
1



Voice Privacy: Analyzing Trends and Patterns in
Amazon Alexa Voice History

Matthew Hancock, Gabriel Simmons, Tu Le, Danny Huang, Yuan Tian
University of Virginia

{mgh3x, gjs3qd, tnl6wk, yt2e}@virginia.edu

Abstract—Virtual personal assistants (VPAs) offer incredible
technological advancements that can aid less technologically-
inclined individuals. However, they are rife with privacy concerns,
not least of which includes VPAs being woken unintentionally and
recording the user and potentially collecting personal data about
them. This data could potentially be stolen through malicious,
black-hat attacks, or simply sold off by the VPA service providers
themselves to the highest bidder. Therefore, it is crucial that
users are aware of these and other similar potential privacy
risks presented by VPAs. This project was intended to raise
user awareness of such issues by presenting them with a fast,
easy-to-use browser extension which scrapes their entire voice
history and audio recordings and can download it directly
to the user’s computer, something which is otherwise quite
challenging for the average user. By doing this, users seeing the
large amount of data, including potentially large amounts of
unintended audio recordings, will have an increased awareness
of the risks associated with VPAs. After a large development
period, a working browser extension was created which fulfilled
these goals in a timely and minimally CPU-intensive fashion.

Index Terms—VPA, IoT, JavaScript, Amazon, Alexa, Browser
Extension

I. INTRODUCTION

The integration of Internet of Things (IoT) virtual personal
assistants (VPAs), which “listen” to users’ voiced commands
and can execute various audio operations, presents many new
and exciting opportunities to improve the lives of countless
people [14]. VPAs can significantly increase searching effi-
ciency, quality of decision making, and boost the e-commerce
economy by simplifying the purchasing process [3]. Moreover,
VPAs lower the bar of required technological skills to operate
– one needs only to give a command to control it, after all
[3]. This has exciting implications for elderly and cognitively
impaired individuals [15]. However, in the few short years
since the appearance of such devices, many public concerns
have arisen. There are economic concerns [1] [7], ethical and
legal concerns [4], and security threat concerns. In the latter
case specifically, there have been many demonstrations of
malicious skills (skills are applications or processes for VPAs)
bypassing a VPA’s security policies [2].

Despite all of these issues, many users are not aware how
easily their privacy can be compromised. Dubois et al. revealed
that even something as simple as a loud TV program can wake
VPAs, causing them to record your conversations without your
knowledge for up to 10 seconds [6]. Zhang et al. brought to
light two novel adversarial attacks in their 2018 paper which
require relatively little technical expertise to carry out [16]. If

attackers got a hold of these unwanted and private recordings
of users giving away personal information like passwords, dev-
astating results could follow. However, it is not only malicious
attacks for which users must be aware – even the companies
running the VPA’s services themselves collect user information
with the intention of selling it to advertisers, including personal
data that users may have accidentally disclosed [12]. Often, the
user is not even aware that this is happening.

It is this lack of user recognition that drove this project,
which sought to increase users’ awareness. However, a more
accurate definition of “awareness” is needed. Endsley [8]
defines a theoretical model of user situational awareness
which can be applied to the privacy risks VPAs present [12].
It consists of three levels: perception, comprehension, and
projection. Level one, perception, is simply the understanding
of what certain components do or represent in a system [8].
For a user of VPAs, this might refer to a user’s observation that
every time they say “Alexa,” their VPA “listens” and responds
to their interaction accordingly. Level two, comprehension,
refers to a more general understanding of how different
elements, such as the use of a wake word, work together to
produce an outcome [8]. For example, a user might combine
their knowledge of the fact that when they say “Alexa,” the
VPA “listens” with the insight that VPAs use manipulable
voice recognition that will often “mishear” one word as
another. Putting these together allows one to come to the
conclusion that VPAs might “hear” information not intended
for it. Finally, in level three, projection, one applies their
comprehension of a system to predict future outcomes [8].
A user might anticipate that because VPA providers probably
want to maximize their profits, they might use personal data
collected through their service to maximize their profit, selling
it to the highest bidder. Worse, attackers could find this data
(which is especially possible given the large security holes
contained in VPAs [2]) and exploit it in an even worse way
than an advertiser. It is at this point that the user is fully aware
of the risks of using VPAs.

As such, this technical project sought to provide users a way
to track and interact with their personal data such that they
can visualize the pattern of VPA behavior, with the ultimate
goal of moving uninformed users from the perception level
to the projection level. To do this, it was determined that
a Google Chrome browser extension would be created to
help monitor user interactions with Amazon’s Alexa Voice
Assistant technology. The short-term goal of the extension

2



was to provide users with the capability to manage their voice
history such that they can quickly download it, and identify
unintended or unwanted data. Making users aware of these
data grants users the opportunity to delete interactions that they
otherwise would not known existed. This extension also offers
an indirect user benefit – they will gain knowledge of their own
usage patterns, how much Alexa “hears,” and potentially what
triggers unwanted interactions. In the longer term, users will
be more mindful of what they say around their VPA, which
will have the effect of protecting their personal data [10].

II. RELATED WORK

Huang et al. [9] developed and released the IoT Inspector,
a tool allowing users to monitor web-traffic from smart home
devices on their home networks. They found that many smart
home devices, including those made by Amazon and Google
and smart TVs from at least 10 vendors, send unencrypted
traffic using outdated TLS versions. Additionally, some of
this network traffic is sent to advertisers and tracking services,
and some of it is sent to Internet Services in countries with
potentially poor privacy advocates. The research team will
release the IoT Inspector data to the public to assist future
research.

Dubois et al. [6] studied how spoken words from television
could accidentally trigger smart speakers. They worked in a
controlled environment, using 134 hours of Netflix content
on the Google Home Mini, Apple Homepod, Harmon Kardon
Invoke by Microsoft, and several Amazon Echo Dots. They
found that the Invoke and Echo were set off the most with
0.40 activations per hour, followed by the Homepod with
0.38 activations per hour. Notably, The West Wing set off the
Google Home Mini 0.95 times per hour. Accidental triggers
were recorded for up to 10 seconds at a time. Schönherr
et al. [13] conducted a similar study, producing artificial
triggers with a pronouncing dictionary and a weighted, phone-
based Levenshtein distance, while also exploring gender and
language biases in accidental triggers. They will publish a
dataset with over 1000 accidental triggers to assist future
research.

Malkin et al. [11] collected opinions from smart speaker
users. They surveyed 116 owners of Amazon and Google
speakers based on randomly selected recordings of saved
interactions with their devices. They found that almost half
of the participants didn’t know their recordings were being
stored, and very few deleted any. Even if their own data wasn’t
particularly sensitive, they were unhappy with how often their
devices recorded children and guests and disliked Amazon and
Google’s policies on permanent data retention.

Cheng et al. [5] looked at Amazon’s system for vetting
third party skills. They managed to get 234 policy-violating
skills certified, finding that the skill certification process is not
proper or effective. They concluded that vulnerable skills exist
on Amazon’s skill store, putting users, especially children, at
risk when using voice assistant services.

Fig. 1. A general flow of the steps described within this section to scrape
user history data. We assume the user is already on the correct web page and
is logged in.

III. TECHNICAL APPROACH: EXTENSION DEVELOPMENT

To help raise user situational awareness of the potential
privacy issues of VPAs, these researchers decided to write a
Google Chrome Extension in order to demonstrate to users
just how much VPAs “hear” you speak, especially cases of
unintentional audio captures. For this project, it was decided
that the Amazon Alexa VPA (AAVPA) website would be
scraped due to these researchers’ familiarity with AAVPA
and the clean, easy to use Amazon website which sorts each
AAVPA interaction nicely into its own HTML element (Figure
2). This interaction data was scraped and condensed into a
JSON file and, if the user requested it, every audio file for
a given user could also be downloaded into a zip folder
(which also contained the afore mentioned JSON). This is
significant because while Amazon allows users to listen to
previous audio data, it did not allow them to download it,
restricting user interaction and perhaps downplaying the sheer
volume of information they have on that user. By visually
seeing the potentially large volume of (small) audio files and
all of the JSON data collected on them, the idea was that
previously uninformed or under-informed users would begin
to understand potential privacy issues and move closer towards
level three of Endsley’s [8] model.

Of course, on top of the stated goals of this research, the
extension was expected to be reasonably fast, and minimally
CPU-intensive. Data regarding the speed and CPU-intensity
was collected systematically to demonstrate these expecta-
tions.

A Google Chrome Extension was written mainly in the

3



Fig. 2. This is how each Amazon Alexa VPA interaction is represented on
Amazon’s “Review Voice History” web page when the drop down button in
the top right of the box is not clicked – this is a “closed” box.

JavaScript programming language with a bit of HTML for
formatting purposes. The main task for our code specifically
was to scrape pertinent data off of a user’s Amazon account. To
do this, the extension redirects the user to their “Review Voice
History” web page (RVHWP) on their Amazon account1,
where their entire history of voice commands can be found.

The app is composed of three main parts: the user interface
(UI), the file downloading module (FDM), and the data scraper
(DS). The UI is a very simple HTML pop-up which gives the
user the ability to begin running the application after they
accept the linked terms and conditions. By default, the terms
and conditions will not be accepted to prevent any unwanted
runs. See Figure 3 below.

Fig. 3. The user interface

The FDM is part of the code which loads and eventually
downloads all of the audio files to the user’s individual com-
puter. Utilizing the JSZip API2, each audio file link was added
into a file package, which was then zipped and downloaded
using Chrome’s Download API3. This part of the program will
not run until the end of the DS, whereupon the DS code will
indicate to the FDM that the audio and JSON files are ready
to be downloaded.

Finally, there remains the DS. This was by far the most
time consuming and CPU-intensive part of the extension.
This whole process is represented in the main-scrape.js file,
which alone contains 432 lines of code. The DS’s purpose
is to get the data from every interaction a user has had with
AAVPA, contained in the afore mentioned HTML elements.
(See Figure 2) As shown in Figure 4 below, each box contains

1“Review Voice History” web page link: https://www.amazon.com/alexa-
privacy/apd/rvh

2See JSZip’s API page for more info: https://stuk.github.io/jszip
3See Chrome Downloads’ API for more info: https://developer.chrome.com/

docs/extensions/reference/downloads

the user’s question or command in the bolder, black text (In
Figure 4: “what time is it”), Alexa’s response below that in
gray text (“It’s 7:00PM.”), the date and time (“April 6, 2021”
and “7:00 PM”, respectfully), and the device name and type
(“alexaskillbot0” and “Echo Dot”, respectfully). It is important
to note that boxes can necessarily contain more than one
interaction. An interaction is defined as a single user command
followed by a response by AAVPA. Thus, while Figure 4
shows a single-interaction box, boxes may contain multiple
interactions between the user and AAVPA. This significantly
complicated the development process, as will be shown later.

Fig. 4. This is how each Amazon Alexa VPA interaction is represented on
Amazon’s “Review Voice History” page when the drop down button in the
top right of the box is clicked – this is an “open” box.

Another important point regarding the development process
is the fact that, unlike many web pages, Amazon’s RVHWP
hides many HTML elements from view until the appropriate
part of the web page is clicked. Using the afore mentioned
boxes as an example, the Alexa response is impossible to
scrape from the web page without clicking on the drop-down
arrow in the top-right of the box. Once clicked, the Alexa
response is displayed, and naturally becomes visible in the
HTML, as well. However, the fact that is is not visible without
clicking the box presented a problem which was later solved
by clicking all of the boxes open in a loop. Similar solutions
were employed in other similar instances.

With that out of the way, there were six major components
of the DS, which will now be discussed in depth.

1) Viewing All History: By default, Amazon’s RVHWP
only displays a user’s interactions with Alexa from the last
24 hours. However, the extension must scrape the entire user
history. The process to access the entire history was relatively
simple – it requires three clicks in the “Displaying” menu
(Figure 5). Note that from here on, when it is said that clicks
were needed by the extension to operate, this implies use of
the JavaScript click function.

2) Loading All Cards: Once all history has been selected,
Amazon does not automatically load all of the user’s history.
It will begin by only displaying the most recent 20 boxes.
As the user scrolled down to the bottom of the page, the
next 20 cards would load, and this process would continue
until the entire history was displayed. Therefore, before the

4



Fig. 5. The process for retrieving all user interactions from their entire history.

DS could commence, all cards had to be loaded. To do this,
it was found that scrolling to the bottom of the page was
unnecessary; clicking underneath the final displayed box on
the page was enough to load the next 20 cards. Therefore, in
a loop, the bottom of the page was clicked until all cards were
loaded.

However, complicating the matter is that clicking an element
at the bottom of the page continuously would take up a lot
of CPU usage. Therefore, it made more sense to wait for the
next 20 box elements to appear before clicking again. The
code would check every 500 ms if they had appeared. If they
had, another click was executed; if not, the program waited
another 500 ms for the next check.

3) Open all cards/Scrape Data: This reasoning behind this
part of the program has already been discussed. To recap,
essentially the “closed” cards do not provide all interaction
data, and the rest of the data is not visible in the page’s HTML
until the box is “opened” by clicking on the drop-down button
in the top-right of the box. Therefore, in order to release this
needed information, the cards were opened one-by-one in a
loop until all were open. This is the most time-consuming
portion of the code, as will be seen in the timing analysis
in the results section. This is mostly for the same reason as
the one presented in the previous step – waiting for elements.
Since the interactions and audio links have to be collected in
order, the next card cannot be opened until the previous one
had been scraped; otherwise out-of-order data was risked.

Once a given card is open, before moving on to the next card
the current card’s data is scraped and stored in a JavaScript
(JS) object array. When the scraping is complete, this array
of JS objects will comprise the final JSON file. Hearkening
back to the earlier conversation regarding the fact that boxes
can contain more than one interaction, it is important to note

that each JS object represents one interaction, not one box.
Therefore, within each box scrape, the interactions are looped
through. This operation is somewhat complicated by the fact
that it is possible for multiple Alexa responses to appear back-
to-back, both seeking to answer the user command. Therefore,
it was determined that any consecutive Alexa responses would
be combined into one string and treated as one response. There
were other similar odd cases like this that had to be handled,
but success was eventually achieved in correctly splitting the
box into individual interactions.

4) Listen to XMLHttpRequests (XHRs) for audio links:
One of the main stated goals for the project was the ability
to download one’s own audio files from Amazon’s servers.
However, Amazon seemingly purposely hid these files and
did not place them directly on the RVHWP. Instead, they put a
blue “play” button to the left of each recorded user audio. This
play button sends a XHR request to Amazon’s servers which
returns the audio of the file. However, unfortunately, these
links had certain hashed values which made link recreation
from the page-present data impossible. Thus, the only way to
get these audio links was to actually intercept the appropriate
XHR requests and wait for a response from Amazon’s servers
with the correct audio link.

Thankfully, after a few days of research, a way was
found to intercept this data. These researchers found that
that an XHR response was received every time a box was
opened which contained the audio file code that, when
appended to the base URL https://www.amazon.com/alexa-
privacy/apd/rvh/audio?uid=, returned the intended audio file.
Therefore, no additional clicking was necessary since the cards
already had to be opened one-by-one anyway. To actually
perform the XHR interception, an XHR override script was
written; this script was directly injected into the web page,
allowing it access to the XHR response data sent by Amazon.
Of course, other various XHRs were happening besides the
targeted audio ones. In order to filter those out, a simple if
statement checking the URL of the request was used. Finally,
once the Amazon response was received, two fields were
returned in JSON format – the audio code to be appended
to the end of the above URL, and a binary field indicating
whether the audio was playable or not. The latter field is sig-
nificant because for an unknown reason, not all captured audio
recordings from users are playable, which is odd considering
that all “non-playable” audio have associated audio links. This
field was checked in the program to ensure empty or non-
existent files were not attempted to be downloaded.

As implied last paragraph, this whole process happens
concurrently with the data scraping portion of the code. To
keep the audio links in order such that they can each be
associated with the correct interaction, each audio response
was waited for in a similar fashion as the “load all history”
section describes. Once the response was received and the
hidden page element was created (see the following section),
the okay was given to advance to the next box.

There is but one downside of the otherwise elegant solution
of directly injecting an XHR listener into the RVHWP; it could

5



not directly pass the response data into the DS content script
code. A creative solution was required in order to pass this
data over to the DS content script, as a result.

5) Create hidden HTML elements to scrape link data:
Because the DS content script did not have access by default
to the XHR responses, the intercepted audio links were stored
in hidden elements at the bottom of the web page, where the
content script could later collect them and associate them with
the correct interaction. This was usually a very simple process;
however, there were odd cases to consider, mainly boxes that
had more than one interaction. XHR responses for boxes
containing more than one audio file were complicated in that
rather then sending multiple XHRs for each different audio
file, only one request and response were sent. The response
contained all audio links in the box, separated by commas and
brackets. This issue was resolved with a for loop that iterated
through all user commands in a box with a corresponding
audio link and associated the correct one using two different
counters. To scrape each individual audio link from the hidden
element, some basic string manipulation was performed to split
the string into an array of audio link elements.

Note that while the audio links were stored in the boxes
and each box checked for this link, the audio file was not yet
downloaded. That happens in the FDM at the very end of the
DS process.

6) Send message to save files: Finally, after iterating
through all boxes on the RVHWP, the content script which runs
the DS code sends a message to the background file telling it to
fire the FDM and download the JS objects passed in by the DS
as a JSON file as well as all the audio links which were stored
in that same JS object. For user clarity, each audio file was
named using its date and time, as well as the first 20 characters
of the user’s command. (The file name would never terminate
in the middle of a word – it was possible to include past the
first 20 characters if the last word took it beyond that point.)
After the file was downloaded, the program terminated.

IV. TESTING

Tests were performed on our extension’s code in order to
check how runtime and resource management were affected
by machine specifications and different aspects of individual
accounts, most notably the overall number of audio interac-
tions.

TABLE I
TECHNICAL SPECIFICATIONS FOR MACHINES 1 AND 2

Testing was performed on two different machines. Machine
1 ran macOS 11.2.3 on a quad-core Intel Core i5 and Machine
2 ran Windows 10 on a dual-core Intel Core i5 (Table I).

Three different Amazon accounts were used for testing.
Machine 1 performed tests on accounts 1, 2, and 3. Machine 2

TABLE II
DETAILS REGARDING NUMBER OF AUDIO INTERACTION AND FILE SIZES
FOR EACH ACCOUNT. INTENTIONAL AUDIO FILES ARE ONES THAT ARE
NOT LABELLED AS ”AUDIO COULD NOT BE UNDERSTOOD” OR ”AUDIO

NOT INTENDED FOR ALEXA”

performed tests on accounts 2 and 3. Account 1 had 55 Alexa
interactions, account 2 had 81, and account 3 had 24 (Table
II).

Account 1 and 2 had similar average sizes and standard
deviations for audio files. Account 3’s audio files were slightly
smaller in size, and the standard deviation was smaller. Vari-
ations in mean and standard deviations for file sizes were
affected more by how the user spoke to Alexa than any other
factor. Account 3 had shorter interactions while accounts 1
and 2 had similar length audio interactions. Almost all unin-
tentional recordings (“Audio not intended for Alexa” or “Audio
not understood”) had a file size of 29 Megabytes, making
them easy to spot. Removing unintentional audio recordings
brought the average audio file size up by 10 Megabytes on
accounts 1 and 2 and lowered the standard deviation slightly.
There was no significant change for account 3 when removing
unintentional recordings.

Machines 1 and 2 both saw an average CPU usage of 9% for
the duration of the extension’s runtime. CPU usage was highest
when loading all history on the voice history webpage,ranging
from 14-20%. It was lowest while loading cards, ranging from
2-5%. When opening cards, CPU usage ranged from 8-12%.
Machine 1 did not see any variation in memory usage while
running the extension. Machine 2’s memory usage would
generally be 20-80 Megabytes more than idle when running
the extension. CPU and memory usage were not affected by
the number of audio interactions on an account.

TABLE III
MEAN AND STANDARD DEVIATION FOR OVERALL RUNTIME FOR ALL

ACCOUNTS ON BOTH MACHINES

6



As the number of audio interactions increased, mean run-
time and standard deviation increased (Table III). Account 2,
which had the most audio interactions, had the longest overall
runtimes on average. Account 3, which had the least interac-
tions, had the shortest overall runtimes. Account 1’s number
of audio interactions was nearly right between accounts 2 and
3, but its average overall runtimes were only a bit shorter
than account 2’s. Machine 2 generally had longer runtimes
and longer standard deviations, which was likely due to the
difference in machine specs. A single outlier on machine 1’s
trials with account 3 did change the standard deviation and put
it above account 2’s. A breakdown of runtimes for all steps
of the extension may be found in the appendix.

The extension was found to prioritize CPU usage. Machine
1 had a slightly more powerful CPU than machine 2, resulting
in slightly faster runtimes. Machine 1’s more powerful CPU
may have also accounted for the lower memory usage. The
most important factor was the number of boxes. More audio
boxes would increase the runtime of all steps of the extension.
Users are recommended to delete audio interactions as they are
downloaded to increase performance of the extension.

V. DISCUSSION

Currently, Amazon does not seem to have any plans to make
managing voice history simpler, and voice data continues to
be stored on their servers indefinitely. For users who wish
to see their personal data but keep it away from Amazon,
the extension’s relatively quick runtimes will prove to be
beneficial. Similar names and filesizes for unintentional audio
interactions allow users to quickly see how much Alexa
recorded that it shouldn’t have.

Several challenges were encountered in the creation of the
extension. The research team initially tried to use selenium,
a coding library used for interacting with web browsers, to
scrape the DOM data. It was found that selenium was not
needed, for scraping the DOM data could be done entirely
with internal JavaScript functions. Once the necessary methods
and elements of Amazon’s voice history page were found to
scrape the DOM data, the next challenge was working around
the way the webpage worked. Elements would not appear as
soon as Amazon’s webpage was loaded, they would instead
appear after a short time as the webpage got set up. The
extension would not run if the elements were not present.
Additionally, if the user wanted to scrape all audio data,
they would have to repeatedly need to scroll to the bottom
of the webpage to load all audio interactions. To solve the
first challenge with the webpage, the extension was instructed
to wait a few milliseconds before beginning to scrape data,
allowing all elements to load in. The research team found that
although there was no way for users to click any button to
load more audio interactions, there was a clickable element
in the webpage’s HTML allowing the extension to load more
interactions. This step was added to the scraping process.

Some edge cases in audio interactions would cause prob-
lems with the downloaded JSON file. These edge cases in-
cluded multiple audio interactions in one card, interactions

where the user did not speak, and cards where several inter-
actions had the user saying the exact same thing (i.e. ”no”
several times). The first edge case would cause an error in the
extension and halt the scraping process. It was resolved by
appending all Alexa responses to each other before moving
onto another card. The second edge case would result in no
transcript of the interaction being downloaded. The research
team added a conditional statement to the extension’s code
which would proceed with scraping a transcript if it encoun-
tered an empty user response. The final edge case was resolved
by allowing JSON data and audio recordings to have the same
name, so multiple recordings of the user saying the thing were
saved.

The final challenge the research team encountered was a
bug which would associate audio files with the wrong audio
interaction. It appeared to be a result of the issue with mul-
tiple audio interactions in one card, causing the associations
between audio files and interactions to be off by one. It was
resolved with the fix for multiple audio interactions.

Future improvements to the extension include UI enhance-
ments and runtime improvements. The UI is currently a bit
barren and lacks feedback, so a progress bar to report which
step the extension is in is in the works. Runtime improve-
ments in progress involve scraping audio cards as they appear
rather than loading every card before scraping. This runtime
improvement comes with the benefit of allowing the user to
specify an audio card to stop scraping at, negating the need to
scrape all audio interactions with each use of the extension.

Future research teams will expand on the chrome extension
by sending users’ downloaded voice data to a server (with
user consent) for further analysis. Voice data will be deleted
when it is not needed anymore. The extension will be released
on the chrome web store for download by the public. Using
data from extension users, the research team will investigate
the voice data to find how individual users may accidentally
trigger voice interactions and how they can be prevented. The
findings will be published so Amazon may see how to better
protect its users’ data. Additionally, there is potential for this
work to be extended to other VPA platforms, such as Google
Assistant and Microsoft Cortana, as both of those VPAs also
have similar voice history interfaces as Amazon Alexa.

VI. CONCLUSION

In this work, we went over the creation of a tool for
downloading voice history from Amazon Alexa. Using a
Google Chrome extension, we were able to download audio
recordings and JSON files containing transcripts and other data
for each user interaction with Alexa. We tested functionality
of the extension to look for ways it can be improved in the
future. The delay between entering the voice history page on
Amazon and data being loaded proved to be challenging to
this project, which may vary functionality of the extension
for each user. By having access to their personal data without
needing to keep it on Amazon’s servers and being able to
quickly see all unintentional recordings, many users of the
extension will be brought from Endsley’s [8] level one of user

7



Fig. 6. Overall run times for all accounts on both machines

situational awareness to at least a level two. Future research
on this project will further advance user awareness. Amazon’s
data retention policies may be forced to change in the future
as users become more aware and protective of their privacy.

REFERENCES

[1] A. Acquisti, C. Taylor, and L. Wagman, “The economics
of privacy,” Journal of Economic Literature, vol. 54,
no. 2, pp. 442–492, June 2016. [Online]. Available:
https://www.aeaweb.org/articles?id=10.1257/jel.54.2.442

[2] F. Bräunlein and L. Frerichs, “Smart spies: Alexa and google home
expose users to vishing and eavesdropping,” Security Research Labs,
December 2019. [Online]. Available: https://srlabs.de/bites/smart-spies

[3] O. Budzinski, V. Noskova, and X. Zhang, “The brave new world of
digital personal assistants: Benefits and challenges from an economic
perspective,” NETNOMICS: Economic Research and Electronic Net-
working, vol. 20, no. 2, pp. 177–194, 2019.

[4] A. J. Campbell and L. Barrett, “In the matter of request for
investigation of amazon, inc.’s echo dot kids edition for violating
the children’s online privacy protection act,” Letter to Federal Trade
Commission, Counsel for Campaign for a Commercial Free Childhood
& Center for Digital Democracy, May 2019. [Online]. Available:
https://www.echokidsprivacy.com

[5] L. Cheng, C. Wilson, S. Liao, J. Young, D. Dong, and H. Hu,
“Dangerous skills got certified: Measuring the trustworthiness of skill
certification in voice personal assistant platforms,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1699–1716. [Online]. Available:
https://doi.org/10.1145/3372297.3423339

[6] D. J. Dubois, R. Kolcun, A. M. Mandalari, M. T. Paracha,
D. Choffnes, and H. Haddadi, “When speakers are all ears:
Characterizing misactivations of iot smart speakers,” Proceedings on

Privacy Enhancing Technologies, vol. 2020, no. 4, 2020. [Online].
Available: https://par.nsf.gov/biblio/10192512

[7] S.-A. Elvy, “Paying for privacy and the personal data economy,” Colum.
L. Rev., vol. 117, no. 6, pp. 1369–1460, October 2017.

[8] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human factors, vol. 37, no. 1, pp. 32–64, 1995.

[9] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster,
“Iot inspector: Crowdsourcing labeled network traffic from smart
home devices at scale,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 4, no. 2, Jun. 2020. [Online]. Available:
https://doi.org/10.1145/3397333

[10] E. Kritzinger and S. H. von Solms, “Cyber security for home users: A
new way of protection through awareness enforcement,” Computers &
Security, vol. 29, no. 8, pp. 840–847, 2010.

[11] N. Malkin, J. Deatrick, A. Tong, P. Wijesekera, S. Egelman, and
D. Wagner, “Privacy attitudes of smart speaker users,” Proceedings on
Privacy Enhancing Technologies, vol. 2019, no. 4, 2019.

[12] A. McCarthy, B. R. Gaster, and P. Legg, “Shouting through letterboxes:
A study on attack susceptibility of voice assistants,” in 2020 Interna-
tional Conference on Cyber Security and Protection of Digital Services
(Cyber Security). IEEE, 2020, pp. 1–8.

[13] L. Schönherr, M. Golla, T. Eisenhofer, J. Wiele, D. Kolossa, and T. Holz,
“Unacceptable, where is my privacy? exploring accidental triggers of
smart speakers,” 2020.

[14] N. Turner-Lee, “Can emerging technologies buffer the cost of in-home
care in rural america?” Generations, vol. 43, no. 2, pp. 88–93, 2019.

[15] R. Yaghoubzadeh, M. Kramer, K. Pitsch, and S. Kopp, “Virtual agents
as daily assistants for elderly or cognitively impaired people,” in
International workshop on intelligent virtual agents. Springer, 2013,
pp. 79–91.

[16] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Understand-
ing and mitigating the security risks of voice-controlled third-party skills
on amazon alexa and google home,” arXiv preprint arXiv:1805.01525,
2018.

8



VII. APPENDIX

TABLE IV
THESE ARE THE RAW RUN TIMES FOR ALL TEN TRIALS FOR ACCOUNTS 1, 2, AND 3 PERFORMED ON MACHINE 1.

9



TABLE V
RUNTIMES FOR ALL STEPS ON ALL ACCOUNTS TESTED ON MACHINE 2

*NOTE THAT ACCOUNT 1 WAS A PERSONAL ACCOUNT MAINTAINED BY THE OPERATOR OF MACHINE 1. MACHINE 2’S OPERATOR WAS NOT ALLOWED
ACCESS IT FOR SECURITY REASONS, AND THUS SKIPPED ACCOUNT 1 IN TESTING.

10


