units Total period length of observation

quasi-regular sampling 
interval

0.01 to 1 units Quasi-regular spacing ~ 

Normal  x , x
100 

2
Event sampling 

probability
0 to 1, but constrained 

to limit the total 
number of event 

observations

Event sampling yielding on average ≤ 100 
observations per period
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 5.3.4 Modeling simulation

The training set of each pair of processes was used to estimate process parameters 

by both estimating each process's parameters individually and by estimating them jointly. 

OpenBUGS (Thomas et al. 2006) and R were used to perform the estimations on the 

Cross-Campus Grid (XCG) at the University of Virginia (Morgan, Grimshaw 2007). 

OpenBUGS is a software package which implements the Gibbs sampling method of 

Monte Carlo Markov Chain (MCMC) Bayesian estimation.  Models are prescribed using 

R-like syntax and functions.  From random starting values, a vector of parameter values 

moves forward iteratively according to specified prior distributions and model 

specifications.  The user may specify multiple chains of parameters values, whose 

convergence to a common distribution may be tracked using the Gelman-Rubin statistic (

R ).  Several model fit statistics are generated, including the deviance information 

criterion, or DIC.

Estimations were performed using three chains.  After burn-in, sufficient 

iterations were run to obtain 350 values from each chain, for a total of 1050  samples 

from the posterior distributions.  A ubiquitous problem in Bayesian MCMC estimation is 

determining a proper (minimum) burn-in period and a thinning parameter.  Usually these 

choices are made while operating the software interactively.  The necessary burn-in 

period and thinning parameter can vary widely from one estimation run to another, 

however.  With a total of 6,000 estimations to perform, each requiring anywhere from 15 

minutes to many hours, a systematic method of performing the estimation was needed. 
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Each estimation run was therefore initialized with a relatively small burn-in period and 

thinning parameter.  Then, if convergence was not attained, the thinning parameter was 

increased and the procedure ran again, starting from the last iteration's values of the 

previous run. Essentially all iterations of the algorithm up to that point were considered to 

be burn-in.  Following the recommendation of Gelman and Hill (2007), all parameters 

including the deviance were required to have an R value less than 1.1 before 

considering the iterations to have converged.  To guard against premature convergence, a 

test of chain slope was added, and it was required that no chain have a significant slope at 

a p-value < 0.01/3p, where p is the number of parameters.  A linear model with 

autocorrelated errors was used because of the typical high serial correlation of chain 

values.

 5.3.5 Determination of metric values

Recovery of nominal parameter values was assessed by first computing a  binary 

metric indicating whether parameter recovery was obtained or not.  The metric computed 

was determined from the percentile of the posterior distribution corresponding to the 

nominal parameter value.  Percentile values between 2.5 and 97.5 were considered to be 

representative of cases where the nominal parameter value was recovered.  Under optimal 

operating conditions, the nominal parameter value should be recovered 95% of the time, 

based on this metric.  
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The area under the ROC curve (AUC) is a normalized measure of predictive 

performance (Hanley, McNeil 1982).  Determination of the AUC statistic was made in R 

using functions in the ROCR package (Sing et al. 2005).  The functions require a vector 

of probabilities and a vector of categorical responses.  To determine the overall AUC for 

the individual estimation method, the vectors of probabilities and responses from the test 

set predictions were concatenated and passed to the functions.  AUC can vary between 

zero and one, where one indicates perfect prediction; however, a value of 0.5 corresponds 

to random guessing.  Therefore, only values above 0.5 are acceptable.  

The deviance information criterion, or DIC (Spiegelhalter et al. 2002) is a 

measure of predictive capability similar to the Akaike Information Criterion (AIC).  It is 

the sum of a reward term based on the likelihood of the data given the model, and a 

penalty term based on the number of effective parameters.  Like the AIC, smaller is 

better.  DIC is returned by the OpenBUGS procedure.  DIC was compared by summing 

the two DIC values from the individual estimations to compare with the single DIC value 

resulting from the joint estimation.  This seemed reasonable given the definition of DIC 

and the fact that the joint model had exactly twice as many parameters as the individual 

model (in fact, the only real difference between the two was the number of processes 

being modeled). 
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 5.3.6 Methods of evaluation

The three primary process characteristics of interest assessed in recovery 

analysis were the expected duration period E[X], the expected renewal interval E[Z], and 

the limiting probability for state “1” P1.  The binary metric for recovery was then used as 

the dependent variable in a logistic regression with the process characteristics and 

observation protocol characteristics as regressors.  This model allowed assessment of the 

predicted recovery rate associated with different regions of the experimental design 

space, and through analysis of the steepest gradient of the response surface (Myers, 

Montgomery 1995), the direction in which greater or lesser recovery changes at the 

fastest rate with respect to a unit vector of the regressors in the same direction.

AUC values for the individual and joint estimation results were evaluated for 

overall predictive capability and were compared using the Wilcoxon signed rank test. 

The effect of various experimental design-space characteristics on the AUC was 

evaluated using regression.    

 5.4 Results

Convergence was obtained on both individual estimations and on the joint 

estimation on 1999 of the 2000 scenarios.  One trial converged on both individual 

estimations but failed on the joint estimation, despite many repeated attempts.  For six of 

the 1999, the calculation of AUC failed because of problems with the test data set.  That 
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left 1993 good scenarios.  In the rest of this section recovery is assessed as a function of 

the experimental design space and is compared with respect to estimation method.  Then 

a comparison of method is made based on AUC, followed by an assessment of process 

and observation protocol characteristic effect on AUC. 

 5.4.1 Recovery of nominal parameter values

There are three primary nominal attributes of interest: 1) E[X] – the expected 

value of time spent in the violation state, 2) E[Z] – the expected value of the renewal 

interval (time between re-entries to the violation state, or the inverse of frequency of 

occurrence), and 3) P1 – the limiting probability for the non-violation state.  

Recovery rates were nearly the same regardless of whether estimation was done 

individually or jointly (Table 20).  Recovery rates were highest for E[Z] and lowest for 

P1.  E[X] tended to be  overestimated while E[Z] tended to be underestimated (inferring 

that frequency was overestimated).  This is consistent with the underestimation of P1 as 

can be seen in Table 20.  Since P1 was underestimated, then P0 was overestimated.  This 

combination of estimation bias (duration, frequency and P0 all overestimated) favors 

conservationists (over polluters).
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Table 20: Counts of recovered nominal values given the uniform prior(combining A and 
B)

Group method below c.i.
(nominal was 
overestinated)

Inside c.i. above c.i.
(nominal was 
underestinated)

Total % inside c.i.

E[X] individual 1231 580 182 1993 29.1

joint 1226 586 181 1993 29.4

E[Z] individual 303 883 807 1993 44.31

joint 298 877 818 1993 44

P1 individual 1 113 1879 1993 5.67

joint 1 112 1880 1993 5.62

To gain understanding of the relationship  between recovery and 

process/observation characteristics, a basic response surface methodology (RSM) 

analysis (Myers, Montgomery 1995) was performed using logistic regression and a first-

order model without interaction.  Independent variables included the following (nominal 

values): E[X], P1, E[Z], observation period, quasi-regular observation interval, and event 

observation probability.  Variables were transformed for the analysis because they need to 

be on unbounded scales in order to make predictions at any point along the path of 

steepest ascent.  The observation protocol properties were included to avoid masking 

effects.  In a preliminary fit involving all six regressors plus estimation method 

(individual or joint), the terms for estimation method (p-value = 0.98267), event 

observation probability (p-value = 0.53002), and P1 (p-value = 0.91355) were 

insignificant, so were dropped.  The remaining four terms were all highly significant 

(Table 21).  
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Ignoring event observation probability and long-term probability P1, the mean 

vector of the transformed experimental design space is given in Table 22.

 The probability of recovery associated with this vector was 0.2423817.  The unit 

vector in the direction of steepest ascent is given in Table 23.

Table 23: Unit vector dimensions along steepest path gradient
> unit.vector
    log_E_X    log_E_Z    log_oP     log_rS
1 0.6534672 -0.3471581 -0.605487 -0.2929972

Table 22: Experimental design space mean vector
> mean.vector
    log_E_X  log_E_Z  log_oP    log_rS
1 -3.219765 -1.38963 2.75026 -0.955005

Table 21: RSM regression results
> summary(glm.RSM)

Call:
glm(formula = In ~ log_E_X + log_E_Z + log_oP + log_rS, family = 
"binomial", 
    data = Results.All)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6910  -0.8004  -0.6099   1.0332   2.4704  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.26657    0.15023   15.09   <2e-16 ***
log_E_X      0.74022    0.03102   23.86   <2e-16 ***
log_E_Z     -0.39325    0.02716  -14.48   <2e-16 ***
log_oP      -0.68587    0.04410  -15.55   <2e-16 ***
log_rS      -0.33190    0.02328  -14.26   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 13792  on 11957  degrees of freedom
Residual deviance: 12750  on 11953  degrees of freedom
AIC: 12760

Number of Fisher Scoring iterations: 4
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Movement from any point in the direction of this vector results in a higher 

probability of recovery.  A predicted recovery rate of 0.95 was obtained at a distance of 

~3.6 units from the mean vector in the positive direction of the steepest gradient (Figure

15).  There were only three simulations where the predicted recovery rate was greater 

than 0.90 (all exceeded 0.95).  All nine of the associated nominal parameters were 

recovered.

The experimental design space does not include a large proportion of the area 

where acceptable recovery rate would occur (Figure 16).  The area of each plot where the 

predictive recovery rate would be greater than 0.95 lies to either side of the plotted solid 

points.  The 0.95 contour is perpendicular to the plotted points between the last open 

circle and the first solid circle.  

Figure 15: Predicted recovery rate along steepest path gradient
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Very little of the experimental design space intersects with the over 0.95 recovery 

rate region except for E[Z] and quasi-regular observation interval.  Specifically it appears 

the experimental design space should be adjusted by increasing E[X] and decreasing 

observation period, although this latter adjustment seems counterintuitive.  The objective 

of a repeat experiment should be to explore the region on either side of the 0.95 contour, 

to better determine the region where acceptable recovery occurs.  It is not really 

necessary that a large proportion of cases fall within the credible interval, but what is 

necessary is that the boundary between the experimental design spaces where recovery is 

acceptable on one side and not on the other be well-defined.  This requires that the 

experimental design space be sufficiently large.  
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 5.4.2 Overall performance

Prediction of test data was generally very good regardless of whether individual 

or joint estimation was used.  In fact results were very nearly equal in both cases in terms 

of the distribution of AUC values.  AUC was above 0.9 in 71% of cases and above 0.8 in 

91% of cases regardless of whether individual or joint estimation was used (Table 24). 

The mean AUC under both methods was 0.92.  The median under both methods was 

0.94.

Figure 16: Steepest ascent gradient vs. process/observation characteristics
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Table 24: Cumulative distribution of AUC values

Method
AUC

>0.9 >0.8 >0.7 >0.6 >0.5 N

Individual 0.71 0.91 0.96 0.98 1.00 1993

Joint 0.71 0.91 0.96 0.99 1.00 1993

 5.4.3 Method comparison

A more-precise test of difference in AUC between methods was made using the 

Wilcoxon signed-rank test.  The test was performed with the null hypothesis of no 

improvement.  That is, the null hypothesis was that the AUC from joint estimation was 

less than or equal to the AUC from individual estimation.  This hypothesis was rejected 

with a p-value = 0.007972.  The 95% confidence interval for the median difference was 

(2.1e-05, ∞).  The pseudomedian (Hollander, Wolfe 1973) difference was approximately 

5.4e-05.  Most of the results cluster tightly along the 1:1 line (indicating no difference 

between methods), with relatively few lying either above or below (Figure 17).  



Page 121 of 215

Most of the pairs of DIC values plot tightly along a 1:1 line (Figure 18); however, 

a substantial number plot along a 2:1 line.  That is, the DIC for the joint estimation was 

Figure 17: AUC from individual determination vs. joint determination
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almost exactly twice that of the sum of the DICs of the individual estimations.  It is 

suspected that this is a result of some underlying code error in WinBUGS.

Figure 18: DIC from individual determination vs. joint determination
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The effective number of parameters, or pD, is a measure of the amount of pooling 

taking place in the model estimation.  Pooling in the joint model would provide some 

justification for using it.  The computation of pD is unstable (Gelman, Hill 2007) , but it 

is still interesting to compare the joint estimation pD to the sum of the pD of the two 

individual estimations (Figure 19).  The instability can be seen in the number of cases 

with pD less than zero or greater than four, the actual number of parameters.  Visually, 

there does not appear to be much difference between the two methods, however there is a 

statistically significant difference by the Wilcoxon signed-rank test (p<0.0001) favoring 

the joint estimation method.  This test was performed with the null hypothesis that the 

joint method was no better than the individual method.
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Figure 19: Effective number of parameters
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 5.4.4 Effect of simulation characteristics on AUC 

Stepwise regression was used to determine the relationship between process and 

observation protocol characteristics (Table 25) and AUC.  The process parameter values 

used in the regression analysis were the expected duration time in each state and the 

correlation between processes.  The expected duration time is the inverse of the overall 

rate of transition out of the state, so this set of parameters describes the relative 

proportion of time spent in each state and the overall activity level within the system. 

The observation protocol parameters were the observation period, the two quasi-regular 

observation interval lengths, and the two violation-state observation probabilities.  In 

order to mask the effect of the process names A and B, the variables were re-cast as 

minimums and maximums.  For example the variable min.EZ0011 indicates the minimum 

expected duration time between the two states (0,0) and (1,1).   

Table 25: Variable definitions

Variable Definition
oP Observation period length
avg.rS Average of the quasi-regular observation intervals
diff.rS Absolute difference between the quasi-regular observation intervals
min.eP Minimum event observation probability
max.eP Maximum event observation probability
min.EZ0011 Minimum expected duration in state (0,0) or (1,1)
min.EZ0110 Maximum expected duration in state (0,0) or (1,1)
max.EZ0011 Minimum expected duration in state (1,0) or (0,1)
max.EZ0110 Maximum expected duration in state (1,0) or (0,1)
rho Inter-process correlation
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The logit transformation of the AUC was regressed against the characteristic 

values and against the estimation method as a categorical variable.  In the stepwise 

regression, models were considered from all first-order effects up to a model including all 

second-order effects.  The term for model selection was insignificant and was dropped 

from the model during the stepwise procedure.  The final regression results are given in 

Table 26.  All of the included second-order coefficients were  statistically significant.  All 

first-order coefficients were involved in one or more significant interactions.  The model 

itself was significant.
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The logit transformation of AUC poses some difficulties for interpretation of the 

coefficient values.  For example, the effect of a unit change in the minimum event 

observation probability min.eP (the maximum change possible) on AUC depends on the 

levels of the other variables.  As usual, coefficient magnitude is a function of scale and so 

Table 26: Regression results
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)            9.885e-01  1.015e-01   9.735  < 2e-16 ***
oP                    -1.063e-02  4.276e-03  -2.485 0.012981 *  
avg.rS                -1.455e+00  1.352e-01 -10.766  < 2e-16 ***
diff.rS                9.655e-01  1.392e-01   6.938 4.62e-12 ***
min.eP                 2.465e+01  2.245e+00  10.983  < 2e-16 ***
max.eP                 8.323e+00  6.706e-01  12.412  < 2e-16 ***
min.EZ0011             2.342e+00  1.932e+00   1.213 0.225363    
min.EZ0110             2.379e+01  2.925e+00   8.133 5.55e-16 ***
max.EZ0011             9.802e-01  1.831e-01   5.352 9.18e-08 ***
max.EZ0110             1.086e+01  5.152e-01  21.089  < 2e-16 ***
rho                    4.046e-02  9.651e-02   0.419 0.675050    
max.eP:max.EZ0110     -4.320e+01  1.870e+00 -23.108  < 2e-16 ***
min.eP:max.eP         -1.488e+02  8.410e+00 -17.692  < 2e-16 ***
min.eP:max.EZ0110      1.639e+02  1.535e+01  10.676  < 2e-16 ***
max.EZ0011:rho         2.368e+00  2.470e-01   9.585  < 2e-16 ***
avg.rS:min.eP          2.191e+01  3.277e+00   6.686 2.61e-11 ***
min.EZ0110:max.EZ0110 -1.712e+02  1.636e+01 -10.464  < 2e-16 ***
oP:avg.rS              4.312e-02  6.094e-03   7.076 1.75e-12 ***
max.eP:min.EZ0110      1.214e+02  1.517e+01   8.000 1.62e-15 ***
max.eP:min.EZ0011      1.018e+02  1.407e+01   7.238 5.44e-13 ***
min.EZ0011:max.EZ0011 -5.368e+01  7.914e+00  -6.783 1.35e-11 ***
avg.rS:max.eP          2.819e+00  7.040e-01   4.004 6.34e-05 ***
min.eP:min.EZ0110     -3.140e+02  5.850e+01  -5.367 8.46e-08 ***
min.EZ0011:rho         1.480e+01  3.912e+00   3.784 0.000157 ***
oP:max.eP             -6.250e-02  1.797e-02  -3.478 0.000510 ***
diff.rS:min.eP        -8.587e+00  2.480e+00  -3.462 0.000542 ***
avg.rS:diff.rS        -8.115e-01  2.569e-01  -3.159 0.001594 ** 
oP:rho                 1.794e-02  4.187e-03   4.285 1.87e-05 ***
oP:min.EZ0110          3.792e-01  1.255e-01   3.021 0.002538 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.5266 on 3957 degrees of freedom
Multiple R-squared: 0.7222,     Adjusted R-squared: 0.7202 
F-statistic: 367.4 on 28 and 3957 DF,  p-value: < 2.2e-16 
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it also can be problematic to compare magnitudes directly.  A common method is to 

evaluate the effect in the neighborhood of the means of the other variables.  In this case 

several of the variables are constrained by the level of other variables, however the point 

is to establish some constant value near which to assess effect size.  

Visualization of the effects of pairs of characteristics involved in second-order 

effects was accomplished through five sets of contour plots (Figures 20 through 24). 

Plots were grouped according to whether the two characteristics were 1) both observation 

protocol, 2) both process, or 3) one of each.  In most cases the plots are self-explanatory 

and need little explanation, so focus is on overall interpretation.  Contours were generated 

using a grid of points which in a few cases included points that were outside the range 

actually found in the experiment.  Significant portions of most plots predict AUCs in 

excess of 0.90.

The plots in Figure 20 indicate that higher AUC results from higher event 

observation probability, shorter quasi-regular observation intervals, and longer 

observation period.  The interaction between average quasi-regular observation interval 

and event observation probability (both min and max), is minimal, but does indicate the 

the effect of event observation probability is greater when quasi-regular observations are 

more spread out.  Subplot [c] indicates that as observation period length increases, the 

effect of quasi-regular observation interval decreases.
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Figure 21 also shows two interaction pairs where the interaction effect is slight. 

Subplot [a] indicates that as observation period length increases, the effect of the 

maximum event observation probability decreases.  Subplot [b] requires some 

explanation.  The diff.rS characteristic can be 0 for a wide variety of pairs of values for 

Figure 20: Observation characteristic interaction effects contours
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the quasi-regular observation intervals, but can only be 1 in two cases, and in those two 

cases one of the intervals will be very short.  In such a case the effect of event 

observation can be expected to be reduced, which is what is indicated in the plot.  Subplot 

[c] also requires some explanation, as the two upper corners of the plots are not feasible. 

However it makes sense than higher AUC would result when the average is low and the 

difference high.
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The next two figures (Figure 22 and Figure 23) contain plots where the x-axis is 

an observation characteristic and the y-axis is a process characteristic.  In Figure 22 and 

subplot [a] of Figure 23, the y-axes correspond to expected duration times in the states. 

High values on these axes correspond to low transition rates.  The x-axes are all event 

Figure 21: Observation characteristic interaction contour, continued
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observation probabilities.  All of these plots essentially indicate the same thing, that high 

AUC results from relatively low transition rates, relatively high event observation 

probabilities, and that the interaction of these effects is positive.  Conversely, high 

transition rates and low event observation probability would lead to low AUC.
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Figure 23 ([b] and [c]) show interactions involving observation period length. 

Both show increasing AUC with increasing observation period length, as long as inter-

process correlation is above about -0.8.  Subplot [b] indicates that 1) AUC increases with 

positive increase in interprocess-correlation and that there is positive interaction between 

Figure 22: Observation/process characteristic mixture interaction contours
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the two.  Subplot [c] indicates, as before, that AUC is higher with lower transition rates 

out of the states (in this case the (0,1) and (1,0) states) and the interaction between this 

effect and observation period length is positive.

Figure 23: Observation/process characteristic mixture interaction contours, continued
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Figure 24 contains interaction pairs where both characteristics were process 

characteristics.  Interestingly there were fewer of these than there were of the observation 

protocol characteristics-only figures.  Subplots [a] and [d]  indicate that the effect of 

inter-process correlation was greatest when transition rates were lowest.  The highest 

AUCs were predicted when transition rates were low and interprocess correlation 

positive.  Subplot [b] can be misleading because of the difference in scale.  Predicted 

AUC is actually more responsive to the x-axis variable min.EZ0110, although the 

contours are farther apart there.  However, the highest predicted AUCs were obtained 

when the transition rates along both axes were low.  Subplot [c] requires some 

explanation.  In the actual data there were very few cases appearing in the upper right and 

lower right regions of the plot.  Otherwise it would be expected that the highest predicted 

AUC would be in the upper right hand corner of the plot, which is not the case.    The 

other thing that is not obvious in this plot is that the min.EZ0011 value is usually that 

corresponding to the (0,0) state. Low transitions out of this state correspond roughly to 

increased numbers of event observations.  In this case there may be some third-order 

effects which should be examined.
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None of these results are non-intuitive or unexpected.  The moderate value of the 

adjusted R2 term indicates there is still some unexplained variance in the dependent 

variable despite the highly significant component coefficients.  

Figure 24: Process characteristics-only interaction effects contours
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 5.5 Discussion

In this paper individual and joint estimation of models for dual process CTMCs 

was evaluated using simulations of infrequent, unevenly spaced, and uncoordinated 

observations.  The evaluation consisted of assessments of nominal parameter recovery, of 

out-of-sample prediction performance, and of the effect of various process and 

observation characteristics on said performance.  The purpose of these assessments was 

to compare the two estimation methods and to establish the conditions under which they 

could be applied, assuming that successful application would be a function of both 

process characteristics and of observation protocol characteristics.

In all of the comparisons between estimation methods, either no difference or a 

small but statistically significant difference was found between the two estimation 

methods.  These significant differences were always in favor of the joint method.  On the 

other hand, the joint method failed to converge in a few cases.  However, choice of 

estimation method was clearly not a decisive factor with regards to quality of results.  For 

a large number of processes a single joint estimation would seem to be logistically 

preferable to a large number of individual estimations, and at least these results do not 

argue against making that choice.  In the experiment, each OpenBUGS run, whether 

individual or joint, was initialized with random values.  In a real-world application, the 

results of individual estimates could be used as starting values for the joint method.  

Both estimation methods were found to produce biased estimates of the three 

primary nominal parameters over the experimental design space considered.  This space 
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was specified to represent process characteristics and observation protocol characteristics 

thought to be common in the water quality monitoring field.  Under these assumptions 

the method can be expected to overestimate violation state duration, frequency, and long-

term probability of occurrence.  This bias favors the conservationist.  It appears this bias 

could be reduced; however, additional experiments should be conducted to determine the 

conditions under which good recovery of true process parameter values could be 

expected.  These results provide some guidance  as to what these conditions might be and 

how additional experiments could be carried out.

Even given the biased recovery results, prediction of out-of-sample observations 

was excellent (AUC > 0.9).  This suggests that parameter values for the process as 

observed were estimated accurately, otherwise the predictions should have been faulty. 

This in turn suggests that the processes as observed differed from the underlying 

processes in such a way as to produce estimates systematically biased with respect to the 

nominal values.  Observation of the processes at regular intervals would not be expected 

to produce the pattern of over and underestimation seen.  Therefore it seems likely that 

the source of the bias was the violation-state observation protocol.  This suggests that 

recovery might be improved by a modification of that part of the observation protocol.  

In this paper, dual correlated processes were simulated using a four-state model. 

Additional processes could be simulated using this approach, although the number of 

states necessary grows exponentially with the number of desired processes.  In addition, 

it is suspected that finding correlated examples using the method used here would require 
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the generation of even greater numbers of test cases.  Also, the pairwise correlations 

between processes would not necessarily be of the same sign and approximate 

magnitude, a complicating factor for analysis.  

Although negatively correlated processes were included for completeness, WQIs 

in general are positively correlated, as they tend to be influenced similarly by regional-

scale processes such as geologic weathering, atmospheric deposition, and climate.  Since 

positively correlated processes resulted in higher AUCs, this bodes well for real-world 

WQI applications.  

In general making synchronous or coordinated observations across a network of 

locations is impractical.  Typically observers visit locations in sequence across a span of 

time.  In trend-monitoring programs, assigning an observation to a day, month, or quarter, 

regardless of when within the period the observation was actually made, results in a 

dataset of pseudo-synchronous observations.  This is done usually to meet the 

assumptions of the trend test model.  The method developed here requires no such 

pseudo-alignment of observation times.

The model fit to the processes was not the same as the model used to generate the 

process observations.  Despite that, predictive performance was more than acceptable, 

and was better when the processes were positively correlated or had relatively low 

transition rates.  The four-state process could have been modeled precisely, but 

generalizing to more than two processes is complicated.  Without a model or a practical 

way to make observations that could support inter-process correlation estimates, it seems 
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that pursuance of a hierarchical modeling approach is warranted.  Behavior of WQIs at 

neighboring locations is often influenced by broader regional characteristics such as 

underlying geology or climate.   The state of one process may be predictable from 

neighboring processes, but the overall probability of observation ensures few will be 

synchronous.

 5.6 Conclusions

The objective of this paper was to evaluate individual and joint estimation of 

models for dual process CTMCs under simulated observation conditions.  A method for 

generating simulations of dual correlated two-state CTMC processes using non-

homogeneous Markov Chains was demonstrated.  The method may be extended to more 

than two processes, although the effort grows exponentially with the number of 

processes.  The simulations were used to mimic the behavior of WQIs with respect to a 

threshold that divides the range of the indicator into two states, one of which is associated 

with ecological risk and is referred to here as the violation state.  Observation protocol 

characteristics were simulated to mimic common protocols in the water-quality 

monitoring field that result in observations which are asynchronous, infrequent, unevenly 

spaced, and uncoordinated with threshold crossings.  

A joint model for multiple two-state CTMC processes was introduced and applied 

to simulated observations of a dual correlated two-state CTMC.  The parameters of the 

model were estimated both jointly and individually using Bayesian estimation methods. 
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Both estimation methods predicted out-of-sample observations well, despite the fact that 

the model used in the estimation was simpler than the model used to generate the 

simulated observations.  The joint estimation method showed a meager but statistically 

significant improvement over the individual estimation method.

In general, violation-state duration, frequency and long-term probability of 

occurrence were overestimated over most of the range of processes and observation 

protocols considered.  This favors the conservationist with regard to risk.  Processes and 

observations were simulated to represent typical problematic conditions in WQIs and 

typical observation protocols in the water quality field, which combine quasi-regular 

observation with event-based observation.  Additional experiments are needed to better 

define conditions under which unbiased recovery could be expected.  

Positively correlated processes or processes with lower transition rates resulted in 

better predictive performance than their counterparts.  Within the range considered, all 

observation protocol characteristics were seen to have a significant effect on predictive 

performance.  AUC responded positively to increases in observation period length and 

event observation probability, and to decreases in quasi-regular observation interval 

length.  There were significant interaction effects between many pairs of characteristics.
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 6 CTMC models for threshold exceedance in water-

quality indicators

 6.1 Abstract

Thresholds have been defined for many water quality indicators (WQIs) which 

separate the measurement space of the indicator into two states, one of which, the 

exceedance or violation state, has undesirable consequences.  Observations of the 

indicator are often made at relatively infrequent, unevenly spaced intervals and are 

almost always uncoordinated with the precise timing of changes in state.  Observations of 

the indicator made at multiple locations are almost always asynchronous.  These typical 

observation protocols make estimation of frequency, duration, and long-term probability 

properties difficult.  To address this problem, three hierarchical CTMC models, one 

homogeneous and two non-homogeneous, were developed and evaluated with respect to 

each other and with respect to a method adapted from the partial duration series (PDS) 

method popular in flood-frequency analysis.  Bayesian methods were used to estimate the 

parameters of the CTMC models.  Simulations of WQI time series were generated using a 

sinusoidal model with autocorrelated errors adapted from the literature.  These 
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simulations were sub-sampled to produce time series of asynchronous, uncoordinated and 

unevenly spaced observations similar to those found in practice.  A response surface 

analysis was conducted to assess nominal process model parameter recovery in the 

CTMC models.  A principal components regression analysis was employed to evaluate 

the effects of process, observation, and modeling on various performance metrics. 

Recovery was insufficient overall to establish optimal operating conditions with certainty. 

Duration and long-term probability of violation tended to be overestimated whereas 

frequency tended to be underestimated.  The homogeneous CTMC model produced 

estimates of frequency and duration with lower error than did the estimates produced 

using the PDS method.  Results were mixed for the two non-homogeneous CTMC 

models.  More-positively correlated processes were easier to predict.  Higher observation 

rates, regardless of type, were found to improve predictive performance.  The CTMC 

models may be extended to allow for prediction of frequency and duration properties 

from watershed characteristics or altered to allow these properties to vary with time.

  

 6.2 Introduction

Regulators have long used thresholds to define water-quality standards.  Typically 

standards require that WQI concentrations remain on one side of the threshold (above or 

below) at least a specified percentage of time during some period such as a year or a 

defined season.  Serious harm can come to aquatic ecosystems when water-quality 

thresholds are violated too often or for excessively long periods of time (Baldigo, 
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Murdoch 1997, Bulger, Cosby & Webb 2000, Davies et al. 1992, DeWalle, Swistock & 

Sharpe 1995, Laio et al. 2001, Sickle et al. 1996) .    Recently ecologists have begun to 

look at thresholds as indicators of climate change (Lenton et al. 2008, Rosenzweig et al. 

2008, Keller, Yohe & Schlesinger 2008).  Changes in the stochastic properties of a 

process with respect to a threshold could indicate change in climatic conditions. 

However, for many WQIs the high-frequency observations necessary to identify and to 

time periods of violation are not available.  In some cases only a subset of locations 

within a region of interest may have observations.  Although two WQI processes might 

be correlated, observations typically are not made simultaneously on both processes.  

Eventually it will be desirable to be able to model many processes at one time 

because often processes within a region (a population of processes) move together 

roughly as a group or set of groups, and it will be desirable to be able to take advantage 

of common characteristics among processes and to make predictions for processes within 

a region for which there is little or no water-quality data, perhaps using other 

characteristics common to all member processes in the region other than water quality 

itself.  However, devising an all-inclusive experimental framework for such a problem is 

difficult.  

The objective of this paper was to evaluate the performance of three hierarchical 

CTMC models for threshold exceedance behavior and associated Bayesian estimation 

methodology, and to compare them with a method (the partial duration series method) 

adopted from the flood-frequency analysis domain and similar to one that has been used 
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by other researchers (Madsen, Rasmussen & Rosbjerg 1997, Wang 1991, Deviney, Rice 

& Hornberger 2006).  Three two-state CTMC models were developed that could be 

extended to include additional group-level predictor variables.  The models allow 

estimation of three important process properties: 1) expected violation state duration 

time, 2) expected renewal period (the inverse of frequency), and 3) long-term proportion 

of time spent in the violation state.  The models also allow the estimation of these 

properties from asynchronous, infrequent, uncoordinated and unevenly spaced 

observations of a process.  The first model is homogeneous while the second and third are 

non-homogeneous.  The latter two models allow transition rates to vary periodically, 

which may be necessary for locations where transition rates between states vary 

seasonally.  All three models allow estimation of properties for multiple locations, or 

processes.  Performance of these models was compared with a method adapted from the 

flood-frequency literature.

The performance evaluation consisted of assessments of nominal parameter 

recovery, of out-of-sample prediction performance, and of the effect of various process 

and observation characteristics on said performance.  The purpose of these assessments 

was to establish the conditions under which the methodology could be applied, assuming 

that successful application would be a function of both process characteristics and of 

observation protocol characteristics.
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In the next sub-section the partial duration series method is described.  Following 

that three CTMC models are developed, starting with a simple two-state homogeneous 

model and concluding with two non-homogeneous models.

 6.2.1 Partial duration series method

The partial duration series (PDS) method, sometimes referred to as the peaks over 

threshold (POT) method, is a flood-frequency method that assumes that onsets of 

exceedances of a high threshold by river discharge occur infrequently as a Poisson 

process.  That is, the number of onsets per unit time, often one calendar or water year, is 

Poisson distributed.  This is equivalent to assuming an exponential distribution of inter-

arrival times.  The distribution of the maximum discharge peak above threshold during 

independent exceedance events is currently thought to be generalized Pareto (GP), 

although historically other distributions have been suggested and investigated. The GP 

distribution for discharge (Madsen, Rasmussen & Rosbjerg 1997, Madsen, Rosbjerg 

1997) has one of two possible cumulative distribution functions (CDFs):  

F q=1−exp−q−q0

  ,=0

F q=1−1− q−q0

 
1/ 

,≠0
 (48)

where α is the scale parameter, k is the shape parameter, and q0 is the discharge threshold 

level.  If k is negative then the distribution is bounded above.  Several methods have been 
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suggested for estimating the GP distribution parameters.  The Method of Moments 

(Hosking, Wallis 1987) (MOM) estimators are

=1
2
 2

 2
1

=1
2  2

2
−1

 (49)

Given estimates of α and k and the derivatives of Equation (48), a distribution function 

for duration can be determined.  

 6.2.2 CTMC Model #1 (homogeneous)

A two-state CTMC is a reasonable first choice for a model of threshold 

exceedance.  Let one state (say state '0') represent the below-threshold condition and the 

other state (state '1') represent the above-threshold condition.  Let state '0' represent the 

violation state.  Assume that upon entering one state, a random amount of time passes 

before the process transits to the other state.  Once in the other state, a random amount of 

time passes before the process returns to the original state.  Assume these random times 

have exponential distributions with rates λ and μ that are not necessarily equal.  Such a 

process is depicted in Figure 25.
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Some important properties of the process in Figure 25 are given in Equation (50), 

where E[X] represents the expectation of the amount of time spent in state '0' on a typical 

excursion into that state, E[Y] represents the same expectation for state '1', E[Z] is the 

expectation of the time between entrances into either state, P0 is the long-term proportion 

of time spent in state '0', and P1 is the long-term proportion of time spent in state '1'.

E [ X ]=1


E [Y ]=1


E [Z ]=E [X ]E [Y ]
P0=




P1=



 (50)

Figure 25: Two-state CTMC

'1'

'0'

X~Exp(λ) Y~Exp(μ)
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Ross (1993) showed how the two-state homogeneous CTMC model and the 

Kolmogorov Backward Equation lead to equations that predict the probability of being in 

state “0” having been in state “1” or having been in state “0” some time previously.  Ross 

gives these equations respectively as:

P00t =



e− t 


P10t =



− 


e−t
 (51)

With some re-arrangement of terms, a Bayesian specification for multiple sites 

following Equation (51) can be written as

Prob S j , n=' 1' ~ Bernoulli P j ,1 F j , n1−F j ,nProb S j ,n−1=' 1' 

Prob S j ,n−1=' 1 ' ={1, S j , n−1=' 1 '
0, S j ,n−1= ' 0 ' }

F j ,n=1−e − j jt n

 j=C j P j ,1

 j=C j 1−P j ,1
logit P j , 1~ Normal   j ,

 j ~ Normal  ,
log C j~ Normal   j ,
 j ~ Normal  ,
~ Gamma 0.5, 0.5
~ Gamma 0.5,0.5
~ Gamma0.5,0.5
~ Gamma0.5, 0.5
~ Normal 0, 0.0001
~ Normal 0,0.0001

 t n=t n−tn−1

 (52)

where λj and μj are the transition rates from states '0' to '1' and '1' to '0' respectively for 
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process j and C j= j j .  By specifying the logit transformation of the limiting 

probability of process j being in state '1' (Pj,1) as having a normal distribution, the 

capability to add regressors to predict its value is facilitated.  Similarly for the constant 

Cj, a log transformation modeled as having a normal distribution facilitates a similar 

capability.  Since the range of possible predictors is virtually unlimited, that feature is not 

explored here.  The model simply allows for different intercept parameters for each 

process.  The shape and inverse-rate parameters that are set here to 0.5 lead to reliable 

convergence when there are two processes but would need to be reduced for more than 

two processes.  Another approach is to make the shape and inverse-rate hyper-parameters 

with prior distributions of their own, say for example a uniform prior over the range 

[0.001, 0.5].  That was not found to be necessary for this paper.

 6.2.3 CTMC Model #2 (non-homogeneous)

Model #2 lets the transition rates evolve periodically as sinusoids while holding 

the ratio between them (the limiting probabilities) constant.  This corresponds to a 

process where the limiting probabilities are invariant with time, but the expected rates of 

transition from either state to the other are higher or lower depending on the time during 

the period.  The Bayes specification for Model #2 follows:
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Prob S j , n=' 1' ~ Bernoulli P j ,1 F j , n1−F j ,nProb S j ,n−1=' 1' 

Prob S j ,n−1=' 1 ' ={1, S j , n−1=' 1 '
0, S j ,n−1= ' 0 ' }

F j ,n=1−e−1K j  j ,nt n

 j ,n= jA j sin2 tnB j cos2 tn
 j=C j P j ,1

K j=1−P j , 1/P j ,1

logit P j , 1~ Normal   j ,
 j ~ Normal  ,

log C j~ Normal   j ,
 j ~ Normal  ,
~ Gamma 0.5,0.5

r j ~ Uniform0,1
A j=r j j cos 
B j=r j j sin 

~ Gamma 0.5,0.5
~ Gamma0.5,0.5
~ Gamma0.5,0.5
~ Normal 0,0.0001
~ Normal 0,0.0001
~ Uniform − ,
 t n=t n−tn−1

 (53)

A number of other approaches for modeling the two sinusoidal amplitude 

variables Aj and Bj were tried but none were found to converge as reliably as the one 

specified above.

 6.2.4 CTMC Model #3 (non-homogeneous)

In the second modification, the renewal rate is held constant but the limiting 

probabilities P0 and P1 are allowed to evolve periodically as sinusoids.  This is a 
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process where the distribution of times between events is invariant with time but the 

instantaneous transition rates vary, with an increase in transition rate from one state being 

balanced in some way by a decrease in transition rate from the other state. 

There are multiple ways to formulate a model which incorporates the desired 

properties.  To hold the renewal rate constant means that the sum
1
n
 1
n

, or E[Z], 

must be constant.  The method used here was to model P1n and  , and from them 

calculate n and n , which may be specified according to the following:

n=


1−P1n

n=


P1n

= 1
E [Z ]

 (54)

The Bayes specification for Model #3 follows:
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Prob S j , n=' 1' ~ Bernoulli P j ,1, n F j ,n1−F j , n ProbS j , n−1=' 1 ' 

ProbS j , n−1=' 1 ' ={1, S j , n−1=' 1'
0, S j , n−1=' 0' }

F j , n=1−e− j ,n j ,nt n

 j , n= j /1−P j ,1, n
 j ,n= j /P j ,1,n

P j , 1,n=P j ,1A j sin2 t nB j cos 2 t n
 j=C j1−P j ,1P j ,1

logit P j ,1~ Normal   j ,
 j ~ Normal  ,

log C j~ Normal   j ,
 j ~ Normal  ,
~ Gamma 0.5,0.5

Ampmax j
=0.5−P j , 1−0.52

r j ~ Uniform0,1
A j=r j Ampmax j

cos 
B j=r j Ampmax j

sin
~ Gamma 0.5,0.5
~ Gamma 0.5,0.5
~ Gamma 0.5,0.5
~ Normal 0,0.0001
~ Normal 0,0.0001
~ Uniform − ,
 t n=tn−t n−1

 (55)

The remainder of the paper proceeds as follows: Section  6.3  details the methods 

used to set up, execute, and analyze the results of the experiment.  Section  6.4  provides 

the results of a number of comparison and effects analyses.  In Section  6.5  the results 

are discussed along with the limitations and other aspects of the methodology.  Section 

 6.6  presents the major conclusions of the paper.
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 6.3 Method

To summarize this section, a design was created randomizing over the variables of 

interest.  Simulated observations were generated at high-frequency time steps (the HF 

observations) and those data were used to derive nominal duration and renewal 

distributions.  The HF observations were sub-sampled to create time series comparable to 

the asynchronous, infrequent, and unevenly spaced observational time series (the AIUS 

observations) typical of the field of water-quality monitoring.  Time-series methods were 

used to predict an evenly spaced time series from the AIUS observations and the PDS 

method was used to estimate duration and renewal distributions from those series.  For 

the CTMC models, posterior parameter distributions were then sampled and compared to 

their nominal values.  Duration and renewal distributions were derived from the 

maximum a posteriori values of those posterior distributions.  The error was measured 

between the distributions resulting from these four alternatives and the nominal renewal 

and duration distributions.  The four alternatives were compared with respect to this error. 

The effect on this error of the components of process, observation, and modeling was 

evaluated.  The three CTMC models were compared based on their predictive ability.

 6.3.1 Experimental design

An experimental design was created using leaped Halton sequences (Kocis, 

Whiten 1997, Halton 1960) to establish the levels of the parameters varied during the 
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experiment.  Leaped Halton sequences are deterministic processes having desirable 

quasi-random properties of uniformity and independence.  A leaped Halton sequence can 

easily be extended at a later time should the size of the experiment need to be increased. 

 6.3.2 Process simulation

Hirsch and Slack (1984) and Hirsch et al. (1982) developed a non-parametric test 

for monotonic trend which they evaluated using simulations from a variety of time-series 

models for generic WQIs.  One of the models they used was a sinusoid with error, 

x ij=0.5ijsin36 i ,ij~N 0,1  (56)

where i=1,2,3,…,12 indexes months and j=1,2,3,…,n indexes years.  A fifteen-period 

realization of this process and its ACF are presented in Figure 26.
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The ACF plotted in Figure 26 indicates a seasonal pattern with a first order 

correlation of slightly more than 0.5.  Hirsch and Slack (1984) reported that it is rare to 

see first-order correlation greater than 0.6 in WQI time series at a time step of one 

month.  When the time step is 1/10,000 of a period, this correlation is maintained at a 

corresponding lag of 1/12 of 10,000, or approximately 833 (Figure 27).  

Figure 26: Simulation of a sinusoid with error
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Multiple correlated time series can be generated by adding small but different 

constants to Equation (56), and correlating the errors, as in Equation (57).  Ignoring the 

error term, this equation has an amplitude of two and a mean value of μ.  

x t=sin 25002tRt

Rt=tRt−1

t~N 0,2 
 (57)

Two such time series A and B were simulated by first selecting a  value 

from the interval (0,2) with uniform probability, where  is the difference between 

Figure 27: Simulation (left) and ACF (right) of a sinusoid with error
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the mean values of A and B, that is =B−A .  Restricting  to this range 

ensures that A and B overlap.  The range of overlap is then approximately 

B−1,A1 .  A threshold was selected from this range with uniform probability. 

The standard deviation of the error term was set to 0.1.  The parameter  was selected 

with uniform probability from the range (-1,1).  These selections were made from their 

respective ranges using the leaped Halton sequence values for each parameter.

Two-state time series for A and B were constructed by applying the rule:

y t={1, x tK
0,x t≤K}
For example, Figure 28 gives one period of two example time series based on 

nominal parameter set #135, where A equaled -0.62656, B equaled 0.62656, 

equaled 0.9661637, and the threshold was equal to -0.02315766.  The correlation 

between these two series was 0.768395.  The top figure shows both time series and the 

threshold.  The middle figure shows the upper time series transformed to a two-state time 

series, and the lower figure shows the lower time series transformed to a two-state series. 

The threshold is coincidentally near zero.  

For each of the 1500 sets of nominal process parameter values, two sets of 

simulations were generated for A and for B.  That is, a total of four sets of simulated HF 

observations per set of nominal process parameters.  
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Figure 28: Simulations of correlated WQIs

As a time series of actual (simulated) values (top) and transformed to two-state processes 
(middle and bottom).  
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 6.3.3 Nominal property determination

Duration and renewal interval data were extracted from the HF observations by 

measuring the lengths of excursions into the violation state (from threshold down-

crossing to threshold up-crossing) and measuring the periods between excursions into the 

violation state (down-crossing to down-crossing).  Nominal distributions for duration and 

renewal period for the nominal processes were determined empirically from the extracted 

duration and renewal interval data using the sm.density function of the sm package 

(Bowman, Azzalini 1997).  Since these quantities are strictly positive, densities were 

estimated from log-transformed data, and then re-transformed back to the original units. 

Distributions for nominal parameter set #135 are given in Figure 29.
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Figure 29: Nominal distributions of duration and renewal period for two processes
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 6.3.4 Observation simulation 

Observation of these processes was simulated using the Halton sequence selection 

of five different parameters.  First, observation period length was allowed to vary from 

five to 30 periods.  This corresponds to the number of years of observations commonly 

seen in the field of water-quality monitoring.  The same observation period length was 

used for both process A and process B (although commonly in the field, varying 

observation period lengths will be found).  Second, regular observation interval was 

allowed to vary for each simulated process from 0.01 to 1 periods, with standard 

deviation of the interval equal to the mean interval length divided by 100.  Typically in 

the field, observations are made weekly, monthly, quarterly, or annually.  Third, event  

sampling probability was allowed to vary for each simulated process from zero to a 

probability which would produce on average no more than 100 observations per period. 

The purpose of this parameter was to mimic the practice of making observations during 

high-discharge periods.  It is not unusual for research/monitoring programs to be 

resource-limited and have to vary the frequency of observation during these periods 

depending on their characteristic frequency and duration.  The AIUS observations for 

parameter set #135 are shown in Figure 30.

Training and test sets were generated by doubling the observation period length 

and assigning simulated observations from the first half to the training set and the second 

half to the test set.  Normally this resulted in different numbers of simulated observations 
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in each set.  Some cases resulted in too few observations in the test set to calculate the 

AUC.

Figure 30: Simulated observations of state 
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 6.3.5 Modeling simulation 

Each set of AIUS observations was modeled using two methods.  The first method 

combined the use of a time-series model to predict the process level and a variation on 

the Peaks-Over-Threshold (POT) method to estimate the distributions of duration and 

renewal period.  The second method used was to estimate the same distributions using 

one of the three CTMC models.  The selection of which model to use was determined 

from a Halton sequence as part of the experimental design.

The time series model estimated from the AIUS observations was similar to the 

model in Equation (57).  However, the time step for modeling and prediction was 

determined from the minimum distance between the AIUS observations, which was in 

general less frequent than those in the HF observations. Observation times were shifted to 

align with the chosen time step.  By choosing the minimum distance, no two observations 

aligned on the same time step, yet the number of time steps with missing data was greatly 

reduced and at least some observations at a lag of one was ensured.  Parameter estimation 

was performed on the training data using SAS PROC ARIMA (SAS Institute Inc. 2000-

2004) ; step-ahead predictions were made on the test data.  The step-ahead predictions 

were compared to the threshold to determine periods of violation-state excursions and 

time between onsets of violation-state excursions.

The training set of each pair of processes was used to estimate process 

characteristics by both estimating each process's characteristics individually and by 

estimating them jointly.  OpenBUGS (Thomas et al. 2006) and R were used to perform 
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the estimations on the Cross-Campus Grid (XCG) at the University of Virginia (Morgan, 

Grimshaw 2007).  OpenBUGS is a software package which implements the Gibbs 

sampling method of Monte Carlo Markov Chain (MCMC) Bayesian estimation.  Models 

are prescribed using R-like syntax and functions.  From random starting values, a vector 

of parameter values moves forward iteratively according to specified prior distributions 

and model specifications.  The user may specify multiple chains of parameters values, 

whose convergence to a common distribution may be tracked using the Gelman-Rubin 

statistic ( R ).  Several model fit statistics are generated, including the deviance 

information criterion, or DIC (Spiegelhalter et al. 2002).

Estimations were performed using three chains.  After burn-in, sufficient 

iterations were run to obtain 350 values from each chain, for a total of 1050  samples 

from the posterior distributions.  A ubiquitous problem in Bayesian MCMC estimation is 

determining a proper (minimum) burn-in period and a thinning parameter.  Usually these 

choices are made while operating the software interactively.  The necessary burn-in 

period and thinning parameter can vary widely from one estimation run to another.  With 

a total of 3,000 estimations to perform, each requiring anywhere from 15 minutes to 

several hours, a systematic method of performing the estimation was needed.  Therefore 

each estimation run was initialized with a relatively small burn-in period and thinning 

parameter.  Then, if convergence was not attained, the thinning parameter was increased 

and the procedure ran again, starting from the last iteration's values of the previous run, 

and considering all iterations of the algorithm up to that point to be burn-in.  Following 



Page 166 of 215

the recommendation of Gelman and Hill (2007), all parameters including the deviance 

were required to have an R  value less than 1.1 before considering the iterations to 

have converged.  To guard against premature convergence, a test of chain slope was 

added, and it was required that no chain have a significant slope at a p-value < 0.01/3p, 

where p is the number of parameters.  A linear model with autocorrelated errors was used 

because of the typical high serial correlation of chain values.

 6.3.6 Metric determination

Three metrics were calculated for this experiment: 1) integrated squared error 

(ISE) (Scott 1992, Bowman, Azzalini 1997), 2) the area under the ROC curve (AUC) 

(Hanley, McNeil 1982), and 3) a binary parameter recovery metric which indicated 

whether or not the nominal parameter value was within a 95% credible interval 

determined from the posterior distribution for the parameter.  The binary metric 

computed was determined from the percentile of the posterior distribution corresponding 

to the nominal parameter value.  Percentile values between 2.5 and 97.5 were considered 

to be representative of cases where the nominal parameter value was recovered.  Under 

optimal operating conditions, the nominal parameter value should be recovered 95% of 

the time, based on this metric.  

Densities for the distributions of duration and renewal period based on time-series 

modeling were determined empirically from the timing and lengths of excursion periods 

derived from the predicted time series.  The duration ISE and the renewal ISE for the 
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PDS method were calculated from the squared difference between the nominal and PDS 

densities.  Similarly to the recovery metric, which provides information on how well 

parameter values were recovered, the ISE provides information on how well distributions 

were recovered.

Densities for the distributions of duration and renewal period for the CTMC 

methods were derived using the maximum a posteriori (MAP) values of the empirical 

posterior distributions of the model parameters.  The MAP values were determined using 

the R density function.  In the case of the homogeneous CTMC model, the distributions 

follow directly from the rate parameters λ and μ.  In the case of the two non-

homogeneous models, the theoretical forms of the distributions are complicated.  The 

points of the densities were determined by averaging numerically over the values the 

density could take over two time periods.  The ISEs for the CTMC methods were then 

calculated from the nominal and CTMC densities for duration and renewal period.

Determination of the AUC statistic was made in R using functions in the ROCR 

package (Sing et al. 2005).  The functions require a vector of probabilities and a vector of 

categorical responses.  AUC can vary between zero and one, where one indicates perfect 

prediction; however, a value of 0.5 corresponds to random guessing.  Therefore, only 

values above 0.5 are acceptable.  The AUC, while not indicative of recovery, is indicative 

of precision, especially when calculated in a cross-validation framework.  High AUC 

scores indicate that the parameters of the observed process have been accurately 
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estimated, although if the observed process has different stochastic properties than the 

underlying process, then high AUC may not indicate good recovery.

 6.3.7 Evaluation method

The three primary process characteristics of interest assessed in this step were the 

expected duration period E[X], the expected renewal interval E[Z], and the limiting 

probability for state “1” P1.  The percentiles used to calculate the binary metric previously 

defined were also used to assess recovery bias.  The binary metric was then used as the 

dependent variable in a logistic regression with the process characteristics and 

observation protocol characteristics as regressors.  This model allowed assessment of the 

predicted recovery rate associated with different regions of the experimental design 

space, and through analysis of the steepest gradient of the response surface (Myers, 

Montgomery 1995) , the direction in which greater or lesser recovery rate occurs.  These 

analyses were performed with the results from the CTMC models.

The PDS and CTMC methods were compared using the Wilcoxon signed-rank 

paired test.  Each set of AIUS observations was modeled using the PDS method and one 

of the three CTMC methods.  The three CTMC methods were compared with each other 

using the Wilcoxon signed-rank test.  In this case since the CTMC models were not 

applied to the same simulated observations, the test was not paired.  The effect of the 

process, observation protocol and the modeling selection characteristics on performance 

metrics were determined using regression analysis.  
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 6.4 Results

The 3,000 sets of simulated observations were all modeled with the time 

series/PDS method, and each modeled with one of the three CTMC models (Model #1 – 

1002 times, Model #2 – 1000 times, Model #3 – 998 times), the specific model being 

selected as part of the experimental design.  Convergence was not obtained for three of 

the sets modeled with Model #3.  The ISE statistic could not be calculated for 237 of the 

scenarios from the time series/PDS results (actually it was infinity for these scenarios), 

and could not be calculated for six of the CTMC results.  AUC could not be calculated for 

12 of the scenarios modeled with Model #1, 10 of those modeled with Model #2, and 

eight of those modeled with Model #3.

 6.4.1 Recovery of nominal parameter values

There are three primary nominal attributes of interest: 1) E[X] – the expected 

value of time spent in the violation state, 2) E[Z] – the expected value of the renewal 

interval (time between re-entries to the violation state, or the inverse of frequency of 

occurrence), and 3) P1 – the limiting probability for the non-violation state.  Over the 

range of the experimental design space, E[X] and E[Z] were overestimated and  P1 was 

underestimated (Table 27).  This infers that frequency was underestimated and that P0 
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was  overestimated.  The overestimation of E[X] and P0 favors the conservationist, 

whereas the underestimation of frequency favors the polluter.

Table 27: Counts of recovered nominal values across all priors

Group # below c.i.
(nominal was 

overestimated)

# inside c.i. # above c.i.
(nominal was 

underestimated)

total % inside

E[X] 5664 332 0 5996 5.54

E[Z] 5554 437 5 5996 7.29

P1 152 934 4910 5996 15.58

To gain understanding of the relationship  between recovery and 

process/observation characteristics, a basic response surface methodology (RSM) 

analysis was performed using logistic regression and a first-order model without 

interaction.  Independent variables included the following (nominal values): E[X], P1, 

E[Z], observation period, quasi-regular observation interval, event observation 

probability, and the CTMC model as a categorical variable.  Numerical variables were 

transformed for the analysis because they need to be on unbounded scales in order to 

make predictions at any point along the path of steepest ascent.  The observation protocol 

properties were included to avoid masking effects.    The six numerical regressor terms 

were all highly significant (Table 28), as was the term for CTMC model #3, which gave a 

significantly higher predicted recovery rate than the other two models.  
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The mean vector, disregarding CTMC model, of the transformed experimental 

design space is given in Table 29.

The probability of recovery for Model #1 associated with this vector was 

0.04566282.  The unit vector in the direction of steepest ascent is given in Table 37.

Table 29: Experimental design space mean vector
> mean.vector
    log_E_X    logit_P1   log_E_Z   log_oP     log_rS  logit_eP
1 -6.600725 0.002774700 -5.714353 2.758917 -0.9526023 -4.674129

Table 28: RSM regression results
> summary(glm.RSM.All)

Call:
glm(formula = OK ~ log_E_X + logit_P1 + log_E_Z + log_oP + log_rS + 
    logit_eP + testModel, family = "binomial", data = Recovery.All)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.4885  -0.4322  -0.2906  -0.1953   3.0501  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -1.91989    0.36392  -5.276 1.32e-07 ***
log_E_X     -0.87837    0.17116  -5.132 2.87e-07 ***
logit_P1    -0.35070    0.08113  -4.323 1.54e-05 ***
log_E_Z      1.43060    0.20722   6.904 5.06e-12 ***
log_oP      -1.00569    0.05556 -18.102  < 2e-16 ***
log_rS      -0.59537    0.02688 -22.149  < 2e-16 ***
logit_eP    -0.74145    0.02251 -32.940  < 2e-16 ***
testModel2   0.11434    0.07290   1.569    0.117    
testModel3   0.62473    0.06835   9.140  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 11268.4  on 17987  degrees of freedom
Residual deviance:  9154.8  on 17979  degrees of freedom
AIC: 9172.8

Number of Fisher Scoring iterations: 6
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Movement from any point in the direction of this vector results in a higher 

probability of recovery.  A predicted recovery rate of 0.95 was obtained at a distance of 

~2.7 units along the steepest path from the mean vector location (Figure 31). 

The point along the steepest path corresponding to a recovery rate of 0.95 for 

Model #1 (Table 31) is within the ranges of four of the regressor variables, but not all six. 

Table 30: Unit vector along steepest ascent gradient
> unit.vector
     log_E_X   logit_P1  log_E_Z     log_oP     log_rS   logit_eP
1 -0.3985708 -0.1591329 0.649148 -0.4563432 -0.2701541 -0.3364411

Figure 31: Probability of recovery along steepest path
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Only 15 scenarios had predicted recovery rates greater than 0.90.  This made it difficult to 

quantify the conditions under which good recovery could be expected to occur.

Table 31: Experimental design space ranges and 95% recovery point along steepest path

E[X] P1 E[Z] Observation 
period

Quasi-
regular 
spacing

Event observation 
probability

minimum 0.0001 0.0390 0.0002 5.0008 0.0105 4.54E-005
maximum 0.0104 0.9403 0.0168 29.9789 0.9997 1.00E+000
95% contour point 
(Model #1)

0.0005 0.3943 0.0192 4.5712 0.1852 3.73E-003

Plots of the results (Figure 32, Figure 33, and Figure 34) indicate that the 

experimental design space is largely outside of the zone where acceptable recovery rates 

are found.  To include more of the acceptable recovery rate area, the plots indicate that 

the upper limit of E[Z] should be increased, and the lower limit of observation period 

decreased, although this latter indication is counter-intuitive.  However, a first order 

response surface model is only a crude approximation, and it is likely that additional 

adjustments to the experimental design space dimensions might need to be made 

following a subsequent experiment with the adjusted input space.  The objective of a 

subsequent experiment would be to explore the region on either side of the 0.95 contour.
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Figure 32: Steepest ascent gradient vs. process/observation characteristics I
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Figure 33: Steepest ascent gradient vs. process/observation characteristics II
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It is not abundantly clear what adjustments would be made in the process 

simulation in order to obtain larger E[Z] values, since the specification for the process 

model does not include E[Z] directly.  Figure 35 indicates that larger values of E[Z] can 

only be obtained when the error correlation is very nearly 1, which is actually not unusual 

in water quality time series spaced at short intervals (i.e. one hour).  If this is not enough 

to generate enough high-recovery rate scenarios, then it may be necessary to modify the 

span of some of the observation protocol characteristic ranges, or at least do more 

sampling from within restricted ranges of those variables.  For example, it might be 

beneficial to sample the quasi-regular sampling interval preferentially from the lower end 

of the range (the end near 0.01 periods).  

Figure 34: Steepest ascent gradient vs. process/observation characteristics III
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 6.4.2 Overall predictive performance

Over 90% of all AUC values exceeded 0.8 regardless of which of the three CTMC 

models was used to estimate process properties from the data (Table 32).  Nearly all 

exceeded 0.7.  The means for Models #1, #2, and #3 were 0.918, 0.902, and 0.908 

respectively, while the medians were 0.936, 0.919, and 0.930.

Table 32: Cumulative distribution of AUC values

AUC >0.9 >0.8 >0.7 >0.6 >0.5 N Mean
Model #1 0.76 0.95 0.99 1.00 1.00 990 0.918
Model #2 0.63 0.92 0.97 0.99 1.00 990 0.902
Model #3 0.69 0.92 0.97 0.99 0.99 990 0.908

Figure 35: Effect of error correlation on expected renewal interval
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The previous results were confirmed by a Wilcoxon signed rank test for 

differences in population location.  Both Model #1 and Model #3 had significantly 

greater AUC values than Model #2, but were not significantly different themselves (Table

33).

Table 33: Wilcoxon signed rank test on AUC – MAP (bigger is better)

Test 95 percent confidence 

interval:
Lower Upper

Difference in 

location

p-value

Model #1 – Model #2 6.70E-003 1.50E-002 1.10E-002 0.0000
Model #1 – Model #3 -9.50E-004 6.78E-003 2.90E-003 0.1456
Model #2 - Model #3 -1.20E-002 -3.30E-003 -7.60E-003 0.0006

 6.4.3 Intra-method comparison

Estimated distributions of the log of duration and renewal ISEs for each process A 

and B are shown in Figure 36.  Visually it appears that the distributions from the CTMC 

estimations lie to the left of those from the time series estimations, indicating better 

predictive performance.  However, the differences are small.
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Results of a Wilcoxon signed rank test of the paired differences between the time 

series method ISEs and the CTMC method ISEs were mixed.  In all three duration ISE 

cases, the CTMC method resulted in significantly lower duration ISE than the time series 

method (Table 34).  On renewal ISE the CTMC methods were superior in one case and 

Figure 36: ISE distributions by process and method
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time-series methods were superior in two cases (Table 35).  Model#1 was superior on 

both duration ISE and renewal ISE.  Results were mixed on the other two models.  For 

each test, only trials with valid values for all four ISE statistics were included.

Table 34: Wilcoxon signed rank test on duration ISE (smaller is better)

Test N 95 percent confidence interval:
Lower Upper

(pseudo) 
median

p-value

TS – Model #1 1914 1.20E+000 1.48E+000 1.33E+000 0.0000
TS – Model #2 1898 1.46E-001 3.19E-001 2.32E-001 0.0000
TS – Model #3 1900 2.40E-001 4.78E-001 3.61E-001 0.0000

Table 35: Wilcoxon signed rank test on renewal ISE (smaller is better)

Test N 95 percent confidence interval:
Lower Upper

(pseudo) 
median

p-value

TS – Model #1 1950 8.48E-002 1.24E-001 1.04E-001 0.0000
TS – Model #2 1922 -4.61E-001 -3.38E-001 -3.97E-001 0.0000
TS – Model #3 1934 -2.15E-001 -7.47E-002 -1.36E-001 0.0000

 6.4.4 Process and observation protocol characteristic effect 

on AUC

Regression analysis was used to determine the effect on AUC of the process and 

observation characteristics and the model selected.  The three characteristics describing 

the processes were the difference in the process means, the correlation between the 

processes, and the ϕ parameter.  Difference in process means was dropped from the 
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regression because of its high negative correlation with the inter-process correlation.  The 

six characteristics describing the observation protocol were the observation period, the 

regular spacing intervals, the event observation probabilities, and the threshold level. 

AUC was logit-transformed to produce a dependent variable with a more-normal 

distribution.  A stepwise regression was used to select the model.  Variable names 

appearing in the model and their definitions are given in Table 36.

Table 36: Characteristic definitions

Characteristic Definition 
obsPeriod Number of periods processes were “observed” in simulation
regSpacing.A Mean interval between regularly spaced observations – process A
regSpacing.B Mean interval between regularly spaced observations – process B
eventProb.A Probability of making an observation in the violation state – process A
eventProb.B Probability of making an observation in the violation state – process B
threshold Arbitrary threshold separating state '0' from state '1'
rho.y Inter-process correlation
testModel Indicator for model used in the estimation step (Model #1, #2, or #3)

The results of the regression are in Table 37.  The adjusted R2 is fairly low but the 

model is significant.  All of the second-order terms are significant, although some of the 

first order terms are not.  There are no insignificant first-order terms, other than for the 

selected model, that are not involved in second-order terms.  Because of this fact, 

interpretation of effects was done graphically.  Only one of the process characteristics, 

rho.y, was retained in the model, whereas all of the observation protocol characteristics 

were retained.
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Because of the way the experiment was designed, process B was almost always 

above the threshold (state '1' or the non-violation state), whereas process A was almost 

always below threshold.  Because of this, the constraint on the number of event 

observations per period affected process A much more than process B.  The result was 

that eventProb.A only spanned a range of about [0, 0.073], whereas eventProb.B spanned 

the entire range [0,1].  The plots in Figure 37 indicate that higher AUC was associated 

Table 37: Regression results
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)                1.892e+00  1.111e-01  17.029  < 2e-16 ***
obsPeriod                  2.288e-03  3.736e-03   0.612 0.540366    
regSpacing.A               1.051e+00  1.526e-01   6.886 6.98e-12 ***
regSpacing.B               7.156e-02  1.494e-01   0.479 0.632036    
eventProb.A                1.330e+01  5.633e+00   2.361 0.018296 *  
eventProb.B               -1.461e+00  8.315e-01  -1.757 0.079030 .  
threshold                 -3.647e-01  1.260e-01  -2.895 0.003817 ** 
rho.y                      1.137e+00  1.337e-01   8.500  < 2e-16 ***
as.factor(testModel)2     -1.521e-01  3.257e-02  -4.669 3.17e-06 ***
as.factor(testModel)3     -8.850e-03  3.264e-02  -0.271 0.786311    
eventProb.A:threshold      4.445e+01  5.302e+00   8.384  < 2e-16 ***
regSpacing.A:rho.y        -2.224e+00  2.236e-01  -9.946  < 2e-16 ***
regSpacing.B:threshold    -8.771e-01  1.414e-01  -6.203 6.33e-10 ***
regSpacing.A:regSpacing.B -8.723e-01  1.633e-01  -5.340 9.98e-08 ***
regSpacing.A:eventProb.A   6.332e+01  9.090e+00   6.966 4.02e-12 ***
regSpacing.A:threshold     7.534e-01  1.566e-01   4.811 1.58e-06 ***
eventProb.B:rho.y          3.725e+01  3.919e+00   9.505  < 2e-16 ***
eventProb.B:threshold      1.126e+01  1.987e+00   5.665 1.61e-08 ***
eventProb.A:eventProb.B   -2.380e+02  4.545e+01  -5.237 1.75e-07 ***
regSpacing.A:eventProb.B  -4.293e+00  1.203e+00  -3.568 0.000365 ***
regSpacing.B:eventProb.B   2.693e+00  8.439e-01   3.191 0.001434 ** 
obsPeriod:regSpacing.B    -1.830e-02  6.451e-03  -2.836 0.004594 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7226 on 2948 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared: 0.2221,     Adjusted R-squared: 0.2165 
F-statistic: 40.07 on 21 and 2948 DF,  p-value: < 2.2e-16 
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with higher event observation probability.  Subplot [b] indicates a decline in AUC in the 

upper right-hand corner, however there aren't any observations in that region to support 

that inference; it is most likely an artifact.  Whenever eventProb.B is greater than about 

0.2 (on these plots), AUC is nearly 1.0, except for a small region in subplot [d]. 

Whenever inter-process correlation is above 0.2, AUC is generally above 0.95.  More 

positive values of threshold also tend to result in higher AUC.  The effect of a higher 

threshold is to increase the amount of time process B spends below threshold (both 

processes really, but proportionally more so for process B), which may in some cases 

increase the total number of violation-state observations made.
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Most of the subplots in Figure 38 and Figure 39 are self-explanatory, however a 

few seem counter-intuitive at first glance.  For example subplot [c], which maps the 

interaction between regSpacing.A and threshold, indicates that the relationship between 

Figure 37: Second-order effects I
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AUC and regSpacing.A reverses as threshold goes from negative to positive.  To 

understand this it is necessary to understand the implication of threshold.  When 

threshold is near +1 or -1 it must be that process A and B have a high degree of overlap. 

However, near +1 indicates that both processes are below threshold a great deal of the 

time, whereas near -1 indicates the opposite.  When threshold is near 0 the degree of 

overlap may range from none to complete, and the proportion of time below threshold 

will be dissimilar for each process.  When processes are below threshold more event 

observations are made, and so threshold is somewhat of a surrogate for event observation 

probability, although the two are not correlated.  Subplot [a] reflects this effect of 

threshold as when inter-process correlation is low, there is little overlap, restricting values 

of threshold to be near zero.  
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Subplot [d] of Figure 39 appears counterintuitive in that, for a fixed value of 

regSpacing.B, AUC decreases with increasing obsPeriod.  However, the first-order 

coefficients for both characteristics were insignificant.  Concentrating therefore on the 

Figure 38: Second-order effects II
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interaction, any line through the origin, other than one that is purely vertical or 

horizontal, represents a fixed number of observations over the observation period.  For 

example, the line through the point (30,1) corresponds to 30 observations, regardless of 

the observation period.  That is, for shorter observation periods the observation rate is 

more intense.  One interpretation of this subplot is then that higher AUC is obtained with 

higher observation rates.  Steeper sloped lines indicate fewer observations than less steep 

slopes.  Another interpretation therefore is that higher AUC is obtained with more 

observations.  
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 6.5 Discussion

The objective of this paper was to evaluate the performance of three hierarchical 

CTMC models for threshold exceedance behavior and compare them with a method 

Figure 39: Second-order effects III
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adopted from the flood-frequency analysis domain and similar to one that has been used 

by other researchers (Madsen, Rasmussen & Rosbjerg 1997, Wang 1991, Deviney, Rice 

& Hornberger 2006).  All models and methods were applied to simulated asynchronous, 

unevenly spaced, and uncoordinated observations typical of the field of water-quality 

monitoring.  The evaluation consisted of assessments of nominal parameter recovery, of 

out-of-sample prediction performance, of a comparison with the PDS method, and of the 

effect of various process and observation characteristics on said performance.  The 

purpose of these assessments was to compare the three candidate models with each other 

and the PDS approach, and to establish the conditions under which the CTMC models 

could be used, assuming that successful application would be a function of both process 

characteristics and of observation protocol characteristics. 

The CTMC methodology was found to produce biased parameter estimates over 

much of  the experimental design space considered.  This space was specified to represent 

process characteristics and observation protocol characteristics thought to be common in 

the water quality monitoring field.  Under these assumptions the method can be expected 

to overestimate violation state duration and long-term probability of violation-state 

occurrence, which favors the conservationist, and to underestimate frequency, which 

favors the polluter.  It appears these biases could be reduced; however, additional 

experiments should be conducted to determine the conditions under which good recovery 

of true process parameter values could be expected.  The major source of bias appears to 

be the observation protocol characteristics.  
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In this experiment, the simulation of violation-state observation was made under 

the assumption that the observer would know that the process was in the violation-state. 

In practice this is not generally known.  In some cases automated samplers can be 

activated by monitoring a different process, such as discharge, known to be correlated 

with the violation-state.  To model this degree of reality in this experiment would have 

required the simulation of the different process as well, and this was not seriously 

considered.  However to be more realistic the occasional high-frequency observation of 

the process should have some probability of occurring during non-violation-state periods.

Estimation of frequency (renewal period) and duration properties of the processes 

were made with the CTMC models and with a partial-duration series method adopted 

from the flood-frequency literature.  The homogeneous CTMC model (Model #1) 

exhibited lower error on both duration and renewal period (frequency) distributions than 

the partial duration series method or either of the non-homogeneous CTMC models.  The 

non-homogeneous CTMC models exhibited lower error on duration than the PDS 

method, but greater error on renewal period.  Interestingly, Model #1 performed the worst 

on recovery.  Since there was evidently some transformation of the underlying process 

made by the observation protocol, this is not necessarily a contradiction.  

The three CTMC models were compared for predictive ability, and a regression 

analysis was performed to measure the relationship between predictive performance and 

process and observation protocol characteristics.  The high median AUC values for all 

three models indicated that parameter estimation for the observed processes was 
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generally accurate.  This suggests that the source of bias in recovery was because of 

characteristics of the observation protocol and not because of the models or estimation 

method.  Additional experiments would be needed to tease out the exact causes of this 

bias and under what conditions it could be avoided.  The homogeneous model exhibited 

better predictive performance, again in contrast to the recovery results.  More-positively 

correlated processes were easier to predict.  Not surprisingly, higher observation rates, 

regardless of type, were found to improve predictive performance.  However, there was 

considerable unexplained variance associated with the model.

Unfortunately it is difficult at this point, without additional experimentation, to 

recommend one model or method over another.  

In their seminal paper on the Seasonal Kendall Tau test for trend,  Hirsch and 

Slack (1982)  evaluated a non-parametric test for trend using six different trend-free 

models (reproduced in Table 38) for simulated monthly observations (12 per year) of 

univariate WQI processes.  Trends of various magnitudes were added to these models to 

test for power.  A modification of the NIS model from Table 38 was used in this paper 

because, in the author's experience, this model corresponds to a large number of actual 

WQI processes.  The simulations from this model yielded processes with expected 

duration lengths that ranged from about 0.0001 to 0.01 periods, or from roughly one hour 

to one-half week, assuming one period equals one year.  The expected return intervals 

ranged from about 0.0002 to 0.0168 periods, or from roughly two hours to one week (in 

frequency terms from roughly 60 times to 5000 times per period).  These seem to be a bit 
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short of the range that would normally be thought to be of interest, particularly with 

respect to the expected return interval, where even an expected return interval of one year 

can be problematic.  Additional investigations could consider additional models for 

water-quality processes from Table 38 that might yield processes with different 

properties.  There are also a number of physical models for water-quality processes, 

however their use would be considerably more complicated.

Table 38: Trend-free models for monthly WQIs

1. Normal independent (NI) x ij=ij  (58)

2. Log normal independent 
(LNI)

x ij=exp [0.83ij−0.35]−1.0  (59)

3. Normal independent with 
seasonal cycle (NIS)

x ij=0.5ijsin3 6 i  (60)

4. Normal autoregressive 
(NAR)

x ij=0.2 [ x ij]L0.98ij  (61)

5. Normal autoregressive-
moving average (NARMA)

x ij=0.75 [ xij ]L0.97ij−0.57[ij ]L  (62)

6. Log normal, autoregressive 
with seasonal cycle 
(LNARS)

x ij=0.5exp [0.22[ x ij]L0.80ij−0.35]−0.71  (63)

Note 1: L is a function for lag

On the one hand, the time-series model used for prediction was the same model 

used to generate the data.  From that perspective it should have worked well.  On the 

other hand, other potentially better time-series models, for example with more lagged 

terms in the error model, were not considered.  In addition, there are other methods in 

hydrology used for modeling magnitude, frequency, and duration other than the PDS 
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method, such as the annual maximum series (AMS) method, which were not used. 

However the AMS method, in particular, is known to underestimate frequency compared 

to the PDS method (Madsen, Pearson & Rosbjerg 1997, Madsen, Rasmussen & Rosbjerg 

1997) .  Even the PDS method may underestimate actual rates as it is common in actual 

practice to remove short-term excursions from the analysis in order to meet assumptions 

of independence between excursion events (Madsen, Pearson & Rosbjerg 1997, Madsen, 

Rasmussen & Rosbjerg 1997).  

In a real-world application, it is expected that additional data will be available for 

prediction of group-level parameters of the hierarchical model.  Which data would be 

useful, and how many groups and levels there are in the hierarchical model, would 

depend on the WQI being modeled.  For example, for pH or acid-neutralizing capacity, 

geology is generally an important predictor of process level.  For temperature, however, 

elevation, aspect, and latitude should be of more importance.  Using Model #1 for 

illustration, the model might be modified as follows (showing only the relevant parts) in 

order to incorporate location-level predictors of transition rates and the limiting 

probability P1:
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logit P j , 1~ Normal  0 1 x1⋯  p x p ,P1
log C j~ Normal  0 1 x1⋯ p x p ,C

0 ~ Normal 0,0.0001
⋮

 p ~ Normal 0,0.0001
0 ~ Normal 0,0.0001

⋮
 p ~ Normal 0,0.0001

 (64)

In addition, it might be of interest to know if process properties are changing with 

time.  Following is a modification to Model #3 which could be used to estimate a 

monotonic trend in the long-term proportion of time spent in state '1'.  In this particular 

case, where there was an assumption of constant (but unknown) renewal period, a 

monotonic trend in P1 would result in monotonic trends in the transition rates, which 

would result in monotonic trend in the expected duration period in the violation state. 

The range of possible models built on this framework seems to be unlimited.

logit P j ,1,n=logit P j ,1   j t
logit P j , 1~ Normal   j ,
 j ~ Normal 0,

 (65)

One of the challenges to performing this experiment stemmed from the use of a 

grid of Windows machines for running scenarios.  These machines were part of public 

computer labs at the University of Virginia (UVA).  Most of them were set up to be able 

to run two scenarios simultaneously.  Walk-in users logging in to a machine would cause 
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whatever scenarios were running on the machine at that time to abort.  In addition, all 

public Windows computers were set to re-start around 4:00 a.m. each morning, which had 

the same effect.  Although the job queuing system for the grid could automatically re-

start such aborted jobs, it was found that trouble-shooting was facilitated if this was not 

allowed to occur.  The upshot was that if all 3,000 jobs (scenarios) were loaded into the 

queue, at the end not all would have reached convergence.  The result was that a 

significant amount of effort had to be devoted to job submission management, to ensure 

that completed scenarios were not re-run.  In addition, although the overall runtime of the 

experiment was surely shortened, since the scenario output came back as 3,000 sets of 

output files, another significant effort was required to merge all of the results into datasets 

that could be analyzed.  Of course, the inevitable coding errors and model changes 

required that the whole process be repeated.  

A minor issue that arose was that of setting random number generator seeds. 

Typically this is done so that randomized experiments can be repeated exactly. 

Attempting to do this turned out to be a nightmare, and was therefore abandoned.  First of 

all, with each scenario running on a different machine in potentially different order, it 

would have been necessary to specify a seed for each scenario.  In addition, as the 

OpenBUGS software uses its own seed separate from the seed used by R, it would also 

have had to have its own seed.  Even the generation of simulated observations was done 

on the grid, so each one of those scenarios would have required a seed.  Not of 

insignificant importance was the observation that convergence appeared to be affected by 
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the choice of seed.  Some seeds presumably lead to bad starting values and a failure to 

converge.   Simply re-running a failed scenario often led to convergence.  For all these 

reasons seeds were not set.  Therefore these experiments cannot be repeated exactly. 

However, it is expected that conclusions made are robust enough to withstand a repeat of 

the experiment.

 6.6 Conclusions

The objective of this paper was to evaluate the performance of three hierarchical 

CTMC models for threshold exceedance behavior and compare them with a method 

adopted from the flood-frequency analysis domain.  Three hierarchical two-state CTMC 

models for threshold exceedance at multiple locations were introduced and tested.  The 

first of these was homogeneous.  The second was non-homogeneous with time-varying 

transition rates.  The third was non-homogeneous with time-varying limiting 

probabilities.  These CTMC models may be easily extended to allow for group-level 

prediction of process parameters using extraneous data, to allow for changes in process 

properties over time, and to allow extrapolation to other catchments where process 

observations are not available.  The methodology investigated here allowed the use of all 

available data, despite observation schedule, to be used in an analysis.

Dual simulations of observations of correlated WQI processes were generated 

using a sinusoidal model with correlated errors adapted from the statistics of hydrology 

literature.  Observation of these processes was simulated assuming a protocol of quasi-
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regular observation intervals and random observation during excursions of the processes 

to one side of an arbitrary threshold.

Nominal parameter values were outside of the corresponding posterior 

distributions over much of the experimental design space.  Duration and long-term 

probability of violation tended to be overestimated, which favors the conservationist. 

Frequency tended to be underestimated, which favors the polluter.  Additional 

experiments are recommended to better define operational conditions which lead to good 

recovery of nominal parameter values.

Estimation of frequency (renewal period) and duration properties of the processes 

were made with the CTMC models and with a partial-duration series method adopted 

from the flood-frequency literature.  The homogeneous CTMC model exhibited lower 

error on both duration and renewal period (frequency) distributions than the partial 

duration series method or either of the non-homogeneous CTMC models.  The non-

homogeneous CTMC models exhibited lower error on duration than the PDS method, but 

greater error on renewal period.

The three CTMC models were compared for predictive ability, and a regression 

analysis was performed to measure the relationship between predictive performance and 

process and observation protocol characteristics.  Overall, predictive ability was 

excellent, with median AUC in excess of 0.90 regardless of CTMC model.  The 

homogeneous model exhibited better predictive performance.  More-positively correlated 

processes were easier to predict.  Not surprisingly, higher observation rates, regardless of 
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type, were found to improve predictive performance.  However, there was considerable 

unexplained variance associated with the model.  The excellent predictive performance 

indicates that the bias in parameter estimates was more likely because of characteristics 

of the observation protocol than the estimation method.
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 7 Conclusions

Decisions and assessments in the field of aquatic-resources management are often 

made based on the perceived risk that a given water quality indicator (WQI) makes 

excursions to one side of a defined threshold that divides the WQI process domain into 

two states, one of which is recognized to have undesirable ecological consequences.  The 

risky state is referred to as the exceedance or violation state.  This risk is a function of the 

frequency of occurrence of violation state excursions, the duration of these excursions, 

and the long-term proportion of time spent in the violation state.  Yet the methodology to 

assess such risk has not been well-developed, in part because of the cost of acquiring 

sufficient data to estimate risk by simply counting the frequency of and measuring the 

duration of violation events.  This is particularly true if the problem of assessing risk 

across a region is considered, where observations may have been made following a 

number of different protocols.  Data are often collected at multiple locations in a region; 

however, these observations are usually made at infrequent, asynchronous, unevenly 

spaced, and uncoordinated (with threshold crossing) times.

The objective of this dissertation was to address this problem with CTMC models 

and Bayesian methods.  The work builds in a straightforward manner using simulations 
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based on simple single-process scenarios derived from continuous-time Markov chains, 

to multiple-process scenarios based on statistical time-series models of WQIs.  To 

understand the performance of these models on real problems, formal simulation tests 

were performed over a realistic range of problem parameters.  These parameters included 

both process and observation protocol characteristics intended to be representative of the 

water quality monitoring domain.  Process characteristics were defined in terms related to 

duration, frequency, and long-term proportion.  Observation protocol characteristics were 

defined in terms of total length of observation period, quasi-regular observation interval, 

and event observation probability, as many water quality monitoring protocols consist of 

a combination of approximately evenly spaced but infrequent observations made on a 

timed schedule and higher-frequency observations made on an approximately randomly 

spaced schedule and intended to occur during periods of threshold violation. 

Assessments were made of the true parameter value recovery and out-of-sample 

predictive capabilities of the methodology under these simulated conditions.  

The major finding from these assessments was that under the range of process and 

observation protocol characteristics considered, estimation of true process parameter 

values was biased, for the most part in favor of the conservationist.  In most cases 

duration, frequency, and long-term proportion of time spent in the violation state were 

overestimated.  

In spite of this bias, predictive performance on simulated out-of-sample 

observations was excellent.  This indicated that the estimation process worked well but 
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that the properties of the simulated observation process did not match the properties of 

the underlying process.  This in turn suggested that the source of the bias mentioned 

above was not the models or the estimation process but was related to the characteristics 

of the observation protocols.  Additional work is needed to determine if this bias stems 

from the models, the estimation process, or the observation protocols.

The proposed models and their evaluation provide significant theoretical, 

methodological, and practical contributions to the environmental systems analysis 

communities.  From a theoretical standpoint, several new models of threshold violation 

have been developed that permit estimation of three very important properties of WQI 

processes, the frequency and duration of threshold violation events, and the long-term 

proportion of time spent in the violation state.  Several of these models are univariate, 

and some are multivariate.  The hierarchical nature of the multivariate models allows for 

additional predictors to be used in regional modeling efforts.

From a methodological standpoint, it has been shown that Bayesian methods can 

be used to estimate the model parameters and properties from the type of asynchronous, 

infrequent, uncoordinated, and unevenly spaced observations that are typical in water-

quality monitoring.  This was done with a combination of hierarchical two-state 

homogeneous and non-homogeneous Markov chain models, the Kolmogorov Backward 

Equation, and Bayesian inference.  No other work has been found that has combined 

these elements for this or any other purpose.  The methodology developed  adds 

significantly to those currently available for estimating return period, duration, and long-



Page 202 of 215

term probability of threshold violation events.  This methodology enables the analysis of 

a large number of water-quality time series that have as yet gone unanalyzed for 

distributions of return period and duration of threshold violation events.  The results of 

this work will change the way scientists, engineers, and managers think about and use the 

observations generated through water-quality monitoring. 

From a practical standpoint, evaluations have been provided of the models and the 

estimation methods based on results analyses that have validated the approach and 

enabled prospective practitioners to use the methodology.  Additional work would be 

useful to better define all operating conditions that result in unbiased estimates. 

Recognizing these limitations, the results of the evaluations assist users of water quality 

data in assessing the usefulness of existing data, gives them a tool with which to analyze 

it, and gives them a basis upon which to plan future monitoring strategies.  Guidance has 

also been given on model specification.  Although the focus has been on water quality, it 

is expected that the evaluation methodology will be useful in other application areas as 

well.
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 9 Appendix A

 9.1 Single-process CTMC – Model #1 (homogeneous )

model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(lambda+mu)*delta_t[i])
  }
  P1     <- lambda/(lambda+mu)
  mu      ~ dunif(0.01,10000)
  lambda  ~ dunif(0.01,10000)
}
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 9.2 Single-process CTMC with varying rate – Model #2 (non-

homogeneous )

 model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(1+K)*lambda.t[i]*delta_t[i])
    lambda.t[i] <- lambda + A*sin(theta[i]) + B*cos(theta[i])
  }
  P1 <- 1/(1+K)
  mu <- K*lambda
  K ~ dlnorm(0, 1)
  lambda  ~ dunif(0.01,10000)
  ubdA <- lambda
  lbdA <- -ubdA
  pA ~ dunif(0, 1)
  A    <- lbdA + pA*(ubdA-lbdA)
  ubdB <- sqrt(pow(ubdA,2) - pow(A,2))
  lbdB <- -ubdB
  pB ~ dunif(0, 1)
  B    <- lbdB + pB*(ubdB-lbdB)
}
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 9.3 Single-process CTMC with varying limiting probabilities - 

Model #3 (non-homogeneous )

 model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1.t[i]*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(lambda[i]+mu[i])*delta_t[i])
    mu[i] <- gam/P1.t[i]
    lambda[i] <- gam/(1-P1.t[i])
    P1.t[i] <- P1 + A*sin(theta[i]) + B*cos(theta[i])
  }
  gam  ~ dunif(0.01,10000)
  P1 ~ dbeta(0.999,0.999)
  P0 <- 1 - P1
  ubdA <- min(P0, P1)
  lbdA <- -ubdA
  pA ~ dunif(0, 1)
  A    <- lbdA + pA*(ubdA-lbdA)
  ubdB <- sqrt(pow(ubdA,2) - pow(A,2))
  lbdB <- -ubdB
  pB ~ dunif(0, 1)
  B    <- lbdB + pB*(ubdB-lbdB)
}
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 9.4 Multiple-process CTMC – Model #1 (homogeneous ),  

simple version

model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1s[node[i]]*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(lambdas[node[i]]+mus[node[i]])*delta_t[i])
  }
  for (j in 1:J) {
    P1s[j]     <- lambdas[j]/(lambdas[j]+mus[j])
    mus[j]     ~  dunif(0.01,10000)
    lambdas[j] ~  dunif(0.01,10000)
  } 
}
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 9.5 Multiple-process CTMC Model #1 (homogeneous), 

hierarchical version

model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1s[node[i]]*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(lambdas[node[i]]+mus[node[i]])*delta_t[i])
  }
  for (j in 1:J) {
    P1s[j]     <- max(0, min(1, p1.raw[j]))
    lambdas[j] <- Cs[j] * P1s[j]
    mus[j]     <- Cs[j] * (1 - P1s[j])

    logit(p1.raw[j]) <- b.0[j]
    b.0[j]     ~ dnorm(b.0.hat[j], tau.b.0)I(-10,10)
    b.0.hat[j] ~ dnorm(mu.b, tau.b)

    log(Cs[j]) <- b.Cs.0[j]
    b.Cs.0[j]     ~ dnorm(b.Cs.0.hat[j], tau.b.Cs.0)I(-10,10)
    b.Cs.0.hat[j] ~ dnorm(mu.Cs, tau.Cs)
  }
  tau.b.0 ~ dgamma(0.5, 0.5)
  tau.b.Cs.0 ~ dgamma(0.5, 0.5)
  mu.b ~ dnorm(0, 0.0001)
  tau.b ~ dgamma(0.5, 0.5)
  mu.Cs ~ dnorm(0, 0.0001)
  tau.Cs ~ dgamma(0.5, 0.5)
}
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 9.6 Multiple-process CTMC Model #2 (non-homogeneous)

 model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1s[node[i]]*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(1+Ks[node[i]])*lambda.t[i]*delta_t[i])
    lambda.t[i] <- lambdas[node[i]] + As[node[i]]*sin(theta[i]) 

+ Bs[node[i]]*cos(theta[i])
  }
  for (j in 1:J) {
    P1s[j]     <- max(0, min(1, p1.raw[j]))
    Ks[j]      <- (1-P1s[j])/P1s[j]
    lambdas[j] <- Cs[j] * P1s[j]

    logit(p1.raw[j]) <- b.0[j]
    b.0[j]     ~ dnorm(b.0.hat[j], tau.b.0)I(-10,10)
    b.0.hat[j] ~ dnorm(mu.b, tau.b)

    log(Cs[j]) <- b.Cs.0[j]
    b.Cs.0[j]     ~ dnorm(b.Cs.0.hat[j], tau.b.Cs.0)I(-10,10)
    b.Cs.0.hat[j] ~ dnorm(mu.Cs, tau.Cs)

    r[j] ~ dunif(0,1)
    As[j] <- r[j] * lambdas[j] * cos(omega)
    Bs[j] <- r[j] * lambdas[j] * sin(omega)
  }
  tau.b.0 ~ dgamma(0.5, 0.5)
  tau.b.Cs.0 ~ dgamma(0.5, 0.5)
  mu.b ~ dnorm(0, 0.0001)
  tau.b ~ dgamma(0.5, 0.5)
  mu.Cs ~ dnorm(0, 0.0001)
  tau.Cs ~ dgamma(0.5, 0.5)
  omega    ~ dunif(-3.141592594, 3.141592594)
}
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 9.7 Multiple-process CTMC Model #3 (non-homogeneous)

model {
  for (i in 1:nObs) {
    stateEnd[i] ~ dbern(p[i])
    p[i] <- P1.t[i]*F[i] + (1-F[i])*stateBeg[i]
    F[i] <- 1 - exp(-(lambda[i]+mu[i])*delta_t[i])
    mu[i] <- gams[node[i]]/P1.t[i]
    lambda[i] <- gams[node[i]]/(1-P1.t[i])
    P1.t[i] <- P1s[node[i]] + As[node[i]]*sin(theta[i]) 

+ Bs[node[i]]*cos(theta[i])
  }
  for (j in 1:J) {
    gams[j] <- Cs[j]*P1s[j]*(1-P1s[j])
    P1s[j]  <- max(0, min(1, p1.raw[j]))
    P0[j]   <- 1 - P1s[j]

    log(Cs[j]) <- b.Cs.0[j]
    b.Cs.0[j]     ~ dnorm(b.Cs.0.hat[j], tau.b.Cs.0)I(-10,10)
    b.Cs.0.hat[j] ~ dnorm(mu.Cs, tau.Cs)

    logit(p1.raw[j]) <- b.0[j]
    b.0[j]     ~ dnorm(b.0.hat[j], tau.b.0)I(-10,10)
    b.0.hat[j] ~ dnorm(mu.b, tau.b)

    maxamp[j] <- 0.5 - sqrt(pow(P1s[j]-0.5,2))
    r[j] ~ dunif(0,1)
    As[j] <- r[j] * maxamp[j] * cos(omega)
    Bs[j] <- r[j] * maxamp[j] * sin(omega)
  }
  tau.b.0 ~ dgamma(0.5, 0.5)
  tau.b.Cs.0 ~ dgamma(0.5, 0.5)
  mu.b ~ dnorm(0, 0.0001)
  tau.b ~ dgamma(0.5, 0.5)
  mu.Cs ~ dnorm(0, 0.0001)
  tau.Cs ~ dgamma(0.5, 0.5)
  omega ~ dunif(-3.141592594, 3.141592594)
}
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