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Abstract —The human body is composed of various biological 

clocks that impact physical and mental health functioning. 

Modeling biological rhythms provides the means to understand 

the effect of internal and external factors on human mental and 

physical performance. So far, biological rhythms have mostly been 

studied in controlled laboratory settings thus limiting the long 

term study and modeling of these rhythms. This paper presents 

the results of our exploratory study of modeling human rhythms 

with longitudinal physiological data collected from consumer 

devices in the wild. We used data from four people continuously 

wearing Empatica (E4) wristbands and Oura smart rings for 

approximately four months to build models of human rhythms. 

We then used those model parameters in a machine learning 

approach to predict mental and physical readiness. Our results 

showed that most models built with a combination of sensors and 

rhythmic features obtained a prediction accuracy above the 

baseline measure of 66% (Max accuracy = 82.7%). These results 

provide insights into the feasibility of using consumer devices to 

model biological rhythms and use them to assess human and 

performance and health 

I. INTRODUCTION 

Our internal biological clocks influence performance levels 

over time; these levels naturally rise and fall throughout the day 

according to our routines and schedules [1]. When people 

complete tasks at times that do not align with their optimal 

energy levels, they may not be as productive as intended. 

Disruption and misalignment in biological rhythms, e.g. wrong 

sleep and awake time result in negative health and performance 

both on physical and mental level [1]. Saeed Abdullah noted 

that “around 80% of the population live against their innate 

rhythms, mostly by adhering to work schedules that demand 

waking up earlier than our internal clock dictates” [2]. The 

question that researchers have been exploring is how can we 

boost human health and performance in a way that reduces 

stress and acts in accordance with our biological rhythms? 
 There have been attempts to associate inactivity with low 

productivity and work performance. Researchers have been 

implementing measures to boost performance by including 

reminders for users to take stretch breaks and move their bodies 

every hour, motivation being that in the workforce a healthy 

employee is a more productive employee. IBM gave out 40,000 

Fitbits over the course of two years, and found that those who 

participated in the wellness challenge reached an average of 

8,800 steps per day, more than double the average of people 

who did not participate [3]. While not directly indicative of an 

increase in productivity, healthy employees will be less likely 

to call in sick [4]. In order for technology to shape user 

wellbeing and improved productivity, it will need to collect 

information to “learn” more about the wearer. What seems to 

be lacking is a direct biometric measure of both productivity 

and alertness.  
 Our research aims to explore the feasibility of discovering 

and modeling biological rhythms using physiological data 

collected from consumer-level devices in the wild. This paper 

chronicles a four-month study to track biometric indicators such 

as body temperature, galvanic skin response, resting heart rate, 

heart rate variability and sleep patterns and to model 

physiological and behavioral rhythms from the E4 wristband 

devices. The parameters obtained from the rhythm models were 

then used to predict the readiness score measured by the Oura 

ring using classification.  
This study is the first to explore the predictability of human 

readiness using machine learning via features obtained from 

rhythm models. To our knowledge, this is also the first 

continuous and long-term collection of many physiological 

signals via wearable devices in the wild. We anticipate this data 

set to be useful to other researchers in the field. In the following 

sections, we discuss the related work in this domain followed 

by a description of data collection, processing, and analysis 

methods for building rhythm models and thereby predicting the 

overall readiness scores.  

II. RELATED WORK 

 Biological rhythms including the circadian rhythm or rest-

activity cycle, feeding cycles, breathing, heartbeat, hormone 

secretion, and female menstrual cycle have been extensively 

studied in controlled studies [5, 6, 7]. Advancements in sensing 

technology have made it possible to track physiological and 

behavioral signals to understand physical and mental aspects of 

human biology and their relationship with health and 

performance. For example, to understand human cognitive 

performance via physiological responses, a study by the U.S. 

Air Force Research Laboratory [8] monitored the functional 

state of 7 participants in real-time using six channels of brain 

electrical activity (from an EEG) as well as eye, heart, and 

respiration measures. The study showed the EEG features were 

best at tracking and predicting cognitive performance. Another 

study by Abdullah et al. [9] gathered patterns of phone usage 

from 20 participants over the course of 40 days to predict 

optimal alertness levels for different tasks. The findings 

demonstrate that patterns of rhythmicity vary among 

individuals and usage of mobile devices correlates with 

alertness.  

Wearable devices such as the Fitbit, Empatica, and Oura 

ring are now able to track biometrics including heart rate, skin 



   

   

 

conductance, and sleep duration and quality with a high 

accuracy [10, 11, 12]. Lier et al. evaluated the Empatica E4 

under what they call “a comprehensive validity assessment 

protocol” [13]. They compared the Empatica E4 to ECG for 

measuring heart rate and to a measure of skin conductance on 

the fingers for measuring EDA. For this comparison, they 

evaluated 60 participants engaging in a stress-inducing activity, 

singing in public. They found that E4 assessments valid “at the 

parameter and detection [of stressors] level” when compared to 

the reference devices [13]. The authors highlight the Empatica 

E4 as being especially useful in gathering data on EDA, and 

ultimately assert that their study supports prior validity studies 

of the Empatica E4. In our study, we use both E4 and the Oura 

ring to collect physiological and behavioral signals.  

We will use the collected data to model biological rhythms 

to first determine their characteristics and features and then use 

those features in a machine learning pipeline to predict the 

readiness score. Our approach is inspired by the work in Doryab 

et al.’s study that modeled biobehavioral rhythms to predict 

readmission risk following pancreatic surgery [14]. Data 

collected from 49 patients via Fitbit devices (heart rate, sleep, 

and activity) was analyzed to detect rhythmicity and disruption 

in patients' biological rhythms during treatment. The machine 

learning models built from rhythmic features were shown to be 

predictive of the readmission risk [14]. In our study we use a 

wide range of physiological signals including heart rate, heart 

rate variability, skin temperature, and skin conductance 

(collected from E4) as well as sleep, readiness, and activity 

(collected from the OURA ring). To our knowledge, such 

longitudinal data set (for approx. four months) of physiological 

and behavioral data does not exist and we believe this data can 

be useful for other research studies in human behavior and 

health. Furthermore, our study reveals the impact of different 

physiological signals in prediction of readiness that has not 

been studied before.  

III. METHODOLOGY  

 The objective of this research was to understand patterns in 

the rhythmic features derived and draw connections between 

bio-physiological indicators and overall readiness. The 

following sections describe the approaches taken to collect, 

process, model, and evaluate participants’ biological rhythms. 

A. Data Collection 

Data was collected from Oura rings and Empatica E4 

devices to track biometric data including body temperature, 

galvanic skin response, resting heart rate, heart rate variability 

and sleep patterns for four months. Four participants who were 

part of the research team wore both devices continuously to 

collect data. Each participant has a unique ID for anonymity 

and collected data individually. Participant 1 collected 112 

days’ worth of data, participant 2, 92 days, participant 3, 101 

days, and participant 4, 76 days. Participants synced their 

devices to the cloud each day to provide cumulative, up-to-date 

raw data for analysis.  
The Oura ring is a consumer wearable that tracks users’ 

sleep, activity, and readiness [15]. The Oura ring develops an 

overall sleep score by tracking total sleep duration, sleep 

efficiency, restfulness, REM sleep, light sleep and deep sleep 

patterns, latency (the time it takes to fall asleep), and bedtime 

start and end [16]. The activity tracking feature measures total 

time inactive per day, hourly activity, whether the user has met 

the personalized daily activity goal, workout frequency and 

volume, and time spent in recovery from physical activity [15]. 
 

 
 

 

 
 

 

 
 

 

 
 

Fig 1.   Oura Ring with three sensors 
 

The Oura ring also measures readiness, which is a measure 

of physical and mental capacity throughout the day [17]. This 

measure incorporates resting heart rate, heart rate variability, 

recovery index, body temperature, previous night’s sleep, and 

previous day’s activity into its calculation for determining the 

quantitative score. Readiness scores range from 1-100. 85+ 

indicates “excellent” readiness, 70-84 indicates “good” 

readiness, 60-69 indicates “pay attention” to your readiness, 

and below 60 indicates “take action to rest and recharge” [17]. 

The readiness score helps users distinguish days that are well 

suited for challenging oneself from days when rest is necessary 

to recover. We used the readiness score as a dependent 

variable/predictand to determine whether the biometric data 

from the E4 could predict readiness. 

The Empatica E4 is a consumer wrist wearable that tracks 

and measures real-time physiological data [18]. E4 sensors 

include the PPG sensor which measures blood volume pulse 

(BVP), EDA sensor which measures the fluctuating changes in 

the electrical properties of the skin, an accelerometer (ACC), an 

infrared thermophile which reads skin temperature (TEMP), a 

heart rate (HR) sensor, an event mark button and an internal 

real-time clock [18]. The E4 can record up to 60 hours of data 

at a time before needing to be uploaded to the cloud platform. 

On the platform, users can view and manage data through 

various visualizations. The Bluetooth streaming mode allows 

the user to view sensor data of the connected device in real time 

[18]. Fig. 1 depicts the Oura ring as well as the Empatica E4 

wristband and highlights the features and sensors embedded in 

the device [18]. The sensors, found in the center of the band, 

are activated when pressed against the skin during wear. 

B. Data Processing 

The raw data from all sensors in E4 were used to model 

biological rhythms and to identify their characteristics and 

features. Those features together with readiness assessments 

from the Oura ring were then used in a machine learning 

pipeline to predict the overall readiness. The Empatica data was 

pulled from the E4 manager through Python and ran through 

various data preprocessing scripts. First, the data was assigned 

a timestamp for each unique value and then grouped into hourly 



   

   

 

averages. These hourly averages formed the dataset that was 

used for modeling rhythms. Then, the hourly data was compiled 

into an aggregate file per sensor and each file was grouped into 

seven-day intervals to generate a weekly model of rhythms. The 

readiness score from the Oura ring was also aggregated to a 

weekly number. The features from weekly rhythms and the 

weekly readiness scores formed the dataset that was used in the 

machine learning approach.   
To explore the cyclical patterns of one’s physio-biological 

data, the we used a comprehensive rhythms analysis toolkit 

called Chronomics Analysis Toolkit (CATkit) to model 

rhythmic patterns from data collected from the Empatica E4 

device [19]. The resulting files were the basis for the research 

team’s models and acted as the input to the CATkit.  

B. Modeling of Biological Rhythms  

The five attributes that characterize a biological rhythm 

include mesor, period, amplitude, phase and waveform. The 

mesor is the midpoint around which the cycle oscillates. The 

period is the time between two consecutive peaks or the full 

length of a cycle. Amplitude is half the range of oscillation and 

phase is the displacement between a specific point in the cycle 

and a reference point (typically uses the peak). For biological 

rhythms, the reference time is usually chosen in relation to the 

sleep-wake cycle of the subject. Fig 2. visually depicts the 

characteristics of a wave. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 2. Characteristics of a Wave 
 

1) Periodogram: CATkit’s periodogram output was used to 

retrieve an estimate of a rhythm’s period and amplitude as a 

signal can be reproduced by a series of sinusoidal waves. The 

periodogram depicts the relative importance of various 

frequency values where the peaks in the sinusoidal wave can be 

seen. The recurrence of these peaks explains the oscillation 

pattern of the observed data which provides a time period by 

which to evaluate the data [19]. The periods are determined by 

evaluating the recurrence and frequency of the peaks in the 

graph. Fig. 3 shows an example of the output generated by the 

periodogram with detected significant periods of 24, 720, 240, 

and 960 hours. These periods were used to model rhythms via 

Cosinor as described in the next section. 

 

 
Fig 3. Periodogram Output 

 

2) Cosinor: Cosinor is a regression technique that obtains 

an estimate of the rhythm-adjusted mean (MESOR), the 

amplitude, and the measure of phase (acrophase) for the chosen 

period [19]. The function fits one or more cosine curves to the 

data and minimizes the sum of squares of the differences 

between the predicted and actual values of the model for the 

specified period [19]. Statistical significance is determined for 

the period with respect to the null hypothesis (no rhythm) to 

decipher if the model accurately represents the individual’s 

biological rhythm.  
The single cosinor calculates the best fit of the cosine model 

at specified periods. We identified the strongest period from the 

periodogram to be used in the single cosinor function. When the 

single cosinor is used at the Fourier frequencies of the model, 

the results yielded mirror the periodogram precisely up to six 

decimal points [19]. 
Fig. 4 is a sample output from the single-component 

Cosinor function where the period, mesor, standard error (s.e.), 

amplitude (Amp), percentage rhythm (PR) and acrophase (Phi) 

can be seen. Acrophase is a measure phase, specifically the lag 

from a defined reference time point to the crest time in the fitted 

curve, whereas percentage rhythm is a reported proportion of 

variance accounted for by the model [19]. 

Fig. 4 Cosinor Output 

IV. ANALYSIS 

In our analysis, we explored 1) the correlations between the 

weekly average readiness score and the rhythm features for that 

week, and 2) the predictability of the readiness score from the 

rhythmic features. The following describes the methods in more 

detail.  

A. Pearson Correlation 

Correlation analysis is a statistical tool used to evaluate the 

strength of the relationship between two quantitative variables 



   

   

 

[14]. A correlation value of 1 indicates a perfect positive 

correlation whereas a correlation of -1 indicates a perfect 

negative correlation. Correlation analysis led us to understand 

which variables contributed most to forecasting Oura’s 

readiness score. 

B. Classification 

To evaluate the feasibility of rhythms in predicting 

readiness, we chose the period of 24-hour to build cosinor 

models and to obtain the rhythmic features described above. We 

built a cosinor model for each week of data that characterized 

the rhythmic cycle of that week. We then created a dataset with 

the obtained features from those weekly models and used it in 

a classification approach for predicting the weekly average 

readiness score. 

Binary classification was used to categorize the predicted 

readiness score and actual readiness score from that time 

period. Readiness scores were classified as 1 (“high”) for scores 

above 70, and 0 (“low”) for scores below 70. The readiness 

categories were then used as the ground truth in the machine 

learning method. The logistic regression models were built 

from the rhythmic features (mesor, Phi, PR, and amplitude) 

generated by the cosinor for each biological phenomenon 

tracked by the Empatica E4. In total, ten models were created, 

based on heart rate, skin temperature, EDA, BVP, and 

accelerometer data. We generated two types of models namely 

feature-based and sensor-based. The feature-based models 

made for mesor, Phi, PR, and amplitude where data from all 

sensors was included (i.e. the mesor model includes acc_mesor, 

hr_mesor, eda_mesor). Sensor-based models were built for 

each sensor using all four features for that particular sensor (i.e. 

the heart rate model includes hr_mesor, hr_phi, and hr_amp). 

Lastly, we built a model that included a combination of all 

features and all sensors. 

To evaluate the machine learning performance, the full data 

set of rhythm features was divided into test sets and training 

sets. We used leave-one-person-out cross validation where at 

each round, the data of three participants were used for training 

and tested on data from the 4th person. These models were 

compared using average accuracy prediction from all four tests 

of the models. 

V. RESULTS 

A. Rhythm Modeling 

Using periodogram outputs, we were able to detect and 

observe different periods in each time series data between 

sensors and between participants. Fig. 5 and Fig. 6 show 

examples of periodograms built from temperature data of two 

participants. As demonstrated, other than the 24-hour cycle, the 

detected periods are different for the two participants. This 

highlights differences in individual rhythms even though they 

are built from the same type of signal. 
 

 

 
Fig. 5 Periodogram of Temperature for Participant 1 

 
Fig. 6 Periodogram of Temperature for Participant 2 

 

These findings were further demonstrated by the 

corresponding cosinor analysis of the periods. As illustrated in 

fig. 7 and fig. 8 the differences are vast between the two 

participants in terms of the periods greater than 24 hours, but 

are also clear for the 24-hour period. 

 

Fig 7.  Cosinor Plot of Temperature for Participant 1 

 

Fig 8.  Cosinor Plot of Temperature for Participant 3 

 



   

   

 

B. Correlation Analysis 

A correlation analysis was performed to determine how the 

rhythmic features of each E4 sensor correlates with Oura’s 

weekly average readiness scores. The researchers focused on 

finding the strongest correlations per feature, per person, and 

then overall. Overall correlations were analyzed with all of the 

participant data aggregated for a holistic view of which features 

had the most significant correlation. 

Fig 9. Correlation coefficients and their associated scatterplots 
 

The analysis showed the acceleration mesor feature and 

average readiness moved in the same direction approximately 

54% of the time. The heart rate mesor feature and average 

readiness moved in opposite directions approximately 70% of 

the time. Fig. 9 shows the results of the four most correlated 

features with average readiness.  In total, we had 45 weeks of 

data from all participants indicated per row. The p-value 

between heart rate mesor and readiness was 6.24*10-8 (p 

<0.0001) indicating a very significant correlation.  

 

 

Fig. 10 Correlation Between Heart Rate Mesor and Readiness 

 

Deeper correlation analysis was performed to determine the 

correlations per participant in the study based on the varying 

features (See fig. 10). We found differing results per participant 

of which feature had the strongest linear relationships with 

average readiness. Table 1 shows the results of the strongest 

positive and negative relationships. 

 
TABLE I. RELATIONSHIPS WITH AVERAGE READINESS 

 

 

An important insight that can be gained from the correlation 

analysis is the understanding that individuals have personalized 

biological clocks. Because of this, rhythms and average 

readiness correlations vary per person. For example, for 

participant 1, EDA Phi showed the strongest positive 

correlation (0.37), but for participant 4, it showed a moderately 

weak correlation (-0.13). While overall correlation conclusions 

were found on the aggregated dataset, individualizing the 

results provided more actionable insights on a per person basis. 

C. Readiness Prediction 

Using binary classification, we determined whether the 

predicted readiness scores matched the actual readiness scores 

from the data. The models were compared using prediction 

accuracy percentage and are listed in order of highest to 

lowest accuracy in table 2. 

TABLE II. MODEL ACCURACY 

 

The model based entirely on the Acrophase (Phi) feature from 

all five sensors performs the best across all test sets with a 

nearly 10% higher accuracy rate over the next best model. This 

model’s performance indicates that the timing of the peak of 

one’s biological rhythms may have predictive power in mental 

and physical readiness. The temperature model performs 

second-best with an average accuracy rate of 72.9%, which 

indicates that wrist temperature may also be a useful predictor 

of readiness. Analyzing the true readiness scores of the four test 

sets, the baseline of high readiness scores was found to be 66%. 

Six of the listed models predict at or above the baseline, 

suggesting they can be used as predictive models. Notably, the 

model with all sensors and all features, performs poorly with an 

average accuracy percentage of 43%. This is likely due to 

model complexity, as some feature and sensor variables 

correlate strongly with one another. 

 Participant ID 

Value 1 2 3 4 

Max EDA Phi EDA PR ACC Mesor EDA Amp 

Positive 

Correlation 
0.37 0.41 0.66 0.58 

Min HR Mesor HR Mesor EDA Mesor ACC Phi 

Negative 

Correlation 
-0.76 -0.46 -0.77 -0.59 

Feature Model Accuracy (%) Sensor Model Accuracy (%) 

Phi 82.70% Temperature 72.90% 
Amplitude 66.70% HR 68.80% 

PR 66.70% EDA 64.20% 
MESOR 60% BVP 67.10% 

Model with all 

sensors/features 43% Acceleration 61.50% 



   

   

 

VI. CONCLUSION 

 We studied the relationship between rhythmic bio-

physiological features and overall readiness to determine which 

features best predict readiness. The rhythmic features derived 

from the E4 sensor data were used to create models to predict 

overall readiness. Most models predicted readiness at accuracy 

rates above the majority class baseline (high readiness) proving 

to be a feasible method of analysis. Additionally, our 

correlation analysis showed that the Mesor rhythmic features 

for acceleration and heart rate were most highly correlated with 

overall readiness. Although data was collected from a small 

group of people, we believe our study results still demonstrate 

the viability of using physiological data from wearable devices 

to characterize biological rhythms to gain insight into humans 

mental and physical outcomes. In the future, we plan to 

replicate this study with a larger participant pool over at least 

one year to observe and discover differences in individual 

biological rhythms. We will then build a rhythm-aware system 

to recommend best actions that are aligned with the biological 

rhythms of the person to optimize their health and performance. 
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