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Abstract

The nature of the dense matter equation of state remains an open question, as physicists
from a variety of disciplines attempt to tackle this question from different perspectives,
especially via the study of neutron stars (NS). At the high densities associated with NS
cores, crystalline color-superconducting (CCS) phases of quark matter could possibly occur
from LOFF pairing of deconfined quarks [1]. The rigid behavior of this crystalline structure
causes the tidal deformation of neutron stars to be less than fluid stars, causing deviations
in the Love-C universal relations describing NS. Implementation of the rigidity of CCS phase
via density-dependent shear modulus into constant sound speed models developed by [2]
was conducted to investigate the deviation of these models from the universal relations.
Models that agreed strongly with observational constraints on NS masses and radii showed
upward of 10% fractional deviation from the best fit for the Love-C universal relation. This
indicates that better measurements of the tidal Love number and compactness could enable
the constraint of the parameters describing CCS equation of state, furthering our knowledge
of the behavior of matter at the highest densities in the universe.

Keywords: Love-C, universal relations, hybrid stars, quark matter

1 Introduction

Neutron stars (NS) demonstrate some of the universe’s extreme conditions under which the be-
havior of matter is not fully understood. The densities at the center of these astronomical objects
are thought to get up several times nuclear density (≈ 1014g/cm3), indicating that accurate and
applicable knowledge of the strong force will be necessary in order to describe the behavior of
matter in the centers of the neutron stars NSs . While the equations of state (EoS) that describe
the relationship between the density and pressure are thought to be fairly well-known near the
surfaces of NSs, there is a multitude of proposed equations of state to describe the NS interior. A
variety of methods have been developed to create these EoS, including perturbative QCD, mean
force field models, and phenomenological methods.

Equipped with an EoS, one can go on to solve the interior stellar structure of stars according
to the Tolman–Oppenheimer–Volkoff (TOV) equations which describe a spherically symmetric,
isotropic body in static equilibrium under a general relativistic framework, required due to the
strong gravitational fields and very compact nature of NSs, second only to black holes, given by
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where r is the radial coordinate of the star, m is the gravitational mass contained within r, P
is the pressure, ρ is the density, and G is Newton’s gravitational constant. In conjunction with
mass continuity, the interior structure is uniquely determined given a specific equation of state.

Given a variety of input central densities, calculations of important quantities of NS’s such
as radius and mass can be predicted, producing mass-radius plots that will be shown throughout
this paper. As we gradually discover more NSs, whether it is through pulsar timings, supernovae,
or NS binaries, more data is obtained that help constrain equations of state of stars NSs, and
the behavior of matter in general at these high-density regimes. The use of NSs and the various
observations we can make of them is essential, as these conditions are inaccessible to any terrestrial
laboratory.

With the rise of multi-messenger astronomy, the tools and measurements available to astronomy
and physics are constantly growing, enabling the study of problems from multiple perspectives.
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Multi-messenger astronomy is essential to the study of NS equations of state. Electromagnetic
measurements in the radio regime of pulsars in binary systems allow the measurement of the
mass of NSs, which have currently provided the maximum observed NS mass of 2.14+0.10

−0.09M⊙
[3]. X-ray observations by missions such as the Neutron Interior Composition Explorer (NICER)
aim to provide constraints on the radius of NSs by measuring the time-variability of soft X-ray
emission from hot spots on spinning NSs [4]. Lastly, the advent of gravitational wave observatories,
most notably the Laser Interferometer Gravitational-Wave Observatory (LIGO), has enabled the
measurement of NS properties by detecting the gravitational waves emitted during the merger of
binary NSs systems. The combination of these different observational techniques gives data with
which we can compare the theoretical predictions of NS structure by the equation of state.

The particular equation of state being considered in this study explores the feasibility of more
exotic matter that may be associated with the extremely high densities of NS cores. Near or above
nuclear saturation densities, the exact form or behavior of matter is unclear. Some predictions
suggest that deconfined quarks may exist in these density and temperature regimes, produc-
ing color-superconducting phases of matter in this region. Knowledge of color superconducting
phases indicates that it might occur in compact stars. The conditions for the transition to color-
superconducting matter should arise in the NS core a short time after their formation based on
transition temperature estimates/calculations [5]. One of these phases, named crystalline color-
superconducting (CCS) phase, consists of these deconfined quarks that form interaction pairs
similar to the BCS pairs, described more accurately by a process called LOFF pairing [1]. This
predicted phase is of particular interest with the rise of gravitational wave observatories, as the
solid-like structure makes the cores of these hybrid stars rigid, allowing them to resist deformation
of their shape under strong tidal forces from a binary companion more strongly, a measurable
quantity from the waveforms of gravitational wave-observatories.

NSs’ closely related companion, black holes, exhibit fascinating universality; the external grav-
itational field of stationary and isolated black holes depends solely on three parameters: its mass,
its spin, and its charge. These conclusions suggest that the contents that created these celestial
objects do not factor into the properties of the black hole, only the contributions of the composite
particles’ energy, charge, and angular momentum [6]. However, astrophysical black holes accrete
and interact with matter, and other massive objects such as stars, white dwarfs, and NSs have stel-
lar surfaces and complex compositions that we expect to have a direct effect on the gravitational
fields and properties of these objects. However, NSs have been shown to exhibit approximately
universal relations, or relationships between properties that are roughly insensitive to the internal
composition of the NS [6]. These approximate universal relations demonstrate a powerful result
of general relativity, and a powerful test for studying potential deviations from these universal
relations from model equations of state, where we can compare to the growing set of mass, radius,
and tidal deformability measurements in order to gather more information on the behavior of
matter in NSs. Before examining the deviation of NS models, the exact universal relations must
be understood in more detail.

2 I-Love-Q and Love-C

One of the most well-known universal relations of NSs is the I-Love-Q relation, which provides re-
lationships between the reduced moment-of-inertia Ī, the tidal Love number λ̄, and the quadrupole
momentQ̄ that is insensitive to a NS’s EoS, discovered by Yagi and Yunes (2013) [7]. These rela-
tions have been found to be approximately universal to around 1%, showing striking universality
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for physical systems. Figure 1 from Yagi and Yunes shows both the I-Love and the Q-Love relations
and the large degree of uniformity to the lines of best fit. The lower plot shows the fractional error
to the best fit for the models, with most EoS having lower than 1% fractional error [6]. However,
it is hard to obtain simultaneous measurements of the moment of inertia of a system and the tidal
Love number for the same system, making the process of taking observational constraints to test
these relations on physical NSs currently difficult.

Figure 1: This figure from Yagi and Yunes (2017) [6] shows the I-Love (dimensionless moment
of inertia- dimensionless tidal Love Number) and the Q-Love (quadrupole moment-dimensionless
tidal Love Number) universal relations. These quantities are plotted for calculations run using a
variety of EoSs as well as the fractional error of the EoSs compared to a line of best fit to these
EoSs. They show show insensitivity to the 1% level.

In a similar manner to I-Love-Q, universal relations between the tidal Love number, λ̄, and the
compactness parameter, C ≡ M/R. The compactness parameter is the dimensionless ratio of M,
the mass of the star, over R, the radius of the star in study. Generally, the higher compactness of
an object, the more important general relativistic effects are in a calculation. The Love-C universal
relation was first studied by Maselli et. al [8], where they found it to be universal to within ∼ 2%.
Studying this relationship with a wider and more modern assay of EoSs finds that the maximum
deviation for NS objects is 6.5%, and larger for quark star sequences [6]. Figure 2 from Yagi &
Yunes 2017 demonstrates the universality of the Love-C relation for many EoS, several based on
different principles of physics or calculation methods [6].

The Love-C relation is of particular interest to this study because it involves a property is
directly affected by the existence of a rigid/crystalline core. The introduction of rigidity to the
center of NSs will reduce the tidal deformation of the star in a binary pair, which causes the
tidal Love number in the Love-C to shift away from the universal fit. These shifts from the
universal relations line can be compared to the few systems with current measurements of Love
extracted from GW observatories and compactness obtained from the NICER observatory. Ideally,
with more runs of Advanced LIGO and other gravitational wave observatories, more values of tidal
deformation in conjunction with compactness can be obtained for use in constraining NS equations
of state.
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Figure 2: This figure from Yagi and Yunes (2017) [6] shows the Love-C (dimensionless tidal Love
Number-compactness) universal relation. These quantities are plotted for calculations run using
a variety of EoSs as well as the fractional error of the EoSs compared to a line of best fit to these
EoSs. They show show insensitivity to the 10% level

3 Relativistic Calculation of Tidal Deformability of Hy-

brid Stars

Once equipped with an EoS, the TOV equation can be solved numerically to yield the stellar
structure, giving properties such as mass, radius, and compactness, giving initial conditions such
as central density. The solid properties of the solid star are considered only at the perturbative
level, while the background solution is solved as a perfect fluid. Once this static/perfect fluid is
solved for the static case, the tidal deformation of the NS is considered perturbatively by using
the linearization of Einstein’s equations in conjunction with the conservation equation that is
associated with the matter field of the NS, represented by equations (2) & (3) . This section
follows the formulation by Lau et. al 2019, the author of the numerical code being used [9].

δGαβ = 8πδTαβ (2)

δ(∇αTαβ) = 0 (3)

The effects of NS elasticity comes into play when considering the shear portion T shear
αβ of the

full stress-energy tensor. In contrast, the bulk part T bulk
αβ takes the perfect fluid form, used to

acquire the background TOV solution. The shear portion of the stress-energy can be shown only
to contribute perturbatively and not to the overall TOV structure. The perturbation to the shear
portion of the stress-energy tensor follows a Hooke’s Law-like relationship with the shear modulus
µ and the shear strain tensor perturbation δΣαβ given by:
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δT shear
αβ = −2µδΣαβ (4)

Using a relationship that describes a differential equation for the shear stress tensor, a series
of differential equations in terms of solid perturbation variables (a set of variables that describes
the unknowns of the solid core perturbation calculation) can be obtained. Combined with a series
of algebraic relationships, the relationships form a complete set of equations. By choosing regular
solutions at the center of the NSs, and applying the appropriate boundary conditions at the stellar
surface and the interface between the two layers of the NS, these equations for the perturbation
method can be solved.

Equipped with the metric perturbation, the tidal Love number can be calculated. The metric
for a static, spherically symmetric stellar model under a static external tidal field in the far field
limit is first written by Thorne [10] is given by:

−1 + gtt
2

= −M

r
− 3

Qij

2r3
(
xixj

r2
− 1

3
δij) +

1

2
Eijxixj (5)

where Qij is the quadrupole moment and Eij is the external tidal field, caused by the binary
partner. Qij and Eij are related by:

Qij = −2

3
k2R

5Eij (6)

Coupling these two equations with the perturbation solutions, the dimensionless tidal love
number, λ̄, can be obtained

λ̄ = −2

3
k2

(
R

M

)5

(7)

Lau et. al (2019) describes their formulation for the calculation of the tidal Love number for
the stars containing a solid quark core and a fluid outer layer, upon which this section was based,
where an equation for the Love number k2 was used to calculate the Love number for the existing
scenarios.

The tidal deformability and NS structure code developed by Shu Yan Lau was used to carry
out these calculations, which could be conducted for both hybrid and fully fluid stars, i.e. either
containing an entire fluid star or a two-layered (outer layer fluid-inner core solid) star. This code
proceeds to first generate an equation of state, based on either a model of the changing parameters
or pre-existing equation of state, which is used to calculate the background solution to the TOV
equation for the NS at a chosen central density. Then, the code proceeds to solve the boundary
problem via the Lau et al. (2019) formalism to calculate tidal deformability for situations both
including for hybrid stars with a solid core. The calculation of the Love number of a fluid star
follows a prior formulation by Hinderer (2008)[11]. The code of Shu Yan Lau was modified in
order to handle the CSS hybrid star model while incorporating shear modulus through a density
dependent, described in Section 6.

4 Relativistic Tidal Deformability in Fluid NSs

The first calculations performed were that of entirely fluid NSs using various nuclear matter
equations of state developed to explore the behavior of the interiors of NSs without introducing
intricacies such as various quark matter interiors or color superconducting states for the interiors.
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The main purposes of these calculations were to use these results as a comparison when we consider
hybrid stars with an outer layer of nuclear matter and the core of the CCS phase.

There are a variety of equations of state that have been proposed to describe the interiors of
NSs. One of the particular interests of the Love-C and stricter universal relations is the multitude
of different equations of state that exhibit different mass-radius predictions which still adhere
closely to these universal relations. Three different nuclear matter EoS were used in both the
fluid and hybrid star calculations throughout the study. The NL3 model, a relativistic mean
field model, is a stiffer equation of state [12]. Stiffness in equations of state means the pressure
raises faster as a function of increasing mass/energy density, indicating that more massive NSs
can be supported from gravitational collapse by internal pressure. This particular equation of
state was used in Alford and Han’s paper about the general stability of hybrid stars [2]. Akmal,
Pandharipande, and Ravenhall (APR) is a more relaxed equation of state compared to NL3 and
is constructed via a variational summation method including multiple nucleon interactions[13].
SLy4 equation of state model for the nuclear matter was also commonly used in the fluid and
hybrid star calculations, which is a non-relativistic, mean-field nucleon-nucleon interaction-based
model [14].

Each of these equations of state only considers fully fluid NSs. With the EoS input, we can
calculate the masses and radii of the NSs with varying central densities. Plotting the NS mass vs.
the radius produces Mass-Radius (MR) relations, which are highly dependent upon the equation
of state, as can be seen in Figure 3.

Figure 3: MR curves for the fluid NL3, APR, SLY4 equations of State

The maximum mass of NL3 reaches is approximately 2.8M⊙, demonstrating the stiffness of this
EoS as compared to the SLy4 and APR, which have maximum mass’s of ∼ 2.0M⊙ and ∼ 2.2M⊙.

A key part of this investigation focused on the calculation of the tidal deformability of the
various stars constructed in the code, for both fluid and hybrid stars. Large deviations from the
Love-C relations are most interesting, as better measurements will hopefully allow us to more
tightly constrain EoS’s that don’t agree with observations. The Love-C relation of these three
equations of state are plotted in 4 along with a fit from Yagi and Yunes [6] that incorporated a
variety of equations of state based on differing physical principles & methods.
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Figure 4: (Top) This shows the dimensionless tidal deformability vs. the stellar compactness of
three separate nuclear matter equations of state along with a fit to the universal relation by Yagi
and Yunes. The solid lines represent the top and bottom bounds of equations of states in the
Love-C relations from [15], which are used throughout the study as a representative spread in EoS
in the Love-C relations (Bottom) This figure shows the fractional error in the compactness with
respect to the best fit line from [6]

From the Love-C plots, we can see how these highly variable equations of state in terms of
the mass-radius relationship agree strongly with the universal relations, with all of the fractional
errors below 5% deviations for a large range of tidal deformabilities. The lower plot of Figure 4
shows the fractional difference of the calculated tidal deformability λ̄ from the best fit calculated
from many different EoS from Yagi & Yunes (2017). We expect to see larger deviations from this
Love-C relation when we include crystalline NS cores in the calculations. These deviations are
studied through two different models, discussed below.

5 Crystalline Color Superconducting (CCS) Phase Hybrid

Stars - MIT Bag Model

The first method by which this CCS phase was incorporated into the model of hybrid stars was
using an equation of state based on an MIT Bag Model to describe the CCS phase, the shear
modulus of which was dependent primarily upon the gap parameter associated with the pairing
that creates the CCS phase [16].

The process that creates this novel state of quark matter is called LOFF pairing, first considered
by Larkin, Ovchinnikov, Fulde, and Ferrrel [1],[17]. This LOFF pairing is analogous to BCS pairing
that describes electron pairing in superconductors. However, the key difference between these
mechanisms is that LOFF pairing allows Cooper pairs with non-zero total momentum. These
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pairs, with different Fermi surfaces, can come together and interact if their Fermi momenta are
sufficiently close together, lowering their overall energy through an attractive interaction. In the
context of the NSs, this involves the propsect of pairing between deconfined quarks in the very
high-density regions of the NS cores [5].

When two fermions experience an attractive interaction and their Fermi momenta are the same,
they pair in a BCS manner. This idealization is not likely to be as applicable to NSs, because it
is unlikely that the up, down, and strange quarks within the core will have the exact same Fermi
momentum, a requirement for this type of pairing. If the Fermi momenta of the different quarks
are very different, a chemical potential dependent quantity, no pairing is expected. But, in the
intermediate range between no and large differences in Fermi momenta lies the possibility of LOFF
pairing. For some range of differences in chemical potential, a condensate of pairs with momentum
q+ p and q− p is favored over BCS pairing or no pairing[5]. In position space, the LOFF quark
pairs will tend to vary in space like Σae

2iqa·x. This indicates that the momentum represents the
reciprocal vectors which can be shown to define the crystalline structure of condensate[18]. The
crystalline structure formed by the pairing of this condensate causes the NS core to act as a solid
and has rigidity, the shear modulus of which was originally calculated by Mannarelli et. al [18]. A
more rigid core will deform less from gravitational tidal forces, like in a binary, decreasing its tidal
deformability, having an impact on the Love-C relation of a NS that contains this sort of phase.

A phenomenological equation of state that approximates the behavior of the quark matter
predicted in the center of neutron stars was developed [16]. This quark matter equation of state
consists of a power series expansion in the quark chemical potential µ. The equation of state is
given in equation (8).

ΩQM = − 3

4π2
a4µ

4 +
3

4π2
a2µ

2 +Beff (8)

Because the CCS phase acts as a solid and exhibits rigidity, it has a non-zero shear modulus.
This shear modulus will affect the amount that the core is tidally deformed and thus will affect
the Love number calculated for the specific hybrid stars that follow this equation of state. QCD
and related calculations pertaining to CCS phase and its rigidity give the resulting expression for
the shear modulus of the CCS phase[18], given in equation 9.

νQM = 2.47MeV/fm2

(
∆

10MeV

)2 ( µ

400MeV

)2
(9)

The parameters of the MIT Bag Model application to the CCS phase in hybrid stars are a2,
a4, Beff , ∆ or the gap parameter associated with the CCS pairing, and the transition pressure
ptrans. As suggested by Mannarelli, the gap parameter is likely restricted between 5 and 25 MeV.
The gap parameter does not show up directly in the parameterized equation of state, but it does
affect the rigidity of the CCS core and thus will make the core more rigid the higher the gap
parameter chosen. In these calculations, a gap parameter of 25 MeV was primarily chosen unless
stated otherwise. For the parameter a4, which parameterizes the QCD corrections to the pressure
of a free-quark Fermi sea, we set a value at 0.85 unless otherwise stated, which was in the range of
reasonable values for this correction parameter that obtains heavy hybrid stars. A a4 value of 1.0
corresponds to 3 non-interacting quarks, values less than this account for QCD corrections and
quark interactions. The Bag Constant associated with the EoS was set at 1604. a2 was set to 104

for most trials. The main parameter changed was that of the transition pressure, or the pressure
at which the equation of state turned from nuclear matter to CCS quark phase.
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By varying parameters such as the transition pressure and the gap parameter, two of which
expected to have an effect on the measurements of tidal deformability, we could further understand
parameters that describe larger deviations from the Love-C universal relation. Figure 5 explores
the effect of changing transition pressure on the MR curve. The higher the transition pressure, the
larger the pressure must be before the phase transition between nuclear matter and quark CCS
matter occurs, meaning a smaller percentage of the hybrid star is made up of quark matter and
the hybrid star more closely resembles the fluid matter equation of state. The SLy4 fluid star was
more massive than these three hybrid stars, and thus the highest transition pressure hybrid star
had the largest MR curve, resembling most the nuclear matter equation of state.

Figure 5: Mass vs. radius relation for hybrid star with the SLY4 nuclear matter EoS with changing
transition pressures.

The corresponding Love-C relations of these same stars calculated for multiple central densities
are shown in Figure 6. Like expected, the hybrid stars with lower transition pressure exhibit larger
“solid” cores that are less affected by tidal deformation, and thus stray further from the universal
relation that other equations of state follow.
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Figure 6: (Top) Love-C relation and fractional error plots for hybrid Star with the SLy4 nuclear
matter EoS with changing transition pressures, all with a gap parameter of 25 MeV. The shaded
region indicates the bounds of the tidal Love number and compactness values determined from
the NICER & LIGO measurements of GW170817 [19],[20]. These measurement bounds are used
throughout this paper. (Bottom) The fractional error in compactness as compared to the best fit
is plotted vs. the tidal deformability.

These high gap parameter models show significant deviation from the Love-C relation, with
some of the tidal deformability having fractional errors upper of 10%. However, these still fall
in the large bounds of the LIGO measurements of GW170817 of Love and C of Figure 6. As
measurement error decreases in the future, this shaded region will likely decrease in area, providing
a stronger constraint on the viability of deviation from Love-C and the viability of large-deviation
CCS models.

Besides transition pressure, the gap parameter describing the LOFF pairing of the CCS state
was also changed. As the gap parameter does not directly factor into the equation of state (8), it
was expected that altering the gap parameter would not affect the MR curve, which was confirmed
in Figure 7.
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Figure 7: Mass vs. Radius relation for Hybrid Star with the APR nuclear matter EoS with changed
gap parameter and the fluid star comparison. Because gap parameter does not directly affect the
EoS, varying gap parameter will have the same MR relation.

However, equation 9 shows how the shear modulus of the CCS core changes with changing gap
parameter from [18]. Increasing the gap parameter within the suggested constraints increases the
deviation from the universal relation of the Love-C relation, as the CCS phase core exhibits more
rigidity, lowering its tidal deformability for a given NS compactness. Models for hybrid star and
tidal deformability using the MIT Bag Model EoS was tested with gap parameters of 5, 15, and
25 MeV.

11



Figure 8: (TOP) Love-C relation for hybrid stars with changing gap parameter ∆ including
fractional error from the best-fit plot from Yagi & Yunes. (Bottom) The fractional error in
compactness as compared to the best fit is plotted vs. the tidal deformability

The increased gap parameter followed the expected pattern and showed that deviations nearing
10 % could be achieved for the higher end of likely values for the gap parameter of LOFF pairing by
Mannarelli.[18]. Describing the CCS phase by the MIT Bag Model in conjunction with calculations
of CCS quark phase rigidity takes a microscopic physics approach to predict NS properties. We
will explore in the next section a different approach that seeks to generally describe hybrid stars
from a more macroscopic approach.

6 Crystalline Color Superconducting (CCS) Phase Hybrid

Stars - Constant Sound Speed Model (CSS)

Where the previous model was motivated by applying an MIT Bag Model to describe the behavior
of quarks in the center of the cores in order to provide a phenomenological equation of the neutron
core, this section’s model mimicked previous models [2] that assume a constant sound speed in
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the quark NS core, motivating an equation of state that is built around this assumption. A
density-dependent shear modulus was included into this CSS equation to incorporate the effects
of rigidity.

The independence of sound speed w.r.t. density, is a reasonable simplification to apply to the
quark matter equation of state. There are Nambu-Jona-Lasiono models of the CCS phase equation
of state that match this density independence very well. Perturbative quark matter results show
rough density independence and sound speeds [21]. Having a constant sound speed as a parameter
allows the modification of the stiffness of our equation of state, which as we’ll see, increases the
maximum mass of our hybrid star. This model also assumes a first-order phase transition between
the nuclear matter equation of state, which will be varied throughout the investigations, which
describes the matter prior to the transition, and the quark matter constant sound speed model
which describes matter past the transition pressure.

The Eos describing the hybrid star is represented by:

ε(p) =εNM(p) (p < ptrans) (10)

ε(p) =εNM(ptrans) + ∆ε+ c−2
QM(p− ptrans) (p > ptrans) (11)

The model, equation (11) from [2] is parameterized by four important parameters: c2QM , ptrans,
∆ε, and εNM , where ε represents the energy density, which is related to ρ by ε = ρc2. c2QM

describes the sound speed within the quark matter core, which quantifies how the matter responds
to increasing density with an increase in pressure. The larger the sound speed, the stiffer the
equation of state and the more massive the hybrid star as a result. ptrans represents the pressure
at which the first-order transition between nuclear/hadronic matter and quark/CCS matter occurs.
Larger transition pressure indicates that the transition between phases occurs further into the NS,
meaning a smaller portion of the NS is composed of quark matter. ∆ε describes the energy density
gap at the first-order transition between the starting energy density of the quark matter and the
last energy density of the hadronic matter.

While the rigidity of the CCS phase was taken through Mannarelli’s calculation of the shear
modulus based on the gap parameter in the previous hybrid star model, there needed to be a new
way to express the rigidity of the CCS phase solid core in our constant sound speed formulation.
As a solution to this issue, we used the MIT Bag Model type formulation in conjunction with
Mannarelli’s calculation of the rigidity to motivate a density-dependent shear modulus. Using
(8),the number density, n, can be calculated with thermodynamic relations between the grand
thermodynamic potential and the chemical potential.

n = −1

3

∂Ω

∂µ
=

1

π2
a4µ

3 − 1

2π2
a2µ (12)

With the number, the energy density of the MIT Bag Model for the quark matter can be
calculated:

ε = Ω+ 3µn ==
9

4π2
a4µ

4 − 3

4π2
a2µ

2 +Beff (13)

Using (13), We can solve for the chemical potential fully in terms of the density (related to
energy density by ε = ρc2) and the parameters of the MIT Bag Model. This is shown in equation
14, setting c ≡ 1.
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)
(14)

Using the shear modulus form of equation (9), we can obtain an expression (equation (??)) for
the shear modulus of the MIT model to motivate incorporating rigidity into the CSS mode.

νQM = 2.47MeV/fm2

(
∆

10MeV

)2(
1

400MeV

)2
1

6a4

(
a2 + a2

√
1 +

1

a22
16π2a4

ρqm
e4

h̄3

−Beff

)
(15)

At high densities, this equation goes as the square root of density, where we can ignore the
constant term that contains the parameter a2. Since we are modeling the core as the quark matter
with this rigidity, a model was chosen to have a constant factor multiplied by the square root of
density to represent the shear modulus of the CCS phase. The inclusion of the rigidity of the form
(16) into CSS allows the description of solid core quark matter via the CSS model. Figure 9 shows
the adherence of the model with κ = 7× 1026 cm1/2 g1/2 s−2 (16) to CCS rigidity as a function of
density (9):

νQM = κ
√
ρqm (16)

The value of κ was calculated from nominal values typical values that describe the MIT Bag
Model suggested by Alford [16], although this parameter is free to change.

Figure 9: CSS shear modulus model vs. calculation of shear modulus from Mannarelli as a function
of density

We first explore how the MR curves and Love-C relations change with changes with param-
eters, proceeding to investigate large deviations in models that agree with current observational
constraints on the masses and radii of NSs.

6.1 Exploring the Changing Parameters of the Hybrid Star

We first examine the effects of changing the various values that parameterize the constant sound
speed model for the CSS hybrid stars.
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6.1.1 Changing Sound Speed

The sound speed is the main parameter that controls the stiffness of the equation of state describing
the CCS core. Our upper limit for the sound speed is that of the causal limit, which corresponds to
c2s equal to the speed of light squared. There is no firm lower limit on the sound speed of the quark
matter in these environments, but it is thought that c2s =

1
3
is associated with weakly interacting

quark matter [2], which was often used as the lower bound on the sound speed in exploring these
models, especially those that have nuclear matter EoSs that are stiffer.

The sound speed of the hybrid star EoS, using an APR nuclear matter envelope and a set
pressure and energy gap, was changed to investigate its effect on the MR curves and Love-C
relation. The energy gap for each of these models was chosen to be 5 × 1012 g cm−3. The sound
speed was changed varied from c2s = 1

3
to 1 (where sound speed is measured as a fraction of the

speed of light) at several steps, and these calculations were conducted at three different transitions
pressures.

The nominal transition pressure for many of the models throughout this paper is 2×1034 dyn cm−2.
The MR curves for changing sound speeds at this pressure are shown in Figure 10. We can see that
as the sound speed increases, the hybrid star equation of state becomes more and more stiff. This
permits large masses of hybrid stars, because each central density can obtain a higher pressure
to resist against gravity forces. The EoSs of the several hybrid stars follow solely the APR EoS
until the central density becomes high enough for quark matter to appear in the core, where it
begins to deviate from this relationship. For realistic models of the EoS, we need the MR curves
to reproduce the mass of the highest record NS mass, shown with uncertainties by the band in
this 10.

Figure 10: Mass vs. radius relation for hybrid star with the APR nuclear matter EoS with changing
sound speed, all with the transition pressure of 2× 1034 dyn cm−2

Examining the Love-C relations of these NSs, we see that they tend to deviate more strongly at
higher central densities and higher compactness (moving toward the left in Figure 11). Increasing
the sound speed of the quark matter tends to push this relation toward smaller tidal deformations
and larger compactnesses for the same value of the NS central density.
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Figure 11: Love-C relations for Hybrid Star with the APR nuclear matter EoS with changing
sound speed, all with the transition pressure 2× 1034 dyn cm−2

Increasing the transition pressure to the 2 × 1035 dyn cm−2, we see the same trend in the
MR relations. Increasing the sound speed of the quark core of the NS increased the stiffness of
the overall NS, allowing the possibility of larger masses. Because the pressure at which the NS
transitions from nuclear matter to quark matter is higher than the previous set of models, the
overall fraction of the hybrid star that is made up of the CCS quark matter is smaller than in
the previous models. This means that the MR curves of the hybrid star models follow the MR
curve of fluid APR EoS much more closely, only breaking off from this trend when the pressure
gets high enough, which is easier to obtain at the larger values of central density. This behavior
can be seen in Figure 13.

Figure 12: Mass vs. radius relation for hybrid star with the APR nuclear matter EoS with changing
sound speed, all with the transition pressure 2× 1035 dyn cm−2.

On account of the hybrid star being made of less quark matter due to the high pressure for
transition, the Love-C relation of the hybrid star will also follow the APR Love-C relation very
closely. This corresponds to strong agreement with the universal relation. The shift to higher
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compactnesses and lower Love number with increasing sound speed was also observed in these
models in Figure 12.

Figure 13: Love-C relations for hybrid star with the APR nuclear matter EoS with changing sound
speed, all with the transition pressure 2× 1035 dyn cm−2.

Examining the effects of changing sound speed at a much lower transition pressure shows
similar trends with interesting results in the stellar structure. At 2 × 1035 dyn cm−2, a larger
fraction of the hybrid star is composed of quark matter, especially at the highest central densities.
Due to this, there is a much larger effect on the MR curves in increasing the mass of the hybrid
star with increasing sound speed. The highest sound speeds represent very stiff equations of state
(likely not very realistic) with hybrid stars reaching upward of 3M⊙. Additionally, increasing the
sound speed gradually pushed the radii of these stars outward, showing MR curves that resemble
full quark stars more closely. These MR curves are shown in 14. The shift of the Love-C relation
to higher compactness and lower tidal Love number is seen at this transition pressure as well 15,
giving a good idea of the impact of changing sound speeds.
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Figure 14: Mass vs. radius relation for hybrid star with the APR nuclear matter EoS with changing
sound speed, all with the transition pressure 2× 1033 dyn cm−2.

Figure 15: Love-C relations for hybrid star with the APR nuclear matter EoS with changing sound
speed, all with the transition pressure 2× 1033 dyn cm−2.

6.1.2 Changing Energy Gap at Transition

The parameter energy gap ∆ε describes the jump in energy density at the phase transition between
the nuclear matter equation of state and the quark matter equation of state described by (11).
The starting ε for the quark matter portion of the hybrid star, seen in (11), is the combination
of the energy density of the nuclear matter EoS at the set transition pressure plus this parameter
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∆ε. This formulation allows for the first-order nature of this transition, which is shown to having
interesting effects on the stellar structure and Love-C relations of the hybrid stars involving them.

The lowest value for ∆ε of 5 × 1012 g cm−3, like in the previous subsection. This was found
to be about 1% of the energy density at a pressure of 2× 1034 dyn cm−2 , the nominal transition
pressure used in a majority of the models, as quoted from the APR EoS table. This value is small
compared to total energy density at the transition, indicating that the effects of the energy gap
will likely be small. This energy gap is increased logarithmically up to about 1000% of the energy
density of the nuclear matter at the transition. Stated otherwise, the energy density gap is 10×
the energy density of the nuclear matter at the transition point. This energy gap shows significant
effects on both the MR curves and the Love-C relations, as discussed below.

In the same manner as the previous section, the parameter, ∆ε, was varied at three separate
values of transition pressure. The models with transition pressure of 2 × 1034 dyn cm−2 showed
significant change in structure with increasing ∆ε. As this gap increased, the MR curves were
shifted toward smaller masses and smaller radii, creating flatter MR curves the larger this value
was increased. At extreme values, the hybrid star models don’t significantly increase in mass at
all with increasing central density. The hybrid stars with these parameters produced smaller stars
than the fluid APR EoS as can be seen in 16.

Figure 16: Mass vs. radius relation for hybrid star with the APR nuclear matter EoS with changing
energy gap, all with the transition pressure 2× 1034 dyn cm−2.

When examining the Love-C relations of these hybrid stars with changing ∆ε, the effects of the
energy gap can be seen clearly in Figure 17. As the gap increased, the hybrid stars tended to deviate
more from the best fit for the Love-C universal relation, shifting to smaller tidal deformation and
lower compactness for the same values of central density.
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Figure 17: Love-C relations for hybrid star with the APR nuclear matter EoS with changing
energy gap, all with the transition pressure 2× 1034 dyn cm−2.

Increasing the transition pressure to 2 × 1035 dyn cm−2, we reexamine the effects of the gap
parameter on the MR and Love-C relations. As expected, these models follow the behavior of the
fluid APR NS up to higher central densities to the higher pressure required for transition to quark
matter. The higher energy gaps causes the slope of the MR curves to flatten, and even reach the
point where the mass decreases with increasing central density. In these models, this occurs at
high energies gaps directly after the highest central density before quark matter appears in the
hybrid stars. The region of the MR curves where the slope negative is expected to be an unstable
branch of NSs. The stability of branches in the MR curves in the CSS formulation of hybrid stars
is expressed in detail by [2].
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Figure 18: Mass vs. radius relation for hybrid star with the APR nuclear matter EoS with changing
energy gap, all with the transition pressure 2× 1035 dyn cm−2.

At the higher transition pressure, the effects of the energy gaps on the Love-C are less notice-
able, but still prevalent. In Figure 19, the larger energy gaps trend to smaller tidal deformations,
although even the largest values of the energy gap are similar to the lower bound on the Love-C
relation provided by Lattimer [15].
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Figure 19: Love-C relation for hybrid star with the APR nuclear matter EoS with changing energy
gap, all with the transition pressure 2× 1035 dyn cm−2.

Again, at the lowest transition pressure of 2 × 1033 dyn cm−2, the effects of changes to the
quark matter equation of state are the greatest. The largest masses are seen at the smaller values
for energy gap, with larger radii than the fluid APR star. With increasing energy gap, the hybrid
star models decrease both in mass and in radius. For the parameter space tested, the hybrid
stars’ mass-radius curves don’t show the same degree of flattening as was seen at higher transition
pressure. The Love-C relations of these hybrid star models, seen in Figure 21 show the same trend
as the higher transition pressures, although the deviation from the Love-C at the highest energy
gaps is smaller than that of the higher 2 × 1034 dyn cm−2 transition pressure models, something
unexpected as a larger portion of the star is expected to be composed of the solid quark matter
at lower transition pressures.
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Figure 20: Mass vs. radius relation for hybrid star with the APR nuclear matter EoS with changing
energy gap, all with the transition pressure 2× 1033 dyn cm−2.

Figure 21: Love-C relations for hybrid star with the APR nuclear matter EoS with changing
energy gap, all with the transition pressure 2× 1033 dyn cm−2.

From this section, modifying the energy gap of the CSS quark matter demonstrates a significant
effect on the Love-C relation of hybrid stars. However, the rigidity of these hybrid stars also plays
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a direct role in causing deviation from the Love-C universal relation. The numerical code used to
perform these calculations outputs the tidal Love number both including and excluding the effects
of the rigid core. We can then compare the Love-C relation followed by a model with a large
energy gap including this rigidity with the same equation of state excluding the rigidity of the
core to separate these two effects. Figure 22 shows a model with a relatively large value calculated
at a transition pressure of 2 × 1034 dyn cm−2 and a sound speed squared of 1

3
the speed of light.

Love-C calculations for this model both including and excluding the effects of the rigid core are
included. Even when excluding the rigidity of the core, there is a significant deviation, indicating
that ∆ε plays a major role in the Love-C relation of a hybrid model.

Figure 22: This figures shows the Love-C relation of CSS hybrid star model with the APR nuclear
matter envelope with a large value of the ∆ε. The blue line with open markers shows the Love-
C calculations excluding the effects of the crystalline solid core, and the gold, filled markers
shows the same model with the solid core effects. While the solid core has a large effect on this
calculation, the values excluding the solid show significant deviation from the Love-C universal
relation, demonstrating the impact of the energy gap on Love-C.

7 Investigating Deviation of CSS Models Agreeing with

Observation

Understanding the effects that the various parameters of the CSS model have on the stellar struc-
ture and Love-C universal relations of the hybrid, we can investigate the behavior of multiple
nuclear matter envelopes and find regions of parameter space for models that fit the current
observational constraints on the masses and radii.

7.1 Comparison of Parameter Space Search to Currently Available
Observational Data

The more observations that are made of NSs, especially those in binaries where there are good
constraints on the individual masses of the NSs, the better our knowledge is of the mass range of
these objects. One of the strongest and most reliable observational constraints that is available
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for reducing the parameter space of EoSs is the heaviest measured NS mass. One of the heaviest
NSs that have been currently been measured has a mass of 2.14+0.10

−0.09M⊙ [3]. Using techniques
based upon relativistic Shapiro delay, this collaboration combined data from the NANOGrav
collaboration and recent Green Bank Telescope observations in order to calculate this mass. By
requiring the mass-radius curves of the NS reach at least this heavy of a mass at some point, then
EoSs that produce lighter hybrid stars can be eliminated.

With recent addition of the NICER telescope to the ranks of the measurement tools of NSs, we
are equipped with even more constraints on the EoSs of NSs. By measuring the time variability of
hot spots on the spinning NS surface and fitting these emission patterns to models, measurements
of the masses and radii have been obtained for NSs. Two pulsars that have been measured via
this method, J0740+6620 [22] and J0030+0451[23], provide bounds in the mass-radius space that
provide additional constraints on the equations of state.

7.1.1 APR

Continuing the study with APR EoS as the envelope to the hybrid stars in these models, we
check at a variety of sound speeds and with changing energy gaps which models agree with the
observational constraints on mass and radius.

For four separate sound speeds, a range of energy gaps were plotted against observational
constraints to inform a smaller region of parameter space to investigate deviation from Love-C of
these hybrid star models. When looking at these MR curves, seen in Figure 23, we are looking for
mass-radius curves that go through both of the pulsar constraints, while simultaneously reaching
a high enough mass to be consistent with the heaviest measured NS. The observational constraints
from LIGO were used less stringently than other observational constraints, as their process for
obtaining these values uses universal relations-based methods, something in which deviation is
being sought in this investigation. Additionally, in previous sections the effects of large energy gaps
on the Love-C relation were found to be significant, thus, parameter space for further investigation
for the several sound speeds was also chosen in order to see larger deviation, i.e. the higher end
of energy gaps were preferred to be studied in more detail if matching observational constraints.
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Figure 23: APR Hybrid Star Models with: (Top Left) c2s =
1
3
, (Top Right)c2s =

1
2
, (Bottom Left)

c2s = 2
3
, (Bottom Right)c2s = 1. Plotted with these Mass-Radius curves are constraints from the

observation of NSs from NICER, NANOGrav, and LIGO, [23],[22],[3],[24]. These observations are
used in plots throughout this section.

c2s =
1
3
. From the broader parameter space search in Figure 23, APR hybrid star models with

a sound speed squared of one-third tended to result in NS masses that are too small compared to
the heaviest measured NS [3]. However, some of the models fall within 2 sigma of this NS mass,
simultaneously passing through the MR constraints by NICER. The range of ∆ε was examined
in more detail is from 4 × 1013 − 1.6 × 1014 g cm−3. The MR curves for this range are shown in
Figure 24.
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Figure 24: MR relations of APR hybrid star models with c2s = 1
3
with energy gaps narrowed to

match mass-radius observations.

Taking the smallest, intermediate, and largest energy gaps of these hybrid star models, the
Love-C relations of this set of models are analyzed in conjunction with the fractional error (Figure
25). All of these models show deviations below 10% level and tend to increase at larger values of
tidal deformability.
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Figure 25: (Top) Love-C relations of APR hybrid star models with c2s =
1
3
with energy gaps param-

eters narrowed to match mass-radius observations. (Bottom) Fractional error in the compactness
of these models compared to the fluid APR NS fractional error.

c2s =
1
2
. From the broader parameter space search in Figure 23, this set of hybrid stars reaches

much larger masses with the increases in stiffness. The range of ∆ε that was examined in more
detail, based upon the adherence to observational constraints with potentially large deviations
from Love-C, is from 4 × 1013 − 1.6 × 1014 g cm−3. The MR curves for this range are shown in
Figure 26.

28



Figure 26: MR relations of APR hybrid star models with c2s = 1
2
with energy gaps narrowed to

match mass-radius observations.

The Love-C relations of this set of models were plotted for three values of this energy gap,
found in Figure 27. These models show lower levels of fractional error compared to the previous
set of 1

3
sound speed squared hybrid star models. The deviation tended to be smaller at the lower

values of the tidal deformability and increase with the increased levels of tidal deformability. The
places in the fractional error plot where the relations seem to diverge represent the crossing of the
Love-C relation of the model with the best-fit line to the Love-C universal relation.
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Figure 27: (Top) Love-C relations of APR hybrid star models with c2s =
1
2
with energy gaps param-

eters narrowed to match mass-radius observations. (Bottom) Fractional error in the compactness
of these models compared to the fluid APR NS fractional error.

c2s = 2
3
. In the bottom left of Figure 23, there is a wide range of masses and radii covered

by the set of changing energy gap parameters to the CSS hybrid stars models. The increase in
stiffness of the equation of state as compared to the previous set of models means that larger stars
can be supported, and larger energy gap values can be used in the models while still producing
massive enough stars. The increase in energy gap tends to decrease the masses and radii of the
hybrid stars in this model, yet increases the deviation from the Love-C relation. Thus, the stiffer
hybrid star equations of state may be a prime location to constrain hybrid star equations of state.
The range of ∆ε that was examined in more detail is from 2 × 1013 − 3 × 1014 g cm−3. The MR
curves for this range are shown in Figure 28.
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Figure 28: MR relations of APR hybrid star models with c2s = 2
3
with energy gaps narrowed to

match mass-radius observations.

The Love-C relation of these hybrid stars tends (Figure 29 to agree very strongly with the
universal relation at the low tidal deformabilities, but saw an increase in the fractional error at
higher values of tidal deformability. For the most extreme energy gap of 3 × 1014 g cm−3, the
deviations from the best fit were larger than 10%, while still passing through the edge regions
of the constraints provided by the NICER pulsars. This shows that models with large stiffness,
increasing their ability to reach massive enough stars, and large energy gaps, which are shown to
have a strong effect on the tidal deformability of NSs, provide an interesting region of parameter
space to explore for constraining the dense matter equation of state.
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Figure 29: (Top) Love-C relations of APR hybrid star models with c2s =
2
3
with energy gaps param-

eters narrowed to match mass-radius observations. (Bottom) Fractional error in the compactness
of these models compared to the fluid APR NS fractional error.

c2s = 1. The highest sound speed considered in this broad sweep of parameters was a sound
speed squared equal to the causal limit, the speed of light squared (in natural units, 1). While this
is likely a nonphysical compact object, it presents an interesting case to consider for the constant
sound speed hybrid star models that are equipped with this interior rigidity. The large stiffness of
the hybrid star models with this central sound speed enables models to reach the higher masses
with more extreme values of the energy gap parameter ∆ε. Based on the observational constraints
on the mass-radius, the range of ∆ε that was chosen is 2×1013−3×1014 g cm−3. The MR curves
for this range are shown in Figure 30. The maximum masses of this set of hybrid star models have
a maximum mass of just under 3M⊙ for the lowest value of ∆ε.
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Figure 30: MR relations of APR hybrid star models with c2s = 1 with energy gaps narrowed to
match mass-radius observations.

When comparing the Love-C relations of the lowest, middle, and highest energy gap considered
in Figure 31, again there are models that fit the mass-radius constraints with deviations from the
Love-C universal relation upward of 10%. While these models are less physical, they show that
there is a range of parameters within the CSS framework of nuclear matter-quark matter hybrid
stars that do not agree with the universal relations.
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Figure 31: (Top) Love-C relations of APR hybrid star models with c2s = 1 with energy gaps param-
eters narrowed to match mass-radius observations. (Bottom) Fractional error in the compactness
of these models compared to the fluid APR NS fractional error.

7.1.2 SLy4

Further investigation into the parameter space of the CSS Models with SLy4 nuclear matter
represented in Figure 23 will be considered in future projects.
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Figure 32: Hybrid Star Models with: (Top Left) c2s = 1
3
, (Top Right) c2s = 1

2
, (Bottom Left)

c2s = 2
3
, (Bottom Right) c2s = 1. Plotted with these mass-radius curves are constraints from the

observation of NSs from NICER, NANOGrav, and LIGO

7.1.3 NL3

Further investigation into the parameter space of the CSS Models with NL3 nuclear matter en-
velopes represented in Figure 23 will be considered in future projects.

35



Figure 33: NL3 Hybrid Star Models with: (Top Left) c2s = 1
4
, (Top Right)c2s = 1

3
, (Bottom Left)

c2s = 1
2
, (Bottom Right)c2s = 2

3
. Plotted with these Mass-Radius curves are constraints from the

observation of NSs from NICER, NANOGrav, and LIGO

8 Conclusions & Future Work

The nature of the dense matter equation of state remains an open question, as physicists from a
variety of disciplines attempt to tackle these questions from different perspectives. The advent of
multi-messenger astronomy presents a unique opportunity for constraining the vast set of models
that try to describe the behavior of matter at the extremely high densities characteristic of NS
cores, as observations of mass, radius, and values of NS tidal deformability are obtained from mea-
surements. The combination of cutting-edge gravitational wave measurements, X-ray telescopes,
and radio astronomy observations provide stronger constraints on the properties of NSs that need
to be met by any theoretical prediction of the dense matter equation of state.

Given a specific equation of state, the TOV equations can then be solved under initial conditions
to yield predictions of the mass and radius of an NS. Additionally, under the general relativistic
formalism that describes the appropriate NS, the tidal deformability of the specific NS can be
calculated as a perturbation to a background, perfect-fluid solution to the TOV equations. The
specific phase of dense matter that we investigated in this study was the CCS phase of deconfined
quark matter, a possible candidate phase of matter in the low-temperature and high-density
regimes. This quark matter phase involves the pairing of deconfined quarks through a process
called LOFF pairing [1],[17], which allows the quark matter to form a crystalline structure with
a significant shear modulus, a property that would be expected to have a relevant impact on the
tidal Love number of the NS. We conducted calculations for both mass-radius curves and the
tidal deformability of hybrid NSs with CCS quark matter cores, incorporating first by an MIT
Bag Model type formulation and second by a constant sound speed model [2] coupled with a
density-based shear modulus, developed during this investigation.
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Using the CSS parameterization of the CCS quark matter hybrid stars, there were a variety
of trends that could be seen in the MR and Love-C relations. When the transition from nucelar
matter to quark matter occurred at lower pressures, the model hybrid star was made up of a
larger percentage of quark matter. This tended to amplify the effects that the stiffness and energy
gap had on these relations. Increasing the sound speed affected the MR curves as expected,
producing NS of heavier masses, while shifting the Love-C relations of these stars toward higher
deformabilities and higher compactness values for the same central density. Increasing the energy
gap showed significant effects on both MR and Love-C. Higher values of ∆ε tended to flatten
the mass-radius curves, even causing positive values of dM

dR
, which are unstable NS branches as

described by [2]. Additionally, the larger values of energy gap caused significant deviation from
Love-C, shifting the relation toward smaller tidal deformabilities.

We found various models in the parameter space of the CSS formulation that 1) agree with
the observational constraints on the masses and radii of NS and 2) demonstrate deviation from
the Love-C universal 10% or greater. The portions of the parameter space with large deviations
from Love-C exhibit represent interesting cases with which we may be able further to constrain the
properties of possible CCS hybrid stars. Especially with longer observing runs of gravitational wave
observatories like LIGO and the increase in their sensitivity, there hopes to be more measurements
of the tidal Love number with smaller bounds on this value, which will further the ability to make
constraints based on the Love-C universal relation.

8.1 Future Work

While the nuclear matter envelope EoS used primarily throughout this study was the APR [13]
EoS, this work was also conducted with Sly4 and NL3 equations of state, which have different
degrees of stiffness and predictions for the mass-radius of NSs. Further investigation into the
parameter space with these nuclear matter envelopes may shed more light on the behavior of the
CCS hybrid stars, further probing the dense matter equation of state. Additionally, a majority of
the parameter space search was conducted at the nominal transition pressure; however, the lower
transition pressure shows very interesting stellar structure and Love-C relations that are not all
strictly forbidden based on current mass-radius constraints.
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