
4/25/2018 Thesis/Dissertation Cover and Approval Pages

https://seas.virginia.edu/forms/thesis-cover-approval.php 1/2

4/25/2018 Thesis/Dissertation Cover and Approval Pages

https://seas.virginia.edu/forms/thesis-cover-approval.php 2/2

Abstract

Biological sciences are rapidly becoming data intensive. Between 100 million to 2 billion human genomes are

estimated to be sequenced by the year 2025, far exceeding the growth of big data domains like Astronomy,

YouTube, and Twitter. Majority of these biological datasets are sequential in nature, representing the human

genome as well as measurements of activity taking place around it. Analyzing this enormous repository of

sequential data is both urgent and essential to understand genetic diseases and drug development. Data-driven

approaches like machine learning have shown significant progress in analyzing the existing data. However,

the state-of-the-art machine learning techniques face two hard challenges in this domain: (1) Interpretability

of the predictions for better insights, and (2) Slow computation due to expanding search space of sequential

patterns. In this dissertation, we aim to solve these two challenges by improving two popular machine learning

models: Deep Neural Networks (DNNs) and String Kernel with Support Vector Machines (SK-SVM).

Challenge(1): DNNs can handle large sequential datasets accurately and in an efficient manner. However,

DNNs have widely been viewed as ‘black boxes’ due to the complex, multi-layer structure, making them

hard to understand. We design a novel unified DNN architecture to model and to interpret features in an

end-to-end manner. The proposed design is not only accurate, but it also provides better interpretation than

state-of-the-art feature visualization methods such as saliency maps.

Challenge (2): SK-SVM methods achieve high accuracy and have theoretical guarantees with limited labeled

training samples. However, current implementations run extremely slow when we increase the dictionary

size or allow more mismatches. We present a novel algorithmic implementation for calculating Gapped

k-mer string Kernel using Counting (GaKCo). This method is fast, scalable and naturally parallelizable.

Empirically, GaKCo is up to 100 times faster than the state-of-the-art SK-SVM method across multiple

biological sequential datasets.

i

Acknowledgements

I would like to start by expressing my utmost gratitude to Dr. Yanjun Qi. She has been an incredible advisor

and a mentor for the past five years. She understood my keen interest in doing interdisciplinary research and

encouraged my ideas. Her guidance during critical stages of my Ph.D. has not only shaped my research but

also helped me figure out a career path.

I would also like to thank Dr. Mazhar Adli for accepting me as a student in his lab and being incredibly

patient as I started working with biological datasets. His insights regarding my projects were beneficial

towards their development and execution. I am fortunate to have a great dissertation committee including

Dr. Mary Lou Soffa, Dr. Gabriel Robins, and Dr. Christina Leslie and I am grateful for their valuable

inputs.

I have had some wonderful mentors during different stages of my Ph.D. Dr. Ryan Layer, who was a graduate

student when I started, shared my passion for biology. He connected me to the labs in the Medical School that

began this journey. Royden Clark patiently showed me the ropes of data analysis in bioinformatics and was

always there to help me when I got stuck on a problem. I also had the excellent opportunity to collaborate

with Dr. Jennifer Listgarten. She reminded me of the importance of curiosity and unapologetically asking

questions in research.

No woman is an island, and hence I owe this milestone to an outstanding support system of family and friends.

My parents and my sister have been my pillars of support and encouragement. My uncle, Aditya, aunt, Kiran,

and their beautiful family has been my home away from home. They went above and beyond to help me

settle here and have been my safety net. The first group of friends at a new place are paramount to help

one adjust well, and I have been lucky to have quite a few. A special mention to Andrew, Debalina, Jacob,

Jeremy, Juhi, and Vidhya for being few of those amazing friends. Avinash and Divya are my rockstars. They

ii

cheered me on along every step of the way that restored my confidence in my abilities. Avinash introduced

me to backpacking, while Divya got me into rock climbing, and both these hobbies have helped me develop

as a person. Jack has been a collaborator and a close friend, with whom I have bounced project ideas and

occasionally pondered over the meaning of life. Ivan has been an ally since day one and our monthly lunches

and interesting conversations would be my highlights during stressful times. Dr. Mahmut Parlak, with his

infinite wisdom, always provided a new perspective on any situation, good or bad. Last but not the least,

Dhruv, who understood me the most. He counseled me through the rough days and celebrated each of my

achievement as his own. A big thank you to all my friends, near and far, who have checked on me regularly

and have been involved in this journey with me.

My Ph.D. has been the result of collaborative work with my fantastic lab members and undergraduates.

Beilun, Arshdeep, and Dr. Cem Cuscu have helped me in my significant projects. I have also had the

opportunity to work with some really talented undergraduates - Byran, Marina, Andrew, Derrick, Eamon,

and Chris - during different stages of my projects.

And finally, an acknowledgment of my failures. Behind this work are hundreds of failed attempts and multiple

rejection letters. These setbacks have, time and again, strengthened my resolve to keep trying and work

harder. As this journey continues, I hope my failures will keep me grounded and motivated to pursue new

challenges.

iii

To my parents and my sister for believing in me, always.

iv

Contents

Acknowledgements ii

Contents v
List of Tables . vii
List of Figures . viii

1 Introduction 1

2 Literature Review 5
2.1 Sequential Data in Biology . 5
2.2 Interpretability of Deep Neural Networks . 7

2.2.1 Deep Neural Networks for Biological Tasks . 7
2.2.2 Attention-based Deep Neural Networks . 10

2.3 Sequence Classification with String Kernels . 11
2.3.1 Support Vector Machine (SVM): . 11
2.3.2 String Kernels . 13
2.3.3 String Matching Algorithms . 15
2.3.4 k-mer counting methods . 16

3 Deep Neural Network for Gene Expression Prediction 17
3.1 Predicting Gene Expression using Histone Modifications . 17
3.2 Previous Computational Methods . 19
3.3 Approach . 21

3.3.1 Input Generation . 21
3.3.2 An end-to-end architecture based on Convolutional Neural Network (CNN) 23
3.3.3 Visualizing combinatorial effect through optimization 25

3.4 Experimental Setup . 27
3.4.1 Dataset . 27
3.4.2 Baselines . 28
3.4.3 Hyperparameter tuning . 28

3.5 Results . 29
3.5.1 Performance Evaluation . 29
3.5.2 Validating the influence of bin positions on prediction 30
3.5.3 Visualizing Combinatorial Interactions among Histone Modifications 31

4 Towards Interpretability of Deep Neural Networks 35
4.1 Why Interpretability is Important? . 35
4.2 Approach . 37

4.2.1 Input and Output Formulation for the Task . 37
4.2.2 Long Short-Term Memory (LSTM) Networks . 37

v

4.2.3 An End-to-End Deep Architecture for Predicting and Attending Jointly 39
4.2.4 Bin-Level Encoder Using LSTMs . 39
4.2.5 Bin-Level Attention, α-attention . 39
4.2.6 HM-Level Encoder Using Another LSTM . 40
4.2.7 HM-Level Attention, β-attention . 40
4.2.8 Training AttentiveChrome End-to-End . 41

4.3 Experimental Setup . 42
4.3.1 Dataset . 42
4.3.2 Model Variations and Two Baselines . 42
4.3.3 Model Hyperparameters . 43

4.4 Results . 44
4.4.1 Performance Evaluation . 44
4.4.2 Using Attention Scores for Interpretation . 44

5 Towards Faster String Kernel Calculation 49
5.1 Biological Sequence Classification Tasks . 49
5.2 Approach . 50

5.2.1 Background: Gapped k-mer String Kernels . 51
5.2.2 Proposed Method: Gapped k-mer Kernel with Counting (GaKCo) 54
5.2.3 Theoretical Comparison of Time Complexity . 57
5.2.4 Justification of GaKCo’s Sort and Count Method . 63

5.3 Experimental Setup . 64
5.3.1 Benchmark Tasks of Sequence Classification . 64
5.3.2 Experimental Setup . 65

5.4 Results . 67
5.4.1 Kernel Calculation Time Performance . 67
5.4.2 Empirical Performance of GaKCo versus NN . 72

6 Conclusion and Future Work 75
6.1 Intellectual Merit . 75
6.2 Future Work . 76

6.2.1 Extension of DNNs for Gene Expression Prediction . 76
6.2.2 Scalability of SK-SVM Methods . 77

6.3 Broader Impact . 78

Appendix 79
A:1 Selecting input HM features for DNNs . 79
A:2 Formal proof regarding Hamming Distance Property . 80

Bibliography 81

vi

List of Tables

3.1 Comparison of previous studies for the task of quantifying gene expression using histone
modification data. 21

3.2 Five core histone modification marks, as defined by REMC study [1], along with their functional
categories . 23

3.3 Results on validation set (6601 genes) during tuning across different combinations of kernel
size k and pool size m. 30

4.1 Comparison of previous studies with AttentiveChrome. 36
4.2 AUC score performances for different variations of AttentiveChrome and baselines 43
4.3 Pearson Correlation values between weights assigned for Hprom (active HM) by different

visualization techniques and Hactive read coverage (indicating actual activity near ”ON” genes)
for predicted ”ON” genes across three major cell types. 44

5.1 List of symbols and their descriptions that are used. 52
5.2 Comparing time complexity of gkm-SVM versus GaKCo. 61
5.3 Details of datasets used for different prediction tasks. 64
5.4 Summary of GaKCo, gkm-SVM and CNN-AUC scores for all datasets. 73

A:1 AUC scores in GM12878 when each HM is used as input signal one at a time. 79
A:2 Variations in AUC scores in GM12878 when one HM is removed from the input one at a time. 80

vii

List of Figures

2.1 Overview of a Deep Neural Network (DNN). 7
2.2 Overview of a Support Vector Machine (SVM). 12
2.3 Overview of the String Kernel + SVM model. 13

3.1 Feature Generation for DeepChrome model. 22
3.2 DeepChrome convolution neural network (CNN) model . 23
3.3 Performance Evaluation on Test Set . 31
3.4 Validating the influence of positions for gene expression classification. 32
3.5 DeepChrome visualization . 33

4.1 Overview of the proposed AttentiveChrome framework . 37
4.2 A simple representation of an LSTM module. 38
4.3 Visualization results of Attentivechrome . 45
4.4 Detailed schematic of the proposed AttentiveChrome architecture 48

5.1 GaKCo versus gkm-SVM comparison . 51
5.2 Overview of GaKCo algorithm for calculating mismatch profile Nm(S, T). 54
5.3 Increase in estimated size of nodelist with increasing M . 62
5.4 Kernel calculation times (lower is better) for best g and varying k with M 68
5.5 Comparison of kernel calculation times for multi-thread implementations 71
5.6 Further kernel calculation time analyses . 72
5.7 Time versus Memory comparison and GaKCo versus DNN. 74

6.1 Comparison of DeepChrome (Regression) versus Support Vector Regression (SVR) baseline . 76

viii

Chapter 1

Introduction

Biological sciences are becoming rich in data due to technological advances. It is now possible to obtain

information about many living organisms. For example, national biological databases (such as the National

Center for Biotechnology Information (NCBI), etc.) store DNA sequence (3 billion-long string) information,

activity levels of ∼30,000 genes, cellular profiling data from scores of samples (∼200 cells), and clinical

measurements from humans. The growing availability of such information promises a better understanding of

important questions (e.g., causes of diseases like cancer). Processing and understanding these “big” data

repositories challenge the conventional analysis strategies. This problem has recently interested multiple

technology and pharmaceutical companies as its solution can lead to promising advances in the health-care

domain. The enormity of the existing data can be gauged from the fact that there are more than 1000 different

databases reported so far. The Molecular Biology Database Collection (2007 Update) reported a total of 968

databases, which vary from <100 kB to > 100 GB (e.g. EMBL>500 GB) in size [2] and are growing rapidly.

For example, BGI (formerly the Beijing Genomics Institute) generates six terabytes of genomic data every

day [3]. Between 100 million to 2 billion human genomes are estimated to be sequenced by the year 2025, far

exceeding the growth of big data domains like Astronomy, YouTube, and Twitter [4].

A majority of these biological datasets are sequential in nature. This means that they represent strings

(like DNA or protein sequences) or continuous signals that are measurements of activity levels inside the

cell. Data-driven approaches like machine learning have shown significant progress in analyzing the existing

sequential data. Some of these methods frame the sequential data analysis task as supervised sequence

1

classification. That is, given a set of labeled data samples, we train our machine learning model to classify

the sequences unique to the task. The current state-of-the-art classification methods include (but are not

limited to) Instance-based algorithms (Support Vector Machines (SVMs), k-Nearest Neighbor), Ensemble

algorithms (Random Forests), and Deep Learning models (Neural Networks). Given the high variability

among the biological datasets from different experiments, there is no “one-size-fits-all” solution for all the

classification tasks. Therefore, while Deep Neural Networks (DNNs) can handle large datasets accurately

and efficiently, they fail to produce accurate results when the size of training samples is small. Furthermore,

DNNs are also known as ‘black boxes’, due to the complex, multi-layer structure, making them difficult to

understand (Challenge 1). On the other hand, SVMs, combined with subsequence based string kernel features,

are accurate and have theoretical guarantees to converge to a solution. However, they are unable to scale to

large datasets due to expanding search space and higher inter-dependencies in the data (Challenge 2).

Dissertation Statement: In this dissertation, we solve two challenges: (1) Interpretability of the predictions

for better insights, and (2) Slow computation due to expanding search space of sequential patterns, by

improving two popular machine learning models - Deep Neural Networks (DNNs) and String Kernel with

Support Vector Machines (SK-SVM).

Challenge 1: Traditional methods for quantifying the relationship between different datasets related to

gene expression (surveyed by Dong et al. [5]) suffered a few drawbacks. They either failed to explore large

search spaces of possible sequential patterns or were unable to capture dependencies among consecutive

subsequence patterns or relied on multiple methods that separated predictions and interpretation analysis.

We present a unified discriminative framework using a deep convolutional neural network to classify the

sequential datasets. Our model, called DeepChrome [6], allows automatic extraction of complex interactions

among important features and is scalable to large datasets. To simultaneously visualize the useful features,

we propose a novel optimization-based technique that generates sequential pattern maps from the learned

deep model. This visualization provides a general description of underlying mechanisms that regulate genes

(www.deepchrome.org). DeepChrome outperforms state-of-the-art models like Support Vector Machines and

Random Forests for 56 different cell types. The output of our visualization technique not only validates

the previous observations but also allows novel insights, some of which have been observed recently in

experimental studies.

The visualization technique of DeepChrome gives a general overview of the useful features, but it is unable to

provide interpretability at a granular level that can lead to better understanding of the predictions. To further

2

www.deepchrome.org

improve DeepChrome, we add a hierarchical attention based mechanism to learn and highlight important

features at different levels of granularity. We call this model, AttentiveChrome. A significant advantage of

using the attention mechanism is that we can gain insights and understand the predictions by visualizing

‘what’ and ‘where’ the model has focused on while making a prediction. With AttentiveChrome we are able

to visualize relevant features for individual genes (∼ 30, 000) across 56 cell-types.

Challenge 2: Deep Neural Networks (DNNs) provide state-of-the-art performances for various sequence

classification problems, analysing DNA [7, 8], and proteins [9, 10]. Notwithstanding their superior performance

in accuracy over other traditional approaches, Neural Networks usually require a significant number of training

samples. This requirement can be unfeasible for many datasets, especially in the biological research domain.

Here, the number of sequences per experiment can be as low as 100. Cost and time constraints may also

restrict the size of the training samples.

String kernel (SK) techniques under the support vector machine (SVM) classification framework have

provided some of the most accurate results when provided with small labeled datasets (< 5000 sequences)

[11, 12, 13, 14, 15, 16]. Through length-k local consecutive substring (k-mer) comparisons that incorporate

mismatches and gaps, SK-SVM based models use co-occurrence patterns of local k-mers to calculate the

similarity (i.e., so-called kernel function) among sequence samples. This method models the dependencies

between consecutive subsequences by using a sliding window of size k. Using the similarity measures, the

SK-SVM is trained to classify sequence segments from a set of labeled sequences. Then, the learned models

are used to classify a new set of sequences.

k-mer based SK computation can become very slow or even unfeasible when we increase (1) the number of

allowed mismatches, and (2) the size of the dictionary, as this drastically expands the sequential pattern

search space. This issue is problematic due to several reasons. First, allowing mismatches during substring

comparisons is important since biological sequences are prone to mutations, deletions, etc. Second, for robust

and scalable estimation of k-mer frequencies, the state-of-the-art SK-SVM method [17] has developed a trie

based data structure for computing the kernel matrix among samples. This approach scales exponentially

with the dictionary size and the number of mismatches (in the worst case). Therefore, its kernel calculation

can be very slow for certain samples. For example, the method takes >5 hours to calculate the kernel matrix

for 1 of protein sequence prediction task (dictionary size of protein sequence = 20). Based on this observation,

classifying all 500 datasets in the protein database [18] would take ∼ 2500 hours. This delay can be a major

bottleneck for time-sensitive experiments.

3

To make the k-mer based SK calculation fast, we present an efficient algorithmic strategy: Gapped Kernel

with Counting based algorithm, or GaKCo. By using a sorted array and counting statistics, GaKCo calculates

co-occurrence among k-mers quickly and efficiently and is independent of the dictionary size. As a result,

GaKCo derives kernel functions among samples in a fast and memory-efficient manner, making it scalable

to large dictionary sizes and a higher number of allowed mismatches. Additionally, GaKCo is naturally

parallelizable, and a “multi-thread” variation is implemented to improve the kernel calculation speed. Our

results show that the initial GaKCo implementation improves the kernel calculation speed by a factor of 100

for protein classification task over state-of-the-art SK-SVM method [17].

The remainder of the dissertation is organised as follows: Chapter 2 reviews the related work, Chapter 3

describes the DeepChrome model for gene expression prediction, Chapter 4 presents the AttentiveChrome

model with focus on interpretability, Chapter 5 discusses GakCo and its comparison with state-of-the-art

method, and finally, Chapter 6 lists the contributions of this work and its future directions.

4

Chapter 2

Literature Review

2.1 Sequential Data in Biology

Sequential data in Biology (or BioSeq data [19]) represents a string (like DNA or protein sequences) or

continuous signals that are measurements of activity levels inside the cell. Here, consecutive components of

the features have a sequential dependency on each other. Below we describe the different types of sequential

data in details:

• DNA Sequence: DNA (Deoxyribonucleic Acid) is the building block of the life. It consists of information

required by a cell to function properly. Watson-Crick discovered the current-structure of DNA in 1953.

The double-helix structure of DNA, consisting of two strands, is made up of four nucleotide bases:

Adenine (A), Guanine (G), Thymine (T) and Cytosine(C). ‘DNA sequencing’ is the process of finding

out the precise arrangement of these bases using machines. After sequencing, a DNA sequence looks

like a string “ATAAACGACTGAC”. A DNA sequences length is measured as ‘base-pairs’ (bp), where

each one base-pair represents one nucleotide in the sequence and its complementary nucleotide on the

double helix. Adenine’s complementary nucleotide (or base) is Thymine and Guanine’s complementary

nucleotide (or base) is Cytosine. Thus, knowing the sequence of one strand, one can decipher the

sequence of the complementary strand.

5

Inside each cell, a DNA molecule (3 billion letters bp long) is broken into smaller sections called

chromosomes which contain sub-sections called ‘genes’ that store the regulation information. The 23

pairs of chromosomes consist of about 70,000 genes, and every gene has its function.

• Protein Sequence: The coding information of the genes gets converted into proteins via transcription

and translation. Proteins are large biomolecules that are involved in almost every process inside a

cell ranging from metabolism, cell signaling, immunity, etc. to forming structural and mechanical

components of the cell. Just like a DNA is made up of smaller molecules (or nucleotides), a protein is

also made up of smaller molecules called ‘amino acids’. Therefore, ‘protein sequencing’ is the practical

process of determining the precise order of amino acids in a protein. Unlike DNA sequence, where

there are only four characters, a protein sequence can be composed of 20 different characters, each

representing an amino acid.

• Measurements of activity levels along the DNA: Most of the important events taking place inside the cell,

on the DNA, are protein-DNA binding events. For example, Transcription Factors (TFs) are proteins

that bind to sequence-specific locations on the DNA near the gene and initiate the process of DNA code

conversion to proteins. All these events are captured digitally by using Chromatin immunoprecipitation

sequencing, or ChIP-seq. Chromatin immunoprecipitation allows us to separate DNA segments that

are involved in the protein binding activities. We then perform DNA sequencing to get the sequences of

these DNA segments. Since there are millions of DNA molecules involved in an experiment, we get

millions of small DNA sequences from the sequencing machine. These are then aligned to the reference

DNA sequence to get an aggregation of reads on the regions of interest. Finally, we count the aggregated

reads aligned to the DNA regions, forming smooth sequential signals, and can map and measure the

events taking place along the DNA.

Biologists have been collecting the above discussed sequential data for many years now. With next-generation

sequencing machines, we can obtain these datasets in large volumes. Therefore, applying data-driven

approaches, like machine learning, is a natural way forward to analyze these large repositories. In this

dissertation, we solve the challenges associated with this task while focusing on two state-of-the-art machine

learning models - Deep Neural Networks (DNNs) and Support Vector Machines (SVMs). We discuss their

backgrounds and applications in the following sections.

6

2.2 Interpretability of Deep Neural Networks

2.2.1 Deep Neural Networks for Biological Tasks

In recent years, the field of biology and medicine has become data-intensive. Under this scenario, deep

learning models have become popular in the bioinformatics community, owing to their ability to extract

meaningful and hierarchical representations from large datasets.

Neural networks were first proposed in 1943 [20] as a computational explanation for processing of information

by the brain. A typical neural network consists of inputs are fed into a hidden layer (or set of functions).

This hidden layer then processes the input and then feeds into one or more hidden layers (Figure 2.1). When

performing “deep” learning, we use a neural network with multiple hidden layers that eventually produce an

output. The training of neural network consists of two stages:

1. Forward propagation. During this stage, each layer constructs features, that are refined by subsequent

layers.

2. Backward propagation. Once the output is produced, the loss (difference from the actual label) is

passed, from later layers to previous layers, through the network. Here, each layer adjusts the weights

associated with its functions to minimize the loss.

With sufficient data, the neural network can extract or construct features specific to the problem and use

them to perform accurate predictions.

X Y

Input
Layer

Hidden
Layer #1

Hidden
Layer #2

Output
Layer

Input Output

Figure 2.1: Overview of a Deep Neural Network (DNN).

7

Recently, deep neural networks have led to the groundbreaking performance in many fields such as computer

vision [21] and natural language processing [22]. In the biological community too, researchers have been

successful in implementing deep neural network models for biological tasks. Qi et al. [9] used a deep multi-layer

perceptron (MLP) architecture with multitask learning to perform sequence-based protein structure prediction.

Zhou et al. [10] created a generative stochastic network to predict secondary structure on the same data as

used by [9]. Recently, Lin et al. [23] outperformed all the state-of-the-art works for protein property prediction

task by using a deep convolutional neural network architecture. Leung et al. [24] implemented a deep neural

network for predicting alternative splicing patterns in individual tissues and differences of splicing patterns

across tissues. Later, Alipanahi et al. [7] applied a convolutional neural network model for predicting sequence

specificities of DNA-and RNA-binding proteins as well as generating motifs, or consensus patterns, from the

features that were learnt by their model. Lanchantin et al. [25] proposed a deep convolutional/highway MLP

framework for the same task and demonstrated improved performance. Similarly, Zhou et al. [26] used DNA

sequences as inputs to predict different chromatin features and understand the effect of non-coding variants

on these measurements of interest.

Despite the success, the field of biology poses some unique challenges for the machine learning or deep learning

community. For example, neural networks usually require a significant number of training samples for good

performance. However, the number of samples for biological experiments can be meager and thus, making it

unfeasible to implement neural networks on these datasets. Also, while deep learning models have proven to

be very accurate, they have widely been viewed as “black boxes”. Although this may not be an issue for text

or image classification cases, in biology, interpretability of the model is a desirable trait. Biologists are not

only interested in predicting a particular outcome but also require explainability of a specific prediction to

understand the underlying mechanism.

Researchers have attempted to develop separate visualization techniques that explain a deep classifier’s

decisions. Most prior studies have focused on understanding Convolutional Neural Networks (CNN) for

image classifications. Following Shrikumar et al. [27], we roughly categorize these studies into the following

groups:

1. Perturbation-based methods. These methods assign importance to input features by making perturbations

to individual inputs and observing their impact on later layers of the network. For example, Zeiler

et al. [28] covered up different parts of an input image and visualized the changes in the outputs of

later layers of their neural network. This strategy was adopted by Zhou et al. [26] to quantify the

8

impact of virtual mutations at different positions on the DNA. Instead of studying perturbation for

each input point, Zintgraf et al. [29] marginalized these differences over input patches. One of the

major drawbacks of these methods is that they can be computationally expensive as one has to repeat

the training step after each perturbation.

2. Deconvolution methods. The “deconvolution’ approach [28] maps hidden layer representations back

to the input space for a specific example, showing those features of an image that are important for

classification. Alipanahi et al. [7] used this method to generate consensus sequential patterns (or motifs)

of DNA sequences that had a protein-binding site.

3. Gradient-based methods. “Saliency maps” are generated by using the gradient of the output with respect

to the input. This gradient is calculated using a backpropagation pass such that the importance signal

from the output layer is passed towards the input. Multiple studies [30, 31, 32] use a first-order Taylor

expansion to linearly approximate the deep network and seek most relevant input features. Bach et al.

[33] introduced the concept of Layerwise Relevance Propagation (LRP) importance scores. These scores

were roughly equivalent to the element-wise product of saliency map outputs and the inputs. This

formulation leverages the sign and strength of the input signal. Gradient-based methods present their

own set of challenges for interpretability. One such example is that when working with neural networks

with nonlinear activation layers (or functions), the gradients zeroed out during backpropagation can

fail to highlight important inputs that contribute negatively to output.

4. Optimization-based methods. The “class optimization” based visualization [30] tries to find the best

example (through optimization of a randomly generated input) that maximizes the probability of the

class of interest. Lanchantin et al. [25] has compared both salience map based as well as optimization

based methods for generating motifs for DNA-protein binding sites.

5. Difference-to-reference methods. These methods define a “reference” input and aim to explain the

difference of the given input with respect to the reference. Sundararajan et al. [34] use the integration

of gradients while scaling some reference to the input values. Shrikumar et al. [27] use a similar idea

but instead of integrating the gradient, they multiply and propagate absolute contribution of differences

with respect to the change in input. These strategies, while effective, require domain knowledge to

define a “reference” input to study the differences.

9

Some recent studies [35, 36] explored the interpretability of recurrent neural networks (RNN) for text-based

tasks.

2.2.2 Attention-based Deep Neural Networks

The idea of attention in deep learning arises from the properties of the human visual system. When perceiving

a scene, the human vision gives more importance to some areas over others [37]. This adaptation of “attention”

allows deep learning models to focus selectively on only the important features. Deep neural networks

augmented with attention mechanisms have obtained great success on multiple research topics such as

machine translation [38], object recognition [39, 40], image caption generation [41], question answering [22],

text document classification [42], video description generation[43], visual question answering -[44], or solving

discrete optimization [45]. Attention brings in two benefits: (1) By selectively focusing on parts of the

input during prediction the attention mechanisms can reduce the amount of computation and the number of

parameters associated with deep learning model [39, 40]. (2) Attention-based modeling allows for learning

salient features dynamically as needed [42], which can help improve accuracy.

Different attention mechanisms have been proposed in the literature, including ‘soft’ attention [38], ‘hard’

attention [41, 46], or ‘location-aware’ [47]. Soft attention [38] calculates a ‘soft’ weighting scheme over all

the component feature vectors of input. These weights are then used to compute a weighted combination of

the candidate feature vectors. The magnitude of an attention weight correlates highly with the degree of

significance of the corresponding component feature vector to the prediction. Inspired by Yang et al. [42],

AttentiveChrome uses two levels of soft attention for predicting gene expression from HM marks.

Moreover, since attention in models allows for automatically extracting salient features, attention-coupled

neural networks impart a degree of interpretability. By visualizing what the model attends to, attention can

help gauge the predictive importance of a feature and hence interpret the output of a deep neural network

[42].

10

2.3 Sequence Classification with String Kernels

2.3.1 Support Vector Machine (SVM):

When number of training sequence samples are small (< 5000 sequences) string kernel (SK) techniques under

the support vector machine (SVM) classification framework have provided some of the most accurate results

[11, 12, 13, 14, 15, 16]. Support Vector Machines is a popular learning method used for binary classification.

Introduced by Vladimir N. Vapnik [48], it finds a hyperplane which separates a d-dimensional feature space

into two classes.

Given N number of total training samples with inputs and outputs: {xi, yi} such that i = 1, . . . , N and

xi ∈ Rd, where Rd is a d-dimensional feature space. Also, yi ∈ {1, 1} that is the output is a binary class label.

Thus, all the hyperplanes in the Rd feature space can be expressed as:

w.x+ b = 0 (2.1)

here, w is a parameter and b is a constant.

If the above hyperplane separates the data, we can define a decision function:

f(x) = sign(wx+ b) (2.2)

that can classify the training data accurately. However, since there can be multiple hyperplanes satisfying

the above equation, the concept of “margin” is introduced. That is we define canonical hyperplanes that

separate the nearest points of the data from the separating hyperplane by a distance of at least 1. They are

formulated as:

xiw + b ≥ +1, yi = +1 (2.3)

xiw + b ≤ −1, yi = −1 (2.4)

11

Or more concisely,

yi(xiw + b) ≥ 1,∀i (2.5)

Negative Instances (y = -1) Positive Instances (y = +1)

w . x + b ≤ -1

w . x + b ≥ +1

w . x + b = 0

Figure 2.2: Overview of a Support Vector Machine (SVM).

Among all possible hyperplanes, SVM selects the one where the distance between the canonical hyperplanes

or the “margin” is as large as possible (Figure 2.2). That is, we want the hyperplane that maximizes the

geometric distance to the closest data points. Solving and subtracting the two distances we get the summed

distance from the separating hyperplane to the canonical hyperplanes as our maximum margin that is, 2
||w|| .

Therefore, finding the optimum separating hyperplane can be formulated as a quadratic optimization problem,

which solves for w and b. Constructing this problem as a dual problem with Lagrangian multiplier αi gives

us the final classification function:

f(x) =

N∑
i=1

αiyixi.x+ b (2.6)

It is worth noting here that the VC-dimension (a measure of a systems likelihood to perform well on unseen

data) of SVMs can be explicitly calculated. This property makes them theoretically well-founded in contrast

to other learning methods like DNNs. SVMs have also been used to solve regression tasks. In regression task,

we train our model to output a numerical value instead of assigning classes.

12

2.3.2 String Kernels

The key idea of string kernels is to apply a function φ(·), which maps strings of arbitrary length into a

vectorial feature space of fixed length. In this space, we apply a standard classifier such as SVM [48]. In the

real-world scenario, most of the data spaces are not linearly separable and therefore, the notion of a “kernel

induced feature space” was introduced, which casts the data into a higher dimensional space where the data

is separable. Kernel-version of SVMs calculates the decision function for an input sample x as:

f(x) =

N∑
i=1

αiyiK(xi, x) + b (2.7)

where N is the total number of training samples. String kernels [11, 12, 17], implicitly compute K(x, x′) as

an inner product in the mapped feature space φ(x) as:

K(x, x′) = 〈φ(x), φ(x′)〉, (2.8)

where x = (s1, . . . , s|x|). x, x
′ ∈ S. |x| denotes the length of the string x. S represents the set of all strings

composed of dictionary Σ. φ : S → Rp defines the mapping from a sequence x ∈ S to a p-dimensional feature

vector.

S = ACACA
g=3

Spectrum Kernel
(g=3,M=0)

0

0.5

1

1.5

2

2.5

A
C

A
C

A
C

O

O
O

O

O

O
x

x

x
x

O

O
O

O

O

O
x

x

x
x Support

Vector
Machine

Feature Space

Figure 2.3: Overview of the String Kernel + SVM model.

The feature representation φ(·) plays a vital role in the effectiveness of string analysis since it is hard to

describe strings as feature vectors. One classical method to represent a string is as an unordered set of k-mers,

or combinations of k adjacent characters. A feature vector indexed by all k-mers records the number of

occurrences of each k-mer in the current string. The string kernel using this representation is called spectrum

kernel [49] (see Figure 2.3), where the spectrum representation counts the occurrences of each k-mer in a

string. Kernel scores between strings are computed by taking an inner product between corresponding “k-mer

13

- indexed” feature vectors:

K(x, x′) =
∑
γ∈Γk

cx(γ) · cx′(γ) (2.9)

where γ represents a k-mer, Γk is the set of all possible k-mers, and cx(γ) is the number of occurrences (with

normalization) of k-mer γ in string x.

A a few other notable string kernels include (but are not limited to):

1. (k,m)-Mismatch Kernel. This kernel calculates the dot product of contiguous k-mer counts with m

mismatches allowed [11, 12].

2. (g, k)-Gappy Kernel. For this kernel [11], the feature map is calculated by counting gappy matches of

g-mers to k-mer features (here, g ≥ k). Thus, given a g-mer of length g, the kernel uses the contiguous

k-mer counts, allowing upto (g − k) gaps.

3. Weighted Degree Kernel. This kernel [50] incorporates positional information of the k-mers. It counts

the exact co-occurrences of k-mers at corresponding positions in the two sequences and these counts

are weighted by a coefficient that is proportional to the length of the matching k-mers. This weighting

scheme assigns higher kernel scores to longer k-mer matches.

4. Substring Kernel. It measures the similarity between sequences based on common co-occurrence of

exact matching subpatterns (e.g., substrings) [51].

5. Profile Kernel. This method uses the notion of similarity based on a probabilistic model (e.g., profile) [52].

6. Cluster Kernel. The “sequence neighborhood” kernel or “cluster” kernel [53] is a semi-supervised

extension of the string kernel. It replaces every sequence with a set of “similar” (neighboring) sequences

and obtains a new representation. Then, it averages over the representations of these contiguous

sequences found in the unlabeled data using a sequence similarity measure.

All string kernels perform string matching by calculating the feature representation φ(·) using the counts of

k-mer occurrence. Thus, the following sections briefly discuss the notable methods for string matching and

counting the occurrence of k-mers (mostly in the bioinformatics literature).

14

2.3.3 String Matching Algorithms

String or pattern matching algorithms are an important category of string-related algorithms in computer

science. The dictionary of a given language, Σ, is a finite set of symbols. String or pattern matching

task matches an entity, that is a vector of the elements of Σ. In bioinformatics, this vector is usually a

k-mer, for example “ATATCG” is a k-mer (k=6) from the dictionary Σ = {A, T,C,G}. In natural language

processing, this entity can be words or k-mers formed from characters. The simplest algorithm is Naive

String Search, which matches the characters of the query pattern and text at each position. This method is

very computationally costly for a large number of texts or patterns.

Approximate string further complicates the task by allowing three types of changes in the text/pattern: (1)

insertion, (2) deletion, and (3) substitution of characters. These modifications are necessary for biological

sequences, which are prone to mutations and exact matching algorithms were not able to provide the desired

accuracy. 1 Under this scenario, finite state automaton based matching was introduced by Ukkonen et al.

[55]. Here, deterministic finite automaton (DFA) were constructed out of the dictionary Σ and used to find a

stored pattern. This method was quick to locate the string, but it was costly to build the DFA.

Later, index-based strategies like suffix trees and suffix arrays became very popular. Blumer et al. [56]

refined the suffix trees from earlier implementations of trie data structures (used in multiple string kernels).

Chang et al. [57] proposed suffix trees for approximate string matching in biological applications like overlap

detection for DNA sequence assembly. Manber et al. [58] presented a suffix array (sorted list of suffixes of

a string) as an improvement over suffix trees. They claimed that despite longer construction times, suffix

arrays were space efficient with better pattern searching times than suffix trees. Recently, multiple suffix

array compression methods, like Burrows-Wheeler Transform with FM-Index [59, 60], have been used to

speed up string matching applications where the size of the text is enormous (assembly of genomes, i.e., 3

billion length DNA sequence). Most of the current tools for such applications consist of a k-mer counting

step where the matching k-mers are calculated to filter out unique DNA fragments to reduce feature space.

Next section discusses the state-of-the-art methods for k-mer counting.

1The concept of edit distance was introduced to measure the similarity among strings with different modifications (insertions,
deletions or substitutions). Hamming distance (used to measure string similarity for string kernels) is a simplified form of edit
distance that only measures the degree of substitutions in the strings [54].

15

2.3.4 k-mer counting methods

k-mer counting is the method by which we determine the number of matching or unique k-mers in any text

or pattern. Tools handling large text datasets need to filter out these unique k-mers to reduce the processing

or counting time. GaKCo uses a ‘sort and count’ method for calculating the number of matching substrings

to compute the mismatch profile. This is a widely used method that lists all the substrings, sorts them

lexicographically and counts all the consecutive matching entries while skipping the unique ones. It has been

used previously in tools used for genome assembly [61], discovery of motifs (or most common fixed length

patterns) [62], and string kernel calculation [12].

16

Chapter 3

Deep Neural Network for Gene

Expression Prediction

3.1 Predicting Gene Expression using Histone Modifications

Gene regulation is the process of how the cell controls which genes are turned “on” (expressed) or “off”

(not-expressed) in its genome. The human body contains hundreds of different cell types, from liver cells to

blood cells to neurons. Although these cells include the same set of DNA information, their functions are

different 1. The regulation of different genes controls the destiny and function of each cell. In addition to

DNA sequence information, many factors, especially those in its environment (i.e., chromatin), can affect

which genes the cell expresses. This chapter proposes a deep learning architecture to learn from data how

different chromatin factors influence gene expression in a cell. Such understanding of gene regulation can

enable new insights into principles of life, the study of diseases, and drug development.

“Chromatin” denotes DNA and its organizing proteins 2. A cell uses specialized proteins to organize DNA

in a condensed structure. These proteins include histones, which form “bead“-like structures that DNA

wraps around, in turn organizing and compressing the DNA. An important aspect of histone proteins is that

they are prone to chemical modifications that can change the spatial arrangement of DNA. These spatial

1DNA is a long string of paired chemical molecules or nucleotides that fall into four different types and are denoted as A, T, C, and
G. DNA carries information organized into units such as genes. The set of genetic material of DNA in a cell is called its genome.

2The complex of DNA, histones, and other structural proteins is called chromatin.

17

re-arrangements result in certain DNA regions becoming accessible or restricted and therefore affecting

expressions of genes in the neighborhood region. Researchers have established the “Histone Code Hypothesis”

that explores the role of histone modifications in controlling gene regulation. Unlike genetic mutations,

chromatin changes such as histone modifications are potentially reversible ([63]). This crucial difference

makes the understanding of how chromatin factors determine gene regulation even more impactful because

this knowledge can help developing drugs targeting genetic diseases.

At the whole genome level, researchers are trying to chart the locations and intensities of all the chemical

modifications, referred to as marks, over the chromatin 3. Recent advances in next-generation sequencing

have allowed biologists to profile a significant amount of gene expression and chromatin patterns as signals

(or read counts) across many cell types covering the full human genome. These datasets have been made

available through large-scale repositories, the latest being the Roadmap Epigenome Project (REMC, publicly

available) ([1]). REMC recently released 2,804 genome-wide datasets, among which 166 datasets are gene

expression reads (RNA-Seq datasets) and the rest are signal reads of various chromatin marks across 100

different “normal” human cells/tissues [1].

The fundamental aim of processing and understanding this repository of “big” data is to understand gene

regulation. For each cell type, we want to know which chromatin marks are the most important and how they

work together in controlling gene expression. Computational tools should consider two important properties

when modeling such data.

• First, signal reads for each mark are spatially structured and high-dimensional. For instance, to quantify

the influence of a histone modification mark, learning methods typically need to use as input features

all of the signals covering a DNA region of length 10, 000 base pair (bp) 4 centered at the transcription

start site (TSS) of each gene. These signals are sequentially ordered along the genome direction. To

develop “epigenetic” drugs, it is important to recognize how a chromatin mark’s effect on regulation

varies over different genomic locations.

• Second, various types of marks exist in human chromatin that can influence gene regulation. For

example, each of the five standard histone proteins can be simultaneously modified at multiple different

sites with various kinds of chemical modifications, resulting in a large number of different histone

modification marks. For each mark, a feature vector is created, representing its signals surrounding a

3In biology this field is called epigenetics. “Epi” in Greek means over. The epigenome in a cell is the set of chemical modifications
over the chromatin that alter gene expression.

4A base pair refers to one of the double-stranded DNA sequence characters (ACGT)

18

gene’s TSS position. When modeling genome-wide signal reads from multiple marks, learning algorithms

should take into account the modular nature of such feature inputs, where each mark functions as a

module. We want to understand how the interactions among these modules influence the prediction

(gene expression).

3.2 Previous Computational Methods

Computational methods have shown initial success in modeling and understanding interactions among

chromatin features, such as histone modification marks, to predict gene expression. Initial studies, like [64]

and [65], investigated experimentally the correlation between histone modification marks and gene regulation.

Karlic et al. [66] established that there exists a quantitative relationship between histone modifications and

gene expression. They applied a linear regression model on histone modification signals and predicted gene

expression from human T-cell studies ([67]). They reported a high correlation of their predictions with the

observed gene expressions (Pearson coefficient r = 0.77) and showed that a combination of only two to three

specific modifications is sufficient for making accurate predictions. Extending this concept further, Costa et

al. [68] implemented a mixture of several linear regression models to extract the relative importance of each

histone modification signal and its effect on gene expression (high or low). This study confirmed the activator

and repressor roles of H3K4me3 and H3K27me3 respectively. It also demonstrated that a mixture of two

regression models performs better than a single regression model. Both these studies applied relatively simple

modeling on a small dataset. They used the mean signal of the whole transcription start site (TSS) flanking

regions as input features. This leads to a potential bias since histone modification signals exhibit diverse

patterns of local distributions with regard to different genes. Ignoring the details of these neighborhood

patterns is undesirable.

Cheng et al. [69] applied Support Vector Machine (SVM) models on worm datasets ([70]) and reformulated

the task as gene expression classification and prediction. The authors divided regions flanking transcription

start site (TSS) and transcription termination site (TTS) into 100 base-pair (bp) bins and used the histone

modification signal in each bin as a feature for the SVM. To incorporate information from all positions or bins,

they trained different models for different bins that resulted in 160 models for 160 bins. They validated the

existence of the quantitive relationship between histone modifications and gene expression by such bin-specific

modeling. Furthermore, using a separate linear regression model, the paper inferred pair-wise interactions

19

between different histone modifications using binary combinatorial terms. Since it is infeasible to consider all

possible higher order interaction terms through polynomial regression, Bayesian networks were then used for

modeling such relationships. However, Bayesian networks do not take into consideration local neighboring

bin information and their highly connected output network is difficult to interpret.

Using a similar experimental setup, Dong et al. [71], applied a Random Forest Classifier on histone modification

signals to classify gene expression as high or low. They then used the classified outputs as inputs to a linear

regression model to predict the gene expression value. They used human datasets across 7 different cell

types ([72]) and reported a high correlation (Pearson coefficient r = 0.83) between predicted and actual gene

expressions. To include information from all bins into a single model, the authors performed feature selection

where only the bin value which correlated the most with gene expression was used as input. For combinatorial

analysis, instead of studying all possible combinations, the 11 histone modifications were grouped into four

functional categories. These groupings were used to determine prediction accuracy based on each category

as a sole feature as well as combinations of different categories. This technique gives a broader picture of

the combinatorial effect. However, individual details of histone modifications are missed. In addition, this

approach cannot capture the possible influence of other bins besides the “best bin” for gene regulation.

In order to to elucidate the possible combinatorial roles of histone modifications in gene regulation, Ho et al.

[73] applied rule learning on the T-cells datasets ([67]) and produced 83 valid rules for gene expression (high)

and repression (low). The authors selected the 20 most discriminative histone modifications as input into a

rule learning system. They used several heuristics to filter out unexpected rules that were obtained by the

learning system after scanning the entire search space. However, this study does not consider detailed feature

patterns across local bins and does not perform prediction of gene expression.

Ernst et al. [74] leveraged the correlated nature of epigenetic signals in the REMC database, including histone

modifications. Their tool, ChromImpute, imputed signals for a particular new sample using an ensemble of

regression trees on all the other signals and samples. EFilter ([75]), a linear estimation algorithm, predicted

gene expression in a new sample by using imputed expression levels from similar samples. Unlike the studies

discussed above, these works focus on imputing or predicting signals for new samples.

20

Table 3.1: Comparison of previous studies for the task of quantifying gene expression using histone modification data.

The columns indicate properties (a) whether the study has a unified end-to-end architecture or not (b) if it captures non-linearity
among features (c) how has the bin information been incorporated (c) if representation of features is modeled on local and
global scales (d) whether gene expression prediction is provided and finally, (e) if combinatorial interactions among histone
modifications are modeled. DeepChrome is the only model that exhibits all six desirable properties.

Computational Study Unified
Strategy

Non-
linear
model

Including
Bin Info

Representation Learning Prediction Combinatorial
Interac-
tions

Neighboring
bins

Whole Re-
gion

Linear Regression ([66]) × × × × X X ×
Support Vector Machine ([69]) × X Bin-specific

strategy
× X X X

Random Forest ([71]) × X Best-bin
strategy

× X X ×

Rule Learning ([73]) × X × × X × X
DeepChrome X X Automatic X X X X

3.3 Approach

Previous computational methods failed to capture higher-order combinatorial effects among histone modifi-

cations, used bin related strategies that cannot represent neighboring bins, or relied on multiple methods

to separate prediction and combinatorial analysis. We utilize a deep convolutional neural network model

for predicting gene expression from histone modification data. The network automatically learns both the

combinatorial interactions and the classifier jointly in one unified discriminative framework, eliminating

the need for human effort in feature engineering. Since the combinatorial effects are automatically learned

through multiple layers of features, we present a visualization technique to extract those interactions and

make the model interpretable.

3.3.1 Input Generation

Aiming to systematically understand the relationship between gene regulation and histone modifications,

we divided the 10, 000 basepair (bp) DNA region (+/− 5000 bp) around the transcription start site (TSS)

of each gene into bins of length 100 bp. Each bin includes 100 bp long adjacent positions flanking the TSS

of a gene. In total, we consider five core histone modification marks from REMC database ([1]), which are

summarized in Table 3.2. These five histone modifications are selected as they are uniformly profiled across all

cell-types considered in this study. They include include (we rename these HMs in our analysis for readability):

H3K27me3 as HreprA, H3K36me3 as Hstruct, H3K4me1 as Henhc, H3K4me3 as Hprom, and H3K9me3 as

21

HreprB . HMs HreprA and HreprB are known to repress the gene expression, Hprom activates gene expression,

Hstruct is found over the gene body, and Henhc sometimes helps in activating gene expression. This makes

the input for each gene a 5× 100 matrix, where columns represent different bins and rows represent histone

modifications. For each bin, we report the value of all 5 histone signals as the input features for that bin

(Figure 3.1). We formulate the gene expression prediction as a binary classification task. Specifically, the

outputs of DeepChrome are labels +1 and −1, representing gene expression level as high or low, respectively.

Following [69], we use the median gene expression across all genes for a particular cell-type as a threshold to

discretize the gene expression target. Figure 3.1 summarizes our input matrix generation strategy.

-5000 bp +5000 bp

Gene A

Gene A

Gene A

Gene A

Gene A

HM1

HM2

HM3

HM4

HM5

...... 100 bp …..

X

HM1
HM2
HM3
HM4
HM5

-1/+1

y

Gene A

Bins H
is

to
ne

 M
od

ifi
ca

tio
ns

Transcription Start
Site (TSS)

Bin # 1 2 3 4 .. 100

Bin # 1 2 3 4 .. 100

Epigenetic Features of Gene A

Expression of Gene A

f (.)

Figure 3.1: Feature Generation for DeepChrome model.

Bins of length 100 base-pairs (bp) are selected from regions (+/− 5000 bp) flanking the transcription start site (TSS) of each
gene. The signal value of all five selected histone modifications in bins forms input matrix X, while discretized gene expression
(label +1/− 1) is the output y.

Our setup is similar to [69] and [71], except that we primarily focus on the regions around TSS instead of also

including regions from gene body or transcription termination site (TTS). This is based on the observations

from [69] showing that signals close to the TSS are the most informative, therefore eliminating the need to

obtain bins from regions toward the end of the gene. In addition, due to the scalability of CNNs, we were able

to use larger regions flanking TSS than previous studies in order to better capture effects of distal signals as

well as to cover more regions. This therefore enhances the possibility to model long range interactions among

histone modifications.

22

Table 3.2: Five core histone modification marks, as defined by REMC study [1], along with their functional categories

Histone Mark Associated with Renamed as Functional Category

H3K4me3 Promoter regions Hprom Promoter mark
H3K4me1 Enhancer regions Henhc Distal mark
H3K36me3 Transcribed regions Hstruct Structural mark
H3K27me3 Polycomb repression HrepA Repressor mark
H3K9me3 Heterochromatin regions HrepB Repressor mark

3.3.2 An end-to-end architecture based on Convolutional Neural Network (CNN)

Convolution Neural Networks (CNNs) were first popularized by LeCun et al. [76] and have since been

extensively used for a wide variety of applications. We have implemented a CNN for gene expression

classification task using the Torch7 ([77]) framework. Our DeepChrome model, summarized in Figure 3.2,

is composed of five stages. We assume our training set contains Nsamp gene samples of the labeled-

pair form (X(n), y(n)), where X(n) are matrices of size Nf (=5) × b (= 100) and y(n) ∈ {−1,+1} for

n ∈ {1, ..., Nsamp}.

Input : X [Nf x b]

HM1
HM2
HM3
HM4
HM5

Gene A

Bins

H
is

to
ne

 M
od

ifi
ca

tio
ns

Convolution Max
Pooling

Multi-Layer
Perceptron

Soft Max

y = +1/-1

Feature Map
[Nout x (b-k+1)]

Output

(b=100)

(N
f=

5)

(k=4, p=1) (m=3) Drop-out

Figure 3.2: DeepChrome convolution neural network (CNN) model

The input matrix X, comprising of 100 bins with signals from five histone modifications, goes through different CNN stages.
These stages are : convolution, pooling followed by dropout, and multi-layer perceptron with alternating linear and non-linear
layers. Softmax function, in the end, maps the output from the model into classification prediction.

1. Convolution: We use temporal convolution with Nout filters, each of length k. This performs a sliding

window operation across all bin positions, which produces an output feature map of size Nout×(b−k+1).

Each sliding window operation applies Nout different linear filters on k consecutive input bins from

position p = 1 to (b− k + 1). In Figure 3.2, the red rectangle shows a sliding window operation with

k = 4 and p = 1. Given an input sample X of size Nf × b, the feature map, Z, from convolution is

computed as follows :

23

Z = fconv(X)

Zp,i = Bi +

Nf∑
j=1

k∑
r=1

Wi,j,rXp+r−1,j

(3.1)

This is generated for the pth sliding neighborhood window and the ith hidden filter, where p ∈

{1, ..., (b − k + 1)} and i ∈ {1, ..., Nout}. W, of size Nout × Nf × k, and B, of size Nout × 1, are the

trainable parameters of the convolution layer and Nout denotes the number of filters.

2. Rectification: In this stage, we apply a non-linearity function called rectified linear unit (ReLU). The

ReLU is an element-wise operation that clamps all negative values to zero:

frelu(z) = relu(z) = max(0, z) (3.2)

3. Pooling: Next, in order to learn translational invariant features, we use temporal maxpooling on the

output from the first two steps. Maxpooling simply selects the max values in a certain range, which

forms a smaller representation of a large TSS-proximal region for a given gene. Maxpooling is applied

on an input Z of size Nout × P , where P = (b− k + 1). With a pooling size of m, we obtain an output

V of size Nout × b Pmc:

V = fmaxpool(Z)

Vi,p =
m

max
j=1

Zi,m(p−1)+j

(3.3)

where p ∈ {1, ..., b Pmc} and i ∈ {1, ..., Nout}. In Figure 3.2, the blue rectangle shows the result of a

maxpooling operation on the feature map where m = 3.

4. Dropout: The output is then passed though a dropout layer ([78]), which randomly zeroes the inputs

to the next layer during training with a chosen probability of 0.5. This regularizes the network and

prevents over-fitting. It resembles ensemble techniques, like bagging or model averaging, which are very

popular in bioinformatics.

5. Classical feed-forward neural network layers: Next, the learnt region representation is fed into a

multi-layer perceptron (MLP) classifier to learn a classification function mapping to gene expression

labels. This standard and fully connected multi-layer perceptron network has multiple alternating

24

linear and non-linear layers. Each layer learns to map its input to a hidden feature space, and the last

output layer learns the mapping from a hidden space to the output class label space (+1/− 1) through

a softmax function.

Figure 3.2, shows a MLP with 2 hidden layers and a softmax function at the end. This stage is

represented as fmlp(.).

The whole network output form can be written as:

f(X(n)) = fmlp(fmaxpool(frelu(fconv(X
(n))))) (3.4)

All the above stages are effective techniques that are widely practiced in the field of deep learning. All

parameters, denoted as Θ, are learned during training in order to minimize a loss function which captures the

difference between true labels y and predicted scores from f(.).5 The loss function L, on the entire training

set of size n, is defined:

L =

Nsamp∑
n=1

loss(f(X(n)), y(n)) (3.5)

We use stochastic gradient descent (SGD) ([79]) to train our model via backpropagation. For a set of training

samples, instead of calculating the true gradient of the objective using all training samples, SGD calculates

the gradient per sample and updates accordingly on each training sample. For our objective function, the loss

L(.) (equation 3.5) is minimized by the gradient descent step that is applied to update network parameters Θ

as follows:

Θ← Θ− η ∂L
∂Θ

(3.6)

where η is the learning rate (set to 0.001).

3.3.3 Visualizing combinatorial effect through optimization

In addition to being able to make high accuracy predictions on the gene expression task, an important

contribution of DeepChrome is that it allows us to discover and visualize the combinatorial relationships

between different histone modifications which lead to such predictions. Until recently, deep neural networks

5When training this deep model, parameters, at first, are randomly initialized and input samples are fed through the network.
The output of this network is a score prediction associated with a sample. The difference between a prediction output f(X) and
its true label y is fed back into the network through a ‘back-propagation’ step.

25

were viewed as “black boxes” due to the automatically learned features spanning multiple layers. Since

gene expression is dependent on the combinatorial interactions among histone modifications, it is critical

to understand how the network extracts features and makes its predictions. In other words, we wish to

understand the combinatorial patterns of histone modifications which lead to either a high or low gene

expression prediction by the network. We attempt to do this by extracting a map of feature patterns that are

highly influential in predicting gene expression directly from the trained network. This approach, called a

network-centric approach ([80]), finds the class specific features from the trained model and is independent of

specific testing samples.

The technique we use to generate this visualization was inspired from works by Simonyan et al. [30] and

Yosinski et al. [80], which seek to understand how a convolutional neural network interprets a certain image

class on the task of object detection. We, instead, seek to find how our network interprets a gene expression

class (high or low). Given a trained CNN model and a label of interest (+1 or −1) in our case, we perform a

numerical optimization procedure on the model to generate a feature pattern map which best represents the

given class. This optimization includes four major steps:

1. Randomly initialize an input Xc (of size Nf (= 5)× b(= 100)).

2. Find the best values of entries in Xc by optimizing the following equation(3.7). We search for Xc so

that the loss function is minimized with respect to the desired labels +1 (gene expression = high) or

−1 (gene expression = low). Using equation (3.4), f(Xc) provides the predicted label using the trained

DeepChrome model on an input Xc. We would like to find an optimal feature pattern, Xc, so that its

predicted label f(Xc) is close to the desired class label c:

arg min
Xc

Lvisual = arg min
Xc

{L(f(Xc), y = c) + λ‖Xc‖22} (3.7)

where c = +1 or −1, L(.) is the loss function defined in equation (3.5). L2 regularization, ‖Xc‖22, is

applied to scale the signal values in Xc, and λ is the regularization parameter. A locally-optimal Xc

can be found by the back-propagation method. This step is similar to the CNN training procedure,

where back-propagation is used to minimize the loss function by optimizing the network parameters

Θ. However, in this case, the optimization is performed with respect to the input values (Xc) and the

network parameters are fixed to the values obtained from the classification training. Xc is optimized in

26

the following manner:

Xt+1
c ← Xt

c − α
∂Lvisual
∂Xc

(3.8)

where α is the learning rate parameter and t represents the iteration step of the optimization.

3. Next, we set all the negative output values to 0 and normalize Xc ∈ [0, 1]:

Xc(norm) =
Xc

max(Xc)
(3.9)

4. Finally, we set a threshold of 0.25 to define “active” bins. Bins in Xc(norm) with values > 0.25

are considered important since they indicate that such histone modification signals are important

for predicting particular class. We count the frequency of these active bins for a particular histone

modification mark. A high frequency count (> mean frequency count across all histone modification

marks) of active bins indicates the important influence of these histone modification signals on target

gene expression level.

This visualization technique represents the notion of a class that is learnt by the DeepChrome model and

is not specific to a particular gene. The optimized feature pattern map Xc(norm) is representative for a

particular gene expression label of +1 (high) or −1 (low). In Figure 3.5, DeepChrome visualizes Xc(norm) as

heat-maps. Through these maps, we obtain intuitive outputs for understanding the combinatorial effects of

histone modifications on gene regulation.

3.4 Experimental Setup

3.4.1 Dataset

We downloaded gene expression levels and signal data for five core histone modification signals for 56 different

cell types from the REMC database ([1]). REMC is a public resource of human epigenomic data produced

from hundreds of cell-types. Core histone modification marks, as defined by the REMC study [1], have been

listed in Table 3.2 and are known to play important roles in gene regulation. We focus on these “core” histone

modifications as they have been uniformly profiled for all 56 cell types through sequencing technologies.

The gene expression data has been quantified for all annotated genes in the human genome and has been

27

normalized for all 56 cell types in the REMC database. As mentioned before, the target problem has been

formulated as a binary classification task. Thus, each gene sample is associated with a label +1/−1 indicating

whether gene expression is high or low respectively. The gene expression values were discretized using the

median of gene expressions across all genes for a particular cell-type.

3.4.2 Baselines

We compare DeepChrome to two baseline studies, [69] which uses Support Vector Machines (SVM) and [71]

which uses a Random Forest Classifier. Their implementation strategies are as follows:

• SVM ([69]): The authors selected 160 bins from regions flanking the gene TSS and TTS. Each bin

position uses a separate SVM classification model, resulting in 160 different models in total. This gave

insights into important bin positions for classifying gene expression as high or low. Following this

bin-specific model strategy, we provide results for performance of the best bin (SVM Best Bin) along

with average performance across all bins (SVM Avg) in Section 5.1 and in Figure 3.3.

• Random Forest Classifier ([71]): In this study, bins were selected from regions flanking the TSS, TTS,

and gene body. This study selected the bin values having the highest correlation with gene expression

as “best bins”. A matrix with all genes and best bins for each histone modification signal was used as

input into the model to predict gene labels (+1/− 1) as output. Since this baseline performs feature

selection using the best bin strategy, our experiment uses the best-bin Random Forest performance as a

baseline in Figure 3.3.

We implemented these baselines using the python based scikit-learn ([81]) package.

3.4.3 Hyperparameter tuning

For each cell type, our sample set of total 19802 genes was divided into 3 separate, but equal size folds:

training (6601 genes), validation (6601 genes) and test (6600 genes) sets. We trained DeepChrome using

the following hyperparameters: filter size (k = {10, 5}), number of convolution filters (Nout = {20, 50, 100})

and pool size for maxpooling (m = {2, 5}). Table 3.3 presents the validation set results for tuning different

combinations of kernel size k and pool size m. k denotes the local neighborhood representations of flanking

28

bins. m represents selected whole regions in our CNN model. We report the maximum, minimum and mean

AUC scores obtained across 56 cell types. Performances of models using these different hyperparameter

values did not vary significantly (p-value∼ 0.92) from each other. We also trained a deeper model with 2

convolution layers and observed no significant (p-value= 0.939) increase in performance.

• We selected k = 10, Nout = 50, and m = 5 for training the final CNN models based on highest Max. and

Min. AUC scores in Table 3.3. The number of hidden units chosen for the two multilayer perceptron

layers were 625 and 125, respectively. We trained the model for 100 epochs and observed that it

converged early (around 15-20 epochs).

• For the SVM implementation, an RBF kernel was selected and the model was trained on varying

hyperparameter values of C ∈ {0.01, 0.1, 1, 10, 100, 1000} and γ ∈ {0.01, 0.1, 1, 2}. The C parameter

balances the trade-off between misclassification of training examples and simplicity of the decision

surface, while the γ parameter defines the extent of influence of a single training sample.

• For the Random Forest Classifier implementation, we varied the number of decision trees, nd ∈

{10, 20, ..., 200} trained in each model.

All the above models were trained on the training set, and the parameters for testing were selected based on

their results on the validation set. We then applied the selected models on the test dataset. The AUC scores

6 (performance metric) are reported in Section 5.1.

3.5 Results

3.5.1 Performance Evaluation

The bar graph in Figure 3.3 compares the performance of DeepChrome and three baselines on test data set

for gene expression classification across 56 different cell-types (or tasks). DeepChrome (Average AUC = 0.80)

outperforms the baselines for all the cell types shown along the X-axis. As discussed earlier, Cheng et al.

[69] implement a different SVM model for each bin position. Therefore, we report both average AUC score

for all the bins (SVM Avg) as well as the best AUC score among all bins (SVM Best Bin). ‘SVM Best Bin’

6Area Under Curve (AUC) score from Receiver Operating Characteristic (ROC) curve is interpreted as the probability that a
randomly selected “event” will be regarded with greater suspicion (in terms of its continuous measurement) than a randomly
selected “non-event”. AUC score ranges between 0 and 1, where values closer to 1 indicate more successful predictions.

29

Table 3.3: Results on validation set (6601 genes) during tuning across different combinations of kernel size k and pool size m.

k captures the local neighborhood representations of bins and m combines the important representations across whole regions
for our CNN model. We report the maximum, minimum and mean AUC score obtained across 56 cell types (or tasks). The
best performing values of k = 10 and m = 5 (highest Max. and Min. AUC scores) were selected evaluating test performance of
DeepChrome.

Kernel Size, Pool Size (k,m) AUC Scores (Validation Set)

Max Min Mean

(5,2) 0.94 0.65 0.77
(5,5) 0.94 0.65 0.77
(10,2) 0.94 0.65 0.76
(10,5) 0.94 0.66 0.77

(Average AUC = 0.75) gives better results than ‘SVM Avg’ (Average AUC = 0.66). However, its AUC scores

are still lower than those of DeepChrome. Random Forest gives the worst performance (Average AUC =0.59).

Additionally, we observe that the performances of all three models vary across different cell types and follow

a similar trend. For some cell types, like E123, the prediction task resulted in higher AUC scores among all

models than other cell types. Two hypotheses can explain the disparity among the performances across cell

types:

Data-driven: The datasets were downloaded for 56 different cell types archived by the REMC database

[1]. Here, the HM ChIP-Seq signals were consolidated across different experiments for the same cell type.

Therefore, while E123 (K562) is a well-studied cell type with multiple experiments profiling the HMs, E112

(Thymus) has 1-2 ChIP-Seq experiments per HM. On consolidation, E123 will have an advantage over E112

with regards to data quality as combining more experiments will get rid of noisy signals in the data.

Biology-driven: These differences could also arise from the heterogeneity in the cells. Cell-level heterogeneity

is observed as phenotypic differences arising within genetically uniform cell populations, due to different HM

signals, etc. For example, E112 (Thymus) belongs to the immune system, which has known heterogeneity

within the cell populations [82]. Whereas, E123 (K562) is a homogeneous cell line, which would result in

consistent HM signals.

3.5.2 Validating the influence of bin positions on prediction

Cheng et al. [69] obtained predictions for each bin (due to bin-specific strategy) and reported that, on

average, the best AUC scores were obtained from bins that are close to the TSS. Figure 3.4 (a) shows that

30

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 S

co
re

56 Cell Types
DeepChrome SVC (Avg) SVC (Best Bin) RFC

E123

E112

Figure 3.3: Performance Evaluation on Test Set

The bar graph represents AUC scores of DeepChrome versus state-of-the-art baseline models for 56 cell types (i.e. 56 different
classification tasks). The results have been arranged from best performing cell type (E123) to the worst performing cell type
(E112) for the test set (6600 genes). DeepChrome (Average AUC = 0.80) consistently outperforms both SVM (Average AUC:
SVM Best Bin = 0.75 and SVM Avg = 0.66) and Random Forest Classifier (Average AUC = 0.59) for the task of binary
classification of gene expression. SVM based baseline has a separate model for each bin (bin specific model), thus, results for both
average AUC scores across all bins (SVM Avg) and best performing AUC score among the bins (SVM Best Bin) are presented.

our implementation of this SVM baseline confirms this observation. Since our convolutional network makes

a prediction on the entire flanking region (i.e. all the bins at once), we cannot evaluate the AUC for each

individual bin. However, we can roughly determine which bins are the most influential for a specific gene

prediction. To do this, we look at the strongest activations among the output of the convolution step (the

feature map, as shown in Figure 3.2). Since the column in the feature map corresponds to the bins in

the input region, we can simply look at the feature map values to determine which bin positions are most

influential for that prediction. To validate our model, we ran all of our test samples through a trained deep

network, and took the average of all the feature maps across all 56 models. Figure 3.4(b) shows that bins

near the center, closer to TSS, are assigned with higher values by the convolution layers. This indicates

that DeepChrome maintains similar trends as observed by Cheng et al. [69]. This trend indicates histone

modification signals of bins that are closer to TSS are more influential in gene predictions.

3.5.3 Visualizing Combinatorial Interactions among Histone Modifications

In order to interpret the combinatorial interactions among histone modifications, we present a visualization

technique in Section 3.3. Figure 3.5 presents four visualization results from DeepChrome on four cell types with

high AUC scores. Each visualization result is a heat-map which shows the histone modification combinatorial

31

0 20 40 60 80

0.
20

0.
30

0.
40

0.
50

Bins in Feature Map after Convolution (100-k+1)

A
vg

 F
ea

tu
re

 M
ap

 O
ut

pu
t a

cr
os

s 5
6

ce
ll

ty
pe

s

DeepChrome(b)

0 20 40 60 80 100

0.
62

0.
66

0.
70

Bins across gene TSS (100)

A
vg

 A
U

C
 S

co
re

 a
cr

os
s 5

6
ce

ll
ty

pe
s

0.
74

Support Vector Classifier(a)

Figure 3.4: Validating the influence of positions for gene expression classification.

Cheng et al. [69] reported that the bin positions closer to the transcription start site (TSS) of each gene are more important
when predicting gene expression. This is confirmed by our implementation of this bin-specific baseline model in (a). For each
bin position, it shows the mean AUC score across all the cell types. In (b) we plot the filter outputs from the convolution layer
of DeepChrome model. For each bin, its value has been averaged across all filters and cell-types. The solid lines represent the
best-curve fit to the data points plotted in the figures. The trends for both (a) and (b) are similar.

pattern that is best representative of high (label = +1) or low (label = −1) gene expression. Note that

this is different than Section 5.2 where we validated the importance of bin positions in general, rather than

the combinatorial interactions for a specific class. The values in the heatmaps are within the range [0, 1],

representing how important a particular bin is for prediction of the class of interest. A threshold of 0.25

was selected to filter “active”, or important, bins that are most influential for a particular classification.

We calculated the frequency count of active bins for each histone modification. Histone marks with high

frequency counts (> mean frequency count across all histone marks) are considered to be strongly affecting

the gene expression to become high or low. As expected, we observe a relationship among promoter and

structural histone modification marks (Hprom and Hstruct) for 47 out of 56 (84%) cell-types when gene

expression is high. Similarly, we observe an opposite trend with repressor marks (HreprA and HreprA) showing

combinatorial relationship for 50 out of 56 (89%) cell-types, when gene expression is low. In other words, our

model automatically learns that in order to classify a high or low gene expression, there needs to be high

counts among promoter marks, or repressor marks, respectively.

Next, we validated our visualization results with the findings in previous studies. Both of our baseline papers,

[69] and [71], showed that there is a combinatorial correlation between H3K4me3 (Hprom) and H3K36me3

(Hstruct). This pattern can be seen in Figure 3.5 for high gene expression cases. Similarly, Dong et al. [71]

also reported a combinatorial correlation between Hprom (H3K4me3) and distal promoter mark (Henhc),

which is also validated by the DeepChrome visualization for 35 out of 56 cell-types (62.5%). In addition,

32

Gene Expression = High
H

is
to

ne
 M

od
ifi

ca
tio

ns

Bins

H
is

to
ne

 M
od

ifi
ca

tio
ns

Gene Expression = Low

1.0 0
Cell-type: E123

Cell-type: E100

H3K27me3
H3K36me3
H3K4me1
H3K4me3
H3K9me3

(a)

Cell-type: E057

Cell-type: E117

Bins (b)

H3K27me3
H3K36me3
H3K4me1
H3K4me3
H3K9me3

H3K27me3
H3K36me3
H3K4me1
H3K4me3
H3K9me3

H3K27me3
H3K36me3
H3K4me1
H3K4me3
H3K9me3

Freq. of active bins

Freq. of active bins

Freq. of active bins

Freq. of active bins

PROMOTER (including STRUCTURAL)
DISTAL PROMOTER
REPRESSOR

Functional Categories of Histone Modification Marks: Freq. Count > Mean Freq. count

Freq. Count < Mean Freq. count

Figure 3.5: DeepChrome visualization

Four examples of feature maps generated by our optimization technique from four trained models. The scores in these feature
maps are ∈ [0, 1] and a threshold of 0.25 was selected to indicate “active” (or important) bins. The bar graph represents the
count of active bins for each histone modification. Higher frequency count (> mean frequency count across all histone marks)
indicates greater influence of the histone modification mark in prediction of gene expression labels. Multiple marks with high
frequency count are considered to be combinatorially affecting the gene expression to become high or low. (a) As expected, we
observe a relationship among promoter and structural histone modification marks (Hprom and Hstruct) when gene expression
is high. (b) Similarly, we observe an opposite trend with repressor marks (H3K9me3 and H3K27me3) showing combinatorial
relationship, when gene expression is low. These pattern maps not only support previous quantitative observations in [69] and
[71], but also provide novel insights that are supported by recent biological studies. For example, a recent study by Boros et al.
[83] has reported evidence of coexistence of HreprA and HreprB modifications in gene silencing.

experimental studies have shown that these promoter marks play a role in the activation of genes, and this

trend is seen in our visualization when the assigned label is +1.

Another combinatorial pattern that we noticed in the majority of cell-types (89%, i.e 50 out of 56 cell-types)

was that of HreprA (polycomb repressor) and HreprB (heterochromatin repressor) for low gene expression case

(label=−1). We found this observation in multiple recent biological studies such as [83]. This study reported

that these two repressor marks coexist and cooperate in gene silencing. With almost no expert knowledge,

we were able to find and visualize this combination through DeepChrome. To our knowledge, none of the

previous computational studies have reported this combinatorial effect between H3K27me3 (HreprA) and

33

H3K9me3 (HreprB). In short, the DeepChrome visualization technique provides the potential to learn novel

insights into combinatorial relationships among histone modifications for gene regulation.

In summary, DeepChrome opens multiple new avenues for studying and exploration of genetic regulation via

epigenetic factors. This is made possible due to deep learning’s ability to handle a large amount of existing

data as well as to automatically extract important features and complex interactions, providing us with

important insights. Techniques like DeepChrome hold the potential to bring us one step closer to properly

investigating gene regulation mechanisms, which in turn can lead to understanding of genetic diseases.

34

Chapter 4

Towards Interpretability of Deep

Neural Networks

4.1 Why Interpretability is Important?

Owing to their state-of-the-art performance, DNNs are being integrated into various intelligent systems

as critical components, e.g., speech recognition devices, etc. Their high performance is attributed to the

stacked and dense layers that encode feature representations as numerical weights of the various node to

node connections. These dense networks have complex formulation, which leads to unclear internal working

mechanisms. Hence DNNs are viewed as “black-boxes’ in the literature. Without a clear understanding of

the inner workings of the network, the training of DNNs is mostly empirically driven. Furthermore, their

application to real-world systems is also limited as we are unable to explain the reasons behind the decisions

or actions to human users. While this limitation might not be a significant issue for image classification

systems, in the biomedical domain, it is a major roadblock for integration of DNNs with diagnostic systems.

For example, in case of medical image classification, a radiologist would require an explicit interpretable

output from a DNN so that he or she can integrate its decision with his or her diagnosis. Also, interpretable

DNNs can allow us to explain the reason behind a wrong prediction that might have a high impact on the

outcome of the model. Therefore, development of interpretable DNN models is crucial so that users can

understand, trust and interact efficiently with intelligent systems.

35

Table 4.1: Comparison of previous studies with AttentiveChrome.

AttentiveChrome is the only model that exhibits all 8 desirable properties.

Computational Study Unified Non-
linear

Bin-Info Representation Learning Prediction Feature
Inter.

Interpretable

Neighbor
Bins

Whole
Region

Linear Regression ([66]) × × × × X X × X
Support Vector Machine ([69]) × X Bin-specific × X X X ×

Random Forest ([71]) × X Best-bin × X X × ×
Rule Learning ([73]) × X × × X × X X
DeepChrome-CNN [6] X X Automatic X X X X ×
AttentiveChrome X X Automatic X X X X X

In this chapter we propose an attention-based deep learning model, AttentiveChrome, that learns to predict

the expression of a gene from an input of histone modification signals covering the gene’s neighboring DNA

region. By using a hierarchy of multiple LSTM modules, AttentiveChrome can discover interactions among

signals of each chromatin mark, and simultaneously learn complex dependencies among different marks.

Two levels of “soft” attention mechanisms are trained, (1) to attend to the most relevant regions of a

chromatin mark, and (2) to recognize and attend to the important marks. Through predicting and attending

in one unified architecture, AttentiveChrome allows users to understand how chromatin marks control gene

regulation in a cell. In summary, this work makes the following contributions:

• AttentiveChrome provides more accurate predictions than state-of-the-art baselines. Using datasets

from REMC, we evaluate AttentiveChrome on 56 different cell types (tasks).

• We validate and compare interpretation scores using correlation to a new mark signal from REMC

(not used in modeling). AttentiveChrome’s attention scores provide a better interpretation than

state-of-the-art methods for visualizing deep learning models.

• AttentiveChrome can model highly modular inputs where each module is highly structured. Atten-

tiveChrome can explain its decisions by providing “what” and “where” the model has focused on. This

flexibility and interpretability make this model an ideal approach for many real-world applications.

In the following sections, we denote vectors with bold font and matrices using capital letters. To simplify

notation, we use “HM” as a short form for the term “histone modification”.

36

HM1 (Xj=1)

......

Transcription Start
Site (TSS)

Bin # t=1 2 3 4 t=100

Gene A

Gene A

Gene A

Gene A

Gene A

Bin-level Attention

GeneA = ON/OFF

ClassificationHM-level Attention

HM2 (Xj=2)

HM3 (Xj=3)

HM4 (Xj=4)

HM5 (Xj=5)

t
j

j

(y=+1/-1)

Figure 4.1: Overview of the proposed AttentiveChrome framework

It includes 5 important parts: (1) Bin-level LSTM encoder for each HM mark; (2) Bin-level α-Attention across all bin positions
of each HM mark; (3) HM-level LSTM encoder encoding all HM marks; (4) HM-level β-Attention among all HM marks; (5) the
final classification.

4.2 Approach

4.2.1 Input and Output Formulation for the Task

We use the same feature inputs and outputs as done previously in DeepChrome ([6]). Following Cheng et al.

[69], the gene expression prediction is formulated as a binary classification task whose output represents if

the gene expression of a gene is high(+1) or low(-1). As shown in Figure 4.1, the input feature of a sample

(a particular gene) is denoted as a matrix X of size M × T . Here M denotes the number of HM marks we

consider in the input. T is the total number of bin positions we take into account from the neighboring region

of a gene’s TSS site on the genome. We refer to this region as the ‘gene region’ in the rest of the chapter. xj

denotes the j-th row vector of X whose elements are sequentially structured (signals from the j-th HM mark)

j ∈ {1, ...,M}. xjt in matrix X represents the signal from the t-th bin of the j-th HM mark. t ∈ {1, ..., T}.

We assume our training set D contains Ntr labeled pairs. We denote the n-th pair as (X(n), y(n)), X(n) is a

matrix of size M × T and y(n) ∈ {−1,+1}, where n ∈ {1, ..., Ntr}.

4.2.2 Long Short-Term Memory (LSTM) Networks

Recurrent neural networks (RNNs) have been designed for modeling sequential data samples and are used

widely in sequential data application tasks such as natural language processing. RNNs are advantageous over

37

CNNs because they can capture the complete set of dependencies among spatial positions in a sequential

sample.

Given an input matrix X of size nin × T , an RNN produces a matrix H of size d× T , where nin is the input

feature size, T is the input feature length, and d is the RNN embedding size. At each timestep t ∈ [1..T], an

RNN takes an input column vector xt ∈ Rnin and the previous hidden state vector ht−1 ∈ Rd and produces

the next hidden state ht by applying the following recursive operation:

ht = σ(Wxt + Uht−1 + b), (4.1)

where W,U,b are the trainable parameters of the model, and σ is an element-wise nonlinearity function.

Due to their recursive nature, RNNs can model the full conditional distribution of any sequential data and

find dependencies over time. To handle “vanishing gradient” issue of training basic RNNs, Hochreiter et

al. [84] proposed an RNN variant called the Long Short-term Memory (LSTM) network,which can handle

long term dependencies by using gating functions. These gates can control when information is written to,

ht-1 ht

xt

LSTM

Figure 4.2: A simple representation of an LSTM module.

read from, and forgotten. Specifically, LSTM “cells” take inputs xt,ht−1, and ct−1, and produce ht, and

ct:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)

ot = σ(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

where σ(·), tanh(·), and � are element-wise sigmoid, hyperbolic tangent, and multiplication functions,

respectively. it, ft, and ot are the input, forget, and output gates, respectively.

38

4.2.3 An End-to-End Deep Architecture for Predicting and Attending Jointly

AttentiveChrome learns to predict the expression of a gene from an input of HM signals covering its gene

region. First, the signals of each HM mark are fed into a separate LSTM network to encode the spatial

dependencies among its bin signals, and then another LSTM is used to model how multiple factors work

together for predicting gene expression. Two levels of ”soft” attention mechanisms are trained and dynamically

predicted for each gene: (1) to attend to the most relevant positions of an HM mark, and (2) then to recognize

and attend to the relevant marks. In summary, AttentiveChrome consists of five main modules (Figure 4.4):

(1) Bin-level LSTM encoder for each HM mark; (2) Bin-level Attention on each HM mark; (3) HM-level LSTM

encoder encoding all HM marks; (4) HM-level Attention over all the HM marks; (5) the final classification

module. We describe the details of each component as follows:

4.2.4 Bin-Level Encoder Using LSTMs

For a gene of interest, the j-th row vector, xj , from X includes a total of T elements that are sequentially

ordered along the genome coordinate. Considering the sequential nature of such signal reads, we treat each

element (essentially a bin position) as a ‘time step’ and use a bidirectional LSTM to model the complete

dependencies among elements in xj . A bidirectional LSTM contains two LSTMs, one in each direction (see

Figure 4.4(c)). It includes a forward
−−−−→
LSTM j that models xj from xj1 to xjT and a backward

←−−−−
LSTM j that

models from xjT to xj1. For each position t, the two LSTMs output
−→
hjt and

←−
hjt , each of size d.

−→
hjt =

−−−−→
LSTM j(xjt)

and
←−
hjt =

←−−−−
LSTM j(xjt). The final embedding vector at the t-th position is the concatenation hjt = [

−→
hjt ,
←−
hjt].

By coupling these LSTM-based HM encoders with the final classification, they can learn to embed each HM

mark by extracting the dependencies among bins that are essential for the prediction task.

4.2.5 Bin-Level Attention, α-attention

Although the LSTM can encode dependencies among the bins, it is difficult to determine which bins are

most important for prediction from the LSTM. To automatically and adaptively highlight the most relevant

bins for each sample, we use ”soft” attention to learn the importance weights of bins. This means when

representing j-th HM mark, AttentiveChrome follows a basic concept that not all bins contribute equally

to the encoding of the entire j-th HM mark. The attention mechanism can help locate and recognize those

39

bins that are important for the current gene sample of interest from j-th HM mark and can aggregate those

important bins to form an embedding vector. This extraction is implemented through learning a weight

vector αj of size T for the j-th HM mark. For t ∈ {1, ..., T}, αjt represents the importance of the t-th bin in

the j-th HM. It is computed as: αjt =
exp(Wbh

j
t)∑T

i=1 exp(Wbh
j
i)

.

αjt is a scalar and is computed by considering all bins’ embedding vectors {hj1, · · · ,h
j
T }. The context

parameter Wb is randomly initialized and jointly learned with the other model parameters during training.

Our intuition is that through Wb the model will automatically learn the context of the task (e.g., type of a

cell) as well as the positional relevance to the context simultaneously. Once we have the importance weight

of each bin position, we can represent the entire j-th HM mark as a weighted sum of all its bin embeddings:

mj =
∑T
t=1 α

j
t × hjt . Essentially the attention weights αjt tell us the relative importance of the t-th bin in

the representation mj for the current input X (both hjt and αjt depend on X).

4.2.6 HM-Level Encoder Using Another LSTM

We aim to capture the dependencies among HMs as some HMs are known to work together to repress or

activate gene expression [83]. Therefore, next we model the joint dependencies among multiple HM marks

(essentially, learn to represent a set). Even though there exists no clear order among HMs, we assume an

imagined sequence as {HM1, HM2, HM3, ...,HMM} 1. We implement another bi-directional LSTM encoder,

this time on the imagined sequence of HMs using the representations mj of the j-th HMs as LSTM inputs

(Figure 4.4(e)). Setting the embedding size as d′, this set-based encoder, we denote as LSTMs, encodes the

j-th HM as: sj = [
−−−−−→
LSTMs(m

j),
←−−−−−
LSTMs(m

j)]. Differently from mj , sj encodes the dependencies between

the j-th HM and other HM marks.

4.2.7 HM-Level Attention, β-attention

Now we want to focus on the important HM markers for classifying a gene’s expression as high or low. We

do this by learning a second level of attention among HMs. Similar to learning αjt , we learn another set of

weights βj for j ∈ {1, · · · ,M} representing the importance of HMj . βi is calculated as: βj = exp(Wss
j)∑M

i=1 exp(Wssi)
.

The HM-level context parameter Ws learns the context of the task and learns how HMs are relevant to that

1We tried several different architectures to model the dependencies among HMs, and found no clear ordering.

40

context. Ws is randomly initialized and jointly trained. We encode the entire ”gene region” into a hidden

representation v as a weighted sum of embeddings from all HM marks: v =
∑M
j=1 β

jsj . We can interpret the

learned attention weight βi as the relative importance of HMi when blending all HM marks to represent the

entire gene region for the current gene sample X.

4.2.8 Training AttentiveChrome End-to-End

The vector v summarizes the information of all HMs for a gene sample. We feed it to a simple classification

module f (Figure 4.4(f)) that computes the probability of the current gene being expressed high or low:

f(v) = softmax(Wcv + bc). Wc and bc are learnable parameters. Since the entire model, including the

attention mechanisms, is differentiable, learning end-to-end is trivial by using backpropagation [76]. All

parameters are learned together to minimize a negative log-likelihood loss function that captures the difference

between true labels y and predicted scores from f(.).

AttentiveChrome Forward Propagation algorithm is presented in Algorithm box 1, while Figure 3.2 presents

the overview of the proposed AttentiveChrome in detail.

Algorithm 1 AttentiveChrome: Forward Propagation

Require: X . Size: M × T
1: procedure Classification(X)
2: {xt1, xt2, . . . xtj} ← X . Size: 1× T , t ∈ {1, . . . T} and j ∈ {1, . . .M}
3: mj ← BinLevelAttention(xjt)
4: v← HMLevelAttention(mj)
5: y ←MultiLayerPerceptron(v)
6: return y

7: procedure Bin-Level Attention(xjt)
8: for j ∈ {1, . . .M} do . Run in Parallel
9:

10:
−→
hjt ←

−−−−→
LSTM j(xjt) . Bi-directional LSTM

11:
←−
hjt ←

←−−−−
LSTM j(xjt)

12: hjt ← [
−→
hjt ,
←−
hjt].

13: αjt ←
exp(Wbh

j
t)∑T

i=1 exp(Wbh
j
i)

. Size: 1× T for each j ∈ {1, . . .M}

14: mj ←
∑T
t=1 α

j
t × hjt

return mj

15: procedure HM-Level Attention(mj)

16: sj ← [
−−−−−→
LSTMs(m

j),
←−−−−−
LSTMs(m

j)]

17: βj ← exp(Wss
j)∑M

i=1 exp(Wssi)
. Size: 1×M

18: v←
∑M
j=1 β

jsj

return v

41

4.3 Experimental Setup

4.3.1 Dataset

We use the same dataset as in DeepChrome with gene expression levels and signal data of five core HM marks

for 56 different cell types archived by the REMC database [1]. Each dataset contains information about both

the location and the signal intensity for a mark measured across the whole genome. The selected five core HM

marks have been uniformly profiled across all 56 cell types in the REMC study [1]. We revisit the naming of

these five HM marks include: H3K27me3 as HreprA, H3K36me3 as Hstruct, H3K4me1 as Henhc, H3K4me3 as

Hprom, and H3K9me3 as HreprB . HMs HreprA and HreprB are known to repress the gene expression, Hprom

activates gene expression, Hstruct is found over the gene body, and Henhc sometimes helps in activating gene

expression.

4.3.2 Model Variations and Two Baselines

In Section 4.2, we introduced three main components of AttentiveChrome to handle the task of predicting

gene expression from HM marks: LSTMs, attention mechanisms, and hierarchical attention. To investigate

the performance of these components, our experiments compare multiple AttentiveChrome model variations

plus two standard baselines.

• DeepChrome [6]: The temporal (1-D) CNN model used by Singh et al. [6] for the same classification

task. This study did not consider the modular property of HM marks.

• LSTM: We directly apply an LSTM on the input matrix X without adding any attention. This setup

does not consider the modular property of each HM mark, that is, we treat the signals of all HMs at

t-th bin position as the t-th input to LSTM.

• LSTM-Attn: We add one attention layer on the baseline LSTM model over input X. This setup does

not consider the modular property of HM marks.

• CNN-Attn: We apply one attention layer over the CNN model from DeepChrome [6], after removing the

max-pooling layer to allow bin-level attention for each bin. This setup does not consider the modular

property of HM marks.

42

• LSTM-α, β: As introduced in Section 4.2, this model uses one LSTM per HM mark and add one

α-attention per mark. Then it uses another level of LSTM and β-attention to combine HMs.

• CNN-α, β: This considers the modular property among HM marks. We apply one CNN per HM mark

and add one α-attention per mark. Then it uses another level of CNN and β-attention to combine HMs.

• LSTM-α: This considers the modular property of HM marks. We apply one LSTM per HM mark and

add one α-attention per mark. Then, the embedding of HM marks is concatenated as one long vector

and then fed to a 2-layer fully connected MLP.

We use datasets across 56 cell types, comparing the above methods over each of the 56 different tasks.

Table 4.2: AUC score performances for different variations of AttentiveChrome and baselines

Baselines AttentiveChrome Variations

Model DeepChrome
(CNN)
[6]

LSTM CNN-
Attn

CNN-
α, β

LSTM-
Attn

LSTM-
α

LSTM-
α, β

Mean 0.8008 0.8052 0.7622 0.7936 0.8100 0.8133 0.8115
Median 0.8009 0.8036 0.7617 0.7914 0.8118 0.8143 0.8123
Max 0.9225 0.9185 0.8707 0.9059 0.9155 0.9218 0.9177
Min 0.6854 0.7073 0.6469 0.7001 0.7237 0.7250 0.7215

Improvement over DeepChrome [6] 36 0 16 49 50 49
(out of 56 cell types)

4.3.3 Model Hyperparameters

For AttentiveChrome variations, we set the bin-level LSTM embedding size d to 32 and the HM-level LSTM

embedding size as 16. Since we implement a bi-directional LSTM, this results in each embedding vector ht as

size 64 and embedding vector mj as size 32. Therefore, we set the context vectors, Wb and Ws, to size 64

and 32 respectively.2

2We can view Wb as 1× 64 matrix.

43

4.4 Results

4.4.1 Performance Evaluation

Table 4.2 compares different variations of AttentiveChrome using summarized AUC scores across all 56

cell types on the test set. We find that overall the LSTM-attention based models perform better than

CNN-based and LSTM baselines. CNN-attention model gives worst performance. To add the bin-level

attention layer to the CNN model, we removed the max-pooling layer. We hypothesize that the absence

of max-pooling is the cause behind its low performance. LSTM-α has better empirical performance than

the LSTM-α, β model. We recommend the use of the proposed AttentiveChrome LSTM-α, β (from here

on referred to as AttentiveChrome) for hypothesis generation because it provides a good trade-off between

AUC and interpretability. Also, while the performance improvement over DeepChrome [6] is not large,

AttentiveChrome is better as it allows interpretability to the ”black box” neural networks.

Table 4.3: Pearson Correlation values between weights assigned for Hprom (active HM) by different visualization techniques and
Hactive read coverage (indicating actual activity near ”ON” genes) for predicted ”ON” genes across three major cell types.

Viz. Methods H1-hESC GM12878 K562

α Map (LSTM-α) 0.8523 0.8827 0.9147
α Map (LSTM-α, β) 0.8995 0.8456 0.9027
Class-based Optimization (CNN) 0.0562 0.1741 0.1116
Saliency Map (CNN) 0.1822 -0.1421 0.2238

4.4.2 Using Attention Scores for Interpretation

Unlike images and text, the results for biology are hard to interpret by just looking at them. Therefore, we

use additional evidence from REMC as well as introducing a new strategy to qualitatively and quantitatively

evaluate the bin-level attention weights or α-map LSTM-α model and AttentiveChrome. To specifically

validate that the model is focusing its attention at the right bins, we use the read counts of a new HM signal

- H3K27ac from REMC database. We represent this HM as Hactive because this HM marks the region that is

active when the gene is “ON”. H3K27ac is an important indication of activity in the DNA regions and is

a good source to validate the results. We did not include H3K27ac Mark as input because it has not been

profiled for all 56 cell types we used for prediction. However, the genome-wide reads of this HM mark are

available for three important cell types in the blood lineage: H1-hESC (stem cell), GM12878 (blood cell),

and K562 (leukemia cell). We, therefore, chose to compare and validate interpretation in these three cell

44

0

0 1

Bins (t)

Genes=ON

0 20 40 60 80 100

TSS

TSS
Bins (t) R

ea
d

C
ov

er
ag

e
of

 H
ac

tiv
e

Map 0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bins (t)

A
vg

. A
tte

nt
io

n
W

ei
gh

ts

Bins (t)
A

vg
. A

tte
nt

io
n

W
ei

gh
ts

 (b) (a)

HreprA Hstruct Henhc Hprom HreprB

G
en

es
=O

N

G
en

es
=O

FF

Cell Type: GM12878

TSS

TSS

H1
-hE

SC
GM

12
87

8
K5

62

Gene = OFF ON OFF

(c)

HreprA

Hstruct

Henhc

Hprom

HreprB

Maps

Gene: PAX5

0.008

0.014

0.010

0.012

0 20 40 60 80 100A
tte

nt
io

n
W

ei
gh

ts

Hactive

HreprA Hstruct Henhc Hprom HreprB

Figure 4.3: Visualization results of Attentivechrome

(a) Bin-level attention weights (αj
t) from AttentiveChrome averaged for all genes when predicting gene=ON and gene=OFF in

GM12878 cell type. (b) Top: Cumulative Hactive signal across all active genes. Bottom: Plot of the bin-level attention weights

(αj
t). These weights are averaged for gene=ON predictions. Hprom weights are concentrated near the TSS and corresponds well

with the Hactive indicating actual activity near the gene. This indicates that AttentiveChrome is focusing on the correct bin
positions for this case (c) Heatmaps visualizing the HM-level weights (βj), with j ∈ {1, ..., 5} for an important differentially
regulated gene (PAX5) across three blood lineage cell types: H1-hESC (stem cell), GM12878 (blood cell), and K562 (leukemia
cell). The trend of HM-level βj weights for PAX5 have been verified through biological literature.

types. This HM signal has not been used at any stage of the model training or testing. We use it solely to

analyze the visualization results.

We use the average read counts of Hactive across all 100 bins and for all the active genes (gene=ON) in the

three selected cell types to compare different visualization methods. We compare the attention α-maps of the

best performing LSTM-α and AttentiveChrome models with the other two popular visualization techniques:

(1) the Class-based optimization method and (2) the Saliency map applied on the baseline DeepChrome-CNN

model. We take the importance weights calculated by all visualization methods for our active input mark,

Hprom, across 100 bins and then calculate their Pearson correlation to Hactive counts across the same 100

bins. Hactive counts indicate the actual active regions. Table 4.3 reports the correlation coefficients between

Hprom weights and read coverage of Hactive. We observe that attention weights from our models consistently

achieve the highest correlation with the actual active regions near the gene, indicating that this method can

capture the important signals for predicting gene activity. Interestingly, we observe that the saliency map on

the DeepChrome achieves a higher correlation with Hactive than the Class-based optimization method for

two cell types: H1-hESC (stem cell) and K562 (leukemia cell).

Next, we obtain the attention weights learned by AttentionChrome, representing the important bins and

HMs for each prediction of a particular gene as ON or OFF. For a specific gene sample, we can visualize

and inspect the bin-level and HM-level attention vectors αjt and βj generated by AttentionChrome. In

45

Figure 4.3(a), we plot the average bin-level attention weights for each HM for cell type GM12878 (blood

cell) by averaging α-maps of all predicted “ON” genes (top) and “OFF” genes (bottom). We see that on

average for “ON” genes, the attention profiles near the TSS region are well defined for Hprom, Henhc, and

Hstruct. On the contrary, the weights are low and close to uniform for HreprA and HreprB. This average

trend reverses for “OFF” genes in which HreprA and HreprB seem to gain more importance over Hprom,

Henhc, and Hstruct. These observations make sense biologically as Hprom, Henhc, and Hstruct are known to

encourage gene activation while HreprA and HreprB are known to repress the genes 3. On average, while

Hprom is concentrated near the TSS region, other HMs like Hstruct show a broader distribution away from

the TSS. In summary, the importance of each HM and its position varies across different genes. E.g., Henhc

can affect a gene from a distant position.

In Figure 4.3(b), we plot the average read coverage of Hactive (top) for the same 100 bins, that we used

for input signals, across all the active genes (gene=ON) for GM12878 cell type. We also plot the bin-level

attention weights αjt for AttentiveChrome (bottom) averaged over all genes predicted as ON for GM12878.

Visually, we can tell that the average Hprom profile is similar to Hactive. This observation makes sense because

Hprom is related to active regions for “ON” genes. Thus, validating our results from Table 4.3.

Finally in Figure 4.3(c) we demonstrate the advantage of AttentiveChrome over LSTM-α model by printing

out the βj weights for genes with differential expressions across the three cell types. That is, we select genes

with varying ON(+1)/OFF(−1) states across the three chosen cell types using a heatmap. Figure 4.3(c)

visualizes the βj weights for a certain differentially regulated gene, PAX5. PAX5 is critical for the gene

regulation when stem cells convert to blood cells ([85]). This gene is OFF in the H1-hESC cell stage (left

column) but turns ON when the cell develops into GM12878 cell (middle column). The βj weight of repressor

mark HreprA is high when gene=OFF in H1-hESC (left column). This same weight decreases when gene=ON

in GM12878 (middle column). In contrast, the βj weight of the promoter mark Hprom increases from

H1-hESC (left column) to GM12878 (middle column). These trends have been observed in [85] showing

that PAX5 relates to the conversion of chromatin states: from a repressive state (Hprom(H3K4me3):−,

HreprA(H3K27me3):+) to an active state (Hprom(H3K4me3):+, HreprA(H3K27me3):−). This example shows

that our βj weights visualize how different HMs work together to influence a gene’s state (ON/OFF). We

would like to emphasize that the attention weights on both bin-level (α-map) and HM-level (β-map) are gene

(i.e. sample) specific.

3The small dips at the TSS in both subfigures of Figure 4.3(a) are caused by missing signals at the TSS due to the inherent
nature of the sequencing experiments.

46

The proposed AttentiveChrome model provides an opportunity for a plethora of downstream analyses that

can help us understand the epigenomic mechanisms better. Besides, relevant datasets are big and noisy.

A predictive model that automatically selects and visualizes essential features can significantly reduce the

potential manual costs. The histone code hypothesis states that different histone modifications (HMs) serve

as marks for the recruitment of various proteins or protein complexes to regulate diverse chromatin functions,

such as gene expression, DNA replication, and chromosome segregation [86]. Biologically, there is evidence

for both causal and correlation relationship between HMs and gene expression. It is essential to keep in mind

that correlation does not imply causation. A statistical association between an HM and gene expression

may simply reflect the fact that they are both related to a third, unknown factor thus the HM may not

be regulating the gene expression directly. For example, histone acetylation has also been proposed to

physically alter chromatin structure by neutralizing the positive charge of lysines and disrupting intra and

internucleosomal interactions, which lead to an open chromatin environment permissible to transcription

(causation). On the other hand, histone acetylation is also involved in the direct recruitment of proteins

that control transcription regulation. Hence, this mark is also highly correlated with gene expression while

not directly controlling it [87].

Computationally, DeepChrome and AttentiveChrome capture a partial correlation type relationship between

a single HM and gene expression. Partial correlation measures the strength of a relationship between two

variables - an HM and gene expression in this case - while controlling for the effect of one or more other variables

(other HMs). Our models capture a similar relationship between the HM and gene expression. However, we

would like to emphasize that while partial correlation, as a term, is associated with linear relationships, we

are capturing this relationship ideologically under non-linear settings. Therefore, by using non-linearity and

including the combinatorial interactions between different HMs, DeepChrome and AttentiveChrome are not

restricted to modeling simple correlations between an HM and gene expression. In fact, they incorporate

more information in the form of the effects of other HMs on the gene expression thus providing improved

modeling of the underlying mechanism.

47

HM1

HM2

HM3

HM4

HM5

...... 100 bp …..

Transcription Start
Site (TSS)

Bin # 1 2 3 4 .. 100

X

HM1
HM2
HM3
HM4
HM5

Gene A

Bins H
is

to
ne

 M
od

if
ic

at
io

ns

Bin # 1 2 3 4 .. 100

HM1

HM2
HM3
HM4

HM5

Gene A

Gene A

Gene A

Gene A

Gene A

LSTM j for each
 where j=1,...5

......

Linear Layer

Soft Max

Gene= +1/-1

Context Vector
b

t=1 t=2 t=100 (for each)

Whm mj=1 m …… m

j=1

HM2

HM1

HM2
HM3
HM4

HM5

 (for m j=1,..5) HM1 HM2 HM3 HM4 HM5

GeneA = ON
 or

GeneA =OFF

W

Context Vector

Bin-level
attention weights

HM-level
attention weights

…

…
 t=1 t=2 t=100

t=100
t=1 t=2

…… ……

…… ……

(b) Input

(f) Classification

x j=5

j=2 j=2 j=2

ht=1
j=2 ht=2

j=2 ht=100
j=2

x j

h t=1,..,T
j=1,..,5

LSTMj=2

LSTMj=2

(e)

j=2 j=5

j=2 j=5

ht=1
j=2

ht=2
j=2

ht=100
j=2

ht=100
j=2

...... ht=2
j=2

ht=1
j=2

xt=1
j=2 xt=2

j=2 xt=100
j=2

x j=4
x j=2
x j=2
x j=1

v

f (v)

e.g. j=2

HM-level
Attention

(d) Bin-level
Attention

(c) Bin-level
Encoder

(a) Feature
Generation

Figure 4.4: Detailed schematic of the proposed AttentiveChrome architecture

AttentiveChrome is a unified framework that can both predict and understand how histone modifications regulate gene expression.
We present six steps in order: (a) We generate an input matrix X for each gene’s TSS flanking region, consisting of 100 bins as
rows and 5 histone modification (HM) signals as columns. (b) We split the matrix into five vectors representing each HM mark.
We input these vectors into the AttentiveChrome model. (c) We use a separate LSTM to learn feature representations of an HM
mark. (d) A bin-level attention layer is learned to extract bins that are important for representing an HM mark. This attention
layer will aggregate important bins to form an embedding vector for an HM. Here we only show the case of HM2 in steps (c) and
(d). (e) Next, to capture the dependencies among different HM marks, we apply another LSTM layer over the representation of
5 HMs. (f) To reward HM marks that are significant clues for classifying an individual gene’s expression, AttentiveChrome
adds another attention layer- HM-level attention. This layer outputs an embedding vector v for the whole gene region under
consideration. (g) Finally, the output embedding v from the previous layers will be fed into a classification module to predict
the gene expression as high(+1)/low(-1).

48

Chapter 5

Towards Faster String Kernel

Calculation

5.1 Biological Sequence Classification Tasks

Studying molecular sequences gives us deeper insight into the biological processes that can, in turn, help us

understand cell development and diseases. Two major tasks essential in the field are Transcription Factor

Binding Site (TFBS) Prediction and Remote Protein Homology Prediction.

Transcription factors (TFs) are regulatory proteins that bind to functional sites of DNA to control the

regulation of genes. Each different TF binds to specific locations (or sites) on a genomic sequence to regulate

cell machinery. Owing to the development of chromatin immunoprecipitation and massively parallel DNA

sequencing (ChIP-seq) technologies [88], maps of genome-wide binding sites are currently available for multiple

TFs across different organisms. Because ChIP-seq experiments are slow and expensive, computational methods

to identify TFBSs accurately are essential for understanding the regulatory functioning and evolution of

genomes.

Remote Protein Homology Prediction, i.e., classification of protein sequences according to their biological

function or structure, plays an essential role in drug development. Protein sequences that are a part of the

same protein superfamily are evolutionally related and functionally and structurally relevant to each other

49

[89]. Protein sequences with feature patterns showing high homology are classified into the same category.

Once classified precisely into a family, the properties of the protein can be easily narrowed down by analyzing

only the superfamily it belongs to.

Both these tasks have been formulated as classification tasks, where knowing a DNA or protein sequence, we

would like to classify it as a binding site or non-binding site for TF prediction and belonging or not belonging

to a protein family for homology prediction.

The state-of-the-art DNN models have been discussed in Section 2.2.1. DNN models give high accuracy

when trained on a large number of samples. However, they usually require a lot of parameters which tend to

overfit smaller datasets. Also, they use Stochastic Gradient Descent (SGD) for training, which often fails to

converge properly for these small size datasets (< 5000 sequences). In many sequence-based applications,

including medical research, we can obtain a small number of labeled samples that cannot be trained properly

using DNNs. Also, training DNNs can be very time consuming, which becomes an obstacle when handling

time-sensitive new experiments in biology.

5.2 Approach

We propose a fast algorithmic strategy, GaKCo: Gapped k-mer Kernel using Counting to speed up the

gapped k-mer kernel calculation. GaKCo uses a “sort and count” approach to calculate kernel similarity

through cumulative k-mer counting [12]. GaKCo groups the counting of co-occurrence of substrings at each

fixed number of mismatches ({0, . . . ,M}) into an independent procedure. Such grouping significantly reduces

the number of updates on the kernel matrix (an operation that dominates the time cost). This algorithm is

naturally parallelizable; therefore we present a multithread variation as our ultimate tool that improves the

calculation speed even further.

We provide a rigorous theoretical analysis showing that GaKCo has a better asymptotic kernel computation

time cost than gkm-SVM. Our empirical experiments, on three different real-world sequence classification

domains, validate our theoretical analysis. For example, for the protein classification task mentioned above

where gkm-SVM took more than 5 hours, GaKCo takes only 4 minutes. Compared to GaKCo, gkm-SVM

slows down considerably especially when M ≥ 4 and for tasks with Σ ≥ 4. Experimentally, GaKCo provides a

speedup by factors of 2, 100 and 4 for sequence classification on DNA (5 datasets), protein (12 datasets) and

50

gk
m

-S
VM

 K
er

ne
l C

al
cu

la
tio

n
Ti

m
e

(lo
g

se
co

nd
s)

GaKCo Kernel Calculation Time (log seconds)

 Protein DNA Text

0

1

2

3

4

5

6

1 2 3 4 5 6

Tim
e (

GaK
Co) =

 Tim
e (

gkm
-SVM)

AUC Score (GaKCO)

AU
C

Sc
or

e
(g

km
-S

VM
)

0.5

0.6

0.7

0.8

0.9

1

0.6 0.7 0.8 0.9 1

 *

AUC (G
aKCo) =

 AUC (g
km

-SVM)

 *Micro-averaged F1-score
(a) (b)

Figure 5.1: GaKCo versus gkm-SVM comparison

(a) Kernel calculation times (log(seconds)) of GaKCo (X-axis) versus gkm-SVM (Y-axis) for 19 different datasets - protein (12),
DNA (5), and text (2). GaKCo is faster than gkm-SVM for 16/19 datasets. (b) Empirical performance for the same 19 datasets
(DNA, protein, and text) of GaKCo (X-axis) versus gkm-SVM (Y-axis). GaKCo achieves the same AUC-scores as gkm-SVM.

text (2 datasets), respectively, while achieving the same accuracy as gkm-SVM. Figure 5.1(a) compares the

kernel calculation times of GaKCo (X-axis) with gkm-SVM (Y-axis). We plot the kernel calculation times for

the best performing (g, k) parameters (see Table 5.4) for 19 different datasets. We see that GaKCo is faster

than gkm-SVM for 16 out of 19 datasets that we have tested. Similarly, we plot the empirical performance

(AUC scores or F1-score) of GaKCo (horizontal axis) versus gkm-SVM (vertical axis) for the best performing

(g, k) parameters (see Table 5.4) for the 19 different datasets in Figure 5.1(b). It shows that the empirical

performance of GaKCo is same as gkm-SVM with respect to the AUC scores. Table 5.1 summarizes the

important notations we use.

5.2.1 Background: Gapped k-mer String Kernels

Spectrum kernel and its mismatch variations generate extremely sparse feature vectors for even moderately

sized values of k, since the size of Γk is Σk. To solve this issue, Ghandi et al. [90] introduced a new set

of feature representations, called gapped k-mers. It is characterized by two parameters: (1) g, the size of

a substring with gaps (we call this gapped instance as g-mer hereafter) and (2) k, the size of non-gapped

substring in a g-mer (we call it k-mer). The number of gaps is (g − k). The inner product to compute

51

Table 5.1: List of symbols and their descriptions that are used.

Notations Descriptions
D Dataset under consideration, D = {x1, x2, . . . , xN}
N Number of sequences in a given dataset D
x, x′ Pair of strings in D that are compared for kernel calculation
K(x, x′) Kernel Function; equation 5.4 is for the gapped k-mer case
φ(x) Feature space representation of the string x
l Average length of sequences in a given dataset D
Σ Size of the dictionary of a given dataset D
g Length of the gapped instance or g-mer (specified by the user)
k Length of k-mer inside a gapped instance (specified by the user)
M M = (g − k); maximum number of mismatches allowed between two g-mers;
m Number of mismatches between two g-mers. m ∈ {0, . . .M}
cgk cgk =

∑M=(g−k)
m=0

(
g
m

)
.

u Number of unique g-mers in a given dataset D
z Number of unique g-mers with > 1 occurrence in a given dataset D
Nm(x, x′) Mismatch profile: number of matching g-mer pairs between x and x′ when allowing m mis-

matches; see equation 5.6
Cm(x, x′) Cumulative mismatch profile: number of matching {g −m}-mer pairs between x and x′. Each

{g −m}-mer is generated from a g-mer by removing characters from a total of m different
positions; See equation 5.5

η Average size of the nodelist of leafnodes in gkm-SVM’s trie. Each leafnode is a unique g-mer
whose nodelist includes all g-mers in the trie whose hamming distance to this leaf is up to M ;
See equation 5.8

the gapped k-mer kernel function includes sum over all possible k-mer feature counts obtained from the

g-mers:

K(x, x′) =
∑
γ∈Θg

cx(γ) · cx′(γ) (5.1)

where γ represents a k-mer, Θg is the set of all possible gapped k-mers that can appear in all the g-mers

(each with (g − k) gaps) in a given dataset (denoted as D hereafter) of sequence samples.

The advantage of this formulation is that it reduces the number of possible k-mers drastically. In a “naive”

design of gapped k-mer string kernel when selecting k positions (k-mers) from a g-mer, there can be Σ

possible choices for each of the
(
g
k

)
position. Therefore, the total number of possible gapped k-mers equals

F =
(
g
k

)
Σk. This feature space grows rapidly with Σ or k. In contrast, Eq. (5.1) (implemented as gkm-SVM

[17]) includes only those k-mers whose gapped formulation has appeared as g-mers in a given dataset D. Θg

includes all unique g-mers of the dataset D, whose size |Θg| is normally much smaller than F because the

new feature space is restricted to only observable gapped k-mers in D. Ghandi et al. [17] use this intuition

52

to reformulate Eq.(5.1) into:

K(x, x′) =

l1∑
i=0

l2∑
j=0

hgk(gxi , g
x′

j) (5.2)

For two sequences x and x′ of lengths l1 and l2 respectively. gxi and gx
′

j are the ith and jthg-mers of

sequences x and x′ (i.e., gxi is a continuous substring of x starting from the i-th position and ending at the

(i+ g − 1)th position of x). hg,k represents the inner product (or similarity) between gxi and gx
′

j using the

co-occurrence of gapped k-mers as features. hgk(gxi , g
x′

j) is non-zero only when gxi and gx
′

j have common

k-mers. g-pairm(x, x′) denotes a pair of g-mers (gx1 , g
x′

2) whose hamming distance is exactly m. gx1 is from

sequence x and gx
′

2 is from sequence x′.

Each g-pairm(.) has
(
g−m
k

)
common k-mers, therefore its hgk can be directly calculated as hgk(g-pairm) =(

g−m
k

)
. Ghandi et al. [17] formulate this observation formally into the coefficient hm:

hm =

(
g−m
k

)
, if g −m ≥ k

0, otherwise.

(5.3)

hm describes the co-occurrence count of common k-mers for each possible g-pairm(.) in D. hm > 0 only for

cases of m ≤ (g − k) or (g −m) ≥ k. This is because there will be no common k-mers when the number of

mismatches (m) between two g-mers is more than (g − k). Now we can reformulate Eq. 5.2 by grouping

g-pairsm(x, x′) with respect to different values of m. This is because g-pairsm(.) with same m contribute

the same number of co-occurrence counts: hm. Thus, Eq. 5.2 can be adapted into the following compact

form:

K(x, x′) =

g−k∑
m=0

Nm(x, x′)hm (5.4)

Nm(x, x′) represents the number of g-pairm(x, x′) between sequence x and x′. Nm(x, x′) is named as

mismatch profile by [17]. Now, to compute kernel function K(x, x′) for gapped k-mer SK, we only need to

calculate Nm(x, x′) for m ∈ {0, . . . g − k}, since hm can be precomputed. The state-of-the-art tool gkm-SVM

[17] calculates Nm(x, x′) using a trie based data structure that is similar to [11] (with some modifications,

details in Section 5.2.3).

53

S=ACACA
T=AAACA

ACA
CAC
ACA
AAA
AAC
ACA

ACA
CAC
ACA
AAA
AAC
ACA

AAA
AAC
ACA
ACA
ACA
CAC

m=0
S
S
S
T
T
T

T
T
S
S
T
S

1 2
2 0

AA
AA
AC
AC
AC
CA

m=1
T
T
S
S
T
S

AA
AC
AC
CA
CA
CA

T
S
T
S
S
T

AA
AA
AA
AA
AC
CC

S
S
T
T
T
S

1 4
4 1

1 2
2 1

1 3
3 0

+ 3 9
9 2

g-mers

 S T
 S

 T

S T
 S
 T

Nm=0 =

C1

Nm=1 =
3 9
9 2

1 2
2 0

C1 Nm=0

= 0 3
3 2

 S T
 S
 T

S
S
S
T
T
T

ACA
CAC
ACA
AAA
AAC
ACA

S
S
S
T
T
T

S
S
S
T
T
T

+ =

g-mers

Index Sort Operation

j=1 j=1 j=1

Count Operation
Array

Array Array Array
ACA
CAC
ACA
AAA
AAC
ACA

ACA
CAC
ACA
AAA
AAC
ACA

Removing
symbols from
position i (=m)

position 1 position 2 position 3

()3
1

Step1

Step2
Step3 &

Step5

Step6

Step4

Nm=1

ACA
ACA

ACA
ACA

ACA
AAA

m=1 m=0

Cm=1 (S,T)=
Nm=0 (S,T)=

 1+1 =2

(a) (b) Step1

Step2

Step4

Step5

Step6

Nm=1 (S,T)= 2

Cm=1 (S,T)= ()3
1 Nm=0 Nm=1 +

(from direct observation)

Cm=1 (S,T)= 2 + 3x2 = 8

Kernel Update
Matching g-mers

S
S

(c)

1 (2+1)
(2+1) 0

=

Leaf Node

m=0

m=1

Nodelist (ACA)

Sequence list (ACA)

S/ACA T/ACA

T/AAA

S T A

C

A

ACA T

Step3

ACA AAA

S
S
T

S
S
T

ACA
ACA
ACA

S
S
T

 1+1=2 1+1=2

(S,T) (S,T)

 2+4+2=8

A

(S,T)

A

AAA T AAA T

(T)

ACA T AA T

 2+2=4

Figure 5.2: Overview of GaKCo algorithm for calculating mismatch profile Nm(S, T).

Given two strings S = ACACA and T = AAACA, and g = 3, we can get g-mers {ACA,CAC,ACA} and {AAA,AAC,ACA}
respectively. [Step 1] For m = 0, all the g-mers are sorted lexicographically. [Step 2] Nm=0(S, T) is calculated directly by using
sorting and counting to get the counts of matching g-mer ACA in each string (S/2, T/1). Then the kernel update operation
updates Nm=0(S, T) value to 2. [Step 3] For m = 1, we perform over counting of the g − 1-mers by picking 1 position at a time

(from
(g=3

1

)
positions) and removing symbols from each of these positions to obtain (g − 1)-mers. [Step 4] We sort and count

to find the number of matching (g − 1)-mers for each picked position. [Step 5] Summing up over all
(g=3

1

)
positions, we get

cumulative mismatch profile Cm=1. Cm=1 includes matching statistics of g-mers with both mismatches m = 1 and m = 0. [Step
6] Using Eq. 5.6 we get Nm=1(S, T) = 3 from Cm=1(S, T) = 9 and Nm=0(S, T) = 2. This count corresponds exactly to the actual
number of pairs of g-mers at hamming distance m = 1 between s and t (i.e. {ACA : s/2, AAA : t/1}, {CAC : s/1, AAC : t/1}).
[Note: we do not calculate Nm(.) between a string and itself, i.e Nm(S, S) or Nm(T, T)] (b) A case demonstration of the
overcounting that takes place when calculating Cm=1. (c) A case demonstration of two leafnode g-mers and associated nodelist
for leaf {ACA} in the trie used by gkm-SVM.

5.2.2 Proposed Method: Gapped k-mer Kernel with Counting (GaKCo)

In this chapter, we propose GaKCo, a fast and novel algorithm for calculating gapped k-mer string kernel.

GaKCo provides superior time performance over the state-of-the-art gkm-SVM and is different from it in

three aspects:

• Data Structure. gkm-SVM uses a trie based data structure (plus a separate nodelist at each leafnode)

for calculating Nm (see Figure 5.2(c)). In contrast, GaKCo uses simple associative arrays.

• Algorithm. GaKCo performs g-mer based cumulative counting of co-occurrence to calculate Nm.

• Parallelization. GaKCo groups computations for each value of m into an independent function,

making it naturally parallelizable. We, therefore, provide a parallel version that uses multi-thread

54

implementation.

Intuition:

When calculating Nm between all pairs of sequences in D for each value of m (m ∈ {0, . . . ,M = g − k}),

we can use counting to process all g-pairsm(.) (details below) from D together. Then we can calculate

Nm from such count statistics of g-pairsm(.). This method is entirely different from gkm-SVM that uses

a trie to organize g-mers such that each leafnode’s (a unique g-mer’s) nodelist memorizes its mismatched

g-mer neighbors in D for up to g − k mismatches. Section 5.2.3 provides theoretical analysis that GaKCo

formulation is asymptotically more scalable to M and Σ than gkm-SVM.

Algorithm:

GaKCo calculates Nm(x, x′) as follows (for pseudo code, see Algorithm 2):

1. GaKCo first extracts all possible g-mers from all the sequences in D and puts them in a simple array.

Given that there are N number of sequences with average length l 1, the total number of g-mers is

N × (l − g + 1) ∼ Nl (see Figure 5.2 (a)).

2. Nm=0(x, x′) represents the number of g-pairm=0(x, x′) (pairs of g-mers whose hamming distance

is 0) between x and x′. To compute Nm=0(xi, xj) ∀i,∀j = 1, ..., N , GaKCo sorts all the g-mers

lexicographically (see Figure 5.2(a) [Step 1]) and counts the occurrences (if > 1) of each unique g-mer.

Then we use these counts and the associated indexes of sequences to update all the kernel entries for

sequences that include the matching g-mers (Figure 5.2(a) [Step 2]). This computation is straight-

forward and the sort and count step takes O(gNl) time cost while the kernel update costs O(zN2) (at

the worst case). Here, z is the number of g-mers that occur > 1 times.

3. For cases when m = 1, . . . (g − k), we use a statistics measure Cm(x, x′), called cumulative mismatch

profile between two sequences x and x′. This measure describes the number of matching (g −m)-mers

between x and x′. Each (g −m)-mer is generated from a g-mer by removing a total number of m

positions. We can calculate the exact mismatch profile Nm from the cumulative mismatch profile Cm

for m > 0 (explanation in the next step).

1This is a simplification of real world datasets in which sequence length varies across samples

55

Cm=1 can be calculated from the associative-array (containing all g-mers in D and their counting

statistic) that we obtain from calculating Nm=0. When m = 1, we perform the following operation on

the list of all g-mers: we first pick 1 position and remove the symbol from the same position for all

g-mers to get a new list of (g − 1)-mers (Figure 5.2 (a) [Step 3]). We then sort and count this new list

to get the number of matching (g − 1)-mers (Figure 5.2 (b) [Step 4]). For the sequences that have the

matching (g − 1)-mers, we add the counts into their corresponding entries in matrix Cm. This sequence

of operations is repeated for a total of
(
g
1

)
positions, i.e every position that can be removed from g-mers

to get (g − 1)-mers. The cumulative mismatch profile Cm=1 is equal to the sum of all counts from all(
g
1

)
runs (Figure 5.2 [Step 5]). We use the same procedure for calculating Cm for m = 2, ...,M = g − k.

4. We now calculate Nm from Cm and Nj for j = 0, ...,m− 1. First, we explain the relationship between

Cm and Nm.

Given two g-mers g1 and g2, we remove symbols from the same set of m positions of both g-mers to get

two (g −m)-mers: g′1 and g′2. If the hamming distance between g′1 and g′2: d(g′1, g
′
2) = 0, then we can

conclude that the hamming distance between the original two g-mers g1 and g2: d(g1, g2) ≤ m (See

formal proof in Appendix). For instance, Cm=1(x,x’) records the statistic of matching (g − 1)-mers

among x and x′. It not only includes the matching statistics of all g-mer pairs whose hamming distance

is m = 1, but it also over-counts the matching statistics of all g-mer pairs whose hamming distance

is m = 0. This is because the matching g-mers that were counted for m = 0 will also contribute

to the matching statistics when considering (g − 1)-mers and that too for
(
g
1

)
times! Similarly, this

over-counting occurs for other values of m as well. Essentially the cumulative mismatch profile Cm can

be formulated as: ∀m ∈ {0, . . . , g − k}

Cm = Nm +

m−1∑
j=0

(
g − j
m− j

)
Nj (5.5)

We demonstrate this over-counting using Figure 5.2(b) on a subset of g-mers (ACA,AAA) from

Figure 5.2(a). Using Eq.5.5, the exact mismatch profile Nm can be computed as follows:

Nm = Cm −
m−1∑
j=0

(
g − j
m− j

)
Nj (5.6)

Here, we subtract Nj (for j = 0, . . . , i − 1) from Cm to compensate for the over-counting described

above.

56

Algorithm 2 GaKCo

Require: L, g, k . L=Array list of g-mers

1: procedure CalculateKernel(L,g,k)

2: M ← g − k

3: N←MismatchProfile(L,g,M)

4: K ← 0

5: for m : 0→M do

6: hm ←
(
g−M
k

)
7: K ← K +Nm.hm

8: procedure MismatchProfile(L,g,M)

9: for m : 0→M do . Parallel threads

10: Cm ← 0 . Cumulative Profile

11: npos ←
(
g
m

)
. Number of positions

12: for i : 0→ npos do

13: Cim ← 0

14: Li ← removePosition(L, i)

15: Li ← sort(Li)

16: Cim ← countAndUpdate(Li)

17: Cm ← Cm + Cim

18: for m : 0→M do

19: for j : 0→ m− 1 do

20: Nm ← Cm −
(
g−j
m−j

)
Nm

return N . N ∈ {N0, . . . , NM}

Ensure: K . Kernel Matrix

5.2.3 Theoretical Comparison of Time Complexity

In this section, we conduct asymptotic analysis to compare the time complexities of GaKCo with the

state-of-the-art toolbox gkm-SVM.

57

Time Complexity of GaKCo:

The time cost of GaKCo splits into two groups: (1) Pre-processing: those operations that indirectly update

the matching statistics among sequences; (2) Kernel updates: those operations that directly update the

matching statistics among sequences.

Pre-processing: For each possible m (m ∈ {0, . . .M = g−k}), GaKCo needs to choose m positions for symbol

removing (Figure 5.2 (a) [Step 3]), and then sort and count the possible (g −m)-mers from D (Figure 5.2

(a) [Step 4]). Therefore the time cost of pre-processing is O(ΣM=g−k
m=0

(
g
m

)
(g −m)Nl) ∼ O(ΣMm=0

(
g
m

)
gNl). To

simplifying notations, we use cgk to represent
∑M=(g−k)
m=0

(
g
m

)
hereafter.

Kernel Updates: These operations update the entries of Cm or Nm matrices when GaKCo finishes each

round of counting the number of matching (g −m)-mers. Assuming z denotes the number of unique (g −m)-

mers that occur > 1 times, the time cost of kernel update operations is (at the worst case) equivalent

to O(ΣM
m=0

(
g
m

)
zN2) ∼ O(cgkzN

2). Therefore, the overall time complexity of GaKCo is O(Cgk[gNl +

zN2]).

Parallelization:

m-based Parallelization: For each value of m from {0, . . .M = g − k}, calculating Cm is independent from

other values of m. Therefore, GaKCo’s algorithm can be easily revised into a parallel version. Essentially, we

just need to revise Step 9 in Algorithm 1 (pseudo code) - “For each value of m”- into, “For each value of

m per machine/per core/per thread”. In our original implementation, we create a thread for each value of

m from {0, . . .M = g − k} and calculate Cm in parallel. In the end, we compute the final kernel matrix K

using all the resulting Cm matrices. Figure 5.4 and 5.7(b) show the improvement of kernel calculation speed

when comparing the multi-thread version with the single-thread implementation of GaKCo.

Smarter parallelization strategy (GaKCo2.0): In the original Gakco, we thread over mismatch values m.

Thread m computes the cumulative mismatch profile with m mismatches, where 0 ≤ m ≤ (g − k). The

problem is that in order to produce the mth cumulative mismatch profile (Cm), we must first perform
(
g
m

)
sort-count-update steps (Figure 5.2 Step 5). So the number of units of work each thread needs to do varies

greatly depending on its value of m. For example, when g = 5 and k = 1. The GaKCo implementation

creates 5 threads, each of which needs to perform
(
g
m

)
sort-count-update steps:

58

Thread 0:
(

5
0

)
= 1 unit of work

Thread 1:
(

5
1

)
= 5 units of work

Thread 2:
(

5
2

)
= 10 units of work

Thread 3:
(

5
3

)
= 10 units of work

Thread 4:
(

5
4

)
= 5 units of work.

Threads 3 and 4 have twice as much work as threads 2 and 5. And threads 3 and 4 have ten times as much

work as thread 1. Gakco2.0 improves this implementation by using a smarter paralleization strategy. We first

pre-calculate how many sort-count-update steps need to be computed in total (i.e., 31 units of work in the

above example) as follows:

TotalSteps =

(g−k)∑
m=0

(
g

m

)
(5.7)

Next, we create a “work queue” of length equal to the total number of steps. Each element of the queue is a

small C++ struct containing the m and combination number values. Note that each step is associated with a

m value and a combination number. Therefore, for a given value of m, we have a sort-count-update step for

each of the
(
g
m

)
combinations, and we keep track of that using struct in the work queue.

We create threads and divide the work queue among them. Each thread will deduce the sort-count-update

step it currently needs to compute by accessing struct in the work queue. When it finishes calculating one

sort-count-update step and adding the result to the associated cumulative mismatch profile kernel, it moves

to the next assigned step. The thread stops on completing all the assigned sort-count-update steps.

Through experimentation, we found that speed and memory usage are best when we create 1 thread for each

the machines CPU cores. However, for machines with > 16 cores, we create 20 threads by default. We also

provide an option for the user to specify how many threads they would like to create.

Thread Synchronization: Two threads that are performing sort-count-update steps might frequently need to

add the results to the same Cm profile kernel. This situation results in a race condition that can be solved

using synchronization techniques. We associate each Cm profile profile with a mutex lock 2 thus, enforcing

synchronization. When a thread calls lock(mutex) for mismatch m = m′ none of the other threads can touch

2We use the C++11 threading library and standard pthread mutexes.

59

that Cm′ profile kernel during update. They must wait for that thread to call unlock(mutex) first. Meanwhile,

a thread that needs to update Cm for different m 6= m′, may do so. Thus, the synchronization only affects

threads that are trying to update the same Cm profile. The strategy has been summarized in pseudo code:

Algorithm 3.

Algorithm 3 GaKCo2.0 Parallelization

Require: L, g, k . L=Array list of g-mers

1: M ← g − k

2: procedure MismatchProfile(L,g,M)

3: Cm ← 0 . Cumulative Profile

4: TotalSteps ←
∑M

0

(
g
m

)
. Construct Work Queue

5: for i : 0→ len(WorkQueue) do . Parallel threads

6: Cim ← 0

7: Li ← removePosition(L, i)

8: Li ← sort(Li)

9: Cim ← countAndUpdate(Li) . lock(mutex)

10: Cm ← Cm + Cim . unlock(mutex)

gkm-SVM Algorithm

Now we introduce the algorithm of gkm-SVM briefly. Given that there are N sequences in a dataset D,

gkm-SVM first constructs a trie tree recording all the unique g-mers in D. Each leafnode in the trie stores a

unique g-mer (more precisely by its path to the rootnode) of D. We use u to denote the total number of the

unique g-mers in this trie. Next, gkm-SVM traverses the tree using the order of depth-first. For each leafnode

(like ACA in (Figure 5.2 (c)), it maintains a nodelist that includes all those g-mers in D whose hamming

distance to the leafnode g-mer ≤M . When accessing a leafnode, all mismatch profile matrices Nm(x, x′) for

m ∈ {0, . . . ,M = (g − k)} are updated for all possible pairs of sequences x and x′. Here x consists of the

g-mer of the current leafnode (like S/ACA in (Figure 5.2 (c)). x′ belongs to the nodelist ’s sequence list. x′

includes a g-mer whose hamming distance from the leafnode is m (like T/ACA(m = 0) or T/AAA(m = 1) in

(Figure 5.2 (c)).

60

Implementations GaKCo gkm-SVM [17]
Pre-processing cgkgNl ug
Kernel updates cgkzN

2 ηuN2

Table 5.2: Comparing time complexity of gkm-SVM versus
GaKCo.

gvm-SVM’s time cost is O(ug+ηuN2). GaKCo’s time complexity
is O(cgk[gNl+ zN2]). In gkm-SVM the term ηuN2 dominates
the time. For GaKCo the term cgkzN

2 dominates the time cost.

Time Complexity of gkm-SVM:

We also split operations of gkm-SVM into those indirectly (pre-processing) or directly (kernel-update) updating

Nm.

Pre-processing: Assuming u unique g-mers exist in D, then the number of leafnodes in the trie is u. The

time taken to construct the trie equals O(ug).

Kernel Update: For each leafnode of the trie (total u nodes), for each g-mer in its nodelist (assuming average

size of nodelist is η), gkm-SVM uses the matching count among g-mers to update involved sequences’ entries

in Nm (if hamming distance between two g-mers is m). Therefore the time cost is O(ηuN2) (at the worst

case). Essentially η represents on average the number of unique g-mers (in the trie) that are at a hamming

distance up to M from the current leafnode. That is

η = min(u,

M=(g−k)∑
m=0

(
g

m

)
(Σ− 1)m) ∼ min(u, cgk(Σ− 1)M) (5.8)

Figure 5.3 shows that η grows exponentially to M until reaching its maximum u. The total complexity of

time cost from gkm-SVM is thus O(ug + uηN2). Asymptotically, at the worst case when η = u, the time

complexity of gkm-SVM is O(ug + u2N2).

61

Comparing Time Complexity of GaKCo with gkm-SVM:

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7

lo
g

(

)

M=(g-k)
DNA(=4) Protein(=20) Text (=36)

u ~600,000

Figure 5.3: Increase in estimated size of nodelist with increasing M .

η: estimated size of nodelist used in gkm-SVM [17]. It is equal to the number of g-mers with M mismatches from the current
g-mer at the trie-leafnode. For a given g-mer g, the number of possible g-mers that are at a distance M is roughly cgk(Σ− 1)M .
The size grows exponentially with the number of mismatches m. When dictionary size Σ is small, η < u. However when Σ > 4
and m ≥ 4, η ≤ u.

Table 5.2 compares the asymptotic time cost of GaKCo with gkm-SVM. Asymptotically the time complexity

of gvm-SVM is O(ug + ηuN2). For GaKCo the overall time complexity is O(cgk[gNl + zN2]). In gkm-SVM

the term O(ηuN2) dominates the overall time. For GaKCo the term O(cgkzN
2) dominates the time cost.

For simplicity, we assume that z = u even though z ≤ u. Upon comparing O(η × uN2) of gkm-SVM with

O(cgk × uN2) of GaKCo, clearly the difference lies between the terms η in gkm-SVM and cgk in GaKCo. In

details,

• η ∼ cgk(Σ− 1)M (gkm-SVM) versus cgk (GaKCo): For a given g-mer g, the number of possible g-mers

that are at a distance M from it is cgk(Σ − 1)M . That is,
(
g
M

)
positions can be substituted with

(Σ− 1)M possible characters. Thus in gkm-SVM, the estimated size η grows exponentially with number

of allowed mismatches M . We show the trend of function f = cgk(Σ− 1)M in Figure 5.3 (a) for three

different domains - TF-DNA (Σ = 4), SCOP-protein (Σ = 20) and text (Σ = 36) by varying the values

of M for g = 10. We threshold these curves at u = 6× 104, which is the average observed value of u

across multiple datasets. In Figure 5.3 (a), when dictionary size Σ is small (=4), the size of the nodelist

η is mostly smaller than u. But when Σ is larger than 4, η gets larger than u for M ≥ 4. In contrast,

GaKCo’s term cgk is independent of the dictionary size Σ.

62

• η = u (gkm-SVM) versus cgk (GaKCo): For large dictionary size (e.g. Σ = 20), size of the nodelist η

mostly equals to u in gkm-SVM. Even for cases with small dictionary size (e.g. Σ = 4) η is close to

u for M ≥ 4. While gkm-SVM might be fast for small Σ and M < 4, its kernel calculation time will

slow down considerably for M ≥ 4. For example, for one of the SCOP datasets, when g = 10, count

of unique g-mers u = 6× 104 at M = 4 (close to u shown in Figure 5.3 (a)). Therefore, at a modest

value of M = 4 η = 6× 106 for gkm-SVM while cgk = 210 for GaKCo. The former is approximately

300 times higher than GaKCo.

5.2.4 Justification of GaKCo’s Sort and Count Method

A core piece of the GaKCo’s kernel computation is counting the observed g-mers in the strings for which the

kernel value is being computed. The final implementation of our algorithm uses a sorting-based counting

method, proposed by Kuksa et al. [12] 3, but we did consider a hashing approach as well. There are

straightforward time complexity justifications for choosing sorting over hashing, which we explain in this

section.

A hash table, treated as an associative array, could easily be used to count instances of a g-mer. Given a

g-mer, which consists of a g-length token and a reference to the original string number, we may write a

simple hash function that executes in Θ(g) time (as we ought to consider every character in the string for a

well-distributed hash). Also, given that the total number of strings is N of average length l, then the total

number of g-mers is ∼ Nl. If we accept the “typical-case” runtime of insertion into a hash table, which is

Θ(1), then to count every g-mer we must perform at least Θ(g ·Nl) steps: for each of the total Nl g-mers,

we do g work to hash, insert, and update the associated value.

At first consideration, a sorting-based approach would seem to be strictly worse, as any swapping sort would

take Θ(g · (Nl) lg(Nl)) time. However, using a non-swapping sort, in our case, gives us Θ(g ·Nl) time, which

is the same as we derived for the above hashing method. However, the sorting requires exactly g ·Nl steps,

while the hashing approach needs more steps to resolve any possible collisions. To confirm our theoretical

justification, we implemented hashing approach and found that our sorting method was, indeed, faster than

hashing.

3[12] first proposed cumulative mismatch profile concept for their mismatch kernel calculation. However, they use all possible
k-mers built from the dictionary with m mismatches as the feature space. Thus, the authors [12] need to precompute a complex
weight matrix to incorporate all possible k-mers with m mismatches. This computation cost O((2m + 1)g(m+1)(m + 2)m)
making it exponential in g.

63

Table 5.3: Details of datasets used for different prediction tasks.

All tasks, except WebKB, are binary classification tasks. WebKB is a multi-class classification dataset with four classes: project,
course, faculty, and student.

Training Testing Sample properties
Prediction Task Repo Datasets Pos seq Neg seq Pos seq Neg seq N Σ Max(l)

12cmTF Binding Site(DNA) ENCODE

CTCF

1000 1000 1000 1000 4000 5 100
EP300
JUND
RAD21
SIN3A

12cmRemote Protein Homology(Protein) SCOP

1.1 1150 1189 8 1227 3574

20 905
1.34 866 1209 6 1231 3312
2.19 110 1235 9 1206 2560
2.31 1063 1235 8 1194 3500
2.1 4763 1229 120 950 7062
2.34 286 1215 6 1231 2738
2.41 192 1235 6 1213 2646
2.8 56 1185 8 1231 2480
3.19 922 1181 7 1231 3341
3.25 1187 1208 11 1231 3637
3.33 466 1214 7 1231 2918
3.50 105 1231 8 1205 2549

Text Classification
Stanford Treebank Sentiment 3883 3579 877 878 9217 36 260
Dataset from [91] WebKB 335, 620, 744, 1083 166, 306, 371, 538 4163 36 14218

5.3 Experimental Setup

5.3.1 Benchmark Tasks of Sequence Classification

DNA and Protein Sequence Classification

Studying DNA and Protein sequences gives us deeper insight into the biological processes that can, in turn,

help us understand cell development and diseases. Two major tasks essential in the field are Transcription

Factor Binding Site (TFBS) Prediction and Remote Protein Homology Prediction.

Transcription factors (TFs) are regulatory proteins that bind to functional sites of DNA to control the

regulation of genes. Each different TF binds to specific locations (or sites) on a genomic sequence to regulate

cell machinery. Owing to the development of chromatin immunoprecipitation and massively parallel DNA

sequencing (ChIP-seq) technologies [88], maps of genome-wide binding sites are currently available for multiple

TFs across different organisms. Because ChIP-seq experiments are slow and expensive, computational methods

to identify TFBSs accurately are essential for understanding cell regulation.

Remote Protein Homology Prediction, i.e., classification of protein sequences according to their biological

function or structure, plays a significant role in drug development. Protein sequences that are a part of the

same protein superfamily are evolutionally related and functionally and structurally relevant to each other

64

[89]. Protein sequences with feature patterns showing high homology are classified into the same superfamily.

Once assigned a family, the properties of the protein can be easily narrowed down by analyzing only the

superfamily to which it belongs.

Researchers have formulated both these tasks as classification tasks, where knowing a DNA or protein

sequence, we would like to classify it as a binding site or non-binding site for TF prediction and belonging or

not belonging to a protein family for homology prediction respectively.

Text Classification

Text classification incorporates multiple tasks like assigning subject categories or topics to documents, spam

detection, language detection, sentiment analysis, etc. Generally, given a document and a fixed number of

classes, the classification model has to predict the class that is most relevant to that document. Several recent

studies have discovered that character-based representation provides straightforward and powerful models for

relation extraction [16], sentiment classification [92], and transition based parsing [93]. Lodhi et al. [94] first

used string kernels with character level features for text categorization. However, their kernel computation

used dynamic programming which was computationally intensive. Over recent years, more efficient string

kernel methods have been devised [11, 12, 17, 52, 95]. Therefore, we use simple character-based text input

for document and sentiment classification task.

We perform 19 different classification tasks to evaluate the performance of GaKCo. These tasks belong to the

discussed three categories: (1) TF binding site prediction (DNA dataset), (2) Remote Protein Homology

prediction (protein dataset), and (3) Character-based English text classification (text dataset).

5.3.2 Experimental Setup

Datasets:

• ENCODE ChIP-Seq DNA Sequences: Maps of genome-wide binding sites are currently available for

multiple TFs for human genome via the ENCODE [72] database. These ChIP-seq “maps” mark the

positions of the TF binding sites. We select 100 basepair sequences overlapping the binding sites as

positive sequences and randomly select non-binding sequences from the human genome as negative

sequences. We perform this selection for five different transcription factors (CTCF, EP300, JUND,

65

RAD21, and SIN3A) from the K562 (leukemia) cell type, resulting in five different prediction tasks.

We select 2000 sequences for training that consist of 1000 positive and negative samples each. For

testing, we use another set of 2000 sequences with 1000 positive and negative samples each. We use the

dictionary size of 5 (Σ = 5). There are four nucleotide symbols - A, T, C, G - in the DNA. Additionally,

sometimes sequences have ‘N’ for nucleotides that are not read by the sequencing machines. Therefore,

the dictionary is {A,T,C,G,N}.

• SCOP Protein Sequences: The SCOP domain database consists of protein domains, no two of which

have 90% or more residual identity [18]. It is hierarchically divided into folds, superfamilies, and finally

families. We use 12 sets of samples (listed in Table 5.3) and select positive test sequences (for each

sample) from 1 protein family of a particular superfamily. We obtain the positive training sequences

from remaining families in that superfamily. We select negative training and test sequences from

non-overlapping folds outside the positive sequence fold. We use the dictionary size of 20 (Σ = 20)

as there are 20 amino acid symbols that make up a protein sequence. Therefore the dictionary is

{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}.

• WebKB and Sentiment Classification Datasets: The documents in the WebKB are web pages collected

by the World Wide Knowledge Base project of the CMU text learning group and were downloaded from

The 4 Universities Data Set Homepage. These pages were collected from computer science departments

of various universities in 1997. We downloaded the processed datasets (removed stop/short words,

stemming, etc.) from [91]. This task is a multi-class classification task with four classes: project, course,

faculty, and student. For the sentiment analysis experiments, we used the Stanford sentiment treebank

dataset [96]. This dataset provides a score for each sentence between 0 and 1 with [0, 0.4] being negative

sentiment and [0.6, 1.0] is positive. We combined the validation set in the original treebank dataset

with the training set. We use the dictionary size of 36 (Σ = 36) since we use character-based input.

The dictionary includes all the alphabets [A-Z] and numbers [0-9].

Details of the datasets are in Table 3.

Baselines: We compare the kernel calculation times and empirical performance of GaKCo with gkm-SVM

[17]. We also run the CNN implementation from [8] for all the datasets.

66

Classification: After calculation, we input the N ×N kernel matrix into an SVM classifier as an empirical

feature map using a linear kernel in LIBLINEAR [97]. Here N is the number of sequences in each dataset.

The SVM maximizes the margin between the positive and negative instances of the samples in the kernel

defined feature space. For the multi-class classification of WebKB data, we use the multi-class version of

LIBSVM [98].

Model parameters: We vary the hyperparameters g ∈ {7, 8, 9, 10} and k ∈ {1, 2, . . . , g−1} of both GaKCo

and gkm-SVM.M = (g−k) for all these cases. We also tune the hyperparameter C ∈ {0.01, 0.1, 1, 10, 100, 1000}

for the SVM. We present the results for the best g, k, and C values based on the empirical performance

metric. We ran the CNN model with default parameters for 50 epochs (number of training and testing times),

and we present the results for the epoch with the best empirical performance metric.

Evaluation Metrics:

• Running time: We compare the kernel calculation times of GaKCo and gkm-SVM in seconds. In some

figures, we have represented time in log-scale (log(seconds)) to accommodate large values. All run-time

experiments have been performed on AMD Opteron(TM) Processor 6376 @ 2.30GHz with 250GB

memory.

• Empirical performance: We use the Area Under Curve (AUC) score (from the Receiver Operating

Characteristic (ROC) curve) as our empirical evaluation metric for 18 binary classification tasks. We

report the results of WebKB multi-class classification using micro-averaged F1 score.

5.4 Results

5.4.1 Kernel Calculation Time Performance

Our experimental results confirm our theoretical analysis in Section 5.2 that GaKCo has a lower kernel

calculation time than gkm-SVM. Figure 5.1(a) shows GaKCo is faster than gkm-SVM for 16/19 tasks. The

other three tasks for which GaKCo records similar kernel calculation times are DNA sequence prediction

tasks. This is expected as DNA has a smaller dictionary size (Σ = 5) and thus, for a small number of

67

allowed mismatches (M) gkm-SVM gives comparable speed performance. We elaborate on this further in the

following discussion.

GaKCo scales better than gkm-SVM for large dictionary size (Σ) and large number of mis-

matches (M):

Figure 5.4 shows the kernel calculation times of GaKCo and gkm-SVM for the best-performing g and varying

k = {1, 2, . . . (g − 1)} for three binary classification datasets: (a) EP300 (DNA), (b) 1.34 (protein), and

(c)Sentiment (text) respectively. We select these three datasets as they achieve the best AUC scores out of

all 19 tasks (see Table 5.4). We fix g and vary k to show time performance for different number of allowed

mismatches i.e. M = (g − k) = {1, 2, . . . (g − 1)}. For GaKCo, the results are plotted for both single-thread

and the multi-thread implementations. We refer to the multi-thread implementation as GaKCo because that

is our final code version. Our results show that GaKCo (single-thread) scales better than gkm-SVM for a

large dictionary size (Σ) and a large number of mismatches (M). The final version of GaKCo (multi-thread)

further improves the performance. Details for each dataset are as follows:

GaKCo

(b) Protein (1.34)(a) DNA (EP300)
GaKCo (Single thread)

(c) Text (Sentiment)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9

K
er

ne
l C

al
cu

la
tio

n
Ti

m
e

(lo
g

se
co

nd
s)

M = (g-k)

gkm-SVM

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7

K
er

ne
l C

al
cu

la
tio

n
Ti

m
e

(lo
g

se
co

nd
s)

M = (g- k)

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9

K
er

ne
l C

al
cu

la
tio

n
Ti

m
e

(lo
g

se
co

nd
s)

M = (g -k)

Figure 5.4: Kernel calculation times (lower is better) for best g and varying k with M .

(a) EP300 (DNA,Σ = 5), (b) 1.34 (protein, Σ = 20), and (c) Sentiment (text, Σ = 36) datasets. The best performing
hyperparameters (g, k or M = (g− k)) are highlighted as red colored dashed lines. For GaKCo, results are shown for both single
thread and multi-thread implementations. GaKCo (single thread) outperforms gkm-SVM for a large dictionary size (Σ > 5) and
a large number of mismatches M ≥ 4, confirming our analysis in Section 5.2. The final GaKCo (multi-thread) implementation
further improves the performance. For protein dataset (b) gkm-SVM takes > 5 hours to calculate the kernel, while GaKCo
calculates it in 4 minutes.

• DNA dataset (Σ = 5): In Figure 5.4 (a), we plot the kernel calculation times for best g = 10 and varying

k with M = {1, 2, . . . 9} for EP300 dataset. As expected, since the dictionary size of DNA dataset (Σ)

is small, gkm-SVM performs fast kernel calculations for M = (g − k) < 4. However, for large M ≥ 4,

68

its kernel calculation time increases considerably compared to GaKCo. This result connects to Figure

5.3 in Section 5.2, where our analysis showed that the nodelist size becomes closer to u as M increases,

thus increasing the time cost.

• Protein dataset (Σ = 20): Figure 5.4 (b), shows the kernel calculation times for best g = 10 and varying

k with M = (g − k) = {1, 2, . . . 9} for 1.34 dataset. Since the dictionary size of protein dataset (Σ) is

larger than DNA, gkm-SVM’s kernel calculation time is worse than GaKCo even for smaller values of

M < 4. This also connects to Figure 5.3 where the size of nodelist ∼ u even for small M for protein

dataset, resulting in higher time cost. For best-performing parameters g = 10, k = 1(M = 9), gkm-SVM

takes 5 hours to calculate the kernel, while GaKCo calculates it in 4 minutes.

• Text dataset (Σ = 36): Figure 5.4 (c), shows the kernel calculation times for best g = 8 and varying

k with M = {1, 2, . . . 7} for Sentiment dataset. The results follow the same trend as presented above.

For large M ≥ 4, kernel calculation time of gkm-SVM is slower as compared to GaKCo. One would

expect that with large dictionary size (Σ) the performance difference will be same as that for protein

dataset. However, unlike protein sequences, where the substitution of all 20 characters in a g-mer is

equally likely, text dataset has an underlying structure. Concretely, the chance of substitution of some

characters in a g-mer will be higher than others. For example, in a given g-mer “my nam”, the last

position is more likely to be occupied by ‘e’ than ‘z’. Therefore, even though the dictionary size is

large, the growth of the nodelist is restricted by the underlying structure of the text. Therefore, while

GaKCo’s time performance is consistent across all three datasets, gkm-SVM’s time performance varies

due to the characteristic properties (like dictionary size (Σ)) of the datasets.

According to our asymptotic analysis in Section 5.2, GaKCo should always be faster than gkm-SVM. However,

in Figure 5.4 we notice that for certain cases (e.g. for DNA when M < 4 in Figure 5.4) GaKCo’s speed

is lower than gkm-SVM. This is because, in our analysis, we theoretically estimate the size of gkm-SVM’s

nodelist. We see that in practice, the actual nodelist size is smaller than our estimate for certain cases

where gkm-SVM is faster than GaKCo. However, with a larger value of M(≥ 4) or dictionary size (Σ > 5),

the nodelist size in practice matches our theoretical estimation. Therefore, GaKCo always has lower kernel

calculation times than gkm-SVM for these cases.

69

GaKCo is independent of dictionary size (Σ):

GaKCo’s time complexity analysis (Section 5.2) shows that it is independent of the ΣM term, which controls

the size of gkm-SVM’s nodelist. In Figure 5.6 (a), we plot the average kernel calculation times for the best

performing (g, k) parameters for DNA (Σ = 5), protein (Σ = 20), and text (Σ = 36) datasets respectively.

The results validate our analysis. We find that gkm-SVM takes similar time as GaKCo to calculate the kernel

for DNA dataset due to the small dictionary size. However, when the dictionary size increases for protein

and text datasets, it slows down considerably. GaKCo, on the other hand, is consistently faster for all three

datasets, despite the increase in dictionary size.

GaKCo algorithm benefits from parallelization:

m-based parallelization: As discussed earlier, the calculation of Cm (such that m = {0, 1 . . .M = (g − k)})

is an independent procedure in GaKCo’s algorithm. This property makes GaKCo naturally parallelizable.

We first implement the parallelized version of GaKCo by distributing calculation of Cm across m threads

where, m = {0, 1 . . .M = (g − k)}. We have already witnessed that the multi-thread version of GaKCo

improves the speed of its single thread version in Figure 5.4. Next, in Figure 5.6(b) we plot the average kernel

calculation times across DNA (5), protein (12) and text (2) datasets for both multi-thread and single thread

implementations. Through this figure, we demonstrate that the improvement in speed by parallelization is

consistent across all datasets.

Smarter parallelization (GaKCo2.0): Next, we demonstrate the improvement over original GaKCo m-

based multi-threading by adopting a smarter parallelization strategy that we call GaKCo2.0. Figure 5.5

shows the kernel calculation profiles of original GaKCo versus GaKCo2.0 for varying values of mismatches

M = (g − k) = {1, . . . , 9} and both (a) DNA dataset (EP300) and (b) Protein dataset (1.34). It is evident

that GaKCo2.0 is consistently faster than the original GaKCo multi-thread version that performed uneven

splitting of work across threads. We also compare both the GaKCo implementations with the gkm-SVM and

introduce results from its multi-thread version (gkm-SVM-2.0) [99] and show that overall GaKCo2.0 performs

the fastest for larger values of mismatches (i.e M > 3). Since both GaKCo2.0 and gkm-SVM-2.0 allow the

users to define the number of threads, we set them to 20. Original GaKCo, however, uses M number of

threads.

70

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9K
er

ne
l C

al
cu

la
tio

n
Ti

m
e

(lo
g(

se
co

nd
s)

)

M=(g-k)

(a) DNA (EP300)

gkm-SVM Gakco (Single Thread)
GaKCo gkm-SVM-2.0 (20 Threads)
GakCo2.0 (20 Threads)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9K
er

ne
l C

al
cu

la
tio

n
Ti

m
e

(lo
g(

se
co

nd
s)

)

M=(g-k)

(b) Proteins (1.34)

gkm-SVM Gakco (Single Thread)
GaKCo gkm-SVM-2.0 (20 Threads)
GakCo2.0 (20 Threads)

Figure 5.5: Comparison of kernel calculation times for multi-thread implementations

Kernel calculation profiles of original GaKCo versus GaKCo2.0 for varying values of mismatches M = (g − k) = {1, . . . , 9}
and both (a) DNA dataset (EP300) and (b) Protein dataset (1.34). We also compare both the GaKCo implementations with
gkm-SVM and its multi-thread version (gkm-SVM-2.0) and show that overall GaKCo2.0 performs the fastest for larger values of
mismatches (i.e M > 3).

GaKCo scales better than gkm-SVM for increasing number of sequences (N):

We now compare the kernel calculation times of GaKCo versus gkm-SVM for increasing number of sequences

(N). In Figure 5.6(c), we plot the kernel calculation times of GaKCo and gkm-SVM for best performing

parameters (g, k) for three binary classification datasets: EP300 (DNA), 1.34 (protein), and Sentiment (text).

We select these three datasets as they provide the best AUC scores out of all 19 tasks (see Table 5.4). To

show the effect of increasing N = {100, 250, 500, 750} on kernel calculation times, we fix the length of the

sequences for all three datasets to l = 100. As expected, the time grows for both the algorithms with the

increase in the number of sequences. However, this growth in time is more drastic for gkm-SVM than for

GaKCo across all three datasets. Therefore, GaKCo is ideal for adaptive training since its kernel calculation

time increases more gradually than gkm-SVM as new sequences are added.

GaKCo is both time and memory efficient:

Figure 5.7 (a), shows points for the kernel calculation time (X-axis) versus the memory usage (Y-axis) for

both GaKCo and gkm-SVM for all 19 classification tasks. We observe that most of these points representing

GaKCo lie in the lower-left quadrant indicating that it is both time and memory efficient. For 17/19

71

1

1.5

2

2.5

3

3.5

4

4.5

5

=5 (DNA) =20 (Protein) =36 (Text)

Av
er

ag
e

ke
rn

el
 c

al
cu

la
tio

n
tim

e
 (l

og
 (s

ec
on

ds
))

Dictionary Size ()

GaKCo gkm-SVM

(a)

0

0.5

1

1.5

2

2.5

3

3.5

DNA
(EP300)

Protein
(1.34)

Text
(Sentiment)

DNA
(EP300)

Protein
(1.34)

Text
(Sentiment)

GaKco gkm-SVMK
er

ne
l c

al
cu

la
tio

n
tim

e
(lo

g(
se

co
nd

s)
)

N=100 N=250 N=500 N=750

(c)(b)

0

200

400

600

800

1000

1200

1400

1600

A
ve

ra
ge

 k
er

ne
l c

al
cu

la
tio

n
tim

e
(s

ec
on

ds
)

GaKCo (Multithread) GaKCo (Single Thread)

=5 (DNA) =20 (Protein) =36 (Text)
Dictionary Size ()

Figure 5.6: Further kernel calculation time analyses

(a) Average kernel calculation times (lower is better) for the best performing (g, k) parameters for DNA (Σ = 5), protein
(Σ = 20), and text (Σ = 36) datasets. gkm-SVM takes similar time as GaKCo to calculate the kernel for DNA dataset but slows
down considerably for protein and text datasets due to increase in dictionary size. Since GaKCo is independent of the dictionary
size, it is consistently faster for all three datasets. (b) Average kernel calculation times (lower is better) across DNA (5), protein
(12) and text (2) datasets. Multi-thread GaKCo implementation improves the kernel calculation speed of the single-thread
GaKCo by a factor of 2. (c) Kernel calculation times (lower is better) of GaKCo and gkm-SVM for best performing parameters
(g, k) for: EP300 (DNA), 1.34 (protein), and Sentiment (text) datasets. Length of the sequences for all three datasets is fixed to
l = 100 and number of sequences are varied for N = {100, 250, 500, 750}. With increasing number of sequences, the increase in
kernel calculation time is more drastic for gkm-SVM than for GaKCo across all three datasets.

tasks, its memory usage is lesser or comparable to gkm-SVM with faster kernel calculation time. Therefore,

GaKCo’s time improvement over the baseline is achieved with almost no added memory cost.

5.4.2 Empirical Performance of GaKCo versus NN

Figure 5.1 (b) demonstrated that GaKCo achieves same empirical performance as gkm-SVM (AUC scores

or F1-score). This is because GaKCo’s gapped k-mer formulation is same as gkm-SVM but with improved

(faster) implementation. In this section, we compare GaKCo’s empirical performance with state-of-the-art

CNN model [8]. Figure 5.7 (b) shows the differences in AUC Scores (or micro-averaged F1-score for Web-KB)

of GaKCo and CNN [8]. For 16/19 tasks, GaKCo outperforms the CNN model with an average of ∼ 20%

accuracy. This result can be explained by the fact that CNNs trained with a small number of samples

(1000-10,000 sequences) often exhibit unstable behavior in performance.

For three datasets - SIN3A (DNA), 1.1 (protein), and Web-KB (text), we observe that the empirical

performance of GaKCo and CNN is similar. Therefore, we further explore these datasets in Figure 5.7(c).

Here, we plot the AUC scores or micro-averaged F1 scores (Web-KB) for varying number of training sample

(N = {100, 250, 500 and 750} sequences). We randomly select these samples from the training set and use

the original test set of the respective datasets. The results are averaged over three runs of the experiment.

72

Table 5.4: Summary of GaKCo, gkm-SVM and CNN-AUC scores for all datasets.

For Web-KB we report the micro-averaged F1-Score since it is a multi classification task with four classes: student, faculty,
project and course.

Prediction Task Sample properties Best Parameters AUC
Datasets N Σ Max(l) g k c GaKCO-AUC gkm-SVM-AUC NN-AUC

1.1 3574

20 905

7 5 0.01 0.7453 0.7448 0.7484
1.34 3312 10 1 0.1 0.9903 0.9903 0.9858
2.19 2560 7 1 100 0.8951 0.8951 0.822
2.31 3500 10 7 10 0.9484 0.9497 0.5317
2.1 7062 10 3 10 0.979 0.9895 0.7970
2.34 2738 7 6 0.01 0.8664 0.8660 0.7477
2.41 2646 10 6 0.01 0.7925 0.7925 0.6484
2.8 2480 10 1 10 0.6367 0.6367 0.6801
3.19 3341 8 1 0.1 0.9326 0.9326 0.7050
3.25 3637 10 8 1 0.7967 0.7962 0.5848
3.33 2918 10 5 0.01 0.9018 0.9018 0.8843
3.50 2549 10 7 0.01 0.7768 0.7772 0.8265

CTCF

4000 5 100

10 5 1 0.902 0.902 0.7834
EP300 10 5 1 0.942 0.942 0.6138
JUND 10 7 1 0.91 0.91 0.8317
RAD21 10 5 1 0.901 0.901 0.7937
SIN3A 10 7 1 0.834 0.834 0.8309

Sentiment 9217 36 260 8 4 1 0.8154 0.81 0.5303
WebKB (F1-score) 4163 36 14218 8 5 1 0.9153 0.9116 0.9147

We aim to find the threshold (number of training samples) for which CNN gives a lower performance to

GaKCo for these three datasets. Figure 5.7(c) presents the averaged AUC scores or micro-averaged F1 score

(Web-KB). We see that the threshold for which CNN gives a lower performance to GaKCo is 750 sequences

in the training set. We also observe that the variance in performance is high for NN (represented by error

bars) across the three runs.

In summary, the advantages of this work are:

• Fast: GaKCo is a novel combination of two efficient concepts: (1) reduced gapped k-mer feature space

and (2) associative array based counting method, making it faster than the state-of-the-art gapped

k-mer string kernel, while achieving same accuracy. (Figure 5.1).

• GaKCo can scale up to larger values of m and Σ. (Figure 5.4 and Figure 5.6(a))

• Parallelizable: GaKCo algorithm naturally leads to a parallelizable implementation (Figure 5.4 and

Figure 5.6 (b))

73

Di
ffe

re
nc

e
be

tw
ee

n
AU

C
Sc

or
es

19 String Classification Tasks

(G
aK

Co
 -

NN
)

 Protein DNA Text
 *Micro-averaged F1-score

-0.1

0

0.1

0.2

0.3

0.4

0.5

 *

0.65

0.70

0.75

0.80

0.85

AU
C

Sc
or

e

Training Set Size

GaKCo

0.40

0.50

0.60

0.70

0.80

100 250 500 750100 250 500 750

AU
C

Sc
or

e

Training Set Size
Protein (1.1)DNA (SIN3A)

NN

0.5

0.6

0.7

0.8

0.9

M
ic

ro
 F

1-
Sc

or
e

100 250 500 750
Training Set Size
 Text (Web-KB)

(c)

M
em

or
y

us
ed

 (G
B)

Kernel Calculation Time (log(seconds))

DNA (GaKCo)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

DNA (gk-SVM)
Protein (GaKCo)
Protein (gk-SVM)

Text (GaKCo)
Text(gk-SVM)

(a) (b)

Figure 5.7: Time versus Memory comparison and GaKCo versus DNN.

(a) Kernel calculation time (X-axis) and the memory usage (Y-axis) (lower is better) for both GaKCo and gkm-SVM for all 19
classification tasks. For 17/19 tasks, GaKCo’s memory usage is lesser or comparable to gkm-SVM with lower kernel calculation
time. Therefore, it is both time and memory efficient. (b) Differences in AUC Scores (or micro-averaged F1-score for Web-KB)
between GaKCo and state-of-the-art CNN model [8]. For 16/19 tasks, GaKCo outperforms CNN with an average of ∼ 20%
accuracy. (c)Averaged AUC scores, across 3 runs, for SIN3A (DNA) and 1.1 (protein), and micro-averaged F1 scores for Web-KB
(text) while varying number of sequences (N = {100, 250, 500, and 750}). For a threshold value of 750 sequences in the training
set, CNN achieves lower empirical performance to GaKCo.

• We have provided a detailed theoretical analysis comparing the asymptotic time complexity of

GaKCo with gkm-SVM. This analysis, to the best of the authors’ knowledge, has not been reported

before (Section 5.2.3).

74

Chapter 6

Conclusion and Future Work

6.1 Intellectual Merit

The proposed DeepChrome and AttentiveChrome models are novel applications of DNNs for gene expression

prediction. To our knowledge, we are the first to introduce the use of attention mechanism for this particular

task. AttentiveChrome is a unified, end-to-end architecture that not only provides accurate predictions

but also allows interpretation by enabling us to visualize the features that are necessary for a particular

prediction.

GaKCo implementation combines two highly efficient approaches: (1) gapped k-mer kernel, which considerably

reduces the feature space and (2) counting based algorithm, that is independent of the dictionary size and easily

parallelizable. Our results indicate that this novel combination significantly reduces the kernel calculation

time of GaKCo. It is an improvement over the state-of-the-art SK-SVM techniques and a complementary

method to neural networks when the sample size is small (< 5000 sequences).

75

6.2 Future Work

6.2.1 Extension of DNNs for Gene Expression Prediction

Regression Task We acknowledge that formulating gene expression prediction as a binary classification

simplifies the task. Thus, a natural extension to our work is converting the classification setup to regression

setup. This can be achieved by replacing the softmax function and NLL loss by Mean Squared Error

(MSE) loss. To this end, We scaled the gene expression values using log function. We implemented the

proposed changes for DeepChrome to perform regression and computed the Pearson Correlation Coefficients

of predictions with actual expression values. Next, we compared these with the Support Vector Regression

(SVR) baseline using the best-bin strategy and found that DeepChrome for regression outperforms the baseline

for 47/56 cell types (Figure 6.1). Future work in this direction would involve refining the model further as

well as implementing regression for AttentiveChrome to generate more informative attention maps.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

D
iff

er
en

ce
 in

 P
ea

rs
on

 C
or

re
la

tio
n

C
oe

ffi
ec

ie
nt

s
D

ee
pC

hr
om

e
(R

) -
SV

R

56 Cell Types

Figure 6.1: Comparison of DeepChrome (Regression) versus Support Vector Regression (SVR) baseline

We calculated the Pearson Correlation Coefficients of predictions from DeepChrome and the SVM baseline with actual expression
values for the gene expression prediction task. DeepChrome for regression (DeepChrome (R)) outperforms the baseline for 47/56
cell types.

Combining new information Gene regulation involves complex cellular machinery. There is a multitude

of factors apart from histone modifications that can affect the gene regulations. For example, Transcription

factors (TFs) are regulatory proteins that bind to specific locations (or sites) on a genomic sequence to

regulate the gene. Similarly, ‘open’ and ‘close’ regions of the DNA control the binding of proteins and in turn

control gene expression. New sequencing methods have allowed biologists to collect all this information in the

76

form of sequential data and the deep learning community has developed different models complex enough

to extract meaningful representations from it. Therefore, another relevant extension of AttentiveChrome is

combining all the different datasets (TF-binding, HMs, Open/Close region information, DNA sequences, etc.)

as inputs and improving modeling and interpretation to predict and understand the gene regulation more

comprehensively.

6.2.2 Scalability of SK-SVM Methods

Despite the state-of-the-art performance, string kernel methods (including GaKCo) suffer from scalability

issues when dealing with a large number of training samples (N). The string kernel SVM solver can become

prohibitively expensive in execution time (kernel computations proportional to N2) as well as memory (N2

storage space for pre-computed kernel). This scalability issue of string kernels can prove to be a bottleneck

for advancing the frontiers of large-scale sequence classifications.

As a solution to this problem, Lee et al. [100] implemented the gapped k-mer kernel functions within the

LIBSVM framework [98]. LIBSVM uses decomposition methods for SVM training. The decomposition

method [101] iteratively finds and solves a small subset of SVM problems that only requires a partial kernel

matrix. In case of LIBSVM, the solver requires only two columns of the kernel matrix at a time. Therefore,

Lee et al. [100] replace the LIBSVM kernel routines with the gkm-SVM kernel functions, eliminating the

requirement to pre-compute the entire N ×N matrix. This allows training on the larger number of samples as

each column of the kernel is calculated online when the SVM is training. However, since the kernel calculation

is gkm-SVM’s function, this implementation still suffers from Σm computation term and has not be extended

for cases other than DNA sequences (Σ = 4).

A similar decomposition strategy using GaKCo’s kernel function would be useful improving its scalability.

To this end, we have merged the pre-computed GaKCo kernel calculation and SVM training into one single

program. This makes it easier for researchers to do the whole training and testing pipeline, starting with

labeled data and easily producing predictions for unlabeled datasets. However, the adoption of the SVM

decomposition with GaKCo kernel calculation remains an open problem, and its solution will help in increasing

the popularity of string kernel-based methods for large-scale sequence classification tasks.

77

6.3 Broader Impact

This research is a successful amalgamation of important aspects of both biology and machine learning. The

primary aim of this work is to collaborate with biologists in hypothesis development and planning experiments.

In the process of solving challenges associated with sequential datasets in biology, we further improve the

state-of-the-art machine learning methods. While Attentive-Chrome can visualize relevant features for 30,000

genes across 56 cell-types, GaKCo can enhance the speed of string kernel calculation by a factor of 100.

With the help of interpretable and fast tools like AttentiveChrome and GaKCo, we hope to provide a better

understanding of underlying mechanisms in biology.

78

Appendix

A:1 Selecting input HM features for DNNs

Not all HMs carry the same information, and it is important to include different HMs for gene expression

prediction. While H3K4me3 may be essential to predict gene=ON, H3K4me1 may play a role to make that

prediction. Contrarily, for OFF genes, HMs like H3K27me3 may play a significant role. To demonstrate

this, we used only one HM at a time and performed the classification using AttentiveChrome. The accuracy

decreases when just one HM is used. Table A:1 shows AUC scores in GM12878 when all HMs are used

as input signals and when we use them one at a time. We observe that the performance drops drastically,

indicating that it is vital to include different HMs for gene expression prediction.

Table A:1: AUC scores in GM12878 when each HM is used as input signal one at a time.

The AUC score reduces drastically, indicating that it is vital to include different HMs for gene expression prediction

HMs used as input AUC Score
All 5 HMs 0.9085
H3K4me3 0.8893
H3K4me1 0.8516
H3K36me3 0.8506
H3K27me3 0.7698
H3K9me3 0.6465

We also performed feature selection of HMs, such that we removed one HM at a time for GM12878 cell

type and observed the change accuracy performance of AttentiveChrome model (Table A:2). We find that

H3K4me3 and H3K27me3 are the most important signals for gene expression prediction as their removal

causes the highest dip in AUC scores. Comparing these results with Table A:1 also indicates that while

79

H3K27me3 alone might not have the best predictive power, when combined with other HM signals, it is

vital for accurate predictions.

Table A:2: Variations in AUC scores in GM12878 when one HM is removed from the input one at a time.

H3K4me3 and H3K27me3 are the most important signals for gene expression prediction as their removal causes the highest
dip in AUC scores.

Removed HMs AUC Score
None 0.9085
H3K4me3 0.8960
H3K4me1 0.9048
H3K36me3 0.9069
H3K27me3 0.8942
H3K9me3 0.8961

A previous study [66] combined 1 HM signal at a time using linear regression and established that not all

modifications are equally important due to a certain level of redundancy in the information that HMs provide.

They showed that a combination of only two to three specific modifications is sufficient for making accurate

predictions. However, they also showed that adding more HMs helps in predictions. Our observations are

consistent with findings of this study.

A:2 Formal proof regarding Hamming Distance Property

Let hamming distance between strings x and y be d(x, y). Assuming both x and y are composed of n

characters, then hamming distance is formally defined as [54]:

d(x, y) = Σni=0neq(xi, yi) (A:1)

where, if a and b are two characters,

neq(a, b) =

0, if a = b

1, otherwise

(A:2)

80

Property: Given, there are two strings x and y (composed of n characters each) and characters from p

positions are removed to obtain strings x′ and y′ with (n− p) characters. If the hamming distance between

x′ and y′, d(x′, y′) = 0 then the hamming distance between original x and y, d(x, y) ≤ p.

Proof by example:

Let p = 2. We first re-write Eq. A:1 as:

d(x, y) = Σn−2
i=0 neq(xi, yi) + neq(xn−1, yn−1) + neq(xn, yn) (A:3)

That is, we split the summation of neq(.) function as summation of neq(.) for (n− 2) characters plus the

sum of neq(.) for the (n− 1)th and last nth character for x and y.

The term Σn−2
i=0 neq(xi, yi) represents the hamming distance d(x′, y′) for p = 2 positions removed. There-

fore:

d(x, y) = d(x′, y′) + neq(xn−1, yn−1) + neq(xn, yn) (A:4)

Now if d(x′, y′) = 0 then

d(x, y) = neq(xn−1, yn−1) + neq(xn, yn) (A:5)

Based on Eq. A:2, d(x, y) = {(0 + 0), (0 + 1), (1 + 0), (1 + 1)} as these are all the possible values of neq(.)

function.

Therefore, d(x, y) ≤ 2 if d(x′, y′) = 0 where x′ and y′ are x and y (respectively) with characters removed from

p = 2 positions.

81

Bibliography

[1] Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi-
Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang, Michael J Ziller, et al. Integrative
analysis of 111 reference human epigenomes. Nature, 518(7539):317–330, 2015.

[2] P Borah. Biological databases with emphasis on biodiversity and conservation. 2011.

[3] Vivien Marx. Biology: The big challenges of big data. Nature, 498(7453):255–260, 2013.

[4] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai, Miles J Efron,
Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and Gene E Robinson. Big data: astronomical
or genomical? PLoS biology, 13(7):e1002195, 2015.

[5] Xianjun Dong and Zhiping Weng. The correlation between histone modifications and gene expression.
Epigenomics, 5(2):113–116, 2013.

[6] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. Deepchrome: deep-learning for
predicting gene expression from histone modifications. Bioinformatics, 32(17):i639–i648, 2016.

[7] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the sequence
specificities of DNA- and RNA- binding proteins by deep learning. Nature Biotechnology, 2015.

[8] Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi. Deep motif dashboard: Visualizing
and understanding genomic sequences using deep neural networks. arXiv preprint arXiv:1608.03644,
2016.

[9] Yanjun Qi, Merja Oja, Jason Weston, and William Stafford Noble. A unified multitask architecture
for predicting local protein properties. PloS One, 7(3):e32235, 2012.

[10] Jian Zhou and Olga G Troyanskaya. Deep supervised and convolutional generative stochastic network
for protein secondary structure prediction. arXiv preprint arXiv:1403.1347, 2014.

[11] Christina Leslie and Rui Kuang. Fast string kernels using inexact matching for protein sequences. The
Journal of Machine Learning Research, 5:1435–1455, 2004.

[12] Pavel P. Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Scalable algorithms for string kernels with
inexact matching. In NIPS’08, pages 881–888, 2008.

[13] Aaron Arvey, Phaedra Agius, William Stafford Noble, and Christina Leslie. Sequence and chromatin
determinants of cell-type–specific transcription factor binding. Genome research, 22(9):1723–1734,
2012.

82

[14] Manu Setty and Christina S Leslie. Seqgl identifies context-dependent binding signals in genome-wide
regulatory element maps. PLoS Comput Biol, 11(5):e1004271, 2015.

[15] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. Transfer string kernel for cross-
context dna-protein binding prediction. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2016.

[16] Ritambhara Singh and Yanjun Qi. Character based string kernels for bio-entity relation detection.
ACL 2016, page 66, 2016.

[17] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. Enhanced
regulatory sequence prediction using gapped k-mer features. PLoS Comput Biol, 10(7):e1003711, 2014.

[18] Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative framework for detecting
remote protein homologies. Journal of computational biology, 7(1-2):95–114, 2000.

[19] James M Ostell, Sarah J Wheelan, and Jonathan A Kans. The ncbi data model. Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins, 43:19, 2004.

[20] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105,
2012.

[22] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[23] Zeming Lin, Jack Lanchantin, and Yanjun Qi. MUST-CNN: A multilayer shift-and-stitch deep
convolutional architecture for sequence-based protein structure prediction. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI-16), 2016.

[24] Michael KK Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey. Deep learning of the tissue-
regulated splicing code. Bioinformatics, 30(12):i121–i129, 2014.

[25] Jack Lanchantin, Ritambhara Singh, Zeming Lin, and Yanjun Qi. Deep motif: Visualizing genomic
sequence classifications. In Workshop Track 4th International Conference on Learning Representations
(ICLR 2016), 2016.

[26] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning-based
sequence model. Nature Methods, 12(10):931–934, 2015.

[27] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. 2017.

[28] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014, pages 818–833. Springer, 2014.

[29] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network
decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.

[30] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

83

[31] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert MÃžller. How to explain individual classification decisions. volume 11, pages 1803–1831,
2010.

[32] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[33] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. volume 10, page e0130140, 2015.

[34] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Gradients of counterfactuals. arXiv preprint
arXiv:1611.02639, 2016.

[35] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding recurrent networks.
2015.

[36] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models
in nlp. 2015.

[37] Maurizio Corbetta and Gordon L Shulman. Control of goal-directed and stimulus-driven attention in
the brain. Nature reviews neuroscience, 3(3):201–215, 2002.

[38] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[39] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual
attention.

[40] Volodymyr Mnih, Nicolas Heess, Alex Graves, and others. Recurrent models of visual attention. In
Advances in neural information processing systems, pages 2204–2212.

[41] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan Salakhutdinov,
Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with
visual attention. In ICML, volume 14, pages 77–81, 2015.

[42] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. 2016.

[43] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, and
Aaron Courville. Describing videos by exploiting temporal structure. In Computer Vision (ICCV),
2015 IEEE International Conference on. IEEE, 2015.

[44] Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-guided spatial attention for
visual question answering. In ECCV, 2016.

[45] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 28, pages 2692–2700. Curran Associates, Inc., 2015.

[46] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-
based neural machine translation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1412–1421, Lisbon, Portugal, September 2015. Association for Computational Linguistics.

84

[47] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 577–585.
Curran Associates, Inc., 2015.

[48] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.

[49] Christina S. Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A string kernel
for svm protein classification. In Pacific Symposium on Biocomputing, pages 566–575, 2002.

[50] G Rätsch and S Sonnenburg. Accurate splice site prediction for caenorhabditis elegans, 277–298, 2004.

[51] SVN Vishwanathan, Alexander Johannes Smola, et al. Fast kernels for string and tree matching.
Kernel methods in computational biology, pages 113–130, 2004.

[52] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and Christina Leslie.
Profile-based string kernels for remote homology detection and motif extraction. Journal of bioinfor-
matics and computational biology, 3(03):527–550, 2005.

[53] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-supervised learning.
In Advances in neural information processing systems, pages 585–592, 2002.

[54] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with k
mismatches. Journal of Algorithms, 50(2):257–275, 2004.

[55] Esko Ukkonen. Finding approximate patterns in strings. Journal of algorithms, 6(1):132–137, 1985.

[56] Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, Mu-Tian Chen, and Joel
Seiferas. The smallest automation recognizing the subwords of a text. Theoretical computer science,
40:31–55, 1985.

[57] William I Chang and Eugene L Lawler. Sublinear expected time approximate string matching and
biological. 1991.

[58] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam Journal
on Computing, 22(5):935–948, 1993.

[59] Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows–wheeler transform.
Bioinformatics, 26(5):589–595, 2010.

[60] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome biology, 10(3):R25, 2009.

[61] Jason R Miller, Arthur L Delcher, Sergey Koren, Eli Venter, Brian P Walenz, Anushka Brownley,
Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton. Aggressive assembly of pyrosequenc-
ing reads with mates. Bioinformatics, 24(24):2818–2824, 2008.

[62] Sanguthevar Rajasekaran, Sudha Balla, and C-H Huang. Exact algorithms for planted motif problems.
Journal of Computational Biology, 12(8):1117–1128, 2005.

[63] Andrew J Bannister and Tony Kouzarides. Regulation of chromatin by histone modifications. Cell
research, 21(3):381–395, 2011.

85

[64] Pek S Lim, Kristine Hardy, Karen L Bunting, Lina Ma, Kaiman Peng, Xinxin Chen, and Mary F
Shannon. Defining the chromatin signature of inducible genes in T cells. Genome Biology, 10(10):R107,
2009.

[65] Carolyn E Cain, Ran Blekhman, John C Marioni, and Yoav Gilad. Gene expression differences among
primates are associated with changes in a histone epigenetic modification. Genetics, 187(4):1225–1234,
2011.

[66] Rosa Karlić, Ho-Ryun Chung, Julia Lasserre, Kristian Vlahoviček, and Martin Vingron. Histone
modification levels are predictive for gene expression. Proceedings of the National Academy of Sciences,
107(7):2926–2931, 2010.

[67] Zhibin Wang, Chongzhi Zang, Jeffrey A Rosenfeld, Dustin E Schones, Artem Barski, Suresh Cudda-
pah, Kairong Cui, Tae-Young Roh, Weiqun Peng, Michael Q Zhang, et al. Combinatorial patterns of
histone acetylations and methylations in the human genome. Nature Genetics, 40(7):897–903, 2008.

[68] Ivan G Costa, Helge G Roider, Thais G Rego, and Francisco AT Carvalho. Predicting gene expression
in T cell differentiation from histone modifications and transcription factor binding affinities by
linear mixture models. BMC Bioinformatics, 12(1):1, 2011.

[69] Chao Cheng, Koon-Kiu Yan, Kevin Y Yip, Joel Rozowsky, Roger Alexander, Chong Shou, Mark
Gerstein, et al. A statistical framework for modeling gene expression using chromatin features and
application to modENCODE datasets. Genome Biology, 12(2):R15, 2011.

[70] Susan E Celniker, Laura AL Dillon, Mark B Gerstein, Kristin C Gunsalus, Steven Henikoff, Gary H
Karpen, Manolis Kellis, Eric C Lai, Jason D Lieb, David M MacAlpine, et al. Unlocking the secrets
of the genome. Nature, 459(7249):927–930, 2009.

[71] Xianjun Dong, Melissa C Greven, Anshul Kundaje, Sarah Djebali, James B Brown, Chao Cheng,
Thomas R Gingeras, Mark Gerstein, Roderic Guigó, Ewan Birney, et al. Modeling gene expression
using chromatin features in various cellular contexts. Genome Biology, 13(9):R53, 2012.

[72] ENCODE Project Consortium et al. An integrated encyclopedia of DNA elements in the human
genome. Nature, 489(7414):57–74, 2012.

[73] Bich Hai Ho, Rania Mohammed Kotb Hassen, and Ngoc Tu Le. Combinatorial roles of DNA methy-
lation and histone modifications on gene expression. In Some Current Advanced Researches on
Information and Computer Science in Vietnam, pages 123–135. Springer, 2015.

[74] Jason Ernst and Manolis Kellis. Large-scale imputation of epigenomic datasets for systematic anno-
tation of diverse human tissues. Nature Biotechnology, 33(4):364–376, 2015.

[75] Vibhor Kumar, Masafumi Muratani, Nirmala Arul Rayan, Petra Kraus, Thomas Lufkin, Huck Hui
Ng, and Shyam Prabhakar. Uniform, optimal signal processing of mapped deep-sequencing data.
Nature Biotechnology, 31(7):615–622, 2013.

[76] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[77] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for
machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.

86

[78] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[79] Léon Bottou. Stochastic learning. In Advanced Lectures on Machine Learning, pages 146–168. Springer,
2004.

[80] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[81] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[82] Efthymia Papalexi and Rahul Satija. Single-cell rna sequencing to explore immune cell heterogeneity.
Nature Reviews Immunology, 18(1):35, 2018.

[83] Joanna Boros, Nausica Arnoult, Vincent Stroobant, Jean-François Collet, and Anabelle Decottig-
nies. Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain
heterochromatin protein 1α at chromatin. Molecular and Cellular Biology, 34(19):3662–3674, 2014.

[84] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[85] Shane McManus, Anja Ebert, Giorgia Salvagiotto, Jasna Medvedovic, Qiong Sun, Ido Tamir,
Markus Jaritz, Hiromi Tagoh, and Meinrad Busslinger. The transcription factor pax5 regulates
its target genes by recruiting chromatin-modifying proteins in committed b cells. The EMBO journal,
30(12):2388–2404, 2011.

[86] Yi Zhang and Danny Reinberg. Transcription regulation by histone methylation: interplay between
different covalent modifications of the core histone tails. Genes & development, 15(18):2343–2360,
2001.

[87] Tianyi Zhang, Sarah Cooper, and Neil Brockdorff. The interplay of histone modifications–writers that
read. EMBO reports, 16(11):1467–1481, 2015.

[88] Peter J Park. Chip–seq: advantages and challenges of a maturing technology. Nature Reviews
Genetics, 10(10):669–680, 2009.

[89] Pierre Baldi and Søren Brunak. Bioinformatics: the machine learning approach. MIT press, 2001.

[90] Mahmoud Ghandi, Morteza Mohammad-Noori, and Michael A Beer. Robust k-mer frequency estima-
tion using gapped k-mers. Journal of mathematical biology, 69(2):469–500, 2014.

[91] Ana Cardoso-Cachopo. Improving Methods for Single-label Text, Categorization. PdD Thesis,
Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 2007.

[92] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classifi-
cation. In Advances in neural information processing systems, pages 649–657, 2015.

[93] Miguel Ballesteros, Chris Dyer, and Noah A Smith. Improved transition-based parsing by modeling
characters instead of words with lstms. arXiv preprint arXiv:1508.00657, 2015.

87

[94] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text classi-
fication using string kernels. Journal of Machine Learning Research, 2(Feb):419–444, 2002.

[95] Pavel P. Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Efficient use of unlabeled data for protein
sequence classification: a comparative study. BMC Bioinformatics, 10(S-4), 2009.

[96] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, Christopher Potts, et al. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the conference on empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer, 2013.

[97] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. Journal of machine learning research, 9(Aug):1871–1874, 2008.

[98] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm.

[99] Mahmoud Ghandi, Morteza Mohammad-Noori, Narges Ghareghani, Dongwon Lee, Levi Garraway,
and Michael A Beer. gkmsvm: an r package for gapped-kmer svm. Bioinformatics, 32(14):2205–2207,
2016.

[100] Dongwon Lee. Ls-gkm: a new gkm-svm for large-scale datasets. Bioinformatics, 32(14):2196–2198,
2016.

[101] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order informa-
tion for training support vector machines. Journal of machine learning research, 6(Dec):1889–1918,
2005.

[102] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[103] Pedro HO Pinheiro and Ronan Collobert. Recurrent convolutional neural networks for scene parsing.
arXiv preprint arXiv:1306.2795, 2013.

[104] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[105] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,
2014.

[106] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine Learning, pages 160–167. ACM, 2008.

[107] E Eskin and E Agichtein. Combining text mining and sequence analysis to. In Pacific Symposium on
Biocomputing 2004: Hawaii, USA, 6-10 January 2004, page 288. World Scientific, 2003.

[108] Daniel Blankenberg, James Taylor, Ian Schenck, Jianbin He, Yi Zhang, Matthew Ghent, Narayanan
Veeraraghavan, Istvan Albert, Webb Miller, Kateryna D Makova, et al. A framework for collaborative
analysis of encode data: making large-scale analyses biologist-friendly. Genome research, 17(6):960–
964, 2007.

88

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[109] Enis Afgan, Dannon Baker, Marius van den Beek, Daniel Blankenberg, Dave Bouvier, Martin Čech,
John Chilton, Dave Clements, Nate Coraor, Carl Eberhard, et al. The galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research, page gkw343,
2016.

[110] Maxwell W Libbrecht and William Stafford Noble. Machine learning applications in genetics and
genomics. Nature Reviews Genetics, 16(6):321–332, 2015.

[111] Stephen G Landt, Georgi K Marinov, Anshul Kundaje, Pouya Kheradpour, Florencia Pauli, Serafim
Batzoglou, Bradley E Bernstein, Peter Bickel, James B Brown, Philip Cayting, et al. Chip-seq
guidelines and practices of the encode and modencode consortia. Genome research, 22(9):1813–1831,
2012.

[112] Domonkos Tikk, Philippe Thomas, Peter Palaga, Jörg Hakenberg, and Ulf Leser. A comprehensive
benchmark of kernel methods to extract protein–protein interactions from literature. PLoS Comput
Biol, 6(7):e1000837, 2010.

[113] Martin Krallinger, Florian Leitner, Carlos Rodriguez-Penagos, Alfonso Valencia, et al. Overview of
the protein-protein interaction annotation extraction task of BioCreative II. Genome biology, 9(Suppl
2):S4, 2008.

[114] Karsten M Borgwardt. Kernel methods in bioinformatics. In Handbook of Statistical Bioinformatics,
pages 317–334. Springer, 2011.

[115] Tommi Jaakkola, Mark Diekhans, and David Haussler. Using the Fisher kernel method to detect
remote protein homologies. In Proceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biology, pages 149–158. AAAI Press, 1999.

[116] Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative framework for detecting
remote protein homologies. In Journal of Computational Biology, volume 7, pages 95–114, 2000.

[117] T. Joachims. Making large-scale support vector machine learning practical. In A. Smola B. Schölkopf,
C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge,
MA, 1998.

[118] Christina S. Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble. Mismatch string kernels
for svm protein classification. In NIPS, pages 1417–1424, 2002.

[119] Jason Weston, Christina Leslie, Eugene Ie, Dengyong Zhou, Andre Elisseeff, and William Stafford
Noble. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241–3247,
2005.

[120] M. Gribskov and N. Robinson. Use of receiver operating characteristic (ROC) analysis to evaluate
sequence matching, 1996.

[121] Steven Henikoff and Jorja G. Henikoff. Position-based sequence weights. J Mol Biol., 243(4):574–8, 11
1994.

[122] Koji Tsuda, Taishin Kin, and Kiyoshi Asai. Marginalized kernels for biological sequences. Bioinfor-
matics, 18(suppl 1):S268–275, 2002.

[123] Benjamin Schuster-Bockler, Jorg Schultz, and Sven Rahmann. Hmm logos for visualization of protein
families. BMC Bioinformatics, 5(1):7, 2004.

89

[124] Li Liao and William Stafford Noble. Combining pairwise sequence similarity and support vector
machines for remote protein homology detection. In RECOMB, pages 225–232, 2002.

[125] Sören Sonnenburg, Gunnar Rätsch, and Bernhard Schölkopf. Large scale genomic sequence svm
classifiers. In ICML ’05: Proceedings of the 22nd international conference on Machine learning, pages
848–855, New York, NY, USA, 2005.

[126] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel methods in computational biology.
MIT press, 2004.

[127] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and Christina Leslie.
Profile-based string kernels for remote homology detection and motif extraction. J Bioinform Comput
Biol, 3(3):527–550, June 2005.

[128] Christina Leslie and Rui Kuang. Fast string kernels using inexact matching for protein sequences. J.
Mach. Learn. Res., 5:1435–1455, 2004.

[129] Pavel Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Fast and accurate multi-class protein fold
recognition with spatial sample kernels. In Computational Systems Bioinformatics: Proceedings of
the CSB2008 Conference, pages 133–143, 2008. Acceptance rate: 30/135 (22

[130] Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant, Luca Clementi,
Jingyuan Ren, Wilfred W Li, and William S Noble. Meme suite: tools for motif discovery and search-
ing. Nucleic acids research, 37(suppl 2):W202–W208, 2009.

[131] Ivan V Kulakovskiy, VA Boeva, Alexander V Favorov, and VJ Makeev. Deep and wide digging for
binding motifs in chip-seq data. Bioinformatics, 26(20):2622–2623, 2010.

[132] Theodoros Damoulas and Mark A. Girolami. Probabilistic multi-class multi-kernel learning: on protein
fold recognition and remote homology detection. Bioinformatics, 24(10):1264–1270, 2008.

[133] Mohammad Tabrez Anwar Shamim, Mohammad Anwaruddin, and H.A. Nagarajaram. Support Vector
Machine-based classification of protein folds using the structural properties of amino acid residues
and amino acid residue pairs. Bioinformatics, 23(24):3320–3327, 2007.

[134] Hongzhu Qu and Xiangdong Fang. A brief review on the human encyclopedia of dna elements (encode)
project. Genomics, proteomics & bioinformatics, 11(3):135–141, 2013.

[135] Kate R Rosenbloom, Cricket A Sloan, Venkat S Malladi, Timothy R Dreszer, Katrina Learned,
Vanessa M Kirkup, Matthew C Wong, Morgan Maddren, Ruihua Fang, Steven G Heitner, et al.
Encode data in the ucsc genome browser: year 5 update. Nucleic acids research, 41(D1):D56–D63,
2013.

[136] T. Joachims. Making large-scale svm learning practical. LS8-Report 24, Universität Dortmund, LS
VIII-Report, 1998.

[137] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector Learning, chapter 11, pages 169–184. MIT
Press, Cambridge, MA, 1999.

[138] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent deep neural network for
quantifying the function of dna sequences. Nucleic acids research, 44(11):e107–e107, 2016.

90

[139] Amartya Sanyal, Bryan R Lajoie, Gaurav Jain, and Job Dekker. The long-range interaction landscape
of gene promoters. Nature, 489(7414):109–113, 2012.

[140] Jian Qun Ling and Andrew R Hoffman. Epigenetics of long-range chromatin interactions. Pediatric
research, 61:11R–16R, 2007.

[141] Zhang Yan and Dianjing Guo. Comparative epigenetics analyses of acute and chronic leukemia.
Journal of Biosciences and Medicines, 3(07):9, 2015.

[142] Inderpreet Sur and Jussi Taipale. The role of enhancers in cancer. Nature Reviews Cancer, 16(8):483–
493, 2016.

[143] R David Hawkins, Gary C Hon, Chuhu Yang, Jessica E Antosiewicz-Bourget, Leonard K Lee, Que-
Minh Ngo, Sarit Klugman, Keith A Ching, Lee E Edsall, Zhen Ye, et al. Dynamic chromatin states in
human es cells reveal potential regulatory sequences and genes involved in pluripotency. Cell research,
21(10):1393–1409, 2011.

[144] Dennis Wang, Augusto Rendon, Willem Ouwehand, and Lorenz Wernisch. Transcription factor
co-localization patterns affect human cell type-specific gene expression. BMC genomics, 13(1):263,
2012.

[145] Koichi Onodera, Tohru Fujiwara, Yasushi Onishi, Ari Itoh-Nakadai, Yoko Okitsu, Noriko Fukuhara,
Kenichi Ishizawa, Ritsuko Shimizu, Masayuki Yamamoto, and Hideo Harigae. Gata2 regulates
dendritic cell differentiation. Blood, 128(4):508–518, 2016.

[146] Xiangfan Liu, Huapeng Li, Mihir Rajurkar, Qi Li, Jennifer L Cotton, Jianhong Ou, Lihua J Zhu,
Hira L Goel, Arthur M Mercurio, Joo-Seop Park, et al. Tead and ap1 coordinate transcription and
motility. Cell reports, 14(5):1169–1180, 2016.

[147] Nadine Obier, Pierre Cauchy, Salam A Assi, Jane Gilmour, Michael Lie-A-Ling, Monika Lichtinger,
Maarten Hoogenkamp, Laura Noailles, Peter N Cockerill, Georges Lacaud, et al. Cooperative binding
of ap-1 and tead4 modulates the balance between vascular smooth muscle and hemogenic cell fate.
Development, pages dev–139857, 2016.

[148] Aaron R Quinlan and Ira M Hall. Bedtools: a flexible suite of utilities for comparing genomic features.
Bioinformatics, 26(6):841–842, 2010.

[149] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent deep neural network for
quantifying the function of dna sequences. page 032821. Cold Spring Harbor Labs Journals, 2015.

[150] Jack Lanchantin, Ritambhara Singh, Zeming Lin, and Yanjun Qi. Deep motif: Visualizing genomic
sequence classifications. 2016.

[151] Dashboard definiton. http://www.dictionary.com/browse/dashboard. Accessed: 2016-07-20.

[152] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jing-
dong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. 2015.

[153] Michael KK Leung, Andrew Delong, Babak Alipanahi, and Brendan J Frey. Machine learning in
genomic medicine: A review of computational problems and data sets. IEEE, 2016.

[154] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
tion. 2015.

91

http://www.dictionary.com/browse/dashboard

[155] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3128–
3137, 2015.

[156] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. volume 5, pages 157–166. IEEE, 1994.

[157] David R Kelley, Jasper Snoek, and John L Rinn. Basset: Learning the regulatory code of the accessi-
ble genome with deep convolutional neural networks. Cold Spring Harbor Lab, 2016.

[158] Luisa M Zintgraf, Taco S Cohen, and Max Welling. A new method to visualize deep neural networks.
2016.

[159] Michael C O’Neill. Training back-propagation neural networks to define and detect dna-binding sites.
volume 19, pages 313–318. Oxford Univ Press, 1991.

[160] Paul B Horton and Minoru Kanehisa. An assessment of neural network and statistical approaches for
prediction of e. coli promoter sites. volume 20, pages 4331–4338. Oxford Univ Press, 1992.

[161] Philip Machanick and Timothy L Bailey. Meme-chip: motif analysis of large dna datasets. volume 27,
pages 1696–1697. Oxford Univ Press, 2011.

[162] David Bisant and Jacob Maizel. Identification of ribosome binding sites in escherichia coli using neural
network models. volume 23, pages 1632–1639. Oxford Univ Press, 1995.

[163] Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural networks using
natural pre-images. pages 1–23. Springer.

[164] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2014.

[165] Shobhit Gupta, John A Stamatoyannopoulos, Timothy L Bailey, and William S Noble. Quantifying
similarity between motifs. volume 8, page R24. BioMed Central Ltd, 2007.

[166] Fabian A Buske, Mikael Bodén, Denis C Bauer, and Timothy L Bailey. Assigning roles to dna
regulatory motifs using comparative genomics. volume 26, pages 860–866. Oxford Univ Press, 2010.

[167] Yijun Xiao and Kyunghyun Cho. Efficient character-level document classification by combining
convolution and recurrent layers. 2016.

[168] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. volume 18, pages 1527–1554, 2006.

[169] Sungchul Ji. The linguistics of dna: words, sentences, grammar, phonetics, and semantics. volume 870,
pages 411–417. Wiley Online Library, 1999.

[170] Gary D Stormo. Modeling the specificity of protein-dna interactions. volume 1, pages 115–130.
Springer, 2013.

[171] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. In
Advances in Neural Information Processing Systems, pages 2368–2376, 2015.

[172] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. volume 12, pages 2493–2537. JMLR.
org, 2011.

92

[173] Gary D Stormo. Dna binding sites: representation and discovery. volume 16, pages 16–23. Oxford
Univ Press, 2000.

[174] Jifeng Dai and Ying-Nian Wu. Generative modeling of convolutional neural networks. 2014.

[175] Anthony Mathelier, Oriol Fornes, David J Arenillas, Chih-yu Chen, Grégoire Denay, Jessica Lee,
Wenqiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, et al. Jaspar 2016: a major expansion
and update of the open-access database of transcription factor binding profiles. page gkv1176. Oxford
Univ Press, 2015.

[176] Antonio LC Gomes, Thomas Abeel, Matthew Peterson, Elham Azizi, Anna Lyubetskaya, Lúıs Car-
valho, and James Galagan. Decoding chip-seq with a double-binding signal refines binding peaks to
single-nucleotides and predicts cooperative interaction. volume 24, pages 1686–1697. Cold Spring
Harbor Lab, 2014.

[177] Juho Rousu and John Shawe-Taylor. Efficient computation of gapped substring kernels on large
alphabets. Journal of Machine Learning Research, 6(Sep):1323–1344, 2005.

[178] Pall Melsted and Jonathan K Pritchard. Efficient counting of k-mers in dna sequences using a bloom
filter. BMC bioinformatics, 12(1):333, 2011.

[179] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[180] Stefan Kurtz, Apurva Narechania, Joshua C Stein, and Doreen Ware. A new method to compute
k-mer frequencies and its application to annotate large repetitive plant genomes. BMC genomics,
9(1):517, 2008.

93

	Thesis-Dissertation Cover and Approval Pages
	PhD_Disstertation (2).pdf
	Acknowledgements
	Contents
	List of Tables
	List of Figures

	Introduction

	Literature Review
	Sequential Data in Biology
	Interpretability of Deep Neural Networks
	Deep Neural Networks for Biological Tasks
	Attention-based Deep Neural Networks

	Sequence Classification with String Kernels
	Support Vector Machine (SVM):
	String Kernels
	String Matching Algorithms
	k-mer counting methods

	Deep Neural Network for Gene Expression Prediction
	Predicting Gene Expression using Histone Modifications
	Previous Computational Methods
	Approach
	Input Generation
	An end-to-end architecture based on Convolutional Neural Network (CNN)
	Visualizing combinatorial effect through optimization

	Experimental Setup
	Dataset
	Baselines
	Hyperparameter tuning

	Results
	Performance Evaluation
	Validating the influence of bin positions on prediction
	Visualizing Combinatorial Interactions among Histone Modifications

	Towards Interpretability of Deep Neural Networks
	Why Interpretability is Important?
	Approach
	Input and Output Formulation for the Task
	Long Short-Term Memory (LSTM) Networks
	An End-to-End Deep Architecture for Predicting and Attending Jointly
	Bin-Level Encoder Using LSTMs
	Bin-Level Attention, -attention
	HM-Level Encoder Using Another LSTM
	HM-Level Attention, -attention
	Training AttentiveChrome End-to-End

	Experimental Setup
	Dataset
	Model Variations and Two Baselines
	Model Hyperparameters

	Results
	Performance Evaluation
	Using Attention Scores for Interpretation

	Towards Faster String Kernel Calculation
	Biological Sequence Classification Tasks
	Approach
	Background: Gapped k-mer String Kernels
	Proposed Method: Gapped k-mer Kernel with Counting (GaKCo)
	Theoretical Comparison of Time Complexity
	Justification of GaKCo's Sort and Count Method

	Experimental Setup
	Benchmark Tasks of Sequence Classification
	Experimental Setup

	Results
	Kernel Calculation Time Performance
	Empirical Performance of GaKCo versus NN

	Conclusion and Future Work
	Intellectual Merit
	Future Work
	Extension of DNNs for Gene Expression Prediction
	Scalability of SK-SVM Methods

	Broader Impact

	Appendix
	Selecting input HM features for DNNs
	Formal proof regarding Hamming Distance Property

	Bibliography

