
Digitization of Perioperative Surgical Flowsheets

A Technical Report for SYS 4054

Presented to the Faculty of the School of Engineering and Applied Sciences

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Systems Engineering

By

Nathan Ohene

Technical Project Team Members

Victoria Rho 

Rex Focht 

Angela Yi 

Bhavana Channavajjala

Luke McPhillips

Sarah Winston Nathan

On my honor as a University Student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments

37



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Digitization of Perioperative Surgical Flowsheets 
Victoria Rho 

Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

vr2by@virginia.edu 

 
 

Angela Yi 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

ay2ug @virginia.edu 

 
 

Bhavana Channavajjala 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

bc8ze@virginia.edu 

 
 

Luke McPhillips 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 
lrm3km@virginia.edu 

 
Sarah Winston Nathan 

Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

swn2bf@virginia.edu 

Rex Focht 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

rwf2cb@virginia.edu 
 

Nathan Ohene 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

no9ga@virginia.edu 
 

William Adorno 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

wa3mr@virginia.edu 
 

 

 
 
 
 
 
 
 

Marcel Durieux 
Anesthesiology Department, 

School of Medicine 
University of Virginia 

Charlottesville, Virginia 
med2p@virginia.edu 

 
 
 

Donald Brown 
Department of Engineering 
Systems and Environment 

University of Virginia 
Charlottesville, Virginia 

deb@virginia.edu 

 

 

 

 

Abstract—     Perioperative mortality rate (POMR) is a metric 
widely used to describe the quality of treatment in hospitals. 
Perioperative data, or data collected during surgery, can be used 
to calculate POMR and determine factors that lead to adverse 
surgical outcomes. Access to such data is essential for decreasing 
POMR and improving medical treatment. In low- and middle-
income countries (LMICs), perioperative data is often manually 
recorded on paper flowsheets. While these flowsheets capture 
essential information, their non-digital format leads to difficulty 
in analysis of perioperative data, as aggregating data and 
observing trends is a time-consuming and tedious task. The goal 
of this project is to design a system to digitize the information 
contained in surgical flowsheets that have been in use for six years 
at the University Teaching Hospital of Kigali in Rwanda.  To 
accomplish this goal, the research team has done the following: 1) 
Designed a wooden scanning structure, SARA (Scanning 
Apparatus for Remote Access), to capture flowsheet images in a 
standard format, 2) Developed a web application to upload images 
and securely transfer them to UVA for processing, 3) Developed 
image processing programs to digitize medication, blood pressure, 
heart rate and logistical data, and 4) Created a PostgreSQL 
database system to store the digitized flowsheet data. Additional 
testing and validation of this system is needed to evaluate the 
accuracy of each processing technique in the fully integrated 
system. 

Keywords - Machine learning, Artificial Intelligence, Database, 
Image processing, perioperative mortality  

I. INTRODUCTION 
Hospitals in Rwanda use handwritten flowsheets to collect 

patient data before, during, and after surgery. These flowsheets 
store essential information; however, their non-digital format 
makes data analysis difficult. Perioperative mortality rate 

(POMR), calculated from data stored in these hospital 
flowsheets, is a metric used to evaluate quality of surgical care 
[7]. Due to the handwritten format of the flowsheets, hospitals 
cannot easily calculate POMR or other useful metrics. 
Hospitals without digital records are at a disadvantage because 
they cannot easily aggregate surgical data and observe trends. 
Thus, a method to digitize handwritten hospital records will 
allow these hospitals to calculate POMR and other relevant 
metrics, which in turn, will lead to improvements in surgical 
outcomes.  

The system designed by this research team will aid the 
digitization of perioperative data in low- and middle-income 
countries (LMICs), allowing hospitals to store data in a 
cohesive format and analyze surgical data more easily. This 
paper details the design of the system used to digitize 
information within the intraoperative flowsheets used in the 
University Teaching Hospital in Kigali, Rwanda. Hospitals in 
other LMICs can also adjust and apply the methods set forth in 
this paper to digitize their own hospital records. This paper 
details the digitization process in seven distinct parts: the 
scanning apparatus, the web application, image cropping, 
checkbox detection, graph reading, text interpretation, and the 
integration of these individual systems. We then report and 
discuss the results of the system.  

II. PRIOR WORK 
To adopt an electronic medical record (EMR) system, many 

hospitals around the world are actively converting from a 
paper-based work environment to paperless electronic records 
[11]. However, this is not completely possible in LMICs, where 
financial constraints compel hospitals to continue recording 
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patient data on paper. This makes data difficult to access and 
aggregate for research purposes. POMR is a common metric 
used to assess the performance of a hospital and can also be 
reported to agencies such as the World Health Organization to 
receive funding for better hospital facilities. POMR and related 
metrics are most effectively calculated when data has been 
digitized, so that the data can then be analyzed and visualized.  

Researchers at Vanderbilt University explored an avenue 
for digitizing patient data without disrupting doctor workflow 
by introducing an electronic data collection system in a tertiary 
hospital in Kenya. The researchers created an offline electronic 
data collection system, using the Research Electronic Data 
Capture (REDCap) tool as a template, to allow staff to collect 
data at the point-of-care. This development allowed doctors and 
nurses to shift from manual data collection to electronic 
collection. POMR was then calculated from collected data and 
reported for each type of surgery conducted by the hospital [2]. 
While their approach was effective at the tertiary hospital in 
Kenya, low- and middle- income countries often have varying 
levels of resources, making it difficult to implement the same 
technology across countries.  

While image scanners and devices have existed for at least 
60 years [19], LMICs lack the support needed for technologies 
like these to function. In a personal conversation with Dr. 
Durieux, an anesthesiologist at UVA who works with the 
University Hospital in Kigali, noted the lack of resources and/or 
education when handling scanner technologies, making it 
difficult to use a technology-heavy solution [3][12]. Therefore, 
hospitals in these areas continue to use paper copies of 
flowsheets to keep track of perioperative data.      

A 2017 study conducted in hospitals in Ghana revealed 
criteria for determining how ready hospitals were to digitize 
medical records. The criteria were derived from interviewing 
healthcare workers at Mampong-Ashanti Municipal Hospital. 
The workers were primarily concerned about: internet 
connectivity, inadequate power supply, lack of 
information/communication technology, lack of knowledge 
required to use technology, financial issues and resistance to 
new technology [22]. The same concerns were voiced by 
doctors at University Teaching Hospital in Kigali, Rwanda, 
informing the decision to design a digitization system capable 
of operating with existing technology in Rwanda without 
requiring substantial employee training and internet 
connectivity. 

Since the 1980s, work has been done to teach computers to 
recognize handwriting. The technology really reached viability 
after 2009 when deep learning neural networks were developed 
that could utilize high computer processing power and large 
sets of examples to learn what human handwriting looked like 
[4]. Many effective open source handwriting recognition 
software such as Tesseract exist [24]. Researchers at the Rajiv 
Gandhi Institute of Technology were able to use Tesseract to 
recognize handwritten characters in images with up to 98% 
accuracy [14].  

Overall, data digitization methods have been researched 
for a wide range of purposes. Techniques for recognizing 
handwriting, scanning sheets, and reading graphs are not easily 

applicable to this case because of the unique constraints LMICs 
have. Our work builds on these basic techniques, but focuses on 
how these constraints can be overcome by building an 
adaptable system. By testing the effectiveness of these 
techniques, the team has concluded to build upon methods to fit 
the needs as relayed in sections (A) through (F) in the next 
portion.  

III. SYSTEM DESIGN
Most medical equipment in the University Teaching 

Hospital of Kigali in Rwanda lacks standardization between 
different operating rooms. The hospital also lacks the 
infrastructure and access to sufficient technical support to 
maintain an electronic data collection system. Additionally, the 
hospital has years of past handwritten data records that require 
digitization along with the new flowsheets that are created daily 
[12]. Considering these factors, the research team designed a 
system that digitizes handwritten flowsheets while accounting 
for the capabilities of the hospital.  

Fig. 1. Process flow diagram 

The overall system works in three distinct phases: 1) 
uploading patient flowsheets in Rwanda and sending them to 
the University of Virginia, 2) processing flowsheet images at 
the University of Virginia, and 3) sending data back to Rwanda. 
These phases are detailed in Figure 1. In the first phase, the user 
operates SARA to scan handwritten flowsheets with a mobile 
device and then uploads the image to a web application, which 
sends the image to a UVA email address. Phase two integrates 
various image processing techniques. First, new flowsheet 
images are extracted from the UVA email inbox, along with a 
unique patient identifier and the email timestamp. Once an 
image is extracted, the program segments the flowsheet image 
into individual data pieces, which are then processed according 
to the type of information contained—either handwritten text, a 
graph, or a checkbox. The algorithm extracts data from the 
image and populates a backend PostgreSQL database with the 
data, using the patient ID and email timestamp as identifiers. 
The PostgreSQL database is hosted on a server at the University 
of Virginia. The system is currently in the final stages of 
integration. While the image processing techniques have been 
evaluated individually, future testing will determine how 
accurately they digitize the flowsheet as a whole. 
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A. Scanning Apparatus for Remote Access (SARA)
The need for a robust scanning apparatus was made clear

following discussions with Dr. Durieux. Relying on electronic 
devices, even commercial scanners, is not feasible in Rwanda 
due to the lack of resources available to support technology-
heavy solutions. Therefore, the scanning apparatus must be 
easily maintained and assembled, while still producing scanned 
flowsheets that are as consistent as possible [12]. The Scanning 
Apparatus for Remote Access (SARA) shown in Figure 2, 
allows the user to scan flowsheets using a mobile device that 
rests on top of SARA. 

SARA is built using plywood (easily assembled and 
maintained) and the design ensures consistent lighting and 
allows for focal height adjustments. Five (A-E) of the seven 
pieces that constitute SARA are finger-locked, while the sixth 
piece F is hinged. Piece C has a hole to accommodate a 
consistent light source (e.g., lightbulb) while the top (D) has a 
hole in the center for mobile device camera placement. On the 
inside of the box, a few screws exist for the placement of a tray 
(G) for the flowsheet to sit on. These screws, not shown in
Figure 2, are placed inside the box for focal height adjustment
depending on the mobile device that is being used. Reference
lines, located on the tray that sits inside the box, require the
flowsheet to be placed in the same area each time a user scans
an image. Finally, a hinged frame (H) holds the sheet flat in
place via a magnet. To use SARA, the user would first place the
mobile device on top so that the camera of the mobile device
can focus on the flowsheet in the apparatus. They would then
lift the hinged frame (H), place a flowsheet onto the tray (G) in
the reference lines drawn, and lower the hinged frame (H) until
placed onto the tray (G). The user would then close SARA
using piece F, switch on the light source (not shown Figure 2),
and adjust the mobile device resting on top (D) for a clear image
of the flowsheet. The application Tiny Scanner is used to
capture the scan and detect the edges of the paper [18]. The user
will then need to ensure the paper has been captured to the
edges of the flowsheet, and adjust accordingly as shown in
Figure 3. Once this has been done, the scanned flowsheet can
be saved to the device with a specific naming convention, and
will be uploaded to the web application for image processing to
begin.

B. Web Application
Transferring scans taken on the mobile device requires a

secure, dedicated medium. A web application provides a 
customizable platform for future design iteration, and supports 
proper image encryption procedures and a simplified user 
experience. Built using the Flask framework in Python on an 
HTML base, the app is accessed from the user’s device in 
Rwanda. To support data anonymization, users input patient 
medical record numbers (MRNs) into a provided app-
independent Microsoft Excel sheet saved locally to generate 
randomized identification numbers (RIN). Patient RINs enable 
data to be routed through the appropriate following technical 
processes without compromising the rights of the patient. The 
user logs on to the app using system-approved identification 
and has the ability to upload an image file from their local 
device or transmit further commentary on a specific patient. 
Both actions require entering the corresponding RIN before 
information can be sent. All data is encrypted using an AES 
cipher, then sent via email to a designated UVA address. 
Transmitted emails include patient RIN, inputted data (file or 
commentary) from the user, and timestamp. Discussed further 
in sub-section G, received emails at UVA are automatically 
extracted on timed intervals from the inbox for processing. 
C. Image Cropping

Fig. 3. Intraoperative Record Flowsheet Sections 
The flowsheet contains various types of information, 

including handwritten text fields, graphs, and checkboxes. In 
order to digitize the flowsheet data, it is necessary to determine 
where individual data pieces are located on the flowsheet so that 
each data piece can be processed separately using the 
appropriate method for that type of data. 

To process individual pieces of data, the image cropping 
algorithm segments the original flowsheet into separate images. 
The program first determines which side of the flowsheet 
(Intraoperative Record vs. Anesthesia Record) is being 
processed via a simple black pixel ratio check of the top left 
corner of the flowsheet. The program then aligns the patient 
image to a standard image of either the blank Intraoperative 
Record or Anesthesia Record flowsheet. It determines feature 
points in the two images and matches features in one image to 
features in the other [23]. Then, the program aligns the patient 
image to the standard image based on the strongest matching 
features detected. Next, the program uses Hough Lines to detect 
the outside border of the chart area on the flowsheets [1]. The 

Fig. 2. 3D image of SARA and parts labeled 
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program uses these edges as reference lines and determines the 
pixel locations of the different flowsheet sections, denoted by 
the colored lines in Figure 3. 
The program locates the specific data pieces within these 
sections by their location on the standard flowsheets relative to 
these reference lines. The patient flowsheet image is then 
cropped into individual images at the pixel values of each data 
piece so that the appropriate image processing technique can 
process each image separately. 
D. Checkbox Detection 

On the Intraoperative Record, checkboxes are used to 
indicate procedure details, monitoring details and patient 
position during the surgery. The checkbox detection algorithm 
isolates the checkbox from its associated text using template 
matching with a set of 6 different templates [10]. In some cases, 
checkboxes were detected in samples even if the box was 
partially cropped. Checkboxes were also incorrectly detected in 
the text associated with the box. In order to eliminate these 
errors, the thresholds for matching templates to samples were 
adjusted to reject samples with partial checkboxes and to 
accommodate for samples where the full checkbox could not 
successfully be isolated. If a checkbox cannot be effectively 
isolated from the provided image even with adaptive 
thresholding, the checkbox is flagged for further review.  

Successfully isolated checkboxes are converted into a 
matrix of pixels, where each element is a grayscale value 
between 0 and 255. If 34% of the pixels are above a blackness 
threshold of 115, the box is deemed as checked. The blackness 
threshold and associated proportion of pixels above the 
threshold were chosen using a grid search method.  
E. Graph Reading 

The graph on the intraoperative side of the flowsheet 
consists of symbols that represent measurements of heart rate, 
diastolic blood pressure, and systolic blood pressure taken at 
five-minute intervals. Handwritings can vary from person to 
person. The large variation in how different individuals draw 
the same symbol limits the effectiveness of image processing 
techniques such as template matching or shape recognition. 
Template matching is sensitive to rotation and scale changes 
[16], while it is difficult for shape recognition techniques to 
deal with overlapping objects [18]. Template matching is not 
an ideal approach because it is difficult to manually select 
templates that represent or generalize the infinite ways a 
symbol can be hand-drawn by different people. In the past few 
years, deep Convolutional Neural Networks (CNNs) have 
outperformed the state-of-the-art in many visual recognition 
tasks [15]. Graph reading is accomplished with a U-Net model 
architecture which is a CNN adaptation that was originally 
designed for biomedical image segmentation [17]. The U-Net 
model is trained with truth data to detect the location of each 
symbol on the graph. The truth data was obtained by manually 
annotating the symbol locations in a set of example graph 
images. In Figure 4, the top image shows the scanned patient 
graph which includes the symbols that were originally recorded 
by hand. The bottom image shows the predicted masks of the 
three symbols. 

The predicted masks are post-processed into numerical time 
series data since the locations of symbols in the image are 
directly related to the values on the graph. The heart rate 
symbols are very small, so the location is obtained by finding 
the centroid of all interconnected objects in the heart rate mask. 
The centroid locations are then aligned with the 5-minute time 
series interval. The blood pressure symbols are larger objects, 
so values are obtained by iterating through the image at each 
time step. The collected measurements for heart rate and blood 
pressures are converted to the proper scale from the graph and 
then stored in the database.   

Fig. 4. Original Handwritten Graph and an Overlay of the Predicted Masks 

F. Text Interpretation 
Within the Intraoperative Record, a set of intravenously 

administered drugs and medications are listed in handwritten 
text providing information regarding the specific medication 
administered, the dosage of the medication, and the 
corresponding time series data regarding the surgery being 
conducted. Despite the accuracy that others have observed from 
using open-source software to recognize handwriting, we could 
not observe the same results due to the varied standardization 
of the flowsheet images and the characteristically rushed 
handwriting of doctors within them. Therefore, we built out an 
ensemble convolutional network from 3 different convolutional 
neural networks. When identifying and classifying the 
medications names, segmented images from the flowsheet 
containing the handwritten text are read into a set of three 
convolutional neural network (CNN) architectures (VGG-19 
[8], ResNet50 [9], and SimpleHTR [5]), which jointly form an 
ensemble convolutional network that accounts for various edge 
cases within the handwritten text, thus increasing the threshold 
of accurately identified medications. 

This Keras enabled ensemble addresses the variability 
within each handwriting style and precise location of each 
administered drug within the flowsheet in an attempt to 
minimize the rejection set of medications that cannot be 
identified [21]. As a subset of medication and drug 
classification, dosages for each medication were identified 
employing a digitization method modeled after the MNIST 
digit classification also utilizing a constructed convolutional 
neural network [6]. Time series markings were then identified 
on the corresponding graphical portion of the flowsheet using 
CNN model architecture. The outlined methodology shows the 
ability to digitize and provide information regarding specific 
drugs and fluids administered intravenously during surgeries. 
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G. Integration

Each image processing function is integrated into the
cropping program. When the original flowsheet is segmented 
into separate images, the appropriate image processing function 
is called on its respective section of the flowsheet and returns 
the information contained within it. The diagram in Figure 5 
demonstrates how the whole system works together.  

First, the program extracts a flowsheet from a folder 
containing all of the unprocessed flowsheets. Then, each 
flowsheet is segmented into individual data pieces. Depending 
on the information contained, each data piece is processed 
through the checkbox detection program, the graph reading 
algorithm, or the text interpretation program. Each of these 
programs extracts data from the data piece, and uploads this 
data to the appropriate table in the database. Additional testing 
and validation are needed before this system can be 
implemented in Rwanda. 

Fig. 5. Integration Diagram 

IV. RESULTS AND DISCUSSION

Text identification processes utilized 276 images of 
handwritten text of medication names and yielded a testing 
accuracy of 90.21%. The ensemble convolutional network 
rejected 41 images, 14.9% of the sample, due to varied 
unreadability and low thresholds of accuracy in classification. 
Most rejections within the set were due to variance in the 
handwriting style of the medication images. The ensemble, 
which utilized the VGG-19 architecture, ResNet50 
architecture, and flagged reviews within the SimpleHTR CNN, 
decreased the number of tested cases classified in the rejection 
set that were previously rejected by the individual CNN models 
during evaluation. 

Given a testing set of 838 samples, the checkbox detection 
algorithm yielded an accuracy of 82.2%, while rejecting 9.9% 
of samples due to unreadability. 17.8% of checkbox samples 
were incorrectly classified. Among the incorrectly classified 
checkboxes, false negatives occurred when the proportion of 
pixels above the blackness threshold was under 34% for 
checked boxes. Similarly, false positives occurred when the 
proportion of pixels above the blackness threshold was over 
34% for unchecked boxes. This problem was addressed by 
flagging the checkboxes with thresholds of 34% ± 5% for 

review in the database, allowing doctors to manually review 
such boxes. Similarly, checkboxes in the rejection set were also 
flagged for review by doctors, who can manually verify if the 
boxes are checked. Ultimately, the accuracy yielded by the 
checkbox detection program indicates that it is able to classify 
a large majority of readable checkboxes properly. While the 
output still requires oversight from doctors, the algorithm is 
functional in a research environment. Future work can explore 
implementing a neural network to classify checked and 
unchecked checkboxes at a higher accuracy. 

The image segmentation model was trained with 23 images, 
a validation set of 4 images, and a test set of 2 images. Graph 
reading was then evaluated with 31 images. A miss is recorded 
when one of the following two criteria is met: 1) there is no 
symbol on the original scanned image, but the algorithm 
predicted that there is a symbol at the specific time; 2) there is 
a symbol on the original scanned image, but the algorithm did 
not predict that there is a symbol at the specific time. Using the 
symbols detected, the performance of the algorithm is evaluated 
with the mean squared error (MSE). MSE measures the average 
of the squares of errors, where errors are the difference between 
the actual measurement on the graph and the measurement 
predicted by the algorithm. A smaller MSE indicates that the 
algorithm has better performance. The U-Net model graph 
reading results are summarized in Table 1, with the results from 
a template matching technique [20] in parentheses. The U-Net 
approach has a lower missing rate for all three symbols 
compared to the template matching technique. For the points 
that were not missed, the accuracy of the U-Net approach is 
much higher than that of template matching for heart rate, and 
comparable for diastolic blood pressure and systolic blood 
pressure, as evidenced by the MSE values in Table 1. Deep 
learning performs better than image processing, because it 
utilizes over one million parameters to generalize the features 
of each symbol. A human can only provide a limited number of 
template alternatives for template matching. Additional training 
data and further improvements to the time series post-
processing can decrease the missing rate and MSE for all 
symbols. Precision of the measurements are limited by the 
equipment in the hospital and the manual recordings of doctors. 
Thus, the results given by the graph reading algorithm are 
sufficient for preliminary digitization of heart rate and blood 
pressure measurements. 

V. CONCLUSIONS AND FUTURE WORK
In this study, we were able to achieve our objective of 

digitizing perioperative flowsheets from University Teaching 

Table 1.  Summarized results from graph reading algorithm as compared with a 
template-matching algorithm indicated in parenthesis 
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Hospital in Kigali, Rwanda. We used SARA to capture images 
of flowsheets without light obstruction and uploaded the images 
to a web application to be encrypted and delivered to UVA. The 
processing software at UVA identified and cropped the various 
parts of the flowsheet, as needed for the individual image 
processing functions. The medication detection algorithm 
recognized administered medications at a 90.21% accuracy, 
while the checkbox detection program recognized checked and 
unchecked boxes with an accuracy of 82.2%.  

Similarly, the graph reading algorithm recognized the 
symbols with a MSE of 3.28, 24.41, and 18.48 for heart rate, 
systolic blood pressure, and diastolic blood pressure 
respectively. The output of the various functions was written 
directly to a PostgreSQL database for future research use. The 
results of our study indicate that the system can be fully utilized 
for research purposes. Additional testing should be done before 
implementation in Rwanda to further validate the accuracy of 
the digitization. This system will then allow doctors in Rwanda 
to maintain their current workflow by providing a simple 
method for scanning and uploading flowsheets to be processed. 

Future work can explore implementing this system in other 
hospitals in LMICs that use different flowsheets than the 
University Teaching Hospital of Kigali. We would like to 
explore building a more robust scanning system with durable 
material rather than plywood. By modifying the web 
application to be a mobile application, these processes can also 
be deployed locally in Rwanda. The applications and programs 
used in these processes could be improved to increase the 
accuracy and efficiency of phase two of the system design. 
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