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ABSTRACT

Mobile devices such as smartphones, smartwatches, and other wearable devices are

equipped with a rich set of sensors that can collect human behavioral and physiological

data continuously and unobtrusively. Data collected by using the embedded sensors (e.g.,

accelerometer, GPS sensor, and Bluetooth sensor) in mobile devices has been leveraged in

a plethora of healthcare-related fields, including but not limited to physical state inference,

mental health monitoring, and mobile intervention. Despite the recent achievements and

advancements in mobile health (mhealth), wide adoption of mhealth remains a challenge.

First of all, handcrafted feature engineering and conventional deep neural networks (e.g.,

Multi-Layer Perceptron, Convolutional Neural Network) are restricted to generating suf-

ficient representations of raw mobile sensing data, making it difficult to capture complex

interdependence within human behaviors. Secondly, complete responses of high-frequency

ecological momentary assessments (EMAs) in the wild are impractical due to heavy user

burden and low user engagement, resulting in sparsely annotated mobile sensing data at

different levels of granularity. Last but not least, current centralized training of machine

learning models can expose sensitive information of mobile users to privacy risks due to

data breaches and misexploitation, preventing widespread use of mobile sensing. This

research demonstrates a set of deep graph learning systems to overcome the above men-

tioned challenges and presents a state-of-the-art modeling paradigm in mobile sensing from

a topological perspective.
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Chapter 1

Introduction

Mobile sensing with embedded sensors (e.g., accelerometer, GPS, and Bluetooth) can be

harnessed to unobtrusively collect fine-grained information about users’ contexts and be-

haviors. Behavior markers can be extracted from mobile sensor data to represent human

states and model human behaviors. Downstream machine learning techniques have been

widely studied to recognize human behavioral patterns based on the extracted behavioral

features. Given multi-modal sensors, handcrafted features are usually extracted to build

machine learning models and to quantify the contribution of represented human behav-

iors to predict outcomes such as health and wellbeing [1, 2, 3]. For example, motion

features such as magnitude of acceleration, can be extracted from accelerometer to study

their correlations with different user contexts (e.g., location, activity, social context) [4].

Instead of using handcrafted features that are based on heuristics and domain knowledge,

high level features can be automatically extracted from mobile sensing data, and lever-

aged to improve generalization of predictive modeling using deep learning models. For

example, Boukhechba et al. built convolutional neural network (CNN) models based on

photoplethysmogram (PPG) data to infer ambulatory activities [5]. Handcrafted feature

engineering and conventional deep neural networks (e.g., Multi-Layer Perceptron, Convo-

lutional Neural Network) are limited to generate sufficient representations of raw mobile
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sensing data in every modality, making it difficult to capture complex interdependence

within human behaviors. On one hand, low level features extracted by handcrafted feature

engineering can miss information about the inter-dependencies in different sensing modal-

ities. On the other hand, the complex interactions within data points in and among different

sensing streams may not be sufficiently embedded in deep features by CNN/RNN, espe-

cially when the data have hidden structural patterns and are generated from non-Euclidean

domains [6]. Some discrete sensor signals, such as GPS and Bluetooth streams, can be rep-

resented as graphs to encode the structural interdependence and information generated from

different domains. Handcrafted feature engineering and conventional neural networks, in

this case, cannot produce representative embeddings for downstream learning tasks.

Deep Graph Learning (DGL) [7], including Graph Representation Learning (GRL) [8]

and Graph Neural Networks (GNNs) [6], is an emerging research field in machine learn-

ing and has attracted wide attentions in solving inference and prediction problems with

non-Euclidean graph structured data. In general, GRL is an unsupervised feature learning

process that generates embeddings that map graphs into low-dimensional numerical vec-

tor spaces such that this embedding can optimally preserve the intrinsic graph properties

[8]. And GNNs can learn powerful graph structure representations supervisedly or semi-

supervisedly, encoding both node proximity and sub-graph structure given graph inputs [9].

With recent advancements in DGL, we propose a general representation learning frame-

work that uses graphs to represent raw mobile sensing data and uses deep graph learning

techniques to generate high-level features to capture complex human behavior dynamics.

The motivation for using DGL for mobile sensing data is illustrated as follows: in a

multi-modal sensing environment, some mobile sensing data can be naturally represented

as graph structure data, such as GPS trajectory and Bluetooth encounter network. The

topological or geographic structures can be captured by using DGL [10]. With graph rep-

resentation, topological features can be extracted by using Node and Graph embedding

methods. For example, given a graph input, we can use Node2Vec [11], which is a Node
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embedding method, to generate a numerical representation for each node, such that the

topological structure of nodes can be expressed in the numerical space. DGL framework

can capture inter-dependence relationships between neighborhood of human states [6].

Human behaviors have spatial and temporal variations through time, making the corre-

sponding graph representations have temporal topological changes. The DGL frameworks

can extract the spatio-temporal features given an input of a sequence of graphs [12]. For

example, integrating with Long short term memory (LSTM) [13], temporal GNN [14] can

extract spatiotemporal features to predict health related targets. DGL can be used to gener-

ate structured and informative representations of diverse unstructured mobile sensing data

(e.g., text messages, app usage records, daily schedule). DGL can also extract high-order

and complex interaction patterns between different human states [9]. Higher-order and

complex interactions between node neighborhoods can be captured by adding more GCN

layers. Heterogeneous graphs can be constructed to represent both hierarchical human

state interactions and heterogeneous human state interactions. For example, given the cal-

endar information of a mobile user, we can use bipartite graphs to represent the user’s daily

schedule and further infer some relevant health outcomes, such as social anxiety.

In DGL, Graph Neural Networks (GNNs), which is a generalized version of Convo-

lutional Neural Networks (CNNs) [6], can capture deep features of complex interactions

and interdependence between human states. For example, GNNs can capture deep fea-

tures of complex interactions and interdependence between human states. For example,

CNN can capture high-level features from the multivariate time series data generated by

the accelerometer, gyroscope, and magnetometer by learning the weights in the kernels. In

the multivariate time series (MTS), we can treat each timestamp as a node and link two

consecutive timestamps with an edge, which will give us a line structure. The high-level

feature can also be extracted by using GNN with a graph representation of MTS. When we

segment MTS into appropriate bins and construct graphs by regarding each bin as a node

and transitions between bins as edges, GNN can capture the complex interaction and inter-
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dependence pattern of human states. DGL can generate semantic meaning (i.e., purpose,

health state) for human behaviors [15]. For example, in the application of DGL to GPS

location data, if a person’s GPS trajectory graph is simple with a small number of nodes

and a low node degree (like a line or circle), this person could be more likely to keep a

daily route activity. If the GPS trajectory graph is complex with a large number of nodes

and a high node degree, this could be more like having leisure time to explore the area.

DGL can infer demographic information which is helpful to develop personalized health

intervention [16]. By leveraging calendar information, GRL can represent the schedule

graph of people. This schedule graph can be utilized to generate embeddings to infer demo-

graphic information, such as gender, professional status, income, and so on. Furthermore,

without demographic information input from participants, this embedding can be used to

cluster people into different groups to develop a personalized healthcare service. DGL can

be used to capture contextual information (i.e., location and time) about human behaviors.

For example, students could use mail apps more frequently on campus during the day-

time and use social apps and entertainment apps more frequently off campus after school.

Spatiotemporal information can be embedded into latent representations by analyzing app

usage trajectories and app attributes [17]. DGL also has good interpretability. Not only can

each node have semantically interpretable information by evaluating node importance, but

the global and local graph structures can also provide explainable information. For exam-

ple, a complete graph of physical activity transitions can imply the robustness of a person.

For GPS trajectory graph, highlighted sub-graphs can imply geographical information and

also functionality of this sub-area (i.e. shopping mall and cinema are usually near each

other).

The DGL for mobile health is investigated in this dissertation. The first study aims to

make predictions of salivary cortisol levels of pancreatic cancer patients by using GRL to

generate robust feature representations of human physical activities that are captured by

mobile sensing [18]. The second study is to use a graph neural network (GNN) framework
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to infer the existence of influenza-like symptoms based on people’s multi-modal daily mo-

bile sensing data [19]. The third study, motivated by Multiple Instance Learning, proposes

a semi-supervised graph instance transformer (semi-GIT) to overcome the label sparsity

at different levels of granularity for more robust mental health inference [20]. Based on

the empirical evaluation of the previously investigated deep graph learning systems by us-

ing mobile sensing data collected in the wild, we demonstrate that our deep graph learning

systems can outperform traditional machine learning models with handcrafted feature engi-

neering. Even though the superior performance of DGL was demonstrated in the previous

studies, there are multiple challenges when applying DGL to real-world health inference

problems. First and for most, even though mobile sensing has been shown as a promising

solution in a plethora of healthcare-related fields with passively and unobtrusively collected

data, wide adoption of mobile sensing applications remains challenging due to privacy con-

cerns. Where the data is stored, who has access to them, and how they are used are among

the typical aspects of users’ concerns. What’s more, training machine learning models,

especially neural networks, requires a large quantity of labeled data and it is challenging

to meet this requirement through tracking many users for extended periods of time, since

this massive amount of data cannot be leveraged in supervised learning methods. There-

fore, in the fourth study, we introduce incremental semi-supervised federated learning for

privacy-preserving DGL in mobile health.

The remainder of this work is presented as follows. In chapter 2, we summarize recent

works on DGL, Multi Instance Learning and Federated Learning. In chapter 3, we present

our model of using GRL to predict saliva cortisol level for pancreatic cancer patients. In

chapter 4, we present our multi-modal GNN for influenza-like symptom recognition. In

chapter 6, we present our semi-supervised graph instance transformer for mental health

inference. In chapter 5, we present our work of incremental federated learning for mobile

health. And in chapter 7 and chapter 8 we provide discussion to illustrate the broader

impact, limitation and future research directions, and after that we draw conclusion about
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this dissertation.
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Chapter 2

Literature Review

2.1 Multi-modal Deep Learning

Unlike natural language processing and computer vision, most practical applications us-

ing sensing data are multi-modal, necessitating the deployment of properly designed deep

learning algorithms to efficiently fuse these diverse data sources and obtain enhanced re-

sults. On a per-sample basis, Liu et al. suggested a novel multiplicative multimodal tech-

nique that may find more significant data modality [21]. They also tested a unique strategy

for automatically selecting mixes of modalities in order to capture potential cross-modality

correlations and interdependence. Using multiple physiological data sources such as ECG,

accelerometer, and respiration data acquired from wearable devices, Chakraborty et al.

suggested a multichannel convolutional neural network architecture for identifying state of

mind [22]. In a tri-modal architecture, Kampman et al. integrated video clips, audio, and

text data to predict Big Five Personality Trait scores [23]. They used stacked convolutional

neural layers on each data modality and concatenated the outputs of all channels with fully

connected layers to produce a 9.4% improvement over the best individual modality model.

Li et al. preprocessed multi-channel EEG data into grid-like frames and constructed a hy-

brid deep learning model using CNN and RNN layers. They used this strategy in neurology
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and psychiatry to detect emotional disorders using emotion recognition tests. Salekin et al.

used a similar CNN+RNN architecture to estimate newborn pain using video data, integrat-

ing facial expression and body movement signals into a three-channel model that included

face, body, and face+body hybrid channels. [24].

2.2 Deep Graph Learning

Deep Graph Learning (DGL) has been used to encode multiple data types in machine

learning tasks in order to tackle a variety of real-world challenges, including social net-

work recommendation [25], drug-to-drug interaction prediction [26], and knowledge rea-

soning [27]. The authors of these publications used graph representation to express the

complicated interdependence of distinct entities in a variety of challenges. Graph neu-

ral networks [6] GNN is capable of extracting graph structural information and composite

linkages from graph-structured data automatically. For example, in the graph representa-

tion of road networks, road segments reflect the network’s geographical information, while

the edges connecting neighboring segments show their connectedness [28]. By learning

spatiotemporal patterns buried in complicated road networks, the scientists used GNNs to

forecast traffic flow. Road network embeddings are discovered using GNNs to construct

semantic representations of road segments, allowing for the use of the structural functions

of road networks in transportation planning [29]. Fan et al. encoded user-to-user and

user-to-item links in social networks using graphs and used GNNs to produce social rec-

ommendations based on user interactions [25]. In this dissertation, we evaluate multiple

the state-of-art GRL and GNN methods on different mobile sensing data collected in the

wild, and demonstrate the outperformance of deep graph learning.

Graphs are unique data structures that consist of a set of nodes and edges and can rep-

resent numerous connected structures, such as social networks, protein-to-protein interac-

tions, human skeletal systems, etc [6]. Given the graph structured data input that generated
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from non-Euclidean domain space, conventional DNNs (e.g., CNN and RNN) are unable

to perform regular convolution operations or recurrent connection learning for long-term

dependence. Graph neural networks (GNNs), as specific models in the deep learning fam-

ily, can process graph-structured information by mapping graph input to numerical spaces.

In this section, we provide briefly summary of current GNNs models. The diagrams of four

types of GNNs model is shown in Fig.Figure 2.1. More comprehensive reviews of GNNs

can be found in these works [9, 30, 6].

Preliminary of GNNs: given a graph, we usually denote the graph as G = {V , E}, where

V is the set of nodes and E is the set of edges. Based on the node and edge construction,

graphs can be categorized as follows:

• Directed/Undirected Graphs: in directed graphs, edges have directional information

of pointing from one node to another, implying that messages can only transmit by

following this direction. In undirected graphs, there is no such direction information

in the edges, implying that messages can transmit in any direction.

• Weighted/Unweighted Graphs: weighted graphs refer to the graph with attributed

edges, which determine how messages can transit through the networks. Unweighted

graphs indicate a graph with unattributed edges, in which case we can just use an

adjacency matrix with 0/1 entries to describe the connectivity of graphs.

• Homogeneous/Heterogeneous Graphs: homogeneous graphs include nodes and edges

that have the same types, while heterogeneous graphs consist of nodes and edges that

have the same types.

• Static/Dynamic Graphs: the topological structures of graphs cannot vary through

time changes in static graphs. In dynamic graphs, their topological structures can

change with time.
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Figure 2.1: Graph Neural Network Architectures.

Due to being able to conduct convolution on graphs, GNNs can capture complex in-

teractive relationships between nodes and produce high-level representations of the graph

input. The core mechanism of GNNs is to iteratively aggregate neighborhood information

for each node and then integrate the aggregated information into the original node repre-

sentation through neural information propagation. Differentiated by the aggregation and
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node update operations, GNNs can be classified into the following categories [6]:

• Graph Recurrent Neural Networks (GRNs): GRNs, pioneer works of GNNs, apply

recurrent neural framework to learn node representations with shared function. For

example, Gated GNN (GGNN) [31] applies a gated recurrent unit (GRU) [32] as a

shared parametrized function to update node representation by considering previous

node hidden state and the hidden state of its neighbors.

• Graph Convolutional Neural Networks (GCNs): GCNs define a neighborhood infor-

mation aggregation process to update node representation, and stack multiple graph

convolutional layers to generate high-level node embeddings. GCNs can be classi-

fied to spectral-based and spatial-based. Rely on graph signal processing algorithm,

spectral-based GCNs perform graph convolutions by processing the input graph sig-

nals through a set of learnable filters to aggregate information [9]. For example,

ChebNet [33] approximates the spectral filter by the Chebyshev polynomials of the

diagonal matrix of eigenvalues, rather than explicitly computing the graph Fourier

transform. Spatial-based GCNs consider node’s spatial relation to define graph con-

volutions. For example, NN4G [34] accumulates node’s neighborhood information

as graph convolutions and uses residual connections and skip connections to reduce

long-term forgetting over stacking of layers.

• Spatio-Temporal Graph Neural Networks (ST-GNNs): Graphs in multiple real-world

situation have both spatial and temporal variations, such as traffic network, social net-

work and skeleton-based human actions. In the dynamics of graphs, their topological

structures change over time with varying node distributions and different edge con-

necting relations. ST-GNNs aim to model the spatial and temporal dependencies in

dynamic graphs. A dynamic graph can be represented as an ordered list or an asyn-

chronous set of graphs. In the design of ST-GNNs, GCNs and RNNs are usually

integrated such that topological features can be extracted from the graph input by
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using GCNs and the temporal dependencies between graphs can be capture by using

RNNs. For example, Yu et al. [35] propose Spatio-Temporal Graph Convolutional

Networks (STGCN) for traffic forecasting. STGCN integrates temporal gated con-

volution layers and spatial graph convolution layer to fuse features from both spatial

and temporal domains.

• Graph Autoencoders (GAEs): GAEs are highly correlated to graph representation

learning, which aims to preserve the high-dimensional complex graph information

involving node features and link structures in a low-dimensional embedding space.

The GAEs are similar to other types autoencoders (AE). They both consist of a en-

coder and a decoder, where the encoder compresses information into a latent space

and the decoder try to reconstruct the original feature or structural from the latent

space. Kipf et al. [36] proposed the vanilla GAE/VGAE structure, which predict

the links between nodes as the reconstruction process. Modern GAE models uti-

lized more useful information in the network like semantic context conditions [37],

neighborhood information [38], and others [39, 40].

2.3 Federated Learning

As more and more fine-grained personal data are being collected and applied in differ-

ent health inference tasks, privacy protection has become an essential demand by the data

owners. However, many traditional privacy preserving methods, such as k-anonymity, suf-

fer from severe accuracy loss due to inevitable information loss and corrupted data utility

[41]. To address this problem, the concept of Federated Learning (FL) is first proposed

to train high-quality shared global model by leveraging local data from distributed clients

without explicitly exposing private data to central servers or other clients [42]. FL has been

widely applied in many fields such as natural language processing (NLP) [43], Internet of

Things [44], etc. Due to its non-exposure of private data, FL has been proved effective
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in information sensitive fields (i.e., healthcare[45]). For example, Vaid et al. predicted

mortality in hospitalized COVID-19 patients within seven days by logistic regression and

Multi-Layer Perceptron (MLP) federated models [46]. Motivated by the classic FL frame-

work, in this dissertation, we propose FedMobile which is an incremental semi-supervised

federated learning algorithm that can train models periodically by using newly incoming

batch of mobile sensing data in a decentralized online fashion.

2.4 Multiple Instance Learning

Multiple Instance Learning (MIL) is a form of weakly supervised learning, which assigns

labels to multiple instance bags (i.e., each bag contains multiple instances rather than single

instances). This formulation naturally fits various problems in image classification [47],

and document classification [48], due to the absence of labels for the vast majority of

learning instances. MIL has shown remarkable effectiveness on a variety of tasks using

datasets with sparse labeling. Babenko et al. used a machine learning technique rather than

typical supervised learning to produce greater performance in a real-time object tracking

test [49]; Sun et. al. combined MIL with CNNs and reached state-of-the-art result on both

low resolution (CIFAR) and high resolution (ILSVRC2015) image classification tasks [49].

To further accommodate the permutation invariance of bags/sets of instances, Zaheer et al.

suggested a deep network architecture capable of operating sets in machine learning tasks

without regard for the order of the elements in the sets [50]. While MIL is widely used in

picture and text classification applications, little work has been done integrating MIL with

graph type data. In this dissertation, we integrate GNN, Set Transformer[51], and MIL to

address weakly supervised graph instance bag inputs.
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Chapter 3

Using Graph Representation Learning

to Predict Salivary Cortisol Levels in

Pancreatic Cancer Patients

3.1 Background and Motivation

Pancreatic cancer is one of the worst types of cancer, with a 5-year survival rate of about

9%. Although it is the eleventh most prevalent kind of cancer globally, it is the seventh

largest cause of cancer-related mortality [52]. Pancreatic cancer incidence and death rates

have climbed dramatically in the United States of America since 2000, according to re-

search. [53]. Notably, early evidence indicates that cortisol may have an effect on how

pancreatic tumors react to cancer therapy. [54].

Hormones in the body act as chemical messengers, facilitating complicated processes

such as immune system function and behavior. Cortisol, a glucocorticoid hormone, is a

major product of the hypothalamic-pituitary-adrenal (HPA) axis and is necessary for the

”fight or flight” response to occur. Cortisol is released in reaction to stimuli, which boosts

glucose levels in the circulation, providing an instant energy source for the body’s big
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muscles. While cortisol primes the body for action, chronically elevated cortisol levels may

impair immune system function, cause gastrointestinal disorders, cardiovascular disease,

infertility, and sleeplessness [55]. This is especially troublesome while treating pancreatic

cancer, since an increase in cortisol levels has been shown to accelerate tumor development

[56].

Although no research have been conducted on this subject, mobile technology may of-

fer a low-cost and accessible method for continually estimating cortisol levels in the body.

Existing research on the use of mobile sensing in health has mostly relied on sensors to

approximate behaviors via the use of a tiered, hierarchical framework in which features are

taken from raw sensor data and converted to markers of behavioral states[57]. The theoreti-

cal foundation for approximating hormone levels using sensors is based on this hierarchical

architecture. Cortisol levels typically peak in the morning and subsequently decline dur-

ing the day, however experiential variables like as physical activity and reaction to acute

and chronic stresses contribute to individual variability in cortisol levels throughout the day

[58]. Cortisol levels are therefore the result of a known diurnal pattern and behavioral states

(e.g., physical activity, stress reaction) that a wearable device can monitor. The behavioral

traits collected from sensor data may be utilized to estimate cortisol levels in patients with

pancreatic cancer.

At the moment, the major techniques for cortisol measurement are blood and saliva

samples, which are cumbersome to obtain and expensive to evaluate. The difficulty asso-

ciated with collecting biospecimens is magnified in people with pancreatic cancer due to

the disease’s influence on their health, everyday functioning, and overall quality of life.

Biospecimen collection is also unfeasible for real-time cortisol monitoring due to the time

required to finish tests. Monitoring cortisol levels using mobile technology has the poten-

tial to increase our knowledge of the tumor development trajectory and the possible role it

plays in anticancer treatment response.

The purpose of this research is to provide a method for correlating passively detected
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raw actigraphy data with salivary cortisol levels in newly diagnosed patients with pancre-

atic cancer. The ultimate purpose of this study is to show that, in place of serum or saliva

collection, passively obtained data may be utilized to estimate in situ the underlying circu-

lating cortisol level in cancer patients. No published study has addressed the feasibility of

predicting underlying hormone levels using passively acquired activity data.

3.2 Method

We present the general predictive modeling technique in this part, which takes raw sensor

data as input and trains a machine learning model to forecast salivary cortisol levels. Addi-

tionally, we give thorough details regarding the handcrafted feature engineering techniques

used in this work. Finally, we will discuss Graph Representation Learning (GRL) and the

techniques associated with it including Graph2Vec [59], FeatherGraph [60], GeoScattering

[61] and NetLSD [62] which were implemented in this study.

As shown in Figure 3.7, the predictive modeling process consists of 4 steps. The first

phase involves passively generating sensor data from users’ ActiGraph devices, which in-

clude an accelerometer, a light sensor, and an inclinometer. The raw sensor data is pre-

processed in the second stage utilizing time-window segmentation to remove noise from

the data. The devices are configured to sample at a predefined period (e.g., 30 seconds,

1 minute), which was conducted in this research using the ActiLife software 1. ActiLife

enables the retrieval, sampling, aggregation, and synchronization of raw actigraphy data.

We used a one-minute epoch to collect and synchronize the raw actigraphy data in this

investigation. In step three, numerous feature engineering approaches such as handcrafted

engineering (i.e. time domain features, frequency domain features) and Graph Represen-

tation Learning may be employed to extract relevant features. The retrieved characteristics

are then employed in the predictive modeling training procedure in the fourth stage. To

predict salivary cortisol levels, the machine learning model with the lowest testing error is
1https://www.actigraphcorp.com/actilife/
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chosen.

Handcrafted feature engineering can be applied to extract temporal and spectral fea-

tures from raw sensor data manually, as shown in TABLE Table 3.1. Generally, given a

multi-dimensional time series data X ∈ Rm, xi, where i = 1, 2, ...,m and m is the di-

mensions of Actigraphy data, represents one dimensional time series data collected from

one of the sensors. And xit represents the ith dimension of the Actigraphy Data at time

t. Let ts represents the time when we record participants’ salivary cortisol levels. Then

we set the time t
′
s, where t

′
s ∈ [0, ts), such that, in the time window ts − t

′
s, handcrafted-

featurized value H can be extracted by applying feature engineering functions F(Xt′s:ts
) =

[f1(Xt′s:ts
), ..., fk(Xt′s:ts

)], where H ∈ Rkm and k is the number of the features extracted

from each sensor and Xt′s:ts
is the segment of the time series framed by the time window.

The handcrafted features extracted from time and frequency domains are shown in TABLE

Table 3.1. The handmade features found were chosen based on earlier research demon-

strating the potential usefulness of mean values, variance indicators, as well as max/min

and distribution symmetry in data reflecting behavior. Due to the fact that salivary cortisol

levels are continuous, our predictive modeling aim is to develop regression models that

fit cortisol levels with the least amount of testing error. Automatic Feature Engineering:

Learning to Represent Graphs GRL may be used to extract structural and synthetic char-

acteristics in lower dimensions in order to capture the interaction and transitions between

distinct perceived behaviors[63]. GRL can be extended as a technique for learning a map-

ping that embeds graphs into low-dimensional numerical vector spaces in such a way that

the intrinsic graph features are preserved best [8]. The embedded features created by GRL

may then be used to develop predictive models in downstream machine learning models.

For GRL in this study as shown in Figure 3.1, given a sequence of time series data, We

use G-Means clustering to automatically maximize the amount of cluster labels to give to

each time point [64], and then convert the sequence of cluster labels into undirected and

unweighted graphs that reflect state transitions in the time series data. Then, using graph
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Table 3.1: Handcrafted Features

Domains Features

Time Domain

Mean
Standard Deviation

Maximum
Minimum

Peak to Peak
Shannon Entropy

Mean Absolute Difference

Frequency Domain

# Maxpeaks
# Minpeaks

Kurtosis
Skewness

Absolute Energy

inputs, GRL algorithms are trained to build embedding vectors for use as independent

variables in modeling regressors. The motivation of including Graph2Vec, FeatherGraph,

GeoScattering and NetLSD are the following: 1) Graph2Vec and NetLSD is the represen-

tative methods based random walk and matrix factorization respectively; 2) FeatherGraph

[60] and GeoScattering [61] have achieved state-of-art result in graph embedding task The

GRL methods implemented in this study are described below.

Graph2Vec learns k-dimensional numerical representations from graphs [65]. Assume

a set of undirected and unweighted graphs G = {G1, ...,Gn}, where Gi={Vi,Ei, λi}, Vi

is a set of nodes, E ∈ (Vi ×Vi) is a set of edges, and λi : Vi → L assigning an unique

label from vocabulary L to each node in Vi for i = 1, ..., n. Graph2Vec performs as a

function f (G) generating the output in k-dimensional vector space, analogous to Doc2vec

[59] which maps documents to numerical spaces. Rooted subgraphs are sampled and rela-

beled by Weisfeiler-Lehman (WL) kernel to train a skipgram model such that Gi and Gj

are more similar the f(Gi) and f(Gj) are closer in k-dimensional space[65] .

FeatherGraph uses feature functions of node features in conjunction with random walk

weights to feature each node neighborhood and then uses mean pooling to average node
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Figure 3.1: Feature Extraction by Graph Representation Learning.

level features to get graph level features. [60]. Assume an unweighted and undirected

graph G = (V,E), where V is the set of nodes and E is the set of edges. For node

v ∈ V, we describe a node feature as a random variable X and specify feature vector

xv, where xv ∈ R|V|. Given the source node u and target node w, where u,w ∈ V and∑
w∈V P (w|u) = 1, and evaluation point θ ∈ R we define real and imaginary part of the

r − scale random walk weighted feature function for node u as

Re(E(eiθX |G, u, r)) =
∑
w∈V

Âr
u,wcos(θxw), (3.1)

Im(E(eiθX |G, u, r)) =
∑
w∈V

Âr
u,wsin(θxw) (3.2)

where Âr
u,w = (D−1A)r. Then the concatenated vector of Re(•) and Im(•) will be used

as feature vector for the node u [60].

GeoScattering can extract numerical embeddings from graphs by using the moments

of wavelet transformed features [60]. Let G = (V,E,W) be a graph, where V is the set

of vertices {v1, v2, ..., vn}, E is the set of edges (vl, vm) with 1 ≤ l,m ≤ n, and W is the

weight matrix W = {w(vl, vm) = 1, : (vl, vm) ∈ E}. Then define n × n lazy random
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walk matrix as P = 1
2
(I+AD−1), where I is the identity matrix of G, A is the adjacency

matrix and D is the diagonal degree matrix. With the definition of wavelet transform matrix

at scale 2j ,

Ψ0 = I−P, Ψj = P2j−1

(I−P2j−1

), j ≥ 1, (3.3)

and signals x(vl)) = deg(vl) defined on graph G, the “zero” order scattering moments,first

order geometric scattering moment and second order geometric scattering moment can be

defined respectively as

Sx(q) =
n∑

l=1

x(vl)
q, (3.4)

Sx(j, q) =
n∑

l=1

|Ψjx(vl)|q, (3.5)

Sx(j, j
′
, q) =

n∑
l=1

|Ψj′ |Ψjx(vl)||q (3.6)

, for 1 ≤ j < j
′ ≤ J and 1 ≤ q ≤ Q. Finally, the collection Sx = {Sx(q), Sx(j, q),

Sx(j, j,
′
q)} provides the set of features to describe graph G [60].

NetLSD generates eigenvectors from the factorized normalized Laplacian matrix of the

input graph’s adjacency matrix and calculates the heat kernel trace by using the eigenvec-

tors to represent the input graph [62]. Consider an undirected graph and unweighted graph

G = (V,E), where V is the set of vertices and E is the set of edges. Then denote the adja-

cency matrix of a graph G as A and diagonal matrix as D with the degree of node i as entry

Dii, a graph’s normalized Laplacian is the matrix can be expressed as L = I−D− 1
2AD− 1

2 .

L can be factorized as L = ΦΛΦT , where Λ is a diagonal matrix on the sorted eigenvalues

λ1 ≤ ... ≤ λn of which ϕ1, ..., .ϕn are the corresponding eigenvectors. Then the n× n heat

kernel matrix at each vertex at time t can be calculated by

Ht =
n∑

j=1

e−tλjϕjϕ
T
j (3.7)
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, where (H)ij shows how much heat transferred from vi to vj at time t. Finally a heat

trace signature of graph G can be used the graph embedding, which consists of heat traces

tr(Ht) at different time t [62].

3.3 Data and Experiments

The inclusion criteria included:(1) age ⩾ 18 years; (2) insomnia symptoms for ⩾6 months;

(3) sleep ⩽ 6.5 hours per night; (4) sleep disturbances (or associated daytime fatigue) that

cause significant distress or impairment in social, occupational, or other areas of function-

ing, as determined by at least a a subthreshold level of severity on the Insomnia Severity

Inventory [66] (i.e., a score of ⩾ 8 out of 22; (5) ability to provide informed consent; (6)

histological or cytological proof of pancreatic adenocarcinoma; (7) borderline resectable,

locally advanced or metastatic pancreatic cancer and are not candidates for upfront, curative

surgical resection; (8) have not received any therapy (cytotoxic chemotherapy, immunother-

apy, radiotherapy, biologic therapy, or other investigational therapy directed towards their

pancreatic cancer) for their cancer prior to enrollment; and (9) are candidates for systemic

therapy based on investigator evaluation. Sleep-related criteria were included since one

of the study’s primary objectives was to better understand the association between sleep-

lessness symptoms and pancreatic tumor progression. To account for any confounding

variables that may artificially inflate salivary cortisol levels, participants who were active

smokers (and who expressed an unwillingness to stop smoking during the research time)

were excluded from the trial, along with those on corticosteroids. We recruited ten persons

(6 males and four females) newly diagnosed with pancreatic cancer from a cancer clinic

using these criteria. The participants’ average age is 64.6 years. Nine individuals identified

as White and one as mixed. The average pm standard deviation of participants’ sleep time

is 411 pm 135.53 minutes. On average, participants were diagnosed with pancreatic cancer

15 days before to enrollment in the research. The detailed demographics information is

21



Table 3.2: Demographics Information of the Participants

Age Sex Ethnicity Income ($) Cancer Stage

75 male white 100, 000+ 1b
58 female white 50, 000− 75, 000 3
67 male multiracial 30, 000− 50, 000c 2
81 female white ≤ 30, 000 NA
50 male white ≤ 30, 000 NA
71 female white 100, 000+ NA
47 male white 50, 000− 75, 000 2
76 male white 75, 000− 100, 000 NA
66 male white 75, 000− 100, 000 2
55 female white 100, 000+ 1

shown in Table Table 3.2.

Clinical study coordinators contacted participants during a routine medical appoint-

ment. After participants signed the agreement form, coordinators demonstrated how to

appropriately collect and retain saliva samples (through salivettes) to achieve the most ac-

curate salivary cortisol measurements. For five consecutive days, participants were in-

structed to take three samples each day (at wake, 5pm, and 9pm) in order to capture the

diurnal variability in cortisol levels[55]. Saliva samples were obtained on average at the

following times: 7:51 AM, 5:43 PM, and 9:43 PM. For all samples, participants were told

not to wash their teeth, consume coffee, engage in strenuous activity, or have a substantial

meal within an hour before to the collection of the sample. Each sample was obtained by

placing a sterile cotton swab from the salivette tube beneath the participant’s tongue for 1-2

minutes and then placing it back into the salivette tube. After collecting the sample, par-

ticipants documented the time and date of collection and immediately placed all samples

in their refrigerator. Additionally, participants were requested to wear an actigraphy device

(ActiGraph GT9X) on their non-dominant hand for the duration of the research. After the
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Figure 3.2: Density Plot of Saliva Cortisol Level

fifth day of collection, participants got a postage-paid mailer to return their saliva samples

and actigraph. Salivettes were kept at -80 degrees Celsius until they were sent for analysis.

Saliva tests were performed by a third-party vendor (Salimetrics.com), which special-

izes in providing precise findings for biomarkers detected in saliva samples. Prior to com-

pleting the experiment, samples were thawed to room temperature, vortexed, and then cen-

trifuged for 15 minutes at about 3,000 RPM (1,500 x g). Salivary cortisol levels were

determined using a high-sensitivity enzyme immunoassay. Each determination required

a sample test volume of 25mul of saliva. The assay has a lower limit of sensitivity of

0.007mug/dL, a standard curve range of 0.012 − 3.0mug/dL, an average intra-assay co-

efficient of variation of 4.60 percent, and an average inter-assay coefficient of variation of

6.00 percent, which meets the manufacturers’ criteria for accuracy and repeatability in sali-

vary bioscience and exceeds the applicable NIH guidelines for Increasing Reproducibility

through Rigor The density plot of cortisol level is shown in Figure 3.2.
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3.4 Results and Analysis

In this section, we present the implementation and results of our predictive modeling ap-

proaches to predict salivary cortisol levels at each time point. We also discuss hyperpa-

rameter selection (window size and sensor combination), graph construction and model

evaluation.

Experiments

Following the predictive modeling process in Figure 3.7, we first collected multi-dimensional

time series Actigraphy data, which are pre-processed raw sensor data generated from Acti-

Graph sensors.

For feature engineering, we compared two strategies: handcrafted feature engineering

and graph representation learning. For handcrafted feature engineering, we applied the

feature extraction functions as shown in TABLE Table 3.1 and then scale features into unit

variance. To learn about graph representations, we first conduct G-means clustering on the

time series data and then label each time series data point with a cluster label. As shown in

Figure 3.3, each graph’s vertices correspond to distinct clusters (participants’ states) in the

related input time series data, while the edges correspond to transitions between the vertices

(states). The vertices indicate clusters with semantic meanings that may be deduced from

the cluster centers as shown in TABLE Table 3.3.

The vertices in Acceleration graph, as shown in Figure 3.3, indicate physical activities

such as walking, sitting, or running. For instance, the vertex 2 of Acceleration clustering

has low coordinate values, indicating that the activity has a limited range of body movement

(such as walk or sit). The transition between vertex 2 and vertex 3 is shown by the edge

between them. Similarly, each vertex in the graph of Steps indicates a cluster of the num-

ber of steps taken in one minute (since we sample raw sensor data with processing epoch

of 1 minute). The edges between vertex 2 and vertex 4 implies the participant change their
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Figure 3.3: Sampled Graphs Visualization from one Observation in the Actigraphy Data.
The Acceleration graph represents acceleration states and state transitions, generated by
using G-means clustering for Axis x, Axis y, Axis z 3-D dimensional accelerometer data.
Magnitude of acceleration is vector magnitude of accelerometer’s Axis x, Axis y, Axis z
data , which equals to

√
[(Axis x)2 + (Axis y)2 + (Axis z)2]. And Magnitude of Accel-

eration plot shows the state transitions of the magnitude. Steps represents the step count
state transitions. Inclinometer and Light represents the inclinometer and light sensor data
state transitions respectively.

average step frequency from 0.17/minute to 12.44/minute as shown in TABLE Table 3.3.

This illustration can also be applied to explain Magnitude graph in Figure 3.3: the vertices

indicate activities of varying degrees of vigorousness, while the edges reflect the transitions

between them; the lower the cluster center value in the Magnitude graph, the more seden-

tary the activity represented by the vertex should be. The vertices in Inclinometer, as

shown in Figure 3.3 represent the postures of standing, lying, sitting and off (inactive)

which are detected by using Inclinometer. The categorization accuracy of postures using

the Inclinometer was confirmed using approximately 90% [67], as a result, we are not need

to use G-means to give cluster labels. Furthermore, the edges represent the transitions be-

tween observed postures. For the light sensor, the vertex in Light graph shown in Figure 3.3

represent the cluster of the unit of illumination. High unit of illumination implies a bright

environment, such as outdoor, and low unit of illumination implies a dark environment,
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Table 3.3: Sampled Cluster Centers / Representation. The entries in the the columns of
Acceleration, Steps, Magnitude of Acceleration and light represent the values of cluster
centers for each cluster; and the entries in Inclinometer represent the label of each vertex.
To transfer time series data to the graphs, we firstly applied G-means clustering to automat-
ically generate the best cluster allocation. For example, the optimal number of clusters for
acclerometer is 4 and the optimal number of clusters for Light is 1, which could because
the light sensor did not have too much variations during a day and the patients spend most
of the times in the hospitals.

Vertex Acceleration Steps Magnitude of Acceleration Inclinometer Light

0 (257, 264, 365) 2 1736 Sitting 0
1 (523, 513, 686) 8 25 Standing NA
2 (16, 13, 25) 0 806 Lying NA
3 (802, 930, 991) 6 417 Inactive NA
4 NA 12 1208 NA NA
5 NA 4 NA NA NA

such as home. As show in TABLE Table 3.3, the value of this single Light cluster cen-

ter is 0, indicating that the participant is in a dimly lit setting with much variance. Then,

we feed the graphs into the graph representation learning algorithm in order to produce

unsupervised learnt graph features.

Given that saliva cortisol level is recorded at time ts and ActGraphy data X, the window

size w defines the feature space Xts−w:ts such that we extract features from X within the

time range between the time ts − w and the time when cortisol level is recorded. To de-

termine the optimal window size and sensor combination, we evaluate Random Forest per-

formance with various sensor combinations (Acc+Inclin+Light, Acc+Inclin, and Acc) and

increasing window sizes (from 0.5 hour to 12 hour increase by 0.5 hour) using 10-fold cross

validation with Mean Absolute Error (MAE). As shown in Figure 3.4, the optimal selec-

tion of window size and sensor combinations for handcrafted feature engineering is 9.5 hr

with Accelerometer only, and the lowest MAE is 0.090 as shown in TABLE Table 3.4. As

shown in Figure 3.5, the optimal selection of window size and sensor combinations for

graph representation learning by using GeoScattering is 9.5 hr with Accelerometer only,

and the lowest MAE is 0.087 as shown in TABLE Table 3.4.
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Figure 3.4: Sensors and Window Size Selection for Handcraft Feature Extraction

Table 3.4: Window Size (hr) Selection for Handcrafted and Graph Representation Learning
Feature Extraction by Random Forest

Sensors Handcrafted GeoScattering
Window Size MAE Window Size MAE

Acc+Inclin+Light 8.0 0.091 4.5 0.090
Acc+Inclin 7.5 0.091 6.0 0.089

Acc 9.5 0.090 9.5 0.087

To investigate the association between activities and cortisol levels, we used a Random

Forest model on handmade features (Acc+Inclin+Light) and picked the top 15 features

from 120 features sorted according to feature relevance, as shown in Figure 3.6. These 15

most important features, peak to peak, absolute energy and max all of these measures

quantify the amplitude of motion signals, indicating that physical activity habits are sig-

nificant predictors of cortisol levels. Except for the inclinometer, the chosen features from

the accelerometer have a greater priority than the selected features from the inclinometer.

Inclinometer−Lie−absolute energy. This implies that accelerometer features are strong
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Figure 3.5: Sensors and Window Size Selection for Graph Representation Learning Feature
Extraction

Figure 3.6: Random Forest Feature Importance: the features from the same Actigraphy
sensor are decorated with the same color.

predictors of cortisol levels than are light and inclinometer sensors.

We deployed numerous machine learning algorithms in the downstream predictive mod-

eling process to evaluate the performance of handmade feature engineering and graph rep-

resentation learning techniques, as shown in Figure 3.7. To demonstrate the general pre-
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Figure 3.7: Predictive Modeling Pipeline of Salivary Cortisol Levels-A General process.

dictive framework, as shown in Figure 3.7, we applied standard regression models to our

dataset. These regression models include Lasso Regression [68], Ridge Regression [69],

Regression of Support Vector Machine (SVM) [70], Regression of Random Forest (RF)

[71], Regression of Xgboost (XGB) [72] and Regression of Multi Layer Perceptron (MLP)

[73]. Thus for the combinations of feature engineering methods and machine learning mod-

els training with the features selected by 9.5 hr window size, we use 10-fold cross valuation

with MAE, RMSE and MAPE to assess the predictive performance of these combinations.

The results of comparing the feature engineering methods across the different machine

learning models are shown in TABLE Table 3.5. We use the mean value of cortisol as

the vanilla model with 10 fold cross validation, the mean MAE ± std of the vanilla model

is 0.126±0.018, RMSE 0.158 ±0.034 is and MAPE is 59.571 ±9.612. We use the ma-

chine learning models with handcrafted features as baseline models. Values in bold in

TABLE Table 3.5 indicate the optimal fit between the feature engineering methods (i.e.,

handcrafted and automatic feature engineering approaches) and machine learning models

(i.e., Lasso, Ridge, SVM, Random Forest, Xgboost, MLP). In general, machine learning

models with handmade and automated feature engineering were able to predict cortisol hor-

mone levels with usually low MAE, RMSE, and MAPE values. For each machine learning

model individually, graph representation learning approaches, particularly FeatherGraph
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Table 3.5: MAE, RMSE, MAPE (mean± std) comparison between Handcrafted and Graph
Representation Learning Feature Extraction

Metrics Featurization
Machine Learning Models

Lasso Ridge SVM Random Forest Xgboost MLP

MAE

Handcrafted 0.125±0.026 0.106±0.057 0.104±0.014 0.090±0.017 0.099±0.029 0.112±0.034

Graph2Vec 0.124±0.032 0.124±0.038 0.118±0.022 0.092±0.026 0.091±0.031 0.125±0.030

FeatherGraph 0.124±0.032 0.096±0.020 0.098±0.018 0.090±0.019 0.089±0.026 0.097±0.028

GeoScattering 0.123±0.025 0.095±0.022 0.108±0.013 0.087±0.029 0.085±0.037 0.119±0.038

NetLSD 0.124±0.032 0.122±0.020 0.118±0.028 0.091±0.026 0.093±0.017 0.128±0.032

RMSE

Handcrafted 0.159±0.014 0.141±0.021 0.153±0.017 0.140±0.013 0.139±0.019 0.169±0.059

Graph2Vec 0.158±0.032 0.156±0.044 0.155±0.049 0.146±0.035 0.134±0.039 0.159±0.043

FeatherGraph 0.156±0.042 0.131±0.013 0.132±0.018 0.136±0.017 0.138±0.014 0.150±0.051

GeoScattering 0.155±0.034 0.150±0.036 0.135±0.035 0.130±0.036 0.131±0.037 0.167±0.150

NetLSD 0.156±0.037 0.132±0.035 0.139±0.038 0.132±0.033 0.138±0.030 0.187±0.082

MAPE(%)

Handcrafted 45.357±7.568 36.986±6.142 38.612±8.547 39.145±9.573 39.147±10.472 45.201±11.354

Graph2Vec 43.739±9.957 45.171±8.153 37.738±12.346 32.443±8.248 36.539±10.724 48.744±8.124

FeatherGraph 42.181±8.236 32.456±7.341 29.388±6.932 31.172±8.970 31.088±9.991 44.763±9.048

GeoScattering 41.609±7.251 35.031±8.881 34.021±5.841 35.673±7.724 28.992±8.896 49.035±8.074

NetLSD 43.379±10.236 36.031±9.887 35.378±9.132 34.079±9.316 34.016±9.165 46.775±10.561

and Geoscattering, generated the lowest mean MAE, RMSE, and MAPE.

3.5 Summary

In this article, we present a generic predictive modeling procedure for saliva cortisol levels

based on passively detected actigraphy data. The suggested method allows researchers to

optimize the window size for feature space and sensor selection in order to determine the

window size and sensor combination that produces the lowest testing error. By creating

unsupervised learnt graph features to train machine learning models with the lowest MAE,

we show that GRL outperforms handcrafted feature engineering.

The suggested procedure has the potential to enhance pancreatic cancer therapy, which

currently has one of the lowest 5-year survival rates of any cancer location. Specifically,

given that cortisol has been shown to promote tumor development and impair response to

cancer therapy, developing a method for continually monitoring cortisol levels may aid in
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clinical decision-making, hence improving cancer outcomes. For instance, knowing that a

patient’s cortisol level has been raised for an extended period of time may prompt clinicians

to prescribe behavioral therapies known to alleviate the stress response.

Mobile sensing and machine learning have the ability to solve a need in cancer by

offering a method for in situ prediction of saliva cortisol levels. According to the proce-

dure described in this research, extracting features from accelerometer data with a 9.5-hour

window size offered adequate feature space for fitting regression models. The findings

of Graph Representation Learning reveal that when accelerometer data is used to predict

cortisol levels, the automated feature engineering techniques FeatherGraph and Geoscatter-

ing produced the lowest error. Additionally, the random forest feature importance analysis

revealed that features capturing motion signal amplitude contributed the most to the pre-

diction of saliva cortisol levels, indicating that physical motion may be a major predictor

of salivary cortisol levels.

The suggested methodology makes a significant contribution by providing researchers

and doctors with a method for possibly tracking cortisol levels in the body with low mea-

suring load. By using passive data streams from wearables, it is possible to circumvent

wasteful and expensive saliva collection and testing. Providing an easy and accessible

method of simulating cortisol is critical for cancer patients, who face much more burden

and discomfort than the general population.

Although this study used data from ten recently diagnosed patients with pancreatic

cancer, our findings suggest the viability of a technique that employs passively sensed

data from wearables to estimate salivary cortisol levels throughout the day. Our results

imply that autonomous feature engineering and machine learning techniques may be used

to predict cortisol levels from temporally dense actigraphy data, however more research

should be conducted on a larger sample size to confirm the robustness of these findings.

Along with the above, the present work should be assessed in light of some constraints.

Due to the tiny size of the learning samples, generalizability may be limited. This may
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be reduced in the future by increasing the number of participants or by investigating the

use of other machine learning algorithms capable of training more robust models on tiny

datasets. The semantic information included in each vertex of the graphs is ignored by

graph representation learning algorithms. This implies that graph representation learning

cannot capture the ideas represented by vertices. In addition, hyperparameter optimiza-

tion (such as min observation, max depth in G-Means) and feature selection were not

performed given their needs for a powerful computing source.

In a research of real-time predictive modeling of saliva cortisol levels, multimodal sen-

sors (heart rate, galvanic skin reaction) may be used to extract additional relevant informa-

tion and therefore improve prediction accuracy. Additionally, utilizing transfer learning,

tailored machine learning models may be utilized to develop customised cortisol level ma-

chine learning models to address individual features.

Finally, our findings indicate that the degree of inaccuracy associated with forecasting

cortisol levels using passively acquired data fluctuates during the day. Future research

should evaluate the therapeutic consequences of bigger vs smaller prediction mistakes,

which will very certainly vary depending on how the information is utilized in a clinical

environment. For example, if the aim is to understand the overall trajectory of a patient’s

cortisol levels during therapy, forecasts with a higher (vs. a lower) measurement error are

still necessary. By contrast, such forecasts are of little benefit when the goal is to act when

cortisol levels reach a given number or time point with a small margin of error.
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Chapter 4

Multi-modal Graph Neural Network for

Influenza-like Symptom Recognition

4.1 Background and Motivation

From the Spanish flu to SARS and swine flu, worldwide pandemics produced by influenza

viruses have wreaked havoc on human civilization, claiming thousands of lives and wreak-

ing havoc on businesses [74]. These pandemics placed existing public health and socioe-

conomic institutions under the scrutiny, resulting in several policy adjustments aimed at

mitigating future pandemics [75].

However, the continuing COVID-19 pandemic shows previously unknown weaknesses

in the virus’s present containment mechanisms, owing to the virus’s delayed onset of symp-

toms and ease of transmission, and provides far larger hurdles to governments’ public

health response [76]. In the United States, the Centers for Disease Control and Prevention

(CDC) launched the United States Influenza Surveillance System to collect and analyze

influenza-related data and to monitor influenza activity 1. The CDC collects and reports hi-

erarchically aggregated outpatient data on ”influenza-like illness” (ILI) from local hospitals

1CDC-Flu Activity and Surveillance https://www.cdc.gov/flu/weekly/index.htm.
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and public health systems [77]. Due to the fast spread of influenza viruses, various public

health initiatives may be delayed or rendered ineffective. Thus, it is vital to build intel-

ligent influenza surveillance systems capable of monitoring influenza activity constantly,

automatically detecting early ILI in the general population, and correctly forecasting in-

fluenza epidemics [78].

Numerous studies have been conducted on influenza activity monitoring and detection

of influenza-like symptoms. Forsad et al. evaluated a contactless syndromic surveillance

platform comprised of a microphone array and a thermal camera installed in a university

hospital’s public waiting area for the purpose of monitoring influenza infection scenes con-

tinuously and passively by characterizing the captured influenza bio-clinical signals [79].

The Google search and Wikipedia pageview patterns for influenza-related phrases, as well

as ILI-related linguistic signals gathered from social media platforms, are utilized to de-

velop natural language processing models for forecasting influenza dynamics[80]. Numer-

ous data sources, including air quality and insurance records, have been used to forecast

the likelihood of influenza epidemics [81]. While the approaches described above are capa-

ble of detecting ILI and forecasting influenza trends in a promising manner, their estimates

have some limitations. For example, Google Flu Trend has been stopped owing to its errors

and lack of repeatability [82]. Additionally, putting edge sensors in hospitals to detect in-

fluenza might result in erroneous estimates that cannot be applied to a broader population.n

[79].

Mobile sensing offers a solution for ILI detection and monitoring by gathering both be-

havioral and physiological data produced by human users constantly and unobtrusively. [83].

The accelerometer, GPS sensor, and Bluetooth sensor included in mobile devices (e.g., per-

sonal cellphones and smartwatches) have been used to monitor human behavior and track

everyday activities. The data collected by these embedded sensors may be utilized to de-

termine a person’s health condition, monitor mental health states, and administer medical

therapies. [1, 2, 3]. Historically, handmade features have been taken from mobile sens-
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ing data to study patterns of human activity. For instance, motion characteristics such

as acceleration magnitude can be collected from an accelerometer in order to investigate

their relationships with various user scenarios (e.g., location, activity, social context) [4].

Rather of manually creating features based on heuristics and domain expertise, high-level

complex features may be retrieved automatically from mobile sensing data and used to

increase the generalization of predictive modeling using deep learning algorithms. For

example, Boukhechba et al. built convolutional neural network (CNN) models based on

photoplethysmogram (PPG) data to infer ambulatory activities [5]. However, with multi-

modal mobile sensing data, classic handmade feature engineering and generic deep learning

approaches (e.g., CNNs) are constrained. On the one hand, handmade feature engineering

might exclude information regarding the interdependence of many sense modalities. On the

other hand, complex relationships between data points inside and across sensing streams

cannot be naturally stored in deep features by CNN, much more so when the data contains

hidden structural patterns and is derived from non-Euclidean domains [6]. Given that some

discrete sensor signals, such as GPS and Bluetooth streams, can be naturally represented

as graphs, which encode the structural interdependence and information generated by non-

euclidean spaces, we proposed an end-to-end graph neural network (GNN) framework for

inferring the presence of influenza-like symptoms using people’s daily multimodal mobile

sensing data.

Our contributions in this work are summarised below:

• By using multi-modal mobile sensing data, we present an end-to-end Graph neu-

ral network architecture for modeling human activities. The objective is to extract

high-level characteristics characterizing dynamic interactions between human states

in order to forecast ILI symptoms automatically. To our knowledge, this is the first

time that Graph neural networks have been used to infer human health conditions us-

ing mobile sensing. This end-to-end GNN architecture is readily generalizable and

applicable to additional mobile sensing applications, such as mental health symptom
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monitoring [84, 85, 86, 87].

• We illustrate the proposed GNN framework’s performance by applying it to a large

mobile sensing dataset gathered in the field for the purpose of recognizing influenza-

like symptoms. The findings indicate that GNN models beat baseline techniques

based on handmade features by a substantial margin.

• Rather of manually characterizing nodes in input graphs, we use a graph represen-

tation learning approach called node embedding to build topological embeddings of

nodes automatically. Our findings suggest that approaches for graph representation

learning may be used to build embeddings for each unique human state.

• To promote model interpretability and confidence in ’black box’ GNNs, we use inter-

pretable GNN approaches. We demonstrate the transparency of GNN models in order

to help policymakers and medical professionals better understand this framework.

4.2 Method

In this part, we describe our technique for comparing handmade feature engineering and

graph representation methods for modeling human behaviors and determining whether or

not individuals have at least one influenza-like symptom based on daily mobile sensing

data. Fever, feeling feverish/chills, cough, sore throat, runny or stuffy nose, muscular or

body pains, headaches, and weariness are all considered influenza-like symptoms 2. The

presence of influenza-like symptoms may impair everyday mobility, social contacts, and

physical activity of individuals. When individuals experience weariness or muscular dis-

comfort, for example, they may become more sedentary and avoid needless travel, even if

they are unaware of these early stage flu symptoms. Significant decreases in daily social

interaction time and average contact length were seen in persons with influenza-like illness

in [88]. We hypothesize that people’s mobility behaviors, social contacts, and physical

activities are associated with and can be utilized to correctly identify influenza-like symp-
2CDC-Flu symptoms https://www.cdc.gov/flu/symptoms/symptoms.html.
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toms. We employ GPS sensors to monitor people’s daily movement patterns to capture

human mobility behaviors; Bluetooth sensors to approximate social contacts; and activity

data generated from accelerometer and gyroscope data to represent physical activities. For

mobility data, we applied DBSCAN [89] to cluster GPS coordinates into visited places,

and form sequences of daily place visits. Activities (i.e in − vehicle, running, walking)

were recognized by using Google Activity Recognition API [90] for Andriod devices and

CMMotionActivity API for iOS devices [91]. We denoted daily place visit trace as Xp,

daily Bluetooth encounter traces as Xb, and daily activity trace as Xa. Our prediction task

can be generalized as learning a function F(•|θ) given the inputs of Xp,Xb,Xa to pre-

dict existence of influenza-like symptoms denoted as y ∈ {0, 1}, such that H(y, ŷ) can be

minimized, where H(•) is the cross entropy loss function. We propose to compare two

feature engineering methods: 1) using handcrafted feature engineering as shown in section

subsubsection 4.2; and 2) using Graph representation to automatically extract high level

features in section Table 4.2.

Handcrafted Feature Engineering

To quantify human movement and develop a prediction model for the detection of influenza-

like symptoms, we propose to calculate fine-grained handmade characteristics from GPS

coordinates (e.g., number of visited places), which have been studied in [3]. The details

about mobility features and description are shown in Table Table 4.1. Similarly, social

interaction (e.g., number of encountered Bluetooth devices) and physical activity features

(e.g., entropy of physical activity) are also extracted and shown in Table Table 4.1.

Graph-based Feature Engineering While handmade feature engineering may result in finer-

grained and more interpretable features, they are often not generalizable across populations

since they are developed utilizing domain expertise and intuition [92]. Additionally, hand-

made traits may not accurately reflect the dynamic properties of human movement, social

relationships, and physical activity. For example, given the varied number of sites visited
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Behavior Feature Description

Mobility

radius gyration radius of gyration

number visits total number of places visited

max distance maximum distance of place visited from centroid

travel distance total distance traveled

max distance home maximum distance of place visited from home

travel distance std standard deviation of distance of trips

entropy visits randomness of places visited

unique visits number of unique place

multiple place number of placed visited at least twice

Social Interaction

num encounter number of Bluetooth devices detected

entropy encounter randomness of Bluetooth devices

unique encounter number of unique Bluetooth devices detected

Physical Activity act entropy randomness of physical activity

Table 4.1: Description of Handcrafted Features

by each individual, the effect of moving from one place to the next cannot be realisti-

cally represented through handmade feature engineering. To address this limitation, we

represent daily GPS trajectory, Bluetooth encounters, and Physical activities as graphs, as

shown in Fig Figure 4.1 and apply GNNs to automatically generate deep features for our

influenza-like symptoms recognition task.

We use Gp = (Vp, Ep,Xp) to represent daily GPS trajectory, where Vp = {vp1 , vp2 ...}

and Ep = {ep1 , ep2 ...|epi ∈ Vp × Vp} are the set of nodes (places visited) and edges (tran-

sitions between places), respectively; and Xp = {xp1 , xp2 , ... |xpi ∈ Rd} are the feature

vectors associated with each node in Gp, where d is the node features dimension. We rep-

resent each detected Bluetooth device as a node in the graph and use edges to denote the

adjacency of two identified Bluetooth devices in the Bluetooth encounter network. We use

Gb = (Vb, Eb,Xb) to denote daily Bluetooth encounters , where Vb = {vb1 , vb2 ...} and

Eb = {eb1 , eb2 ...|ebi ∈ Vb × Vb} are the set of nodes (scanned devices) and edges (adja-

cency), respectively; and Xb = {xb1 , xb2 , ...|xbi ∈ Rd} are the feature vectors associated
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Figure 4.1: Graph Based Behavior Modeling using Mobile Sensing.

with each node in Gb, where d is the node features dimension. To represent physical ac-

tivity transitions, we encode each activity label as node in the transition graph denoted as

Ga = (Va, Ea,Xa), where Va = {va1 , va2 ...} and Ea = {ea1 , ea2 ...|eai ∈ Va × Va} are

the set of nodes (physical activities) and edges (transitions between physical activities),

respectively; and Xa = {xa1 , xa2 , ...|xai ∈ Rd} are the feature vectors associated with

each node in Ga, where d is the node features dimension. All the graphs Gp,Gb, and Ga are

unweighted and non-directional. As shown in Fig Figure 4.1, behavior represented graphs

and their corresponding feature vectors can be fed into graph neural networks, discussed in

section Figure 4.2, to build predictive models.

Graph Neural Networks and Node Embedding We use graph neural networks (GNNs) to

efficiently extract high-level topological properties from non-euclidean areas given daily

movement patterns, social contacts, and physical activities. GNNs, in particular, can cap-

ture high-order information about neighbor interactions in graphs and aggregate local node

attributes to build graph-level numerical representations [6]. In this paper, we demonstrate

how to formulate this prediction problem as graph classification given a multi-channel in-

put of graph structured data, Gp,Gb and Ga. As shown in Fig Figure 4.2, to predict the

presence of influenza-like symptoms, we propose an end-to-end Graph neural network ar-

chitecture with multi-channel input. Additionally, the feature vectors of each node in a
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Figure 4.2: Multi-Channel Graph Neural Network for Influenza-like Symptom Recogni-
tion.

network may be automatically trained using Node Embedding, which maps each node into

numerical space in such a way that nodes with comparable topological structures are closed

in the embedding numerical space. The details of node embedding selection will be demon-

strated in section subsubsection 4.4. We compared and contrasted the performance of four

distinct state-of-the-art node embedding approaches (Node2Vec, Walklets, NodeSketch,

and BoostNE) and four different graph convolutional layers (GCN, GaphSAGE, GAT, and

GIN), as stated in the following subsections.

Graph Convolutional Layers

Graph Convolutional Networks (GCNs) [93] are neural networks that perform graph

convolution operations on graph structured inputs. GCNs can infer node level embeddings

based on the features of node neighborhoods. Given a graph G(V,E,X), we denote the

adjacency matrix and degree matrix of G as A and D respectively. Then layer-wise propa-

gation in a GCN can be expressed as

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)). (4.1)

40



We set each node in G as self-connected, and define Ã = A + I , where I is the identity

matrix. D̃ = D + I , and W (l) is the weight matrix which will be learned in the training

process. l indicates the lth layer of graph convolution operations. H(l) is the matrix output

with activation from lth graph convolution layer, and H(0) = X. σ(•) is the activation

function, such as ReLU(x) = max(0, x). GCNs combine node characteristics from the

nodes’ first-order neighborhood using a single layer of graph convolution. Additional con-

volution layers may be used to accomplish higher level neighborhood aggregation..

GraphSAGEs [94] makes use of a variety of aggregation functions to include infor-

mation about node neighborhoods into the search depth. Unlike GCNs, which aggregate

first-order neighborhood information about nodes, GraphSAGEs use forward propagation

to concatenate the characteristics of each local neighborhood along the propagation trace,

allowing for the application of higher-order topological properties to aggregated node at-

tributes. The GraphSAGE convolution can be expressed as

h(l+1)
v = σ(W (l) • CONCAT [h(l)

v , F (l)({h(l)
u , ∀u ∈ N (v)}]) (4.2)

for each node v in V , where CONCAT is the concatenation operation and F (l)(•) is the

aggregation function in layer l, which can be mean, max, sum, and LSTM [94]. N (•)

represents the set of neighborhoods of the node v.

Graph Attention Networks (GATs) [95] make use of attention processes in order to

generate node representations. When dealing with sequential observations such as text data,

attention is often achieved by assigning a higher weight to the most significant aspects in

the inputs, so that greater attention is focused on the key elements during prediction. GATs

change attention mechanisms by learning the weights associated with node neighborhoods;

during the aggregation process, more weights are applied to node neighborhoods that have
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a greater effect on the node. The graph attention convolution can be defined as

zv = σ(
∑

u∈N(v)

αv,uWXt), (4.3)

h(l+1)
v = σ(

∑
u∈N(v)

α(l)
v,uW

(l)h(l)
u ), (4.4)

where h
(0)
v = xv, and α

(l)
v,u is the attention of node v in the lth layer, which can be further

expressed as

αv,u =
exp(η(aT [Wxv,Wxu)]∑

u′∈N (v) exp(η(a
T [Wxv,Wxu′ ])

. (4.5)

α(l)
v,u =

exp(η(a(l)T [W (l)h
(l)
v ,W (l)h

(l)
u ])∑

u′∈N (v) exp(η(a
(l)T [W (l)h

(l)
v ,W (l)h

(l)

u′ ])
. (4.6)

Here η is LeakyReLU activation function, while a is a weight vector to parametrize the

attention mechanism.

Graph Isomorphic Networks (GINs) [96] generalize Weisfeiler-Lehman graph iso-

morphism test to better discriminate graphs. GINs apply multi-layer perceptrons (MLP) to

approximate the composition function as shown below:

h(l+1)
v = MLP (l)((1 + ϵ(l)) • h(l)

v +
∑

u∈N (v)

h(l)
u ), (4.7)

where ϵ(l) is a learnable parameter. GINs are argued as powerful as the Weisfeiler-Lehman

graph isomorphism test for graph classification tasks [96].

Node Embedding

Node embeddings are used to infer attribute attributes for nodes in graphs by transferring

graph structured data to numerical spaces. By utilizing the relationships between nodes and

graph structures, node embeddings may automatically extract high-level node properties.
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[10]. In general, there are two categories of Node embedding methods: 1) Deep walk [97];

2) matrix factorization [98]. We applied two node embedding methods from each category

listed below:

1. DeepWalk

(a) Node2Vec [11] employs an exploration-exploitation technique that takes into

account both homophily and structural equivalence in graphs. Node2Vec can

produce continuous feature representations to encode the immediate local struc-

ture of nodes and global network neighborhoods by doing depth first and breadth

first searches on the node neighborhoods.

(b) Walklets [99] samples node neighborhoods context with skipping over nodes in

each random walk. Multi-scale relationships can be encoded by subsampling

fixed length of path in the node neighborhoods context generated from skipping

random walks.

2. Matrix factorization

(a) NodeSketch [100] starts lower-order node embedding with generating Self-Loop-

Augmented (SLA) adjacency matrix and then using hashing functions to map

each SLA adjacency vector into Hamming space to approximate the similarity

of each adjacency vector.

(b) BoostNE [101] conducts a sequence of non-negative matrix factorization to the

residual of the connectivity matrix approximated from previous step to generate

sequence of weak embeddings. Then the sequence of weak embeddings will be

ensembled to generate fine-grained embedding representations.
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4.3 Data and Experiments

The data for this article is a subset of a multicohort research that examined the use of

mobile sensing methods for early sickness diagnosis. A total of 2700 individuals from 24

states in the United States were recruited to participate in this research for a period of up

to one year. We excluded individuals who did not have at least 14 days of GPS, Bluetooth,

activity, or self-reported influenza-like symptom data. Finally, we will preserve data from

448 participants for our current study, which will run from February 15th 2019 through

April 30th 2020. The mean age of the participants is 40.71(sd = 11.52). 65.36% of the

participants are female, with White being 66.2%, African American 19.3%, Asian 7.3%,

multiple races 3.3%, Hispanic 3.5%, and others 0.4%. Among the 448 participants, 52%

are full time workers, 20% are full time students, 12% are working part time, 7% have

retired, 5% are care takers, and 4% are temporarily unemployed. More details about the

larger study can be provided by the corresponding author.

Participants were invited to download and use ReadiSens, a mobile sensing applica-

tion, for a period of up to four months as part of the data gathering procedure. ReadiSens

is a cross-platform software developed on top of Sensus [102] that collects GPS location

data every 30 minutes; Bluetooth Encounters data every 15 minutes in Android and every

30 minutes in iOS; and activity data whenever activities change in Android and every two

hours in iOS. Every day at 8 p.m., ecological momentary assessments (EMAs) were ad-

ministered to gather self-reported symptoms of fever, cough, trouble breathing, exhaustion,

muscular pains, headache, sore throat, runny nose, nausea, and diarrhea. Periodically, data

were transferred to Amazon Web Services’s Simple Storage Service (AWS S3) (S3). To

ensure participants’ data security and privacy, all data were encrypted and anonymized.

Before the data was saved on AWS, all identifying information was removed. By eliminat-

ing the integer components of their longitudes and latitudes, GPS data were anonymised.

Readisense hashed the Bluetooth name and MAC addresses automatically.

44



Symptom Node Number Average Node Degree Connectivity Assortativity
GPS Bluetooth Activity GPS Bluetooth Activity GPS Bluetooth Activity GPS Bluetooth Activity

NO 6.32 180.70 5.02 3.25 2.79 4.96 1.08 1.03 2.87 -0.33 -0.06 -0.10

YES 6.00 157.45 4.86 2.91 2.74 4.82 1.07 1.02 2.86 -0.39 -0.14 -0.11

Table 4.2: Compare the average graph metrics of GPS trajectory, Bluetooth encounter net-
works, and Physical activity transitions between days of participants with influenza-like
symptoms and those without any symptoms.

In this section, we illustrate the detailed information about data preprocessing, graph

modeling, GNN implementation, model selection, interpretability of GNN and hyperpa-

rameter sensitivity analysis.

Data Preprocessing and Statistics

After data preprocessing, we get 8,415 observations, of which 6,923 are non-symptomatic

(no influenza-like symptoms recorded) and 1,492 (17.7% of all samples) are symptomatic

(at least one influenza-like symptom reported). We transform daily GPS trajectories, Blue-

tooth interactions, and activity transition traces to graph representations. Figure Figure 4.3

provided one sample of the constructed graphs for each sensing modality.

To highlight and compare the graph features of robust and symptomatic samples, we

give in Table Table 4.2 summary statistics for graph metrics. The average node number,

node degree, connectedness, and assortativity are consistently lower in symptomatic in-

stances than in non-symptomatic cases. These inconsistencies suggest that symptomatic pa-

tients have fewer vertices and edges in their networks, meaning that people with influenza-

like symptoms may have less mobility, social engagement, and various physical activities.

Due to the uneven proportion of symptomatic and non-symptomatic patients in our tests,

we oversampled the mild instances. To conduct a fair comparison of several GNNs [103],

we divided the whole dataset into 90% training data and 10% testing data, and within the

90% training data, we selected 10% training data as validation data and rebalanced the re-

maining training data using an oversampling approach. After oversampling, we ended up
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Figure 4.3: Samples of daily location trajectory, Bluetooth encounter network, and physical
activity transitions graphs.

with 10,239 training samples, 692 validation samples, and 841 testing samples. To cope

with missing networks in the data set, we imputed naı̈ve graphs consisting of two nodes

connected by a single edge.
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Figure 4.4: F1-score comparison for the combinations of Node Embedding methods and
embedding dimensions. GNNs with two GCN layers were built with TopK (ratio = 0.75)
graph pooling layer and global sum pooling layer. The training processes were set using
40 epochs, 64 batch size, 10 step patience for early stopping, and learning rate 0.001 for
Adam optimizer.

4.4 Results and Analysis

Node Embedding Selection

To determine the optimal node embedding approach with suitable embedding dimensions,

we ran one run of each of the aforementioned node embedding techniques using GCNs with

increasing embedding dimensions. For 20% random sampled data, we employed two layers

of GCNs with TopK graph pooling and a global sum pooling layer. The F1-scores obtained

throughout these tests are shown in Figure Figure 4.4. Matrix approximation techniques

(NodeSketch, BoostNE) outperformed DeepWalk techniques (Node2Vec, Walklets). This

might be because DeepWalk algorithms often need a large number of sampled node neigh-

borhoods to construct the embedded nodes’ contexts. However, since the average degree

of nodes in our data is modest, sampling random walks may be inadequate to acquire ap-

propriate latent representations. Based on its performance, we choose NodeSketch with a

40-embedding-dimension.
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Figure 4.5: F1-score comparison for the dimensions of neurons for the hidden layers in
GNNs. GNNs consisted of two Graph convolutional layers with TopK (ratio = 0.75) graph
pooling layer and global sum pooling layer using the entire dataset. The training processes
were set using 80 epochs, 256 batch size, 15 step patience for early stopping and learning
rate = 0.001 for Adam optimizer.

Hidden Layer Dimension Selection

The dimension of neurons in the hidden layers may have an effect on the prediction per-

formance of deep learning algorithms. High-dimensional neural networks often offer more

prediction potential, but need bigger training data. We modified the size of graph convo-

lutional layers in this part to determine the number of dimensions for each GNN. GCN,

GraphSAGE, GAT, and GIN were all configured with the same TopK graph pooling layer

and global sum pooling layer, and the GNNs were trained with the whole dataset in a single

run. To extract node embeddings, NodeSkech was used. F1-scores were reported Figure

Figure 4.5. We observed that the F1-scores generally increased with increasing dimension

of hidden layers. However GAT and GIN were much less sensitive to the variation of hid-

den layer dimensions. We selected dimensions 64 for GCN, 48 for GraphSAGE, 8 for GAT,

and 40 for GIN.

Pooling layer selection In this section, we fine-tuned the GNNs with different combinations

of graph pooling layers and global pooling layers, as shown in Figure Figure 4.2. Graph
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Graph Convolutional Layer
Graph and Global Pooling Layer

TopK Pooling SAG Pooling
GlobalSum GlobalMax GlobalAttention GlobalSum GlobalMax GlobalAttention

GCN 0.7578 0.8617 0.7551 0.7881 0.8591 0.8081

GraphSAGE 0.7811 0.8856 0.7905 0.8068 0.8792 0.7524

GAT 0.6367 0.6309 0.6072 0.5882 0.6409 0.6206

GIN 0.7072 0.7313 0.6925 0.7243 0.7441 0.7244

Table 4.3: F1-score comparison to select best combination of graph pooling layer and
global pooling layer in Figure Figure 4.2 in GNNs. The dimensions of each GNN were
set up based on the results from section subsubsection 4.4. TopK pooling ratio = 0.75.
The training processes were set with 80 epochs, 256 batch size, 15 step patience for early
stopping and learning rate = 0.001 for Adam.

pooling layer, including TopK pooling [104] and SAG Pooling [105] in this study, is used to

choose the most significant nodes (therefore constructing smaller networks) based on pre-

diction performance. TopK pooling is a technique for selecting the top K nodes in graphs

by ranking the projected scalar values of each node’s characteristics. SAG pooling employs

an attention mechanism to prioritize nodes according on their self-attention ratings. Global

pooling layer (read-out layer), including GlobalSum, GlobalMax, and GlobalAttention [31]

in this study, is to derive graph-level characteristics from node-level ones. GlobalSum and

GlobalMax generate graph level representations by calculating the sum and maximum of

each node feature in the feature vectors, respectively, whilst GlobalAttention generates self-

attentioned graph level representations using neural networks. [31]. The results compared

by F1-score were shown in Table Table 4.3. GlobalMax pooling achieved the greatest re-

sults in both TopK and SAG pooling. This might be because GlobalMax is capable of

extracting the most important characteristics from a node feature vector in order to more

accurately describe graphs.

To compare handcrafted and graph based behavior modeling, we select the following

baseline models for handcrafted features: 1) Logistic regression [106], 2) Support vector

machine (SVM) [107], 3) Random forest [71], 4) Xgboost [72], 5) Multi Layer Perceptron

(MLP) [108], all of which have been widely applied and investigated in mobile sensing

studies[109, 110, 111]. Alternatively, we replaced missing values in handmade features
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with 0 and rebalanced the training data set using oversampling. We configured the GNNs

using the optimal node embedding approach, their own hidden layer dimensions and layer

pooling combinations as discussed in section subsubsection 4.4, subsubsection 4.4 and

subsubsection 4.4. The following hyperparameters are set: TopK pooling ratio = 0.75,

epochs = 80, batch size = 256, early stopping tolerance = 15, and learning rate = 0.001. To

evaluate the performance of handmade and graph-based approaches, we ran a tenfold cross

validation. Precision, recall, F1-score, and AUC-score are used as comparative measures.

The results are shown in Table Table 4.4. We observe that except GAT, all other GNNs

outperformed the baseline models with handcrafted feature engineering by all evaluation

metrics. Except for GAT, we see that all other GNNs beat handmade feature engineering-

based baseline models on all assessment measures. The training and validation loss plots

(Figure Figure 4.6 created from one cross validation cycle indicate that the GCN training

loss continued to drop, while the validation loss peaked between epoch 50 and 60, signaling

that GCN may have been overfitted in the training data set after epoch 60.

After 80 epochs, the training loss reduced steadily, but the validation loss remained

same. This might be because GIN had a much larger number of parameters to tweak, since

GIN used MLPs as the composition function. Due to the fact that neither the training nor

validation loss improved for GAT, early termination was enabled at 68 training epochs.

GraphSAGE outperformed the other GNNs in virtually all training epochs, since it gen-

erated less training and validation loss than the other GNNs. GraphSAGE demonstrated

the highest predictive value because it can combine higher level node neighborhood in-

formation, allowing for the classification of more complicated interactions between nodes.

Additionally, since the input graphs often contain a high number of nodes but a limited

number of node degrees, GraphSAGE can better capture the topological structures of node

neighbors, while GCN could aggregate only local node structures.
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Category Model Metrics
Precision Recall F1 AUC

Baseline

Logistic Regression 0.5673 ± 0.0096 0.6139± 0.0171 0.5896 ± 0.0129 0.6532 ± 0.0208

SVM 0.5823 ± 0.0102 0.6414± 0.0177 0.6104 ± 0.0135 0.6838 ± 0.0133

Random Forest 0.6617 ± 0.0308 0.6252±0.0222 0.6429 ± 0.0257 0.7339 ± 0.0151

Xgboost 0.6047 ± 0.0111 0.6610± 0.0175 0.6316 ± 0.0137 0.7354 ± 0.0156

MLP 0.6407 ± 0.0212 0.6679± 0.0198 0.6501 ± 0.0186 0.7443 ± 0.0162

GNN

GCN 0.8079 ± 0.0246 0.8549 ± 0.02446 0.8307 ± 0.0236 0.9148 ± 0.0195

GraphSAGE 0.8546 ± 0.0210 0.8991 ± 0.0164 0.8762 ± 0.0184 0.9539 ± 0.0132

GAT 0.6087 ± 0.0065 0.6872 ± 0.0133 0.6455 ± 0.0058 0.6725 ± 0.0091

GIN 0.7176 ± 0.0153 0.7733 ± 0.0223 0.7443 ± 0.0161 0.8179 ± 0.0192

Table 4.4: Results comparison between baseline models with handcrafted feature engineer-
ing and GNNs

Figure 4.6: Training and validation loss comparison of GNNs over epochs.

Interpretability of Graph Neural Networks

To build trust in the black box GNN approaches, and increase the transparency of GNN’s

decision making mechanism, we applied Class Activation Mapping (CAM) [112] to inter-

pret contributions of the node features and graph structures to GraphSAGE’s prediction.

CAMs have been frequently utilized in image recognition to demonstrate how convolu-

tional neural networks may be used to perform classification tasks using high-level picture

characteristics [113]. In this work, we use the GNN version of CAM to uncover criti-

cal node properties for classifying graphs. GNN-based CAMs may examine the output of
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the previous graph convolutional layer and associate the learnt feature weights with the

input node attribute to determine the node relevance for graph categorization. We define

GRL generated features as the latent representation output from Graph Convolutional layer

without loss of generality. In this example, we use graphs to represent people’s mobility

behaviors, the proximity of social interactions, and physical activities. We utilize inter-

pretable GNN techniques to demonstrate the interpretability of the automatically learned

features generated from GNN.

The representations of daily mobility, Bluetooth encounters, and physical activities as

graphs are shown in Fig Figure 4.1. NodeSketch [100] is applied to generate the node em-

bedding. Graph structure data (adjacency matrix) and feature vector (node embedding) for

each node are fed into Graph Neural Networks to automatically generate deep features for

influenza-like symptoms recognition. All the graphs are unweighted and non-directional.

Here we use GraphSAGEs [94] to build GNN model. We generated the heat maps of

node importance in graphs of daily base observations from both symptomatic and non-

symptomatic cases which were randomly selected, as shown in Figure Figure 4.7. In the

non-symptomatic cases, we observed that nodes from different cases, different graphs, and

different sub-graph structures can have different importance to the symptom recognition

task. Important nodes were distributed globally in multiple sub-structures in each graph.

This implied that multiple nodes in each non-symptomatic graph could have a high contri-

bution to symptom recognition. In the symptomatic cases, important nodes only showed

in a limited number of sub-graph structures, implying that only a small number of nodes

corresponding to few human states and state transitions could have high importance in

classifying symptomatic cases. The interpretation of GNNs in this influenza-like symptom

recognition task is illustrated as following:

• Mobility Behavior Interpretation: the visiting pattern graph in the non-symptomatic

case showed with more complex and higher node degrees than the visiting pattern

graph in the symptomatic case, implying that a healthy person could visit many
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places one day, but for some people who have influenza-like symptoms, they may

avoid visiting many places. In the non-symptomatic case, as shown in Figure 4.7

(a), we observed that multiple visited places (node 1, 2, 3) had high contribution to

classify non-symptomatic cases. In this case, this person started from place 0, which

usually the home or dorm for a student. Then, two places 1 and 2 with high node

importance were visited, which could be a gym or coffee shop. Then this person

went back to home/dorm and then went out to start a day. This visiting pattern could

reflect a robust person’s routine visiting pattern. In the symptomatic case, this per-

son went out from home to place 1, where she could buy some food, and then went

back to home. Then this person left home to visit place 2, where she could buy some

necessary stuff, and then went back again. The place 3 with high node importance

could be a clinic and, after the visited clinic, she went to a drugstore to pick up drugs.

This repetitive go-out and back-to-home pattern could reflect that she would not go

out except it was necessary. From another perspective, usually, people will go out to

finish all business and then go back home. This observation implied that both global

and local graph structures can impact node importance.

• Social Interaction Interpretation: In non-symptomatic case, multiple nodes could

have high importance to infer a healthy state. We could explain that, without any

influenza symptoms, people could be more likely to be in an environment with a

higher probability of social interactions (with a plethora of detected Bluetooth de-

vices). That made the important Bluetooth nodes distribute globally in the graph. In

the symptomatic case, a small number of detected Bluetooth encounters with high

node degree implied a lower probability of diverse social interaction because people

might stay in a determined place (like home). Only one detected encounter showed

high importance implied that this node could represent a Bluetooth device at home.

• Physical Activity Interpretation: in the non-symptomatic case, multiple activities
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Figure 4.7: Interpretable GraphSAGE: (a) is a sampled Non-symptomatic case, and (b) is a
sampled Symptomatic case. The darker the nodes the more important of this node will be
to predict existence of influenza-like symptoms. The numbers shown in each node indicate
the order of being in each node.

showed high importance for the symptom recognition task, implying that some activ-

ity states, such as running, driving, were more important to infer a non-symptomatic

health state than other activities. Compared with mobility and social interactions,

physical activity was less important in predicting influenza-like symptoms in symp-

tomatic cases. This implied that some basic and sedentary physical activities, such as

walking and keeping still, did not help to discriminate symptomatic behavior every

well.
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Comparison of Interpretability between Handcrafted Features and Features generated from

GNNs

The feature importance plot is shown in Figure Figure 4.8. The comparison of interpretabil-

ity between handcrafted features and features generated from GNNs is discussed below.

• GNN can have better interpretability by providing semantic explanation of hu-

man behaviors [15]: As we demonstrate in Section Interpretability of Graph Neural

Networks, the GNN based interpretability method can generate the semantic mean-

ing of human behaviors. In an ideal situation, if we can get access to the real GPS

coordinates, location information of visited places can be precisely inferred. For ex-

ample, we can infer the functionality of visited places from their semantic labels (i.e.,

library, hospital). With this information, node importance can be more accurately in-

terpreted. However, handcrafted features only provide summary statistics of human

behaviors, which cannot provide semantic information of the behaviors’ context.

• The Interpreted information of GNN can be more comprehensive than engi-

neered features: the engineered features, though easily understandable, can only

capture low-level features of human behaviors and generate biased behavior repre-

sentation. For example, 3 unique − visits of the workplace, home, and hospital

can be embedded with totally different human behaviors from 3 unique − visits

of home, gym, and coffee shop. In an ideal case, GNN can keep track of all hu-

man states with semantic information and the transitions between the states, which

is more sophisticated than handcrafted features.

• Interpretability of GNN can show better visual interpretation of the GNN learned

features: comparing with Figure Figure 4.8, node importance visualization can

demonstrate each node’s contribution to the machine learning task. The sub-structure

of the graph can also be visualized and provide interpretable information about the

55



Figure 4.8: Feature Importance plot of Random Forest for Handcrafted Features.

interactions of human states. However, engineered features cannot show these gran-

ular changes of human states as the node importance plot.

Hyperparameter Sensitivity Analysis

We explored numerous crucial hyperparameters that might affect the prediction perfor-

mance of the fine-tuned GraphSAGE model. The findings are shown in Figure 4.9. In plot

(a), we see that increasing the learning rate results in inferior prediction performance and

also results in a bigger variation in validation loss, indicating that the model’s predictions

are more variable. In figure (b), varying TopK ratios result in a range of F1-scores be-

tween 0.87 and 0.91. There is no apparent pattern for how the preference for TopK ratios

affects prediction performance, however 0.6 TopK ratio produces the highest F1-score of

0.91 in the studies. This meant that the top 60% of nodes contributed more to predicting

the presence of influenza-like symptoms than the remaining nodes. As seen in panel (c),

GraphSAGE may achieve equal validation prediction performance with 50% of data as the

training set as models trained with more than 50% data. This has practical implications

since samples are costly to collect in mobile sensing and human-centered computing.
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Figure 4.9: Hyperparameter sensitivity analysis for GraphSAGE: a) learning rates on val-
idation loss over training epochs; b) prediction performances on different TopK ratios; c)
prediction performances using different proportions of data as training set.

4.5 Summary

We used graphs to represent symptomatic human behaviors acquired by multimodal mo-

bile sensors and illustrated the potential for graph neural networks to identify and forecast

human states in this research. This is the first effort that we are aware of that utilizes

graph neural networks with multi-modal mobile sensing to describe graph-based behavior.

Rather than developing fine-grained behavior markers manually, we proposed using graph

representations to encode the dynamics of human behavior state transitions, node embed-

ding techniques to extract topological node attributes, and finally GNNs to learn automatic

deep features for influenza-like symptom recognition. We demonstrated that GNNs with

GraphSAGE convolutional layers beat baseline models with handmade features by a large

margin. Additionally, as seen in Figure Figure 4.1, the graph-based behavior modeling and

mobile sensing framework may be applied to applications in mobile sensing, such as those

in mental health [114].
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Apart from generalizing this paradigm to the realm of mobile sensing, this study has

public health implications in terms of circumventing the restrictions of standard public

health reporting systems and syndromic monitoring. On an individual level, this approach

enables the passive and unobtrusive detection of influenza-like symptoms and the delivery

of treatments aimed at changing people’ habits such as self-isolation. On a neighborhood

and population level, early identification of influenza-like symptoms may alert residents to

the possibility of contracting the disease from individuals who are ill and in close proximity,

as well as assist in forecasting countrywide influenza levels for public health policy choices.

Our current work is subject to the following limitations. To begin, we constructed

global models utilizing data from all participants, assuming that their behaviors and per-

sonalities were similar among individuals in our research. A more effective strategy would

be to develop customized models by retraining the global model using individual data. Un-

fortunately, our dataset was insufficient for developing a tailored model owing to missing

data and the study’s brief duration. Second, utilizing Bluetooth encounters to approximate

the closeness of genuine face-to-face social interactions may be skewed [115]. This esti-

mate is based on the premise that a greater number of detected Bluetooth contacts results

in a greater likelihood of face-to-face social interactions, which is not necessarily the case.

Thirdly, no laboratory-confirmed influenza diagnosis is presented. Influenza symptoms are

generic and comparable to those of a variety of other illnesses at an early stage, limiting

the use of our study. Finally, to address privacy issues and minimize the possibility of iden-

tity disclosure, we anonymized and encrypted GPS coordinates and Bluetooth encounter

device IDs. As a result, critical semantic and contextual information about the behavior

states represented by our graphs is lost, significantly impairing the decision process’s inter-

pretability.

We want to expand our existing work in two ways in the future. To begin, by extending

the sequence of mobile sensing data observations to several days, dynamic graphs through

time lines can be used to capture temporal variations in behavior states, allowing for the ex-
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traction of spatiotemporal representations of human behaviors for the analysis of dynamic

interactions between disease symptoms and human behaviors over time. Second, we want

to use semi-supervised machine learning approaches to combine labeled and unlabeled data

in order to generate more broad models.
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Chapter 5

FedMobile: Incremental Federated

Learning for Mobile Health

5.1 Background and Motivation

By leveraging the embedded sensors, mobile devices (e.g., smartphones, smartwatches,

and wearable devices) pave the pathways to collect human behavioral and physiological

signatures passively and continuously [83]. Human-centered data collected by mobile de-

vices have attracted large attention in both industry and academia, revolutionizing modern

healthcare systems. More and more healthcare applications , such as physical state infer-

ence, mental health monitoring, and mobile interventions, have been investigated by using

mobile sensing techniques and machine learning [1]. However, privacy concerns of mobile

device users constrained the wide adoption of mobile sensing applications. Data storage

location, access authority, and usage of knowledge extraction are among the typical aspects

of users’ concerns. For instance, Global Positioning System (GPS) trajectories can expose

mobile users’ traveling history, which can be exploited by adversarial agents to retrieve per-

sonal information, such as race, gender, physical activities, social relationship, and health

status [116]. Bluetooth devices can be used for contact tracing, as users who contract con-
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tagious viruses are generally required to release all their personal information [117].

Privacy preservation constitute a problem in both legal and technical domain, and can-

not be simplified by a voluntary consent form that are expected to be agreed by the users

[116]. Rigours and robust technical and organizational measures should be carefully de-

signed through engineering processes to protect user privacy in mobile sensing applica-

tions. Numerous privacy-preserving approaches and algorithms have been proposed ac-

cording to different application scenarios. K-anonymity algorithm and its variants have

been proposed to hide identities in the source of the data items [118]. Differential pri-

vacy aims to reduce exposure of authentic information by adding perturbations that follow

certain noise distribution while maintain data utility [119]. However, anonymization tech-

niques can make sensitive attributes vulnerable to inference attacks; and differential privacy

can downgrade the data utility and lower the power of learned models [120]. Different from

anonymization techniques, Federated Learning (FL) is a decentralized learning algorithm

in which users can collaboratively contribute knowledge to the central server without data

sharing between the users [42]. When we apply FL in moible sensing apps, each mobile

device can contain their own individual data set in their smart devices, and use the local

data to train local models, reducing the probability of data leakage; a central server trains

a global model by learning from local weights or gradients, rather than learning directly

from local data.

Despite the theoretical success of FL algorithm, there are still multiple challenges in

FL implementation in mobile sensing applications. First and foremost, mobile sensing

techniques collect data continuously and incrementally, and deposit data cumulatively on

device. This can cause memory shortage in local mobile devices. What’s more, new be-

havioral patterns can evolve among people. This evolving human behavior/habit can make

previous learned knowledge less representative for recognising the trajectory of symptom

development. Furthermore, there exists spatial and temporal dependencies in human be-

havior dynamics (i.e. people’s activities can vary over time and locations). Multi-modal
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raw sensor data without efficient representation engineering can be limited and may fail to

capture the complex relationships embedded in people’s behaviors. Last but not the least,

there are usually a significant amount of unannotated data in mobile sensing data collec-

tion, because of prohibitively high cost in annotating ground truth symptom labels. In this

chapter, we propose an incremental semi-supervised federated learning algorithm, FedMo-

bile, and a spatio-temporal graph neural network, GCN-LSTM, in an attempt to address

these challenges. Our contributions are summarized as follows:

• We propose an incremental federated learning (IFL) framework, FedMobile, to train

neural network models decentralizedly by using Knowledge distillation that can trans-

fer expert knowledge to apprentices. This incremental framework is designed to up-

date existing models only using newly available data in an online fashion.

• We integrate the proposed imcremental FL with a semi-supervised method using

Consistency Regularization (CR) [121], which can utilize massive amount of unla-

beled data to enhance model robustness.

• We apply graph representations to encode complex human behaviors by transforming

multi-modal raw sensor data to graphs, and propose a spatio-temporal graph neural

network, GCN-LSMT, to fit multi-channel dynamic graph inputs.

• Our proposed FedMobile is a general privacy-preserving method that is applicable

for multitudinous mobile sensing and machine learning applications.

5.2 Method

In this section, we firstly introduce our proposed incremental federated learning method,

FedMobile, for streaming data in Section subsubsection 5.2. Then, we describe graph rep-
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Figure 5.1: The general framework of our Incremental Federated Learning Approach.

resentation of mobile sensing data and demonstrate a spatio-temporal graph neural network

modeling framework for multi-modal mobile sensing data in Section subsubsection 5.2.

Incremental Federated Learning with Consistency Regularization

For the data streaming in mobile sensing, incremental domain and class problem for the

newly collected data can downgrade the prediction power of neural network models that

are trained by using historical data [122]. People can change their behaviors over time be-

cause of seasonal changes or external events, causing domain shift of mobile sensing data

and unclassified outcomes. Modeling retraining that uses all available data can be a default

solution. However, retraining models can increase computational burden due to the large

volume of data. This computational burden can make on-device FL infeasible. In mobile

sensing data collection, it’s expensive and challenging to collect sufficient labeled data to

train machine learning models supervisedly. Our proposed incremental federated learning

(IFL) approach with consistency regularization can overcome these challenges: IFL learns

from incoming data incrementally and semi-supervisedly by integrating consistency regu-

larization. The proposed framework consists of two major steps as shown in Figure 5.1:
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training 1) an expert model and 2) an apprentice model.

Step 1: training an expert model decentralizedly using consistency regularized local up-

date. For semi-supervised learning prediction challenges, consistency regularization (CR)

has showed state-of-the-art performance. [123, 124]. The main concept behind CR is to

punish models that are sensitive to disturbed inputs under the premise that the perturba-

tions have no effect on the label semantics. As the global model passes through more

rounds of communications in a FL scenario, especially in practice with non-IID data, the

FL algorithm might run into a weight divergence problem [125]. For each round of com-

munications, we assume that the micro batches of unlabeled data inside each client stay

stable despite minor perturbations. We introduce a new loss component, Kullback–Leibler

divergence, KL(•||•), to calculate the divergence between the prediction output distribu-

tions of current and previous round of communications. If local models strive to update

their model weights in divergent and locally overfitting ways, they will be penalized. The

loss function for local update with inter-communication CR is expressed as

L(W) = LCE(ŷ,y) + LCR(F(σcr),F(σu)) +R(W), (5.1)

where LCE(•) is a cross entropy loss function, σcr and σu are logit outputs for unlabeled

inputs from previous and current round DL models respectively. LCR(•) is the consistency

regularization loss, where LCR = λKL(F(σcr)||F(σu)) and F(•) is a softmax function,

λ ∈ (0, 1) is the CR coefficient. R(•) is the regularization function (e.g. L2-norm). We

present LocalUpdate-CR in Algorithm algorithm 1. During Step 1 of training expert

model distributedly in Figure 5.1, LocalUpdate-CR uses semi-supervised FL to update

the weights of client models, using both labeled data and a large quantity of unlabeled data,

and then uploads the modified weights to the server to update the global model. Finally,

an expert model is fed into the next stage of incremental FL to train an apprentice model

utilizing streaming data without having to retrain the model from scratch at the conclusion
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of step 1.

Algorithm 1: Local update with consistency regularization. During each local
update for client k, we calculate the inter-communication consistency regularized
loss, where overfitting weight updates can be penalized and the weight divergence
problem can be mitigated. W is the DL model weight, M is the DL model, X
and Xu are labeled and unlabeled input data, and η is the learning rate.

LocalUpdate-CR (k,W,M,X,Xu,y, σcr):
for each epoch i = 1, ..., E do

for each batch b = 1, ..., B do
ŷb ←M(Xb);
σu
b ←M(Xu

b );
L(W)← LCE(ŷ,y) + LCR(F(σcr),F(σu)) +R(W);
σcr
b ← σu

b ;
W←W − η∇L(W);

end
end
return W, σcr;

Step 2: training apprentice model using incremental local update. The expert model and

the apprentice model are the two structures that make up knowledge distillation (KD). An

expert model is a model that has been trained using representative data from the domain

population or a model that has already been trained. The expert model’s knowledge is

transmitted to the apprentice model by reducing the distance between their prediction dis-

tributions given the identical inputs in the distillation phase [126]. In incremental FL, for

the incoming batch of streaming data at time t, which includes both labeled and unlabeled

samples, the loss function for the client local update is expressed as:

L(Wρ) = (1− α)LCE(ŷt,yt) + αLKD(F(στ
t ),F(σ

ρ
t ))

+ LCR(F(σcr),F(σu
t )) +R(Wρ),

(5.2)

where W ρ is the apprentice model weights, α ∈ (0, 1) is a balancing weight, στ
t and

σρ
t are the logit outputs from the expert and apprentice model respectively. LKD is the

knowledge distillation loss, and LKD(F(στ
t ),F(σ

ρ
t )) = KL(F(στ

t )||F(σ
ρ
t )) [126, 127].

IncrementalLocalUpdate-CR is presented in Algorithm algorithm 2. In Step 2 shown in
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Figure 5.1, given streaming data input at time t, incremental FL uses IncrementalLocalUpdate-

CR to update client local models and then sends the updated weights to the server, which

further aggregates the client model weights and updates the global model weights.

Algorithm 2: Incremental local update with consistency regularization. In each
incremental update for each batch of incoming streaming data at time t, the ap-
prentice model is updated locally by leveraging the knowledge generalized from
the expert model by using knowledge distillation from incremental learning.Wρ

is the model weight of the apprentice model, Mρ and Mτ are apprentice DL
model and expert DL model respectively.

IncrementalLocalUpdate-CR (k,Wρ,Mρ,Mτ ,Xt,X
u
t ,yt, σ

cr):
for each epoch i = 1, ..., E do

for each batch b = 1, ..., B do
ŷt,b, σ

ρ
t,b ←Mρ(Xt,b);

σu
t,b ←Mρ(Xu

t,b);
στ
t,b ←Mτ (Xt,b);
L(Wρ)← (1− α)LCE(ŷt,yt) + αLKD(F(στ

t ),F(σ
ρ
t )) +

LCR(F(σcr),F(σu
t )) +R(Wρ);

σcr
b ← σu

t,b;
Wρ ←Wρ − η∇L(Wρ);

end
end
return Wρ, σcr;

End-to-End Incremental FL. Based on LocalUpdate-CR and IncrementalLocalUpdate-

CR, we present the end-to-end incremental FL framework, as shown in Algorithm algo-

rithm 3. Given static labeled input X l, the corresponding target yl and unlabeled input Xu

from each client k, the goal of step 1 is to train a global expert model using semi-supervised

FL with both labeled and unlabeled local data. First, the server initializes W0 for the global

model M′, and the logit output σcr
0,• ∼ Uniform(0, 1) for the inter-communication CR.

Then for each round of communications, we run LocalUpdate-CR for each client k to up-

date the local models, and send the updated weights to the server. The server aggregates the

new local weights using FedAvg [128]. After local weight aggregation, the global model

weights are updated in the server. Finally, after C rounds of communications, the first stage

of incremental FL outputs the trained expert model denoted as Mτ . In step 2, given the
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expert modelMτ , streaming inputs X l
t,k, Xu

t,k for each client k at time t, we train an ap-

prentice modelMρ in a decentralized manner using streaming data and knowledge learned

from the expert model to approximate the performance of a centralized-trained model. At

each incremental iteration t, we run C rounds of communications to train the apprentice

model. In each round of communications, we run IncrementalLocalUpdate-CR to up-

date local model weights and send the updated weights to the server. We then aggregate

the local model weights and update the apprentice model weights incrementally.
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Algorithm 3: End-to-end incremental federated learning. As shown in Figure 5.1,
this incremental FL method first trains a global expert model using FedAvg with
LocalUpdate-CR, and then feeds the trained expert model into the second step
of incremental FL. In the second step, a global apprentice model is trained using
FedAvg with IncrementalLocalUpdate-CR.

Step 1: train expert model
Server executes:

initialize W0 forM0;
initialize σcr

0,• ∼ Uniform(0, 1);
for each round of communications c = 0, 1, 2..., C do

for each client k ∈ K in parallel do
Wc+1,k, σ

cr
c+1,k ← LocalUpdate-CR(k,Wc,k,Mc,X

l
c,k,X

u
c,k, yc,k, σ

cr
c,k);

end
Wc+1 ←

∑K
k=1

nk

n
Wc+1,k;

Mc+1← updateMc by Wc+1;
end
return expert modelMτ ;

Step 2: train the apprentice model using streaming data and knowledge distilled
from the expert model

Server executes:
initialize Wρ

0 forMρ
0;

for streaming data at time t = 0, 1, 2... do
Wρ

t ←W(Mρ
t );

for each round of communications c = 0, 1, 2..., C do
for each client k ∈ K in parallel do

Wρ
t,k, σ

cr
t,k ← IncrementalLocalUpdate-

CR(k,Wρ
t,k,M

ρ
t ,Mτ ,Xl

t,k,X
u
t,k,yt,k, σ

cr
t,k);

end
Wρ

t ←
∑K

k=1
nk

n
Wρ

t,k;
Mρ

t ← updateMρ
t by Wρ

t ;
end
Mρ

t+1 ←M
ρ
t

end
return apprentice modelMρ;
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Figure 5.2: Graph Representations of Mobile Sensing Data. People can have varying be-
haviors from place to place. Thus, we generate graphs to represent the behaviors at each
corresponding geospatial cluster.

Spatio-temporal Graph Neural Networks in Mobile Sensing

Graph Representations of Mobile Sensing Data: Machine learning studies of mobile sens-

ing have investigated at handcrafted feature engineering extensively. Complex connections

and high-level dependency among human state fluctuations may be underrepresented in
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manually derived features, despite fine-grained featurization of raw mobile sensing data and

adequate interpretability. Furthermore, since structural topology occurs in non-euclidean

domains of raw mobile sensing data (e.g., GPS, Bluetooth Encounter), capturing such topo-

logical information through handcrafted feature engineering can be difficult [129]. We em-

ploy graphs to describe human behaviors in this paper, and we leverage mobile sensing to

illustrate the feasibility and promise of FedMobile-trained GCN-LSTM on an influenza-

like symptom identification challenge. We believe that persons who are in the early stages

of influenza will become less active unconsciously, avoiding needless travel and interper-

sonal contacts. We use a variety of embedded sensors to collect data on human behavior:

Human mobility behaviors are captured by GPS sensors; Bluetooth encounters are used

to evaluate social behaviors; accelerometer and gyroscope can monitor physical activity;

web-virtual behaviors are recorded by recording app usages; and environmental contexts

may be inferred by WiFi signals.

In graph construction process as shown in Fig Figure 5.2, for mobility behavior, we

consider each cluster label as a node and create edges between every pair of successive

visited sites given a series of cluster labels obtained from clustering of GPS coordinates

that capture people’s daily moving route. We divide the multi-modal sequential discrete

sensor signals into numerous sub-sequences for the other behaviors and surrounding envi-

ronment, with each sub-sequence representing the behaviors or contexts at the correspond-

ing site individuals visit. We express each identified human activity as a node in graphs

for accelerometer and gyroscope, for example, and add edges between every two succes-

sive activity states in the table. Then, for each cluster partition, we use this graph creation

technique to produce a succession of graphs. Each sample in the GCN-LSTM input com-

prises of a static graph that encodes mobility behavior and multi-channel dynamic graphs

that capture social, activity, web-virtual behaviors, and ambient surroundings, as well as a

static graph that encodes mobility behavior. Finally, the constructed graph structured data

is used to identify influenza-like symptoms early on.
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Spatio-temporal Graph Neural Networks: During the course of a day, people may visit

various sites and act differently in each of them. When individuals are at work or on campus

during the day, for example, they engage in more diversified activities, but when they are at

home after work, they engage in less activities. Topology changes in graphs are triggered

by various actions, showing the presence of spatial-hierarchical and temporal differences

in human activity. We propose spatio-temporal graph neural network, GCN-LSTM, to

model the dynamic graphs with spatial hierarchy. The overall architecture of GCN-LSTM

is shown in Figure 5.3. In general, we employ GCN to generate graph embeddings that

capture behavior dynamics, and then feed the series of multi-channel graph embeddings

into an LSTM to infer health outcomes. In this study, we denote the adjacency matrix

of Gt as At, and generate node attribute matrix, denoted as Xt, using graph embedding

methods [130]. To capture the topological structure and transition dynamics of people’s

traveling patterns, different graph convolutions including GCN [93] and GAT [95] can be

applied to extract the high-level representations of the graph inputs. We use GCN in this

study, and the activated layer-wise propagation in a GCN can be expressed as

Z = ReLU(D̃− 1
2 ÃD̃− 1

2XW), (5.3)

where Ã = A + I, I is the identity matrix, D is the diagonal matrix, D̃ = D + I, and

W is the learnable weight matrix. To capture the temporal variations and inter-transition

dependence between visited clusters, we feed the output from GCN, denoted as Zp =

[zp1 , ..., z
p
T ], to a LSTM layer [13]. Each cell in LSTM can be expressed as

it = σ(Wziz
p
t +Whiht−1 +Wcict−1 + bi) (5.4)

ft = σ(Wzfz
p
t +Whfht−1 +Wcfct−1 + bf ) (5.5)
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Figure 5.3: GCN-LSTM architecture. A and X represent the adjacency matrix and feature
matrix respectively for each graph.

ct = ittanh(Wzcz
p
t +Whcht−1 +Wccct−1 + bc) + ftct−1 (5.6)

ot = σ(Wzoz
p
t +Whoht−1 +Wcoct−1 + bo) (5.7)

ht = ottanh(ct), (5.8)

where it, ft, ct, ot denote the states of the input gate, forget gate, memory cell, and the

output gate respectively, and ht denotes the output of LSTM at time t.
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Figure 5.4: FedMobile is a mobile sensing data streaming platform. FedMobile may update
global models gradually in mobile sensing data streaming by solely utilizing the freshly
arriving batch of mobile sensing data. We establish an apprentice model based on the pre-
viously trained expert model, and then update the apprentice model using just the incoming
batch of streaming data in a federated online approach..

5.3 Data and Experiments

Data collection and description

The data for this influenza-like symptom identification experiment came from a multi-

cohort mobile sensing study we did to help with illness detection early. In all, 2,700 people

were recruited from 24 states throughout the United States to take part in the data collect-

ing. This research lasted one year in total. GPS, Bluetooth encounter, Wifi signal, app use,

accelerometer, gyroscope, and other sensor data were recorded. We requested participants

to download and run ReadiSens, a mobile sensing app. Fever, cough, trouble breathing,

exhaustion, muscular pains, headache, sore throat, runny nose, nausea, and diarrhea were

among the self-reported influenza symptoms collected by ecological momentary assess-

ments (EMAs) provided at 8 p.m. everyday. Only individuals with at least 14 days of

data were chosen to assure the validity of our studies, resulting in data from about 800

people for this research. From February 15th, 2019 through April 30th, 2020, active data
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collecting was undertaken on a rolling basis. The overall number of annotated and unan-

notated daily observations was roughly 6,100 and 22,000, respectively, with 18 percent

reporting influenza symptoms. The average age of the included participants in this chap-

ter was 42.78(sd = 10.16). 64.36% of the participants were female, with white being

66.3%, African American 20.8%, Asian 6.5%, multiple races 3.2%, Hispanic 3.1%, and

others 0.1%. Among the participants, 61% were full time workers, 14% were full time

students, 12% were working part time, 8% had retired, 3% were care takers, while 2% were

temporarily unemployed.

Implementation details

We split the labeled data set into 70%, 20%, and 10% subsets for training, validation, and

testing, respectively, in the centralized training process and baseline Federated Learning

approaches. For the centralized training procedure, we apply semi-supervised incremental

learning. We replicate mobile sensing streaming data and execute FedMobile utilizing the

data in chronological sequence throughout the incremental FL training procedure. Step 1

of FedMobile is used to create an expert model using the first 40% of training data. as

described in Section subsubsection 5.2. In the step 2 of FedMobile, as described in Section

algorithm 5.2, the number of incremental updates was set to 20, and the simulated stream-

ing data was divided into 20 batches based on their chronological order for incremental

training. The overall training process of FedMobile for streaming mobile sensing data is

shown in Fig Figure 5.4. To assign daily mobile sensing observations, 40 pseudo dispersed

clients are developed. Each pseudo distributed client collects local data from participants

who are part of the same G-means-generated demographic profile cluster [64]. Without

regard for privacy, we train the models using Adam [131] on a central server to see if feder-

ated (privacy-protected) techniques can achieve equivalent performance to the centralized

method.
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Baselines

Federated Learning: a) FederatedAveraging (FedAvg) [128] is a well-known supervised

federated learning method that is often used as the baseline model in federated learning

research. FedAvg’s shortcoming is that it is limited to supervised federated learning tasks

and is unable to learn from vast amounts of unlabeled data.

b) FedSem [132] is a semi-supervised federated learning approach that makes use of

pseudo-labeled data to enhance the performance of federated learning. Pseudo labeling is

a semi-supervised approach for predicting the labels of unannotated data using pre-trained

models and combining them with labeled data to train new models [133].

c) FedFixMatch is a naive combination of FedAvg and FixMatch [134] that incorporates

pseudo-labeling and consistency regularization for semi-supervised learning.

d) Federated Matching (FedMatch) [135] performs semi-supervised federated learning

by using a novel inter-client consistency loss and disjoint learning for labeled and unlabeled

data.

Neural Networks: a) MLP: multi-layer perceptron [109] is widely regarded as the standard

model for connecting deep learning approaches to the area of mobile sensing. We fit the

node attribute matrices (extracted using a graph embedding approach called NodeSkech

[100]) using MLP without incorporating the graph’s topological structures (adjacency ma-

trices) in the input.

b) GCN [93] is a baseline deep learning model for graph structured data. By concate-

nating the outputs of a succession of GCNs, we may utilize GCNs to represent a sequence

of graph inputs. We have a matching GCN for each graph from a single sensor channel

in the input of the graph sequence, which generates the high-level features and feeds them

into a dense layer for prediction.

c) GAT: graph attention network [95] makes use of attention processes to generate node

representations by assigning more weight to significant nodes and (or) characteristics. GAT

is used in the same way as GCN to extract high-level embeddings of graph inputs without

75



Model
F1-Score PR-AUC

MLP GCN GAT GCN-LSTM MLP GCN GAT GCN-LSTM

Centralized 0.73 0.75 0.76 0.81 0.76 0.79 0.84 0.88

FedAvg 0.65 0.66 0.68 0.72 0.68 0.71 0.73 0.75

FedSem 0.67 0.69 0.70 0.73 0.70 0.72 0.76 0.81

FedFixMatch 0.69 0.71 0.72 0.75 0.71 0.75 0.80 0.83

FedMatch 0.70 0.72 0.74 0.78 0.71 0.77 0.81 0.83

FedMobile(ours) 0.72 0.73 0.75 0.80 0.74 0.78 0.83 0.86

Table 5.1: Performance comparison from two perspective: one is within federated learning
methods, and between FedMobile and the centralized training paradigm; another one is
between the proposed GCN-LSTM model and the baseline neural networks.

taking into account the graph’s temporal connection.

Figure 5.5: Testing F1-Score comparison FedMobile and the baseline models for 200 com-
munication rounds (epochs for centralized training). In the FedMobile, we train the expert
models in the first 80 communication rounds and perform incremental update through 80-
200 communication rounds.
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5.4 Results and Analysis

We compare our proposed FedMobile and GCN-LSTM methods from two perspectives in

this study: 1) we compare FedMobile to other FL baseline models and to a centralizedly

trained model that incorporates incremental learning and consistency regularization; and 2)

we compare baseline model performance to the proposed GCN-LSTM model performance

in various training scenarios. We use F1-Score and PR-AUC as evaluation metrics to com-

pare model performance. The evaluation performances are shown in Table Table 6.1. We

observe that models trained using FedMobile provide outcomes equivalent to those trained

centrally. Models trained on FedMobile outperform models trained on other FL baselines.

As shown in Fig Figure 5.5, we observe that, generally, in the first half of the communica-

tion rounds, FedMobile exhibits a similar training trajectory to FedMatch or FedFixMatch,

as FedMobile trains an expert model without incremental learning in the first step; however,

FedMobile exhibits an increasing F1-Score in the second step (after 80 communication

rounds), implying incremental knowledge gains. FedMobile’s higher performance may

be ascribed to numerous components of the incremental federated learning architecture’s

design. To begin, the knowledge distillation (KD) property, which penalizes new knowl-

edge in order to mitigate overfitting and adapt to it after several iterations of incremental

learning, can perform fine-tuning in the second step of training an apprentice model, such

that the final few layers (LSTM+MLP) in the GCN-LSTM model can learn better fitted

weights [127]. Second, FedMobile’s Consistency Regularization (CR) technique leverages

a large number of unannotated samples to improve the robustness of GNNs by punishing

significant changes in the inferred label semantics across communication rounds. Addition-

ally, CR minimizes the divergence of local weight updates across dispersed clients, which

helps stabilize the global model parameter optimization. In terms of neural networks, the
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Figure 5.6: Impact of (a) Consistency Regularization coefficient λ and (b) KD loss coeffi-
cient α to the performance of FedMobile-trained model.

suggested GCN-LSTM model outperforms baseline neural network models. Due to the

fact that individuals exhibit a variety of behaviors when they visit various locations, the

topological structures of graph representations of sensing signals may exhibit spatial and

temporal changes through people’s traveling trajectories. GCN-LSTM employs GCN to

capture high-level spatial and topological properties and LSTM to encode temporal infor-

mation in a graph sequence.

Hyperparameter Analysis We analyze the impact of Consistency Regularization (CR) coef-

ficient λ and the Knowledge Distillation (KD) coefficient α on the performance of FedMobile-

trained models. As shown in Figure 5.6 (a), with a CR coefficient of 0.3/0.4, the highest

performing models can be achieved. This discovery suggests that utilizing unlabeled data to

impose an excessive/insufficient penalty (large/small lambda) on the prediction outcomes

cannot alleviate within-client inconsistency, hence making the models less resilient. When
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Figure 5.7: The impact of batch size and number of local epochs, and learning rate in step
1 and 2 of FedMobile to the performance of GCN-LSTM.

the CR coefficient is equal to zero (FedMobile without CR), performance degradation may

also suggest the regularization impact of CR. In Figure 5.6 (b), when alpha is close to 0

or 1, the models perform poorly, showing that entire dependence on either the expert or

apprentice models might have a detrimental effect on model generalization. And a value of

alpha of 0.6/0.7 may provide the highest results, which can be explained by the fact that

previously taught information can act as a type of regularization, preventing the trained

models from overfitting in response to fresh incoming data with possible domain shifts.

In Figure 5.7 (a), we demonstrate the impact of varying the size of the local batch

and the number of local epochs on a FedMobile-trained GCN-LSTM. We notice that a

small batch size and a limited number of local epochs impair the prediction performance

of GCN-LSTM. This might be because a limited batch size results in less representative

anticipated soft labels that do not accurately reflect robust label distribution, making the

CR less effective.. In Figure 5.7 (b), We demonstrate that the performance of FedMobile-

trained GCN-LSTM is also reliant on the expert and apprentice model learning rates. In

general, we can train the apprentice model at a lower learning rate than the expert model.

Additionally, we note that when the apprentice model is built up with [LSTM:MLP] (fine-
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Figure 5.8: The impact of incremental updating (fine-tuning) layers and layer dimension of
GCN:LSTM:MLP to the performance of GCN-LSTM.

tuning) layers, it performs better than when simply the MLP layer and the BN:LSTM:MLP

layer are used, as shown in Figure 5.8. The GCN-LSTM with layer dimensions 32:64:64

for GCN:LSTM:MLP shows the best performance.

5.5 Summary

We develop FedMobile, an incremental semi-supervised Federated Learning framework,

and propose a spatio-temporal graph neural network, the GCN-LSTM, for modeling graph

representations of mobile sensing data in this study. FedMobile has proved its ability

to train neural network models with continuous streaming data collection. It incorpo-

rates Knowledge Distillation with Consistency Regularization, allowing FL models to be

updated online, alleviating compute and memory load, and allowing for the use of vast

amounts of unlabeled data to eliminate within-client inconsistency. GCN-LSTM is a spa-

tiotemporal graph neural network model that is aware of its spatial hierarchy. It is capable

of capturing the geographic hierarchy that exists between spatial settings and the desired

human actions. GCN-LSTM may also be used to represent the dynamics of topological

alterations in human actions for health inference. The experiment we did with 800 partic-

ipants’ mobile sensing data reveals that GCN-LSTM trained with FedMobile can identify
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the presence of influenza-like symptoms in a privacy-preserving manner without impairing

prediction capacity.

This approach has implications for privacy-preserving machine learning applications in

mobile health. To begin, FedMobile demonstrates a viable technique for deploying Fed-

erated Learning on-device in order to address the memory scarcity problem in mobile de-

vices. Additionally, the assessment findings indicate that FedMobile may be utilized for

privacy-preserving individual-level health monitoring and inference without jeopardizing

the predictive ability of neural network models. Additionally, the Centers for Disease Con-

trol and Prevention (CDC) now depends on collaborative efforts ranging from local clinics

to state agencies to report instances of influenza virus infection [77]. However, this case

report method is notorious for being unreliable and prone to underestimation. By imple-

menting our suggested mobile sensing technology in practice, we can overcome the limits

of standard public health reporting and symptom monitoring. Finally, if influenza-like

symptoms are recognized, treatments may be offered to alter an individual’s behavior (e.g.,

self-isolation). The actions may be scaled up to a community level to fight influenza virus

spread.

Additionally, this approach has multiple drawbacks. To begin, while the mobile sensing

data is obtained in the field, the experiments are run using simulations in an incremental

learning environment utilizing aggregated data from each client. Because a client’s data

is derived from several individuals, it may result in increased heterogeneity in the data.

However, in practice, every individual user may be viewed as a client, and so the data

from each client will have a greater degree of homogeneity, which may have been over-

looked in our present suggested technique. Second, we assume that clients update their

local models simultaneously in our research. However, in the actual world, each mobile

device has a unique processing capability, making synchronous federated learning impos-

sible. Thirdly, we excluded medical diagnosis of influenza from the sample of individuals

who self-reported experiencing similar symptoms. Due to the similarity of influenza symp-
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toms to those of other illnesses, particularly in the early stages of sickness, the clinical

importance of the prediction results may be diminished.

FedMobile will be available on smartphones in the future, and we will establish a digital

platform for decentralized human health monitoring. Additionally, to enable individual-

level health monitoring, it is important to design a strong Federated Learning algorithm

capable of operating on non-identical and dispersed (non-IID) data with a stationary global

update. Additionally, we want to expand the current sensor network to incorporate audio

data, physiological data (heart rate, for example), and text messages. Additionally, tailored

FL for lifelong learning is an area worth researching.
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Chapter 6

Semi-supervised Graph Instance

Transformer for Mental Health

Inference

6.1 Background and Motivation

Not the same as physical health that is easy to recognize, mental health acts as an essential

role in human systems. Anxiety and depression are widely spread around modern lives be-

cause of demanding financial stress and suffocative social pressure [136]. It’s necessary to

develop effective and efficient approaches to detect and recognize mental health symptoms

as early as possible and prevent people from negative consequence of being suffering from

mental illness. Personal sensing techniques provide tremendous opportunities for mental

health inference: people’s daily behaviors can be impacted by their mental health status,

and the daily activity trajectories can be profiled by mobile and wearable devices.

By leveraging mobile sensing techniques, we can apply and develop machine learn-

ing algorithms for early detection of the symptoms of anxiety disorder and depression.

Boukhechba et al. created predictive models for social anxiety recognition by using Global
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Positioning System (GPS) traces [137]. Digital behavioral markers extracted from mobile

sensing data, which are collected by using smartphones from college students, are used to

predict depression in some existing researches [138, 139]. Desipte the success of using

machine learning models to predict mental health symptoms, there are still challenges in

mobile sensing studies for mental health inference. First and foremost, collecting large

amounts of labeled data involving with substantial number of participants to train robust

machine learning models is challenging in mobile sensing studies. Secondly, self-reported

results from ecological momentary assessments (EMAs) that are used to generate ground

truth information requires heavy user burdens, resulting in sparsely annotated data. What’s

more, traditional machine learning algorithms that are used to fit mobile sensing data are

largely relying on handcrafted feature engineering, which makes the trained models with

low level of generalizability. Additionally, in multi-modal sensory environment, hand-

crafted features cannot serve as comprehensive representations of the raw sensing data.

In this section, we propose a semi-supervised Graph Instance Transformer (SS-GIT)

that is able to allievate the above mentioned limitation from previous mobile sensing stud-

ies for mental health inference. We transform the mental health inference problem as a

multiple instance learning problem, and utilize the unlabeled data to enhance the robustness

of GIT by using a semi-supervised method referred as Contrastive Self-supervised Learn-

ing (CSSL). In SS-GIT, raw mobile sensing data collected from multiple sensing resource

are represented by graphs and transformed to multi-channel graph instance sets. Each set

of graph instances consists of multiday human behavior trajectories, and is fed to GIT to

generate instance embeddings and finally fed into multiple instance learning pooling layer

to generate bag representations.

Our contributions are summarized as follows:

• We propose a permutation invariant graph neural network model for early detection

of mental illness symptoms under weak supervision.

• We integrate graph neural network (GNN), set transformer, and attention-based mul-
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Figure 6.1: The architecture of Graph Instance Transformer (GIT).

tiple instance learning (MIL) pooling into Graph Instance Transformer (GIT), such

that our model can process the bag of graph instances as input.

• By leveraging large amount of unlabeled bags of graph instances, we propose a

semi-supervised multiple graph instance learning framework using contrastive self-

supervised learning (CSSL), and integrate GIT with CSSL to form our final presenta-

tion of the proposed model, referred as Semi-supervised Graph Instance Transformer

(SS-GIT)

6.2 Method

In this section, we illustrate our proposed Graph Instance Transformer (GIT), and the semi-

supervised multiple graph instance learning framework. In generally, our proposed SS-GIT

processes the input of bags of graph instances without having the knowledge of instance-

level labels; the goal of our proposed method is to predict binary (positive/negative) bag-

level labels. In SS-GIT, we integrate contrastive self-supervised learning with GIT, making

we can train bag classifier semi-supervisedly.
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Problem Formulation

Retrospective surveys (e.g., EMA) collected from patients are usually used as ground truth

labels to provide supervision in the training process of machine learning models for early

detection of mental illness. The retrospective surveys describe the existence of mental

illness related symptoms for a past period of time (e.g., two weeks), and the mental health

results can be linked to the digital behavioral markers that generated from mobile sensing

data by using multi-modal sensors (e.g., accelerometer, gyroscope). We formalize mental

health inference task as a Multiple Instance Learning (MIL) problem, predicting labels

of unseen bags that contain multiple instances, assuming that positive bags contain at least

one positive instance and negative bags contain only negative instances [140]. In the setting

of mobile sensing data that have sparse labeled daily observations, this MIL formulation

can predict the bag labels, without knowing the labels of single instances in bags. Due

to the advantages of using graph representation learning for mobile sensing data [19], we

transform mobile sensing signals to graphs for each daily mobile sensing observation; we

form the bags of graph instances by aggregating multiday mobile sensing observations,

since each EMA describe mental health status for past 12 days.

Graph Instance Transformer

Here we briefly introduce GIT. In general, there are three components in GIT: graph con-

volution layer, set transformer encoder, and MIL pooling, as shown in Fig. Figure 6.1. GIT

can be summarized to conduct the following four steps when it is used to predict bag labels:

1) graph convolution layer produce graph embeddings based on the bag of graph instances

as input for GIT; 2) the set transformer encoder learns graph instance embeddings from the

bag of graph instances; 3) the permutation-invariant MIL pooling generate bag embeddings

given the graph instance embeddings; 4) the dense layer predicts the bag labels based on

the bag embeddings. The detailed design of GIT is demonstrated below.

Graph Convolution Layer, such as Graph Convolution Network (GCN) [93] and Graph
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Isomorphic Network (GIN)[96], can generate numerical representations of graph struc-

tured inputs by encoding the geometric and complex interconnections of local sub-graph

structures [6]. In this work, we use graph representations of mobile sensing data to capture

diverse and complex human behavior dynamics [19]. In GIT, GCN is implemented to pro-

duce instance level graph embeddings based the information that are shared around node

neighborhoods. Given a graph G(V,E,X), the adjacency matrix and degree matrix of G

can be denoted as A and D respectively. And X is a node feature matrix. Then layer-wise

propagation in a GCN can be expressed as

e = σ(D̃− 1
2 ÃD̃− 1

2XW). (6.1)

We set each node in G as self-connected, and define Ã = A + I, where I is the identity

matrix. D̃ = D + I, and W is the weight matrix which will be learned in the training

process. σ(•) is the activation function, such as ReLU(x) = max(0, x).

Set Transformer Encoder: In Multiple Instance Learning (MIL) problems, we train a

classifiers to recognize whether the input bags of instances as positive or negative, and the

the order of the graph instances in each set does not impact the bag-level classification. In

our situation, prediction results of mental illness recognition should not be influenced by the

chronological order of graph instances, as not matter which day the patients show mental

illness symptoms, the EMA can have the record that there exist some mental illness symp-

toms. Set Transformer is a permutation-invariant neural network model, and can capture

interactions among instances in the input bags [51]. The permutation invariance property

of set transformer enable us to generate the attention based instance embeddings from the

outputs of graph convolution layer. Without considering the order of the elements in the

bag input, Set Transformer encoders utilize attention mechanism [141] to assign higher

attention score for the sub-graph structures that have higher contribution to the classifica-

tion tasks. Multi-Head Self-Attention, by aggregating local representations, can enhance
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global representation power across graph instances. Specifically, the multi-head attention

embedding consists of the concatenated output of multiple self-attention results from each

GCN-graph embedding, and can be expressed as:

MultiHead(E) = [H1, H2, ..., HN ]W
O;

where Hi = SelfAttention(E)

= softmax(
(EWQ

i )(EWK
i )

T

√
dk

EWV
i ).

(6.2)

E = {e1, e2, ..., eN} is the set input of graph embeddings, and N is the size of the graph

instance bag. WQ
i ,WK

i ,W V
i are the learnable weight matrices for the ith attention head,

and dk is the dimension of the column space of WK
i . WO is another learnable linear

projection matrix.

MIL Pooling can map the graph instance embeddings to another numerical spaces that

contains bag embeddings. Based on the fundamental theorem of symmetric functions, any

MIL pooling should satisfy the requirement of permutation-invariant symmetric function

[50]. Popular MIL pooling includes max pooling, mean pooling, and attention based MIL

pooling, such as MIL attention pooling [140]. In this study, we use gated attention MIL

pooling, which applies gated attention mechanism to capture non-linearity and complex

relations among the instances. The gated attention MIL pooling is expressed below:

an =
exp{WT

atn(tanh(VzTn ))
⊙

sigm(UzTn )}∑N
j exp{WT

atn(tanh(VzTj ))
⊙

sigm(UzTj )}
, (6.3)

where Watn,U,V are learnable parameters,
⊙

is an elementwise multiplication and sigm(•)

is the sigmoid function.
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Figure 6.2: Framework of Semi-supervised Multiple Graph Instance Learning using Con-
trastive Self-supervised Learning.

Semi-supervised Multiple Graph Instance Learning

For the sparsity of annotated bags of graph instances, semi-supervised multiple graph in-

stance learning (semi-MGIL) is designed to calculate contrastive loss by using contrastive

self-supervised learning [142] and use the contrastive loss as regularization to alleviate

overfitting in graph-instance bag classification. As shown in Fig. Figure 6.2, our proposed

semi-MGIL firstly generates augmented graphs as contrastive counterparts to the original

bag of graph instances for both labeled and unlabeled data. As the contrastive pairs are

formed by the original and augmented graphs, we feed the contrastive pairs into GIT to

produce predicted bag labels and bag embeddings for the supervised part and the self-

supervised part respectively. We calculate Binary Cross Entropy (BCE) loss by comparing

predicted bag labels and ground truth labels, and calculate contrastive losses, infoNCEs, be-

tween the bag embeddings generated from original graphs and augmented graphs. Finally,

we use backpropagation to minimize the loss function (BCE+infoNCEs) and optimize the
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parameters in GIT. The detailed implementation of graph-based contrastive self-supervised

learning and graph augmentation (graph diffusion[143]) are illustrated below:

In contrastive self-supervised learning (CSSL), by using data augmentation techniques,

we generate similar (positive) counterpart for an original sample, and dissimilar (negative)

counterpart from the contrastive sample, which is assumed to be different from the original

one. Given the positive and negative pairs, CSSL targets to minimize the discrimination

between the embedding of positive pairs and maximize discrimination between the embed-

ding of negative pairs [142]. In our study, as we have input of bags of graph instances,

we pair the original and augmented graph instance as positive, and the original and other

augmented graph instances within the bag as negative, as shown in Fig. Figure 6.2, under

the assumption that people can have different behavioral patterns from day to day.

There are two steps in the overall process of SS-GIT, the first is supervised learning,

and the second is contrastive self-supervised learning. In supervised learning, we calculate

BCE loss to generate supervision to train GIT. In the contrastive self-supervised learning

part, we maximize the similarity between positive pairs of graph instance inputs, which are

usually measured by using mutual information I(hi,hj)[144], where hi and hj is a pair of

embeddings. In this study, rather than maximizing the mutual information directly I(•, •),

we maximize the lower bound of mutual information called infoNCE [144]. Thus, in our

semi-MGIL, given a bag of graph instances B with size N , we minimize the infoNCE loss

that can maximize the mutual information,

LinfoNCE = − 1

N

∑
g∈B

[log
exp(D(hi, h

′
i))∑

g′∈B\{gi} exp(D(hi, h
′
j))

], (6.4)

where (hi and h
′
i) is a positive pair of embeddings and (hi, h

′
j) is a negative pair of em-

beddings for graph instance gi. The final loss function for semi-MGIL can be expressed as

Lsemi = LBCE(y, ŷ) + LinfoNCE(Hl) + LinfoNCE(Hu) (6.5)
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, where Hl and Hu are labeled and unlabeled bags of graph instance representations re-

spectively.

Graph Augmentation: the goal of graph augmentation in semi-MGIL given the graph

strucutred data is to generate congruent views of the original graph input without supervi-

sion [145]. In general, there exist three different categories of graph augmentation tech-

niques: first is Edge Perturbation, which can perturb topological connectivity by adding or

deleting edges within graphs. The second type is Node Manipulation, including node inser-

tion and deletion, changes local sub-graph structures of the original graphs. The third type

of graph augmentation is Graph Diffusion, which can smooth out adjacency matrices over

graphs, making the information can pass through higher-order neighborhood [146]. Intu-

itively, similar as Gaussian filter that are used in image processing to make images blurred,

graph diffusion can make discrete adjacency matrices be continuously approximated to.

Graph diffusion has been demonstrated to provide state-of-the-art results in graph classi-

fication and other graph related tasks. Since graphs generated from mobile sensing data

can be sensitive to edge perturbation and node manipulation that can downgrade prediction

performance [147], in this study, we apply graph diffusion to generate augmented graphs

for semi-MGIL. The graph diffusion is formulated as below:

S =
∞∑
k=0

θkT
k, (6.6)

where T = AD−1. And θk = α(1−α)k, where α ∈ (0, 1) is a customized hyperparameter.

6.3 Data and Experiments

Data Description, Collection and Preprocessing

The data that is used for evaluation of the performance of the proposed method is gener-

ated from a research project about mobile sensing for earlier illness diagnosis including
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influenza, mental disorders (anxiety and depression) and brain concussion. In totall, about

2,700 participants from 24 states in the U.S. were recruited and asked to install a mobile

sensing app, ReadiSens. The time of the research project ranges from Feb 15th 2019 to Apr

30th 2020. In this study, our data include about 1,300 participants who submitted EMAs

related their mental health status and who had at least 14 days worth of mobile sensing

data records. The average age of the participants is 39.65(sd = 10.71). 66.12% of the

participants are female, with White being 63.7%, African American 18.9%, Asian 9.6%,

multiple races 3.8%, Hispanic 3.1%, and others 0.9%. Among the participants, 53% are

full time workers, 19% are full time students, 15% are working part time, 6% have retired,

4% are care takers, and 3% are temporarily unemployed.

When people use ReadiSens, their mobility behavior, socil interactions physical activi-

ties and app usage are recorded by the embedded sensors, including GPS sensor, Bluetooth

encounter, Wifi signal, app usage, accelerometer, gyroscope etc. GPS location data (e.g.,

latitude and longitude coordinates) are uploaded to AWS cloud every 30 mins; Bluetooth

Encounters data every 15 mins; activity data when activities change; Wifi signal data every

15 mins. Ecological momentary assessments (EMAs) were delivered every 12 days to col-

lect self-reported evaluation of participants’ mental health status for the past 12 days. The

mental health surveys used for the self-evaluation included GAD-2 for anxiety disorder

[148] and PHQ-2 for depression [149]. Data were periodically uploaded to Amazon Web

Services (AWS) Simple Storage Service (S3). Participants’ data security and privacy were

protected by data encryption and anonymization.

In the data preprocessing, as shown in Fig. Figure 6.3, people’s daily behavior sig-

natures are collected by the multimodal sensor. By using graph representation learning,

we transform the multi-channel mobile sensory dat into multi-channel graphs, where each

graph is regarded as on graph instance in the bag input. Since our EMAs summarize peo-

ple’s mental health status for past 12 days, we construct the bag of graph instance using
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Figure 6.3: Transform Multi-modal Mobile Sensing Data to Multi-Channel Graph Instance
Set.

every 12 days mobile sensing data. For the ground truth information, self-reported GAD-2

and PHQ-2 results are used to provide quantitative evaluation about participants’ mental

health status. We use score of 3 points as cut-off, which are widely used threshold in men-

tal health studies [150, 151, 152] for identifying possible positive cases in mental illness

diagnosis. The positive label (GAD-2/PHQ-2 score ≥ 3) indicates that participants have

mental disorders. Finally, we have 5,600 annotated bag of graph instance and 12,000 unan-

notated bag of graph instance for anxiety disorder. And we have 4,900 annotated bag of

graph instance and 10,700 unannotated bag of graph instance for depression. The class

distribution for the bag of graph instance is illustrated here: proportion of positive cases

for anxiety was 19% and proportion of positive cases for depression was 15%. Since we

have imbalanced data set, we conduct oversampling for the minor class to re-balance the

training data. For the training and validation process, we separated the whole data set into

70% training data and 20% validation data. 10% of the data set are used for testing the

models.

Baseline Model

We compare our proposed model to the following state-of-the-art baseline models:
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GCN: graph convolutional network [93] is the classical graph neural network model

and commonly serve as baseline model in graph classification problem [153].

GIN: graph isomorphic network [96] is the state-of-the-art GNN model which can al-

leviate graph isomorphism challenge in graph classification.

GRU: gated recurrent neural network [32] aims to solve the long-term dependency

problem given sequential input, and has been widely studied in mobile sensing application

to achieve competitive performance.

GCN-GRU: graph convolution-gated recurrent units is a temporal graph convolutional

neural network, and has been applied in intelligent transportation which can outperform

traditional deep learning models [154].

Deep Set: In the research area of permutation invariant neural network, Deep Set [50]

is a benchmark deep architecture which can deal with sets as inputs.

Set Transformer: Set Transformer [51] is a attention-based permutation-invariant Trans-

former neural network.

Evaluation Metrics

Since the problem that we are solve fundamentally is a supervised graph classification

problem in the bag-level. in this study, we use synthetic classification evaluation metrics

including F1-score, ROC-AUC, and PR-AUC to compare the performance among our pro-

posed method and the baseline models.

6.4 Results and Analysis

There are three different types of input format, aggregated, sequential, and instance set,

in the evaluation part of comparing the proposed models with the baselines, as shown in

TABLE Table 6.1. Here is the difference between these three different input type: the

aggregated input refer to the embeddings of graph instances that are concatenated in each
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Category Input Model
Anxiety Depression

F1-score ROC-AUC PR-AUC F1-score ROC-AUC PR-AUC

Baseline

Aggregated
GCN 0.714±0.036 0.808±0.045 0.721±0.043 0.729±0.036 0.796±0.047 0.765±0.031

GIN 0.706±0.032 0.792±0.047 0.755±0.039 0.715±0.041 0.783±0.038 0.743±0.042

Sequential
GRU 0.731±0.048 0.826±0.034 0.763±0.038 0.726±0.045 0.794±0.035 0.758±0.039

GCN-GRU 0.753±0.044 0.817±0.037 0.784±0.039 0.738±0.033 0.809±0.032 0.779±0.040

Instance Set
Deep Set 0.780±0.025 0.863±0.019 0.792±0.023 0.746±0.016 0.811±0.021 0.786±0.017

Set Tfmer 0.801±0.016 0.879±0.011 0.813±0.018 0.752±0.027 0.818±0.015 0.795±0.024

Proposed Instance Set SS-GIT 0.867±0.023 0.912±0.018 0.890±0.025 0.823±0.022 0.897±0.019 0.834±0.026

Table 6.1: Result comparison between baseline models and our proposed model GIT using
the Semi-supervised Deep Multiple Graph Instance Learning framework shown in Fig-
ure 6.2, referred as semi-supervised graph instance transformer (SS-GIT)

set input. The sequential input refer to the chronologically ordered sequence of graph

instances. The instance set input refer to the unordered set of graph instances.

As shown in TABLE Table 6.1, we present the results of quantitative evaluation. From

TABLE Table 6.1, we can observe the outperformance of the proposed SS-GIT over the

selected baseline models both the anxiety recognition and depression recognition tasks.

Specifically, our proposed model shows 8.8% higher F1-score, 6.7% higher ROC-AUC,

and 7.2% higher PR-AUC than the best baseline model, Set Transformer. The superior

performance demonstrated by SS-GIT can be attributed to the synthesises of graph neural

network, set transformer and gated attention MIL pooling. In SS-GIT, the graph convolu-

tion layer has the advantage of producing representative embeddings of graph structured

input that are transformed from raw mobile sensing data. However, in traditional Neural

Network methods (Convolutional Neural Network (CNN) and Recurrent Neural Network

(RNN)) and handcrafted feature engineering, the complex human dynamics cannot be com-

prehensively represented. Additionally, set transformer encoder plays can essential role of

capturing complex interactions between local sub-graph structures in neighboring graph

instances from the same bag of graphs. What’s more the gated attention MIL pooling can

assign higher attention weight to the graph instances which have higher contributions to

the prediction task than other graph instances, implying that this channel of human behav-
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ior is more indicative to the final mental illness detection. Another interesting observa-

tion is that the models with instance set input format present better performance than the

other selected baseline models that use aggregated and sequential graph input. We can ex-

plain this observation from this perspective: the problem of MIL formulation enables the

permutation-invariant models (e.g., Graph Instance Transformer) to generate most salient

representations of positive instances which is helpful for recognition of positive bags. In

mental health inference, given the EMAs that summarize patients’ mental health status for

a past 12 days, the order and the position of the days of having anxiety/depression symp-

toms should not impact the status of mental illness. Furthermore, no matter which day that

patients feel anxiety/depression, the corresponding EMAs should show positive in their

mental health illness diagnosis. For the aggregated graph instance input, which we do not

consider about the temporal relationship between daily mobile sensing observation, using

one single graph to describe 12 days human behaviors can make the positive mental illness

behavior be overridden. This can be one of the reasons that Graph Neural Network model

(e.g., GCN) by using aggregated show downgraded performance. For the sequential graph

input, despite the existence of temporal correlation between human behaviors of continu-

ous days, as we mentioned before, the order of the graph instance should not impact the

reported results, and chronologizing graph instances could introduce long-term dependence

issue which can make GRU less robust.

Interpretability Analysis

Since our optimal goal is to develop real machine learning systems that can detect mental

illness symptoms and then use mobile sensing apps to realize the machine learning model

that can be used in clinics, we provide interpretability analysis of the proposed SS-GIT to

enhance the trustworthy and transparency of this model. In this interpretability analysis,

we applied GNN based gradient-weighted CAM (GNN-Grad-CAM) [113] to visualize the
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Figure 6.4: Case Study: node importance plot with attention weight for a positive bag of
multi-channel graph instances.

node importance of nodes and global/local graph structures to illustrate how SS-GIT makes

decision. In addition, since we apply attention mechanism in SS-GIT by assigning higher

attention weight for the graph instances that can have higher contribution for mental illness

recognition, we compare the contributions of graph instances to the bag embeddings by

demonstrating the attention weights that are generated by MIL pooling layers. As shown in

Fig Figure 6.4, we present the interpretability analysis of a positive bag of graph instance

that are randomly selected from the data set. The multi-channel graph instances with red

circles are assigned with higher attention weights than other bag of graph instances, im-

plying that these bags of graph instances have higher contribution to SS-GIT and people

can have mental illness symtoms for these days. We can observe that the multi-channel

bag of graph instances that have higher attention-scores generally show less topological

complexity (e.g., less cardinality and node degree) than the multi-channel graph instances

that have lower attention-score. Complex bag of graph instances are indicative that people

show diverse human behavior state changes and further imply that the people are physically

and mentally well, vice versa. As our task is binary classification to detect the existence of

mental illness symptoms, and at least one day of positive symptomatic behavior can make
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Ablation
Anxiety Depression

F1-score (↑) F1-score (↑)

GIT-without MIL Pooling 0.801 (-) 0.776 (-)

GIT 0.819 (0.018) 0.784 (0.019)

GIT+CSSL 0.852 (0.033) 0.811 (0.027)

GIT+semi-CSSL 0.867 (0.015) 0.823 (0.012)

Table 6.2: Result of ablation analysis.

the whole bag as positive, the multi-channel graph instances with higher attention weight

can be potential positive instances that represent the human behaviors when people feel

less engagement, depression or social anxious.

Ablation Study

In this section, we present the results of ablation study that is to investigate the impact of

the components in SS-GIT. In this ablation study, we aim to evaluate the impact of multiple

instance learning (MIL) pooling, Contrastive Self-supervised Learning (CSSL) and Semi-

CSSL. As shown in TABLE Table 6.2, we present the results of ablation study. By com-

paring the performance of the proposed SS-GIT and the ablated models, we can observe

that the module of CSSL can improve the prediction power by using contrastive learning

to automatically generate self-supervision as regularization, as the GIT with CSSL shows

the highest F1-score increase. What’s more, the contribution of semi-supervised learning

on the unlabeled data is less important than the contribution of MIL pooling. We would

like to argue that the MIL pooling can contribute to generate more robust bag embeddings.

Furthermore, semi-supervised learning for the unlabeled data demonstrate a relative small

contribution to the prediction performance of the model. We can explain that this is be-

cause using CSSL for the labeled data can generate sufficient regularization in the training

process of SS-GIT.
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6.5 Summary

In this work, we propose a semi-supervised Graph Instance Transformer (SS-GIT) model

for early mental illness recognition by using passively collected mobile sensing data. In-

stead of feeding all mobile sensing observations into a neural network model to predict

mental illness, we transform the prediction task as a multiple instance learning (MIL) prob-

lem. Based on the MIL problem formulation, we generate bags of graph instances as input

to the proposed model, which the chronological order of the original mobile sensing obser-

vations cannot impact the prediction results. Our proposed method can process the input

that are sets of instance, implying that we don’t have to label every element in the set in-

put. In addition, given the challenges of label sparsity, GIT is integrated with contrastive

self-supervised learning, such that the large amount of unlabeled data can be utilized to

generate contrastive regularization to improve the robustness of the proposed model. As

demonstrated in the results, our proposed method can outperform over the selected base-

line models in mobile sensing tasks about mental illness recognition. As our proposed

model is also generalizable for other different mobile sensing collection, implying that we

can propagate our model for other machine learning tasks in mobile sensing, such as early

identification of other chronic mental illness. In real world situation, there can be low en-

gagement with mobile sensing apps, making sparsity in ground truth collection, as most

of mental illness early-stage diagnosis are replying on self-reported retrospective surveys.

The proposed method enable us to train fairly competitive models semi-supervisedly under

weak supervision.

Although our proposed method shows superior performance, our approach is also sub-

ject to the following limitations. First of all, ground truth labels can be biased, weakening

the faithfulness of the mental health study and potentially downgrading the reliability of

the predictive modeling. Different people can have different standards about their daily

mental health status, thus self-reported measure usually cannot be consistent and standard-
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ized as the annotations in other research field, such as image recognition. The self-reported

retrospective surveys can introduce recall biases and avoidance coping (e.g. behaviors that

avoid addressing psychiatric problems), which can degrade the data quality. Secondly, het-

erogeneity in human behaviors can negative impact the generalizability of our proposed

model. Additionally, behavior nonstationarity and habit evolution over time also limit the

capacity of our model.

In the future, it’s worthy to investigate the personalized machine learning by lever-

aging transfer learning. We also plan to expand our research to the study of behavioral

symptomatology for psychiatric disorder, and explore graph theory to enhance the graph

representation of nonstationary and evolving human behaviors. Furthermore, we will work

with psychiatrists and clinicians to improve the quality of survey responses and design new

algorithm of recalibration to counter the inconsistency and biases in ground truth collec-

tion.
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Chapter 7

Discussion

7.1 Broader Impact

First and foremost, we propose a general predictive model of salivary cortisol levels by

using mobile sensors. We use Graph Representation Learning (GRL) methods to auto-

matically generate human state embeddings to make cortisol level predictions. To our

best knowledge, this is the first work that applies GRL and mobile sensing to predict the

biomarker. Secondly, we propose an end-to-end multi-channel graph neural network frame-

work to model human behaviors by leveraging multi-modal mobile sensing data. The goal

is to automatically extract high-level features representing the dynamic interactions be-

tween human states. To our best knowledge, this is the first work that applies graph neural

networks to infer human health states using mobile sensing data. What’s more, we propose

a semi-supervised permutation invariant neural network model, referred to as the Semi-

supervised Graph Instance Transformer (SS-GIT), for early stage mental illness diagnosis

under weak supervision. Last but not least, we propose an incremental semi-supervised

federated learning (IFL) framework, FedMobile, to train neural network models decentral-

izedly and semi-supervisedly by integrating Knowledge Distillation and consistency reg-

ularization. Our incremental framework enables us to update existing models only using
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newly available data in an online fashion. We apply graph representations to encode com-

plex human behaviors by transforming multi-modal raw sensor data to graphs and propose

a spatio-temporal graph neural network, referred to as the Hierarchical GCN-LSMT, to fit

the multi-channel dynamic graph inputs with spatial-hierarchy in mobile sensing.

By using mobile sensing techniques, the end-to-end multi-channel GNN framework

can be easily generalized and applied to predict other health-related outcomes, such as

mental disorders. GIT is a general-permutation invariant graph neural network that can

solve the problem of graph multiple instance learning. For example, given bags of graph

representations of social media information (e.g., tweets), we can use GIT to predict the

risk of suicide. And in security applications, given a bag of graph representations of human

skeletons in a crowd of people, we can use GIT for crowd abnormal behavior detection.

FedMobile serves as a general federated learning algorithm, contributing to the field of

privacy-preserving machine learning. FedMobile has the potential to be extended to other

application scenarios, such as distributed learning of image recognition. Overall, our pro-

posed deep graph learning methods show a state-of-the-art method to model human behav-

iors from a topological perspective. Our proposed models also have numerous practical

implications, as illustrated in the following.

Clinical Implication: Currently, the primary methods for measuring cortisol are through

serum and saliva samples, which are inconvenient to collect and costly to analyze. The

inconvenience of having biospecimens collected is pronounced in adults with pancreatic

cancer given the impact of their disease on their health, daily functioning, and overall

quality of life. Biospecimen collection is also impractical as a means of monitoring cortisol

in real-time given the time needed to complete assays. Tracking cortisol levels through our

proposed predictive modeling has the ability to advance our understanding of the trajectory

of tumor growth and the potential role it plays in response to anticancer treatment.

Our proposed incremental federated learning (IFL) can alleviate the financial burdens

from continuously purchasing and restoring resources to stock newly collected data since
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IFL can update, transfer, and adapt new knowledge by updating the apprentice model with-

out retraining all historical data. And our proposed semi-supervised learning framework

in IFL and GIT can be an economical training strategy in mobile sensing studies since we

don’t have to pay extra money to attract participants to actively annotate observations.

Implications for Public Health: At present, the Centers for Disease Control and Preven-

tion (CDC) relies on collaborative efforts from local clinics and state agencies to report in-

fluenza virus infection cases [77]. However, this case report system can be unpunctual and

prone to underestimate. The limitations of the traditional public health reporting systems

and syndrome surveillance can be overcome by deploying our proposed mobile sensing so-

lution for early-stage influenza-like symptom recognition in practice. Our proposed mobile

sensing solution can be used to develop intelligent influenza surveillance systems to con-

tinuously monitor influenza activity, automatically detect early ILI among the population,

and accurately predict influenza outbreaks. Furthermore, interventions can be delivered

to mobile users to change individuals’ behaviors, such as self-isolation, if influenza-like

symptoms are detected. The interventions can be scaled up to a population level to combat

the transmission of the influenza virus.

7.2 Limitation

First and foremost, in this DGL framework, we transfer mobile sensing data into undirec-

tional and unweighted graphs. However, edges in each graph can also have rich behavioral

information. For example, in the GPS trajectory graph, the edges can be assigned features

such as distance between two places. This edge information cannot be handled with the

consolidated GNN models. Secondly, using the DGL framework requires the setup of a

large number of hyperparameters and is involved with many parameters to build a model.

However, when modeling human behaviors, there is usually a small number of samples.

The DGL learned model cannot be reliable with small training samples, making this frame-
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work impractical to realize. What’s more, missing value and missing sensor problems are

hard to alleviate in the DGL framework. In handcrafted feature engineering, the missing

value can be imputed by using other features. However, in the DGL framework, missing

values are ignored, resulting in an inaccurate representation of human behaviors. And the

missing sensor problem, which is also a challenging problem in handcrafted feature engi-

neering, can lead to missing graph input in the GNN models. Last but not least, this DGL

framework assumes that each type of behavior has the same impact on the health-related

problem. However, different health issues can cause different levels of change in human

behavior. For example, depression can cause diminished social interactions but may not

lead to a large decrease in mobility because people may still go to grocery stores or work-

places to fulfill their daily responsibilities. Some topologically similar graphs can not be

differentiated by using GNN. [155]. Even though some graphs have different structures

with different nodes and edge connections, these graphs can be isomorphic. When we ap-

ply GRL to human behavior representation, the prediction result of GNN will be the same

even though people have different travel trajectories but visit the same places. GNNs are

sensitive to noise in graph signals.[156]. Small changes in node features can make the pre-

diction different. To overcome this challenge, GNN needs a large number of samples to

train a more generalized model. In mobile sensing, data is hard and expensive to collect.

It’s changeling to train GNN with a small number of samples with standard data augmenta-

tion methods. The interpretability analysis of GNNs in mobile health can be biased. Even

though GNN-CAM are widely used to provide interpretation of input graph structure in

GNNs, GNN-CAM can only provide post-hoc node importance plot. In mobile sensing

study, users can have various behaviors even if they report that they have the same health

states. Thus, when we analyze the interpretability of graph inputs of mobile sensing data,

generalised knowledge of connecting human behaviors with relevant health outcomes can

be less persuasive.
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7.3 Future Works

In incorporating edge features in DGL, we can apply EGNN [157] which aggregates node

feature and edge feature together to feed into Graph convolutions operation. Standard data

augmentation method [158, 159] for image and text data are not applicable in GNN. Since

the input of GNN is generated from non-euclidean spaces [9]. Few methods have been pro-

posed for data augmentation in graph data [160]; however, all of the methods have not been

consolidated. There are several works in the general IoT field that discuss missing sensor

data imputation for the missing sensor problem.Liu et al. proposed a graph-based sen-

sor imputation method by using a message passing mechanism in a graph neural network

to construct a spatial sensor topological graph. [161]. The correlation between physically

connected sensors is exploited to reconstruct the features from missing sensors. In our case,

we have not only the missing node attribute but also the missing graphs. It is a challenging

task to predict a graph-structured output given related graph inputs. To leverage potentially

different contributions from different human behaviors to predict health outcomes, we can

apply attention mechanisms [162] to let our model focus on the important behaviors. At-

tention methods are applied originally in Natural language processing by assigning heavier

weight to the significant words to predict performance better. Thus we can adapt this at-

tention method in our graph-based human behavior modeling by assigning more weights

to the latent representations from more significant behaviors.

One of the critical requirements for the deployment of neural network models in mHealth

is reliability, which aims to guarantee their functionality in real-world situations. Unsuc-

cessful mobile communication, which can be caused by sensor malfunction, Internet inter-

ruption, and data corruption, can negatively impact the effectiveness of mHealth applica-

tions with inaccurate or incorrect decision-making [163]. Sensor and network failures, for

example, could cause healthcare professionals to miss the best time to treat patients, which

could cause them to have severe physical or mental injuries. Thus, in spite of the superior
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performance that has been achieved by using GNNs, how failures can be prevented and de-

tected and how the adverse exceptions can be addressed is what people are concerned about

in mHealth implementation. Additionally, in real-world deployment of machine learning

for health, there is a trade-off between using handcrafted features and deep features gener-

ated from GNNs. Handcrafted features have its advantage in easy interpretation but cannot

provide granular interpretation. GNNs have advantage in providing detailed interpretation,

but GNNs are still limited in providing generalisedable knowledge for clinical application.

Developing reliable neural network models is a promising research direction to realize

large-scale mHealth deployments. Liu et al. [161] propose a novel algorithm trying to

alleviate the sensor failure issue: by leveraging the message passing mechanism in GNNs,

the proposed algorithm can use the information passed from available sensors to recon-

struct the features of missing sensors. However, since mobile sensing systems always have

a large number of sensors, transmitting all sensor readings to the cloud for centralized

data processing, prediction, and control results in significant delays due to communication

network congestion and computational overload. [164]. Therefore, efficient and effective

edge computing can be investigated to process the data at the individual sensor level or

local sensor network areas. How to implement GNNs on edge computing systems is an

exciting area of study to enhance the reliability of GNNs in healthcare applications. Last

but not least, we will continue to work on to develop clinical-level interpretable GNNs for

mobile health, such that we can better interpret human behaviors and link them with related

health outcomes.

Mobile sensing systems are laying the groundwork to link every object in our daily

life together, transforming the world. Things will be able to connect and interact with one

another and with their surrounding environment, aiming to improve people’s quality of

life. In the process of sensing the environment through the connected sensors, information

can be communicated with other mobile devices. Current strategies to store the sensory

data include uploading the data to a central server (cloud serving) for future use. Despite

106



the benefits of cloud-based data storage, centralized mobile sensing systems may face sig-

nificant challenges. For instance, unencrypted server data is vulnerable to hacking and

may result in the disclosure of critical information. For instance, during the data collec-

tion in mobile sensing systems, GPS trajectories may expose the location of mobile users,

which can be used to infer additional sensitive personal information such as race, gender,

physical activity, social relationships, and health conditions [116]. There are several pri-

vacy preservation techniques that can be utilized to enhance privacy protection in mobile

sensing systems, such as anonymization, federated learning, and differential privacy. For

example, the k-anonymity method and variations have been developed to anonymize the

identity of data items’ sources [118]. And differential privacy can minimize the disclosure

of sensitive information by introducing perturbations that follow a specified noise distri-

bution while preserving the value of the data [119]. Federated learning (FL) is another

prospective technique for privacy preservation where sensor nodes can collaboratively con-

tribute knowledge to the global learning objective without transmitting data samples to a

central server or exchanging data across sensor nodes. However, there are disadvantages to

anonymization techniques and differential privacy: Anonymization exposes sensitive char-

acteristics to inference attacks, while differential privacy reduces the usefulness of data and

diminishes the strength of learnt models [120]. Federated GNNs, which retain the predic-

tive potential of GNNs while also protecting sensitive data, is an additional research path

worth investigating.

The interconnected things in sensing rich environment introduce multiple security chal-

lenges, as the vast majority of Internet technologies and communication protocols were not

created in mind [165]. With the advancement of sensor technology and widespread use

of mHealth, consumers are concerned about their personal information being exposed to

hidden cyber threats and technological crime, as well as other security problems that might

constrain wider applications. Massive amounts of data are collected and managed by mo-

bile sensing systems to support the services in healthcare. Attackers and adversaries, such
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as cybercriminals, hackers, and hacktivists, want to profit from this priceless information.

When smart devices are hacked, credit card numbers, bank account PINs, and other per-

sonally identifiable information may be exposed to the public, resulting in financial loss

for users of mHealth services. Sensor nodes and other sensing components that are con-

nected through the Internet are also vulnerable to intelligent malware, which is designed

to spread from device to device and intrude and interfere in users’ everyday lives. What’s

more, hacktivists or illegitimate political agitators can exploit and manipulate connected

smart devices to spark protests against sovereign governments [165]. There are already

established security protection mechanisms in use, such as encryption, authentication, and

access control. However these pred-defined mechanisms are incapable of adapting to new

types of attacks and intelligent adversaries adequately safeguard IoT networks [164]. Ma-

chine learning models (e.g., neural networks) have been extensively investigated to learn

normal and abnormal patterns in the interactions of smart devices. From a data-driven ap-

proach, the information relating to the robust operations of mobile sensing systems can

be collected and utilized to profile normal interaction behaviors of sensor nodes; hence,

malicious activities can be detected if the collected data shows an anomalous distribution.

Existing methods based on traditional machine learning and neural network models, how-

ever, are incapable of capturing topological information and multi-hop interactions between

sensor nodes.There is an emerging trend of applying GNNs to adversarial intrusion detec-

tion: for example, Lo et al. [166] propose GNN-based network intrusion detection system,

which can capture both the edge features of a IoT network and the topological features.

Originating game theory, adversarial learning and GNNs have potential to be integrated in

the future to learn malicious activities with economic consideration.

Massive data production rates in the era of Big Data and the Internet of Things (IoT)

continuously increase the demand for massive data processing, storage, and transmission

[167]. However, smart devices are resource-constrained devices, with limited memory,

computation and energy [168]. mobile sensing systems that are limited in terms of energy
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and power must not only provide high performance capabilities, but also serve as a plat-

form for automation and intelligence. From handwritten digit recognition to autonomous

driving, deep learning techniques (e.g., CNNs, RNNs) demonstrate groundbreaking suc-

cess in achieving human-level recognition capability [169]. This superior performance has

resulted in a huge increase in the use of DNN models in various applications. However,

the massive computational, energy, and storage requirements of DNN models make their

implementation on resource-constrained smart devices prohibitively expensive [170]. Cur-

rent solutions to alleviate the issues of high demanding computational and energy resource

to implement DNNs in smart devices include: 1) cloud computing; 2) developing edge

computing GPUs. However, cloud computing suffers from high wireless energy overhead

and has unattainable performance in weak network connectivity. GPUs in mobile devices

may deplete significant amounts of mobile battery capacity [171]. Different from the in-

frastructure improvement solution, DNN compression techniques have been proposed for

efficient storage and computation consumption with minimal accuracy compromise [172].

For example, knowledge distillation enables one to train a student model by learning from

a teacher model, and the student model acts as a compressed version of the teacher model

with similar prediction power [173]. The research of using knowledge distillation on graph

neural networks have been investigated in these studies [174, 175, 176], while not exten-

sively studied in the filed of smart health. In the future, there are opportunities to research

how to efficiently integrate GNNs in smart devices by using knowledge distillation tech-

niques.
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Chapter 8

Conclusion

The use of mobile sensing systems has exploded in popularity over the past decade, owing

to their ability to monitor human behaviors passively and unobtrusively across a plethora

of domains of people-centered applications. In the sensor-rich environment, conventional

deep learning techniques have demonstrated their capacity to process complex multi-modal

sensory data and perform sophisticated detection and recognition tasks. By considering hu-

man behavior dynamics and sensor topology, deep graph learning methods can capture the

complex relationships and interdependency within human behavior dynamics and demon-

strate state-of-the-art results in multiple mHealth tasks. In this thesis, we present a set of

designs for graph-based learning systems to address the limitations of conventional neural

network models in the mobile sensing field. By using the mobile sensing data collected in

the wild, we demonstrate that graph-based learning systems can uniformly outperform the

selected baseline models, including traditional machine learning models and general neural

network models, in different mHealth problems. We also provide a discussion about future

research directions and real-world implementation of the proposed learning systems.
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