
Modeling Interactions with Deep Learning

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Jack Lanchantin

August 2021

"11307"-�4)&&5

5IJT

JT�TVCNJUUFE�JO�QBSUJBM�GVMGJMMNFOU�PG�UIF�SFRVJSFNFOUT
GPS�UIF�EFHSFF�PG

"VUIPS�

"EWJTPS�

"EWJTPS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

$PNNJUUFF�.FNCFS�

"DDFQUFE�GPS�UIF�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF�

+FOOJGFS�-��8FTU�4DIPPM�PG�&OHJOFFSJOH�BOE�"QQMJFE�4DJFODF

Dissertation

Doctor of Philosophy

Jack Lanchantin

This Dissertation has been read and approved by the examing committee:

Yanjun Qi

Vicente Ordoñez

Yangfeng Ji

Clint Miller

Casey Greene

August 2021

© 2021 Jack Lanchantin

Abstract

Interacting systems are highly prevalent in many real world settings, including genomics, proteomics, and

images. The dynamics of complex systems are often explained as a composition of entities and their

interaction graphs. In this dissertation, we design state-of-the-art deep neural networks for interaction-

oriented representation learning. Learning such structural representations from data can provide highly

accurate predictive models, semantic clarity, and ease of reasoning for generating new knowledge. We consider

three different types of interaction graphs: 1) interactions within a particular input sample from a functional

genomics task, 2) interactions between multiple input samples from a proteomics task, and 3) interactions

between output labels from a computer vision task. For each type of interaction, we design novel models to

tackle a real world problem and validate our results both quantitatively and visually. We show that deep

learning models with relational biases can learn representations of entities and their interactions, as well as

enable us to discover the governing dynamics.

i

Acknowledgments

First and foremost, I want to thank my advisor Yanjun Qi for her guidance and unwavering support throughout

my graduate career. I am forever indebted to her for taking me on as a student and shaping me into the

researcher I am today. I am very grateful for her not only mentoring me as a scientist, but also as a person.

Her intelligence, curiosity, and passion for science are infectious and she has inspired me to pursue my

scientific interests without boundaries. I am continually amazed by her brilliance and am incredibly thankful

and proud to have worked with her for many years.

I want to extend a special thank you to Vicente Ordoñez who has been an incredible collaborator and

mentor. My time working with him has been short, but I have learned an immeasurable amount. He is a

fearless scientist who has had an immense impact on the way I do research and on my life in general. I want

to thank Clint Miller being a great collaborator and mentor who has been a constant source of knowledge

during the pandemic. I want to thank Yangfeng Ji who has showed how to frame a problem and ask the right

questions. I want to thank Casey Greene who helped me start my foray into deep learning for biology and

medicine and is a leader in multi-disciplinary research. I am forever grateful for all of my committee members.

They are some of the smartest, humble, and courageous people I know, who have inspired me beyond words.

To my friends from home. Nick Bernardo who has been a constant source of steadiness and support.

Gleason Judd who has shaped my intellectual curiosity and inspired me to pursue scientific truth. Chris

Spina who inspired me to do principled work. Mike Agneta who shaped my sense of scientific exploration.

I want to give a huge thanks to my many lab-mates throughout my seven years in Virginia. My PhD work

has been largely influenced by those around me, especially those in my lab. Ritambhara Singh, who has been

one of my closest collaborators, but more importantly an incredible friend. She is one of the most bright,

determined, and humble people I know. Weilin Xu who always kept me motivated when things weren’t going

well. He always has an optimistic and unique way of looking at life. Arshdeep Sekhon who has been an

amazing friend, and someone I’ve spent many hours talking about research, philosophy, and life with. As well

as Zeming Lin, Beilun Wang, Ji Gao, Zhe Wang, Dmitry Diochnos, Derrick Blakely, Jack Morris, Eli Liffland,

Jake Grigsby, and Dillon Lue.

Thanks to my many amazing collaborators throughout the years including Gabe Robins, Mary-Lou Soffa,

Tom Weingarten, Baoyuan Wang, Zeyu Chen, Eli Draizen, Phil Bourne, Cameron Mura, Suna Onengut-

Gumuscu, and Stephen Rich. Thanks to the professors at the University of Virginia Department of Computer

Science, especially Worthy Martin, Kevin Skadron, Hongning Wang, Marty Humphrey, Jason Lawrence,

ii

Sebastian Elbaum, David Evans, Alf Weaver, Mark Floryan, Baishakhi Ray, and Malathi Veeraraghavan.

Thanks also to my professors at Binghamton University, especially Mark Fowler, Scott Craver, Stephen

Zahorian, Carl Betcher, Yu Chen, and Charles Westgate. I also would like to acknowledge several other

people whose work was also influential in my research, some of whom I have been lucky enough to meet:

Jason Weston, Rob Fergus, Arthur Szlam, Ronan Collobert, Claude Shannon, Andrej Karpathy, Anshul

Kundaje, Olga Troyanskaya, Christina Leslie, William Noble, and Sepp Hochreiter. In addition, thanks to

all the developers of Torch and PyTorch - this work would not have been possible without these libraries.

Thanks to the department of computer science staff, as well as the Rice Hall custodial staff, especially Tony

Gough and Idris Hassan.

Thanks also to all my fellow students and friends, including Garrett Bernardo, Alex Serbetzian, Aihua

Chen, Sourav Maji, Avinash Kalyanaraman, Tianlu Wang, Paola Cascante-Bonilla, Elan Ashendorf, Jesse

Helman, Nick Janus, Luonan Wang, Kayla Wilson, Charlotte Page, Ameer Hamdan, In Kee Kim, Qingyun

Wu, Sophie Schaffeld, Kayleigh Hartigan, Noah Pannucci, Neil Aram, Dan Layman, Rob Panebianco, Paul

Taukatch, Shanshan He, Fuwen Tan, Ziyan Yang, Calum d’Oelsnitz, Carl Hildebrandt, Will Leeson, Joel

Mackenzie, Andrea Genovese, Rens Hoegen, Jonathan Brachthauser, the Judd family, the Bernardo family,

the Agneta family, and the Spina family.

I want to thank my extended family for always being supportive and encouraging. To those who have

gone, but forever are a source of my inspiration and motivation. William E. Lanchantin, who I talked

to every Sunday throughout my PhD. Julia Serbalik Amodeo, who was always a light in my life. Dianne

Dunn-Lanchantin, who encouraged me to pursue a PhD. As well as John Amodeo Sr., Margaret Lanchantin,

Jodie Lanchantin, Wayne Morgan, and John Van Hook.

Finally, my deepest gratitude goes to my family. My Mom for showing me unconditional love, for being

the most selfless and energetic person I know, for being my biggest supporter and motivator, and for always

believing in me. She’s my biggest source of inspiration and I could not have completed this dissertation

without her. My Dad, who inspires me to seek all that’s still unsung, who keeps me grounded, and who

taught me that without love in the dream it will never come true. Dan for being my biggest role model,

inspiring me to pursue genomics research, and reminding me to keep what’s important. Alex for constantly

supporting me, for inspiring me to persevere, and for encouraging me to pursue my interests.

iii

For my parents, Kris and John.

iv

Contents

1 Introduction 1
1.1 Motivating Examples . 1
1.2 Thesis Overview . 3
1.3 Contributions . 3

2 Background 5
2.1 Deep Learning Models and Relational Inductive Biases . 5

2.1.1 Fully Connected Networks . 6
2.1.2 Convolutional Neural Networks . 6
2.1.3 Recurrent Neural Networks . 7
2.1.4 Graph Neural Networks . 8
2.1.5 Transformers . 8

2.2 Genomics and Proteomics . 9
2.2.1 Genomics . 10
2.2.2 Proteomics . 10

2.3 Multi-label Image Classification . 11

3 Modeling Genomic Sequence Interactions with ChromeGCN 13
3.1 Introduction . 13
3.2 Background and Related Work . 16

3.2.1 Predicting Chromatin Profile Using Machine Learning 16
3.2.2 DNA Interactions from Hi-C Maps . 17
3.2.3 Graph Convolutional Networks . 18

3.3 Problem Formulation and Data Processing . 18
3.4 Method . 20

3.4.1 Modeling Local Sequence Representations Using Convolutional Neural Networks . . . 20
3.4.2 Modeling Long-Range 3D Genome Relationships Using Graph Convolutional Networks 21
3.4.3 Predicting Label Probabilities for Each Window . 22
3.4.4 Model Variations . 23
3.4.5 Model Details and Training . 23

3.5 Experiments and Results . 24
3.5.1 Baselines . 24
3.5.2 Prediction Performance . 26
3.5.3 Analysis of Using Hi-C Data . 27

3.6 Visualizing and Understanding . 28
3.6.1 Identifying Important Sequence Features and Local Interactions 29
3.6.2 Identifying Important Long Range Interactions . 36

3.7 Discussion and Extensions . 38
3.8 Summary . 38

v

4 Modeling Virus-Host Protein-Protein Interactions with DeepVHPPI 40
4.1 Introduction . 41
4.2 Background and Task Formulation . 43
4.3 Proposed DNN Framework for Virus Host PPI Prediction: DeepVHPPI 45

4.3.1 Transformer Layers to Learn Representations of Protein Sequences 46
4.3.2 Classification Layer to Predict Protein-Protein Interactions 47
4.3.3 Proposed Training: Transfer Learning for Virus–Host Protein-Protein Interaction

Prediction . 48
4.4 Related Work . 51
4.5 Experimental Setup and Results . 52

4.5.1 Model Details and Evaluation Metrics . 52
4.5.2 Pretraining Tasks (MLM and SP) . 53
4.5.3 SARS-CoV-2–Human PPI Task . 54
4.5.4 Other Virus–Host PPI Tasks (H1N1 and Ebola) . 55
4.5.5 Additional PPI Experiments . 56
4.5.6 Sensitivity Analysis using Known H-V Interactions . 56
4.5.7 Mutation Validation Analysis on SARS-CoV-2 Spike 57
4.5.8 Ablation Study . 58

4.6 Discussion and Extensions . 59
4.7 Summary . 60

5 Modeling Label Interactions with C-Tran 61
5.1 Introduction . 62
5.2 Problem Setup . 64
5.3 Method: C-Tran . 65

5.3.1 Feature, Label, and State Embeddings . 65
5.3.2 Modeling Feature and Label Interactions with a Transformer Encoder 66
5.3.3 Label Inference Classifier . 67
5.3.4 Label Mask Training (LMT) . 67
5.3.5 Implementation Details . 68

5.4 Experimental Setup and Results . 68
5.4.1 Regular Inference . 69
5.4.2 Inference with Partial Labels . 70
5.4.3 Inference with Extra Labels . 71
5.4.4 Ablation and Model Analysis . 72
5.4.5 Qualitative Examples . 73
5.4.6 Detailed Diagram of C-Tran Settings . 74
5.4.7 Label Mask Training . 74
5.4.8 Counterfactual Testing . 75
5.4.9 Attention Weight Analysis . 75

5.5 Related Work . 75
5.6 Discussion and Extensions . 80
5.7 Summary . 80

6 Conclusion and Future Work 82
6.1 Intellectual Merit and Broader Impacts . 82
6.2 Paths Forward . 83
6.3 Reflections . 83

Bibliography 84

vi

List of Tables

2.1 Extended from Battaglia et al. [1], we summarize the five main deep learning components
including what types of entities and relations they model, as well as the inductive biases and
invariances they encode. We note that Transformers (self-attention) can incorporate specific
relations between tokens, but in their general form they learn the important relations during
training. 6

3.1 Datasets Summary. GM12878 contains 103 total chromatin profile labels, and K562 contains
164 total labels. We use the same chromosomes for training, validation, and testing for both
datasets. 19

3.2 Performance results. For both cell lines, GM12878 and K562, we show the average across all
labels for three different metrics. Our method, using a graph convolutional network (GCN)
to model long range dependencies helps improve performance over the baseline CNN model
which assumes all DNA segments are independent. 24

3.3 Performance on GM12878 for each label category . 26
3.4 Performance on K562 for each label category . 27
3.5 JASPAR motif matches against DeMo Dashboard and baseline motif finding methods using

Tomtom. 35

4.1 Datasets: For each category of training: Language Model (LM), Intermediate (SP) and PPI,
we provide the dataset output type and training/validation/test set sizes. 𝐿 represents the
sequence length, and |𝑉 | represents the vocabulary size. 45

4.2 Structure prediction (SP) pretraining task results. For SS and Homology, accuracy is reported.
For Contact, precision at 𝐿/5 for for medium and long-range contacts is reported. 45

4.3 Human and SARS-CoV-2 Interaction Predictions. Each metric is reported as the mean across all virus
proteins. Best results are reported in bold. 51

4.4 Virus–Human PPI Tasks from Zhou et al. [2]. Best results are in bold. “-” indicates the metric
was not reported. 51

4.5 Virus–Human PPI Tasks from Barman et al. [3]. Best results are in bold. “-” indicates the
metric was not reported. 51

4.6 SLiM PPI Tasks from Eid et al. [4]. Best results are in bold. “-” indicates the metric was not
reported. 51

4.7 Mutation Analysis . 58
4.8 Ablation Study. We analyze the effectiveness of the convolution modules in our proposed

Transformer architecture compared to a tranditional character level embedding from Rives et
al. [5]. Both with and without language model pretraining, the convolution modules result in
improved accuracy across the two datasets tested. 59

5.1 Results of regular inference on COCO-80 dataset. The threshold is set to 0.5 to compute
precision, recall and F1 scores (%). Our method consistently outperforms previous methods
across multiple metrics under the settings of all and top-3 predicted labels. Best results are
shown in bold. “-” denotes that the metric was not reported. 69

vii

5.2 Results of regular inference on VG-500 dataset. All metrics and setups are the same as Table 5.1.
Our method achieves notable improvement over previous methods. 69

5.3 Results of inference with partial labels on four multi-label image classification datasets. Mean
average precision score (%) is reported. Across four simulated settings where different amounts
of partial labels are available (𝜖), our method significantly outperforms the competing method.
With more partial labels available, we achieve larger improvement. 69

5.4 Results of inference with extra labels on CUB-312 dataset. We report the accuracy score (%)
for the 200 multi-class target labels. We achieve similar or greater accuracy than the baselines
across all amounts of known extra label groups. 70

5.5 C-Tran component ablation results. Mean average precision score (%) is reported. Our
proposed Label Mask Training technique (LMT) improves the performance, especially when
partial labels are available. 73

viii

List of Figures

1.1 Examples of interactions. We consider three examples where interactions are crucial elements
of a complex system. (a) DNA contains long range sequence interactions that determine gene
the presence or absence of gene regulatory elements. (b) Proteins interact with each other in
order to carry out key biological functions. (c) images contain complex interactions between
objects that are present in the image. 2

3.1 (a) 3D Genome. The 3D shape of chromatin can lead DNA “windows” (shown in grey
boxes) far apart in the 1D genome space to be spatially close. These spatial interactions can
influence chromatin profiles, such as TFs binding (as shown by the colored shapes). In most
cases, the DNA sequence determines the chromatin profile. However, it can also be influenced
by interactions, such as the formation of TF complexes shown in the middle. (b) Graph
Representation of DNA. Using Hi-C data, we can represent subfigure (a) using a graph,
where the lines between windows are the edges indicated by Hi-C data. (c) ChromeGCN. By
using a graph convolutional network on top of convolutional outputs the model considers the
known dependencies between long-range DNA windows. The lines between windows correspond
to edges in Hi-C data. 14

3.2 (a) Sequence Data Processing. We extract 2000bp sequences surround 1000bp windows
for any window that has an overlapping ChIP-seq peak. (b) 3D Genome Data Processing
we use Hi-C contacts between the 1000bp windows from [6] as edges in our 3D genome graph. 19

3.3 Importance of incorporating long range interactions. This figure shows a comparison
of our ChromeGCN𝐻𝑖-𝐶 method vs the baseline CNN [7] for 3 Metrics. Each point represents
one chromatin profile label. The labels are sorted in the x-axis by the average degree of their
positive windows. The y-axis indicates absolute increase of the ChromeGCN𝐻𝑖-𝐶 over the
CNN model. As the average degree increases, the improvement of the ChromeGCN𝐻𝑖-𝐶 model
increases over the CNN. Green points indicate ChromeGCN𝐻𝑖-𝐶 performed better, red indicate
the CNN performed better. The blue line shows the linear trend line. The ChromeGCN𝐻𝑖-𝐶 is
significantly better, as demsonstrated by the pvalues from a pairwise t-test. 25

3.4 ROC curves for GM12878 The top row shows the ChromeGCN𝐻𝑖-𝐶 variant, and the bottom row
shows the CNN[7]. The columns are divided into the 3 types of labels: transcription factors (TFs),
histone modificiations (HMs), and DNA accesibility (DNase I). The color of each curve represents a
different label, where they are consistent across columns. The box in each plot shows the statistics of
the area under the curves (AUC). ChromeGCN outperforms the CNN for all Epigenetic state labels. 27

3.5 ROC curves for K562 . The top row shows the ChromeGCN𝐻𝑖-𝐶 variant, and the bottom row
shows the CNN[7]. The columns are divided into the 3 types of labels: transcription factors (TFs),
histone modificiations (HMs), and DNA accesibility (DNase I). The color of each curve represents a
different label, where they are consistent across columns. The box in each plot shows the statistics of
the area under the curves (AUC). ChromeGCN outperforms the CNN for all Epigenetic state labels. 28

3.6 Deep Motif Dashboard Local Sequence Model Architectures. Each model has the
same input (one-hot encoded matrix of the raw nucleotide inputs), and the same output
(softmax classifier to make a binary prediction). The architectures differ by the middle
“module”, which are (a) Convolutional, (b) Recurrent, and (c) Convolutional-Recurrent. . . . 33

ix

3.7 Deep Motif Dashboard. Dashboard examples for GATA1, MAFK, and NFYB positive
TFBS Sequences. The top section of the dashboard contains the Class Optimization (which
does not pertain to a specific test sequence, but rather the class in general). The middle
section contains the Saliency Maps for a specific positive test sequence, and the bottom section
contains the temporal Output Scores for the same positive test sequence used in the saliency
map. The very top contains known JASPAR motifs, which are highlighted by pink boxes in
the test sequences if they contain motifs. 34

3.8 Hi-C Saliency Map Visualization. Left: Saliency Map for all 500k edges in A𝐻𝑖-𝐶 for GM12878
Chromosome 8 (total of 23,600 windows). The darker the line, the more important that edge was for
predicting the correct chromatin profile, indicating that the Hi-C data was used by the GNN for that
particular interaction. Right: Fine grained analysis of the Chromosome 8 Saliency Map. This figure
shows the normalized Saliency Map values for for 250 windows (total of 250kbp input) in chromosome 8. 37

4.1 Virus-Host Protein-Protein Interactions (PPI). Overview of our task, where there is a set of previously
known protein-protein interactions. Our goal is to predict all possible Virus–Human interactions for a
novel virus protein, such as SARS-CoV-2. 41

4.2 DeepVHPPI Architecture. A one-hot encoded sequence x gets input to the convolutional
layers to find protein “motifs”. The convolution outputs are then concatenated along the depth
dimension and input to a feedforward layer. Finally, several Transformer encoder layers model
the dependencies between the learned convolutional motifs, producing a final representation
z. The representation can then be used for any arbitrary classifier layer to predict protein
properties. 42

4.3 Transfer Learning Framework for DeepVHPPI. First, we pretrain the network on the Masked
Language Model (MLM) task from a large repository of unlabeled protein sequences. Second,
we further pretrain the network on a set of Structure Prediction (SP) tasks including secondary
structure (SS), contact (CT), and remote homology (RH). Finally, we fine-tune the network
on the protein-protein interaction (PPI) prediction task. The base DeepVHPPI shown as the
large dark grey block is shared across all tasks, and each task uses its own classifier, shown as
small light grey blocks. 44

4.4 Sensitivity analysis on Human–SARS-CoV-2 V-H-PPI Predictions. The X-axis shows simulated
training settings, where we assume there exist some (varying) portion of SARS-CoV-2 proteins in the
training data. We can see that pretraining methods (LM and SPT) give substantial increases over
cases without the pretraining methods. This indicates that transfer learning can help on novel virus
protein interaction prediction. 56

4.5 Mutation Analysis Setup. We train DeepVHPPI on a subset of known Spike protein mutations
and their corresponding ACE2 binding affinity scores, and test on the remaining. 57

4.6 Mutation map for SARS-CoV-2 Spike when interacting with Human ACE2. Here we show
how the predicted interaction score changes when inducing the mutation in the Y-axis for the original
amino acid in the X-axis. This example is from the receptor-binding domain in the SARS-CoV-2 Spike
protein, and the output shows the predicted difference in interaction score from the original reference
amino acid. For example, changing the second reference “K” results in an interaction decrease. . . . 59

5.1 C-Tran training and inference. We propose a transformer-based model for multi-label
image classification that exploits dependencies among a target set of labels using an encoder
transformer. During training, the model learns to reconstruct a partial set of labels given
randomly masked input label embeddings and image features. During inference, our model
can be conditioned only on visual input or a combination of visual input and partial labels,
leading to superior results. 62

x

5.2 C-Tran inference settings. Three different inference settings for general multi-label image
classification: (a) Standard multi-label classification takes only image features as input. All
labels are unknown y𝑢.; (b) Classification under partial labels takes as input image features as
well as a subset of the target labels that are known. The labels rain coat and truck are known
labels y𝑘, and all others are unknown labels y𝑢; (c) Classification under extra labels takes as
input image features and some related extra information. The labels city and rain are known
extra labels y𝑒

𝑘, and all others are unknown target labels y𝑡
𝑢. 63

5.3 C-Tran architecture. Model overview and illustration of label mask training for general multi-label
image classification. In this training image, the labels person, umbrella, and sunglasses were randomly
masked out and used as the unknown labels, y𝑢. The labels rain coat and truck are used as the known
labels, y𝑘. Each unknown label is added the unknown state embedding U, and each known label is
added its corresponding state embedding: negative (N) , or positive (P). The loss function is only
computed on the unknown label predictions ŷ𝑢. 64

5.4 Comparison of the learned label embeddings for COCO-80 using t-SNE. The left figure shows
the embedding projections without using label mask training (LMT), and the right shows with
LMT. Labels are colored using the COCO object categorization. We can see that using label
mask training produces much semantically stronger label representations. 73

5.5 Detailed training and inference settings. Detailed illustrations of the general training
method and three different inference settings where C-Tran can be applied. 74

5.6 Counterfactual example. The ground truth is Heermann Gull. If we incorporate the “has
yellow underparts” attribute as input to the model, it correctly predicts the Glaucous-winged
Gull bird class. 75

5.7 Attention visualization. (a) Frisbee-to-image attention. The frisbee label embedding
attends to the frisbee in the image. (b) Label-to-label attention. Most labels attend to the
frisbee label. 76

5.8 Qualitative examples of C-Tran + partial labels on the COCO-80 dataset. In the
last column, we use 𝜖 = 25% partial labels, some of which are shown. Correctly predicted
labels are in bold. 77

5.9 Qualitative examples of C-Tran + extra labels on the CUB-312 dataset. In the last
column, we use 𝜖 = 54% extra labels, some of which are shown. 78

xi

Chapter 1

Introduction

Complex systems such as cell biology, social networks, and real world image scenes are governed by interacting

entities. The intricate nature of interactive systems with extensive data like biology and images are natural

targets for machine learning to not only help us accurately model them, but also understand their mechanics.

Machine learning methods to simulate such systems require the correct set of modeling assumptions. In

practical terms, this means designing architectures with an inductive bias that guide the model to learn the

entities and interactions of the real world system. There has recently been a shift toward designing model

architectures with structural biases for reasoning about data with strong interactions. Specifically, graph

neural networks and self-attention based networks are designed with the assumption that interactions are

important for their target tasks. Choosing and designing architectures with the right inductive biases to learn

these interactions will allow for both more accurate and more interpretable predictive models. The main goal

of this thesis is to study how to bridge the gap between real world interactive systems, and our ability to

computationally model them and understand them. We show how using relational inductive biases within

deep learning architectures can enable learning about entities, their interactions, and the rules that underlie

them.

1.1 Motivating Examples

Genomics. DNA encodes the molecular language for life because it determines which set of genes are

expressed in an organism. Modern sequencing methods have allowed us to read biology across the many

languages of biology such as DNA, and reading this mass of data enables us to capture the complexities

1

TGATGCATGAG CGTAGCTATGA

protein A protein BDNA

(a) (b) (c)

ACTGCTACGAT

bench treepark

ATCGATCGATGCTACGATGATCACGATCGAAT

Figure 1.1: Examples of interactions. We consider three examples where interactions are crucial elements of a
complex system. (a) DNA contains long range sequence interactions that determine gene the presence or
absence of gene regulatory elements. (b) Proteins interact with each other in order to carry out key biological
functions. (c) images contain complex interactions between objects that are present in the image.

of genomics. However, reading is not the same as understanding. This encyclopedia of information is an

interconnected web of complex relations. Individual strands of human DNA contain both local and long range

interactions, as illustrated in Figure 1.1 (a), which have effects on DNA properties such as gene expression.

We don’t yet know exactly how these sequence features and their interactions influence functional genomic

signals such as transcription factor binding. Due to the vast amount of data and complex interaction structure,

we argue that understanding the genome requires a computational model that can effectively learn both local

sequence features as well as important long range sequence interactions.

Proteomics. While DNA is the script to carry out specific biological functions, proteins are the actors.

Similar to DNA, protein sequencing methods have allowed us to read the human proteome, but this is only

the first step of understanding. Protein molecules interact with each other to execute some task, forming a

complex network of interactions. Yet, we don’t yet understand how or why all of these interactions occur.

Proteins have two “layers” of interactions: first, interactions within the amino acids, or building blocks, of the

protein itself, and second, interactions between proteins, as shown in Figure 1.1 (b). Modeling this process

requires a computational framework that can learn both local structural interactions within a protein as well

as interactions between two proteins.

Image Understanding. Automatically understanding what is present in an image can have important

outcomes across many application areas such as healthcare, retail, and security. Images in real-world

applications generally portray many objects and complex situations. Predicting the set of labels corresponding

to objects, attributes, or actions given an input image is a key task in visual scene recognition. The output

set of labels has some structure that reflects the interaction structure of the world, as shown in Figure 1.1 (c).

Effective models for image understanding require extracting good visual features that are predictive of image

labels, but also exploiting the complex relations and dependencies between visual features and labels, and

among labels themselves.

2

1.2 Thesis Overview

The dynamics of many real world complex systems can be explained by a set of entities and their interactions.

Deep learning methods have proven effective at accurately modeling complex tasks. We hypothesize that deep

learning models with relational biases can be used to understand and improve tasks that involve complex

interactions. Allowing deep learning models to automatically identify the governing interaction patterns will

help bring us from reading and processing data to understanding it. We look at prediction tasks where there

are strong interactions from various viewpoints. In particular, we model interactions within DNA sequences

for regulatory function classification, predict the interactions between proteins, and exploit the interactions

between image labels for object classification. We introduce deep learning architectures with strong relational

inductive biases that allow us to predict and manipulate interactions as well as discover interaction behaviors.

Thesis statement. This dissertation provides novel deep learning frameworks with explicit structural

assumptions to exploit, learn, and predict important interactions in complex systems. The computational

predictions yielded by these frameworks suggest a number of novel hypotheses that aid in our understanding

of the task dynamics.

1.3 Contributions

Using genomics, proteomics, and image understanding as real world applications, we introduce three different

frameworks for predicting and understanding the importance of interactions from various viewpoints. Namely,

we consider interactions within an input, between multiple inputs, and between output labels. We show

the benefits of using models that explicitly incorporate these structural interactions. The three introduced

frameworks are summarized as follows.

1. ChromeGCN. Predictive models of DNA chromatin profile such as transcription factor binding are

essential for understanding regulatory processes and developing gene therapies. It is known that long

range interactions that arise from the 3D shape of DNA is highly influential in the chromatin profile.

Deep neural networks have achieved strong performance on chromatin profile prediction by using short

windows of DNA sequences independently. These methods, however, ignore the long-range interactions

when predicting the chromatin profiles. We introduce ChromeGCN, a graph convolutional network for

chromatin profile prediction by fusing both local sequence and long-range interactions. By incorporating

long range interactions, we relax the i.i.d. assumption of local windows for a better representation

of DNA. We show experimentally that by using ChromeGCN we get a significant improvement over

3

the state-of-the-art deep learning methods, particularly for DNA windows that have a high degree of

interactions with other windows. Furthermore, we introduce a suite of visualization tools which allow

us to identify and interpret important interactions that influence the chromatin profile, such as the

relationships between DNA motifs.

2. DeepVHPPI. Viruses such as SARS-CoV-2 infect the human body by forming interactions between

virus proteins and human proteins. However, experimental methods to find protein interactions are

inadequate: large scale experiments are noisy, and small scale experiments are slow and expensive.

Inspired by the recent successes of deep neural networks, we hypothesize that deep learning methods are

well positioned to aid and augment biological experiments, hoping to help identify more accurate virus-

host protein interaction maps. Moreover, computational methods can quickly adapt to predict how virus

mutations change protein interactions with the host proteins. Previous sequence-based computational

methods do not incorporate proper structural information into their framework, resulting in models

that may not generalize well. We propose DeepVHPPI, a novel deep learning framework combining

a self-attention-based transformer architecture and a transfer learning training strategy to predict

interactions between human proteins and virus proteins that have novel sequence patterns. We show that

our approach outperforms the state-of-the-art methods significantly in predicting Virus–Human protein

interactions for SARS-CoV-2, H1N1, and Ebola. In addition, we demonstrate how our framework can

be used to predict and interpret the interactions of mutated SARS-CoV-2 Spike protein sequences

3. C-Tran. Multi-label image classification is the task of predicting a set of labels corresponding objects

or entities present in an image. Correctly modeling the interactions between objects is a key component

in visual scene understanding. We propose the Classification Transformer (C-Tran), a general framework

for multi-label image classification that leverages Transformers to exploit the complex interactions

among visual features and labels. Our approach consists of a Transformer encoder trained to predict a

set of target labels given an input set of masked labels, and visual features from a convolutional neural

network. A key ingredient of our method is a label mask training objective that uses a ternary encoding

scheme to represent the state of the labels as positive, negative, or unknown during training. Our

model shows state-of-the-art performance on challenging datasets such as COCO and Visual Genome.

Moreover, because our model explicitly represents the uncertainty of labels during training, it is more

general by allowing us to produce improved results for images with partial or extra label annotations

during inference. We demonstrate this additional capability in the COCO, Visual Genome, News500,

and CUB image datasets.

4

Chapter 2

Background

2.1 Deep Learning Models and Relational Inductive Biases

Not only are many real world environments rich in interactive structure, but also the way we think about

them: humans reason and communicate complex systems in terms of entities and their interactions [8]. When

learning, humans either fit new knowledge into our existing interaction models, or adjust the model itself

to better satisfy previous knowledge [1, 9, 10, 11]. A key principle of human intelligence is combinatorial

generalization, or constructing new predictions from known elements that can interact to compose limitless

systems [1, 12, 13]. Human combinatorial generalization is based on our abilities to represent structure and

reasoning about interactions. We can take a set of words and understand how they create meaning through

their interactions. We can observe objects and understand visual scenes as a composition of their interactions.

A key component of artificial intelligence moving forward involves teaching computational models to perform

combinatorial generalization.

Recently, model architectures with structural biases have shown convincing empirical results for reasoning

about data with strong interactive properties [14, 15, 16, 17, 18, 1, 19]. These methods perform computation

over entities and their relationships, where the structure of the entities and the importance of interactions

between them are learned rather than specified. Relational inductive biases, in the form of specific architectural

assumptions, guide these approaches towards learning about entities and relations [1].

The inductive bias of a machine learning model is the set of assumptions that the model uses to predict

outputs of given inputs that it has not encountered [20]. When considering a system that contains complex

interactions, the inductive bias of a model is an important property in order to properly learn the interactions.

5

Component Entities Relations Relational inductive bias Invariance
Fully Connected Units All-to-all Weak -
Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph Network Nodes Edges Arbitrary Node, edge permutations
Transformer Tokens All-to-all Arbitrary Token permutations

Table 2.1: Extended from Battaglia et al. [1], we summarize the five main deep learning components including
what types of entities and relations they model, as well as the inductive biases and invariances they encode.
We note that Transformers (self-attention) can incorporate specific relations between tokens, but in their
general form they learn the important relations during training.

In this section, we give a tour of commonly used deep learning model components and the inductive biases

each takes on. We summarize the five main components in Table 2.1. Importantly, the convergence of graph

neural networks and Transformers, which are generalizations of previous deep learning architectures, facilitate

the learning of key interactions from large datasets.

2.1.1 Fully Connected Networks

Fully connected neural networks [21] are an affine transformation on input x, followed by an added bias term,

and finally a non-linearity:

z = 𝜎(B𝑖 +Wx), (2.1)

where W and B are the trainable parameters of the network, and 𝜎 is an element-wise non-linearity, such as

the rectified linear unit (ReLU): ReLU(𝑥) = max(0, 𝑥). The interactions are thus modeled as all-to-all (all

units in the output are connected to all units in the input), and the rules are specified by the weights and

biases. All input entities interact with each other to determine the output, and therefore there is a weak

inductive bias.

2.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs), first introduced in the computer vision setting, were designed to

model local, translation invariant features [22]. These work on input domains where there is a local spatial

structure to the domain. For example, natural images often contain objects that have local spatial structures

which determine that particular object. A 1D temporal convolution with filter (or kernel) size 𝑘 takes an

input data matrix X of size 𝑇 × 𝑛𝑖𝑛, with length 𝑇 and input layer size 𝑛𝑖𝑛, and outputs a matrix X of size

6

𝑇 × 𝑛𝑜𝑢𝑡, where 𝑛𝑜𝑢𝑡 is the output layer size:

z𝑡,𝑖 = 𝜎(B𝑖 +

𝑛𝑖𝑛∑︁
𝑗=1

𝑘∑︁
𝑧=1

W𝑖,𝑗,𝑧x𝑡+𝑧−1,𝑗), (2.2)

where W and B are the trainable parameters of the convolution filter, and 𝜎 is a function enforcing element-

wise nonlinearity. Multiple convolutional layers are typically used in sequence to learn different feature

representations. The introduced 1D temporal convolution can be easily extended to 2D spatial convolutions.

In CNNs, model parameters are shared across input subregions, providing the model with an inductive

bias to learn features that are translation invariant. Therefore, they learn local features that can appear

anywhere in an input.

2.1.3 Recurrent Neural Networks

While convolutional networks are designed to model spatial input features, in many settings the inputs can

also be sequential (e.g. video, text or speech). Designed to handle sequential data, Recurrent neural networks

(RNNs) have become the commonly used model for tasks such as natural language understanding [23, 24].

The key advantage of RNNs over CNNs is that they are able to find long range patterns in the data which

are highly dependent on the ordering of the sequence for the prediction task.

Given an input matrix z of size 𝑇 × 𝑛𝑖𝑛, an RNN produces matrix Z of size 𝑇 × 𝑑, where 𝑑 is the RNN

embedding size. At each timestep 𝑡, an RNN takes an input column vector xt ∈ R𝑛𝑖𝑛 and the previous hidden

state vector zt−1 ∈ R𝑑 and produces the next hidden state zt by applying the following recursive operation:

z𝑡 = 𝜎(Wx𝑡 +Uz𝑡−1 + b), (2.3)

where W,U,b are the trainable parameters of the model, and 𝜎 is an element-wise nonlinearity.

Due to their recursive nature, RNNs can model the full conditional distribution of any sequential data

and find dependencies over time, where each position in a sequence is a timestep on an imaginary time

coordinate running in a certain direction. Weight sharing is done over time steps, providing the model with a

sequential inductive bias, allowing them to generalize on sequential data. RNNs can therefore learn sequential

interactions between input tokens, and also encode a locality bias in the sequence through their Markovian

structure [1].

7

2.1.4 Graph Neural Networks

Graph neural networks (GNNs) [25, 16, 17] model elements as nodes on a graph 𝐺. Here 𝐺 = (𝑉,𝐸), where 𝑉

describes the set of nodes (variables) and 𝐸 denotes the set of edges (about how variables interact with other

variables). GNNs are a generalization of CNNs where there is no explicit spatial structure known, but a graph

structure is known. In GNNs, each node z𝑖 is updated using its neighboring nodes z𝑗 , 𝑗 ∈ 𝒩 (𝑖), where 𝒩 (𝑖)

denotes the neighbors of node 𝑖 obtained from A. The GNN works by revising a window’s representation z𝑡𝑖.

We denote 𝑡 to represent the G layer index. In the most basic graph neural network, each z𝑡𝑖 is revised using

a parameterized summation of neighbors, z𝑡𝑗 , 𝑗 ∈ 𝒩 (𝑖):

z𝑡+1
𝑖 = 𝜎

(︃
1

|𝒩 (𝑖)|

∑︁
𝑗∈𝒩 (𝑖)

z𝑡𝑗W
𝑡

)︃
, (2.4)

where 𝜎(·) is a non-linear activation function such as tanh or ReLU and W𝑡 ∈ R𝑑×𝑑 is a linear feature

transformation matrix for the GNN layer 𝑡. Notably, using the summation in Eq. 2.4, the representation of

each variable z𝑖 is updated based on the representation of its neighbors. More complex node update functions

are commonly used, such as attention-based [26]. After 𝑇 rounds of iterative updates to spread information

to distant nodes, a readout function 𝑅 is used on the updated node embeddings to make predictions node

classification, edge (link) classification, or graph classification.

Graph neural networks work on non euclidean data, and thus are equipped with an arbitrary inductive

bias. The structure (i.e. edges) of the graph largely determines the types of interactions the model can learn.

Therefore, a well defined graph can lead the model to learn the important interactions between entities.

2.1.5 Transformers

A Transformer [19] 𝑓𝜃 : R𝑛×𝑑 → R𝑛×𝑑 is "transforms" a collection of 𝑛 objects in R𝑑 to another collection of n

objects in R𝑑 [27]. Transformers were initially applied to sequential data in the context of NLP, but because they

encode relational structure as data they admit straightforward application to data with non-linear relational

structure. A transformer block is a parameterized function mapping 𝑓𝜃 : R𝑛×𝑑 → R𝑛×𝑑. If x ∈ R𝑛×𝑑 then

𝑓𝜃(x) = z, where

𝑄(ℎ) (x𝑖) = 𝑊𝑇
ℎ,𝑞x𝑖, 𝐾(ℎ) (x𝑖) = 𝑊𝑇

ℎ,𝑘x𝑖, 𝑉 (ℎ) (x𝑖) = 𝑊𝑇
ℎ,𝑣x𝑖, 𝑊ℎ,𝑞,𝑊ℎ,𝑘,𝑊ℎ,𝑣 ∈ R𝑑×𝑘 (2.5)

8

𝛼
(ℎ)
𝑖,𝑗 = softmax𝑗

(︃⟨︀
𝑄(ℎ) (x𝑖) ,𝐾

(ℎ) (x𝑗)
⟩︀

√
𝑘

)︃
(2.6)

u′
𝑖 =

𝐻∑︁
ℎ=1

𝑊𝑇
𝑐,ℎ

𝑛∑︁
𝑗=1

𝛼𝑖,𝑗𝑉
(ℎ) (x𝑗) , 𝑊𝑐,ℎ ∈ R𝑘×𝑑 (2.7)

u𝑖 = LayerNorm (x𝑖 + u′
𝑖; 𝛾1, 𝛽1) , 𝛾1, 𝛽1 ∈ R (2.8)

z′𝑖 = 𝑊𝑇
2 𝜎
(︀
𝑊𝑇

1 u𝑖

)︀
,𝑊1 ∈ R𝑑×𝑚,𝑊2 ∈ R𝑚×𝑑 (2.9)

z𝑖 = LayerNorm (u𝑖 + z′𝑖; 𝛾2, 𝛽2) , 𝛾2, 𝛽2 ∈ R (2.10)

where 𝜎 is a nonlinearity such as ReLU, LayerNorm is a normalization technique [28] with parameters 𝛾, 𝛽,

and the 𝑊 matrices are the learned weights of the network. 𝑑, 𝑘, 𝑚, 𝐻, and 𝐿 are hyperparameters of the

model. The interactions or relationships between input tokens are learned via neural attention (𝛼). Neural

attention was introduced to allow deep learning models to learn the dependencies between tokens or features

[29]. Tokens communicate with each other and update their representations by their learned attention weights.

Importantly, attention allows us to learns interaction importance when it is not known or predefined

Transformers are a generalization of GNNs where the graph is typically fully connected and the interaction

importance is learned via attention. While Transformers are similar to fully connected networks in that they

allow all input entities interact with each other, they learn the relational structure between any amount of

entities via attention, and thus can encode arbitrary relationships. Transformers are the most general model

out of the five listed because they enforce the least inductive bias.

2.2 Genomics and Proteomics

Biology is extensively governed by sequence information. Billions of nucleotide characters encode the

instructions of the human genome, and millions of amino acid characters encode the instructions of the human

proteome. These strings of characters, similar to natural language, denote the code of life. While modern

sequencing methods make this information increasingly available, we cannot currently understand exactly

what these strings of characters mean, and how they interact with each other to regulate biological processes.

Many processes related to biological sequences contain very long range interactions within a molecule, and

interactions between molecules. Below we describe the different types of biological sequence data in detail.

9

2.2.1 Genomics

DNA Sequences. Deoxyribonucleic Acid (DNA) is the building block of organisms. It consists of the

information required by a cell to function properly. The double-helix structure of DNA, consisting of two

strands, is made of four nucleotide bases: Adenine (A), Guanine (G), Thymine (T) and Cytosine(C). ‘DNA

sequencing’ is the process of determining the precise arrangement of these bases using machines. This sequence

of characters contains the information [30] needed to describe the genome. Inside each cell, a DNA molecule

(3 billion letters bp long) is broken into 23 smaller sections called chromosomes which contain sub-sections

called ‘genes’ that store the regulation information. When a gene is expressed, a protein is created, and when

a gene is repressed, a protein is not created. The 23 pairs of chromosomes consist of about 70,000 genes, and

every gene has its function. An important aspect about DNA is that its tightly compact nature leads to

interactions that are very long in the 1-dimensional sequential space, but very close in the 3-dimensional

compact space. These interactions are crucial for the regulation of certain genes.

Chromatin Profile Signals. While the DNA provides the code for gene expression regulation, there

are many signals that determine regulation. For example, Transcription Factors (TFs) are proteins that bind

to sequence-specific locations on the DNA near the gene and initiate the process of DNA code conversion to

proteins. Histone modifications are chemical changes to the proteins that DNA wraps around, leading to

regulation changes. Both of these events are captured digitally by using Chromatin immunoprecipitation

sequencing, or ChIP-seq. Chromatin immunoprecipitation allows us to separate DNA segments that are

involved in the protein activities. We then perform DNA sequencing to get the sequences of these DNA

segments. Accessible DNA is open regions (i.e. where there are not proteins that the DNA is wrapped around),

that allow a gene to be expressed. This is captured via ATAC-seq. We call the regulatory mechanisms that

help determine gene expression the ‘chromatin profile’.

2.2.2 Proteomics

Protein Sequences. When a gene is expressed, the sequence information of the genes gets converted into

proteins via transcription and translation. Proteins are essential biomolecules that are involved in almost

every process inside a cell ranging from oxygen transport, cell signaling, and immunity. Proteins are a chain of

molecules called ‘amino acids’ that are linked by covalent bonds. There are 20 different amino acids, allowing

us to represent proteins as a string with an alphabet of 20 characters. Each protein can be viewed as a string

10

that’s typically around 500 characters long. Protein sequencing is the practical process of determining the

precise order of amino acids in a protein using a machine.

Protein Structure and Interactions. A key aspect about proteins is that the string of amino acids

folds first into local secondary structures and then into its full 3D tertiary structure. And this structure is

what determines the function, or role of a protein. But proteins rarely act alone. Instead they interact with

other proteins in order to carry out specific functions. So in order to determine what a protein really does,

we must first know who it interacts with [31]. This is critically important especially when studying viruses

because viruses infect humans through protein-protein interactions.

2.3 Multi-label Image Classification

The objective of computational image recognition is mimic the recognition capabilities of human vision

using computational methods [32]. Understanding the content of an image depends on a rich understanding

of objects and their interactions. Several works have used relational deep learning models to learn the

interactions between objects in images on simulated datasets [33, 34]. Multi-label image classification is the

task of predicting all objects present in a real world image. This requires modeling the strong relationship

structure of the objects, or labels. Multi-label classification has a rich history in text [35, 36], images [37, 38],

bioinformatics [37, 38], and many other domains.

Formally, let 𝒟 = {(𝑥𝑛,𝑦𝑛)}𝑁𝑛=1 be the set of data samples with inputs 𝑥 ∈ 𝑋 and outputs 𝑦 ∈ 𝑌 .

Inputs 𝑥 are a (possibly ordered) set of 𝑆 components {𝑥1, 𝑥2, ..., 𝑥𝑆}, and outputs 𝑦 are a set of 𝐿 labels

{𝑦1, 𝑦2, ..., 𝑦𝐿}. Multi-label classification involves predicting the set of binary labels {𝑦1, 𝑦2, ..., 𝑦𝐿}, 𝑦𝑖 ∈ {0, 1}

given input 𝑥. In images, there are strong interaction relationships between the output labels {𝑦1, 𝑦2, ..., 𝑦𝐿}.

Modeling these relationships is a key component of an intelligent visual recognition model. Most methods

rely on learning these dependencies through feature representation learning [39, 40, 41, 42]. These methods

do not allow for an intuitive way to understand the relationships that the model has learned, as well as a way

to interact with, and test relationships.

The naïve approach to multi-label prediction is to predict all labels independently of one another, assuming

no dependencies among labels. Binary relevance methods predict each label separately as a logistic regression

classifier for each label [41, 42]. That is, they use the following conditional probability parameterized by

learned weights 𝑊 :

𝑃(𝑌 |𝑋;𝑊) =

𝐿∏︁
𝑖=1

𝑝(𝑌𝑖|𝑋1:𝑆 ;𝑊) (2.11)

11

However, incorporating the interactions, or joint dependencies, between labels and input features are crucial.

We therefore want a model that can represent or approximate the following joint distribution:

𝑃 (𝑌 |𝑋;𝑊) =

𝐿∏︁
𝑖=1

𝑝(𝑌𝑖|𝑌 ∖𝑌𝑖, 𝑋1:𝑆 ;𝑊) (2.12)

Exploiting these interaction dependencies can lead to both more accurate models and interpretable results

that can help us learn the relationships between features and labels.

12

Chapter 3

Modeling Genomic Sequence

Interactions with ChromeGCN

Predictive models of DNA chromatin state such as transcription factor binding are important for modeling

how small sequence mutations can effect the state, as well as attribute predictions to specific elements and

interactions. It is well known that the arrangement of nucleotides, or language, of DNA is responsible for the

chromatin state. However, the interactions between subsequences of DNA are vital to the specific instructions

being executed. Correctly modeling these interactions is therefore a key component of an accurate and

interpretable chromatin state prediction model.

Research Question 1: Can we model both local sequence features and long range interactions for

chromatin profile prediction?

In this chapter, we introduce ChromeGCN, a graph convolutional network for chromatin state prediction

by combining both local sequence and long-range interaction information. The inductive bias of ChromeGCN

allows for more accurate predictions and easy interpretation of important genomic interactions. Furthermore,

we introduce the Deep Motif Dashboard, a framework to visualize local DNA sequence features and interactions.

3.1 Introduction

The human genome includes over 3 billion base pairs (bp), each being described as A,C,G, or T. Chromatin

(DNA and its organizing proteins) is responsible for many regulatory processes such as controlling the

expression of a certain gene. Active chromatin elements such as transcription factors proteins binding at

13

ACTGCTACGA CCTGTACGTA TGATGCATGA CGTAGCTATG

ŷ1 ŷ2
ŷ3 ŷ4

ACTGCTACGAT

TGATGCATGAG CGTAGCTATGACTATGACGTAT

x1

x3x2 x4

x2

x3

x1

x4

(a)

(b)

(c)

z2z1

x2 x4x1 x3

GNN

z3 z4

FFN FFN FFN FFN

z2t+1z1t+1 z3t+1 z4t+1

CNN CNN CNN CNN

Figure 3.1: (a) 3D Genome. The 3D shape of chromatin can lead DNA “windows” (shown in grey boxes) far
apart in the 1D genome space to be spatially close. These spatial interactions can influence chromatin profiles,
such as TFs binding (as shown by the colored shapes). In most cases, the DNA sequence determines the
chromatin profile. However, it can also be influenced by interactions, such as the formation of TF complexes
shown in the middle. (b) Graph Representation of DNA. Using Hi-C data, we can represent subfigure
(a) using a graph, where the lines between windows are the edges indicated by Hi-C data. (c) ChromeGCN.
By using a graph convolutional network on top of convolutional outputs the model considers the known
dependencies between long-range DNA windows. The lines between windows correspond to edges in Hi-C
data.

particular location in DNA or histone modifications are what constitute that location’s “chromatin profile”.

Understanding the chromatin profile of a local region of DNA is a step toward understanding how that

region influences relevant gene regulation since chromatin profile is a direct factor in regulating expression.

Since biological experiments are time-consuming and expensive, computational methods that can accurately

simulate and predict the chromatin profile are crucial. Modeling the chromatin profile of each base pair has

been a long standing challenge due to the sheer length and complexity of genome DNA. Deep neural networks

have shown state-of-the-art performance in extracting useful features from segments of DNA to predict the

chromatin profile (e.g., if a transcription factor protein binds to that location or not) [43, 44]. However, these

methods heuristically divide DNA into local “windows” (e.g., about 1000bp long) and predict the states of

each window independently, disregarding the effects of distant windows. Due to the spatial 3D organization

of chromatin in a cell, distal DNA elements (potentially over 1 million bp away) have shown to have effects

on chromatin profiles [6, 45, 46].

Fig. 3.1(a) illustrates the importance of using both sequence and 3D genome data. This figure shows long-

range dependencies between chromatin windows, where the colored shapes represent multiple transcription

factors (TF) proteins. TFs typically bind to specific sequence patterns in DNA known as motifs [47]. However,

14

a TF may also bind to a DNA window due to the presence of other TFs nearby in the 3D space because they

form a protein complex [48, 46]. Such a case will result in motifs far away in the 1D genome coordinate space,

but nearby in the 3D space. The corresponding dependencies between the chromatin windows are illustrated

by the triangle, square, and circle TFs. The two segments interacting in the middle of the diagram are very

far in the 1D sequence representation (represented by the grey line), but very close in the 3D representation.

Similarly, a TF may not bind to a segment with its motif present due to another interfering TF nearby in the

3D space. These types of interactions are lost in data-driven prediction models that only consider local DNA

segments independently.

However, modeling these known long-range interactions between windows is difficult. Local sequence

window-based prediction methods assume data samples are independent according to the commonly used

independent and identically distributed (IID) assumption. Yet, the long-range dependencies existing in DNA

make windows not IID.

Modeling long-range, or non-local interactions, has had a long history in many areas such as natural

language processing, where the label of one particular segment depends on the label of a segment far away.

Recurrent neural networks such as LSTMs [49] have been used to model non-local dependencies where the

model relies on the hidden state to remember the state of a token (e.g., a word) very far away. However,

LSTMs are known to only remember a small number of tokens back, leading to rather “local” relationship

learning [49, 19]. This drawback has lead to an increasing interest in the explicit modeling of non-local

dependencies via pairwise interaction models such as transformers [19, 50, 51].

In a related line of work, graph convolutional networks (GCNs) have been proposed to model the pairwise

dependencies of nodes in graph or 3D structured data such as citation networks and point clouds [14, 16, 52, 53].

This direct modeling of edges allows the network to learn non-local relationships. While typically viewed in

its 1D sequential form, DNA can be represented as 3D genome structured data via Hi-C maps, as shown in

Fig. 3.1(b). Hi-C maps are matrices that give the number of contacts between two segments of DNA, and

normalized Hi-C maps tell us the likelihood of two locations interacting [54]. Using Hi-C data, segments of

DNA can be represented as nodes on a graph, and edges are interactions between segments. Such interactions

can be crucial in regulatory processes such as gene transcription [6]. That is, Hi-C contacts are a direct

reflection of how distant chromatin elements interact. We hypothesize that accounting for such interactions

will lead to improved chromatin profile prediction accuracy.

In this work, we propose ChromeGCN, a novel method that uses a fusion of both sequence and 3D

genome data (in the form of Hi-C maps) to predict the chromatin profile of DNA segments. To the best

15

of our knowledge, ChromeGCN is the first deep learning framework that successfully combines sequence

and 3D genome data to model both local sequence features and long-range dependencies for chromatin

profile prediction. ChromeGCN works by first representing DNA windows as a 𝑑-dimensional vector with

a convolutional neural network on the local window sequence. We then revise the window vector using a

graph convolutional network on all window relationships from Hi-C 3d genome data. We test ChromeGCN

on datasets from two cell lines where we compare against the previous state of the art chromatin profile

prediction methods. We demonstrate that ChromeGCN outperforms previous methods, especially for labels

that are highly correlated with long-range chromatin interactions.

An important aspect of ChromeGCN is that it allows us to better understand the chromatin profile

in terms of genomic features and interactions. Using ChromeGCN, we propose Hi-C saliency maps to

understand which Hi-C contacts are most important for chromatin profile labeling. Since ChromeGCN uses

explicit long-range relationships from Hi-C data (as opposed to implicit long-range relationships using a

recurrent neural network), we can easily understand the important relationships for greater interpretability.

Furthermore, we introduce the Deep Motif Dashboard to investigate important local sequence features within

a particular genomic region that influence the chromatin state.

The main contributions of this chapter are:

1. We propose ChromeGCN, a novel framework that incorporates both local sequence and long-range 3D

genome data for chromatin profile prediction.

2. We experimentally validate the importance of ChromeGCN on two cell lines from ENCODE, showing

that modeling long range genome dependencies is critically important.

3. We introduce Hi-C saliency maps, a method to identify the important long range interactions for

chromatin profile prediction from Hi-C data, and the Deep Motif Dashboard, a framework to visualize

local sequence features and interactions.

3.2 Background and Related Work

3.2.1 Predicting Chromatin Profile Using Machine Learning

Computational models for accurately predicting chromatin profile labels from DNA sequence have gained

popularity in recent years due to the urgency of the task for many applications. For instance, predicting how

16

chromatin effects vary when variants in DNA occur. The importance of computational modeling arises from

the low cost and high speed in comparison to biological lab experiments.

One class of methods for state prediction used generative models in the form of position weight matrices

(PWM) [47]. These methods construct motifs, or short contiguous sequences (often 8-20bp in length), which

are representative of a particular chromatin profile label such as a transcription factor binding. A new

sequence can then be classified according to how well it matches the motif. A significant drawback of using

predefined motif features is that it is difficult to find the correct motifs for predicting unseen sequences [44].

Another class of methods use string kernels (SK) [55, 56], where some kernel function is built to capture

the similarity between DNA segments according to substring patterns. However, these methods suffer from

the issue of a predefined feature engineering. Moreover, these methods do not scale to a large number of

sequences [43].

To overcome the issues of PWM and SK methods, researchers turned to automatic feature extraction using

deep neural networks which have outperformed both generative PWM and SK methods [44, 43]. Convolutional

neural networks (CNNs) were the first deep learning method to outperform previous methods. CNNs have

been used extensively to learn features of DNA for sequence-based prediction [43, 44, 57, 58, 7]. The benefit

of convolutional models is that they have an inductive bias for modeling translation invariant features in

DNA sequences. This allows CNNs to effectively learn the correct “motifs” or kernels for chromatin labeling.

There has since been several revisions to the original CNN models for marginally better feature extraction,

such as adding a recurrent network on top of the CNN motif features [59, 60].

However, current state-of-the-art models only learn the features from the sequences of individual local

windows and not between windows (i.e., longer-range interactions). Since DNA interacts with itself in the

form of long-range 3D contacts, labeling the chromatin profiles of a window can be affected by another distant

window. [61] use longer range dependencies (32kbp), but the dependencies are modeled implicitly using

dilated convolution across 128bp windows. Accordingly, methods that account for explicit long range 3D

chromatin contacts are needed to model the true interactions in DNA.

3.2.2 DNA Interactions from Hi-C Maps

Hi-C experiments, and 3C experiments in general, are biological methods used to analyze the spatial

organization of chromatin in a cell. These methods quantify the number of interactions between genomic

loci. Two loci that are close in 3D space due to chromatin folding may be separated by up to millions of

17

nucleotides in the sequential genome. Such interactions may result from biological functions, such as protein

interactions [62].

Since the first Hi-C maps were generated, many works have been introduced to analyze the maps. [46]

investigated the spatial relationships of co-localized TF binding sites within the 3D genome. They show that

for certain TFs, there is a positive correlation of occupied binding sites with their spatial proximity in the 3D

space. This is especially apparent for weak TF binding sites and at enhancer regions.

[63] identified that the ZNF143 TF motif in the promoter regions provides sequence specificity for long

range promoter-enhancer interactions. [64] identified coupling DNA motif pairs on long-range chromatin

interactions. [65] use convolutional neural networks to predict Hi-C interactions from sequence inputs. None

of the previous methods, however, use known Hi-C data to learn better feature representations of genomic

sequences for chromatin profile prediction.

3.2.3 Graph Convolutional Networks

Graph convolutional networks (GCNs) were recently introduced to model non-local or non-smooth data

[14, 66, 16, 67, 17, 26]. For the task of node classification, GCNs can learn useful node representations which

encode both node-level features and relationships between connected nodes. Essentially, GCNs learn node

representations by encoding local graph structures and node attributes, and the whole framework can be

trained in an end-to-end fashion. Because of their effectiveness in learning graph representations, they achieve

state-of-the-art results in node classification. The main assumption is that the input samples (in our case,

individual DNA windows) are not independent. By modeling the graph dependency between samples, we can

obtain a better representation of each of the samples. Non-local neural networks [52] are an instantiation of

graph convolution, which was designed to model the long-range interactions in video frames.

3.3 Problem Formulation and Data Processing

The objective of chromatin profile prediction (i.e., chromatin effect prediction) is to tag segments of DNA

with the probability of how likely a certain chromatin effect (aka chromatin profile label) is present. In

our formulation, we define chromatin profile labels to include transcription factor (TF) binding, histone

modifications (HM), and accessibility (DNase I). This is known as a multi-label classification task, where

multiple labels can be positive at once (different from multi-class tasks where only one label can be positive).

18

Formally, given an input DNA window x𝑖 (a segment of length 𝑇), we want to predict 𝑦𝑙𝑖 ∈ {0, 1} for a label

𝑙, where 𝑙 ranges from 1 to 𝐿.

Cell Line Train Windows Valid Windows Test Windows TFs HMs DNase I
GM12878 368,082 89,911 79,731 90 11 2
K562 457,609 106,777 117,815 150 12 2

Table 3.1: Datasets Summary. GM12878 contains 103 total chromatin profile labels, and K562 contains
164 total labels. We use the same chromosomes for training, validation, and testing for both datasets.

Sequence Data. We derive chromatin labels using ChIP-seq data from ENCODE [68]. We use the cell

lines GM12878 and K562, two of the most widely used from ENCODE and Roadmap [68, 69]. For each

cell line, we use all windows which have at least one positive chromatin ChIP-seq peak. We consider any

peak from ENCODE to be a positive peak. We follow a similar setup as in [43] where we bin the DNA into

1000bp windows. If any ChIP-seq peak overlaps with at least 100bp of a particular window, we consider that

a positive window for that chromatin label. We then extract the 2000bp sequence surrounding the center of

each window as the input features, as done in [7], since the motif for a particular signal may not be contained

fully in the 1000bp length window. Although we use the 2000bp sequence, we consider each window to be

the original non-overlapping 1000bp for notation purposes. An illustration of how sequences are extracted is

shown in Fig. 3.2 (a). Following [43], we use chromosome 8 for testing and also add chromosomes 1 and 21.

Chromosomes 3, 12, and 17 are used for validation, and all other chromosomes (excluding X and Y) are used

for training. The datasets are summarized in Table 3.1.

Figure 3.2: (a) Sequence Data Processing. We extract 2000bp sequences surround 1000bp windows for
any window that has an overlapping ChIP-seq peak. (b) 3D Genome Data Processing we use Hi-C
contacts between the 1000bp windows from [6] as edges in our 3D genome graph.

3D Genome Data. We then use 3D genome data from Hi-C contact maps to extract interaction evidence

19

between the DNA windows. We use 1000bp resolution intra-chromosome Hi-C data from [6] (for K562, the

lowest resolution is 5000bp, so we upsample to get 1000bp resolution). We convert the Hi-C contact map for

each chromosome into a graph whose nodes are 1000bp DNA windows and whose edges represent contact

between two 1000bp windows. Since the full Hi-C contact for each chromosome is too dense, we rank each

contact edge, and use the top 500,000 Hi-C contacts as edges per chromosome (each chromosome maps to

a Hi-C graph). Contacts are ranked using the SQRTVC normalization from [6], which normalizes for the

distance between two positions so that long-range contacts are included in the top 500k.

3.4 Method

Our goal is to learn a model 𝑓 which takes in a DNA subsequence window x𝑖 and predicts the probability of

a set of chromatin labels ŷ𝑖 = 𝑓(x𝑖), where ŷ𝑖 is an 𝐿 dimensional vector. Our method, ChromeGCN uses

three submodules for 𝑓 : 𝑓𝐶𝑁𝑁 , 𝑓𝐺𝐶𝑁 , and 𝑓𝑃𝑟𝑒𝑑. The first module, 𝑓𝐶𝑁𝑁 , models local sequence patterns

from each window using a convolutional neural network. This module takes as input x𝑖 and outputs a vector

representation h𝑖 = 𝑓𝐶𝑁𝑁 (x𝑖). The second module, 𝑓𝐺𝐶𝑁 , models long range 3D genome dependencies

between windows using a graph convolutional network. This module takes as input all window vectors h𝑖

concatenated as H, as well as their Hi-C relationships represented by adjacency matrix A, and outputs

refined representations of all windows Z = 𝑓𝐺𝐶𝑁 (H,A). The z𝑖 of each window now encodes both window

sequence patterns and the relationships between windows. We can then predict the chromatin labels using a

classifier function on each z𝑖 using ŷ𝑖 = 𝑓𝑃𝑟𝑒𝑑(z𝑖). An overview of ChromeGCN is shown in Fig. 3.1(c). The

following subsections explain each submodule in detail.

3.4.1 Modeling Local Sequence Representations Using Convolutional Neural

Networks

Following the recent successes in many chromatin label prediction tasks [43, 44, 59, 60, 7], we learn a

representation of each genomic window sequence x𝑖 using a convolutional neural network (CNN). CNNs have

become the de facto standard for encoding short DNA windows due to their properties, which effectively

capture local sequence structure. Each learned kernel, or filter, in CNNs effectively learns a DNA “motif”, or

short contiguous sequence representative of a particular output label [44]. Since many chromatin processes

are hypothesized to be dependent on motifs [63], CNNs are a good choice for encoding DNA.

20

This module, 𝑓𝐶𝑁𝑁 , takes an input genomic sequence window x𝑖, and outputs an embedding representation

vector h𝑖. We represent window x𝑖 of length 𝜏 as a one-hot encoded matrix X𝑖 ∈ R𝜏×𝑛𝑖𝑛 , where 𝑛𝑖𝑛 is 4,

representing the base-pair characters A,C,G, and T. Convolution with filters (i.e. learned motifs) of length

𝑘 < 𝜏 takes an input data matrix X𝑖 of size 𝜏 × 𝑛𝑖𝑛, and outputs a matrix X′
𝑖 of size 𝜏 × 𝑛𝑜𝑢𝑡, where 𝑛𝑜𝑢𝑡 is

the chosen dimension of the learned hidden representations:

X′
𝑖 𝑡,𝑢

= 𝜎

(︃
𝑛𝑖𝑛∑︁
𝑗=1

𝑘∑︁
𝑧=1

W𝑢,𝑗,𝑧X𝑖 𝑡+𝑧−1,𝑗

)︃
, (3.1)

where W ∈ R𝑛𝑜𝑢𝑡×𝑛𝑖𝑛×𝑘 are the trainable weights, and 𝜎 is a function enforcing element-wise nonlinearity.

Eq. 3.1 can then be repeated for several layers where each successive layer uses a new W and 𝑛𝑖𝑛 is

replaced with 𝑛𝑜𝑢𝑡 from the previous layer. In our implementation, we use six layers of convolution where

each successive layer learns higher-order motifs of the window. After the convolutional layers, the output of

the last layer is flattened into a vector and then linearly transformed into a lower-dimensional vector of size 𝑑,

which we denote h𝑖. Succinctly, the CNN module computes the following: h𝑖 = 𝑓𝐶𝑁𝑁 (x𝑖) for each window.

3.4.2 Modeling Long-Range 3D Genome Relationships Using Graph Convolu-

tional Networks

While CNN models work well on independent local window sequences, they disregard known long-range

relationships between windows that are influential in the chromatin profile. One option would be to extend

the window size. However, due to the 3D shape of DNA, long-range contact dependencies may be located

millions of base-pairs apart, making current convolutional models infeasible. In this subsection, we introduce

the 𝑓𝐺𝐶𝑁 module, a method to explicitly and efficiently model such long-range interactions using graph

convolutional networks.

Known long-range relationships in the 3D genome are available in the form of Hi-C contact maps. A Hi-C

map can be represented as an adjacency matrix A, where the nonzero elements indicate contacts in the 3D

space between two DNA windows1. In our formulation, we represent sequence windows x𝑖 as nodes on a

graph, and A are the edges between the windows. We can then use a modified version of graph convolutional

networks [16] (GCN) to update each x𝑖 with its neighboring windows x𝑗 , 𝑗 ∈ 𝒩 (𝑖), where 𝒩 (𝑖) denotes the

neighbors of node 𝑖 obtained from A. The GCN works by revising a window’s representation h𝑡
𝑖, where h0

𝑖 is

from the output of the first module, 𝑓𝐶𝑁𝑁 . We denote 𝑡 to represent the GCN layer index. Specifically, each
1In our experiments, we use a different adjacency matrix A for each chromosome (intra-chromosome Hi-C maps). However,

we generalize a A to represent all possible window interactions (i.e., including inter-chromosome maps).

21

h𝑡
𝑖 is revised using a parameterized summation of neighbors, h𝑡

𝑗 , 𝑗 ∈ 𝒩 (𝑖):

h𝑡+1
𝑖 = 𝜎

(︃
1

|𝒩 (𝑖)|

∑︁
𝑗∈𝒩 (𝑖)

h𝑡
𝑗W

𝑡

)︃
, (3.2)

where 𝜎(·) is a non-linear activation function such as tanh and W𝑡 ∈ R𝑑×𝑑 is a linear feature transformation

matrix for the GCN layer 𝑡. Importantly, using the summation in Eq. 3.2, the representation of each DNA

window x𝑖 is updated based on the representation of its neighbors (windows that interact with x𝑖 in the 3D

genome). We can compute the simultaneous update of all windows together by concatenating all h𝑖 denoted

H𝑡 ∈ R𝑁×𝑑 where 𝑁 is the number of DNA windows and 𝑑 is the dimension of each h𝑖. The simultaneous

update can then be written as:

H𝑡+1 = 𝜎(A′H𝑡W𝑡). (3.3)

where A′ = D̂− 1
2 (A+ I)D̂− 1

2 , is the normalized adjacency matrix and D̂ is the diagonal degree matrix of

(A+ I).

In our experiments, we use a variant of the graph convolutional network, which uses a gating function

allowing the model to use or not use neighboring windows to update each h𝑡
𝑖:

̃︀H𝑡 = tanh
(︀
A′H𝑡W𝑡

𝑧

)︀
(3.4)

g𝑡 = sigmoid
(︀ ̃︀H𝑡w𝑡

𝑔

)︀
(3.5)

H𝑡+1 = diag(g𝑡) ̃︀H𝑡 + diag(1 − g𝑡)H𝑡 (3.6)

where W𝑡
𝑧 is a linear transformation matrix, 1 is a vector of all 1s, and w𝑡

𝑔 ∈ R𝑑 is used to compute the

gating vector. Gating vector g𝑡 allows the model to selectively choose between using the neighborhood

representation of nodes, ̃︀H𝑡, or the independent representation, H𝑡. Equations 3.3-3.6 indicate one layer

update of GCN window embeddings H. In our experiments, we use a 2-layer gated GCN (i.e. 𝑡=2), and we

denote the final output of all H𝑡 as Z, where vector z𝑖 of Z represents the output of window 𝑖. In summary,

the GCN module computes the following: Z = 𝑓𝐺𝐶𝑁 (H,A).

3.4.3 Predicting Label Probabilities for Each Window

After Z is computed, we then use a linear classifier layer, 𝑓𝑃𝑟𝑒𝑑 to classify each z𝑖 into its output space (a set

of chromatin labels): ŷ𝑖 = 𝜎(z⊤𝑖 W + b). In summary, the prediction ŷ𝑖 for a particular input sample x𝑖 can

22

be decomposed as three steps:

ŷ𝑖 = 𝑓𝑃𝑟𝑒𝑑(z𝑖)

Z = 𝑓𝐺𝐶𝑁 (H,A)

h𝑖 = 𝑓𝐶𝑁𝑁 (x𝑖).

3.4.4 Model Variations

To test the effectiveness of the long range dependencies, we use the following ChromeGCN variations. Each

variation uses the same model, with different edge dependencies in the form of A.

ChromeGCN𝑐𝑜𝑛𝑠𝑡. Instead of using Hi-C edges we use a constant set of nearby neighbors according to the

1D sequential DNA representation. We define each window x𝑖’s neighbors to be the windows surrounding x𝑖

(7 on each side: x𝑖−7, ...,x𝑖+7) which we denote as A𝑐𝑜𝑛𝑠𝑡. Z = 𝐺𝐶𝑁(A𝑐𝑜𝑛𝑠𝑡,H). This variant allows us to

see whether the very long range interactions from the normalized Hi-C maps are useful.

ChromeGCN𝐻𝑖-𝐶 . This variation uses the original Hi-C adjacency matrix, A𝐻𝑖-𝐶 . Z = 𝐺𝐶𝑁(A𝐻𝑖-𝐶 ,H).

Hi-C contacts are close neighboring contacts. However, by using top 500k contacts after the SQRT normal-

ization for the Hi-C graph, we reduced some of this locality bias in the graph. This results in many of the

edges being far away in the 1D space. This allows us to decouple the effects of local neighboring contacts

(constant) and long-range (normalized Hi-C) contacts.

ChromeGCN𝑐𝑜𝑛𝑠𝑡+𝐻𝑖-𝐶 . Lastly, we use a combination of the constant neighborhood around each window

and the Hi-C adjacency matrix, which integrates close and far windows for each window. This varition uses

the following function: Z = 𝐺𝐶𝑁(A𝑐𝑜𝑛𝑠𝑡+𝐻𝑖-𝐶 ,H).

3.4.5 Model Details and Training

To circumvent GPU memory constraints of training end-to-end, we pretrain the 𝑓𝐶𝑁𝑁 model by classifying

each h𝑖 with the classification function ŷ𝑖 = 𝑓𝑃𝑟𝑒𝑑(h𝑖). Once the pretraining converges on the training set, we

use the trained weights h𝑖 for each sample as fixed inputs to 𝑓𝐺𝐶𝑁 . While we pretrain 𝑓𝐶𝑁𝑁 , ChromeGCN

is still end-to-end differentiable, making it possible to use sequence visualization methods such as DeepLIFT

[70] for a particular window.

For all model predictions, we run the forward and the reverse complement through simultaneously and

average the output of the two. All DNA window inputs are encoded using a lookup table that maps each

23

GM12878 K562
Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

CNN [7] 0.895 0.350 0.293 0.894 0.325 0.265
DanQ [59] 0.886 0.348 0.290 0.900 0.343 0.290
ChromeRNN 0.906 0.384 0.342 0.910 0.365 0.327
ChromeGCN𝑐𝑜𝑛𝑠𝑡 0.904 0.377 0.331 0.904 0.358 0.321
ChromeGCN𝐻𝑖-𝐶 0.904 0.385 0.341 0.903 0.358 0.319
ChromeGCN𝑐𝑜𝑛𝑠𝑡+𝐻𝑖-𝐶 0.909 0.395 0.356 0.912 0.372 0.338

Table 3.2: Performance results. For both cell lines, GM12878 and K562, we show the average across all labels
for three different metrics. Our method, using a graph convolutional network (GCN) to model long range
dependencies helps improve performance over the baseline CNN model which assumes all DNA segments are
independent.

character A, C, G, T, and N (unknown) to a 𝑑-dimensional vector. The output of the encoding is a 𝑑× 𝜏

matrix, where𝜏 denotes sequence length (𝜏 = 2000 in our experiments).

All of our models are trained using stochastic gradient descent with momentum of 0.9 and a learning

rate of 0.25. The CNN model is trained using a batch size of 64, and the GCN and RNN models are trained

using an entire chromosome as a batch (since each is modeling the between window dependencies of an entire

chromosome at once). The CNN model projects each window to a vector of dimension 128. The GCN uses

two layers of feature dimension 128 at each layer.

ChromeGCN predicts the probabilities of all labels for each window: ŷ𝑖 ∈ R𝐿, where 𝐿 is the total number

of labels. For our loss function, we use the mean binary cross-entropy across all samples 𝑁 and labels 𝐿:

ℒ(y, ŷ) = 1

𝑀

𝑁∑︁
𝑖=1

1

𝐿

𝐿∑︁
𝑙=1

−
(︀
𝑦𝑙𝑖 log

(︀
𝑦𝑙𝑖
)︀
+
(︀
1− 𝑦𝑙𝑖

)︀
log
(︀
1− 𝑦𝑙𝑖

)︀)︀
(3.7)

3.5 Experiments and Results

3.5.1 Baselines

We compare against the state-of-the-art chromatin profile prediction model from [7], referred to as the CNN

baseline, as well as the recurrent model from [59]. Since our model outputs labels for TFBS, HMs, and

accessibility, motif-based methods [71] aren’t applicable. Since we have 368,082 training samples, kernel-based

methods such as [55] aren’t applicable. [43] compared their CNN to a modified version of [55], which only

used a small number of training samples, and the CNN model was significantly better. Our CNN baseline, [7]

is an improved version from [43]. Furthermore, the focus of our study is to show that state-of-the-art deep

learning models are missing important long range dependencies in the genome.

24

AUROC (GM12878)

10 15 20 25 30
Average Degree

0.05

0.00

0.05

0.10

0.15

0.20

Ch
ro

m
eG

CN
H

iC

 C
NN

t-statistic=-9.32
pvalue=2.64E-15

AUPR (GM12878)
TF
HM
DNase I

10 15 20 25 30
Average Degree

0.05

0.00

0.05

0.10

0.15

0.20

Ch
ro

m
eG

CN
H

iC

 C
NN

t-statistic=-6.70
pvalue=1.15E-09

Recall at 50% FDR (GM12878)
TF
HM
DNase I

AUROC (K562)

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Average Degree

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ch

ro
m

eG
CN

H
iC

 C

NN
t-statistic=-12.97
pvalue=6.84E-27

AUPR (K562)
TF
HM
DNase I

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Average Degree

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ch
ro

m
eG

CN
H

iC

 C
NN

t-statistic=-8.18
pvalue=7.68E-14

Recall at 50% FDR (K562)
TF
HM
DNase I

Figure 3.3: Importance of incorporating long range interactions. This figure shows a comparison of
our ChromeGCN𝐻𝑖-𝐶 method vs the baseline CNN [7] for 3 Metrics. Each point represents one chromatin
profile label. The labels are sorted in the x-axis by the average degree of their positive windows. The y-axis
indicates absolute increase of the ChromeGCN𝐻𝑖-𝐶 over the CNN model. As the average degree increases, the
improvement of the ChromeGCN𝐻𝑖-𝐶 model increases over the CNN. Green points indicate ChromeGCN𝐻𝑖-𝐶
performed better, red indicate the CNN performed better. The blue line shows the linear trend line. The
ChromeGCN𝐻𝑖-𝐶 is significantly better, as demsonstrated by the pvalues from a pairwise t-test.

CNN [7]. To illustrate the importance of the GCN, we compare against outputs from the 𝑓𝐶𝑁𝑁 module:

ŷ𝑖 = 𝑓𝑃𝑟𝑒𝑑(h𝑖). This is the 6-layer CNN model from [7] (we modify the last layer in order to extract a 𝑑

dimensional feature vector output). This is the same CNN that is pretrained for ChromeGCN to produce

each h𝑖.

DanQ [59]. This model uses a recurrent neural network (RNN) on top of CNN outputs within a window. It

still uses local sequence window inputs, but models relationships between sequence patterns via an LSTM.

ChromeRNN. As a baseline to compare against using GCNs for long range dependency modelling, we

construct an RNN model on the window embeddings h1,h2, ...,h𝑁 . After pretraining the CNN module 𝑓𝐶𝑁𝑁 ,

The RNN model takes in all window embeddings at once and models the sequential dependencies among

windows: (z1, z2, z3, ..., z𝑁) = 𝑓𝑅𝑁𝑁 (h1,h2,h3, ...,h𝑁). As with ChromeGCN, the RNN is shared across

25

chromosomes, but does not cross chromosomes. In other words, the embeddings are updated one chromsome

at a time 𝑓𝑅𝑁𝑁 (h𝑖,h𝑖+1, ...,h𝐶) where 𝐶 is the total number of windows for a chromosome. We note this is

different from the DanQ baseline [59] which uses an RNN within windows [59]. ChromeRNN instead is for

modeling dependencies between windows. In our experiments, we use an LSTM [49] with the same number of

layers and hidden units as the GCN.

3.5.2 Prediction Performance

To evaluate the methods, we use area under the ROC curve (AUROC), area under the precision-recall curve

(AUPR), and the Mean Recall at 50% False Discovery Rate (FDR) cutoff. Table 3.2 shows the mean metric

results across all chromatin labels for each cell line. Modeling long-range dependencies results in significant

improvements over the baseline CNN model, which does not account for such long range interactions. For

instance, with respect to AUPR for GM12878, ChromeRNN improves upon the CNN from 0.350 to 0.384,

and ChromeGCN outperforms ChromeRNN to achieve a mean AUPR of 0.395. Also, we see that the

ChromeRNN outperforms DanQ, indicating that using an RNN to model between window dependencies

is more important than within window features. Moreover, we can see that the ChromeGCN𝐻𝑖-𝐶 models

outperform ChromeRNN, indicating that not only the closely neighboring windows in the 1D space contribute

to the improvements, but also the close neighbors in the 3D space, as indicated by the used Hi-C maps.

ChromeGCN outperforms the baselines on the TF and DNase I labels, and ChromeRNN outperforms all

other methods on the HM labels. This indicates that non-local modeling is particularly important for TF

binding and accessibility. We provide the performance results of each label type (TF, HM, DNase I) are

shown in Tables 3.3 and 3.4. We provide detailed plots of ROC and Precision-Recall curves in Figures 3.4

and 3.5.

Furthermore, since ChromeGCN models the window relationships explicitly and not recurrently, we obtain

a significant speedup at test time over the ChromeRNN baseline. ChromeGCN achieves a 6.3x speedup on

the three GM12878 test chromosomes, and 6.8x speedup at test time on the three K562 test chromosomes.

TFs HMs DNase I
Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

CNN [7] 0.909 0.328 0.262 0.796 0.478 0.469 0.801 0.657 0.750
DanQ [59] 0.899 0.325 0.260 0.794 0.479 0.463 0.792 0.650 0.723
ChromeRNN 0.914 0.354 0.299 0.859 0.574 0.610 0.821 0.689 0.787
ChromeGCN𝑐𝑜𝑛𝑠𝑡 0.913 0.348 0.291 0.849 0.554 0.58 0.815 0.68 0.777
ChromeGCN𝐻𝑖-𝐶 0.916 0.362 0.309 0.819 0.516 0.528 0.814 0.683 0.774
ChromeGCN𝑐𝑜𝑛𝑠𝑡+𝐻𝑖-𝐶 0.918 0.369 0.319 0.845 0.552 0.584 0.820 0.692 0.783

Table 3.3: Performance on GM12878 for each label category

26

TFs HMs DNase I
Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

Mean
AUROC

Mean
AUPR

Mean Recall
at 50% FDR

CNN [7] 0.905 0.314 0.256 0.78 0.410 0.317 0.792 0.625 0.683
DanQ [59] 0.909 0.331 0.279 0.796 0.438 0.365 0.797 0.638 0.693
ChromeRNN 0.917 0.349 0.305 0.848 0.520 0.528 0.817 0.664 0.742
ChromeGCN𝑐𝑜𝑛𝑠𝑡 0.911 0.342 0.301 0.84 0.507 0.507 0.810 0.657 0.729
ChromeGCN𝐻𝑖-𝐶 0.912 0.346 0.306 0.807 0.454 0.412 0.812 0.657 0.730
ChromeGCN𝑐𝑜𝑛𝑠𝑡+𝐻𝑖-𝐶 0.919 0.358 0.320 0.837 0.495 0.484 0.821 0.67 0.752

Table 3.4: Performance on K562 for each label category

Figure 3.4: ROC curves for GM12878 The top row shows the ChromeGCN𝐻𝑖-𝐶 variant, and the bottom row shows
the CNN[7]. The columns are divided into the 3 types of labels: transcription factors (TFs), histone modificiations
(HMs), and DNA accesibility (DNase I). The color of each curve represents a different label, where they are consistent
across columns. The box in each plot shows the statistics of the area under the curves (AUC). ChromeGCN outperforms
the CNN for all Epigenetic state labels.

3.5.3 Analysis of Using Hi-C Data

Fig. 3.3 shows a a detailed comparison of ChromeGCN𝐻𝑖-𝐶 vs the baseline CNN model across three different

metrics for both GM12878 and K562. Each point represents a label, and the y-axis shows the absolute

improvement of the ChromeGCN𝐻𝑖-𝐶 model over the CNN. The labels are sorted on the x-axis by the average

degree of the label’s positive samples (i.e., windows where the label is positive) on the Hi-C map. We can see

that for all three metrics, the improvements of the ChromeGCN over the CNN increase as the average degree

of the labels increase. This indicates that the ChromeGCN is important for labels that have many neighbors

in the Hi-C graph (i.e., those that are frequently in contact with other segments in the 3D space). Two of the

transcription factors which obtain the highest performance increase (in the top 5) from using ChromeGCN

27

Figure 3.5: ROC curves for K562 . The top row shows the ChromeGCN𝐻𝑖-𝐶 variant, and the bottom row shows
the CNN[7]. The columns are divided into the 3 types of labels: transcription factors (TFs), histone modificiations
(HMs), and DNA accesibility (DNase I). The color of each curve represents a different label, where they are consistent
across columns. The box in each plot shows the statistics of the area under the curves (AUC). ChromeGCN outperforms
the CNN for all Epigenetic state labels.

over a CNN, CEBPB STAT3, are validated by [46], which show that these two TFs commonly co-occur with

other TFs in the 3D space when binding.

The p-values shown are computed by a pairwise t-test across all labels. The ChromeGCN𝐻𝑖-𝐶 model

significantly outperforms the CNN model in all three metrics. Importantly, our results indicate that by using

the long-range interactions given by Hi-C data, we can obtain improvements in modeling the chromatin

profile labeling, resulting in better classification accuracy.

3.6 Visualizing and Understanding

While making accurate predictions is important in biomedical tasks, it is equally important to understand

why models make their predictions. We are specifically interested in identifying input features that are

responsible for a particular output value. Consequently, we aim to obtain a better understanding of why

certain models work better than others, and investigate how they make their predictions by introducing

several visualization techniques. To do so, we introduce two classes of genomic feature attribution methods:

28

identifying important long range interactions, and identifying important sequence (i.e. nucleotide) features.

3.6.1 Identifying Important Sequence Features and Local Interactions

In addition to Hi-C saliency maps which help us understand the important long range genomic interactions,

we also want to understand sequence features that are correlated with output chromatin profile labels. To

this end, we present the “Deep Motif Dashboard” (DeMo Dashboard), to understand the inner workings of

deep neural network models for a genomic sequence classification task. The purpose of the DeMo Dashboard

is to automatically discover and help us understand the underlying “motifs”, or DNA sequence features that

are important for a chromatin profile signal to occur. We do this by introducing a suite of different neural

models and visualization strategies to see which ones perform the best and understand how they make their

predictions. The proposed DeMo Dashboard allows us visualize and understand a model in three different

ways: Saliency Maps, Temporal Output Scores, and Class Optimizations.

Sequence Saliency Maps

For a certain DNA sequence and a model’s classification, a logical question may be: “which which parts of

the sequence are most influential for the classification?” To do this, we seek to visualize the influence of

each position (i.e. nucleotide) on the prediction. Our approach is similar to the methods used on images by

Simonyan et al. et al. [72] and Baehrens et al. [73]. Given a sequence 𝑋0 of length |𝑋0|, and class 𝑐 ∈ 𝐶,

a machine learning model provides a score function 𝑆𝑐(𝑋0). We rank the nucleotides of 𝑋0 based on their

influence on the score 𝑆𝑐(𝑋0). Since 𝑆𝑐(𝑋) is a highly non-linear function of 𝑋 with deep neural nets, it is

hard to directly see the influence of each nucleotide of 𝑋 on 𝑆𝑐. Mathematically, around the point 𝑋0, 𝑆𝑐(𝑋)

can be approximated by a linear function by computing the first-order Taylor expansion:

𝑆𝑐(𝑋) ≈ 𝑤𝑇𝑋 + 𝑏 =

|𝑋|∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (3.8)

where 𝑤 is the derivative of 𝑆𝑐 with respect to the sequence variable 𝑋 at the point 𝑋0:

𝑤 =
𝜕𝑆𝑐

𝜕𝑋

⃒⃒⃒⃒
𝑋0

= 𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 𝑚𝑎𝑝 (3.9)

This derivative is simply one step of backpropagation, and is therefore easy to compute. We do a pointwise

multiplication of the saliency map with the one-hot encoded sequence to get the derivative values for the

actual nucleotide characters of the sequence (A,T,C, or G) so we can see the influence of the character at each

29

position on the output score. Finally, we take the element-wise magnitude of the resulting derivative vector

to visualize how important each character is regardless of derivative direction. We call the resulting vector a

“saliency map[72]” because it tells us which nucleotides need to be changed the least in order to affect the

class score the most. As we can see from equation 3.8, the saliency map is simply a weighted sum of the input

nucleotides, where the each weight, 𝑤𝑖, indicates the influence of that nucleotide position on the output score.

Temporal Output Scores

Since DNA is sequential (i.e. can be read in a certain direction), it can be insightful to visualize the output

scores at each timestep (position) of a sequence, which we call the temporal output scores. Here we assume

an imaginary time direction running from left to right on a given sequence, so each position in the sequence is

a timestep in such an imagined time coordinate. In other words, we check the RNN’s prediction scores when

we vary the input of the RNN. The input series is constructed by using subsequences of an input 𝑋 running

along the imaginary time coordinate, where the subsequences start from just the first nucleotide (position),

and ends with the entire sequence 𝑋. This way we can see exactly where in the sequence the recurrent model

changes its decision from negative to positive, or vice versa. Since our recurrent models are bi-directional, we

also use the same technique on the reverse sequence. CNNs process the entire sequence at once, thus we can’t

view its output as a temporal sequence, so we use this visualization on just the RNN and CNN-RNN.

Class Optimization

The previous two visualization methods listed are representative of a specific testing sample (i.e. sequence-

specific). Now we introduce an approach to extract a class-specific visualization for a model, where we

attempt to find the best sequence which maximizes the probability of a positive class, which we call class

optimization. Formally, we optimize the following equation where 𝑆+(𝑋) is the probability (or score) of an

input sequence 𝑋 (matrix in our case) being a positive class computed by the softmax equation of our trained

model for a specific chromatin profile label:

argmax
𝑋

𝑆+(𝑋) + 𝜆‖𝑋‖22 (3.10)

where 𝜆 is the regularization parameter. We find a locally optimal 𝑋 through stochastic gradient descent,

where the optimization is with respect to the input sequence. In this optimization, the model weights remain

unchanged. This is similar to the methods used in Simonyan et al. [72] to optimize toward a specific image

30

class. This visualization method depicts the notion of a positive class for a particular chromatin label and is

not specific to any test sequence.

End-to-end Automatic Motif Extraction from the Dashboard

Our three proposed visualization techniques allow us to manually inspect how the models make their

predictions. In order to automatically find patterns from the techniques, we also propose methods to extract

motifs, or consensus subsequences that represent the positive binding sites. We extract motifs from each of

our three visualization methods in the following ways: (1) From each positive test sequence we extract a

motif from the saliency map by selecting the contiguous length-9 subsequence that achieves the highest sum

of contiguous length-9 saliency map values. (2) For each positive test sequence, we extract a motif from the

temporal output scores by selecting the length-9 subsequence that shows the strongest score change from

negative to positive output score. (3) For each different TF, we can directly use the class-optimized sequence

as a motif.

Experimental Setup

In order to evaluate our sequence visualization methods, we train and test three commonly used sequence-only

(i.e. no Hi-C inputs) deep neural network models: convolutional neural network (CNN), recurrent neural

network (RNN), and a combination of the two, a convolutional-recurrent neural network (CNN-RNN). Details

of our models are included in the Appendix. We run our experiments on the 108 K562 cell ENCODE ChIP-Seq

transcription factor (binary classification) datasets used in Alipanahi et al. [44]. Each TF dataset has an

average of 30,819 training sequences (with an even positive/negative split), and each sequence consists of 101

DNA-base characters (A,C,G,T). Every dataset has 1,000 testing sequences (with an even positive/negative

split). Positive sequences are extracted from the hg19 genome centered at the reported ChIP-Seq peak.

Negative sequences are generated by dinucleotide-preserving shuffle of the positive sequences. Due to the

separate train/test data for each TF, we train a separate model for each individual TF dataset.

Our CNN implementation involves a progression of convolution, nonlinearity, and maxpooling. This is

represented as one convolutional layer in the network, and we test up to 4 layer deep CNNs. The final layer

involves a maxpool across the entire temporal domain so that we have a fixed-size vector which can be fed into

a softmax classifier. Figure 3.6 (a) shows our CNN model with two convolutional layers. The input one-hot

encoded matrix is convolved with several filters (not shown) and fed through a ReLU nonlinearity to produce

a matrix of convolution activations. We then perform a maxpool on the activation matrix. The output of the

31

first maxpool is fed through another convolution, ReLU, and maxpooled across the entire length resulting in

a vector. This vector is then transposed and fed through a linear and softmax layer for classification.

Since there is no innate direction in genomic sequences, we use a bi-directional LSTM as our RNN model.

In the bi-directional LSTM, the input sequence gets fed through two LSTM networks, one in each direction,

and then the output vectors of each direction get concatenated together in the temporal direction and fed

through a linear classifier. Figure 3.6 (b) shows our RNN model. The input one-hot encoded matrix is fed

through an LSTM in both the forward and backward direction which each produce a matrix of column vectors

representing the LSTM output embedding at each timestep. These vectors are then averaged to create one

vector for each direction representing the LSTM output. The forward and backward output vectors are then

concatenated and fed to the softmax for classification.

Considering convolutional networks are designed to extract motifs, and recurrent networks are designed to

extract temporal features, we implement a combination of the two in order to find temporal patterns between

the motifs. Given an input matrix X ∈ R𝑇×𝑛𝑖𝑛 , the output of the CNN is Z ∈ R𝑇×𝑛𝑜𝑢𝑡 . Each column vector

of Z gets fed into the RNN one at a time in the same way that the one-hot encoded vectors get input to the

regular RNN model. The resulting output of the RNN H ∈ R𝑇×𝑑, where 𝑑 is the LSTM embedding size,

is then averaged across the temporal domain (in the same way as the regular RNN), and fed to a softmax

classifier. Figure 3.6 (c) shows our CNN-RNN model. The input one-hot encoded matrix is fed through one

layer of convolution to produce a convolution activation matrix. This matrix is then input to the LSTM,

as done in the regular RNN model from the original one-hot matrix. The output of the LSTM is averaged,

concatenated, and fed to the softmax, similar to the RNN.

Understanding Neural Networks Using the DeMo Dashboard

To evaluate the dashboard visualization methods, we first manually inspect the dashboard visualizations to

look for interpretable signals. Figure 3.7 shows examples of the DeMo Dashboard for three different TFs

and positive TFBS sequences. We apply the visualizations on the best performing models of each of the

three architectures. Each dashboard snapshot is for a specific TF and contains (1) JASPAR[74] motifs for

that TF, which are the “gold standard” motifs generated by biomedical researchers, (2) the positive TFBS

class-optimized sequence for each architecture (for the given TF of interest), (3) the positive TFBS test

sequence of interest, where the JASPAR motifs in the test sequences are highlighted using a pink box, (4) the

saliency map from each model on the test sequence, and (5) forward and backward temporal output scores

from the recurrent architectures on the test sequence. In the saliency maps, the more red a position is, the

32

ACTTGCAG

TF
BS

NO
N-

TF
BS

ACTTGCAG

TF
BS

NO
N-

TF
BS

ACTTGCAG

TF
BS

NO
N-

TF
BS

Convolution/ReLU

Maxpool

Convolution/ReLU/Maxpool

Linear & Softmax

LSTM

Average & Concatenate

Linear & Softmax

Convolution/ReLU

LSTM

Linear & Softmax

(a)

CNN
(b)

RNN
(c)

CNN-RNN

Average & Concatenate

Figure 3.6: Deep Motif Dashboard Local Sequence Model Architectures. Each model has the same
input (one-hot encoded matrix of the raw nucleotide inputs), and the same output (softmax classifier to
make a binary prediction). The architectures differ by the middle “module”, which are (a) Convolutional, (b)
Recurrent, and (c) Convolutional-Recurrent.

33

Figure 3.7: Deep Motif Dashboard. Dashboard examples for GATA1, MAFK, and NFYB positive TFBS
Sequences. The top section of the dashboard contains the Class Optimization (which does not pertain to a
specific test sequence, but rather the class in general). The middle section contains the Saliency Maps for a
specific positive test sequence, and the bottom section contains the temporal Output Scores for the same
positive test sequence used in the saliency map. The very top contains known JASPAR motifs, which are
highlighted by pink boxes in the test sequences if they contain motifs.

34

Saliency Map
(out of 500)

Conv Activations [44]
(out of 500)

Temporal Output
(out of 500)

Class Optimization
(out of 57)

CNN 243.9 173.4 N/A 19
RNN 138.6 N/A 53.5 11
CNN-RNN 168.1 74.2 113.2 13

Table 3.5: JASPAR motif matches against DeMo Dashboard and baseline motif finding methods using
Tomtom.

more influential it is for the prediction. In the temporal outputs, blue indicates a negative TFBS prediction

while red indicates positive. The saliency map and temporal output visualizations are from the same positive

test sequence. The numbers next to the model names in the saliency map section indicate the score outputs

of that model on the specified test sequence.

Saliency Maps (middle section of dashboard). By visual inspection, we can see from the saliency

maps that CNNs tend to focus on short contiguous subsequences when predicting positive bindings. In other

words, CNNs clearly model “motifs” that are the most influential for prediction. The saliency maps of RNNs

tend to be spread out more across the entire sequence, indicating that they focus on all nucleotides together,

and infer relationships among them. The CNN-RNNs have strong saliency map values around motifs, but we

can also see that there are other nucleotides further away from the motifs that are influential for the model’s

prediction. For example, the CNN-RNN model is 99% confident in its GATA1 TFBS prediction, but the

prediction is also influenced by nucleotides outside the motif. In the MAFK saliency maps, we can see that

the CNN-RNN and RNN focus on a very wide range of nucleotides to make their predictions, and the RNN

doesn’t even focus on the known JASPAR motif to make its high confidence prediction.

Temporal Output Scores (bottom section of dashboard). For most of the sequences that we tested,

the positions that trigger the model to switch from a negative TFBS prediction to positive are near the

JASPAR motifs. We did not observe clear differences between the forward and backward temporal output

patterns.

In certain cases, it’s interesting to look at the temporal output scores and saliency maps together. An

important case study from our examples is the NFYB example, where the CNN and RNN perform poorly, but

the CNN-RNN makes the correct prediction. We observe that the CNN-RNN is able to switch its classification

from negative to positive, while the RNN never does. To understand why this may have happened, we can

see from the saliency maps that the CNN-RNN focuses on two distinct regions, one of which is where it flips

its classification from negative to positive. However, the RNN doesn’t focus on either of the same areas,

and may be the reason why it’s never able to classify it as a positive sequence. The fact that the CNN is

not able to classify it as a positive sequence, but focuses on the same regions as the CNN-RNN (from the

35

saliency map), may indicate that it is the temporal (i.e. long range) dependencies between these regions

which influence the binding. In addition, the fact that there is no clear JASPAR motif in this sequence may

show that the traditional motif approach is not always the best way to model TFBSs.

Class Optimization (top section of dashboard). Class optimization on the CNN model generates

concise representations which often resemble the known motifs for that particular TF. For the recurrent

models, the TFBS positive optimizations are less clear, though some aspects stand out (like “AT” followed

by “TC” in the GATA1 TF for the CNN-RNN). We notice that for certain models, their class optimized

sequences optimize the reverse complement motif (e.g. NFYB CNN optimization). The class optimizations

can be useful for getting a general idea of what triggers a positive TFBS for a certain TF.

Automatic Motif Extraction from Dashboard. In order to evaluate each model’s capability to auto-

matically extract motifs, we compare the found motifs of each method (introduced in section 3.6.1) to the

corresponding JASPAR motif, for the TF of interest. We do the comparison using the Tomtom [75] tool,

which searches a query motif against a given motif database (and their reverse complements), and returns

significant matches ranked by p-value indicating motif-motif similarity. Table 3.5 summarizes the motif

matching results comparing visualization-derived motifs against known motifs in the JASPAR database. We

are limited to a comparison of 57 out of our 108 TF datasets by the TFs which JASPAR has motifs for.

We compare four visualization approaches: Saliency Map, Convolution Activation[44, 76], Temporal Output

Scores and Class Optimizations. The first three techniques are sequence specific, therefore we report the

average number of motif matches out of 500 positive sequences (then averaged across 57 TF datasets). The

last technique is for a particular TFBS positive class.

We can see from Table 3.5 that across multiple visualization techniques, the CNN finds motifs the best,

followed by the CNN-RNN and the RNN. However, since CNNs perform worse than CNN-RNNs by AUC

scores, we hypothesize that this demonstrates that it is also important to model sequential interactions among

motifs. In the CNN-RNN combination, CNN acts like a “motif finder” and the RNN finds dependencies among

motifs. This analysis shows that visualizing the model’s classifications can lead to a better understanding of

using neural networks for chromatin profile prediction.

3.6.2 Identifying Important Long Range Interactions

One benefit of the ChromeGCN formulation is that we use explicit long-range window dependencies for

epigenetic state prediction. As a result, we propose a method to identify the important dependencies for

36

Figure 3.8: Hi-C Saliency Map Visualization. Left: Saliency Map for all 500k edges in A𝐻𝑖-𝐶 for GM12878
Chromosome 8 (total of 23,600 windows). The darker the line, the more important that edge was for predicting the
correct chromatin profile, indicating that the Hi-C data was used by the GNN for that particular interaction. Right:
Fine grained analysis of the Chromosome 8 Saliency Map. This figure shows the normalized Saliency Map values for
for 250 windows (total of 250kbp input) in chromosome 8.

ChromeGCN’s predictions. We call our proposed method Hi-C saliency maps. Saliency maps were introduced

by [72] to understand the importance of each pixel in an input x𝑖 for the prediction of the image’s true class.

We instead are trying to understand the importance of each edge in A′ for the prediction of the epigenetic

state over all windows. The A′ saliency map is defined as the absolute value gradient of a true class prediction

𝑦ℓ𝑖 with respect to A′, where ℓ is a true class for sample 𝑖. The absolute value gradient is then element-wise

multiplied by A′ to zero out “non-edges”. Since there are 𝑁 samples, and there can be multiple true labels ℓ

for a particular sample ŷi, we define the Hi-C saliency map, 𝑆𝐻𝑖-𝐶 , as the accumulated absolute gradient

over all samples and true labels w.r.t A′:

𝑆𝐻𝑖-𝐶 =

𝑁∑︁
𝑖=1

∑︁
ℓ∈ŷi

A′ ∘
⃒⃒⃒⃒
𝜕𝑦ℓ𝑖
𝜕A′

⃒⃒⃒⃒
, (3.11)

where ∘ is the Hadamard product. Since the saliency map of all windows 𝑁 are accumulated, we normalize

𝑆𝐻𝑖-𝐶 across each row to a 0-1 range so that we can interpret the edges at each window.

While Hi-C contact maps tell us where the contacts are, Hi-C saliency maps show us how important each

contact is for the epigenetic states. We define Eq. 3.11 to be over all labels, but we can easily visualize the

Hi-C saliency, or important edges for one particular label. We show both the full Hi-C saliency across all

labels, as well as for one specific label (YY1) in the experiments.

37

Long Range Interaction Visualization

A significant merit of ChromeGCN is that by using known 3D genome relationships, we can find and visualize

the critical relationships for epigenetic state prediction. To understand how important the Hi-C edges are for

the predictions of ChromeGCN, we visualize the saliency map of A′, as explained in Section 3.6.2.

Fig. 3.8 shows the Hi-C saliency map for chromosome 8 in GM12878. Fig. 3.8 (left) shows all 500k Hi-C

contacts used chromosome 8. Windows are represented as points along the circle, with a total of 23,600

windows. Lines between the windows represent Hi-C edges, and the darkness of the line represents the

saliency, or importance of that edge for chromatin state prediction across all windows in chromosome 8.

Fig. 3.8 (right) shows the saliency map for 250 windows (total of 250kbp input) in chromosome 8. Cell (𝑖, 𝑗)

tells us the importance of window column 𝑗 for the prediction of window row 𝑖 labels.

While Fig 3.8 shows the Hi-C saliency map for all epigenetic state labels, we can also visualize the Hi-C

saliency map for individual labels. The inner loop of Eq. 3.11 changes to only use the label of interest.

3.7 Discussion and Extensions

We’ve focused mostly on predicting the chromatin profile from DNA. But ultimately we’re interested in

predicting how and when genes are expressed or repressed. There are a lot of opportunities to extend this

work by incorporating gene expression as well as looking at the causal relationships between the sequence and

gene expression profiles. Several works have shown that it’s possible to accurately predict gene expression

from chromatin profile signals [77, 78]. However, we want to predict expression directly from sequence as this

allows us to analyze how mutations can effect all downstream processes. By including gene expression in our

set of output labels, we can both predict the effects of mutations on gene expression, as well as understand

the interactions between sequence, chromatin profile, and expression.

3.8 Summary

In this chapter, we present ChromeGCN, a novel framework that combines both local sequence and long-range

3D genome data (via Hi-C data) for chromatin profile prediction. We show that Graph neural network models

can effectively exploit and discover important interactions in DNA for functional genomics. We demonstrate

experimentally that ChromeGCN outperforms previous state-of-the-art methods that only use local sequence

data. Additionally, we introduce several methods to identify and visualize important genomic features and

38

interactions. These include Hi-C saliency maps to uncover important long range interactions, as well as the

Deep Motif Dashboard to identify important sequence features.

While we demonstrate the importance of ChromeGCN on the task of chromatin profile prediction,

ChromeGCN is a generic model for incorporating 3D genome structure into any genome sequence prediction

task. ChromeGCN introduces an effective and efficient framework to model such relationships for better

chromatin modeling, as well as an easy way to interpret important relationships.

39

Chapter 4

Modeling Virus-Host Protein-Protein

Interactions with DeepVHPPI

Proteins are essential biomolecules that carry out critical functions within our bodies. A key property of

proteins is that they interact with other proteins in order to carry out specific functions. So in order to

determine what a protein really does, we must first know who it interacts with. This is critically important

especially when studying viruses because viruses infect humans through protein-protein interactions. For

example the Covid-19 Spike protein interacts with the Human ACE2 protein to enter human cells and

replicate. Predicting and understanding protein-protein interactions directly from protein sequences is is

critical for preventing and slowing the emergence of novel infectious diseases. The problem with sequence-based

interaction models is that they do not naturally incorporate important structural and semantic information

of individual proteins that are important for predicting interactions.

Research Question 2: Can we incorporate individual protein structure and semantics into a sequence

based protein-protein interaction prediction model?

In this chapter, we propose DeepVHPPI, a novel deep learning framework combining a self-attention-based

transformer architecture and a transfer learning training strategy to predict interactions between human

proteins and virus proteins that have novel sequence patterns. We show how to use this framework to predict

novel interactions for SARS-CoV-2, H1N1, and Ebola. Furthermore, we demonstrate how our framework can

be used to predict and understand how virus mutations can influence interactions, and therefore infections.

40

Zika

SARS-CoV-2

HIV

HIV

Zika

host
protein

known
interaction

MSTCLAMVK

Novel virus protein

Host protein

Virus protein

CGPKKSTNL

SPKRARSV

MFVFLVLL

ADYSVLYNS
LDKYFKN

HKMFYN

VLNDILS

virus
protein

novel virus
protein

potential
interaction

Figure 4.1: Virus-Host Protein-Protein Interactions (PPI). Overview of our task, where there is a set of previously
known protein-protein interactions. Our goal is to predict all possible Virus–Human interactions for a novel virus
protein, such as SARS-CoV-2.

4.1 Introduction

A protein-protein interaction (PPI) denotes a critical process where two proteins come in contact with each

other to carry out specific biological functions. Virus proteins, such as those from the 2019 novel coronavirus,

also known as SARS-CoV-2, interact with human proteins to infect the human body, and ultimately overtake

physiological functions (e.g., alveolar gas exchange). Accordingly, protein-protein interactions are often the

subject of intense research by virologists and pharmaceutical scientists. Knowing and understanding which

host proteins a virus with a novel sequence pattern may interact with is crucial. Such discoveries will expedite

our understanding of virus mechanisms and may aid in the development of vaccines, diagnostics, therapeutics,

and antibodies.

We aim to infer possible interactions between all host proteins and a novel virus protein or a novel

variant. This setup is beneficial for three reasons. First, our model can predict an initial set of interactions if

experiments have not yet been done. Second, our model can expand the initial set of experimental interactions,

resulting in a more complete interactome. Finally, such computational models enable us to test hypotheses

such as the effect of mutations.

While protein-protein interaction information is expensive to obtain, protein sequence information is

cheap and fast. in this chapter, we propose a deep neural network (DNN) based framework, DeepVHPPI,

41

MFVFLVLPHISHKV
x

z z

MSPHISHNSI

x

x’

x

x

Figure 4.2: DeepVHPPI Architecture. A one-hot encoded sequence x gets input to the convolutional layers
to find protein “motifs”. The convolution outputs are then concatenated along the depth dimension and
input to a feedforward layer. Finally, several Transformer encoder layers model the dependencies between the
learned convolutional motifs, producing a final representation z. The representation can then be used for any
arbitrary classifier layer to predict protein properties.

to predict protein interactions between virus proteins and host proteins using sequence information alone.

DeepVHPPI includes two key designs: (1) Motivated by the evidence that co-occurring short polypeptide

sequences between interacting protein partners appear to be conserved across different organisms [79], we

introduce a novel DNN architecture to learn short sequence patterns, or “protein motifs” via self-attention

based deep representation learning. (2) since virus-host PPI data is limited, we propose a transfer learning

approach to pretrain the network on general protein syntax and structure prediction tasks. The objective

of this transfer learning approach is to improve generalization on the task of predicting protein-protein

interactions involving novel virus proteins with unseen sequences.

In summary, we make the following contributions:

• We introduce the DeepVHPPI, a novel deep neural framework for protein sequence based Virus–Host

PPI prediction for novel virus proteins or virus proteins with novel variants.

• DeepVHPPI combines a self-attention based transformer architecture and transfer learning for PPI

prediction in the context of novel virus sequences (where no previous interactions are known).

42

• We evaluate DeepVHPPI with validated interactions on Virus–Host PPIs across three virus types: SARS-

CoV-2, H1N1 and Ebola datasets. We show that DeepVHPPI outperforms the previous state-of-the-art

methods, as well as provide an analysis of SARS-CoV-2 Spike protein mutations.

4.2 Background and Task Formulation

Proteins are biomolecules that are comprised of a linear chain of amino acids. This allows them to be

described by a sequence of tokens (each token is one amino acid (AA)). The dictionary of possible tokens

contains 20 standard AAs, two non-standard AAs: selenocysteine and pyrrolysine, two ambiguous AAs, and

a special character for unknown (i.e. missing) AAs. In other words, we can represent proteins as strings built

from a dictionary 𝑉 of size |𝑉 | = 25. We represent a protein x as a sequence of characters 𝑥1, 𝑥2, ..., 𝑥𝐿. Each

character 𝑥𝑖 is one possible amino acid from 𝑉 . Proteins rarely act in isolation but instead interact with other

proteins to perform many biological processes. This is referred to as a protein-protein interaction (PPI).

Task Formulation. Viruses infect a host through Virus-Host PPIs. Therefore, predicting which host

proteins a virus protein will bind to is a key step in understanding viral pathogenesis1 and designing viral

therapies. Identifying virus-host PPI interactions can be formulated as a binary classification problem: “given

virus protein sequence x𝑞 and host protein sequence x𝑘, does the pair interact or not?”. Fig. 4.1 gives a

visual representation of the types of PPIs that we consider with our model. that occur within the human

body. There are three types of proteins in this diagram: Host (human) proteins, previously known virus

proteins, and a novel virus protein. As shown with solid lines, there are a set of known interactions between

a pairs of host proteins as well as between known virus and host proteins. We consider known host-host

interactions, known virus-host interactions, and unknown virus-host interactions. Fig. 4.1 visualizes the case

of predicting unknown interactions between human proteins and SARS-CoV-2 proteins, given what is known

about interactions with proteins from HIV and Zika. Our target task is to predict all possible unknown sets

of interactions between the novel virus and host proteins, as shown with a dashed line. This formulation

motivates the use of transfer learning because we want to transfer the learned interactions from known viruses

to a novel virus. Specifically, we’re concerned here with proteins from novel viruses, which is different than a

novel protein from a known virus in our training set

Biological Experiments to Detect PPIs. It remains difficult to accurately uncover the full set of

protein-protein interactions from biological experiments. Traditionally, PPIs have been studied individually
1Mechanisms by which virus infection leads to disease in the target host

43

TMQ_HRSPS_DCNH_A LSWGKVNVEDA

 A M QA beta barrel

MLM SS CT RH PPI

PSRDCNHIA

interaction: yes/no

1. Masked Language Model (MLM) 2. Structure Prediction (SP) 3. PPI Prediction
(virus) (host)

transfer

MSVKHSKH

DeepVHPPIDeepVHPPI DeepVHPPI DeepVHPPI
transfer

Figure 4.3: Transfer Learning Framework for DeepVHPPI. First, we pretrain the network on the Masked
Language Model (MLM) task from a large repository of unlabeled protein sequences. Second, we further
pretrain the network on a set of Structure Prediction (SP) tasks including secondary structure (SS), contact
(CT), and remote homology (RH). Finally, we fine-tune the network on the protein-protein interaction (PPI)
prediction task. The base DeepVHPPI shown as the large dark grey block is shared across all tasks, and each
task uses its own classifier, shown as small light grey blocks.

through the use of genetic, biochemical, and biophysical techniques such as measuring natural affinity of

binding partners in-vivo or in-vitro [80]. While accurate, these small-scale experiments are not suitable for

full proteome analyses [81]. This is because, for example, there are roughly |𝑃ℎ| ≈ 20, 000 different human

proteins, and |𝑃𝑣| ≈ 26 different virus proteins (in SARS-CoV-2, not considering mutated variants), so the

potential search space of V–H interactions is |𝑃𝑣| × |𝑃ℎ| = 0.5M. This number can grow significantly larger

when you consider virus protein variants.

High-throughput technologies, such as yeast two-hybrid screens (Y2H) [82] and Affinity-purification–mass

spectrometry (AP-MS) [83, 84], are chiefly responsible for the relatively large amount of PPI evidence.

Notably, the first experimental study for SARS-CoV-2 interactions used AP-MS [84]. However, these datasets

are often incomplete, noisy, and hard to reproduce [85]. The resulting low sensitivity of high-throughput

experiments is unfavorable when trying to fully understand how the virus interacts with humans.

Past Machine Learning based PPI Prediction Studies. Most previous computational methods to

predict PPIs have focused on within-species interactions [86, 87, 88, 89, 79, 90, 91, 92, 93]. These methods

do not easily generalize to cross-species interactions (e.g., V–H) [94]. Few methods have attempted to predict

cross-species protein interactions between humans and a novel virus [2, 94]. Furthermore, previous methods

operating at the sequence level do not use structural information from previously known proteins to aid

learning [4]. By training virus–host interactions from a variety of viruses and leveraging prior structural

information, our proposed model, DeepVHPPI, allows us to predict the host interactions of an unseen virus

protein.

When designing machine learning models to predict V–H PPIs, two challenges stand out: (1) Existing

44

Dataset Category Output Shape |Total| |Train| |Valid| |Test|
Swiss-Prot MLM 𝐿× |𝑉 | 562,280 562,280 N/A N/A
Secondary Structure SP 𝐿× 3 11,361 8,678 2,170 513
Contact SP 𝐿× 𝐿 25,563 25,299 224 40
Homology SP 1195× 1 13,766 12,312 736 718
SARS-CoV-2 PPI 1× 1 815,279 199,346 49,836 610,950
H1N1 [2] PPI 1× 1 22,291 21,910 N/A 381
Ebola [2] PPI 1× 1 22,982 22,682 N/A 300

Table 4.1: Datasets: For each category of training: Language Model (LM), Intermediate (SP) and PPI, we
provide the dataset output type and training/validation/test set sizes. 𝐿 represents the sequence length, and
|𝑉 | represents the vocabulary size.

Method SS Contact Homology
One-hot [95] 0.69 0.29 0.09
Alignment [95] 0.80 0.64 0.09
ResNet [95] 0.70 0.20 0.10
LSTM [95] 0.71 0.19 0.12
Transformer [95] 0.70 0.32 0.09
DeepVHPPI 0.70 0.51 0.12
DeepVHPPI + MLM 0.71 0.58 0.22
DeepVHPPI (multi-task) 0.64 0.53 0.13
DeepVHPPI + MLM (multi-task) 0.71 0.70 0.38

Table 4.2: Structure prediction (SP) pretraining task results. For SS and Homology, accuracy is reported.
For Contact, precision at 𝐿/5 for for medium and long-range contacts is reported.

sequence analysis tools focus on global alignment patterns while PPIs mostly depend on local binding motif

patterns. (2) It is especially difficult for virus proteins that are unknown or are new variants, since there is

limited or no experimental interaction data for those sequences. This requires the machine learning model to

transfer knowledge from one domain (previously known sequences) to a new domain (novel virus sequences).

We argue that this is a realistic task when an unknown virus is newly discovered. In other words, we want

to rapidly predict all the host interactions of a newly sequenced virus protein. In this work, we propose a

deep learning based pipeline to combine neural representation learning and transfer learning for solving the

listed obstacles. Recent literature shows some successful transferability of large scale deep learning models on

protein sequences to multiple downstream tasks [95, 5]. To the authors’ best knowledge, we are the first to

adapt the self-attention based transfer learning to the virus-host PPI prediction task.

4.3 Proposed DNN Framework for Virus Host PPI Prediction: Deep-

VHPPI

We denote each amino acid in a protein sequence as xCLS,x1,x2, ...,x𝑛, where x𝑖 ∈ R|𝑉 | denotes a one-hot

vector and xCLS is a special classification token. Given virus protein x𝑎 ∈ R𝑛×|𝑉 | and human protein

x𝑏 ∈ R𝑛×|𝑉 |, the goal of DeepVHPPI is to predict the interaction likelihood 𝑦 of the pair of proteins. In

45

this section, we explain the DeepVHPPI architecture, as shown in Fig. 4.2, which maps a protein sequence

x ∈ R𝑛×|𝑉 | to representation z ∈ R𝑛×𝑑. In section 4.3.1, we introduce the Transformer module which maps a

protein sequence x to a hidden representation, z. In section 4.3.2, we introduce the classification module which

takes as input both the virus protein hidden representation, z𝑎, and the host protein hidden representation,

z𝑏, and outputs the likelihood that the two proteins interact.

4.3.1 Transformer Layers to Learn Representations of Protein Sequences

Transformers [19] have obtained state-of-the-art results in many domains such as natural language [50],

images [96], and protein sequences [5]. A Transformer encoder layer is a parameterized function mapping

input token sequence x ∈ R𝑛×𝑑 to z ∈ R𝑛×𝑑. At a high level, a Transformer encoder layer “transforms” the

representations of input tokens (e.g., amino acids) by modeling dependencies between them in the form of

attention. The importance, or weight, of token 𝑥𝑗 with respect to 𝑥𝑖 is learned through attention. Each

Transformer encoder layer performs the following computation on input x:

𝛼
(ℎ)
𝑖,𝑗 = softmax𝑗

(︃⟨︀
𝑄(ℎ) (x𝑖) ,𝐾

(ℎ) (x𝑗)
⟩︀

√
𝑘

)︃
(4.1)

u′
𝑖 =

𝐻∑︁
ℎ=1

W𝑇
𝑐,ℎ

𝑛∑︁
𝑗=1

𝛼𝑖,𝑗𝑉
(ℎ) (x𝑗) , (4.2)

u𝑖 = LayerNorm (x𝑖 + u′
𝑖) , (4.3)

z′𝑖 = W𝑇
2 GELU

(︀
W𝑇

1 u𝑖

)︀
(4.4)

z𝑖 = LayerNorm (u𝑖 + z′𝑖) , (4.5)

where 𝑄(ℎ) (x𝑖)=W𝑇
ℎ,𝑞x𝑖, 𝐾(ℎ) (x𝑖)=W𝑇

ℎ,𝑘x𝑖, 𝑉 (ℎ) (x𝑖)=W𝑇
ℎ,𝑣x𝑖, and Wℎ,𝑞,Wℎ,𝑘, Wℎ,𝑣 ∈ R𝑑×𝑘, W1 ∈

R𝑑×𝑚,W2 ∈ R𝑚×𝑑, W𝑐,ℎ ∈ R𝑘×𝑑. 𝐻, 𝑘, 𝑚, and 𝑑 are hyperparameters where 𝐻 is the total number of

Transformer “heads”, and 𝑘, 𝑚, and 𝑑 are weight dimensions. GELU is a nonlinear layer [97], and LayerNorm

is Layer Normalization [28]. The final z representation after 𝐿 layers is the output of the Transformer encoder,

which can then be used by a classification layer. We note that Transformers are invariant to the sequence

length, always producing an output of the same length as the input.

Convolutional Layers to Extract Local Motif Patterns. Protein sequences have short, local patterns

known as sequence motifs, that have been a major bioinformatics tool for years [98]. If we view amino acids

46

as the protein analog of natural language characters, motifs are analogous to words. In particular, virus

proteins that successfully mimic host proteins and interact with other host proteins often display similar

motifs to the target of mimicry [99]. To take advantage of these patterns, we introduce an architecture

variant that stacks convolutional layers and transformer layers. The key contribution of this variation is to

automatically learn sequence motifs via convolutional layers (motif module), and compose local patterns

together via deeper transformer layers. Our motif module utilizes different length convolutional filters to find

motifs directly from sequence end-to-end.

Specifically, we apply six temporal convolutional filters of sizes {(1×128), (3×256), (5×384), (7×512),

(9×512), (11×512)} to the one-hot encoded protein sequence 𝑥 ∈ R∈𝐿×|𝑉 |, where the first number of each

filter is the width and the second number is the depth. Each filter is zero-padded to preserve the original

sequence length. We depth-concatenate the output of the convolutional, producing �̄� ∈ R∈𝐿×2304. �̄� is fed

to a Feedforward layer to produce a 𝐿 × 𝑑 matrix 𝑥′ = W𝑇
1 GELU

(︀
W𝑇

2 �̄�
)︀
. Finally, to encode positional

information we add sinusoidal position tokens [19] to the 𝑥′ matrix. This output 𝑥′ is used as input to a

Transformer encoder.

Using several convolutional filters of varying size allows the model to learn a diverse set of motifs.

Specifically, in our implementation, the set of filters allows the model to learn 2304 unique motifs of varying

lengths. DeepVHPPI is illustrated in Fig. 4.2 (left).

4.3.2 Classification Layer to Predict Protein-Protein Interactions

The Convolutional and Transformer layers map virus protein sequence x𝑎 to z𝑎 and host sequence x𝑏 to z𝑏.

The final layer of DeepVHPPI is to predict the interaction likelihood of x𝑎 and x𝑏. We first obtain a single

vector representation of each protein using the the classification token outputs from the Transformer, z𝑎CLS

and z𝑏CLS. In other words, each protein is fed into the shared Transformer model, and outputs an independent

vector. Using these representations, we can predict 𝑦, the likelihood that the two proteins interact with one

another:

v = concat(z𝑎CLS, z
𝑏
CLS) (4.6)

𝑦 = w2

(︀
GELU (W1v + 𝑏)

)︀
, (4.7)

where W1 ∈ R2𝑑×𝑑, and w2 ∈ R1×𝑑 are projection matrices, and v ∈ R2𝑑×1 is a concatenation of the two

protein representations. GELU is a nonlinear activation layer [97]. The virus sequence is always the first 𝑑

47

weights in the concatenated representation, so the classifier is not invariant to the protein ordering. 𝑦 is then

fed through a sigmoid function to obtain the interaction probability.

4.3.3 Proposed Training: Transfer Learning for Virus–Host Protein-Protein

Interaction Prediction

Our proposed DeepVHPPI network allows us to predict the interaction likelihood of two proteins given only

sequence information of each protein. With this framework, we are faced with several difficulties in order

to predict Virus-Host interactions. First, there is limited Virus-Host PPI data available to train on. In

particular, there are few or no interactions known for novel virus protein sequences. Second, protein structure

information is important for accurate PPI prediction [100] Using sequence features alone may not be sufficient

for predicting certain interactions, but obtaining structure for novel proteins is a slow process. Both of these

obstacles require a model that can generalize from knowledge learned in related protein prediction tasks.

To this end, we introduce a “transfer learning” three-step training procedure. This involves pretraining the

Convolutional and Transformer layers (Section 4.3.1) of DeepVHPPI, before fine-tuning the entire network

(Section 4.3.1 and 4.3.2) on the PPI task.

The first step is to pretrain the DeepVHPPI using Masked Language Model (MLM) pretraining in order

to learn generic representations from unlabeled protein sequences; the second step is to further pretrain the

network using Structure Prediction (SP) to learn 3D structural representations; and the third step is to

finetune the network on the Virus–Host PPI data for previously known viruses. Pretraining the network

allows it to learn representations that transfer well to the PPI task for novel (i.e., unseen) virus sequence. An

overview of our proposed training procedure is shown in Figure 4.3, and we explain each training step below.

Each task uses a task-specific classifier, shown as MLM, SS, CT, RH, and PPI in Figure 4.3. In other words,

the DeepVHPPI is shared between all tasks, but the classifier layers are not.

MLM: Masked Language Model Pretraining

Recent literature on learning self-supervised representations of natural language have shown that pretraining

using self-supervised and supervised methods encourages the model to learn semantics about the input

domain that can help prediction accuracy on new tasks [24, 101, 102, 103, 50]. In order to learn basic protein

semantics and syntax, leveraging large databases of protein sequences is paramount. Masked language model

(MLM) training is a self-supervised technique to allow a model to build rich representations of sequences.

48

Specifically, given a sequence x, the MLM objective optimizes the following loss function:

ℒMLM = Ex∼𝑋E𝑀

∑︁
𝑖∈𝑀

− log 𝑝
(︀
x𝑖 | x/𝑀

)︀
(4.8)

where M is a set of indices to mask, replacing the true character with a dummy mask character. The total

loss is a sum of each masked character’s negative log likelihood of the true amino acid x𝑖 its context set of

characters x/𝑀 . Specifically, for each training sample, we mask out a random 15% of the token positions for

prediction. If the 𝑖-th token is chosen, it is replaced with (1) the MASK token 80% of the time (2) a random

token 10% of the time (3) the unchanged i-th token 10% of the time. We use the output of the Transformer

encoder, z to predict the likelihood of each amino acid a each missing token x𝑖 using the following linear

mapping:

ŷ𝑖 = Wz𝑖 + 𝑏, (4.9)

with learned matrix W ∈ R|𝑉 |×𝑑, bias 𝑏, and DeepVHPPI output z𝑖 ∈ R𝑑×1. 𝑦𝑖 is then fed through a softmax

function to obtain class probabilities, 𝑝
(︀
𝑥𝑖 | 𝑥/𝑀

)︀
.

SP: Structure Prediction Pretraining

Masked language model pretraining uses large amounts of unlabeled data to learn protein sequence semantics.

However, a key aspect of whether two proteins interact or not is the structure of each protein. Obtaining

structural information is slow and expensive, so we generally do not have structure information for all proteins

from a novel virus. We leverage existing structural information to further pretrain DeepVHPPI and learn

structure from sequence by predicting known structures. We consider three structure-based classification

tasks: (1) Secondary Structure (SS) prediction (2) Contact prediction, and, (3) Homology prediction. Each

task is explained below.

Secondary Structure Prediction. Protein secondary structure is the three dimensional form of local

segments of proteins. Each character in the sequence can be labeled by its secondary structure, which is one

of |𝐶| classes where 𝐶 = {Helix, Strand, Other}. This results in a sequence tagging task where each input

amino acid character x𝑖 is mapped to a label 𝑦𝑖 ∈ 𝐶. We predict the likelihood of each class for 𝑥𝑖 using the

following linear mapping:

ŷ𝑖 = Wz𝑖 + 𝑏, (4.10)

with learned matrix W ∈ R|𝐶|×𝑑, bias 𝑏, and DeepVHPPI output z𝑖 ∈ R𝑑×1. 𝑦 is then fed through a softmax

function to obtain class probabilities.

49

Contact Prediction. Protein contact maps are a simplified depiction of the global 3D structure protein,

where binary contact points indicated interactions in the 3D space. Contact prediction aims to predict the

contact of each set of amino acid pairs in the sequence. Pair (𝑥𝑖 , 𝑥𝑗) of input amino acids from sequence x is

mapped to a label 𝑦𝑖𝑗 ∈ {0, 1} indicating whether or not the amino acids are physically close (< 8Å apart) to

each other. To produce the contact likelihood of pair (𝑥𝑖, 𝑥𝑗), we use the following formula which preserves

non-directionality of contacts:

𝑦 =
(︀
(z𝑖W1 · z𝑗W2) + (z𝑖W2 · z𝑗W1)

)︀
/2, (4.11)

where {W1,W2} ∈ R𝑑×𝑑. 𝑦 is then fed through a sigmoid function to obtain the contact probability.

Remote Homology Detection. Remote homologues are pairs of proteins that share the same functional

class, but have drastically different sequences. The goal of remote homology detection is predict the structural

and functional class of a protein. Since proteins evolve, many proteins are structurally (and thus, functionally)

similar, although their sequences are slightly different. Accurately predicting the homology of a protein would

allow the model to group similar structural proteins together. We consider predicting the remote homology

of a protein in terms of structural “fold” classes (e.g. Beta Barrel). This is a protein classification task where

each input sequence x is mapped to a label 𝑦 ∈ 𝐶, where |𝐶| = 1195 different possible protein folds. We use

the designated CLS token from the DeepVHPPI to predict one of the |𝐶| labels for a given sequence. We use

a single linear layer mapping z𝑖 to a |𝐶|-dimensional vector:

ŷ = Wz𝑖 + 𝑏, (4.12)

where W ∈ R|𝐶|×𝑑 is a projection matrix and z𝑖 ∈ R𝑑×1 is the CLS token output vector from the Transformer.

𝑦 is fed through a softmax function to obtain class probabilities.

Multi-task Training. For secondary structure and contact prediction, we use a binary cross-entropy loss,

and for remote homoloy, we use cross entropy. We train all three structure prediction tasks simultaneously by

sampling a new task uniformly in each gradient descent batch.

Finetuning on Virus–Host Protein-Protein Interaction Task.

After MLM and SP pretraining, the final task is to finetune the model using the classifier in Section 4.3.2 on

the known (i.e. experimentally validated) PPI data for previously known virus proteins. Once this model

is trained, we can use it on pairs of Virus–Host interaction sequences where the virus was not used during

50

Method AUROC AUPR F1(%) P@100
Embedding+RF [94] 0.748 0.071 0.116 0.126
DeepVHPPI 0.740 0.065 0.104 0.129
DeepVHPPI+MLM 0.751 0.070 0.110 0.147
DeepVHPPI+MLM+SP 0.753 0.076 0.114 0.151

Table 4.3: Human and SARS-CoV-2 Interaction Predictions. Each metric is reported as the mean across all virus
proteins. Best results are reported in bold.

H1N1 Ebola
Method AUROC AUPR F1(%) AUROC AUPR F1(%)
SVM [2] 0.886 - 76.2 0.867 - 76.0
DeepVHPPI 0.903 0.898 84.4 0.912 0.953 86.0
DeepVHPPI+MLM 0.908 0.903 85.5 0.953 0.961 90.4
DeepVHPPI+MLM+SP 0.945 0.948 86.5 0.968 0.974 89.6

Table 4.4: Virus–Human PPI Tasks from Zhou et al. [2]. Best results are in bold. “-” indicates the metric
was not reported.

training. The pretraining method on generic tasks learn structures of proteins which generalize well to unseen

proteins.

Method AUROC AUPR F1
SVM [2] 0.858 - 79.2
Embedding + RF [94] 0.871 - 79.8
DeepVHPPI+MLM+SP 0.886 0.806 80.6

Table 4.5: Virus–Human PPI Tasks from Barman
et al. [3]. Best results are in bold. “-” indicates the
metric was not reported.

Method AUROC AUPR F1
DeNovo [4] - - 81.9
SVM [2] 0.897 - 84.2
DeepVHPPI+MLM+SP 0.989 0.991 95.9

Table 4.6: SLiM PPI Tasks from Eid et al. [4]. Best
results are in bold. “-” indicates the metric was not
reported.

4.4 Related Work

Protein-Protein Interaction Prediction. Many previous PPI works focus on developing intra-species

interactions [104, 86, 105, 106, 107, 108, 109]. In other words, they would have one model for only Human–

Human interactions and another model for only Yeast–Yeast interactions. Cross-species interaction prediction

instead relates to where each protein in the interaction comes from a different species. Many works predict

cross-species PPIs where the testing set contains proteins that are in the training set [110, 111, 112, 113, 3].

These methods do not reflect the real-world setting for a novel virus since we don’t have training proteins

available for the virus. Additionally, PPI prediction methods generally perform much better for test pairs

that share components with a training set than for those that do not [114]. Few works have focused on

the more difficult task of cross-species interaction prediction where one of the protein species is completely

unseen during training, which is what our work tackles. DeNovo [4] used an SVM for cross species interaction

51

prediction. Yang et al. [94] introduce a deep learning embedding method combined with a random forest.

Zhou et al. [2] improved DeNovo’s SVM for novel Virus–Human interaction.

Protein Sequence Classification. Machine learning methods have achieved considerable results predicting

properties of proteins that have yet to be experimentally validated by experimental studies. [115, 116]

introduce multitask deep learning models for sequence labeling tasks such as SS prediction. [5, 95, 117] focus

on methods of language model pretraining for generalizable representations of sequences. In particular, [95, 5]

and [118] showed that self-supervised pretraining can produce protein representations that generalize across

protein domains.

Transformers. Transformers [19] obtained state-of-the-art results on several NLP tasks [50]. One problem

with the vanilla Transformer model on token level inputs is that locality is not preserved. [119] used varying

convolutional filters on characters at the word level and took the mean of the output to get a single vector

representation for each word. Since proteins have no inherent “words” we use the convolutional output for

each character as its local word. Instead of using character level inputs, word or byte-pair encodings can be

used in order to preserve the local structure of words in text [120].

Transfer Learning. Our work relates to several others in natural language processing where pretraining

is used to transfer knowledge from both unlabeled and related labeled datasets [121, 122, 123]. Transfer

learning is closely tied with few-shot learning [124, 125], which typically aims to use representations from

prior tasks to generalize. Transformers are particularly well-fitted for transfer learning as their parallelizable

architecture allows for fast pretraining on large datasets [50, 126]. It has been shown that this large-scale

pretraining generalizes well enough for accurate few-shot learning [127].

4.5 Experimental Setup and Results

4.5.1 Model Details and Evaluation Metrics

DeepVHPPI Variations and Details We evaluate three variants of our model: (1) DeepVHPPI: this is

the base model which uses no pretraining, only training on the target PPI task. (2) DeepVHPPI+MLM: this

variant uses the language model pretraining and finetuning on the PPI task. (3) DeepVHPPI+MLM+SP:

this uses both language model pretraining and supervised structure/family prediction pretraining before

finetuning on the PPI task. We test both single task and multi-task models on the 3 SP tasks. We use the

52

multi-task trained model for all PPI tasks. We train all models using a 12-layer transformer of size 𝑑=712

with 𝐻=8 attention heads.

For all training and testing, we clip protein sequences to 1024 length. For language model pretraining,

we use a batch size of 1024, a linear warmup, and max learning rate of 1e-3. For all other tasks, we use a

batch size of 16 with max learning rate of 1e-5. The language model is trained for 60 epochs, and all others

are trained for 100. All models are trained with an Adam optimizer [128] and 10% dropout. Our models

are implemented in PyTorch and we run each model on 4 NVIDIA Titan X GPUs. Masked language model

pretraining (MLM) takes approximately 3 days, structure prediction (SP) pretraining takes 1 day, and the

PPI task takes 3 days. Testing on ∼0.5M PPI pairs takes about 1 hour.

Metrics. For the supervised pretraining tasks, we use the metrics reported by previous work [95]. For the

PPI task, we are largely focused on ranking interaction predictions based on probability, so we report two

non-thresholding metrics: area under the ROC curve (AUROC), and area under the precision-recall curve

(AUPR). We additionally report F1 scores where we consider thresholds [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. As

done in previous works, the results are selected on the best performing test epoch for each metric. For the

SARS-CoV-2 dataset, we evaluate each metric for each virus protein individually since we are interested in

the accuracy of predicting human interactions for specific virus proteins. The reported results are the mean

value across all 25 virus proteins. For this dataset, we also report precision at 100 (P@100).

4.5.2 Pretraining Tasks (MLM and SP)

Datasets. For the masked language model (MLM) task, we train DeepVHPPI on all Swiss-Prot protein

sequences [129]. Swiss-Prot is a collection of 562,253 manually reviewed, non-redundant protein sequences

from 9,594 organisms. It includes most human and known virus proteins, allowing our model to learn the

distribution of both types. We then further pretrain the model with structure pretraining (SP) tasks. For

secondary structure prediction, the original data is from [130] and we report accuracy. For contact prediction,

data is from [131]. We report precision of the 𝐿/5 most likely contacts (where 𝐿 is the sequence length) for

medium and long-range contacts. For remote homology prediction, the data is from [132], and we report

accuracy. In all 3 tasks, we use the train/validation/test splits from [95].

Baselines. We compare our model against three deep learning methods: a vanilla Transformer, an LSTM

[49], and ResNet [133], all run by [95]. Our DeepVHPPI uses the same Transformer model size (number of

trainable parameters) as the vanilla transformer, and similar model size to the LSTM and ResNet. We do

not compare to the pretrained models from [95] since we use a different pretraining dataset. We also compare

53

our method against two baseline methods from [95]. “One-hot” uses one-hot feature inputs that are fed to

simple classifiers such as an MLP or 2-layer ConvNet. “Alignment” uses sequence alignment features (BLAST

or HHBlits), which are matrices that encode evolutionary information about the protein [134, 135].

Results. Here we investigate the benefits of the DeepVHPPI on the structure prediction tasks. Table

4.2 shows results on the three SP datasets. Our proposed DeepVHPPI performs as well or better than

baseline methods, aside from alignment methods on SS prediction. Self supervised language modeling adds

improvement over the base DeepVHPPI. Multi-task training with language model pretraining outperforms all

other non-alignment methods. We do not evaluate the performance of the MLM task itself since better MLM

performance does not always translate to better downstream task performance [5].

4.5.3 SARS-CoV-2–Human PPI Task

Dataset. While there may be no known Virus–Human interactions for a novel virus, there are many

experimentally validated interactions for previous viruses. Our proposed approach is to train an interaction

model on known V–H interactions (as indicated by solid lines in Fig 4.1), and then test on all possible V–H

interactions for the novel virus proteins (as indicated by dotted lines in Fig 4.1). We explain our full training

and testing setup below. A summary of the datasets used is provided in Table 4.1.

Training Data. We use the V–H dataset from Yang et al. [136], which is based on data from the

Host-Pathogen interaction Database (HPIDB; version 3.0) [137]. Note this only contains Host-Pathogen

interactions, and not contain Host-Host interactions (i.e. only connections between red and blue proteins in

Fig. 4.1). This dataset processed interactions from large-scale mass spectrometry experiments, resulting in

22,653 experimentally verified host-virus PPIs as a positive sample set. The authors chose negative pairs

based on the ‘Dissimilarity-Based Negative Sampling’ [4]. The selected ratio of positive to negative samples

is 1:10. Following Yang et al., we use the same training set (80%) and an independent validation set (20%)

for model training and hyperparameter selection, respectively.

Testing Data. For the novel virus testing dataset, we use the 13,947 known SARS-CoV-2–Human

interactions from the BioGRID database (Coronavirus version 4.1.190) [138]. All BioGRID interactions are

experimentally validated, many from [84]. Considering all 20,365 SwissProt human proteins, we label all

other pairs from the total space of 20,365*26 to be non-interacting (a total of 529,490). It is important to

note that the labeled “negative” samples contain many pairs of proteins that interact but are not known to

do so. This can result in an overestimation of the false positive rate [89].

54

Baselines. We compare our method to the pretrained Embedding+RF method from Yang et al. [94], which

uses Doc2Vec to embed protein sequences and then a random forest to classify pairs. To the best of our

knowledge, no other methods provide code or a browser service to run novel protein interactions.

Results. Table 4.3 shows our results for SARS-CoV-2. Across most metrics, our method DeepVHPPI

outperforms the baseline method. MLM and SP pretraining help generalize to our target PPI task, where

the non-pretrained models aren’t as accurate. We note that the testing dataset is highly imbalanced. In

other words, most interactions (99.7%) are negative, or non-interacting. Thus, the AUROC metric is not

indicative of good results. We turn our attention to the AUPR metrics, where our method performs the

best. This confirms our hypothesis that pretraining on large protein datasets learn evolutionary structures of

proteins which generalize well to unseen proteins. This is a promising result not only for SARS-CoV-2, but

for potential future novel viruses.

4.5.4 Other Virus–Host PPI Tasks (H1N1 and Ebola)

Datasets. In our SARS-CoV-2 dataset, we explain a testing scenario where we have no knowledge of the

true V–H interactions, resulting in a large possible interaction space (all possible |𝑃𝑣| × |𝑃ℎ| interactions).

Zhou et al. [2] created V–H datasets where they hand selected the negative interactions based on the known

positives, making sure that they had an even positive/negative split. While this setup is unrealistic for a

true novel virus (because we don’t know which ones are positive), we compare to their results to show the

strength of our method. Zhou et a. provide two H–V datasets, H1N1 and Ebola.

In the H1N1 dataset, the training set contains 10,955 true PPIs between human and any virus except

H1N1 virus, plus an equal amount (10,955) negative interaction samples. The testing set contains 381 true

PPIs between human and H1N1 virus, and 381 negative interactions. Similarly, in the Ebola dataset, the

training set contains 11,341 true PPIs between human and any virus except Ebola virus, plus an equal amount

(11,341) negative interaction samples. The testing set contains 150 true PPIs between human and Ebola

virus, and 150 negative interactions.

Baseline. We compare to the SVM baseline from Zhou et al. [2], which showed that their method was the

state-of-the-art.

Results. Table 4.4, shows the results from the Zhou et al. datasets. For both the H1N1 and Ebola datasets,

we can see that our method outperforms the previous state-of-the-art. While we believe this dataset is not

indicative of a real novel virus setting since the test set negatives are hand-selected, we can use it to compare

different methods. Since there is an even positive/negative testing split, AUROC is a good metric to compare

55

% of H-V Pairs Used as Training

M
ea

n
au

R
O

C
 (a

cr
os

s
3

ru
ns

)

0.5
0

0.5
9

0.6
8

0.7
6

0.8
5

0 20 40 60 80

DeepVHPPI + MLM + SP + H-H

DeepVHPPI + MLM + H-H

DeepVHPPI + H-H

DeepVHPPI

Rao et al. 2019

Figure 4.4: Sensitivity analysis on Human–SARS-CoV-2 V-H-PPI Predictions. The X-axis shows simulated training
settings, where we assume there exist some (varying) portion of SARS-CoV-2 proteins in the training data. We can
see that pretraining methods (LM and SPT) give substantial increases over cases without the pretraining methods.
This indicates that transfer learning can help on novel virus protein interaction prediction.

methods, and we can see that across both novel viruses, our method outperforms the SVM. We see notable

performance increase using LMT and SP pretraining.

4.5.5 Additional PPI Experiments

We also report the results for our model on two extra baseline datasets. The first is the Virus–Host datasets

from Barman et al. [3]. Although the testing dataset is not for a completely unseen test virus, we see our

method outperforms the baselines. In Table 4.5, we see that our method outperforms previous methods

including an SVM and random forest.

The second is the SLiMs dataset from Eid et al. [4]. This dataset was constructed specifically to evaluate

how well the model learns Short Linear Motifs (SLiMs) that are transferable across train/test splits. In Table

4.6, we see that our model is significantly better than the baselines. We hypothesize that this improvement is

in part due to the convolutional motif finder layers of DeepVHPPI.

4.5.6 Sensitivity Analysis using Known H-V Interactions

There exist two important situations we need to predict V-H PPI for virus protein with new sequences. (I)

The first case is when a new virus is discovered, the protein interactions are unknown. (II) The second case

is when the virus is known, and some interactions have been validated, but many are missing. Our above

experiments have mostly focused on the first case. Here we experiment and analyze when some of the virus

56

MKVFLVML LDKYFKN

MFPFLVLH LDKYFKN

MFVFLVLL LDKYFKN

MPVFKVLL LDKYFKN

MFYFLVLL LDKYFKN

MFVKLVHL LDKYFKN

Figure 4.5: Mutation Analysis Setup. We train DeepVHPPI on a subset of known Spike protein mutations
and their corresponding ACE2 binding affinity scores, and test on the remaining.

proteins are known. This setup can be used to expand the initial set of experimental interactions, resulting in

a more complete interactome.

On the SARS-CoV-2–Human PPI task, we simulate a new setup to evaluate our framework across these

two settings. We generate five simulated settings where we vary the percentage of total SARS-CoV-2–Human

interactions to be used as training data. We then test on the remaining SARS-CoV-2–Human interactions.

The training percentages we use are 0%,20%,40%,60%,80%. We also consider training on all known Human–

Human (H–H) interactions from the BioGrid database. Note that we are not using any other virus proteins

in these simulations. Fig. 4.4 shows the results across each of the five settings for four DeepVHPPI model

variations and a deep learning baseline from Rao et al. [95], which uses MLM pretraining.

First, across all training settings, we can see that DeepVHPPI models outperform the baseline [95]. Across

all settings, adding the transfer learning pretraining tasks helps significantly. Most importantly, we can see

that in the case I (0%) and case II (20%) settings, MLM and SP pretraining help generalize to the target

task, where the non-pretrained models fail to be able to classify well. Additionally, adding H–H interactions

helps generalize for predicting novel virus sequence interactions.

4.5.7 Mutation Validation Analysis on SARS-CoV-2 Spike

While predicting novel interactions is an important task, virologists are also interested in understanding how

the interactions change based on small changes in the protein sequence. This is particularly important for

rapidly changing viruses such as SARS-CoV-2 where small changes in the virus protein sequences can have

large effects on infection. To this end, we test the accuracy of a computational model to predict interaction

binding affinity changes from changes in the protein sequence.

57

Number of Training
Mutation Pairs

Spearman
Correlation

100 0.459
1,000 0.720
10,000 0.937

Table 4.7: Mutation Analysis

We used the deep mutational scan data from Starr et al. [139] to analyze the effectiveness of DeepVHPPI

to accurately model binding affinity of virus mutations. This dataset contains 105,526 mutated SARS-CoV-2

Spike receptor binding domain sequences, with the corresponding Human ACE2 dissociation constant. We

train the DeepVHPPI + LM model using a subset of the mutation sequences. In other words, the only

supervised training is done using a subset of mutation sequence pairs. We consider three different amounts of

mutation pairs to use as training: 100, 1,000 and 10,000. The remaining sequences are used as testing. This

is demonstrated in Figure 4.5.

Table 4.7 shows the mutation binding accuracy results. We report the Spearman correlation of the

continuous valued prediction with the ground truth dissociation constant. As the number of training mutation

sequences increases, the Spearman rank correlation with the ground truth dissociation constant increases. By

training on only 100 Spike mutation sequences, we can obtain a Spearman correlation of 0.459, and training

with 10,000 mutation sequences results in a Spearman correlation of 0.937. This shows that with a relatively

few amount of mutation binding affinities to train on, we can get a reasonably good prediction model. Moving

forward, we believe this can be used to rapidly analyze mutations and potentially determine how infectious

an emerging variant will be on average.

Furthermore, our method allows for an easy way to rapidly test new mutations. Rather than experimentally

checking all possible mutations to see which ones reduce interaction binding, we can computationally introduce

mutations and observe how the predicted output changes. We show an example of this for a receptor-binding

domain subsequence of the SARS-CoV-2 Spike protein when binding to the human ACE2 protein in Fig. 4.6.

We can observe specific locations, such as the first “K” amino acid in the virus sequence where mutating the

amino acid will reduce the interaction prediction. There are also other locations where mutations can increase

interaction binding, which may explain how certain viruses are able to mutate and infect humans more easily.

4.5.8 Ablation Study

To investigate the importance of the motif finding convolutional modules of our Transformer architecture,

we conducted an ablation study for each model component. Table 4.8 shows the results for the H1N1 and

58

Figure 4.6: Mutation map for SARS-CoV-2 Spike when interacting with Human ACE2. Here we show
how the predicted interaction score changes when inducing the mutation in the Y-axis for the original amino acid in
the X-axis. This example is from the receptor-binding domain in the SARS-CoV-2 Spike protein, and the output
shows the predicted difference in interaction score from the original reference amino acid. For example, changing the
second reference “K” results in an interaction decrease.

H1N1 Ebola
Method AUROC AUPR AUROC AUPR
Transformer [5] 0.922 0.915 0.940 0.949
Convolution Transformer 0.939 0.942 0.955 0.964
Transformer + MLM [5] 0.950 0.957 0.975 0.976
Convolution Transformer + MLM 0.957 0.962 0.976 0.979

Table 4.8: Ablation Study. We analyze the effectiveness of the convolution modules in our proposed
Transformer architecture compared to a tranditional character level embedding from Rives et al. [5]. Both
with and without language model pretraining, the convolution modules result in improved accuracy across
the two datasets tested.

Ebola datasets. Across all 4 models tested, we use the 12-layer Transformer architecture from Rives et al. [5].

We ablate the the convolutional motif finding module both with and without language model pretraining.

Note that the Transformer + LM model [5] is pretrained using a larger unlabeled dataset (pfam) than our

DeepVHPPI Transformer + LM (swissprot). We can see that the convolutional module results in improved

AUROC and AUPR with and without language model pretraining. This indicates that protein binding is

highly reliant on local, translation invariant features that are easily detected by convolutional filters.

4.6 Discussion and Extensions

While we have focused on predicting the interactions of novel virus sequences and their mutations, we have

not considered the variations and profile on the human side of the interactions. Moving forward, there are

many opportunities to include the sequence and expression profiles of humans to predict the interaction and

infection rate of a virus variant.

We’ve primarily showed the importance and success of using sequence based models that incorporate

protein structure and semantic information for predicting interactions. With the recent success of Alphafold

59

[140], which is used to predict the full 3D structure of an individual protein from sequence, we believe there

are a lot of opportunities to use these models to not only predict the interactions of proteins with other

proteins, but also with small molecule drugs and with DNA.

4.7 Summary

Computational methods predicting protein-protein interactions (PPIs) can play an important role in under-

standing a novel virus that threatens widespread public health. Most previous methods are developed for

intra-species interactions, and do not generalize to novel viruses. In this paper, we introduce DeepVHPPI, a

novel deep learning architecture that uses a transfer learning approach for PPI prediction between a novel virus

and a host. We show that transfer learning and Transformers can be used to accurately predict protein-protein

interaction. We demonstrate that our method can help accurately predict Virus–Host interactions early on

in the virus discovery and experimentation pipeline. This can help biologists better understand how the

virus attacks the human body, allowing researchers to potentially develop effective drugs more quickly. By

providing a computational model for interaction prediction, we hope this will accelerate experimental efforts

to define a reliable network of Virus–Host protein interactions, as well as predict how threatening a new

virus variant may be to public health. While this work is focused on SARS-CoV-2, H1N1, and Ebola, our

framework is applicable for any virus. In the case of a future novel virus, our framework will be able to

rapidly predict protein-protein interaction predictions.

60

Chapter 5

Modeling Label Interactions with C-Tran

Understanding visual scenes is a hallmark of human intelligence. Comprehending the contents of an image

amounts to understanding the objects and their interactions. Multi-label image classification is the task

of predicting a set of labels corresponding to objects, attributes or other entities present in an image. A

computational model for multi-label image classification requires a correct set of modeling assumptions to

handle both the recognition of objects as well as their dependencies. Furthermore, a flexible model should

be able to include and leverage a potential set of “known”, or contextually given, labels to more accurately

predict the unknown labels.

Research Question 3: Can we model interactions between object labels, and also utilize the interactions

from arbitrary amounts of known labels?

In this chapter, we propose the Classification Transformer (C-Tran), a general framework for multi-label

image classification that leverages Transformers to exploit the complex interactions among visual features

and labels. Our approach consists of a Transformer encoder trained to predict a set of target labels given

an input set of masked labels, and visual features from a convolutional neural network. Our model shows

state-of-the-art performance on challenging datasets such as COCO and Visual Genome. Moreover, our

framework is designed for the incorporation of an arbitrary set of known labels to be used as input to the

model. This lets the model exploit learned interactions and make stronger predictions on the unknown labels

in the image. This also allows for users to interact with the model and test counterfactuals such as “How do

the other labels’ predictions change if label 𝑦𝑖 were present (or absent) in this image?”.

61

C-Tran

During Training During Inference

Predict Masked Labels

Mask Random Labels

Predict All Labels

Mask Everything

C-Tran

During Training

Predict Masked Labels

Mask Random Labels

During Inference

C-Tran

Predict Masked Labels

Mask Everything

C-Tran

During Training

Predict Masked Labels

Mask Random Labels

During Inference

C-Tran

Predict Masked Labels

Mask Everything

C-Tran

Figure 5.1: C-Tran training and inference. We propose a transformer-based model for multi-label image
classification that exploits dependencies among a target set of labels using an encoder transformer. During
training, the model learns to reconstruct a partial set of labels given randomly masked input label embeddings
and image features. During inference, our model can be conditioned only on visual input or a combination of
visual input and partial labels, leading to superior results.

5.1 Introduction

Images in real-world applications generally portray many objects and complex situations. Multi-label image

classification is a visual recognition task that aims to predict a set of labels corresponding to objects, attributes,

or actions given an input image [38, 37, 141, 142, 143, 144, 145]. This task goes beyond the more thoroughly

studied problem of single-label multi-class classification where the objective is to extract and associate image

features with a single concept per image. In the multi-label setting, the output set of labels has some structure

that reflect the structure of the world. For example, dolphin is unlikely to co-occur with grass, while knife is

more likely to appear next to a fork. Effective models for multi-label classification aim to extract good visual

features that are predictive of image labels, but also exploit the complex relations and dependencies between

visual features and labels, and among labels themselves.

To this end, we present the Classification Transformer (C-Tran), a multi-label classification framework

that leverages a Transformer encoder [19]. Transformers have demonstrated a remarkable capability of

being able to exploit dependencies among sets of inputs using multi-headed self-attention layers. In our

approach, a Transformer encoder is trained to reconstruct a set of target labels given an input set of masked

label embeddings and a set of features obtained from a convolutional neural network. C-Tran uses label

masking during training to represent the state of the labels as positive, negative, or unknown – analogous

to how language models are trained with masked tokens [50]. At test time, C-Tran is able to predict a set

of target labels using only input visual features by masking all the input labels as unknown. Figure 5.1

gives an overview of this strategy. We demonstrate that this approach leads to superior results on a number

of benchmarks compared to other recent approaches that exploit label relations using graph convolutional

62

networks and other recently proposed strategies.

(a) Regular Inference (b) Inference with Partial Labels

umbrella: 0.91

car: 0.86

sunglasses: 0.18

person: 0.93

(c) Inference with Extra Labels

truck: 0.32

sunglasses: 0.16

rain coat=1, truck=0 city=1, rain=1

car: 0.91

umbrella: 0.93

rain coat: 0.92

person: 0.89person: 0.83
umbrella: 0.72
car: 0.42
rain coat: 0.32
sunglasses: 0.28
truck: 0.22

truck: 0.32

sunglasses: 0.16

rain coat=1, truck=1

city=1
rain=1

f

f

f car: 0.91

umbrella: 0.93

rain coat: 0.92

person: 0.84

person: 0.93
umbrella: 0.91
car: 0.86
sunglasses: 0.18

f

umbrella: 0.93

rain coat: 0.92

car: 0.91

person: 0.84

truck: 0.32

sunglasses: 0.16city=1, rain=1

(a)

person: 0.83
umbrella: 0.72
car: 0.42
rain coat: 0.32
sunglasses: 0.28
truck: 0.22

(b)

(c)

person: 0.93
umbrella: 0.91
car: 0.86
sunglasses: 0.18

umbrella: 0.93
rain coat: 0.92
car: 0.91
person: 0.84
truck: 0.32
sunglasses: 0.16

C
-T
ra
n

C
-T
ra
n

C
-T
ra
n

Figure 5.2: C-Tran inference settings. Three different inference settings for general multi-label image
classification: (a) Standard multi-label classification takes only image features as input. All labels are
unknown y𝑢.; (b) Classification under partial labels takes as input image features as well as a subset of
the target labels that are known. The labels rain coat and truck are known labels y𝑘, and all others are
unknown labels y𝑢; (c) Classification under extra labels takes as input image features and some related extra
information. The labels city and rain are known extra labels y𝑒

𝑘, and all others are unknown target labels y𝑡
𝑢.

Beyond obtaining state-of-the-art results on standard multi-label classification, C-Tran is a more general

model for reasoning under prior label observations. Because our approach explicitly models the label state

(positive, negative, or unknown) during training, it can also be used at test time with partial or extra label

annotations by setting the state of some of the labels as either positive or negative instead of masking them

out as unknown. For instance, consider the example shown in Figure 5.2(a) where a model is able to predict

person and umbrella with relatively high accuracies, but is not confident for categories such as rain coat, or

car that are clearly present. Suppose we know some labels and set them to their true positive (for rain coat)

or true negative (for truck) values. Provided with this new information, the model is able to predict car with

a high confidence as it moves mass probability from truck to car, and predicts other objects such as umbrella

with even higher confidence than in the original predictions (Figure 5.2(b)).

In general, we consider this setting as realistic since many images also have metadata in the form of

extra labels such as location or weather information (Figure 5.2(c)). This type of conditional inference is a

much less studied problem. C-Tran is able to naturally handle all these scenarios under a unified framework.

We compare our results with a competing method relying on iterative inference [146], and against sensitive

baselines, demonstrating superior results under variable amounts of partial or extra labels.

The benefits of C-Tran can be summarized as follows:

• Flexibility: It is the first model that can be deployed in multi-label image classification under arbitrary

amounts of extra or partial labels. We use a unified model architecture and training method that lets

users to apply our model easily in any setting.

• Accuracy: We evaluate our model on six datasets across three inference settings and achieve state-of-

the-art results on all six. The label mask training strategy enhances the correlations between visual

63

Figure 5.3: C-Tran architecture. Model overview and illustration of label mask training for general multi-label
image classification. In this training image, the labels person, umbrella, and sunglasses were randomly masked out
and used as the unknown labels, y𝑢. The labels rain coat and truck are used as the known labels, y𝑘. Each unknown
label is added the unknown state embedding U, and each known label is added its corresponding state embedding:
negative (N) , or positive (P). The loss function is only computed on the unknown label predictions ŷ𝑢.

concepts leading to more accurate predictions.

• Interactivity: The use of state embeddings enables users to easily interact with the model and test

any counterfactuals. C-Tran can take human interventions as partial evidence and provides more

interpretable and accurate predictions.

5.2 Problem Setup

We consider three multi-label image classification scenarios as follows:

Regular Multi-label Classification. In this setting the goal is to predict a set of labels for an input

image. Let x be an image, and y be a ground truth set of ℓ binary labels {𝑦1, 𝑦2, ..., 𝑦ℓ}, 𝑦𝑖 ∈ {0, 1}. The goal

of multi-label classification is to construct a classifier, 𝑓 , to predict a set of labels given an image so that:

ŷ = 𝑓(x).

Inference with Partial Labels. While regular classification methods aim to predict the full set of ℓ labels

given only an input image, some subset of labels y𝑘 ⊆ y may be observed, or known, at test time. This is also

known as having partial labels available. For example, many images on the web are labeled with text such

as captions or comments on social media. In this reformulated setting, the goal is to predict the unknown

labels (y𝑢 = y ∖ y𝑘) given both the image and the known labels during inference: ŷ𝑢 = 𝑓(x,y𝑘). Note that

we assume that all labels are available during training. This setting is specifically for inference with partially

64

annotated labels, and it differs from other works that tackle the problem of training models from partially

annotated data [147, 148, 149].

Inference with Extra Labels. Similar to partially labeled images, there are many cases where we observe

extra labels that describe an image, but are not part of the target label set. For example, we may know

that an image was taken in a city. While city might not be one of the target labels, it can still alter our

expectations about what else might be present in the image. In this setting, we append any extra labels y𝑒

to the target label set y𝑡. If there are ℓ𝑡 target labels, and ℓ𝑒 extra labels, we have a set of ℓ𝑡 + ℓ𝑒 total

labels that we use to train the model. Variable y now represents the concatenation of all target and extra

labels. During inference, the known labels, y𝑒
𝑘, come from the set of extra labels, but we are only interested in

evaluating the unknown target labels y𝑡
𝑢. In other words, during inference, we want to compute the following:

ŷ𝑡
𝑢 = 𝑓(x,y𝑒

𝑘).

5.3 Method: C-Tran

We propose Classification Transformers (C-Tran), a general multi-label classification framework that works in

all three previously described settings. During inference, our method predicts a set of unknown labels y𝑢

given an input image x and a set of known labels y𝑘. In regular inference no labels are known, in partial

label inference some labels are known, and in extra label inference some labels external to the target set are

known. In Sections 5.3.1-5.3.3, we introduce the C-Tran architecture, and in Section 5.3.4, we explain our

label mask training procedure.

5.3.1 Feature, Label, and State Embeddings

Image Feature Embeddings 𝑍: Given input image x ∈ R𝐻×𝑊×3, the feature extractor outputs a tensor

𝑍 ∈ Rℎ×𝑤×𝑑, where ℎ,𝑤, and 𝑑 are the output height, width, and channel, respectively. We can then

consider each vector 𝑧𝑖 ∈ R𝑑 from 𝑍, with 𝑖 ranging from 1 to 𝑃 (where 𝑃 = ℎ× 𝑤), to be representative of

a subregion that maps back to patches in the original image space.

Label Embeddings 𝐿: For every image, we retrieve a set of label embeddings 𝐿 = {𝑙1, 𝑙2, ..., 𝑙ℓ}, 𝑙𝑖 ∈ R𝑑,

which are representative of the ℓ possible labels in y. Label embeddings are learned from an embedding layer

of size 𝑑× ℓ.

Adding Label Knowledge via State Embeddings 𝑆: In traditional architectures, there is no mechanism

to encode partially known or extra labels as input to the model. To address this drawback, we propose

65

a technique to easily incorporate such information. Given label embedding 𝑙𝑖, we simply add a “state”

embedding vector, 𝑠𝑖 ∈ R𝑑:

�̃�𝑖 = 𝑙𝑖 + 𝑠𝑖, (5.1)

where the 𝑠𝑖 takes on one of three possible states: unknown (U), negative (N), or positive (P). For instance,

if label 𝑦𝑖 is a known positive value prior to inference (meaning that we have prior knowledge that the label

is present in the image), 𝑠𝑖 is the positive embedding, P. The state embeddings are retrieved from a learned

embedding layer of size 𝑑× 3, where the unknown state vector (U) is fixed with all zeros.

State embeddings enable a user to (1) not use any prior information by adding the unknown embedding,

(2), use partially labeled or extra information by adding the negative and positive embeddings to those labels,

and (3) easily test interventions in the model by asking “how does the prediction change if a label is changed

to either positive or negative?”. We note that using prior information is completely optional as input to our

model during testing, enabling it to also flexibly handle the regular inference setting.

5.3.2 Modeling Feature and Label Interactions with a Transformer Encoder

To model interactions between image features and label embeddings we leverage Transformers [19], as these

are effective models for capturing dependencies between variables. Our formulation allows us to easily input

image features and label embeddings jointly into a Transformer encoder. Transformer encoders are suitable

because they are order invariant, allowing for any type of dependencies between all features and labels to be

learned.

Let 𝐻 = {𝑧1, ...,𝑧ℎ×𝑤, �̃�1, ..., �̃�ℓ} be the set of embeddings that are input to the Transformer encoder. In

Transformers, the importance, or weight, of embedding ℎ𝑗 ∈ 𝐻 with respect to ℎ𝑖 ∈ 𝐻 is learned through

self-attention. The attention weight, 𝛼𝑡
𝑖𝑗 between embedding 𝑖 and 𝑗 is computed in the following manner.

First, we compute a normalized scalar attention coefficient 𝛼𝑖𝑗 between embeddings 𝑖 and 𝑗. After computing

𝛼𝑖𝑗 for all 𝑖 and 𝑗 pairs, we update each embedding ℎ𝑖 to ℎ′
𝑖 using a weighted sum of all embeddings followed

by a nonlinear ReLU layer:

𝛼𝑖𝑗 = softmax
(︀
(W𝑞ℎ𝑖)

⊤(W𝑘ℎ𝑗)/
√
𝑑
)︀
, (5.2)

ℎ̄𝑖 =

𝑀∑︁
𝑗=1

𝛼𝑖𝑗W
𝑣ℎ𝑗 , (5.3)

ℎ′
𝑖 = ReLU(ℎ̄𝑖W

𝑟 + 𝑏1)W
𝑜 + 𝑏2, (5.4)

66

where W𝑘 is the key weight matrix, W𝑞 is the query weight matrix, W𝑣 is the value weight matrix, W𝑟 and

W𝑜 are transformation matrices, and 𝑏1 and 𝑏2 are bias vectors. This update procedure can be repeated

for 𝐿 layers where the updated embeddings ℎ′
𝑖 are fed as input to the successive Transformer encoder layer.

The learned weight matrices {W𝑘,W𝑞,W𝑣,W𝑟,W𝑜} ∈ R𝑑×𝑑 are not shared between layers. We denote the

final output of the Transformer encoder after 𝐿 layers as 𝐻 ′ = {𝑧′
1, ...,𝑧

′
ℎ×𝑤, 𝑙

′
1, ..., 𝑙

′
ℓ}.

5.3.3 Label Inference Classifier

Lastly, after feature and label dependencies are modeled via the Transformer encoder, a classifier makes

the final label predictions. We use an independent feedforward network (FFN𝑖) for final label embedding 𝑙′𝑖.

FFN𝑖 contains a single linear layer, where weight w𝑐
𝑖 for label 𝑖 is a 1× 𝑑 vector, and 𝜎 is a simoid function:

𝑦𝑖 = FFN𝑖(𝑙
′
𝑖) = 𝜎

(︀
(w𝑐

𝑖 · 𝑙′𝑖) + 𝑏𝑖
)︀

(5.5)

5.3.4 Label Mask Training (LMT)

State embeddings (Eq. 5.1) let us easily incorporate known labels as input to C-Tran. However, we want our

model to be flexible enough to handle any amount of known labels during inference. To solve this problem,

we introduce a novel training procedure called Label Mask Training (LMT) that forces the model to learn

label correlations, and allows C-Tran to generalize to any inference setting.

Inspired by the Cloze task [150] and BERT’s masked language model training [50] which works by

predicting missing words from their context, we implement a similar procedure. During training, we randomly

mask a certain amount of labels, and use the ground truth of the other labels (via state embeddings) to

predict the masked labels. This differs from masked language model training in that we have a fixed set of

inputs (all possible labels) and we randomly mask a subset of them for each sample.

Given that there are ℓ possible labels, the number of “unknown” (i.e. masked) labels for a particular

sample, 𝑛, is chosen at random between 0.25ℓ and ℓ. Then, 𝑛 unknown labels, denoted y𝑢, are sampled

randomly from all possible labels y. The unknown state embedding is added to each unknown label. The rest

are “known” labels, denoted y𝑘 and the corresponding ground truth state embedding (positive or negative)

is added to each. We call these known labels because the ground truth value is used as input to C-Tran

alongside the image. Our model predicts the unknown labels y𝑢, and binary cross entropy is used to update

the model parameters. By masking random amounts of unknown labels (and therefore using random amounts

of known labels) during training, the model learns many possible known label combinations, and adapts the

model to be used with arbitrary amounts of known information.

67

We mask out at least 0.25ℓ labels for each training samples for several reasons. First, most masked

language model training methods mask out around 15% of the words [50, 127]. Second, we want our model

to be able to incorporate anywhere from 0 to 0.75ℓ known labels during inference. We assume that knowing

more than 75% of the labels is an unrealistic inference scenario. Our label mask training pipeline thus aims

to minimize the following loss:

𝐿 =

𝑁𝑡𝑟∑︁
𝑛=1

E𝑝(y𝑘){CE(ŷ(𝑛)
𝑢 ,y(𝑛)

𝑢)|y𝑘}, (5.6)

where CE represents the cross entropy loss function. E𝑝(y𝑘)(·|y𝑘) denotes to calculate the expectation

regarding the probability distribution of known labels: y𝑘. We provide an explanation of the LMT algorithm

in the Appendix.

5.3.5 Implementation Details

Image Feature Extractor. For fair comparisons, we use the same image size and pretrained feature

extractor as the previous state-of-the-art in each setting. For all datasets except CUB, we use the ResNet-101

[133] pretrained on ImageNet [151] as the feature extractor (for CUB, we use the same as [152]). Since the

output dimension of ResNet-101 is 2048, we set our embedding size 𝑑 as 2048. Following [153, 154], images

are resized to 640× 640 and randomly cropped to 576× 576 with random horizontal flips during training.

Testing images are center cropped instead. The output of ResNet-101 is an 18×18×𝑑 tensor, so there are a

total of 324 feature embedding vectors, 𝑧𝑖 ∈ R𝑑.

Transformer Encoder. In order to allow a particular embedding to attend to multiple other embeddings

(or multiple groups), C-Tran uses 4 attention heads [19]. We use a 𝐿=3 layer Transformer with a residual

layer [133] around each embedding update and layer norm [28].

Optimization. Our model, including the pretrained feature extractor, is trained end-to-end. We use Adam

[128] for the optimizer with betas=(0.9, 0.999) and weight decay=0. We train the models with a batch size of

16 and a learning rate of 10−5. We use dropout with 𝑝 = 0.1 for regularization.

5.4 Experimental Setup and Results

In the following subsections, we explain the datasets, baselines, and results for the three multi-label classifica-

tion inference settings.

68

All Top 3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [141] 61.2 - - - - - - 66.0 55.6 60.4 69.2 66.4 67.8
RNN-Attention [142] - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0
Order-Free RNN [143] - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0
ML-ZSL [144] - - - - - - - 74.1 64.5 69.0 - - -
SRN [155] 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9
ResNet101 [133] 77.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6
Multi-Evidence [156] - 80.4 70.2 74.9 85.2 72.5 78.4 84.5 62.2 70.6 89.1 64.3 74.7
ML-GCN [145] 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
SSGRL [153] 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2
KGGR [154] 84.3 85.6 72.7 78.6 87.1 75.6 80.9 89.4 64.6 75.0 91.3 66.6 77.0
C-Tran 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6

Table 5.1: Results of regular inference on COCO-80 dataset. The threshold is set to 0.5 to compute precision,
recall and F1 scores (%). Our method consistently outperforms previous methods across multiple metrics
under the settings of all and top-3 predicted labels. Best results are shown in bold. “-” denotes that the
metric was not reported.

All Top 3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ResNet101[133] 30.9 39.1 25.6 31.0 61.4 35.9 45.4 39.2 11.7 18.0 75.1 16.3 26.8
ML-GCN [145] 32.6 42.8 20.2 27.5 66.9 31.5 42.8 39.4 10.6 16.8 77.1 16.4 27.1
SSGRL [153] 36.6 - - - - - - - - - - - -
KGGR [154] 37.4 47.4 24.7 32.5 66.9 36.5 47.2 48.7 12.1 19.4 78.6 17.1 28.1
C-Tran 38.4 49.8 27.2 35.2 66.9 39.2 49.5 51.1 12.5 20.1 80.2 17.5 28.7

Table 5.2: Results of regular inference on VG-500 dataset. All metrics and setups are the same as Table 5.1.
Our method achieves notable improvement over previous methods.

5.4.1 Regular Inference

Datasets. We use two large-scale regular multi-label classification datasets: COCO-80 and VG-500. COCO

[157], is a commonly used large scale dataset for multi-label classification, segmentation, and captioning.

It contains 122, 218 images containing common objects in their natural context. The standard multi-label

formulation for COCO, which we call COCO-80, includes 80 object class annotations for each image. We use

82, 081 images as training data and evaluate all methods on a test set consisting of 40, 137 images. The Visual

Genome dataset [158], contains 108, 077 images with object annotations covering thousands of categories.

Since the label distribution is very sparse, we only consider the 500 most frequent objects and use the VG-500

COCO-80 VG-500 NEWS-500 COCO-1000
Partial Labels Known (𝜖) 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
Feedbackprop [146] 80.1 80.6 80.8 80.9 29.6 30.1 30.8 31.6 14.7 21.1 23.7 25.9 29.2 30.1 31.5 33.0
C-Tran 85.1 85.2 85.6 86.0 38.4 39.3 40.4 41.5 18.1 29.7 35.5 39.4 34.3 35.9 37.4 39.1

Table 5.3: Results of inference with partial labels on four multi-label image classification datasets. Mean
average precision score (%) is reported. Across four simulated settings where different amounts of partial
labels are available (𝜖), our method significantly outperforms the competing method. With more partial
labels available, we achieve larger improvement.

69

Extra Label Groups Known (𝜖) 0% 36% 54% 71%
Standard [152] 82.7 82.7 82.7 82.7
Multi-task [152] 83.8 83.8 83.8 83.8
ConceptBottleneck [152] 80.1 87.0 93.0 97.5
C-Tran 83.8 90.0 97.0 98.0

Table 5.4: Results of inference with extra labels on CUB-312 dataset. We report the accuracy score (%) for
the 200 multi-class target labels. We achieve similar or greater accuracy than the baselines across all amounts
of known extra label groups.

subset introduced in [154]. VG-500 consists of 98, 249 training images and 10, 000 test images.

Baselines and Metrics. For COCO-80, we compare to ten well known multi-label classification methods.

For VG-500 we compare to four previous methods that used this dataset. Referencing previous works

[145, 153, 154], we employ several metrics to evaluate the proposed method and existing methods. Concretely,

we report the average per-class precision (CP), recall (CR), F1 (CF1) and the average overall precision (OP),

recall (OR), F1 (OF1), under the setting that a predicted label is positive if the output probability is greater

than 0.5. We also report the mean average precision (mAP). A detailed explanation of the metrics are shown

in the Appendix. For fair comparisons to previous works [156, 155], we also consider the setting where we

evaluate the Top-3 predicted labels following. In general, mAP, OF1, and CF1 are the most important

metrics [145].

Results. C-Tran achieves state-of-the-art performance almost across all metrics on both datasets, as shown in

Table 5.1 and Table 5.2. Considering that COCO-80 and VG-500 are two widely studied multi-label datasets,

absolute mAP increases of 0.8 and 1.0, respectively, can be considered notable improvements. Importantly,

we do not use any predefined feature and label relationship information (e.g. pretrained word embeddings).

This signals that our method can effectively learn the relationships.

5.4.2 Inference with Partial Labels

Datasets. We use four datasets to validate our approach in the partial label setting. In all four datasets, we

simulate four amounts of partial labels during inference. More specifically, for each testing image, we select 𝜖

percent of labels as known. 𝜖 is set to 0% / 25% / 50% / 75% in our experiments. 𝜖=0% denotes no known

labels, and is equivalent to the regular inference setting.

In addition to COCO-80 and VG-500, we benchmark our method on two more multi-label image

classification datasets. Wang et al. [146] derived the top 1000 frequent words from the accompanying captions

of COCO images to use as target labels, which we call COCO-1000. There are 82, 081 images for training,

and 5, 000 images for validation and testing, respectively. We expect that COCO-1000 provides more and

70

stronger dependencies compared to COCO-80. We also use the NEWS-500 dataset [146], which was collected

from the BBC News. Similar to COCO-1000, the target label set consists of 500 most frequent nouns derived

from image captions. There are 151, 873 images for training, 10, 304 for validation and 10, 451 for testing.

Baselines and Metrics. Feedback-prop [146] is an inference method introduced for partial label inference

that make use of arbitrary amount of known labels. This method backpropagates the loss on the known labels

to update the intermediate image representations during inference. We use the LF method on ResNet-101

Convolutional Layer 13 as in [146]. We compute the mean average precision (mAP) score of predictions on

unknown labels.

Results. As shown in Table 5.3, C-Tran outperforms Feedbackprop, in all 𝜖 percentages of partially known

labels on all datasets. In addition, as the percentage of partial labels increases, the improvement of C-Tran

over Feedbackprop also increases. These results demonstrate that our method can effectively leverage known

labels and is very flexible with the amount of known labels. Feedbackprop updates image features which

implicitly encode some notion of label correlation. C-Tran, instead, explicitly models the correlations between

labels and features, leading to improved results especially when partial labels are known. On the other hand,

Feedback-prop requires careful hyperparameter tuning on a separate validation set and needs time-consuming

iterative feature updates. Our method does not require any hyperparameter tuning and just needs a standard

one-pass inference. Further comparisons and qualitative examples are included in the Appendix.

5.4.3 Inference with Extra Labels

Datasets. For the extra label setting, we use the Caltech-UCSD Birds-200-2011 (CUB) dataset [159]. It

contains 9,430 training samples and 2,358 testing samples. We conduct a multi-classification task with 200

bird species on this dataset. Multi-class classification is a specific instantiation of multi-label classification,

where the target classes are mutually exclusive. In other words, each image has only one correct label. We

use the processed CUB dataset from Koh et al. [152] where they include 112 extra labels related to bird

species. We call this dataset CUB-312. They further cluster extra labels into 28 groups and use varying

amounts of known groups at inference time. To make a fair comparison, we consider four different amounts

of extra label groups for inference: 0 group (0%), 10 groups (36%), 15 groups (54%), and 20 groups (71%).

Baselines and Metrics. Concept Bottleneck Models [152] incorporate the extra labels as intermediate

labels (“concepts” in the original paper). These models use a bottleneck layer to first predict the extra labels,

and then use those predictions to predict bird species. I.e., if we let y𝑒 be the extra information labels, [152]

predicts the target class labels y𝑡 using the following computation graph: x → y𝑒 → y𝑡. As in [152], we also

71

consider two baselines: A standard multi-layer perceptron, and a multi-task learning model that predicts the

target and concept labels jointly. For fair comparison, we use the same feature extraction method for all

experiments, Inception-v3 [160]. We evaluate target predictions using multi-class accuracy scores.

Results. Table 5.4 shows that C-Tran achieves an improved accuracy over Concept Bottleneck models on

the CUB-312 task when using any amount of extra label groups. Notably, the multi-task learning model

produces the best performing results when 𝜖=0. However, it is not able to incorporate known extra labels (i.e.,

𝜖 >0). C-Tran instead, consistently achieves the best performance. Additionally, we can test interventions, or

counterfactuals, using C-Tran. For example, “grey beak” is one of the extra labels, and we can set the state

embedding of “grey beak” to be positive or negative and observe the change in bird class predictions. We

provide samples of extra label interventions in the Appendix.

5.4.4 Ablation and Model Analysis

We conduct ablation studies to analyze the contributions of each C-Tran component. We examine two

settings: regular inference (equivalent to 0% known partial labels) and 50% known partial label inference.

We evaluate on four datasets: COCO-80, VG-500, NEWS-500, and COCO-1000. First, we remove the image

features Z and predict unknown labels given only known labels. This experiment, C-Tran (no image), tells us

how much information model can learn just from labels. Table 5.5 shows that we get relatively high mean

average precision scores on some datasets (NEWS-500 and COCO-1000). This indicates that even without

image features, C-Tran is able to effectively learn rich dependencies from label annotations .

Second, we remove the label mask training procedure to test the effectiveness of this technique. More

specifically, we remove all label state embeddings, S; thus all labels are unknown during training. Table 5.5

shows that for both settings, regular (0%) and 50% partial labels known, the performance drops without

label mask training. This signifies two critical findings of label mask training: (1) it helps with dependency

learning as we see improvement when no partial labels are available during inference. This is particularly true

for datasets that have strong label co-occurrences, such as NEWS-500 and COCO-1000. (2) given partial

labels, it can significantly improve prediction accuracy. We provide a t-SNE plot [161] of the label embeddings

learned with and without label mask training. As shown in Figure 5.4, embeddings learned with label mask

training exhibit a more meaningful semantic topology; i.e. objects belonging to the same group are clustered

together.

We also analyze the importance of the number of Transformer layers, 𝐿, for regular inference in COCO-80.

Mean average precision scores for 2, 3, and 4 layers were 85.0, 85.1, and 84.3, respectively. This indicates : (1)

72

Partial Labels
Known (𝜖)

COCO-80 VG-500 NEWS-500 COCO-1000
0% 50% 0% 50% 0% 50% 0% 50%

C-Tran (no image) 3.60 21.7 2.70 24.6 6.50 33.3 1.50 27.8
C-Tran (no LMT) 84.8 85.0 38.3 38.8 16.9 17.1 33.1 34.0

C-Tran 85.1 85.6 38.4 40.4 18.1 35.5 34.3 37.4

Table 5.5: C-Tran component ablation results. Mean average precision score (%) is reported. Our proposed
Label Mask Training technique (LMT) improves the performance, especially when partial labels are available.

our method is fairly robust to the number of Transformer layers, (2) multi-label classification does not seem

to require a very large number of layers as in some NLP tasks [127]. While we show C-Tran is a powerful

method in many multi-label classification settings, we recognize that Transformer layers are memory-intensive

for a large number of inputs. This limits the number of possible labels ℓ in our model. Using four NVIDIA

Titan X GPUs, the upper bound of ℓ is around 2000 labels. However, it is possible to increase the number of

labels. We currently use the ResNet-101 output channel size (𝑑 = 2048) for our Transformer hidden layer

size. This can be linearly mapped to a smaller number. Additionally, we could apply one of the Transformer

variations that have been proposed to model very large input sizes [51, 162].

No LMT LMT

Figure 5.4: Comparison of the learned label embeddings for COCO-80 using t-SNE. The left figure shows the
embedding projections without using label mask training (LMT), and the right shows with LMT. Labels are
colored using the COCO object categorization. We can see that using label mask training produces much
semantically stronger label representations.

5.4.5 Qualitative Examples

Inference with Partial Labels. In Figure 5.8, we show qualitative results on COCO-80 demonstrating

the use of partial labels. In these examples, we first show the predictions for ResNet-101, as well as C-Tran

without using partial labels. The last column shows the C-Tran predictions when using 𝜖 = 25% partial labels

(which is 21 labels for COCO-80) as observed, or known prior to inference. For many examples, certain labels

cannot be predicted well without using partial labels.

73

C-Tran

Training Regular Inference

Predict Masked Labels

Mask Random Labels

C-Tran

Predict All Labels

Mask Everything

Inference with Partial Labels

C-Tran

Predict Masked Labels

Mask Unknown Labels

Inference with Extra Labels

Mask Unknown Labels

Predict Masked Labels

C-Tran

C-Tran

During Training

Predict Masked Labels

Mask Random Labels

During Inference

C-Tran

Predict Masked Labels

Mask Everything

C-Tran

During Training

Predict Masked Labels

Mask Random Labels

During Inference

C-Tran

Predict Masked Labels

Mask Everything

Figure 5.5: Detailed training and inference settings. Detailed illustrations of the general training
method and three different inference settings where C-Tran can be applied.

Inference with Extra Labels. In Figure 5.9, we show qualitative results on CUB-312 demonstrating

the use of extra labels. In the CUB-312 dataset, the extra labels are high level concepts of bird species that

are not target labels. In these examples, we first show the predictions for C-Tran without using extra labels

labels, and the last column shows the C-Tran predictions when using 𝜖 = 54% of the extra labels (which is 60

labels for CUB-312) as observed, or known prior to inference. We can see that many bird species predictions

are completely changed after using the extra labels as input to our model.

5.4.6 Detailed Diagram of C-Tran Settings

Figure 5.5 shows a detailed diagram of all possible training and inference settings used in our paper, and how

C-Tran is used in each setting. By using the same random mask training, we can apply our model to any of

the three inference settings.

5.4.7 Label Mask Training

Algorithm 1 C-Tran Label Mask Training Procedure
1: loss = 0
2: for sample (x,y) in batch do
3: label_idxs = range(1, ℓ);
4: 𝑛 = randint(0.25ℓ,ℓ);
5: unk_idxs = sample(label_idxs, 𝑛);
6: y𝑢 = {𝑦𝑖 for i in unk_idxs};
7: y𝑘 = {𝑦𝑗 for j in in label_idxs excluding unk_idxs};
8: ŷ𝑢 = 𝑓(x,y𝑘; 𝜃);
9: for label index j in y𝑢 do

10: loss += −(𝑦𝑗 log(𝑦𝑗) + (1− 𝑦𝑗) log(1− 𝑦𝑗))
11: end for
12: end for
13: backprop;
14: Update 𝜃;

74

Attribute Value Class Prediction
has_yellow_underparts=1 Heermann_Gull
has_yellow_underparts=0 Glaucous_windged_Gull

Heermann_Gull

Attribute Value Class Prediction

has_yellow_underparts=1 Heermann_Gull

has_yellow_underparts=0 Glaucous_windged_Gull

Figure 5.6: Counterfactual example. The ground truth is Heermann Gull. If we incorporate the “has
yellow underparts” attribute as input to the model, it correctly predicts the Glaucous-winged Gull bird class.

In Algorithm 1, we detail the label mask training (LMT) procedure. For each training sample, we select a

random amount of labels to be used as “known” input labels to the model. The loss function is then computed

on all unknown labels.

5.4.8 Counterfactual Testing

Counterfactual testing, as introduced by Koh et al., is performed to answer the question “If I know that

some label is true, how does it change the prediction of other labels?”. Fig. 5.6 shows a counterfactual

example on the CUB-312 dataset. Here we show the bird class prediction of our model contingent on

has_yellow_underparts being true (=1) or false (=0). In other words, this allows the user to answer the

question “What kind of bird would this be if it has (or doesn’t have) yellow underparts?”.

5.4.9 Attention Weight Analysis

In Fig. 5.7 we demonstrate attention weight analysis from the third layer of our model on the COCO-80

dataset. Fig. 5.7 (a), shows label-to-image attention for the “frisbee” label. The frisbee label attends to the

frisbee object in the image. Fig. 5.7 (b) shows label-to-label attention. Most labels attend to the frisbee label.

We found that sometimes the predictions can be worse if the model relies too much on partial labels, but

overall the performance is improved.

5.5 Related Work

Our work relates to the prior literature in image categorization. While a lot of work focuses on single-label

classification [151], there is also an ample body of work on both multi-label prediction and exploiting label

75

frisbee

(b)

(a)

Figure 5.7: Attention visualization. (a) Frisbee-to-image attention. The frisbee label embedding attends
to the frisbee in the image. (b) Label-to-label attention. Most labels attend to the frisbee label.

dependencies [163, 164, 165, 166]. There is also an increasing recognition of the importance of being able

to handle partial labels both during training and inference. We review some of this work in this section as

follows:

Multi-label Image Classification. Multi-label classification (MLC) is gaining popularity due to its

relevance in real world applications. Recently, Stock et al [167] showed that the remaining error in ImageNet

is not due to the feature extraction, but rather that ImageNet is annotated with single labels even when

some images depict more than one object.

Recent literature addressing multi-label classification roughly fall into four groups. (1) Conditional

Prediction: The first type, autoregressive models [168, 169, 141, 170] estimate the true joint probability of

output labels given the input by using the chain rule, predicting one label at a time. (2) Shared Embedding

Space: The second group learns to project input features and output labels into a shared latent embedding

space [171, 172]. (3) Structured Output: The third kind describes label dependencies using structured output

inference formulation [173, 174, 175, 176, 177, 178, 179, 180]. (4) Label Graph Formulation: Several recent

studies [145, 181, 153, 154] used graph neural networks to model label dependency an obtained state-of-the-art

results. All methods relied on knowledge-based graphs being built from label co-occurrence statistics. Our

proposed model is most similar to (4), but it does not need extra knowledge to build a graph and can

automatically learn label dependencies.

Inference with Partial Labels, Wang et al. proposed feedback propagation to handle any set of partial

76

Images True
Labels ResNet-101 C-Tran C-Tran + partial labels

ID:000000362831

fork
knife,

spoon,
bowl,
chair,

diningtable

fork,
sandwich,

diningtable,
spoon,

cup

fork,
 knife,

diningtable,
person,

cake

spoon=1,
trafficlight=0,

bench=0,
dog=0,

...

fork,
 knife,

diningtable,
person,
bowl

ID:000000106216

person,
car,

truck,
parkingmeter,

horse,

person,
car,

truck,
horse,
bicycle

car,
 person,

truck,
horse,
bicycle

bicycle=0,
motorcycle=0,

train=0,
boat=0

...

car,
 person,
 truck,
 horse,

parkingmeter

ID:000000243213

person,
bench,

backpack,
tennisracket,

bottle,
chair

person,
tennisracket,

chair,
tie,

sportsball

person,
tennisracket,

chair,
sportsball,

bench

backpack=1
parkingmeter=0,

bird=0,
 zebra=0,

...

person,
tennisracket,

chair,
bottle,
 bench

ID:000000170129

airplane,
train

airplane,
boat,
car,

truck,
person

airplane,
boat,

person,
car,
bird

car=0,
motorcycle=0,

bus=0,
truck=0,

...

airplane,
boat,

 person,
 bird,
train

ID: 000000262896

bottle,
spoon,

diningtable,
cellphone,

book

bottle,
fork,

diningtable,
bowl,

spoon

fork,
 spoon,

bowl,
book,

diningtable

diningtable=1,
bicycle=0,

car=0,
truck=0,

...

spoon,
 bowl,
book,
bottle,

cellphone

Figure 5.8: Qualitative examples of C-Tran + partial labels on the COCO-80 dataset. In the last
column, we use 𝜖 = 25% partial labels, some of which are shown. Correctly predicted labels are in bold.

labels at test time [146]. The idea is to optimize intermediate image representations according to known labels

and then predict unknown labels based on updated representations. Yang et al [182] use this type of approach

to pivot information across captions in different languages. Huang et al [183] use feedback consistency to

improve adversarial robustness. However, these methods require many iterations at inference time, and

particularly the model in [146] is not exposed to partial evidence during training, which limits potential gains.

Several methods [184, 166] utilize partial labels using a fixed set of labels. In realistic settings, however there

could be an arbitrary set of known labels available during inference. If there are ℓ total labels, then the

number of known labels, 𝑛=|y𝑘| ranges from 0 to ℓ-1. The number of possible known label sets is then
(︀
ℓ
𝑛

)︀
.

C-Tran, integrates a novel representation indicating each label state as positive, negative or unknown. This

representation enables us to leverage partial signals during training, and make our model compatible with

77

Images True
Label C-Tran C-Tran + Extra Labels

Anna
Hummingbird

Rufous
Hummingbird (96%)

has_bill_shape_needle = 1,
has_wing_color_green=1,

has_upperparts_color=green=1,
has_back_color_blue=0,

has_back_color_brown=0
...

Anna
Hummingbird (99%)

Anna_Hummingbird_0080_56366

Blue Jay Florida Jay (99%)

has_bill_shape_all-purpose=1,
has_upperparts_color_buff=1,
has_upper_tail_color_grey=1,

has_belly_color_red=0,
has_wing_shape_broad-wings=0

...

Blue Jay (99%)

Blue_Jay_0072_62944

Blue Winged
Warbler

Yellow Headed
Blackbird (99%)

has_upperparts_color_grey=1,
has_tail_shape_rounded_tail=1,
has_upper_tail_color_black=1,
has_back_color_iridescent=0,

has_underparts_color_purple=0
...

Blue Winged
Warbler (99%)

Blue_Winged_Warbler_0057_162085

Figure 5.9: Qualitative examples of C-Tran + extra labels on the CUB-312 dataset. In the last
column, we use 𝜖 = 54% extra labels, some of which are shown.

any known label set during inference. Notably, C-Tran can exploit arbitrary amounts of partial evidence

during both training and inference.

Many prominent works also tackle the problem of training models with partial label annotations [147,

148, 149]. While this might seem similar to our setting, the key distinction is that these methods assume

that images have incomplete or partial labels only during training. However, partial label training methods

make no assumptions about the inference settings and thus cannot be easily extended to the scenario where

partial labels are available at test time. We consider our line of work complementary to these efforts as these

are not mutually exclusive.

Inference with Extra Labels, Koh et al [152] introduces Concept Bottleneck Models which incorporate

intermediate concept labels as a bottleneck layer for the target label classification. Similar to [184], this

model assumes that the concept labels are a fixed set. Our model goes further by relaxing the need for a

fixed set and uses state embeddings instead of a concept bottleneck layer to represent each concept as known

(positive or negative) or unknown. This representation enables C-Tran to leverage partial labels (concepts)

during training, and make our model compatible with any known labels (concepts) during inference.

Transformers for Computer Vision Several recent works have used Transformers in computer vision

78

applications [185, 186, 187, 188, 189]. Some of these models replace a significant part of the visual recognition

pipeline with a transformer [188, 187, 185] while others use a transformer on top of features computed by a

convolutional neural network [186, 189]. Our model is architecturally similar to the latter, with a focus on

using arbitrary amounts of output labels as input to the model.

Connecting to Transformers and BERT. Our proposed method, C-Tran, draws much inspiration

from works in natural language processing. The transformer model [19] proposed “self attention” for natural

language translation. Self attention allows each word in the target sentence to attend to all other words (both

in the source sentence and the target sentence) for translation. [50] introduced BERT for language modeling.

BERT uses self attention with masked words to pretrain a language model.

Self attention and BERT are both examples of complete graphs, but on sentences rather than image

features and labels. C-Tran uses the same self-attention mechanisms as [19] and [50], but instead of using

only the word embeddings from a sentence, we use feature and label embeddings.

In computer vision, [185] used Transformers for object detection. Our method varies in several distinct

ways. First, we are primarily interested in using partial evidence for image classification, and our unique

state embeddings allow C-Tran to use such evidence. Second, we model image and label features jointly in

a Transformer encoder, whereas [185] use an encoder/decoder framework. Our method allows the image

features to be updated conditioned on the labels, which is a key characteristic of our model.

Connecting to Graph Based Neural Relational Learning. Another line of recent works employ

object localization techniques [190, 191] or attention mechanism [192, 155] to locate semantic meaningful

regions and try to identify underlying relations between regions and outputs. However, these methods either

require expensive bounding box annotations or merely get regions of interest roughly due to the lack of label

supervision. One recent study by [193] also showed that modeling the associations between image feature

regions and labels helps to improve multi-label performance. In our work, C-Tran uses graph attentions and

enables each target label to attend differentially to relevant parts of an input image.

For multi-label classfication(MLC), [176] formulate MLC using a label graph and they introduced a

conditional dependency SVM where they first trained separate classifiers for each label given the input and

all other true labels and used Gibbs sampling to find the optimal label set. The main drawback is that this

method requires separate classifiers for each label. [194] proposes a method to label the pairwise edges of

randomly generated label graphs, and requires some chosen aggregation method over all random graphs. The

authors introduce the idea that variation in the graph structure shifts the inductive bias of the base learners.

One recent study [181] used graph neural networks for multi-label classification on sequential inputs. The

79

proposed method models the label-to-label dependencies using GNNs, however, does not represent input

features and labels in one coherent graph. A key aspect of C-Tran is that the Transformer encoder can be

viewed as a fully connected graph which is able to learn any relationships between features and labels. The

Transformer attention mechanism can be regarded as a form of graph ensemble learning [195]. Above all,

previous methods using graphs to model label dependencies do not allow for partial evidence information to

be included in the prediction.

5.6 Discussion and Extensions

We believe that one of the reasons our C-Tran method works well, especially in the partial label setting, is

because of the strong interaction dependencies within images. We argue that designing models with these types

of interactions in mind is a critical choice moving forward. Furthermore, incorporating contextual information

is one of the key steps for designing better classification models. Humans are able to exploit contextual

information to make more informed decisions in certain scenarios. We demonstrated the effectiveness of

incorporating partial label contextual information, but there are many different modalities for including

contextual information. This includes, but is not limited to, proximal images or videos, as well as extra

text information. Further work could also extend C-Tran for hierarchical scene categorization, and explore

training strategies to make C-Tran generalize to settings where some labels have never been observed during

training.

One drawback of our approach is that models which incorporate the dependencies between labels can

over-rely on them resulting in biased models [196]. While these approaches can improve accuracy, they

can also be detrimental. Further studies to investigate where relying on label interactions is harmful is an

important task in deploying these models in real world settings. Similarly, these dependencies can potentially

be used to create adversarial examples [197, 198, 199], where we incorrectly tell the model there is a label

present (or absent) in order to get it make a wrong prediction. Further studies to investigate and mitigate

adversarial attacks in for multi-label classification models are an important research direction moving forward.

5.7 Summary

We propose C-Tran, a novel and flexible deep learning model for multi-label image classification. We show

that Transformers can be used to exploit interactions within image scenes for accurate multi-label image

classification. Our approach is easy to implement and can effectively leverage an arbitrary set of partial or

80

extra labels during inference. C-Tran learns sample-adaptive interactions through attention and discovers

how labels attend to different parts of an image. We demonstrate the effectiveness of our approach in

regular multi-label classification and multi-label classification with partially observed or extra labels. C-Tran

outperforms state-of-the-art methods in a wide range of scenarios. We further provide a quantitative and

qualitative analysis showing that C-Tran obtains gains by explicitly modeling interactions between target

labels and between image features and target labels.

81

Chapter 6

Conclusion and Future Work

6.1 Intellectual Merit and Broader Impacts

ChromeGCN is a novel application of deep neural networks for predicting and understanding properties of

genomic sequences. To our knowledge, ChromeGCN is the first work to extend deep learning models to

incorporate long range interactions from Hi-C data. Furthermore, the Deep Motif Dashboard is the first

unified visualization framework for extracting interpretable insights from arbitrary deep learning models in

genomics. DeepVHPPI is a novel deep learning method for predicting and analyzing novel virus protein

interactions with human proteins. To our knowledge, this is the first work to use transfer learning to

incorporate protein structural and semantic information for protein-protein interaction prediction. C-Tran is

a novel architecture and training method for general multi-label image classification. To our knowledge, we

introduce the first deep learning model to incorporate arbitrary amounts of partial labels during inference.

The research in this thesis is a successful fusion of important aspects of biology, computer vision, and

machine learning. The primary aim of this work is to redefine and solve challenges within biology and

computer vision. At the same time, we further improve the state-of-the-art machine learning methods. With

the help of interpretable and fast tools like ChromeGCN, Deep Motif Dashboard, and DeepVHPPI, we hope

to provide a better understanding of underlying mechanisms in biology. With C-Tran we hope to provide a

unified model for multi-label classification problems where users can better interact with and understand the

model and task.

82

6.2 Paths Forward

ChromeGCN is a general graph neural network framework for incorporating and learning important genomic

sequence interactions and we plan to extend it to incorporate gene expression prediction. By training better

representation learning models directly from sequence data, we hope to build more realistic simulations of

human biology so that biologists can more rapidly and accurately test DNA sequence hypotheses in-silico.

These models can be used to both better understand existing genomic pathways, as well as to predict the

effects of mutations and gene editing tools such as CRISPR-Cas9 [200].

DeepVHPPI is a general transfer learning framework for predicting protein-protein interactions. We plan

to train DeepVHPPI on all possible protein-protein interactions so that the model is applicable for not only

virus-human interactions. This model can predict novel protein interactions, predict the effects of mutations

and variants, and help understand why protein interactions occur.

C-Tran is a general Transformer framework for multi-label classification. We plan to extend it in multiple

directions. First, there are easily transferable applications other domains aside from images, such as text

classification. Second, there are other forms of contextual information that we can incorporate in addition to

partial labels including surrounding text and prior memories [201]. Finally, an exploration of the trade-offs

between the accuracy improvement from using highly dependent interactions and the detrimental effects of

incorrect interactions is an important direction.

6.3 Reflections

In this thesis, we’ve shown that we can use graph neural network models to use and discover important

interactions in DNA, transfer learning and Transformers to predict and understand interactions in proteins,

and Transformers with context specific information to exploit and explain interactions within image scenes.

Our work presents solid evidence about the importance of modeling interactions with deep learning and

proposes practical solutions to improve on previous work. The results also help understand the underlying

relationships of the data in the tasks explored. In an age where end-to-end learning with the fewest assumptions

possible seems to be the goal, we’ve shown that incorporating structural interaction assumptions into the

model can be extremely useful.

83

Bibliography

[1] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Rela-
tional inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[2] Xiang Zhou, Byungkyu Park, Daesik Choi, and Kyungsook Han. A generalized approach to predicting
protein-protein interactions between virus and host. BMC genomics, 19(6):568, 2018.

[3] Ranjan Kumar Barman, Sudipto Saha, and Santasabuj Das. Prediction of interactions between viral
and host proteins using supervised machine learning methods. PloS one, 9(11):e112034, 2014.

[4] Fatma-Elzahraa Eid, Mahmoud ElHefnawi, and Lenwood S Heath. Denovo: virus-host sequence-based
protein–protein interaction prediction. Bioinformatics, 32(8):1144–1150, 2016.

[5] Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry
Ma, and Rob Fergus. Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences. bioRxiv, page 622803, 2019.

[6] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T
Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, et al. A 3d map of the
human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7):1665–1680,
2014.

[7] Jian Zhou, Chandra L Theesfeld, Kevin Yao, Kathleen M Chen, Aaron K Wong, and Olga G Troyan-
skaya. Deep learning sequence-based ab initio prediction of variant effects on expression and disease
risk. Nature genetics, 50(8):1171, 2018.

[8] Thomas N Kipf. Deep learning with graph-structured representations. 2020.

[9] Joshua B Tenenbaum, Thomas L Griffiths, and Charles Kemp. Theory-based bayesian models of
inductive learning and reasoning. Trends in cognitive sciences, 10(7):309–318, 2006.

[10] Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B Tenenbaum. Probabilis-
tic models of cognition: Exploring representations and inductive biases. Trends in cognitive sciences,
14(8):357–364, 2010.

[11] Tomer D Ullman, Elizabeth Spelke, Peter Battaglia, and Joshua B Tenenbaum. Mind games: Game
engines as an architecture for intuitive physics. Trends in cognitive sciences, 21(9):649–665, 2017.

[12] Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 2014.

[13] Wilhelm Humboldt. On language: On the diversity of human language construction and its influence
on the mental development of the human species. 1999.

[14] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

84

[15] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

[18] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[20] Tom M Mitchell. The need for biases in learning generalizations. Department of Computer Science,
Laboratory for Computer Science Research . . . , 1980.

[21] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[23] Jeffrey L Elman. Distributed representations, simple recurrent networks, and grammatical structure.
Machine learning, 7(2-3):195–225, 1991.

[24] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[25] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[27] The transformer model in equations. https://homes.cs.washington.edu/~thickstn/docs/
transformers.pdf. Accessed: 20121-01-12.

[28] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[29] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[30] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

[31] Yanjun Qi. Learning of protein interaction networks. Carnegie Mellon University, 2008.

[32] Vicente Ordónez Román. Language and perceptual categorization in computational visual recognition.
PhD thesis, The University of North Carolina at Chapel Hill, 2015.

[33] David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, and Peter
Battaglia. Discovering objects and their relations from entangled scene representations. arXiv
preprint arXiv:1702.05068, 2017.

85

[34] Adam Santoro, David Raposo, David GT Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. arXiv
preprint arXiv:1706.01427, 2017.

[35] Andrew Kachites McCallum. Multi-label text classification with a mixture model trained by em. In
AAAI 99 workshop on text learning. Citeseer, 1999.

[36] Naonori Ueda and Kazumi Saito. Parametric mixture models for multi-labeled text. In Advances in
neural information processing systems, pages 737–744, 2003.

[37] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. International
Journal of Data Warehousing and Mining, 3(3), 2006.

[38] André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In Advances in
neural information processing systems, pages 681–687, 2002.

[39] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemble method for multilabel
classification. In European conference on machine learning, pages 406–417. Springer, 2007.

[40] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label
classification. Machine learning, 85(3):333, 2011.

[41] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for multi-label classification.
In Granular Computing, 2005 IEEE International Conference on, volume 2, pages 718–721. IEEE,
2005.

[42] Shantanu Godbole and Sunita Sarawagi. Discriminative methods for multi-labeled classification. In
Pacific-Asia conference on knowledge discovery and data mining, pages 22–30. Springer, 2004.

[43] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning-based
sequence model. Nature methods, 12(10):931–934, 2015.

[44] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the sequence
specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33(8):831–838,
2015.

[45] Borbala Mifsud, Filipe Tavares-Cadete, Alice N Young, Robert Sugar, Stefan Schoenfelder, Lauren
Ferreira, Steven W Wingett, Simon Andrews, William Grey, Philip A Ewels, et al. Mapping long-
range promoter contacts in human cells with high-resolution capture hi-c. Nature genetics, 47(6):598,
2015.

[46] Xiaoyan Ma, Daphne Ezer, Boris Adryan, and Tim J Stevens. Canonical and single-cell hi-c reveal
distinct chromatin interaction sub-networks of mammalian transcription factors. Genome biology,
19(1):174, 2018.

[47] Gary D Stormo. Dna binding sites: representation and discovery. Bioinformatics, 16(1):16–23, 2000.

[48] Chris A Brackley, Mike E Cates, and Davide Marenduzzo. Facilitated diffusion on mobile dna: con-
figurational traps and sequence heterogeneity. Physical review letters, 109(16):168103, 2012.

[49] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[50] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[51] Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

86

[52] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7794–7803,
2018.

[53] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

[54] Ferhat Ay, Timothy L Bailey, and William Stafford Noble. Statistical confidence estimation for hi-c
data reveals regulatory chromatin contacts. Genome research, 24(6):999–1011, 2014.

[55] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. Enhanced regu-
latory sequence prediction using gapped k-mer features. PLoS computational biology, 10(7):e1003711,
2014.

[56] Ritambhara Singh, Arshdeep Sekhon, Kamran Kowsari, Jack Lanchantin, Beilun Wang, and Yanjun
Qi. Gakco: a fast gapped k-mer string kernel using counting. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 356–373. Springer, 2017.

[57] Hamid Reza Hassanzadeh and May D Wang. Deeperbind: Enhancing prediction of sequence speci-
ficities of dna binding proteins. In 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 178–183. IEEE, 2016.

[58] Jack Lanchantin, Ritambhara Singh, Zeming Lin, and Yanjun Qi. Deep motif: Visualizing genomic
sequence classifications. arXiv preprint arXiv:1605.01133, 2016.

[59] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent deep neural network for
quantifying the function of dna sequences. Nucleic acids research, 44(11):e107–e107, 2016.

[60] Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi. Deep motif dashboard: Visualizing
and understanding genomic sequences using deep neural networks. In PACIFIC SYMPOSIUM ON
BIOCOMPUTING 2017, pages 254–265. World Scientific, 2017.

[61] David R Kelley, Yakir A Reshef, Maxwell Bileschi, David Belanger, Cory Y McLean, and Jasper
Snoek. Sequential regulatory activity prediction across chromosomes with convolutional neural
networks. Genome research, 28(5):739–750, 2018.

[62] Ofir Hakim and Tom Misteli. Snapshot: chromosome conformation capture. Cell, 148(5):1068–e1,
2012.

[63] Swneke D Bailey, Xiaoyang Zhang, Kinjal Desai, Malika Aid, Olivia Corradin, Richard Cowper-Sal,
Batool Akhtar-Zaidi, Peter C Scacheri, Benjamin Haibe-Kains, Mathieu Lupien, et al. Znf143 provides
sequence specificity to secure chromatin interactions at gene promoters. Nature communications,
6:6186, 2015.

[64] Ka-Chun Wong. Motifhyades: expectation maximization for de novo dna motif pair discovery on
paired sequences. Bioinformatics, 33(19):3028–3035, 2017.

[65] Jacob Schreiber, Maxwell Libbrecht, Jeffrey Bilmes, and William Noble. Nucleotide sequence and
dnasei sensitivity are predictive of 3d chromatin architecture. bioRxiv, page 103614, 2018.

[66] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured
data. In International Conference on Machine Learning, pages 2702–2711, 2016.

[67] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

[68] ENCODE Project Consortium et al. The encode (encyclopedia of dna elements) project. Science,
306(5696):636–640, 2004.

87

[69] Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi-
Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang, Michael J Ziller, et al. Integrative
analysis of 111 reference human epigenomes. Nature, 518(7539):317, 2015.

[70] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3145–3153. JMLR. org, 2017.

[71] Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant, Luca Clementi,
Jingyuan Ren, Wilfred W Li, and William S Noble. Meme suite: tools for motif discovery and search-
ing. Nucleic acids research, 37(suppl_2):W202–W208, 2009.

[72] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[73] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Müller. How to explain individual classification decisions. The Journal of Machine Learning
Research, 11:1803–1831, 2010.

[74] Anthony Mathelier, Oriol Fornes, David J Arenillas, Chih-yu Chen, Grégoire Denay, Jessica Lee,
Wenqiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, et al. Jaspar 2016: a major expansion
and update of the open-access database of transcription factor binding profiles. Nucleic acids research,
44(D1):D110–D115, 2016.

[75] Shobhit Gupta, John A Stamatoyannopoulos, Timothy L Bailey, and William Stafford Noble. Quan-
tifying similarity between motifs. Genome biology, 8(2):1–9, 2007.

[76] Daniel Quang and Xiaohui Xie. Danq: a hybrid convolutional and recurrent deep neural network for
quantifying the function of dna sequences. Nucleic acids research, 44(11):e107–e107, 2016.

[77] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. Deepchrome: deep-learning for
predicting gene expression from histone modifications. volume 32, pages i639–i648, 2016.

[78] Ritambhara Singh, Jack Lanchantin, Arshdeep Sekhon, and Yanjun Qi. Attend and predict: Un-
derstanding gene regulation by selective attention on chromatin. In Advances in neural information
processing systems, pages 6785–6795, 2017.

[79] Sylvain Pitre, Mohsen Hooshyar, Andrew Schoenrock, Bahram Samanfar, Matthew Jessulat,
James R Green, Frank Dehne, and Ashkan Golshani. Short co-occurring polypeptide regions can
predict global protein interaction maps. Scientific reports, 2:239, 2012.

[80] EM Phizicky and S. Fields. Protein-protein interactions: methods for detection and analysis. Microbiol
Rev., 59(1):94–123, 1995.

[81] Shao-Wu Zhang and Ze-Gang Wei. Some remarks on prediction of protein-protein interaction with
machine learning. Medicinal Chemistry, 11(3):254–264, 2015.

[82] Stanley Fields and Ok-kyu Song. A novel genetic system to detect protein–protein interactions.
Nature, 340(6230):245–246, 1989.

[83] Yuen Ho, Albrecht Gruhler, Adrian Heilbut, Gary D Bader, Lynda Moore, Sally-Lin Adams, Anna
Millar, Paul Taylor, Keiryn Bennett, Kelly Boutilier, et al. Systematic identification of protein
complexes in saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868):180–183, 2002.

[84] David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M
White, Matthew J O’Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al. A sars-cov-2
protein interaction map reveals targets for drug repurposing. Nature, pages 1–13, 2020.

88

[85] Christian von Mering, Roland Krause, Berend Snel, Michael Cornell, Stephen G. Oliver, Stanley
Fields, and Peer Bork. Comparative assessment of large-scale data sets of protein-protein interactions.
Nature, 417(6887):399–403, 2002.

[86] Tanlin Sun, Bo Zhou, Luhua Lai, and Jianfeng Pei. Sequence-based prediction of protein protein
interaction using a deep-learning algorithm. BMC bioinformatics, 18(1):1–8, 2017.

[87] Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting protein–protein interactions.
Bioinformatics, 21(suppl_1):i38–i46, 2005.

[88] Lei Yang, Jun-Feng Xia, and Jie Gui. Prediction of protein-protein interactions from protein sequence
using local descriptors. Protein and Peptide Letters, 17(9):1085–1090, 2010.

[89] Shawn M Gomez, William Stafford Noble, and Andrey Rzhetsky. Learning to predict protein–protein
interactions from protein sequences. Bioinformatics, 19(15):1875–1881, 2003.

[90] Shawn Martin, Diana Roe, and Jean-Loup Faulon. Predicting protein–protein interactions using
signature products. Bioinformatics, 21(2):218–226, 2005.

[91] Yanzhi Guo, Lezheng Yu, Zhining Wen, and Menglong Li. Using support vector machine combined
with auto covariance to predict protein–protein interactions from protein sequences. Nucleic acids
research, 36(9):3025–3030, 2008.

[92] Zhu-Hong You, Lin Zhu, Chun-Hou Zheng, Hong-Jie Yu, Su-Ping Deng, and Zhen Ji. Prediction
of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and
discontinuous feature set. In BMC bioinformatics, volume 15, page S9. Springer, 2014.

[93] Tobias Hamp and Burkhard Rost. Evolutionary profiles improve protein–protein interaction prediction
from sequence. Bioinformatics, 31(12):1945–1950, 2015.

[94] Xiaodi Yang, Shiping Yang, Qinmengge Li, Stefan Wuchty, and Ziding Zhang. Prediction of human-
virus protein-protein interactions through a sequence embedding-based machine learning method.
Computational and structural biotechnology journal, 18:153–161, 2020.

[95] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel,
and Yun S Song. Evaluating protein transfer learning with tape. arXiv preprint arXiv:1906.08230,
2019.

[96] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

[97] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[98] Emma Redhead and Timothy L Bailey. Discriminative motif discovery in dna and protein sequences
using the deme algorithm. BMC bioinformatics, 8(1):385, 2007.

[99] Norman E Davey, Gilles Travé, and Toby J Gibson. How viruses hijack cell regulation. Trends in
biochemical sciences, 36(3):159–169, 2011.

[100] Qian Cong, Ivan Anishchenko, Sergey Ovchinnikov, and David Baker. Protein interaction networks
revealed by proteome coevolution. Science, 365(6449):185–189, 2019.

[101] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

89

[102] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning research,
12(Aug):2493–2537, 2011.

[103] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

[104] Florencio Pazos and Alfonso Valencia. Similarity of phylogenetic trees as indicator of protein–protein
interaction. Protein engineering, 14(9):609–614, 2001.

[105] Lei Wang, Hai-Feng Wang, San-Rong Liu, Xin Yan, and Ke-Jian Song. Predicting protein-protein in-
teractions from matrix-based protein sequence using convolution neural network and feature-selective
rotation forest. Scientific reports, 9(1):1–12, 2019.

[106] Somaye Hashemifar, Behnam Neyshabur, Aly A Khan, and Jinbo Xu. Predicting protein–protein
interactions through sequence-based deep learning. Bioinformatics, 34(17):i802–i810, 2018.

[107] Florian Richoux, Charlène Servantie, Cynthia Borès, and Stéphane Téletchéa. Comparing two
deep learning sequence-based models for protein-protein interaction prediction. arXiv preprint
arXiv:1901.06268, 2019.

[108] Kalyani B Karunakaran, N Balakrishnan, and Madhavi K Ganapathiraju. Interactome of sars-cov-
2/ncov19 modulated host proteins with computationally predicted ppis, 2020.

[109] Anne-Florence Bitbol. Inferring interaction partners from protein sequences using mutual information.
PLoS computational biology, 14(11):e1006401, 2018.

[110] Oznur Tastan, Yanjun Qi, Jaime G Carbonell, and Judith Klein-Seetharaman. Prediction of interac-
tions between hiv-1 and human proteins by information integration, 2009.

[111] Yanjun Qi, Oznur Tastan, Jaime G Carbonell, Judith Klein-Seetharaman, and Jason Weston. Semi-
supervised multi-task learning for predicting interactions between hiv-1 and human proteins. Bioin-
formatics, 26(18):i645–i652, 2010.

[112] Guangyu Cui, Chao Fang, and Kyungsook Han. Prediction of protein-protein interactions between
viruses and human by an svm model. In BMC bioinformatics, volume 13, page S5. Springer, 2012.

[113] Esmaeil Nourani, Farshad Khunjush, and Saliha Durmuş. Computational approaches for prediction
of pathogen-host protein-protein interactions. Frontiers in microbiology, 6:94, 2015.

[114] Yungki Park and Edward M Marcotte. Flaws in evaluation schemes for pair-input computational
predictions. Nature methods, 9(12):1134, 2012.

[115] Yanjun Qi, Merja Oja, Jason Weston, and William Stafford Noble. A unified multitask architecture
for predicting local protein properties. PloS one, 7(3):e32235, 2012.

[116] Zeming Lin, Jack Lanchantin, and Yanjun Qi. Must-cnn: a multilayer shift-and-stitch deep convolu-
tional architecture for sequence-based protein structure prediction. In Thirtieth AAAI conference on
artificial intelligence, 2016.

[117] Seonwoo Min, Seunghyun Park, Siwon Kim, Hyun-Soo Choi, and Sungroh Yoon. Pre-training of deep
bidirectional protein sequence representations with structural information, 2019.

[118] Tristan Bepler and Bonnie Berger. Learning protein sequence embeddings using information from
structure. arXiv preprint arXiv:1902.08661, 2019.

90

[119] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and Michael Auli. Cloze-driven
pretraining of self-attention networks. arXiv preprint arXiv:1903.07785, 2019.

[120] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

[121] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–1853, 2005.

[122] Dekang Lin and Xiaoyun Wu. Phrase clustering for discriminative learning. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1030–1038. Association for
Computational Linguistics, 2009.

[123] Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108, 2017.

[124] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning, 2016.

[125] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835, 2017.

[126] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

[127] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners, 2020.

[128] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[129] UniProt Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic acids research,
47(D1):D506–D515, 2019.

[130] Michael Schantz Klausen, Martin Closter Jespersen, Henrik Nielsen, Kamilla Kjaergaard Jensen,
Vanessa Isabell Jurtz, Casper Kaae Soenderby, Morten Otto Alexander Sommer, Ole Winther,
Morten Nielsen, Bent Petersen, et al. Netsurfp-2.0: Improved prediction of protein structural features
by integrated deep learning. Proteins: Structure, Function, and Bioinformatics, 87(6):520–527, 2019.

[131] Mohammed AlQuraishi. End-to-end differentiable learning of protein structure. Cell systems, 8(4):292–
301, 2019.

[132] Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[133] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[134] Alejandro A Schäffer, L Aravind, Thomas L Madden, Sergei Shavirin, John L Spouge, Yuri I Wolf,
Eugene V Koonin, and Stephen F Altschul. Improving the accuracy of psi-blast protein database
searches with composition-based statistics and other refinements. Nucleic acids research, 29(14):2994–
3005, 2001.

91

[135] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. Hhblits: lightning-fast
iterative protein sequence searching by hmm-hmm alignment. Nature methods, 9(2):173, 2012.

[136] Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for
protein engineering. Nature methods, 16(8):687–694, 2019.

[137] Mais G Ammari, Cathy R Gresham, Fiona M McCarthy, and Bindu Nanduri. Hpidb 2.0: a curated
database for host–pathogen interactions. Database, 2016, 2016.

[138] Rose Oughtred, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher, Christie Chang,
Nadine Kolas, Lara O’Donnell, Genie Leung, Rochelle McAdam, et al. The biogrid interaction
database: 2019 update. Nucleic acids research, 47(D1):D529–D541, 2019.

[139] Tyler N Starr, Allison J Greaney, Sarah K Hilton, Daniel Ellis, Katharine HD Crawford, Adam S
Dingens, Mary Jane Navarro, John E Bowen, M Alejandra Tortorici, Alexandra C Walls, et al. Deep
mutational scanning of sars-cov-2 receptor binding domain reveals constraints on folding and ace2
binding. Cell, 182(5):1295–1310, 2020.

[140] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunyasuvu-
nakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex Bridgland, et al. High accuracy protein
structure prediction using deep learning. Fourteenth Critical Assessment of Techniques for Protein
Structure Prediction (Abstract Book), 22:24, 2020.

[141] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu. Cnn-rnn: A unified
framework for multi-label image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2285–2294, 2016.

[142] Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, and Liang Lin. Multi-label image recognition
by recurrently discovering attentional regions. In Proceedings of the IEEE international conference
on computer vision, pages 464–472, 2017.

[143] Shang-Fu Chen, Yi-Chen Chen, Chih-Kuan Yeh, and Yu-Chiang Wang. Order-free rnn with visual at-
tention for multi-label classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[144] Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. Multi-label zero-shot
learning with structured knowledge graphs. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1576–1585, 2018.

[145] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-Label Image Recognition
with Graph Convolutional Networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[146] Tianlu Wang, Kota Yamaguchi, and Vicente Ordonez. Feedback-prop: Convolutional neural network
inference under partial evidence. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[147] Ming-Kun Xie and Sheng-Jun Huang. Partial multi-label learning. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[148] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-label classifi-
cation with partial labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 647–657, 2019.

[149] Kaustav Kundu and Joseph Tighe. Exploiting weakly supervised visual patterns to learn from partial
annotations. Advances in Neural Information Processing Systems, 33, 2020.

92

[150] Wilson L Taylor. “cloze procedure”: A new tool for measuring readability. Journalism quarterly,
30(4):415–433, 1953.

[151] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

[152] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 5338–5348. PMLR, 13–18 Jul 2020.

[153] Tianshui Chen, Muxin Xu, Xiaolu Hui, Hefeng Wu, and Liang Lin. Learning semantic-specific graph
representation for multi-label image recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 522–531, 2019.

[154] Tianshui Chen, Liang Lin, Xiaolu Hui, Riquan Chen, and Hefeng Wu. Knowledge-guided multi-label
few-shot learning for general image recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[155] Feng Zhu, Hongsheng Li, Wanli Ouyang, Nenghai Yu, and Xiaogang Wang. Learning spatial regular-
ization with image-level supervisions for multi-label image classification. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2027–2036, 2017.

[156] Weifeng Ge, Sibei Yang, and Yizhou Yu. Multi-evidence filtering and fusion for multi-label classifica-
tion, object detection and semantic segmentation based on weakly supervised learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1277–1286, 2018.

[157] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[158] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei. Visual
genome: Connecting language and vision using crowdsourced dense image annotations. International
Journal of Computer Vision, 123:32–73, 2016.

[159] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. California Institute of Technology, 2010.

[160] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

[161] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[162] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 331–335, Florence, Italy, July 2019. Association for Computational Linguistics.

[163] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. Large-scale object classification using label relation graphs. In European
conference on computer vision, pages 48–64. Springer, 2014.

[164] Vicente Ordonez, Wei Liu, Jia Deng, Yejin Choi, Alexander C Berg, and Tamara L Berg. Predicting
entry-level categories. International Journal of Computer Vision, 115(1):29–43, 2015.

93

[165] Yong Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Structure inference net: Object detection
using scene-level context and instance-level relationships. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6985–6994, 2018.

[166] Hexiang Hu, Guang-Tong Zhou, Zhiwei Deng, Zicheng Liao, and Greg Mori. Learning structured
inference neural networks with label relations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2960–2968, 2016.

[167] Pierre Stock and Moustapha Cisse. Convnets and imagenet beyond accuracy: Understanding mistakes
and uncovering biases. In Proceedings of the European Conference on Computer Vision (ECCV), pages
498–512, 2018.

[168] Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hüllermeier. Bayes optimal multilabel classification
via probabilistic classifier chains. In ICML, 2010.

[169] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label
classification. Machine Learning and Knowledge Discovery in Databases, pages 254–269, 2009.

[170] Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J Kim, and Johannes Fürnkranz. Maximizing subset ac-
curacy with recurrent neural networks in multi-label classification. In Advances in Neural Information
Processing Systems, pages 5419–5429, 2017.

[171] Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, and Yu-Chiang Frank Wang. Learning deep latent space
for multi-label classification. In AAAI, pages 2838–2844, 2017.

[172] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local
embeddings for extreme multi-label classification. In Advances in Neural Information Processing
Systems, pages 730–738, 2015.

[173] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

[174] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin
methods for structured and interdependent output variables. Journal of machine learning research,
6(Sep):1453–1484, 2005.

[175] David Belanger and Andrew McCallum. Structured prediction energy networks. In International
Conference on Machine Learning, pages 983–992, 2016.

[176] Yuhong Guo and Suicheng Gu. Multi-label classification using conditional dependency networks. In
IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22, page 1300,
2011.

[177] Qiang Li, Maoying Qiao, Wei Bian, and Dacheng Tao. Conditional graphical lasso for multi-label
image classification. In CVPR, pages 2977–2986, 06 2016.

[178] Xin Li, Feipeng Zhao, and Yuhong Guo. Multi-label image classification with a probabilistic label en-
hancement model. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
UAI’14, pages 430–439, Arlington, Virginia, USA, 2014. AUAI Press.

[179] Mark Yatskar, Vicente Ordonez, Luke Zettlemoyer, and Ali Farhadi. Commonly uncommon: Semantic
sparsity in situation recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7196–7205, 2017.

[180] Tejaswi Nimmagadda and Anima Anandkumar. Multi-object classification and unsupervised scene
understanding using deep learning features and latent tree probabilistic models. arXiv preprint
arXiv:1505.00308, 2015.

94

[181] Jack Lanchantin, Arshdeep Sekhon, and Yanjun Qi. Neural message passing for multi-label classifi-
cation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 138–163. Springer, 2019.

[182] Ziyan Yang, Leticia Pinto-Alva, Franck Dernoncourt, and Vicente Ordonez. Using visual feature space
as a pivot across languages. In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 3673–3678, Online, November 2020. Association for Computational Linguistics.

[183] Yujia Huang, James Gornet, Sihui Dai, Zhiding Yu, Tan Nguyen, Doris Tsao, and Anima Anandku-
mar. Neural networks with recurrent generative feedback. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 535–545. Curran Associates, Inc., 2020.

[184] Michal Koperski, Tomasz Konopczynski, Rafal Nowak, Piotr Semberecki, and Tomasz Trzcinski.
Plugin networks for inference under partial evidence. In The IEEE Winter Conference on Applications
of Computer Vision, pages 2883–2891, 2020.

[185] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer
Vision, pages 213–229. Springer, 2020.

[186] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In European Conference on
Computer Vision, pages 104–120. Springer, 2020.

[187] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International Conference on Machine Learning, pages 4055–4064.
PMLR, 2018.

[188] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[189] Fuwen Tan, Jiangbo Yuan, and Vicente Ordonez. Instance-level image retrieval using reranking
transformers. arXiv preprint arXiv:2103.12236, 2021.

[190] Hao Yang, Joey Tianyi Zhou, Yu Zhang, Bin-Bin Gao, Jianxin Wu, and Jianfei Cai. Exploit bound-
ing box annotations for multi-label object recognition. In Lourdes Agapito, Tamara Berg, Jana
Kosecka, and Lihi Zelnik-Manor, editors, Proceedings - 29th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, pages 280–288, United States of America, 2016. IEEE.

[191] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan. Hcp: A flexible cnn frame-
work for multi-label image classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(9):1901–1907, Sep. 2016.

[192] Zhouxia Wang, Tianshui Chen, Guanbin Li, Ruijia Xu, and Liang Lin. Multi-label image recognition
by recurrently discovering attentional regions. In The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[193] Xiangyang Xue, Wei Zhang, Jie Zhang, Bin Wu, Jianping Fan, and Yao Lu. Correlative multi-label
multi-instance image annotation. In Proceedings of the 2011 International Conference on Computer
Vision, ICCV ’11, pages 651–658, USA, 2011. IEEE Computer Society.

[194] Hongyu Su and Juho Rousu. Multilabel classification through random graph ensembles. In Asian
Conference on Machine Learning, pages 404–418, 2013.

95

[195] Kazuyuki Hara, Daisuke Saitoh, and Hayaru Shouno. Analysis of dropout learning regarded as
ensemble learning. In International Conference on Artificial Neural Networks. Springer, 2016.

[196] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like
shopping: Reducing gender bias amplification using corpus-level constraints. arXiv preprint
arXiv:1707.09457, 2017.

[197] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

[198] John X Morris, Eli Lifland, Jack Lanchantin, Yangfeng Ji, and Yanjun Qi. Reevaluating adversarial
examples in natural language. arXiv preprint arXiv:2004.14174, 2020.

[199] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops (SPW),
pages 50–56. IEEE, 2018.

[200] Jennifer A Doudna and Emmanuelle Charpentier. The new frontier of genome engineering with
crispr-cas9. Science, 346(6213), 2014.

[201] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
arXiv preprint arXiv:1503.08895, 2015.

96

