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Abstract—Digital communication has become essential post-
COVID-19, yet speech transmission technologies introduce un-
intended distortions that may disproportionately affect certain
voices. This study investigates whether three widely used compres-
sion and decompression algorithms (codecs)—OPUS, Adaptive
Multi-Rate (AMR), and CODEC2—introduce structural bias by
differentially degrading male and female voices. Using a dataset
of 2,953 speakers, we applied 14 audio quality metrics to assess
differences in voice degradation across various bitrate settings.
Our results reveal consistent, metric-dependent disparities by sex,
with OPUS showing a shift in bias at mid-range bitrates, and
AMR and CODEC2 exhibiting persistent but variable bias across
all settings. Results indicate that female voices experience greater
degradation across multiple measures, potentially impacting
listener perception and communication clarity. These findings
highlight the importance of codec design in equitable voice
representation and call for greater attention to inclusion in speech
processing systems.

Index Terms—Digital Communication, Bias, CODEC, Voice

I. INTRODUCTION

Digital communication has become central to everyday
life, particularly in the post-COVID-19 era. As reliance
on platforms like Zoom and Microsoft Teams grows, the
technologies used to transmit speech are actively shaping
how voices are heard. In this situation, it is critical that all
voices be presented equitably to enable equal and effective
communication. However, there is growing evidence of bias
in digital speech codecs: the algorithms that determine how
audio is compressed and decompressed. These algorithms often
modify the audio to reduce the amount of data transmitted.
In particular, literature suggests that popular codecs may be
disproportionately degrading female voices. This phenomenon
may not merely be a technical flaw, but a barrier to clear and
equitable communication, with implications for professional,
educational, and social interactions.

This research specifically investigates how different speech
compression algorithms alter the acoustic properties of male and
female voices, with a focus on quantifying bias across multiple
codecs and bitrates (the parameter that controls the limits on
data transmission and thus compression levels). By comparing
original and degraded WAV files, key objective metrics were
selected to mathematically and statistically evaluate potential
distortions in digital audio processing. The findings will
contribute to a broader understanding of how speech technology

can be improved to ensure more equitable voice representation
across digital platforms.

In what follows, the background section provides necessary
information about digital voice codecs and the evidence for
them having biases. This section also discusses different codecs
and objective metrics for evaluating audio. The methods section
then details the approach we used to analyze for potential sexual
biases in digital audio codecs and bitrates using a large database
of human voices. The results section presents the raw findings
of our analyses. These findings are further explored in the
discussion to provide deeper insight into their implications.
Finally, the potential limitations and areas of future work
in research are explored followed by the conclusion which
summarizes the main takeaways.

II. BACKGROUND

This section provides background on topics necessary to
understand our analyses. This includes a general description
of digital voice communication, the evidence for bias in it, the
vocal codecs we considered in this research, as well as the
metrics used in our analysis.

A. Digital Voice and Evidence of Bias in Codecs

Digital voice communication occurs when analog vocal
sound is encoded into a digital signal, transmitted, then decoded
back into analog audio, where it can be listened to. For example,
Voice over Internet Protocol (VoIP) is a form of communication
that transmits voice data over the internet. Due to their ability
to provide real-time communication, platforms such as Zoom,
Discord, and Microsoft Teams use the VoIP system. There is
also digital radio, where digitally encoded audio is transmitted
using radio signals [1].

Codecs are integrated into digital voice platforms to process
audio from sender to receiver. A codec is an algorithm that
enables a message to be transmitted through the encoding and
decoding of data. The purpose of encoding and decoding data
is to shrink audio files to efficiently transmit over the internet.

Most codecs are lossy, meaning that audio data is eliminated
to minimize data transmission. Sound quality is determined by
codec settings. Each setting has a bitrate (usually measured in
kilobits per second, kbps), which indicates the amount of data
transmitted per second. A lower bitrate transmits lower audio
quality, which usually means it allows for the loss of more



audio data. There are different strategies for eliminating audio
data to match bitrates. This can include applying band filters,
which constrain the frequencies transmitted by cutting off low
and high frequency data. For example, narrowband, which is
used at low bitrates and only transmits frequencies from 3 Hz
– 4000 Hz. Mediumband transmits frequencies from 3 Hz –
6000 Hz, wideband from 3 Hz – 8000 Hz, super wide from 3
Hz – 12000 Hz, and full from 3 Hz – 20000 Hz. The bitrate
used by the codec, and thus the band, is often determined by
the bandwidth of the transmission environment. For example,
a slow internet connection could result in VoIP using a low
bitrate and narrowband [2].

Unfortunately, there is preliminary evidence that codec bitrate
and band can distort female voices more than male’s. Bolton
[3] provided preliminary evidence of sexual bias in the lowest
bitrate setting (6 kbps) of the popular OPUS audio codec for
multiple objective measures of audio degradation. Similarly,
Daum [4] examined the impact of audio artifacts on perceptions
of male and female speakers, indicating that the lowest bitrate
of the AMR codec (one used in mobile phone communications)
negatively affects the intelligibility and perceived quality of
female voices. Additionally, Ireland et al. [5] found that
lower bitrates in Adaptive Multi-Rate (AMR) compression,
such as 4.75 kbps and 5.9 kbps, introduced distortions that
could negatively affect the analysis and perception of vowel
quality, particularly in female voices. While these studies have
established the presence of bias, gaps remain in understanding
how specific audio codecs and their bitrate configurations
exacerbate or mitigate this issue. This is due to the existing
analyses only considering the lowest bitrates of select codecs.
As such, existing literature lacks a comprehensive analysis of
these widely used codecs across multiple bitrates, a gap this
study aimed to address.

B. Digital Voice Codecs

There are many different audio codecs used in digital voice
communication. We surveyed various ones based on factors
that included popularity, accessibility, and sound-processing
capability. We considered what applications each codec is
used for, if they are easily obtainable for research, and their
bitrate range, respectively. In this research, we considered
three popular codecs: OPUS, AMR, and CODEC2. All are
open-source and vary by application usage and capability [6].

• OPUS is part of the Web Real-Time Communication
standard and is used in common applications such as
Discord, WhatsApp Zoom, and Microsoft Teams. It is the
most versatile of the three codecs, offering narrowband,
mediumband, wideband, super wideband and fullband
bitrate settings to handle a wide range of audio qualities.
Its bitrate settings range from 6 to 510 kbps. For our
analysis, we focused on bitrates from 6 through 48 kbps
– the ones used for VoIP [2].

• AMR (Adaptive Multi-Rate Speech Codec) is used for
GSM (Global System for Mobile Communications) and
UMTS (Universal Mobile Telecommunications Systems)

- 3G mobile device communication. It has eight bitrates
covering a narrowband range from 4.75 to 12.2 kbps [7].

• CODEC2 is the leading open-source codec used for High
Frequency/Very High Frequency radio (for amateur, non-
commercial, and emergency applications). Its bitrates
cover a narrowband range from 0.7 to 3.2 kbps. CODEC2
is useful for being an open-source voice codec with a
very narrowband (low) bitrate [8].

C. Metrics

We surveyed the literature to identify objective metrics that
would be appropriate for measuring distortion caused by audio
compression in our study. For this, we identified a number
of sources that reviewed different options [3], [9], [10]. This
ultimately resulted in the metrics shown in Table I. Note that
several of these metrics rely on the use of Fourier transforms.
Thus, these use standard voice parameters of a 25ms window
size, an overlap of 12.5 ms, and 256 samples [6].

One of the 14 metrics, PESQ, operates in two modes: narrow-
band (8 kHz sampling rate) and wideband (16 kHz sampling
rate) [11], [12], [13]. PESQ2 corresponds to narrowband, while
PESQ1 corresponds to wideband.

III. OBJECTIVES

Existing studies have highlighted the presence of a bias
that appears to distort female voices more than male ones
in digital voice communication codecs. However, there is a
gap in understanding how specific audio algorithms—namely
OPUS, AMR, and CODEC2—and their configurations (bitrates)
exacerbate or mitigate this issue. This paper aims to fill this
gap by quantifying the extent to which bias appears across
objective metrics of distortion. To address this, we sought to
gather a large database of voice and compress them across the
range of bitrates supported by these codecs and see where and
how bias is manifested between the sex of the speakers.

IV. METHODS

The dataset was selected after searching for a large database
of speech, with a diverse range of accents, that included the
same spoken phrase in English. The chosen database was the
Speech Accent Archive [14]. This included 2,954 unique people,
with an approximately equal distribution of male (1,440) and
female (1,514) speakers with a variety of ages and language
backgrounds. Demographic information for each speaker also
included their age, native language, and accent. Each of these
original files was represented as a standard, uncompressed, 16-
bit WAV file with a sample rate of 44.1 kHz. Each file in this
database was encoded/compressed using our identified codecs
(OPUS, AMR, and CODEC2) for multiple bitrates. Each file
was then losslessly decoded back to a WAV file so that this
compressed version could be compared against its original. For
AMR and CODEC2, this was done for every supported bitrate:
4.75, 5.15, 5.9, 6.7 7.4, 7.95, 10.2, and 12.2 kbps for AMR,
and 0.7, 1.2, 1.3, 1.4, 1.6, 2.4, and 3.2 kbps for CODEC2.
This could not be done for OPUS because OPUS supports a
continuous range of bitrates from 6 to 510 kbps, where the



TABLE I
OVERVIEW OF METRICS FOR AUDIO QUALITY EVALUATION

Metric Definition Optimal

Centroid Difference The difference in mean frequencies of the original and compressed audio samples, measured in Hz. Lower

Coherence Value The degree (magnitude-squared coherence) to which two signals are linearly related in the frequency domain. Higher

Compression Error Absolute error between the frequencies of the signal over time for the original and compressed audio files. Lower

Cross Correlation A measure of the correlation of sound pressures to show how similar or different the sound pressure is for the original
and compressed data.

Higher

Euclidean Distance The square root of the sum of squared error between the original audio pressure level and the pressure level of the
compressed audio.

Lower

MOS MOS is the outcome of ViSQOL, which is a spectro-temporal (relationship between frequencies and time) measure of
the similarity between original and compressed audio data that is translated to a mean objective score between 1–5.

Higher

ODG Quantifies how the human ear perceives degradation in sound quality between original and processed audio files. 0:
no degradation, -4: significant degradation.

Lower

PESQ Evaluates speech quality using a model of human auditory perception. Lower score, lower quality. Higher score,
higher quality. 1.5 = bad, 4.5 = perfect.

Higher

RMSE A measure of the difference between the original audio pressure level and the pressure level of the compressed audio
that calculates the square root of the average of the squared differences between the files.

Lower

Signal Distortion Ratio Compares the power (intensity or volume) of compressed (“signal”) to the original (“noise”) in dB. Higher

Spread Difference The spectral spread of a sound is a measure of the variance of a signal’s frequencies, the “spread” of the sound
around its spectral centroid.

Lower

Spectral Entropy How power is distributed across frequencies and how similar this is across both original and compressed audio samples.
This quantifies the irregularity or complexity of a signal based on its frequency content and power distribution.

Higher

STOI Intelligibility measure that is highly correlated with the intelligibility of degraded speech, e.g., due to added noise. Higher

Structural Similarity Measures the similarity between two signals based on their structural information (luminance, contrast, and structure). Higher

bitrate influences the signal band. Because we expected to find
the most bias in narrowband, but wanted to oversample in that
range, while still covering the entire bitrate range. This meant
that we selected four bitrates: 6, 6.7, 7.4, and 7.95 kbps that
spanned the bitrates to just below the rating (8 kps), where
OPUS was guaranteed to operate at mediumband (OPUS may
use either narrowband or mediumband from 8 - 10 kbps). We
then selected a range of 2 bitrates that were guaranteed to
operate at the mediumband (10.2 and 12.2 kbps) and then
bitrates that consistently would cover the remainder of the
bandwidths in 8 kbps increments up to the top of the VoIP
range: 16 kbps to produce wideband, 24 kbps for super wide,
and 32, 40, 48 kbps for full.

We developed a MATLAB script that processed each original
and corresponding compressed file and computed each of the
important metrics we identified in Table I. The results were
output in a CSV file for each codec and bitrate.

Next, we wrote a Python script that read each CSV file
and ran a Mann-Whitney U non-parametric test to determine
if there were significant differences between the sex of the
speakers for each metric for each combination of codec and
bitrate. A Mann-Whitney U test was used for analysis because
of the non-normal distribution and unequal variance of the
majority of the data. This test produced corresponding U, p,
and r (effect size) statistics and associated median metric values
based on sex. The significance level was determined based
on a Bonferroni correction that accounted for the multiple
comparisons necessary for all 14 metrics. This resulted in an α

level of 0.05/14 = 0.00357. Furthermore, the script produced
violin plots for each metric at each bitrate for each codec to
visualize the difference between the medians and distributions
between females and males. We examined these results to
understand whether males or females performed better for
metrics where significant differences occurred.

V. RESULTS

Figs. 1 to 3 show metrics that indicate significant differences
between male and female voices for every bitrate for OPUS,
AMR, and CODEC2, respectively. In these figures, the metrics
are presented on either side of a horizontal bitrate axis, with
those above the axis favoring females and those below favoring
males. Each entry details the metric along with its associated
U test statistic and r effect size at each specific bitrate.

Fig. 1 depicts our results for OPUS. This shows that for
the lower bitrates (6 kbps to 7.95 kbps), all significant metrics
favor males. At 10.2 kbps, there is a switch and an equal or
greater number of significant metrics favor females for the rest
of the bitrates. The effect size ranges from small (0.07) to
moderate (0.3) using standard interpretation heuristics [15].

Fig. 2 shows our results for AMR. The AMR results show
that all significant metrics, except Coherence Value, favor
males at all bitrates. The effect size ranges from small (0.06)
to moderate (0.4).

Fig. 3 reports our results for CODEC2. The results show
that for all bitrates, there are more significant metrics that favor
males than females. Spectral Entropy, Euclidean Distance, and



Fig. 1. Mann-Whitney U statistic results for all considered metrics for the OPUS codec. Each entry reports a metric that showed a significant difference
(p < 0.00357) between Male and Female voices. Such entries contain the name of the metric and the associated statistic: (Mann-Whitney U statistic, and r
rank-biserial correlation effect size). Entries are positioned horizontally to correspond with the listed bitrates. The vertical location of entries indicates if the
difference favored female speakers (above) or male ones (below). The numbers above and below each column report how many metrics are on a given side,
thus indicating how many metrics favored females or males for a bitrate. The 32 kbps–48 kbps bitrate results had the same metric distribution observed for 24
kbps. The statistics for results at these bitrates appear in the box in the figure’s lower right corner.

Fig. 2. Mann-Whitney U statistic results for the AMR codec. See Fig. 1 for figure interpretation.

Coherence Value consistently favor females. The effect size
once again ranges from small (0.07) to moderate (0.3).

VI. DISCUSSION

The goal of this study was to examine whether widely used
digital voice codecs introduce structural biases in how they
compress and transmit speech, particularly between male and
female voices. By applying 14 objective metrics to recordings
from over 2,900 speakers, we investigated if and how such
biases manifest across three popular codecs—OPUS, AMR,
and CODEC2—over a wide range of bitrates.

Our findings reveal that all three codecs exhibit measurable
bias between male and female voices. At every bitrate and
for each codec, we observed significant differences in how
speech was processed between sexes. This indicates that codecs
may be systematically benefiting one sex over the other. In
many cases—particularly at lower bitrates—metrics favored

male voices, but this pattern was not universal. Some metrics
consistently recommended female voices, and in some instances,
the direction of the bias shifted depending with the bitrate and
codec. Thus, bias was consistently present, but it did not always
point in the same direction or arise for the same reasons.

Among the codecs tested, OPUS offers the broadest range
of bitrate settings, spanning narrowband to fullband [2]. As a
result, OPUS displayed the greatest variability in bias. A notable
inflection point in bias direction appeared around 10.2 kbps,
marking the transition from narrowband to mediumband. Below
this threshold—specifically between 6 and 7.95 kbps—all
significant metrics showed a consistent bias against female
voices, with male voices more faithfully preserved. Snow [16],
who did not examine the effect of sex, saw similar results,
concluding that speech discrimination occurred as frequency
filter cutoffs were constrained. Above 10.2 kbps, however,
bias persisted but shifted inconsistently between the sexes,



Fig. 3. Mann-Whitney U statistic results for CODEC2. See Fig. 1 for figure interpretation.

depending on the metric. This suggests that as bitrate increases,
different elements of the audio signal are either preserved
or distorted in ways that could influence perceived fidelity
differently for male and female voices.

In contrast, AMR and CODEC2 operate exclusively within
the narrowband and showed no such inflection point. Instead,
both codecs displayed persistent but shifting biases across
their respective bitrates. This suggests that, for these systems,
bias is more closely tied to how specific acoustic features are
modeled and compressed than to simple bitrate thresholds.
It is also important to note that although both AMR and
CODEC2 operate within the narrowband, their bitrate ranges
do not overlap. Consequently, their outputs cannot be directly
compared to assess speech intelligibility or distortion at the
same bitrate. Nevertheless, examining how specific metrics
behave across these two codecs offers meaningful insight
into the nature of bias under narrowband constraints. Two
such metrics—mean coherence and Euclidean distance—reveal
distinct yet informative patterns.

Mean coherence, which reflects the temporal synchronization
and structural alignment of frequency components, consistently
favored female voices across all bitrates in both AMR and
CODEC2. This aligns with previous work suggesting that
female speech can exhibit higher harmonic regularity and
greater periodicity, things more easily preserved under nar-
rowband compression [17]. In contrast, the lower pitch and
broader spectral content of male voices, while falling into the
frequency range preserved in the narrowband, may be more
susceptible to distortion due to their structural complexity and
codec sensitivity to low-frequency content [18].

These findings are particularly important in the context of
how these codecs are used. AMR, especially in the narrow-
band, is optimized for speech intelligibility under bandwidth
constraints and is widely used in mobile communication [19].
The preservation of coherence across all bitrates suggests that
although high-frequency components of female voices may be
attenuated, the structural integrity of the remaining signal is

relatively intact, supporting consistent vocal clarity. This is
also critical when evaluating CODEC2, which was designed
for low-bitrate radio communications [20].

Euclidean distance, however, diverges in how it reflects bias
between these two systems. In AMR, which is designed for
mobile voice communication from 4.75 to 12.2 kbps, male
voices tend to show lower Euclidean distances. This indicates
that the overall structure of the original signal is preserved
more faithfully for male speakers. This may be due to AMR’s
use of Algebraic Code-Excited Linear Prediction (ACELP),
which prioritizes preserving the spectral envelope of low- to
mid-frequency sounds [7] that are more typical of male speech.

Conversely, CODEC2, which is designed for ultra-low bitrate
transmission of 0.7–3.2 kbps in radio communications, Eu-
clidean distance consistently favored female voices. CODEC2’s
reliance on harmonic sinusoidal modeling allows it to efficiently
encode periodic signals with fewer parameters—a structure
more representative of higher-pitched, harmonically rich female
voices [21]. As a result, the compression process introduces
less deviation from the original signal for female speakers,
leading to lower Euclidean distances.

These contrasting patterns underscore how codec architecture
interacts with vocal characteristics to produce different kinds
of bias, even when operating under similar bandwidth con-
straints. Depending on which aspect of the signal is prioritized
(frequency, power, etc.), bias may appear to impact one sex
more than the other. Such variability demonstrates that no
single measure can fully capture the nuanced ways in which
compression algorithms shape voice fidelity. Although both
codecs generally favored male voices across several metrics,
these exceptions highlight the need to consider what dimensions
of vocal communication are most relevant in a given context.
For users and developers alike, identifying which aspects of
the signal are most critical to clarity, intelligibility, and/or
perceptual similarity could inform which codecs and settings
are most appropriate for minimizing bias [22].



VII. LIMITATIONS AND FUTURE WORK

While this study provides strong evidence of sex-based bias
in digital voice compression, several limitations should be
considered when interpreting the results. First, the analysis
relied exclusively on objective metrics to assess audio quality.
While these measures are widely used and offer consistency
[3], they may not fully capture how listeners perceive audio
degradation in real-world contexts. Without subjective listening
tests, it remains uncertain whether the detected differences are
meaningful to human perception.

Future work could conduct granular, metric-level analyses
across specific bitrates within each codec. Rather than assessing
codec performance generally, studies should break down how
individual metrics behave at each bitrate and whether certain
distortions consistently affect one sex more than the other. This
approach could uncover important thresholds or transitions
where bias becomes most pronounced. Such an analysis would
offer actionable insights for codec design and fairness. Future
work could also aim to determine whether similar inflection
points exist in other mediumband to wideband codecs.

By conducting an analysis across codecs by bitrates and
metrics, it is evident that bias exists in both sexes. This has
important implications for codec audio compression and design
work. Assessing audio metrics through important acoustic
features, such as frequency and power, highlights similarities
and differences in how codecs process sound. A comprehensive
analysis of these features contributes to a better understanding
of how structural biases can be addressed to improve sound
quality and codec usability for all.

VIII. CONCLUSION

This study aimed to identify biases in how digital codecs
process male and female voices, with particular emphasis
on the discrepancies at lower bitrates where distortion is
most likely to occur. Our results showed that such biases
are not only present across all three codecs analyzed (OPUS,
AMR, and CODEC2), but also vary depending on the specific
audio quality metrics used. This has practical consequences
in contexts where voice clarity, authority, and intelligibility
are crucial, such as telecommunications and automated speech
recognition. Moving forward, codec developers should consider
technological solutions, such as pitch-shifting algorithms and
alternative band filtering methods, to mitigate these biases [23].
In an increasingly digital and voice-mediated world, ensuring
that all voices are transmitted with equal clarity and fidelity
becomes essential for building more inclusive and representative
audio technologies.
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