
Program Analysis of Educational Hardware-Description Language

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

James Leo Yuan Huang

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

1

Program Analysis of Educational Hardware-Description Language

CS4991 Capstone Report, 2022
James Huang

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

jh7qbe@virginia.edu

Abstract
Traditional program-testing methods can
reveal a program's incorrectness but not its
correctness. I developed a program-analysis
tool to analyze the correctness of student
programs written in HCLRS, an educational
hardware-description language. Though the
tool produced useful output for some
assignments, suggesting its potential use in
an auto-grading system, it failed to produce
useful output for other assignments, and its
formal correctness was not investigated.
Future work on this tool should address
these issues.

1. Introduction
A common way to test a program's
correctness is to feed it some inputs and
make sure it produces the expected outputs.
The more 'test cases' a program can
demonstrate it correctly handles, the more
confident the tester can be that the program
is correct. One problem with this 'test case'
testing method is that the tester cannot be
sure that the program is correct until they
have exhaustively tested every possible
input, which is impractical for all but the
simplest programs. Another problem is that
programs do not usually provide much
information about why they failed a test case
when they do so, and so the programmer
must fix their incorrect program without
knowing much about exactly how it is
incorrect.

Test-case testing is often used by computer-
science courses to evaluate the correctness
of student submissions, but these testing
setups usually leave a lot to be desired.
Information like what part of the submission

was wrong and how it was wrong can only be
roughly inferred from even the most
meticulously designed test suites. In
addition, this “correct is not failing test cases”
approach may cause some students to
produce submissions that pass test cases
but are incorrect otherwise.

Given the downsides of test-case testing,
alternative testing methods are potentially
valuable. I developed a tool based on such
methods, designed to analyze the
correctness of student HCLRS-program
submissions across eight different
assignments. The previous HCLRS auto-
grading system used test-case testing and
so suffered from the aforementioned issues,
mainly that the system could not provide any
useful information beyond 'X test failed'. I
approached the problem with a very broad
'static program analysis' approach which
eventually narrowed to a more 'symbolic
execution' approach.

2. Review of Research
The tool I made takes inspiration from the
general idea of 'symbolic execution', the idea
of executing a program with abstract
'symbols' instead of concrete values to
collect information about the program. Other
than this, the tool is not very relevant among
current symbolic-execution research and is
more an application of the general concept to
the specific task of grading HCLRS
assignments. In particular, much research
seems to be on tracking program state
through lines of imperative code to verify that
certain program states can or cannot occur,
as explained in Baldoni, et. al. (2018) [1]; in
comparison, HCLRS code is relatively

2

declarative, and in terms of grading, an
explanation of how a program failed/
succeeded is much more interesting than
simply if it failed/succeeded—one of the
goals of this tool was to provide the feedback
that the preexisting test-case-testing auto-
grader could not.

3. Process Design
The tool was developed incrementally under
the guidance of an advisor over the span of
14 weeks. In weekly meetings, the advisor
and I came up with goals for the next week
based on the progress made in the previous
week. The project proceeded as follows:

3.1. Week 1
Roughly prototyped a basic analysis tool. At
this point I only knew I was going to make
some kind of 'program analysis' tool, and the
thought to base it on specifically 'symbolic
analysis' had not yet emerged. This week's
rough prototype was based on the idea of
checking whether two 'parts' of the processor
described by the given HCLRS program
were connected.

3.2. Week 2
Improved week 1's tool. Week 2's revision
notably began to introduce the concept of
'writing tests' that the tool could then evaluate
given an HCLRS program.

3.3. Week 3
Rewrote week 2's tool (written in TypeScript)
in Haskell. This rewrite helped me
understand what exactly I was trying to do. It
also introduced the symbolic-execution-
flavored concept of simplifying programs'
parse trees into intermediate representations
and determining their equivalence, an idea
that would last until the end of development.

3.4. Week 4
Designed and implemented a test-
specification language for the tool. Designing
and refining a language specifically for
writing tests would help to formalize what the
tool was exactly supposed to do, which I was
still unsure of.

3.5. Week 5
Dealt with correctness issues. The tool had,
until this week, classified submissions into
three main categories of correctness:
correct, incorrect, and impossible to
evaluate. Given an expression to simplify, a
submission was correct if what it produced
matched the expected simplified value in a
series of hard-coded rules accounting for a
number of equalities, e.g. x + y = y + x.

It was impossible to simplify if there was
some error in execution, and incorrect
otherwise. I soon realized that there were
cases where a program neither failed to
execute nor matched a hard-coded
correctness rule. For example, I had not
thought to program in a x - y = x + (-

y) rule, and so the tool would mark a

submission that had produced x + (-y)

instead of the expected x - y as incorrect.

My solution to this was to mark incorrectness
in the same way as correctness: by matching
specific, hard-coded rules. And if the tool
encountered something it had no rules for,
e.g. x - y = x + (-y), it would place it in

a new category of correctness termed
wrong-maybe.

3.6. Weeks 6-10
Test-writing, testing, and a few feature
adjustments. These weeks were a routine
cycle of writing tests to test submissions for
HCLRS assignments, making sure these
tests were working as expected by
comparing their results to the previous auto-
grading system, and adding/adjusting
features as necessary.

3.7. Week 11
Rewrote tool in Rust. I discovered a
performance issue in week 10 that I decided
to solve by rewriting the whole tool in a
different language, taking the opportunity to
revise and refine a few ideas along the way.

3.8. Weeks 12-14
Continued refinement. Nearing the end, I
became more concerned with polishing what
I already had rather than trying larger
changes. These weeks I mostly spent

3

wrapping up, documenting, and reflecting on
the work I had done, ready to leave my
problems to future work.

4. Results
The fruit of these 14 weeks was an HCLRS
auto-grading tool capable of analyzing four of
the eight assignments graded by the
previous auto-grading system. Compared to
the previous system, though, it offers more
detailed and relevant feedback and avoids
many double-jeopardy situations.

One extreme example I came across was a
submission that failed 113/116 of the
previous system's tests but only 3/167 of the
new tool's conditions. It turned out that the
submission had a small error in a basic
functionality that the previous system's tests
relied on heavily, placing it in double-
jeopardy and causing it to fail many tests. By
comparison, the new tool was able to test
functionalities relatively independent of each
other and so correctly identified that most of
the submission was correct.

The tool's nature of analyzing the structure of
a program more than its behavior on some
concrete values also lends itself to providing
more relevant feedback. The old system
could only show how the program behaved
incorrectly given some inputs; the new tool
can show how the structure of the program is
incorrect given some conditions, depicting
more clearly how the program was written
incorrectly in the first place.

5. Conclusion
The developed tool demonstrates that auto-
grading tools based on program-analysis
methods may be able to offer more insightful
feedback than those based on traditional
test-case testing. By evaluating and testing
against symbolic rather than concrete
values, the HCLRS auto-grading tool was
able to provide not only more-thorough
guarantees of program correctness but also
useful evaluations of incorrect programs that

could help programmers fix their issues.
Though narrow in scope, I hope this work
could inspire and stimulate future
developments in auto-grading and
educational programming-language tools.

6. Future Work
The tool only managed to grade four of the
eight assignments. It likely can grade
assignments five and seven without
substantial modification; the main challenge
would simply be to write the tests.
Assignments six and eight might have some
trickier bits that require more tool
functionality. Six and eight also suffer, in
particular, from a performance issue in which
“unknown” values are repeatedly simplified
unnecessarily.

The formal correctness of the tool is one of
its biggest weaknesses. Whether the
simplification and equivalence rules
programmed into the tool are mathematically
correct and will thus always produce correct
results is an important issue that I did not
address.

Finally, the tool was developed incrementally
and thus has many inelegant, clunky
features that exist simply to “get the job
done.” For example, to test the functionality
of arithmetic flags, I introduced a “register-
matching” feature to detect specifically a
zero-flag and sign-flag and wrote tests that
manually tested each combination of these
flags. A more elegant, ideal solution would
test these flags' behavior without relying on
their internal implementation. Developing
better abstractions to clean up these kinds of
features would greatly help the tool.

References
[1] Baldoni, R., Coppa, E., D’elia, D. C.,
Demetrescu, C., & Finocchi, I. (2018). A
Survey of Symbolic Execution Techniques.
ACM Comput. Surv., 51(3).
https://doi.org/10.1145/3182657

