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Probing Fundamental Physics and Astrophysics With Tides
and Deformations of Compact Stars

(Vincent) Shu Yan Lau

(ABSTRACT)

Compact stars are the stellar evolution remnants no longer supported by thermal and

radiation pressure. Since these objects have high densities and strong surface grav-

ity, they provide a unique environment to study fundamental physics like nuclear

interactions and gravity theory. Moreover, binary compact objects serve as strong

gravitational wave sources, complementing the electromagnetic observations and of-

fering new methods to probe new physics within the compact star environment. This

thesis delves into several aspects of astrophysics, gravitation, and nuclear physics re-

lated to compact stars including white dwarfs and neutron stars. In astrophysics, we

consider the prospects of measuring the tidal properties of white dwarfs using the

precession of periastron of eccentric binaries. This provides an alternative method to

measure tides within white dwarf binaries using gravitational waves. Additionally,

we examine the stability of individual compact stars by relaxing the conventional

assumption of isotropic stress, accounting for realistic astrophysical conditions that

cause anisotropy. There, we find a new type of instability which is caused by the

spontaneous growth of the non-radial oscillation modes as the star emits gravita-

tional waves. In gravitation, we explore the potential of utilizing gravitational wave

signals from galactic compact binaries to constrain the theory of gravity with future

space-based detectors. We demonstrate that proper modeling of the astrophysical

factors governing the orbital motion, like the tidal deformations or the influence of
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magnetic field, is essential for placing meaningful constraints on alternative gravity

theories with gravitational waves. Lastly, we also explore probing the deconfinement

of quarks in the neutron star core by measuring the resonance effect of tides in a bi-

nary neutron star from the gravitational wave signals. We find that even the current

generation of detectors can measure the effect of the quark stellar core given that

the quarks are in a crystallized state with extreme rigidity. These studies demon-

strate the utilization of gravitational wave observations from compact stars to push

the boundaries of fundamental physics and astrophysics.
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Chapter 1

Introduction

In this thesis, we discuss several research topics related to compact stars. The purpose

of this chapter is to (1) provide a qualitative overview of the physics involved, (2)

summarize the research topics, (3) and review the literature and development in

related fields. Some basic formalisms and theories related to the subsequent chapters

will be explained in Chapter 2.

Unless otherwise specified, we use the (−,+,+,+) metric sign convention and the

geometrized unit systems with G = c = 1 throughout the thesis. The abbreviations

and values of the constants are explained in Appendix A.

1.1 Compact stars

Compact stars are stellar objects with extremely high densities compared to normal

luminous stars. This family includes the better-known “white dwarfs (WDs)” and

“neutron stars (NSs)” as well as some exotic stars like the “strange stars”. They are

the remnant of stellar evolution and have many interesting properties that attract

attention in not only astronomy but also various fields in fundamental physics like

nuclear physics and gravitation.

Due to the extreme densities, the Fermi temperature of these compact stars is usually
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several orders of magnitude higher than its temperature. As a result, they are mainly

supported by degeneracy pressure against their own gravity. For WDs, the major

support comes from the degeneracy pressure of electrons. For denser compact stars

beyond the nuclear saturation density, the supporting force comes from the degener-

acy pressure of hadrons or even deconfined quarks. Since these stars are extremely

compact, as characterized by their strong surface gravity field, they are also good

gravitational wave (GW) sources. Starting from the first direct detection of the GW

signal from the binary black hole (BH) coalescence event GW150914 [1] and the first

binary NS coalescence event GW170817 [2], GWs have been a promising tool for prob-

ing the properties of compact objects. To be specific, the tidal interactions between

two compact stars can be measured from the phase of the GW signal. This pro-

vides a unique way to study physics in such a high-density environment with strong

gravitational field. The future space-based detectors will also measure GWs from

WD binaries within our galaxy, which lie below the frequency band of the current

ground-based detectors.

1.1.1 White dwarfs

The WDs are the less compact, more commonly found member of the compact star

family. They originate from the core of main-sequence stars with mass ∼ M⊙, after

they have exhausted the fuel for nucleosynthesis, and ejected the outer layers. They

are mainly supported by electron degeneracy pressure.

A typical WD has a mass ≲ 1 M⊙, and a radius of ∼ 104 km. This corresponds to

a small compactness of 10−4, defined by M/R, where M is the gravitational mass

and R is the radius. As a result, the structure and the dynamics of WDs can be
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approximated well with Newtonian gravity. Nevertheless, close double WD (DWD)

binaries are strong GW emitters with relatively low frequencies <1 Hz. We will

demonstrate the potential of studying astrophysics and gravity theory using the GW

signals from these systems in Chapter 3 and 6.

1.1.2 Neutron stars

NSs are the remnant of a supernova explosion, which can come from a massive lu-

minous star or the collapse of a WD after accreting enough mass to pass the Chan-

drasekhar limit (≈ 1.4 M⊙). Due to the uncertainties of the equation of state (EOS)

in the high-density, low-temperature region of the quantum chromodynamics (QCD)

phase space, the exact composition and the matter properties of a large portion of

the NS interior remain uncertain. Terrestrial experiments also cannot reach such high

densities at relevant temperatures. Therefore, astronomical observations of these ob-

jects provide valuable information to constrain nuclear physics within this phase space

region.

A typical NS has a mass of about 1.4 M⊙, and a radius of ∼ 10 km, making it

extremely compact (M/R ∼ 0.1). Binary NSs are strong emitters of GWs in the

100-1000 Hz frequency range that can be captured with the current generation of

GW detectors.

A particular class of NS models predict the existence of deconfined quark matter

(QM) to exist in the inner core of a NS. Those are referred to as hybrid stars (HSs).

In Chapter 7, we discuss how GW signals from binary NS inspirals allow us to probe

the existence of a particular model of QM.
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1.2 Gravitational waves

1.2.1 Gravitational waves from compact binaries

GWs are the radiative gravitational fields generated from the time-varying mass dis-

tributions, analogous to the radiative part of an electromagnetic field. However, they

enter in the quadrupolar order instead of the dipolar order within general relativity

(GR)1. As the GW passes through matter, it produces strain that can be measured as

a time variation of distances. However, they couple weakly with matter and therefore

it requires sensitive detectors to measure even the strongest GW sources in nature.

The compact binary coalescence is the major source of GWs for the current interferometry-

based detectors. It consists of the inspiral phase, the merger phase, and the post-

merger phase. During inspiral, the binary loses orbital energy and the separation

decreases. This gives a GW signal with increasing amplitude and frequency. At

merger, the two objects come into contact and merge to form a highly asymmetric

dynamical object in a short period. Afterward, the remnant gradually settles through

emitting the excess energy in the postmerger phase. In the case of binary NS coales-

cence, it can be a BH right after merger, or a metastable NS, either the supramassive

NS or hypermassive NS that exists for a short time, or a stable NS. For binary WDs,

the merger happens at a much larger separation. The frequency corresponding to

the final stage of inspiral therefore lies below the detection range of the ground-based

detectors. As described in the next section, the planned space-based detectors will be

able to capture the signals from compact binaries in the earlier stage of the inspiral

where the frequency and frequency evolution rate are both much lower.

1Even for certain alternative gravity theories that predict the existence of dipolar or even monopo-
lar GWs, their contributions have to be small to satisfy the experimental constraints.



5

1.2.2 Gravitational wave detectors

The ground-based interferometers are designed to measure GW signals of 10-1000 Hz,

covering those from binary NS merger events. That includes both the current detec-

tors like the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO),

Virgo interferometer, Kamioka Gravitational Wave Detector (KAGRA), and GEO600

[3, 4]. There are also planned detectors with enhanced sensitivity within this fre-

quency range, including the Cosmic Explorer (CE) and the Einstein Telescope (ET).

Due to the seismic noise, these ground-based detectors are unable to probe the ≲10 Hz

region of the GW spectrum.

To overcome this, there are also planned space-based detectors that are sensitive to

lower frequency range down to 10−4 Hz, including the Laser Interferometer Space

Antenna (LISA) [5], and Deci-hertz Interferometer Gravitational-Wave Observatory

(DECIGO) [3, 6, 7]. They are expected to capture signals from DWD systems within

the Milky Way. At frequencies below ∼ 10−4 Hz, it is expected that each frequency bin

in the spectrum is populated with almost monochromatic GW signals from multiple

galactic binaries and therefore cannot be individually resolved. These unresolved

binaries are the main contributors to the noise in the low-frequency region.

The sensitivities of the above-mentioned detectors are shown in Fig. 1.1. The colored

curves represent the characteristic strain originating from the noise expected in each

detector. Colored bars are used to roughly indicate the strain level of the GW signals

expected for each source.
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Figure 1.1: The sensitivity curves of various existing/ planned GW detectors and the
characteristic strain of the GW signals from the corresponding sources. The figure is
generated from the GW Plotter [8].

1.3 Tidal interactions

Unlike binary BHs, the orbits of binary compact stars are affected by finite size effects

including tidally-induced deformations. The deviation of the stars from a perfect

sphere affects the orbital evolution during inspiral and hence leaves an imprint in the

phase of the GW signals [9–11]. The tidal interaction is specifically of interest as it

carries the information of the stellar interior.

In the earlier stage of an inspiral, the tidal response is dominated by the equilibrium

tide, where the two stars in the binary are effectively treated as fixed in space when we

calculate the amount of tidal deformation [12]. To the leading order, this produces an

extra attractive interaction within the binary that goes as 1/D7, whereD is the orbital

separation. Compared to the inverse square law of Newtonian gravity, it is 5 orders

higher in power of 1/D, making it a 5th post-Newtonian (5PN) effect. Due to the

steep dependence on the orbital separation (and hence the GW frequency), such an
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Figure 1.2: Example waveform spectrum of a binary NS and a binary BH in the
frequency domain. Figure from [13], based on data from [14] for a source at 100 Mpc.
The green region roughly indicates the frequency range in which the point-particle
approximation works well for the waveform signal. In the yellow region, substantial
deviations can be seen between the binary NS and the binary BH cases due to the
tidal effect. The orange region highlights the very different post-merger signal from
binary NSs compared to the binary BH case. The characteristic strains of LIGO and
ET are also shown to indicate the required sensitivity to resolve the tidal effects and
post-merger effects in binary NS systems.

effect becomes significant only when the stars are very close to each other. Figure 1.2

provides an example frequency-domain waveform of a binary NS and a binary BH

in which the effect of tides appears just before the merger. The tidal effect can be

captured with the current generation of detectors, while future detectors can also

capture the post-merger part, providing additional constraints on the NS properties.

Tidal interaction is in general dynamical as the deformed star has its own restoring

force that sets the natural frequencies. The equilibrium tide corresponds to the limit

where the forcing frequency, i.e., the frequency of the tidal force from the companion

star, is much less than the natural frequency. As the orbital frequency increases,

the dynamical tide becomes more significant. The leading dynamical tide effect gives
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an extra 1/D10 correction to the binary interaction (i.e., an 8PN effect) and further

accelerates the phase evolution of the GW signal emitted. Meanwhile, resonance

occurs as the orbital frequency reaches the natural frequencies. In this case, the

orbital energy is transferred into the internal oscillations of the star(s), resulting in

a sudden phase shift in the orbital motion, and also the GW signal. This shift is the

effect of the tidal reaction force and tidal torque during the resonance time window,

which is short compared to the whole inspiral timescale. Being able to measure the

dynamical tide would provide much richer information about the stellar interior.

The left panel of Fig. 1.3 shows a schematic time-domain GW strain signal of the

equilibrium tide and non-resonant dynamical tide effect on the phase. The red curve

corresponds to the case with the acceleration of inspiral due to tides and it leads

in phase compared to the case without it. The right panel illustrates the effect of

resonance of dynamical tidal interactions, where a mode is excited as the tidal forcing

frequency sweeps through its natural frequency, producing a sudden phase shift in

the signal. The waveform in red is obtained by trimming a portion of the waveform

in black starting from t = tres and joining it with a later portion of the inspiral signal,

which corresponds to a phase shift of the signal. In Chapter 7, we discuss how these

resonance effects allow us to probe the interior structure of a NS.

1.4 Stellar pulsation modes

The standing waves permitted in a star form a spectrum of stellar pulsation modes.

These modes correspond to the natural frequencies of the star which characterize the

stellar internal composition and density profile. These modes can be excited under

a dynamical tidal field as mentioned in 1.3, leaving an imprint in the GW phase.
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Figure 1.3: A schematic time-domain waveform of an inspiralling compact binary
system. In the left panel, the red curve corresponds to the system affected by the
5PN effect from equilibrium tides and shows a lead in phase while the system of the
black curve does not. In the right panel, the red curve corresponds to the system
with a mode resonance at t = tres. At this point, the signal skips a certain amount in
phase (and time) and is joined with a later part of the original signal.

Some of these modes may produce observable electromagnetic (EM) signals through,

e.g. causing the fracture or melting of the solid layers of the star [15, 16]. With the

advancement in multimessenger astronomy over the years, the detection of some of

the pulsation modes is expected in the future [17–22].

Within Newtonian theory, the adiabatic pulsation modes are normal modes described

by real frequencies. For even parity (polar) modes, the well-known ones include the

fundamental (f -)modes, the pressure (p-)modes, and the gravity (g-)modes. In the

original classification by Cowling [24], the naming of these modes is based on the local

propagation behavior of the waves that form the modes. For example, via a local

analysis, the g-modes can be conceived as the standing waves formed by propagating

internal gravity waves with buoyancy as the main restoring force, while the p-modes

are those formed from acoustic waves supported by pressure variations [25–27]. In

typical stellar models, the g-modes and p-modes have propagation zones within the
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Figure 1.4: A schematic depiction of the propagating waves within the star that form
the g-modes (left panel) and p-modes (right panel). The lines with arrows represent
the direction of propagation of an internal wave with certain frequencies. Notice that
depending on the frequency of the waves, some regions do not permit r-direction
propagations (evanescent, or exponential zones). The illustration is produced follow-
ing the idea of Fig. 1 in [23].

stellar interior where the wave vectors have radial components (see Fig. 1.4). The

regions for the propagation zones vary depending on the thermal states of the stellar

models. The f -modes are mainly formed from gravity waves propagating along the

stellar surface in the transverse directions, with little or no components along the

radial direction. This particular class of modes is important in tidal interactions as

they have the largest overlap with the external tidal field.

In Chapter 7, we also consider a special interfacial (i-)mode [28] that exists only in

stars with an interior interface, where quantities like the density or shear modulus are

discontinuous (e.g., a first-order phase transition). These modes can be depicted as

the standing waves formed from the interface waves propagating along the interface.

An illustration of an f -mode and an i-mode are shown in Fig. 1.5.

In GR, the non-radial modes that produce moments beyond the dipolar order cause

GW emission, carrying the mode energy away from the system. In this case, the

pulsation modes would have complex frequencies and are known as quasi-normal
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Figure 1.5: A schematic depiction of the major transverse propagating waves that
form the f -modes (left panel) and i-modes (right panel). Note that these waves
in transverse directions happen at all r. The red line shows the place where the
amplitude of these waves is at maximum. In the right panel, the dashed line represents
the interface with a jump in density or shear modulus.

modes (QNMs), as in other open systems (e.g., in electromagnetic cavities [29–31]).

The above-mentioned pulsation modes, like the f -modes and g-modes, decay expo-

nentially with time due to GW emission, described by the imaginary part of the

frequencies. These modes with Newtonian counterparts are sometimes called the

“fluid modes” in relativistic stars [32]. Since the vacuum permits wave-like solutions

of the spacetime perturbations, new pulsation modes that involve almost no matter

motion and are known as “spacetime modes” also arise [32]. These modes do not

have Newtonian counterparts and usually have short damping times. They are not

studied in this thesis.

1.5 Research overview

The GWs from compact stars open up a wide variety of studies in different fields. This

thesis discusses relevant research in astrophysics, gravitation, and nuclear physics. In
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this section, we will briefly go through the individual research topics and the related

literature. The details of each topic are given in the subsequent chapters.

1.5.1 Astrophysics: Binary orbital mechanics, stability of

compact stars

Measuring tides in eccentric double white dwarfs

Measuring the tidal properties of WDs from the GW signal can be challenging [33]

as the majority of the sources have a relatively large separation for the tide to cause

a measurable dephasing (schematically) shown in Fig. 1.3. In some rare DWD sys-

tems that have non-zero eccentricity, however, the periastron precession provides an

alternative way to measure tides.

In Chapter 3, we extend the study using the precession effect to measure tide in [34],

which considers only the equilibrium tide, to include the dynamical tide and perform

a GW signal analysis to estimate its detectability.

Effect of tides in binary evolution

In eccentric binary systems, the dynamical tide provides a channel for the orbit to

exchange energy with the internal deformations of the stars. This causes the orbital

elements, like the semi-major axis and eccentricity, to evolve over many orbits. In

systems with low eccentricities, this evolution is generally stable and the orbital ele-

ments oscillate back and forth over long-term evolution. However, for certain systems

with high eccentricities, the evolution becomes chaotic [35–38].

An iterative mapping method has been developed to efficiently compute the dynamical
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tide effect on the orbital evolution. This method first considers the secular effect of

the tide on the orbital elements over one complete orbit and uses it to update the

orbit at each pericenter passage. The original method by [38] has made several

assumptions that are valid only in highly eccentric systems. The method therefore

becomes less accurate as we go to intermediate eccentricities. For this reason, we

derive an improved version of the mapping method by taking into account the above

two missing factors.

In Chapter 4, we extend the formalism to systems with low eccentricities. This

method allows us to better predict the long-term fate of close eccentric binaries.

Non-radial stability of neutron stars

As introduced in Sec. 1.4, the non-radial oscillation modes in GR (except the dipole

modes) have complex frequencies and are known as QNMs. The sign of the imaginary

part governs the stability of the oscillations, whether the mode has an exponential

decay or a growth with time.

The stellar pulsation modes of relativistic stars have been extensively studied in the

past few decades (e.g., [39–42]). However, the focus has been put on stars made of

perfect fluid with isotropic pressure (at the background level2). There is no existing

fully consistent GR formalism for anisotropic NSs before this work.

Local anisotropy can exist within an NS in various scenarios involving elasticity [46–

48], superfluidity [49, 50], pion condensation [51], strong magnetic field [52, 53], and

viscosity [54]. Certain exotic relativistic stars are also predicted to have anisotropic

stress, like boson stars [55–57], strange stars [58, 59], dark matter stars [60], and
2There are some studies of QNMs of NSs with elastic effects that enter in the perturbative level

[43–45].
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gravastars [61, 62]. The solution to a static spherically symmetric anisotropic NS

was first studied in [63]. After that, much work has been done on calculations of the

NS structure with different anisotropic EOSs as well as assessing the radial stability

[64–72].

In Chapter 5, we perform the first study of non-radial pulsations of anisotropic NSs in

full GR. We discover an interesting instability in the p-modes that can only be found

in the full GR theory. Previous related work on anisotropic NSs does not capture this

instability due to their approximations, including taking the Newtonian limit [65] or

the Cowling approximation [73] (i.e., neglecting the metric perturbations).

1.5.2 Gravity theory: Testing general relativity

Although GR has been a successful theory of gravity that satisfies all the observa-

tional constraints from the solar system to cosmological scales so far, there still exists

an enormous number of alternative gravity theories that are well-motivated by fun-

damental physics or cosmological observations, and are consistent with the existing

tests. Testing GR allows us to narrow down the variety of these alternatives and

hence probe the fundamental nature of gravity.

The GW signals from galactic DWD binaries detected by LISA can potentially im-

prove the current bounds on certain non-GR theories, especially for those effects

entering the negative PN order [74, 75]. However, the tests require accurate mod-

elling of the frequency evolution of the signal due to all astrophysical factors, like the

tidal deformations [76] and magnetic interactions [77]. These effects enter different

PN orders and can affect the phase in a similar manner as the non-GR effects. Failure

to include these in the waveform model can lead to systematic errors in the measured
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non-GR effects.

In Chapter 6, we extend the previous work by considering the bounds on non-GR

effects at different PN orders using GW signals from DWDs. We further explore the

systematic errors on the bound due to mismodelling of the astrophysical factors.

1.5.3 Nuclear physics: Quark matter

QCD provides the theoretical framework describing strong force. This theory can

be perturbatively expanded and used to make meaningful predictions at extremely

high densities, where the quarks are expected to behave as weakly interacting Fermi

gas. For this reason, matter is expected to undergo a transition from the hadronic

matter (HM) to a deconfined QM state at a certain density. However, the nonper-

turbative nature of QCD at lower densities makes it difficult to theoretically predict

the properties of this transition and the phase deep inside the core.

Alternatively, observations of NSs can place constraints on the phase transition. A

strong first-order phase transition that features a large density discontinuity between

the hadronic and quark phases can affect the measurement of the stars. Recent

electromagnetic observations [78–80] and GW observations [81, 82] have made the

measurements of mass, radius, and tidal deformability of NS possible. To constrain

the phase transition, one way is to use the mass-radius relations (e.g., [83–86]), via

the softening of the EOS or the twin star scenarios3. Another way is to use the

EOS-insensitive relation between the tidal deformability (the Love number) and the

compactness (C), known as the Love-C relation [87–89]. If one can simultaneously

measure the Love number (e.g., through GW signal [90]) and the compactness (e.g.,
3Twin stars correspond to two stable configurations of NS-like objects that have the same mass

but different radii.
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through the X-ray emission [79]), they can compare it with the universal Love-C

relation that holds for NSs without the transition [91].

Furthermore, the QM is expected to exhibit color superconductivity, where the quarks

form condensates of Cooper pairs. One interesting color superconducting phase is the

crystalline color superconducting (CCS) phase [92–97], where the QM exists as an

extremely rigid solid4.

The phase transition and the solid core can give rise to unique stellar pulsation modes

that are distinctive from other NS models, one of which being the interfacial (i-)modes

[13, 15, 28, 106]. The properties of this mode depend strongly on the phase transition,

and also on the elastic properties of the QM phase. As introduced in Sec. 1.3, the

resonance of these modes due to dynamical tidal interactions can cause a phase shift

in the GW signal.

In Chapter 7, we perform a GW waveform analysis to estimate the measurability

of the i-mode from binary NS inspirals, assuming the core is composed of the rigid

crystalline QM phase.

4The astrophysical properties of systems having such a rigid phase are investigated in [98–105].
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Chapter 2

Theory

This chapter summarizes the major theories and formalisms from literature or text-

books used in this thesis so that interested readers can have a basic understanding of

the methods involved without needing to go through the individual references.

2.1 Static stellar structure

One crucial step in studying compact star physics is to construct the background stel-

lar model. In this thesis, we mainly consider non-rotating compact stars constructed

with the method described in this section.

In GR, the background structure of a non-rotating star is determined by the Tolman-

Oppenheimer-Volkoff (TOV) equations. These equations follow from the Einstein

field equations applied on a static spherically symmetric spacetime with perfect fluid.

We define the metric by

ds2 = −eνdt2 + eλdr2 + r2dΩ2, (2.1)

where ν and λ are functions of r while dΩ is the unit 2-sphere line element. The
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stress energy tensor for perfect fluid is given by

T αβ = (ρ+ p)uαuβ + pgαβ, (2.2)

where uα is the four velocity vector. The TOV equations read (see, e.g., [107, 108])

ν ′ =2
m+ 4πr3p

r2
eλ, (2.3)

p′ =− (ρ+ p)
ν ′

2
, (2.4)

λ′ =2
−m+ 4πr3ρ

r2
eλ, (2.5)

eλ =

(
1− 2m

r

)−1

, (2.6)

where p is the local pressure, ρ is the energy density, m is interpreted as the gravita-

tional mass enclosed within a radius r. Here, the superscript prime denotes derivative

with respect to r. The stellar surface is defined at p(R) = 0, with R being the stellar

radius.

This set of equations can be easily reduced to the Newtonian limit by taking p/ρ→ 0,

m/r → 0, and r3p/m→ 0:

p′ =− ρm

r2
, (2.7)

m′ =4πr2ρ. (2.8)

In both cases, ρ is not determined by the differential equations and has to be informed

by the EOS of the matter.
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2.2 Equation of state

A cold compact star has a temperature much lower than the Fermi temperature,

allowing us to ignore the thermal effects. In thermal and chemical equilibrium, its

EOS can then be expressed as a single-variable relation between the energy density

and the pressure, i.e., ρ = ρ(p) [109]. The EOS can either be given in the tabu-

lated form, based on complicated nuclear physics computations involving many-body

interactions, or in an analytic form for simplified models.

2.2.1 Tabulated equations of state

Most EOSs obtained from nuclear theory, based on effective nucleonic interactions

or perturbative QCD, are presented as multi-parameter tables [110]. At equilibrium

cold dense matter, the table is reduced to a single parameter, usually chosen as the

baryonic number density nb. Hence, the values of ρ and p both depend on a discrete

list of nb. An example used in this thesis is the SLy4 [111] EOS table, which describes

the cold NS matter at beta equilibrium based on a Skyrme-type effective nucleonic

interactions “SLy” [112]. Another example is the NL3 EOS [113] (see Fig. 2.1).

These EOS tables are often used to construct the static background of NSs. The

intermediate values of p and ρ between data points of the tables are conventionally

extracted using a linear-logarithmic interpolation. In Chapters 5 and 7, we employ

several EOS tables to construct the NS structures.
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Figure 2.1: The p-ρ relations of the EOS tables SLy4 and NL3.

2.2.2 Analytic equations of state

In simple models, one can obtain the EOSs in analytic forms. Whenever they are

available, these EOSs are preferred over the tabulated ones as they avoid the inter-

polation error.

Simplified cold WD models assuming the pressure comes from electron degeneracies

and the energy density comes from the rest mass of the nucleons can be obtained

analytically. Here, we briefly summarize the EOS provided in [107]

p =
mec

2

λ3e
ϕ(x), (2.9)

ρ =µemune(x), (2.10)

where me = 9.108 × 10−28 g is the mass of an electron, λe = ℏ/(mec) = 3.862 ×

10−11 cm is the reduced Compton wavelength, µe is the mean molecular weight and

is taken as 2 for typical WDs with low hydrogen content, mu = 1.661 × 10−24 g is

the atomic mass unit, ne is the electron number density and is a function of x by
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inverting its definition: x = λe(3π
2ne)

1/3, and ϕ is a function given by

ϕ(x) =
1

8π2

[
x
√
1 + x2

(
2

3
x2 − 1

)
+ ln

(
x+

√
1 + x2

)]
. (2.11)

In practice, we need to invert Eq. (2.9) numerically to obtain ρ(p). This can be done

with a root-finding scheme like the secant method or Newton’s method. In Chapters 3

and 6, we employ this EOS to construct the WD models.

Another commonly used simplified model in astrophysics is the polytropic EOS. This

EOS is a phenomenological model that partially captures the properties of matter in

certain density ranges. The form of the polytropic EOS is

p =K0n
Γ, (2.12)

ρ =
K0n

Γ

Γ− 1
+

(
K0

K

)1/Γ

n

=
p

Γ− 1
+
( p
K

)1/Γ
, (2.13)

where n is the particle number density, Γ is called the polytropic index, K0 and K

are also parameters of the model. To relate ρ and p, we simply use the last equality

of Eq. (2.13) that contains two parameters Γ and K. To obtain the Newtonian limit,

we simply set p/(Γ− 1) to zero.

Note that this model can capture the EOSs of classical degenerate Fermi gas with

Γ = 5/3 and the ultra-relativistic case with Γ = 4/3. In Chapter 5, we use this EOS

to construct some of the anisotropic NS models. In some NS studies, the above model

is extended to piecewise polytropic EOSs which consists of several polytropic models

with different polytropic indices joined together. We have not employed such models

in this thesis.
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Quark matter (QM) is expected to behave as free Fermi gas at extreme densities. As

a result, it can also be described with analytical EOSs in the perturbative region. A

parametrized EOS is proposed in [114] to model QM, including the effects of quark

interactions and color superconductivity. The model is written as

p =
3

4π2
a4µ

4
q −

3

4π2
a2µ

2
q − Beff, (2.14)

ρ =
9

4π2
a4µ

4
q −

3

4π2
a2µ

2
q +Beff. (2.15)

where p is the pressure, µq is the quark chemical potential, and (a4, a2, Beff) are phe-

nomenological parameters. The physical meaning and the ranges of the parameters

are discussed in [114]. The parameter a4 accounts for the QCD coupling constant and

takes a value between 0 and 1, and a2 is the contribution from both the pairing gap

of the color-superconducting phase and the strange quark mass. The effective bag

constant Beff models the effect of confinement. In the case of the simplest MIT Bag

model consisting only of free ultrarelativistic quarks, a2 = 0, and the bag constant,

BMIT, lies within the range of 145 MeV < B
1/4
MIT < 160 MeV (see, e.g., [115] and

references therein). In the modified Bag model, it is instead treated as an arbitrary

parameter [114].

This EOS is used to model the QM in the HS core in Chapter 7.
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Figure 2.2: The orbital elements of a binary system. The semi-major axis a and
eccentricity e specifies the shape of the orbit. Three angles are used to specify the
orientation of the orbit relative to the coordinate system: the argument of periastron
γ, the inclination angle ι, and the longitude of ascending node φ. The remaining
orbital element, the time of periastron passage T , is not shown here. Aside from the
six orbital elements, the true anomaly Φ is used to specify the position of the orbiting
mass.

2.3 Orbital mechanics of binary compact stars

2.3.1 Keplerian orbits

The orbital motion of a binary compact star system is dominated by Newtonian

gravity except in the late inspiral stage. We first give a brief review of the Keplerian

solution of bounded binary systems.

A Keplerian orbit is described by six orbital elements, namely the semi-major axis a,

the eccentricity e, the argument of pericenter γ, the time of pericenter passage T , the

inclination angle ι, and the longitude of ascending node φ, as shown in Fig. 2.2.
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The Keplerian solution gives

D(u) =a(1− e cos u), (2.16)

cosΦ(u) =
cos u− e

1− e cos u
, (2.17)

where D is the orbital separation, Φ is the true anomaly that gives the angular

position with respect to the pericenter angle γ. The parameter u is the eccentric

anomaly and is related to time and orbital frequency Ω through Kepler’s equation

t− T =
1

Ω
(u− e sin u), (2.18)

and Ω is given by Kepler’s third law

Ω =

√
m1 +m2

a3
. (2.19)

For binary systems, we use small letters m1 and m2 to represent the masses of the

stars in the binary.

The orbital energy Eorb and angular momentum Lorb are given by

Eorb =− m1m2

2a
, (2.20)

Lorb =

√
a(1− e2)

m1 +m2

m1m2. (2.21)

2.3.2 Perturbed Keplerian formalism

When there is a small force other than Newtonian gravity in the orbital interaction,

a useful way to describe the orbit is the method of osculating orbits. At any given
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moment, the orbit can be described by a set of orbital elements of a Keplerian orbit

with the same instantaneous position and velocity. The orbital elements become

time-dependent as a result. The secular evolution of the orbital elements is governed

by the Burns equations [116]. We employ the formulation summarized in [117]:

da

dt
=

2

Ω
√
1− e2

[are sinΦ + aΦ(1 + e cosΦ)] , (2.22)

de

dt
=

√
1− e2

Ωa
[ar sinΦ + aΦ(cosΦ + cos u)] , (2.23)

dγ

dt
=

√
1− e2

Ωae

[
−ar cosΦ + aΦ sinΦ

(
2 + e cosΦ

1 + e cosΦ

)]
, (2.24)

dT

dt
=

3

2a

da

dt
(T − t) +

√
1− e2

Ω

dγ

dt
+

2(1− e2)

Ω2a

ar
1 + e cosΦ

, (2.25)

where ar and aΦ are the acceleration due to the perturbing force in the radial and

azimuthal directions respectively. Note that a and Ω (related by Eq. (2.19)) are both

used here so that the mass of the binary does not explicitly appear.

In this thesis, we consider only the planar systems without forces in the out-of-plane

direction. Therefore, the remaining two orbital elements are constant and not listed

here. We apply the above formalism to determine the effect of tidal interaction on

the orbital elements of DWD binaries in Chapters 3, 6 and 4.

2.4 Tidal interactions

In this section, we introduce the method to compute the tidal deformations within

a star. For the equilibrium tide, we review both the Newtonian and GR formalism

describing small deformations. For the dynamical tide, a fully consistent GR pertur-
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bation formalism is currently unavailable1 and we focus on Newtonian formalism.

2.4.1 Equilibrium tide

Compact stars within a binary are tidally deformed. When the orbital separation

is large, the tidal interaction is dominated by the equilibrium tide, which neglects

the natural response rate of the bodies under deformations. At each multipole, the

equilibrium tide depends on a single parameter known as tidal deformability λℓ. For

instance, in the quadrupole order

Qij = −λ2Eij, (2.26)

where Qij is the mass quadrupole moment, and Eij is the external tidal field. The

GR formalism is given in [120–122]. We briefly summarize the procedures by [123]

involved in computing λ2 below.

We first set the origin at one of the stars in the binary. We write the (Eulerian)

metric perturbation as [124]

δgαβ =
∑
ℓm

diag
{
−eν(r)H0(r), e

λ(r)H2(r), r
2K(r), r2K(r) sin2 θ

}
Yℓm, (2.27)

and the stress energy tensor (Eq. (2.2)) is under time-independent perturbations. The

equation governing the deformation is then obtained from the perturbed Einstein field

1The GR consistent dynamical tide has been formulated to the subleading order in orbital fre-
quency by neglecting all resonances [118]. This formalism has been recently extended to capture
the resonance effects through a resummation of the expansion in orbital frequency and include the
viscous dissipation [119]. Nevertheless, it is still not the full formalism without small frequency
expansions and resummations.
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equations. For ℓ = 2, the equation can be written as

ry′ + y2 + yeλ
[
1 + 4πr2(p− ρ)

]
+ r2Q(r) = 0, (2.28)

where y = rH ′
0/H0 is a function of r, and Q(r) is given by

Q(r) = 4πeλ
[
5ρ+ 9p+ (ρ+ p)

ρ′

p′

]
− 6eλ

r2
− (ν ′)2. (2.29)

Equation (2.28) is integrated from r = 0, with y(0) = 2, towards the stellar surface.

Across any interface where the density is discontinuous, the quantity at the two sides,

y(Ri − ϵ) and y(Ri + ϵ) with ϵ→ 0+, are related by

[
y − 4πr3ρ

m+ 4πr3p

]
Ri

= 0, (2.30)

where Ri is the radial location of the interface, and the square bracket denotes the

difference between the quantities enclosed evaluated at the two sides of the interface.

The tidal deformability can then be obtained by matching with the exterior solution

of the metric, and the solution is explicitly written as

λ2 =
16M5

15
(1− 2C)2 [2 + 2C(y − 1)− y]

{
2C

[
4(1 + y)C4 + (6y − 4)C3 + (26− 22y)C2

+ 3C(5y − 8)− 3y + 6

]
+ 3(1− 2C)2

[
2− y + 2C(y − 1)

]
log(1− 2C)

}−1

,

(2.31)

where y is evaluated at R + ϵ, M is the total gravitational mass, C = M/R is the

compactness.
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The Newtonian limit is obtained by taking p/ρ→ 0, r3p/m→ 0, and m/r → 0. This

reduces Eq. (2.28) and Eq. (2.31) to

ry′ + y2 + y +

[
−6 + 4πρr2

ρ′

p′

]
= 0, (2.32)

λ2 =
R5

3

(
2− y

3 + y

)
. (2.33)

The deformed body causes a change in the orbital interaction. Following the deriva-

tion in [12], this extra acceleration is

atide =− 9(m1 +m2)

D7

m2

m1

λ2,1n, (2.34)

where atide corresponds to the acceleration on star 1, n is the unit vector in the radial

direction from star 2, and λ2,1 here refers to the tidal deformability (ℓ = 2) of star 1.

2.4.2 Dynamical tide

The equilibrium tide introduced in Sec. 2.4.1 has ignored the natural response rate

of the body, which is classified by its natural frequencies. In Newtonian gravity, the

star has a set of normal modes that form a complete basis so that we can write any

small deformations as a superposition of these modes. This allows us to perceive

dynamical tidal deformation as excitations of different normal modes of the star.

However, this device is not applicable in GR as the QNMs of a relativistic star do

not form a complete basis (e.g., [13]). For this reason, a fully consistent relativistic

formalism for the dynamical tidal interactions does not exist currently. We focus on
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a brief summary of the Newtonian formalism in this section. Further details can also

be found in [125, 126].

The classical Lagrangian perturbation theory [127, 128] allows us to describe the fluid

motion inside a star at any instant in terms of the Lagrangian displacement vector

ξ(t,x). In the center-of-mass frame of one of the stars in a binary, whose quantities

are marked with the subscript 1 hereafter, the position vector of a fluid element in

the perturbed star is given by x+ ξ(t,x), where x is the original position of the fluid

element. The vector ξ(t,x) satisfies the equation of motion:

ρξ̈ = f [ξ]− ρ∇U, (2.35)

where f [ξ] represents the internal restoring force against deformations, ρ is the density

and U is the tidal potential due to the companion star, denoted with subscript 2. We

follow the formulation in [125] to determine the tidal response and the corresponding

back-reaction on the orbit.

We first focus on the deformation of star 1. The induced quadrupolar deformation

causes star 1 to exert an extra force in addition to the point-mass contribution onto the

orbit. The contributions from star 2 on the orbital motion are completely symmetric

to that from star 1 and can be found by switching the labels, as well as noting that

the azimuthal angle Φ from star 2 differs by a phase of π.

Following [125], we expand the phase space vector as

ξ
ξ̇

 =
∑
α

qα(t)

 ξα(x)

−iωαξα(x)

 . (2.36)

Here, ξα represents an eigenmode with an eigenfrequency ωα, qα(t) is the excitation
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amplitude of the mode and the subscript α represents the set of quantum numbers

(n, ℓ,m, s), where the former three specifies an eigenmode, and s = ±1 specifies the

sign of the frequency to account for a phase space mode and its complex conjugate.

The eigenvalue problem is written as

−ρω2
αξα = f [ξα]. (2.37)

The eigenmodes are normalized such that

2ω2
α

∫
d3xρξ∗α · ξα =

Gm2
1

R1

. (2.38)

The detail of Eq. (2.37) and the eigenvalue problem can be found in e.g., [26, 129].

Note that we use another normalization in Chapter 7 for consistency with the for-

malism applied.

In the comoving frame of star 1, the mode amplitude qα(t) satisfies the equation [125,

126]

q̇α + iωαqα = iωαUα, (2.39)

where

Uα =
m2

m1

∑
ℓm

WℓmIαℓm

(
R1

D

)ℓ+1

e−imΦ. (2.40)

Here, D is the orbital separation, Φ is the azimuthal coordinate of star 2 as seen by

star 1, and Wℓm is given by [4π/(2l+1)]Yℓm (π/2, 0). We have also defined the overlap
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integral Iαℓm

Iαℓm =
1

m1Rℓ
1

∫
d3xρξ∗α ·∇

[
rℓYℓm(θ, ϕ)

]
, (2.41)

where Yℓm are the spherical harmonics and (r, θ, ϕ) are the spherical coordinates with

the origin at the stellar center of the star 1. Note that since we have not included

the Coriolis force in Eq. (2.35), Iαℓm = Iαδℓ,ℓαδm,mα , where δi,j is the Kronecker delta

function and ℓα,mα are the spherical harmonic indices contained in α. For simplicity,

we use Iα in the following since we do not consider calculations that fully account for

the Coriolis effect. Following Appendix C of [126], the orbital acceleration due to the

tidally deformed stars is given by

atide =− m1 +m2

R2
1

∑
α

WℓmIα

(
R1

D

)ℓ+2

e−imΦq∗α [(ℓ+ 1)n+ imλ] , (2.42)

where n is the unit vector in the radial direction from star 2 to star 1 and λ is the

unit vector in the tangential direction.

Note that Eq. (2.39) can be reduced to the limit of the equilibrium tide by taking

q̇α = 0. Substituting this into Eq. (2.42) and comparing it with Eq. (2.34), we can

show that

λ2 =
R5

3

∑
α

(WℓmIα)
2. (2.43)

Equation (2.34) does not have the λ component due to the symmetry of the tidal

bulge about the line connecting the binary since the bulge always points towards the

companion star for equilibrium tide.
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2.5 Stellar pulsations

In this section, we briefly discuss the basic setup of the linearized time-dependent

perturbations of a non-rotating star that leads to the set of pulsation modes. Let

us focus on the Newtonian theory here. The GR extension will be discussed briefly

at the end and the details will be in Chapter 5 for anisotropic stars. The problem

has been schematically written as an eigenvalue problem in Eq. (2.37). The following

provides the explicit forms of the governing equations.

The equations of motion governing the motion of a mass element inside a continuum

consist of the momentum conservation equation, continuity equation, and the Poisson

equation:

ρ
∂v

∂t
= ∇ · σ − ρ∇Ψ, (2.44)

∂ρ

∂t
= −∇ · (ρv) , (2.45)

∇2Ψ = 4πρ. (2.46)

Here v is the velocity vector of the mass element, Ψ is the gravitational potential,

while σ is the stress tensor. For a perfect fluid,

σij = −pδi,j. (2.47)

Under small perturbations, we use the Eulerian and Lagrangian perturbations to

describe the small variations from the equilibrium background. The Eulerian pertur-

bations, denoted by the prefix δ, are related to the Lagrangian perturbations, denoted

by the prefix ∆, via the Lie derivative: ∆ = δ + Lξ [130].
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From thermodynamics, an adiabatic perturbation of a perfect fluid follows

∆σij = −Γ1p

ρ
∆ρδi,j, (2.48)

where Γ1 is the (Newtonian) adiabatic index defined by Γ1 = ρ/p(∂p/∂ρ)S for a fixed

entropy.

For an isotropic solid2 following a Hookean relation, it is given by [28, 131]

∆σij = Γ1pTr (∆U ) δi,j + 2µ

[
∆Uij −

1

3
Tr (∆U ) δi,j

]
, (2.49)

where ∆Uij = (∂iξj + ∂jξi)/2 is the infinitesimal symmetric strain tensor and µ is

the shear modulus of the isotropic elastic medium. Setting µ to zero reduces the

Eq. (2.49) to Eq. (2.47).

Next, we assume that each mass element inside the star is oscillating about its equilib-

rium position so that we can decompose the displacement vector and perturbed scalar

quantities as follows. The displacement vector of a mass element under spheroidal

(also called polar or even parity) oscillations is given by

ξ =
∑
ℓ,m

[
ξℓr(r)er + rξℓ⊥(r)∇

]
Yℓm(θ, ϕ)e

iωt, (2.50)

where ξℓr(r) and ξℓ⊥(r) are the radial and tangential displacement functions of degree

ℓ respectively, while Yℓm(θ, ϕ) are the spherical harmonics and ω is the angular fre-

quency. The perturbations of the scalar quantities are also expanded in terms of the

2A solid with a scalar shear modulus. Not to be confused with an isotropic fluid which has no
shear stress. An isotropic solid can give rise to an anisotropic stress, which is a situation discussed
in Chapter 5.
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spherical harmonics:

δQ(r, θ, ϕ, t) =
∑
ℓ,m

δQℓ(r)Yℓm(θ, ϕ)e
iωt, (2.51)

where Q represents the scalar quantities ρ, p, and Ψ. From now on, we will suppress

the spherical degree ℓ in the radial components of the perturbed quantities.

Substituting the perturbed quantities into Eqs. (2.44)-(2.46) and using v = iωξ, we

obtain the equation of motion of spheroidal pulsation modes. The formalism for both

perfect fluid and isotropic solid will be provided in Appendix F.1.

The pulsation equations together with the appropriate boundary conditions form

the eigenvalue problem in Eq. (2.37). Solving it gives the discrete set of pulsation

frequencies and the corresponding mode functions. We solve these equations for the

Newtonian pulsation modes in Chapters 4 and 7.

The stellar pulsation theory in GR is derived in the same spirit using the perturbed

Einstein field equations. The perturbed metric tensor and the stress energy tensor

are expanded in terms of (tensorial) spherical harmonics with the time dependence

eiωt. The difference is that the vacuum now permits wave-like solutions and one

has to consider the propagations of metric perturbations in the stellar external. A

pulsation mode in GR corresponds to a purely outgoing wave in the far-field region,

which means the mode decays over time by losing energy through GW emission. The

theory and formalism for the GR stellar pulsations of anisotropic stars are discussed

in Chapter 5.
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2.6 Gravitational wave analysis

In this section, we introduce the method to estimate the optimal signal-to-noise ratio

(SNR) and the statistical error of the waveform parameters from a noisy GW signal.

2.6.1 Signal-to-noise ratio

The GW signals from astrophysical sources are often buried in noise with a much

larger amplitude. Matched filtering is a common technique to identify the GW from

the detector output. This involves integrating the output multiplied by a filter func-

tion. Using the Wiener filter function, the integral returns the SNR of the GW signal

with the chosen filter. The maximum SNR for the optimal choice of the filter is given

by [132]

SNR ≡ ||h|| =
√

⟨h|h⟩, (2.52)

where h(t) is the GW signal inside the detector output. The inner product ⟨...|...⟩ is

defined by

⟨a|b⟩ = 4Re

∫ ∞

0

df
ã∗(f)b̃(f)

Sn(f)
, (2.53)

for any time series a(t), b(t). Here, the overhead tilde denotes a Fourier transform,

and Sn(f) is the (one-sided) noise power spectral density.

Equation (2.52) allows us to estimate the optimal SNR of a signal when it is detected

with the correct waveform template.
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2.6.2 Parameter estimation

The parameters of the astrophysical GW sources can be estimated by analyzing the

signal. Due to the randomness of the uncontrolled factors, i.e., noise, the measure-

ments of the parameters are best represented as a probability distribution through

statistical reasoning. The two statistical approaches are known as the frequentist

approach and the Bayesian approach. The former is more suitable for experiments

where the parameters are well-controlled and can be repeated many times, which con-

structs probability distributions for the measured parameters based on the frequency

of occurrence. The latter is suitable for astrophysics that rely on observations with

a limited number of sources. In this approach, we use observed data to update our

“degree of belief” of the parameters, represented by a probability distribution known

as the “prior” [132]. Hence, the Bayesian approach is taken in GW signal analysis,

as in this thesis.

The Bayesian approach is based on Baye’s theorem

P (θ|d) = NP (θ)P (d|θ), (2.54)

where N is the normalization constant, d is the measured data, θ is the set of param-

eters of the GW waveform (e.g., the masses, spins of the binary), P (θ) is the “prior”:

the probability distribution of θ, P (d|θ) is the “likelihood”: the probability distribu-

tion of the data given the parameters, and P (θ|d) is the “posterior”: the probability

distribution of the parameters given the data.

In a GW measurement, the posterior corresponds to our measured distribution of the

waveform parameters, while the likelihood is obtained from the measured signal. For
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a colored Gaussian noise, the likelihood is given by

P (d|θ) = N exp

[
−⟨n|n⟩

2

]
, (2.55)

where N is the normalization constant, n(t) is the noise and is given by d(t) =

n(t) + h(t; θ), and h(t; θ) is the waveform model as a function of time with the true

value of the parameters. This expression can be understood as the intersections of

a continuous set of Gaussian distributions centered at ñ(f) = 0 with a frequency-

dependent width given by Sn(f).

From Eqs. (2.54) and (2.55), we can write the posterior distribution as

P (θ|d) =NP (θ) exp

[
−⟨d− h(θ)|d− h(θ)⟩

2

]
=NP (θ) exp

[
⟨d|h(θ)⟩ − ⟨h(θ)|h(θ)⟩

2

]
. (2.56)

The part involving ⟨d|d⟩ is absorbed into N in the second line. This equation allows

one to find the posterior of the GW model parameters, given the prior of the param-

eters P (θ), the measured signal d(t), and the waveform template h(t; θ). However,

the set of parameters θ usually contains several parameters and the extraction of the

distribution for each parameter requires a high dimensional integration. To reduce

the computation cost, one can use the Fisher matrix to estimate the measurement

uncertainties, if the signal-to-noise ratio is large enough.
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2.6.3 Fisher matrix

The exponential function in Eq. (2.56) can be expanded about the values of θ that

maximizes the likelihood function [133]:

exp

[
⟨d|h(θ)⟩ − ⟨h(θ)|h(θ)⟩

2

]
≈ N exp

[
−1

2
Γij∆θ

i∆θj
]
, (2.57)

where ∆θi is the deviation of the i-th parameter from the maximum-likelihood value,

Γij is the Fisher matrix defined by

Γij =−

〈
∂2h

∂θi∂θj

∣∣∣∣∣d− h

〉
+

〈
∂h

∂θi

∣∣∣∣∣ ∂h∂θj
〉

≈

〈
∂h

∂θi

∣∣∣∣∣ ∂h∂θj
〉
. (2.58)

The second line holds for large SNR. The likelihood is now a multivariate Gaussian

distribution. The posterior under this approximation is given by

P (θ|d) = NP (θ) exp

(
−1

2
Γij∆θ

i∆θj
)
. (2.59)

We can further define the covariance matrix

Σij ≡
(
Γ−1
)ij
, (2.60)

and the correlation coefficients to quantify the correlations between different param-

eters:

C ij =
Σij

√
ΣiiΣjj

. (2.61)
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The diagonal element of C ij is normalized to unity while the off-diagonal elements

quantify the amount of correlation between two different parameters, ranging from 0

(no correlation) to ±1 (strong correlation).

If the prior is constant, the expectation value of the measurement error can be ob-

tained from the diagonal element of its inverse:

⟨∆θi⟩ =
√

(Γ−1)ii =
√
Σii. (2.62)

Note that the repeated indices here are not summed over.

If the prior is Gaussian, the width of the prior of the i-th parameter, σi, can be

combined with the exponential term and we can define a new Fisher matrix

Γ̃ij = Γij +
δi,j
σ2
i

. (2.63)

The diagonal elements of the inverse of this new Fisher matrix give the square of

the error. Since these Gaussian priors allow us to estimate the error in the posterior

with such a slight modification, we assume Gaussian priors in the following studies

for simplicity.

This formalism using the Fisher matrix to estimate the statistical error of the GW

measurements is applied in Chapter 6 on testing gravity and Chapter 7 on probing

nuclear physics.
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Chapter 3

Measuring tides in eccentric white

dwarf binaries with gravitational

waves

The major content of this chapter is based on the published article [134]. We extend

previous studies on using periastron advance of a binary to measure the equilibrium

tide of an eccentric DWD system with LISA [34] to include the dynamical tide effect.

Our result shows that the dynamical tide becomes strong enough to produce resolvable

sidebands in the GW signal in the frequency domain due to periastron advance for

systems close to Roche-lobe contact. This effect can potentially be distinguished from

the waveform for high-mass systems with large SNR.

In Sec. 3.2, we first derive the expression of the periastron precession based on the

formalism in Sec. 2.3.2, and numerically compute the precession rate for various DWD

systems. We then study how the precession affects the GW signal in Sec. 3.3.
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mass radius ωα Iα
M⊙ 103 km s−1

0.20 14.66 0.135 0.234
0.60 8.84 0.520 0.216

Table 3.1: WD parameters obtained by solving the eigenvalue problem Eq. (2.37).
The eigenfrequency and overlap integral, ωα and Iα, of the ℓ = 2 f -modes are listed.

3.1 White dwarf models

We begin by constructing the WD models and computing their properties under

dynamical perturbations. The background model is constructed using the Newtonian

formalism in Sec. 2.1 and the dynamical properties are computed using the method

described in [129] and Sec. 2.4.2 (or see Appendix F.1).

In Table 3.1, we list the parameters of the WDs in this study, which are constructed

using the analytic WD EOS described in Sec. 2.2.2. The important non-radial mode,

known as the f -mode (see Sec. 1.4), dominates the tidal deformation at the quadrupo-

lar order (ℓ = 2) in such models. For simplicity, we consider only the contributions

from the ℓ = 2 f -mode in the following as the overlap integrals of other modes, e.g.,

the p-modes, are smaller by at least one order of magnitude.

3.2 Precession rate due to the dynamical tide

In an eccentric DWD system, the dynamical tide provides a non-Keplerian force that

leads to the precession of the pericenter. Willems et al. [34] have studied precession

in DWD systems due to equilibrium tide, rotation, and 1PN correction and have

shown that detecting the various precession effects with LISA allows one to probe the

interior structure of WDs (also see [135] which extends the work by considering more
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detailed WD models). Unlike these factors that have a relatively simple dependence

on the parameters of the WD or the orbit, the effect of dynamical tide depends on the

details of the interplay between the oscillation modes and the orbital motion. In this

section, we investigate the precession rate due to the dynamical tide and its effects

on the GW signal.

3.2.1 The precession formula

To quantify the amount of precession caused by the tidal interaction, we can use the

method of osculating orbit described in Sec. 2.3.2. The precession rate evolution is

governed by Eq. (2.24). The secular change of γ over one complete radial orbit is

denoted by ∆γ.

We express the driven part of the solution of Eq. (2.39) as a Fourier series in the orbital

frequency Ω. Together with the introduction of the Hansen coefficients, Xℓ,m
k (e),

defined by

( a
D

)ℓ+1

exp (−imΦ) =
∑
k

Xℓ,m
k (e) exp (−ikΩt), (3.1)

we have

∆γ =
∑
α

(WℓmIα)
2

(
R1

a

)ℓ+1∑
k

(
ω2
α

ω2
α − k2Ω2

)
Xℓ,m

k Aℓ,m
k , (3.2)

where k is the Fourier series index of the Hansen coefficients, α is a set of indices

(n, ℓ,m, s) as explained in Sec. 2.4.2, and

Aℓ,m
k =

2π

e
√
1− e2

{(
ℓ+ 1

2
−m

)
Xℓ,m−1

k +

(
ℓ+ 1

2
+m

)
Xℓ,m+1

k
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+
e

4

[
(ℓ+ 1−m)Xℓ,m−2

k + 2(ℓ+ 1)Xℓ,m
k + (ℓ+ 1 +m)Xℓ,m+2

k

]}
. (3.3)

The full tidal contribution to ∆γ is separated into the equilibrium component and

the dynamical component, ∆γ = ∆γeq + ∆γdyn, by decomposing the factor in the

mode amplitude as

(
ω2
α

ω2
α − k2Ω2

)
= 1 +

(
k2Ω2

ω2
α − k2Ω2

)
, (3.4)

where the first term denotes the equilibrium component and the second one is the

dynamical component.

For kΩ not near ωα, we can take the leading order of ∆γdyn, given by

∆γoff-res =
∑
α

m2

m1

(WℓmIα)
2

(
R1

a

)2l+1(
Ω

ωα

)2∑
k

k2
(
Xℓ,m

k Aℓ,m
k

)
. (3.5)

Here, we define ∆γoff-res as the off-resonant approximation of ∆γdyn, which has a

simple power law dependence on the orbital frequency as Ω16/3 obtained by applying

the Kepler’s third law of orbital motion on 1/a5.

3.2.2 Comparison with other factors of precession

It has been shown in [34] that the equilibrium tide contribution to the precession rate

dominates at intermediate separations, while the 1PN contribution becomes impor-

tant at larger separations. The equilibrium tide precession in the quadrupolar order,

∆γeq, can be written in a simple form (see, e.g., [12])

∆γeq =45πλ2,1
m2

m1

[
1

a(1− e2)

]5(
1 +

3

2
e2 +

1

8
e4
)
, (3.6)
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Figure 3.1: The absolute value of the precession rate of DWDs with different masses
and eccentricities. The upper left panel has (0.2, 0.6) M⊙ and e =0.5, and the others
have (0.6, 0.6) M⊙ and e =0.1, 0.5, 0.8. The full tidal contribution is given in solid
black lines. The individual factors of precession include the equilibrium tide (dash-
dotted red), 1PN (dotted green), and off-resonant dynamical tide (dashed blue). The
smallest P corresponds to the separations where the WDs fill the Roche lobe at
pericenter.
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where λ2,1 is the ℓ = 2 tidal Love number of WD 1, described in Sec. 2.4.1. The 1PN

precession is given by

∆γ1PN = 6π
m1 +m2

a(1− e2)
. (3.7)

Both precession effects are positive, meaning they are in the same direction as the

orbital motion.

In Fig. 3.1, we compare the full tidal contribution, Eq. (3.2), for the precession rate

averaged over one orbit, γ̇ ≡ ∆γ/P , with Eqs. (3.6) and (3.7) for a (0.2, 0.6) M⊙

DWD system with e = 0.5 and (0.6, 0.6) M⊙ systems with e = 0.1, 0.5, 0.8 at different

orbital periods P . We also show the off-resonant approximation of the dynamical tide

from Eq. (3.5).

The full tidal contribution is calculated using Eq. (3.2), summing up k from −kmax

to kmax, where the value of kmax is chosen to be

kmax = 16kperi = 16 Int
[

(1 + e)2

(1− e2)3/2

]
, (3.8)

where Int[...] means taking the nearest integer of the argument, and kperi represents

the harmonic corresponding to the motion closest to pericenter passage. The re-

sult shows a resonant response when the frequency of a harmonic comes close to the

f -mode frequency, causing a series of narrow peaks at different P . Unlike the equi-

librium tide and the 1PN effect, the precession caused by resonance can be orders of

magnitude larger than the other effects and can be negative for orbits just inside the

resonance. As the eccentricity increases, the resonance peaks also become more sig-

nificant and cover a larger range of P . Note that even though the peaks appear only

in the part with small P in Fig. 3.1, they are evenly distributed along the horizontal
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Figure 3.2: The precession angle caused by the different components of the tide of
DWDs at e → 0 limit with pericenter separation rp = aRL with different mass ratio
q̃ = m1/m2. We only include the off-resonant contribution for dynamical tides.

axis. For peaks at larger P , it requires a more refined grid to show them in the plot

due to the decreased width of resonance. We shall discuss these resonant effects on

orbital precession in Sec. 3.2.4.

The 1PN, equilibrium tide, and the off-resonant part of the dynamical tide all con-

tribute to positive precession of the orbit, and have power law dependence of P−5/3,

P−13/3 and P−19/3 respectively. As a result, the 1PN effect dominates at large separa-

tions, while the tidal contributions, mainly the equilibrium tide, become the dominant

effects at small separations. The off-resonant contribution from the dynamical tide is

a relatively small effect but increases rapidly when the system is close to Roche-lobe

filling separation, becoming comparable to the equilibrium tide for extremely close

orbits. Comparing the (0.2, 0.6) and (0.6, 0.6) M⊙ cases, an increase in mass causes

the tidal effect on γ̇ to decrease for orbits with the same period and eccentricities.

However, the more massive systems can also have closer orbits before filling the Roche

lobe, which results in a larger maximum tidal effect.
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3.2.3 Off-resonant contribution to precession

While the effect of resonance is enormous, it only occurs in a narrow region of the

frequency space. To quantify the maximum potential of the off-resonant contribution

from the dynamical tide, we explore its dependence on the orbital parameters at the

e→ 0 limit of Eq. (3.5) that contains a small number of terms:

∆γoff-res =447.5

(
m2

m1

)(
1 +

m2

m1

)
(Iα)

2

(
R1

a

)8

, (3.9)

where we have used the low eccentricity expansion of Xℓ,m
k (see, e.g., [126]):

Xℓ,m
k (e) =δk,m +

e

2
[(ℓ+ 1− 2m)δk,m−1

+ (ℓ+ 1 + 2m)δk,m+1] +O(e2), (3.10)

and we have assumed that ωα is proportional to
√
Gm1/R3

1. We choose the propor-

tionality constant such that ωα = 0.52 s−1 when m1 = 0.6 M⊙ and R1 = 8840 km.

The maximum possible effect from detached DWD is when a equals the Roche-lobe

filling separation, aRL. We employ Eggleton’s formula [136] to approximate aRL,

which is a function of mass ratio q̃ = m1/m2 and R1. Equation (3.9) can be further

simplified by relating the WD radius to the mass, which we employ the approximate

relation by [137]. The overlap integral, Iα, has a weak dependence on the mass and

is set to 0.2. Hence, from Eq. (2.43), λ2,1 ≈ 0.1R5
1.

The expressions in Eqs. (3.6) and (3.9) are plotted in Fig. 3.2 for different q̃ including

the contributions from both WDs. The precession effect of both the dynamical tide

and equilibrium tide reaches a maximum at q̃ = 1. We see that the off-resonant

dynamical tide contributes to a maximum of about 20% of the precession caused by
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the overall tidal effect.

As the DWD system approaches the Roche-lobe filling separation, the dynamical tide

precession starts to deviate significantly from the off-resonant approximation due to

the increase in the resonance width. In the following subsection, we focus on analysing

the significance of these resonance peaks.

3.2.4 The width of resonance

As the pericenter separation, rp, gets closer to aRL, the harmonics near kperi, which

have large Hansen coefficients, have frequencies closer to the f -mode frequency. As a

result, we expect a stronger resonance effect when the system is close to Roche-lobe

filling. To quantify the significance of such an effect, we calculate the width of the

resonance where the contribution from a single mode dominates the overall precession

due to tides.

We rearrange the summations in Eq. (3.2) to write it as a sum of contributions from

each harmonic

∆γ =
∑
k

∆γk. (3.11)

At any orbital frequency, there is one harmonic closest to the f -mode frequency,

which the harmonic order is denoted by kr. The resonance width, ∆Ωkr , is defined

to be the range of frequency where the magnitude of a single mode contribution to

the precession exceeds the overall equilibrium tide contribution, i.e., the region with

condition |∆γkr | ≥ ∆γeq. The width-to-separation ratio of the resonance, ∆Ωkr/∆Ωs,

of DWDs with different eccentricities are shown in Fig. 3.3. Here, ∆Ωs is the fre-

quency difference between subsequent resonance, taken to be ωα/(kr − 1). It shows
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Figure 3.3: The width-to-separation ratio of the resonance of (0.6, 0.6) M⊙ DWDs
with different eccentricities. The smallest P of each curve corresponds to the orbital
period with a harmonic in resonance right before Roche-lobe filling.

that within the more eccentric systems, the width of resonance takes about 10% of

the separation between harmonics when the system is close to Roche-lobe filling sep-

arations. This ratio decays very rapidly as the orbital period increases. For systems

with small eccentricities, only a few resonance peaks with the smallest P have sig-

nificant width. This ratio increases with eccentricities since ∆Ωs scales as (1 − e)3,

while ∆Ωkr stays within the same order of magnitude at a fixed pericenter distance

for different eccentricities.

3.2.5 The effect of spin

So far we have ignored the effect of rotation of the WD on the dynamical tide.

One reason is the complexity when we include the Coriolis force, which changes the

spectrum of eigenmodes [138]. Also, the angular dependence of the modes can no

longer be expressed simply by a single spherical harmonic [26]. Here we want to

estimate how the Coriolis force affects the results without including the full details.

If we treat the effect of the Coriolis force as a small perturbation to the mode frequency
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and ignore the changes to Iα, the mode amplitudes in the inertial frame have a similar

expression as those in the non-rotating case:

q(k)α =
σα

σα − kΩ +mΩs
U (k)
α , (3.12)

where Ωs is the spin rate of the WD, σα is the mode frequency including the correction

due to Coriolis force observed in the rotating frame, which is given in the leading order

of the spin rate by (see e.g., [26, 139, 140])

σα = ω(0)
α −mΩsCnℓ, (3.13)

where ω(0)
α is the eigenfrequency of the non-rotating WD, i.e., the quantity denoted

by ωα in previous sections and the rest of the chapter where the WD’s rotation is

not included, and the coefficient Cnℓ depends on the mode eigenfunctions of the non-

rotating WD. The explicit form of this coefficient can be found in e.g., [26, 139]. In

this subsection, we take Cnℓ = 1/ℓ for f -modes, which can be shown to be the exact

result for an incompressible star and is a good approximation for the WD models.

Including this change on the mode frequencies and amplitudes, we have the precession

angle ∆γ̃dyn with spin correction given by

∆γ̃dyn =
m2

m1

∑
α

∑
k

(WℓmIα)
2Xℓ,m

k Aℓ,m
k

[
(kΩ−mΩs)(kΩ−mΩs +mCnlΩs)

ω
(0)2
α − (kΩ−mΩs +mCnlΩs)2

]
.

(3.14)

This equation shows that the resonance frequency of the f -mode is split into the

modified mode frequencies ω(0)
α +m(1− Cnl)Ωs.

To estimate the effect of a range of rotation rates, we vary the spin from 0 to twice



51

0 1 2
- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

( 0 . 6 , 0 . 6 )  M �

 

 

∆
γ dy

n / 
∆γ

dy
n

ΩS  ( Ωp s )

 e  =  0 . 0 2
 e  =  0 . 1
 e  =  0 . 3
 e  =  0 . 5
 e  =  0 . 8

Figure 3.4: The normalized precession angle of the (0.6, 0.6) M⊙ DWDs including
the correction on the mode frequency due to the Coriolis effect at different spin rates.
The WDs are in an orbit with rp = 2 aRL. A horizontal dotted line is used to indicate
∆γ̃dyn = 0.

the pseudo-synchronous value, Ωps, determined using the weak friction model by Hut

[141],

Ωps =
Ω

(1− e2)3/2

(
16 + 120e2 + 90e4 + 5e6

16 + 48e2 + 6e4

)
. (3.15)

This equation describes the spin rate of the WD such that there is no net torque from

the equilibrium tide onto the orbit. The more general tidal synchronization problem

involving dynamical tide involves the damping mechanisms of the eigenmodes and is

not considered here.

In Fig. 3.4, we show the change of ∆γ̃dyn normalized by the precession angle of the

non-rotating WD, ∆γdyn, when the spin rate of both of the WDs increases from 0 to

2 Ωps, with the pericenter separation fixed at 2 aRL. As the spin rate increases, ∆γ̃dyn

decreases and crosses zero at some value larger than Ωps depending on the eccentric-

ity. It shows that if the WD has a high spin rate, the dynamical tide precession is

suppressed or even becomes negative. As the eccentricity increases, the Ωs at which

∆γ̃dyn crosses zero increases until it stays above zero when e ≳ 0.8.
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The precession angle of the lower eccentricity orbits has a steeper dependence on Ωs.

We illustrate a specific example with the e → 0 limit of Eq. (3.14) that contains a

small number of terms, which we explicitly write down as

∆γ̃dyn =
m2

m1

∑
α

(πIα)
2

(
R1

a

)5
{(

9

5

)
Ω2

ω
(0)2
α − Ω2

+

(
3

10

)
(Ω− 2Ωs)[Ω− 2(1− Cnl)Ωs]

ω
(0)2
α − [Ω− 2(1− Cnl)Ωs]2

− 24(Ω− Ωs)[Ω− (1− Cnl)Ωs]

ω
(0)2
α − 4[Ω− (1− Cnl)Ωs]2

+

(
147

10

)
(3Ω− 2Ωs)[3Ω− 2(1− Cnl)Ωs]

ω
(0)2
α − [3Ω− 2(1− Cnl)Ωs]2

}
.

(3.16)

The value of Ωs which causes ∆γ̃dyn to become zero can be solved analytically in

the off-resonant approximation. The result is independent of ω(0)
α and is found to be

Ωs = (81 −
√
1041)/30 Ωps ≈ 1.62 Ωps, where we used Ω = Ωps when e = 0 from

Eq. (3.15).

The centrifugal force from the rotating WDs deforms the stars and causes extra pre-

cession. Willems et al. [34] compared this effect with that of the 1PN and equilibrium

tide. They showed that for systems close to pseudo-synchronous, it gives a precession

rate with the same power law dependence on orbital separation as the equilibrium

tide, but several times smaller in size. Therefore, while the Coriolis force suppresses

the dynamical part of the tide, the centrifugal force gives an extra precession that

enhances the equilibrium tide effect by an amount depending on the rotation rate.
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Figure 3.5: The total phase shift caused by the dynamical tide precession (including
both resonant and off-resonant contributions) divided by 2π in a 4-year observation,
∆γ4yr

dyn/(2π) (color contours). The maximum P for the frequency change caused by
the precession from the off-resonant dynamical tide (black solid line), equilibrium tide
(green dashed line), and the chirping of the 2.5PN orbital decay (red dash-dotted line)
to be within the resolution of LISA are also shown. The orbital period corresponding
to Roche-lobe filling separation is indicated with the yellow dotted line. The DWD
systems have masses (0.2, 0.6) M⊙ (left panel) and (0.6, 0.6) M⊙ (right panel). The
grey region indicates the parameter space for which the orbit performs chaotic motion.

3.3 The effect of precession on gravitational wave

detection

3.3.1 The parameter space affected by the dynamical tide

The detection of the dynamical tide effect is limited by the resolution of LISA. A

shift in phase over the observation period is resolvable if it exceeds 2π. In Fig. 3.5,

we show the total phase shift (in units of 2π) caused by dynamical tide precession

over 4 years within the (e, P ) parameter space for a (0.2, 0.6) M⊙ and a (0.6, 0.6) M⊙

DWD system. The phase shift increases towards the large e and small P region. The

horizontal strips appearing in the high eccentricity region correspond to the large

phase shift due to resonance between a certain harmonic and the f -mode. These

resonances provide a phase shift larger than 2π even for relatively large P . Note
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that due to the limited resolution of the plot, the resonances appear to vanish at

lower eccentricity as the resonance width decreases, even though they are expected

to extend all the way to the low eccentricity region.

The maximum orbital period required for the precession caused by the equilibrium

tide and the off-resonant dynamical tide to remain resolvable by LISA are represented

by the green dashed line and the black solid line respectively. Similarly, the leading

order effect on the frequency shift due to GW emission, i.e., the 2.5PN effect (given

in [142]), is also subject to this limit and is shown with the red dash-dotted line. In

the (0.2, 0.6) M⊙ system, the off-resonant dynamical tide effect is resolvable for a

larger range of P than the 2.5PN effect, while it is the opposite for the (0.6, 0.6) M⊙

system. In both cases, the equilibrium tide effect has the largest resolvable range for

all eccentricities.

The parameter space within the grey region at high eccentricities corresponds to

chaotic evolution of the orbit. This phenomenon is caused by dynamical tide in highly

eccentric binaries, first studied in [35] (see also [36–38]). Ivanov and Papaloizou [37]

illustrate that such a chaotic behaviour due to the secular accumulation of mode

energy over many pericenter passages can be understood as a kind of stochastic

instability, as the mode amplitude receives a phase change at each passage which

can be approximated as a uniformly distributed random variable. Here, we employ

the result by [37, 38] to approximately map out the chaotic region for the DWD

system, which is written as |ωα∆P | ≥ 1, with ∆P being the change in orbital period

over one orbit due to the tide. In the case of (0.2, 0.6) M⊙, we consider only the

|ωα∆P | of the 0.2 M⊙ WD, as it is expected to provide the dominant tidal effect

inside the binary.

This region of chaotic behaviour limits the detectability of the GW signal itself in the
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highly eccentric small separation regions, as the waveform is no longer predictable.

In Fig. 3.6, we show the frequency domain strain signal |hI | (Eq. (B.4), see also

Appendix B.1) of a system within the grey region of the (0.6, 0.6) M⊙ case due to

the influence of full tide and equilibrium tide respectively. The initial conditions are

chosen such that the pericenter separation is 1.2 aRL, and the osculating Keplerian

orbit has an eccentricity of 0.82. The distance from the source is set as 10 kpc.

We see that the waveform inside the chaotic region has a spread of power along

the frequency domain, instead of concentrating in the vicinity of each harmonic.

This behaviour completely alters the waveform, making it impossible to detect with

template matching. Note that even though the waveform becomes chaotic, it still has

larger amplitudes in the vicinity of the harmonics corresponding to the angular speed

near the pericenter, which is similar to the periodic waveform without dynamical

tides.

The orbital period corresponding to Roche-lobe filling separation is indicated with

the yellow dotted line in Fig. 3.5, setting the lower bound of the orbital period of

detached DWDs. This line crosses the chaotic boundary with the chaotic region

covering a larger P at e ≳ 0.5. The crescent shape region in between the black solid

curve and the lower bounds set by the Roche-lobe filling separation or the chaotic

boundary, together with the resonant regions, represent the parameter space where

the dynamical tide is resolvable by LISA.

Within these regions, the dynamical tide can have an impact on the waveform anal-

ysis, which we discuss in detail in the next subsection. However, it still requires a

detailed Fisher analysis in order to quantify the actual measurability in parameter

estimation. We shall leave it for future work.
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Figure 3.6: Frequency domain waveform amplitude of a (0.6, 0.6) M⊙ DWD system
inside the chaotic regime obtained by numerically integrating the orbital equation of
motion Eq. (B.2) for a duration of 0.25 years. The initial eccentricity and pericenter
distance are set to be 0.82 and 1.2 aRL (P = 14.7 min) respectively (within the grey
region in Fig. 3.5), and the distance is at 10 kpc. The waveform including only
equilibrium tide is shown in blue lines and is rescaled by a factor of 1/10.

3.3.2 The effect of precession on waveform analysis

The waveform from the eccentric DWDs consists of a superposition of nearly monochro-

matic signals at every orbital harmonic, with each of them split into a triplet with

frequencies kΩ, kΩ± 2γ̇ [34, 143]. The precession rate contains the combined effects

of the tide and the 1PN effect. In the following, we consider whether it is possible to

separate the dynamical tide from the other factors through waveform analysis.

A useful quantity that determines the distinguishability of two waveforms h1 and h2

with or without the dynamical tide effect is given by

||δh|| =
√∑

j=I,II

⟨h1,j − h2,j|h1,j − h2,j⟩, (3.17)

where j = I, II is the interferometer index of LISA ([144]). The inner product ⟨...|...⟩

is introduced in Sec. 2.6.1. This quantity, ||δh||, can be interpreted as the SNR of the

difference between the signals. The two waveforms are said to be indistinguishable if
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Figure 3.7: The fractional difference of the eccentricities of the two different waveform
models with and without the dynamical tide effect on the precession as a function
of the orbital period P . Here, we fix the precession rate and orbital frequency in
the two models to determine the fractional difference in e. The DWD systems have
masses (0.2, 0.6) M⊙ (black lines) and (0.6, 0.6) M⊙ (blue) at different P . The
pericenter separation of the smallest P of each curve corresponds to the Roche-lobe
filling separation, except for the e = 0.8 case in which the closest separation is limited
by the chaotic boundary in Fig. 3.5.

||δh|| < 1 [145–147]. Here, we employ the Peters and Mathews waveform model with

precession for the plus and cross polarizations [34, 142, 143, 148], whose explicit form

is described in Appendix B.2. The wave amplitude of this model at each harmonic

follows that of a Keplerian eccentric orbit, which is found to be a good approximation

based on our preliminary calculations using the numerical waveform in Appendix B.1

for comparison. The antenna pattern acts to project the two polarizations into the

detector strain signal, and is also given in Eq. (B.4).

We assume the actual signal contains the full tidal contribution as well as the 1PN

effect, and compute ||δh|| by using a template without the dynamical tide component

to estimate the difference caused by it. The eccentricity of the template is adjusted to

match the precession rate with the signal. When the chirp is small, this is expected

to maximize its match with the signal.

In Fig. 3.7, we illustrate the effect of dynamical tide on the eccentricity measurement
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Figure 3.8: The quantity ||δh|| of the (0.2, 0.6) M⊙ system (left panel) and the (0.6,
0.6) M⊙ system (right) in Fig. 3.7 are shown with black curves. The distance from the
source, d, is taken to be 10 kpc. The observation time of the signal is set at 0.25yr.
The horizontal dashed line corresponds to ||δh|| = 1, the minimum value for the two
signals to be distinguishable. The red curve shows

√
||h1||2 + ||h2||2, the estimated

value of ||δh|| when the waveform with full tidal contribution is at resonance and the
two signals are completely mismatched.

by showing the fractional difference of the eccentricities between the precession rate

models with and without the dynamical tide. We assume the model with the full

tidal contribution has eccentricity e, while the other model with the equilibrium tide

contribution alone has eccentricity e + δe, such that the two models have the same

precession rates and orbital frequencies. The result shows that the fractional shift in

the eccentricity due to not including dynamical tide can be of the size of unity for

orbits with low eccentricities at closest separations. At higher eccentricities, this shift

is below several percent and is insignificant even for close orbits except at resonance.

This is because the off-resonant dynamical tide precession effect decreases for orbits

with larger eccentricities and fixed pericenter separations. On the other hand, the

near-resonant cases appear as narrow peaks and can have an order of magnitude

difference in |δe/e| from the off-resonant cases.

We show the dependence of ||δh|| on P for the (0.2, 0.6) and the (0.6, 0.6) M⊙ DWD
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systems with different eccentricities in Fig. 3.8. For illustrative purposes, we assume

the signal is observed for 0.25 years and the distance from the source is 10 kpc. The

maximum SNR of the signal ranges from 0.5 to 2.5 for the (0.2, 0.6) M⊙ systems

and 8 to 25 for the (0.6, 0.6) M⊙ systems depending on the eccentricity. We choose

the observation period of 0.25 years for computational efficiency, and for a 4-year

long signal, the SNR can be enhanced by a factor of 4. In both systems, ||δh|| shows

narrow peak features at small P near resonance. The number of peaks appearing

depends on the width of the resonance and the resolution of the plot.

For orbits very close to resonance, the dynamical tide precession is much stronger

than the other factors and cannot be replicated by choosing a waveform with an

eccentricity within the reasonable range. The overlap between h1 and h2 will be small

and the value of ||δh|| can therefore be approximated as
√
||h1||2 + ||h2||2, where ||h1||

and ||h2|| are the SNRs of h1 and h2 with the same eccentricities respectively. We

treat this as the maximum ||δh|| at resonance, which are presented as red curves

in Fig. 3.8. The resonance can cause the dynamical tide effect distinguishable from

the other factors at a large P (>20 min for small eccentricities with this parameter

choice) given a signal with large SNR. Note that
√

||h1||2 + ||h2||2 is an approximate

upper limit when the two waveforms have small match and is not necessarily always

greater than ||δh||. For the e = 0.1 orbit of the (0.6, 0.6) M⊙ system at P ≈ 2 min,

||δh|| exceeds this value since
∑

j=I,II⟨h1,j|h2,j⟩ < 0.

Focusing on the region outside resonance, the quantity ||δh|| is larger than 1 at small

separations and approaches the maximum value in the case of (0.6, 0.6) M⊙ but is

less than 1 for most separations in the (0.2, 0.6) M⊙ case, even though the fractional

difference in eccentricities between h1 and h2 are similar (Fig. 3.7). This different

behaviour of ||δh|| is mainly caused by the chirp of the signal. Since the 2.5PN effect
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also depends on eccentricity, measuring it helps resolve the degeneracy between the

tidal effect and the eccentricity within the precession rate and allows us to identify

the effect of dynamical tide1. This shows that LISA has the potential to identify the

dynamical tide effect for high mass, eccentric DWD systems with low orbital periods,

or systems with a higher harmonic close to resonance.

3.4 Chapter summary

In this chapter, we investigate the effect of dynamical tide on periastron precession

of DWD binaries. We show that the dynamical tide has a strong influence on the

eccentric DWD systems when they are close to the Roche-lobe filling separations,

especially when the orbital motion resonates with the oscillation modes. At resonance,

the dynamical tide causes a precession effect that can be orders of magnitude larger

than that from the equilibrium tide alone and can become negative in some frequency

range as opposed to the equilibrium tide effect and the 1PN effect that only causes

the pericenter to advance. The resonance is shown to take about 10% of the frequency

space within the more eccentric systems near Roche-lobe filling. On the other hand,

the off-resonant approximation shows that the dynamical tide can contribute to ∼20%

of the precession for the orbits with small eccentricities at close separations. We also

study the effect of the WD rotations on the precession rate. The Coriolis force from

the rotation of the WDs has a suppression effect on the dynamical tide precession

and can also cause negative precession if the spin is high enough2.
1The 3.5PN effect on the phase [149] is found to cause less than 0.01% difference in ||δh|| for the

(0.6, 0.6) M⊙ at close separations, and hence is considered negligible in our calculations.
2Note that the centrifugal force induces a quadrupolar deformation of the WDs which gives

extra positive precession comparable to the equilibrium tide effect when the system is at a pseudo-
synchronous state, as shown in Willems et al. [34]. This is a separate effect from the tidal contri-
butions studied in this chapter.
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We then look into the effect of the dynamical tide precession on the GW signal.

Assuming a 4-year signal duration, we show the parameter space where the dynamical

tide precession is resolvable by LISA. Compared to the frequency shift due to 2.5PN

radiation reaction in a (0.2, 0.6) M⊙ system, this effect is resolvable within a larger

range of orbital parameters. At close separations, it causes a ≳ 10% systematic shift

in the eccentricity measurement in less eccentric systems since the precession rate

depends on both the eccentricity and the tidal parameters. For the case with (0.6,

0.6) M⊙, the resolvable parameter range of the 2.5PN effect is larger than that of

the effect of the dynamical tide except at resonance. Hence, a stronger chirp effect

is expected in systems with higher masses. The highly eccentric systems at close

separations can lie within the chaotic regime, where the dynamical tide causes the

orbit to evolve chaotically, a phenomenon first illustrated by Mardling [35]. This

produces an unpredictable GW signal that poses problems in the detection.

Assuming a non-chaotic signal, we show that the dynamical tidal effect in the pre-

cession rate can be distinguished from other factors by analyzing the waveform if the

chirp from the 2.5PN effect is strong enough, which helps constrain the eccentricity

of the system, or if the system is at resonance, given a high enough SNR. Therefore,

we conclude that LISA can measure the dynamical tide within high-mass eccentric

DWD systems or the low-mass systems at resonance.

Regarding future work, a more detailed waveform analysis of the influence of the pre-

cession effect on the signal is required to analyze the measurement error in parameter

estimation. Besides, the effect of the g-modes on the orbital motion and evolution

of the eccentric DWDs can also be an interesting direction to pursue. We anticipate

that the multiple harmonics in eccentric systems would lead to a richer resonance

behaviour than in the circular case. This allows us to potentially probe the dissipa-
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tion mechanisms and learn more about the interior structure of the WDs from the

excitation and damping of the modes.
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Chapter 4

An improved mapping method for

the dynamical tide contributions to

binary evolution

In this chapter, we discuss an improved version of an iterative mapping method used

to approximate the time evolution of binary systems under the influence of dynamical

tide. This formalism can be applied to eccentric DWD binaries, a potential GW source

of the future space-based GW detector LISA.

The original method has been used to study tidally interacting highly eccentric sys-

tems [37, 38]. One remarkable result is that it can capture the chaotic evolution of

systems with small pericenter separations due to dynamical tide. This method has

made several assumptions that hold only in highly eccentric orbits. To study the

orbits with moderate or low eccentricities, an improved method is required.

In the following, we first review the original iterative mapping method by [38] in

Sec. 4.1. Then we discuss the newly developed method in Sec. 4.2. In Sec. 4.3, we

summarize how to implement the newly developed iterative method. We leave the

computation part as future work.
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4.1 Original iterative mapping method

This section provides a brief review of the original iterative mapping method given

by [38]. Readers only interested in the major formulas for implementing the method

can skip to the summary below Eq. (4.10).

The iterative mapping method is based on discretizing the effect of the dynamical

tide on the orbital evolution and updating the orbit with the overall change in one

complete orbit at each pericenter passage. The formalism is derived from energy

conservation

Etot = Eorb + Emode, (4.1)

where Etot is the total energy of the system, Eorb is the gravitational binding energy

of the binary, Emode is the energy of the pulsation mode due to tidal excitation.

The term Eorb in [38] is approximated as

Eorb = −m1m2

2a
, (4.2)

which is the energy between two perfectly spherical stars and has ignored the correc-

tion due to the tidal deformation (see Sec. 4.2). The term Emode is given by

Emode =
m2

i

Ri

|qα|2

=B|Eorb| · |Qα|2 , (4.3)

where qα is the mode amplitude given in Eq. (2.39), and Qα is the scaled mode
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amplitude, with the scaling factor:

B =
2a

Ri

(
mj

mi

)
W 2

ℓmI
2
α

(
Ri

a(1− e)

)2ℓ+2

, (4.4)

where the i-th star is the star with the tidally excited mode and the j-th star is the

companion. We here consider only a single mode excitation with the mode indices α.

In this iterative mapping formalism, the mode amplitude is updated orbit by orbit.

We therefore denote each quantity within the n-th orbit with the subscript n. When

it goes from the (n − 1)-th orbit to the n-th orbit, the mode amplitudes are related

by

Qα,n = Qα,n−1 +∆Qαe
ikπ, (4.5)

where the change in the (rescaled) mode amplitude, ∆Qα, is assumed fixed in each

orbit. This comes from the fact that the orbit trajectory stays almost unaltered near

the pericenter even when the semi-major axis changes significantly in highly eccentric

orbits [38]. The expression of ∆Qα is given by

∆Qα =iωα

∫
dt
(rp
D

)ℓ+1

eiωαt−imΦ

=ik̃(1− e)

∫ π

−π

du

(
1− e

1− e cos u

)ℓ

cos
[
k̃(u− e sin u)−mΦ(u)

]
, (4.6)

where rp is the pericenter separation, Φ is the true anomaly, ∆Qα is a function of e and

k̃, with k̃ = ωα/Ω. In the high eccentricity limit, this integral can be approximated

by the parabolic limit given in [139, 150], which is the approach taken in [38]. In

that case, ∆Qα is a single variable function of k̃. We instead choose to parameterize

it with y = ωα/Ωperi = k̃(1 − e)1.5, where Ωperi is the orbital frequency at periastron
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passage. This parameter is more natural for nearly parabolic orbits. In principle,

one can relax this approximation by computing Eq. (4.6) numerically. Note that this

integral converges slowly for high eccentricities.

The mode energy is then given by

∆Emode,n = B|Eorb|
(
|Qα,n|2 − |Qα,n−1|2

)
, (4.7)

and with energy conservation, we have

∆an
an

=− ∆Emode,n

Eorb,n

= −B

{
2Re

(
∆QαQ

∗
α,ne

ik̃π
)
+ |∆Qα|2

}
, (4.8)

where an = an−1 +∆an−1.

The eccentricity is also updated iteratively under the assumption that the orbit’s

angular momentum remains constant:

an(1− e2n) = an−1(1− e2n−1), (4.9)

which gives

∆en =
∆an
an

1− e2n
2en

=− B1− e2n
2en

[
|∆Qα|2 + 2Re

(
∆QαQ

∗
α,n−1e

ikπ
)]
, (4.10)

where en = en−1 +∆en−1.

Equations (4.5), (4.6), (4.8), and (4.10) provide a method to estimate the evolution
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of the orbital elements iteratively. One starts with computing the mode amplitude

change, ∆Qα, by the integral formula Eq. (4.6), and then uses it to update the values

of the semi-major axis an, eccentricity en, and the mode amplitude Qα,n for each orbit.

As described below Eq. (4.6), ∆Qα can be assumed fixed throughout the evolution

in the high eccentricity limit.

4.2 Modified iterative mapping method

The influence of dynamical tide on the orbital evolution is governed by the Burns

equations described in Sec. 2.3.2, i.e., Eqs. (2.22)-(2.25).

The tidal interaction force ar and aΦ are given in Eq. (2.42). We repeat it here to

show the complete set of equations governing the orbital evolution under dynamical

tide.

In principle, one can integrate Eqs. (2.22)-(2.25) numerically to determine its evo-

lution. Nevertheless, direct integration is computationally costly and is subject to

accumulation error for long evolution times. Hence, the iterative mapping method

described in Sec. 4.1 provides an efficient way to approximate the solution over many

orbits. To extend the iterative method to lower eccentricities, we utilize Eqs. (2.22)-

(2.25) to derive an improved formalism in the following.

4.2.1 Change in semi-major axis

We first perform the variable transformation

Ωt =u− e sin u, (4.11)
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and integrate Eq. (2.22) from one pericenter to the next, while holding the other

orbital elements fixed:

∆a

a
=− B√

1− e2

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)Q∗
α(u)

× [(ℓ+ 1)e sinΦ(u) + im(1 + e cosΦ(u))] + c.c., (4.12)

where the true anomaly and eccentric anomaly are related by

tan

(
Φ

2

)
=

√
1 + e

1− e
tan
(u
2

)
. (4.13)

The scaled mode amplitude Q∗
α(u) is obtained by integrating the equation of motion

of the mode, Eq. (2.39), using the method of integrating factor

Qα(u) = e−iωαt(u)

[
Qα(−π)e−ik̃π + ik̃(1− e)

∫ u

−π

du′
(

1− e

1− e cos u′

)ℓ

eiωαt(u′)−imΦ(u′)

]
.

(4.14)

Using Eqs. (4.12) and (4.14), we arrive at

∆a

a
=− 2BRe

[ (
∆Qα −∆Q(eq)

α

)(
eik̃πQ∗

α(−π) +
∆Q∗

α

2

)]
. (4.15)

where

∆Q(eq)
α =

(
1− e

1 + e

)ℓ+1

(−1)m2i sin (πk̃). (4.16)

The steps to obtain Eq. (4.15) is not trivial, as combining Eqs. (4.12) and (4.14) give

us a double integral in u and u′, while Eq. (4.15) only contains single integrals. In
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Appendix C.1, we describe the derivation steps in detail.

Equation (4.15) is a useful result as it contains one single integral, the mode amplitude

change ∆Qα, which is obtained by numerically integrating Eq. (4.6). It does not

require the numerical integration of a double integral.

We can compare Eq. (4.15) with the original method by [38], i.e., Eq. (4.8). In

Eq. (4.15) there is an additional term ∆Q
(eq)
α that can be interpreted as the change

in equilibrium tide amplitude evaluated at the apocenter passage. We note here that

this difference comes from ignoring the tidal correction to the orbit binding energy in

[38] (see Eq. (4.2) and the text below). This additional term goes as (1 − e)ℓ+1 and

is not important in the high eccentricity limit.

A numerical comparison of Eqs. (4.8) and (4.15) against the direct numerical inte-

gration of Eqs. (2.22)-(2.25) is provided in the left panel of Fig. 4.1. The results

show that the original method agrees well with the exact results at high eccentricities

e ∼ 0.9, but starts to break down at lower eccentricities. Meanwhile, the improved

method shows good agreements with the exact results even at e = 0.3.

4.2.2 Change in eccentricity

Similarly,

∆e =− B
√
1− e2

2e

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)Q∗
α(u)

× [(ℓ+ 1)e sinΦ(u) + ime(cos u+ cosΦ(u))] + c.c. (4.17)
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Figure 4.1: The values of ∆a/a (left panel) and ∆e (right panel) computed using
different methods against y = ωα/Ωperi are shown for eccentricities e = 0.3, 0.5,
and 0.9. The solid curves represent the direct integration of the Burns equations
(Eqs. (2.22)-(2.25)) for one single orbit, treated as the exact results. The open circles
correspond to the results from the original method that ignores the tidal interaction
energy and tidal torque, and the crosses are the improved method in this work. The
mode indices are ℓ = m = 2 and the tidal overlap integral is set to 0.001 for ease of
numerical integration of the Burns equations but can be scaled up easily for realistic
values in the mapping methods.
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Substituting Eq. (4.14) into Eq. (4.17) gives

∆e = −B1− e2

2e
2Re

{[(
1− m

k̃
√
1− e2

)
∆Qα −∆Q(eq)

α

] [
eik̃πQ∗

α(−π) +
∆Q∗

α

2

]}
.

(4.18)

The derivation procedure of Eq. (4.18) is very similar to that of Eq. (4.15), involving

the parity of trigonometric functions and integration-by-part as described in Ap-

pendix C.1. One extra step is needed to deal with the term ime cos u in the square

bracket of Eq. (4.17). This is done by writing it as im(e cos u− 1) + im, and using it

to cancel with the denominator of the first line of Eq. (4.17).

Again, Eq. (4.18) depends on the single integral ∆Qα. We compare it with the original

mapping method [38] (see Eq. (4.10)) and see that it contains the additional terms

∆Q
(eq)
α and the term depending on the index m. The latter term goes as 1 − e for

a fixed pericenter distance. Therefore, Eq. (4.18) reduces to Eq. (4.10) in the high

eccentricity limit.

A similar numerical comparison of the methods in calculating ∆e is provided in

the right panel of Fig. 4.1, verifying that the improved method works well at low

eccentricities as in the case of ∆a.

4.2.3 Changes in argument of pericenter and time of peri-

center passage

The remaining orbital elements can also be integrated

∆γ =

√
1− e2

2e
B
∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)Q∗
α(u)
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×
[
(ℓ+ 1) cosΦ− im sinΦ

(
2 + e cosΦ

1 + e cosΦ

)]
+ c.c. (4.19)

∆T =− n∆P +

√
1− e2

Ω
∆γ +

〈
B
Ω

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)Q∗
α(u)

×

{
3

2
√
1− e2

(u− e sin u) [(ℓ+ 1)e sinΦ + im(1 + e cosΦ)]

− (ℓ+ 1)(1 + e)(1− e cos u)

}
+ c.c.

〉
. (4.20)

The first term in Eq. (4.20) corresponds to the change in orbital period, ∆P , over n

pericenter passages. It comes from the accumulative effect in the correction to T and

scales with n. If we simply hold T fixed while integrating Eq. (2.25), we will miss

this contribution which becomes large over many orbits. Hereafter we consider the

contribution other than this term, denoted as ∆T :

∆T = ∆T + n∆P = ∆T + n
4π

3

√
a

m1 +m2

∆a. (4.21)

For these two elements, the double integral involving the Q∗
α(u) term can no longer

be written as the product of two single integrals with fixed integration limits.

∆γ =
1− e2

2
B
(
Fγ1(e, y)Q

∗
α(−π)eik̃π + Fγ2(e, y)

)
+ c.c., (4.22)

∆T =

√
1− e2

2Ω
∆γ + B (1− e2)5/2

Ω

(
FT 1(e, y)Q

∗
α(−π)eik̃π + FT 2(e, y)

)
+ c.c.. (4.23)

The functions Fγ1, Fγ2, FT 1, and FT 2 are obtained by simply substituting Eq. (4.14)

into Eqs. (4.19) and (4.20). The explicit forms are given in Appendix C.2. The pa-

rameter y = k̃(1−e)1.5 is discussed below Eq. (4.6). Since the numerical computation

of these integrals for every orbit is slow, we can tabulate the integral as a two variable

functions and obtain the values numerically.
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4.3 The modified iterative mapping method

In this section, we summarize the method to construct the iterative algorithm to

compute the orbital elements and the mode amplitude for any eccentricities. The

code for the modified iterative method is still under development.

With the above expressions for ∆Qα, ∆a, ∆e, ∆γ, and ∆T , we proceed to derive the

iterative formalism. Similar to Sec. 4.1, the orbital elements and the mode amplitude

are discretized into the indexed values that correspond to the n-th orbit

Qα,n =Qα,n−1 +∆Qα,n−1, an = an−1 +∆an−1, en = en−1 +∆en−1,

γα,n =γα,n−1 +∆γα,n−1, Tn = Tn−1 − (n− 1)∆Pn−1 +∆Tn−1, (4.24)

where ∆Qα,n is obtained Eq. (4.6), ∆an and ∆en can both be obtained from ∆Qα,n

using Eqs. (4.15) and (4.18), ∆γ and ∆T are obtained from Eqs. (4.22) and (4.23).

For efficiency, the integrals ∆Qα, Fγ1, Fγ2, FT 1, FT 2 can all be obtained through

interpolation from a tabulated data file with the independent parameters e and y,

where y = k̃(1− e)1.5.

4.4 Chapter summary

To summarize, we have developed an iterative formalism to compute the orbital evo-

lution of binary systems under the influence of dynamical tide. This method extends

the formalism developed in [38] to the lower eccentricity region of the parameter

space. We here point out the improvements from the previous method:

• Instead of just the semi-major axis a and the eccentricity e, the pericenter angle
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γ and the time of pericenter passages T are updated in each orbit.

• The change in amplitude of the tidal deformation ∆Qα needs to be updated in

each orbit rather than staying constant.

• The change in a and e contains a contribution from the equilibrium tide compo-

nent at apocenter ∆Q(eq)
α (as well as a torque component for e) that is neglected

in the previous method (valid when e→ 1).

To construct the new method, we first look for the integral solutions to the Burns

equation that governs the time evolution of the orbital elements a, e, γ, and T over a

complete orbit, which corresponds to the secular change of these elements. We then

use these orbital averaged changes to update the orbital elements at each pericenter

passage, hence obtaining an iterative way to compute the orbital evolution for a long

timescale.

We find that the secular changes ∆a, ∆e both have a simple dependence on the

change in the (rescaled) mode amplitude ∆Qα, a single integral over a complete

orbit. Meanwhile, ∆γ and ∆T depend on Fγ1, Fγ2, FT 1, FT 2 beside ∆Qα. All these

integrals do not have closed-form expressions and have to be evaluated numerically.

We are currently developing a code that implements the above iterative formalism by

interpolation of the tabulated values of the integrals.
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Chapter 5

Unstable pulsation modes of

anisotropic neutron stars

This chapter focuses on the non-radial pulsation modes of NS models supported

by anisotropic stress. We derive the formulation governing small oscillations of a

spherically symmetric background star with anisotropy in GR and find that some

of the modes are unstable. This instability does not exist in Newtonian theory or

isotropic stars within GR.

In this chapter, we first describe how we construct static spherically symmetric

anisotropic NS models (Sec. 5.1). Then, we describe the method we use to com-

pute the non-radial pulsations in the anisotropic NSs (Sec. 5.2.1). We then show

the numerical results in Sec. 5.3, which reveal some unexpected instabilities in the

p-modes. In Sec. 5.4, we look into the p-mode instability using both a numerical

analysis from Sec. 5.2.1 and an analytical approach similar to that presented in [151]

for the isotropic case.
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5.1 Anisotropic background models

The stress energy tensor of a spherical symmetric anisotropic NS is given by

Tαβ = ρuαuβ + prhαβ − σΩαβ, (5.1)

where ρ is the energy density, σ = pr−pt is the degree of anisotropy, pr and pt represent

the pressures in the radial and tangential direction respectively, hαβ = gαβ + uαuβ is

the transverse metric on a 3D space, Ωαβ = hαβ − kαkβ is another transverse metric

on a 2D sphere, uα is the four-velocity vector of a fluid, and kα is the unit normal

vector in the radial direction orthogonal to uα.

Note that with the typical Schwarzschild coordinates, namely (t, r, θ, ϕ), the vector

kα takes the form

kα =
(
kt, kr, 0, 0

)
, (5.2)

where kt and kr are determined from the orthonormality conditions:

kαuα =0, (5.3)

kαkα =1. (5.4)

In a static spherically NS model, the metric is the same as the isotropic case (see
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Eq. (2.1)). The stress energy tensor in Eq. (5.1) in a static background is given by

T α
β =



−ρ 0 0 0

0 pr 0 0

0 0 pr − σ 0

0 0 0 pr − σ


. (5.5)

The Einstein field equations of the anisotropic fluid background give (e.g., [63])

ν ′ =2
m+ 4πr3pr

r2
eλ, (5.6)

p′r =− (ρ+ pr)
ν ′

2
− 2σ

r
, (5.7)

λ′ =2
−m+ 4πr3ρ

r2
eλ, (5.8)

eλ =

(
1− 2m

r

)−1

, (5.9)

where the superscript prime denotes derivative with respect to r. From Eq. (5.7), we

see that σ must at least go as r near the center in order for the solution to be regular

(usually taken as r2 to avoid a kink of the σ profile at the origin). The limit σ → 0

reduces these equations back to the isotropic case (see Eqs. (2.3) to (2.6)).

5.1.1 Equations of state: Anisotropy ansatz

The anisotropy depends not only on the local variables, like the energy density, but

also on the quasi-local variables, quantities that depend on the local spacetime ge-

ometry. In this study of anisotropic NS, we employ two different ansatzes for the
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parameter σ:

H-model: σ = βprµ
2, (5.10)

BL-model: σ = β
(ρ+ pr)(ρ+ 3pr)

1− µ
r2, (5.11)

where µ = 2m/r, m is the gravitational mass enclosed within a radius r, and β is a

dimensionless parameter governing the degree of anisotropy.

The ‘H-model’ is modified from the model proposed by [68]. Note that compared to

[68], σ here contains an extra factor of µ. Such an additional factor is introduced to

satisfy the regularity conditions of the perturbations at r = 0 (see Sec. 5.2.2 for the

expansion near the center). Due to the additional µ which is of the order ∼ 0.1, we

use the range |β| ≤ 10 instead of |β| ≤ 2 in the original model. Note that in the

relativistic Cowling approximation used in [73], the original anisotropy model satisfies

the regularity conditions automatically since there are no metric perturbations.

The ‘BL-model’ is proposed in [63], and the parameter range is taken to be |β| ≤ 0.5

as in [72]. This anisotropy model permits an analytic solution to the stellar structure

for incompressible stars. Unlike the H-model, we do not need to modify the BL-model

as it satisfies the regularity conditions at the center.

5.1.2 Equations of state: Pressure-density relations

The relation between ρ and pr is also provided by the EOS. We choose the poly-

tropic EOS named ‘EOS II’ in [73], denoted by ‘Poly’ hereafter, and SLy4 [111] to

demonstrate our major numerical results. With the EOSs and anisotropy ansatzes,

we numerically integrate the structural equations (see, e.g., [63]) to construct the
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Figure 5.1: Static profiles of the isotropic Poly model and the Poly-H model with
β = −10. The central densities are fixed at 7.455× 1014g cm−3 (5.539× 10−4km−2).

anisotropic NS models at equilibrium. An example of the static background solution

is shown in Fig. 5.1. We use the Poly EOS for the pr-ρ relation with the H-model with

β = −10, with the central density taken to be 7.455×1014 g cm−3 (5.539×10−4 km−2).

The absolute-valued σ profile starts from zero at the stellar center and grows to be-

come comparable to pr near the surface. The radial profiles of ρ, pr, and m/r do not

show significant differences, but the stellar radius differs by ∼ 10%.

The stress energy tensor of all models considered satisfies the dominant, weak, and

strong energy conditions. Moreover, the speeds of sound in the radial and tangential

directions within the stars (see, e.g., [152, 153]) both satisfy causality.

The mass-central-density relation and mass-radius relation of the Poly-H model are

shown in 5.2. As the anisotropy parameter β increases towards a more positive value,

the maximum mass and the corresponding radius decrease. Normally for isotropic

NS, as the central density increases and passes the point of maximum mass, the star

becomes radially unstable and will collapse when perturbed. This is not necessarily

true for anisotropic NSs depending on the anisotropy ansatz.
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(right panel) of the isotropic Poly model and the Poly-H models. A vertical dotted
is used to indicate the central density corresponding to 7.455×1014 g cm−3, a fiducial
value we employ in some of the following sections. This corresponds to a 1.4M⊙ NS
when β = 0.

5.2 Solving for the non-radial modes

5.2.1 Pulsation equations and boundary conditions

Next, we consider the non-radial oscillations of anisotropic NSs. This breaks the

spherical symmetry of the static background model. The oscillations are decomposed

into a sum of modes on the basis formed by spherical harmonics. By focusing on

the non-rotating case, each mode characterized by the spherical harmonics indices

ℓ,m and an index corresponding to the radial eigenfunction, n, is decoupled from one

another.

In the pulsating star, the metric and the matter dynamics are governed by the per-

turbed Einstein field equations and the stress-energy conservation:

δGαβ = 8πδTαβ, (5.12)
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δ(∇αT
αβ) = 0, (5.13)

where ∇α denotes the covariant derivative, Gαβ is the Einstein tensor and Tαβ is the

stress energy tensor. The prefix δ represents Eulerian perturbations and is related to

the Lagrangian perturbations ∆ through the Lie derivative [154], ∆ = δ + Lξ, given

the Lagrangian displacement vector ξα of the fluid.

We employ the same convention of the perturbed metric as in [40, 155], defined in

the Regge-Wheeler gauge [124]:

δgαβdx
αdxβ =−

∑
ℓ,m

[
eνrℓH0dt

2 + 2iωrℓ+1H1dtdr + eλrℓH2dr
2 + rℓ+2KdΩ2

]
eiωtYℓm.

(5.14)

Here (H0, H1, H2, K) are functions of r, and Yℓm are the spherical harmonics. The ra-

dial parts of the expansion depend on the index ℓ, which is suppressed for conciseness

in the following expressions. This applies to all the radial parts of the expansions in

spherical harmonics.

The stress energy tensor takes the same form as [73]. One major assumption about

the perturbed density and radial pressure is the adiabatic relation

∆pr =
γpr
ρ+ pr

∆ρ, (5.15)

where γ is the adiabatic index, and is assumed to be

γ =
ρ+ pr
pr

(
∂pr
∂ρ

)
s

=
ρ+ pr
pr

(
∂pr
∂ρ

)
eq
. (5.16)

The subscript ‘s’ represents an adiabatic derivative while the subscript ‘eq’ denotes
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the derivative of the background pr against ρ. This essentially means the EOS remains

a single variable function in the dynamical timescale. The Lagrangian displacement

vector is defined as

ξα∂α =
∑
ℓ,m

rℓ−1eiωt
[
e−λ/2WYℓm∂r −

V

r

(
∂Yℓm
∂θ

∂θ + csc2 θ
∂Yℓm
∂ϕ

∂ϕ

)]
, (5.17)

where V and W are functions of r.

Using Eqs. (5.12)–(5.17), we arrive at the set of equations governing the pulsations:

H ′
1 =

[
4π(ρ− pr)e

λr − 2meλ

r2
− ℓ+ 1

r

]
H1 +

eλ

r
K +

eλ

r
H0 −

16π(ρ+ pr)

r
eλ (1− σ̄)V,

(5.18)

K ′ =
ℓ(ℓ+ 1)

2r
H1 +

(
ν ′

2
− ℓ+ 1

r

)
K − 8π(ρ+ pr)

eλ/2

r
W +

1

r
H0, (5.19)

W ′ =reλ/2(1− σ̄)K +

(
−ℓ+ 1

r
+

2σ̄

r

)
W +

re(λ−ν)/2

γpr
X +

reλ/2

2
H0 −

ℓ(ℓ+ 1)

r
eλ/2(1− σ̄)V,

(5.20)

X ′ =
ρ+ pr

2
eν/2

[
rω2e−ν +

ℓ(ℓ+ 1)

2r
(1− 2σ̄)

]
H1 +

ρ+ pr
2

eν/2

[(
3

2
− 2σ̄

)
ν ′

− (1− 6σ̄)
1

r
− 4σ̄2

r

]
K − ρ+ pr

r
e(λ+ν)/2

[
4π(ρ+ pr) + ω2e−ν − F

]
W

− 1

r

(
ℓ− 2

ρ+ pr
γpr

σ̄

)
X +

ρ+ pr
2

eν/2
(
1

r
− ν ′

2

)
H0 +

ℓ(ℓ+ 1)eν/2p′r
r2

(1− σ̄)V +
2eν/2

r
S,

(5.21)

where X is defined by
∑

ℓ,m r
ℓXYℓme

iωt = −eν/2∆pr, the overbarred anisotropy pa-

rameter is defined by σ̄ = σ/(ρ + pr)
1, the Eulerian perturbation of the anisotropy

1Note that σ̄ ≪ 1 in the Newtonian limit.
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parameter, S, is defined in

∑
ℓ,m

rℓSYℓme
iωt = δσ, (5.22)

and is related to other perturbation variables by

S =−

[(
∂σ

∂pr

)
eq
+ (ρ+ pr)

(
A

p′r
+

1

γpr

)(
∂σ

∂ρ

)
eq

]
e−λ/2p′r

r
W

−

[(
∂σ

∂pr

)
eq
+
ρ+ pr
γpr

(
∂σ

∂ρ

)
eq

]
e−ν/2X −

(
∂σ

∂µ

)
eq
e−λH0, (5.23)

F =e−λ/2

{
r2

2

(
e−λ/2ν ′

r2

)′

− e−λ/2

[(
6

r2
− 2ν ′

r

)
σ̄ − 2

r2

(
rσ′

ρ+ pr

)
− 4

r2
σ̄2

]}
.

(5.24)

Here, A is the relativistic Schwarzschild discriminant, which we take to be zero due

to our assumption on γ (i.e., assuming the EOS is a single variable function of pr),

namely

A ≡ ρ′

ρ+ pr
− p′r
γpr

= 0. (5.25)

We further assume the partial derivatives on σ follow the equilibrium background

[73], similar to the case of γ. In general, these derivatives should depend on the ther-

modynamic relations in the perturbation timescale [156]. The Einstein field equations

also give H2 = H0 as in the isotropic case. The variables (H0,V ) are related to the

dependent variables through the algebraic relations

[
3m+

(ℓ− 1)(ℓ+ 2)

2
r + 4πr3pr

]
H0 = 8πr3e−ν/2X −

[
ℓ(ℓ+ 1)

2
(m+ 4πr3pr)− ω2r3e−λ−ν

]
H1
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+

[
(ℓ− 1)(ℓ+ 2)

2
r − ω2r3e−ν − eλ

r
(m+ 4πr3pr)(3m− r + 4πr3pr)

]
K − 16πre−λ/2(ρ+ pr)σ̄W,

(5.26)

X = ω2(ρ+ pr)e
−ν/2(1− σ̄)V +

ρ+ pr
2

eν/2H0 −
p′r
r
e(ν−λ)/2W − eν/2S. (5.27)

To summarize how the equations are obtained, Eqs. (5.18) and (5.19) are the (t, θ)-

component and the (t, r)-component of Eq. (5.12) (perturbed Einstein equations).

Equation (5.20) can be obtained by combining the adiabatic relation Eq. (5.15) with

the t-component of Eq. (5.13) (perturbed stress-energy conservation). An alternative

way is also described in Sec. D.2. Equation (5.21) is obtained by eliminating the

H ′
0, K ′ from the r-component of Eq. (5.13) using the (t, r) and (θ, r)-components of

Eq. (5.12). The algebraic relation Eq. (5.26) is obtained by eliminating the H ′
0, K ′

terms with (t, r), (r, r), and (θ, r)-components of Eq. (5.12), and Eq. (5.27) is from

the θ-component of Eq. (5.13). Equation (5.23) comes from the relation

δσ =

(
∂σ

∂pr

)
eq
δpr +

(
∂σ

∂ρ

)
eq
δρ+

(
∂σ

∂µ

)
eq
δµ. (5.28)

See Appendix D.1 for the explicit forms of the perturbed Einstein equations and

perturbed stress-energy conservation components. Also, pay attention that the per-

turbation variables in the appendix have been rescaled according to Eq. (D.10).

5.2.2 Solving the eigenvalue problem

To solve for the QNMs, we integrate Eqs. (5.18)–(5.21) numerically to obtain the

perturbed solution of the NS interior with some trial complex frequency ω. We then

continue the integration of the governing equations in the exterior region, namely Zer-

illi’s equations [40] (also check [157] for amendments of several typos), after matching
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the boundary conditions described below to a far-field region. We then match the

numerical solutions with the purely outgoing condition, which is only satisfied by a

discrete subset of ω’s in the complex plane. To locate these eigenvalues, we employ a

shooting method with the ‘Mueller’s method’ as the root-finding scheme.

We begin the integration near the stellar center. Assuming the solutions are regular

yields the following constraints:

H
(0)
1 =

16π

ℓ(ℓ+ 1)
(ρ(0) + p(0)r )W (0) +

2

ℓ+ 1
K(0), (5.29)

X(0) =(ρ(0) + p(0)r )eν
(0)/2

{[
4π

3
(ρ(0) + 3p(0)r ) +

2σ(2)

ρ(0) + p
(0)
r

− ω2e−ν(0)

ℓ

]
W (0) +

K(0)

2

}
,

(5.30)

S(0) =0, (5.31)

where the superscript (n) denotes the coefficient of the nth order expansion of the

quantity in series of r about the stellar center. Note that in order to have a regular

solution at the center, the EOS is restricted by S(0) = 0. The second-order expan-

sion is not necessary as long as we start the integration at a sufficiently small r.

Nevertheless, we provide the explicit form of it for reference:

H
(2)
1 =

[
−ω

2e−ν0

14
+

π

63
(58ρ(0) − 114p(0)) +

8π

7

σ(2)

ω2e−ν0

(
1− 1

c
(0) 2
s

)]
K(0) − 48π

7ω2e−ν0
S(2)

+

[
−2π

7
ω2e−ν0 +

16π2

63
(19ρ(0) − 15p(0))− 16π2

21

1

c
(0) 2
s

(ρ(0) + 3p(0))

]
(ρ(0) + p(0))W (0),

(5.32)

K(2) =

[
4π

7

(
ρ(0) − 2p(0)

)
− 2π

7

(
ρ(0) + p(0)

)
c
(0) 2
s

− 2ω2e−ν0

21

]
K(0)

+ ω2e−ν0
(
ρ(0) + p(0)

)(
−8π

21
+

2π

7c
(0) 2
s

)
W (0), (5.33)
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W (2) =
1

7

[
1 +

1

c
(0) 2
s

+
3

ω2e−ν0

σ(2)

ρ(0) + p(0)

(
1− 1

c
(0) 2
s

)]
K(0)

+

[
4π

7

(
2ρ(0) + p(0)

)
+

8π

21c
(0) 2
s

(
ρ(0) + 3p(0)

)
− ω2e−ν0

7c
(0) 2
s

+
σ(2)

ρ(0) + p(0)

(
1 +

1

c
(0) 2
s

)]
W (0),

(5.34)

X(2) =C1K
(0) + C2W

(0) + C3S
(2), (5.35)

where

C1 =e
ν0/2

(
ρ(0) + p(0)

){π
7

(
ρ(0) − 7p(0)

)
− ω2e−ν0

28c
(0) 2
s

− 2π

7c
(0) 2
s

(
ρ(0) + 2p(0)

)
+

σ(2)

ρ(0) + p(0)

(
−4

7
+

1

7c
(0) 2
s

+
4π

7ω2e−ν0

)(
1− 1

c
(0) 2
s

)(
ρ(0) + 3p(0)

)
+

6

7ω2e−ν0

(
σ(2)

ρ(0) + p(0)

)2(
1− 1

c
(0) 2
s

)}
, (5.36)

C2 =
(
ρ(0) + p(0)

)
eν0/2

{
40π2

63

[
(ρ(0))2 − 9(p(0))2

]
− 16π2

105c
(0) 2
s

(
6ρ(0) + 11p(0)

) (
ρ(0) + 3p(0)

)
− πω2e−ν0

7

(
ρ(0) − 7p(0)

)
+

2π ω2e−ν0

21c
(0) 2
s

(
2ρ(0) + 3p(0)

)
+
e−2ν0ω4

28c
(0) 2
s

− σ(2)

ρ(0) + p(0)

[
8π

21

(
8ρ(0) − 3p(0)

)
+

4π

105c
(0) 2
s

(
ρ(0) − 39p(0)

)
+

2ω2e−ν0

7c
(0) 2
s

]
+ 2

(
σ(2)

ρ(0) + p(0)

)2(
1 +

1

c
(0) 2
s

)
+

2σ(4)

ρ(0) + p(0)

}
(5.37)

C3 =
4eν0/2

7

[
2− 6π

ω2e−ν0
(ρ(0) + 3p(0))− 9

ω2e−ν0

σ(2)

ρ(0) + p(0)

]
, (5.38)

and c
(0) 2
s = γp(0)/(ρ(0) + p(0)).

Note that Eq. (5.31) combined with Eq. (5.23) effectively places an extra constraint

on σ:

(
∂σ

∂x

)
eq

= O(r2), (5.39)
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where x represents (pr, ρ, µ). This is similar to how the background structure equation

(Eq. (5.7)) restricts σ to go as r2 at the center (at least r to avoid irregularity). The

H anisotropy model in Eq. (5.10) is modified from the original form in [68] to satisfy

the above condition.

At the surface, the vanishing Lagrangian pressure perturbation gives X(R) = 0. The

interior solution is then matched with the metric perturbation in vacuum at the stellar

surface. The exterior region is solved by Zerilli’s method described in [40, 157].

5.3 Numerical results

In this section, we provide additional numerical data of the QNMs computed for

the EOSs and anisotropy models shown in the main text. We demonstrate that the

anisotropy has a small effect on the real part of the frequency, even though it changes

the stability of the mode.

In Fig. 5.3, we show the real and imaginary parts of the QNM frequencies for the first

six ℓ = 2 modes of the Poly-H model. The real part of the frequencies of the isotropic

and the anisotropic case is of similar values for all the modes. For the isotropic case,

the imaginary part of the modes is all above zero and decreases with the mode order.

Meanwhile, that of the anisotropic case does not show a monotonic behavior and can

become negative.

We also show the frequencies obtained by the Cowling approximation in the same

figure (see Appendix D.3 the procedure for reducing to this limit). The f -mode

frequencies show 20−30% deviations from the full GR real frequencies. The percent-

age deviation decreases if we go to higher radial order p-modes. In the case of the
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Figure 5.3: The real (top panel) and imaginary (bottom panel) frequencies of the first
six ℓ = 2 QNMs of the Poly-H model with central density 7.455×1014 g cm−3. The
left panel has β = 0 and the right panel has β = 10. We also present the normal mode
frequencies computed using the relativistic Cowling approximation (RCA) described
in [73].



89

 0

 1

 2

 3

 4

 5

 6

 4×1014  8×1014  1.2×1015  1.6×1015

R
e(
𝑓)

 (k
H

z)

𝜌0 (g cm-3)

𝛽 = 0.0
𝛽 = -10.0
𝛽 = 10.0

-3

-2

-1

 0

 1

 2

 3

 4×1014  8×1014  1.2×1015  1.6×1015

Im
(𝑓

) (
H

z)

𝜌0 (g cm-3)

𝛽 = 0.0
𝛽 = -10.0
𝛽 = 10.0
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ℓ = 2 QNM frequencies of Poly-H model at different central densities. The solid lines
with open squares represent the f -modes and the dotted lines with crosses are the
p1-modes. The asterisk symbols are used to indicate the central density corresponding
to the maximum mass. For the β = 0 case, the central density corresponding to the
maximum mass is 2.545× 1015 g cm−3, which is outside the plotting range.

p5-modes, the deviation is down to a 1% level.

In Fig. 5.4, we further provide the ℓ = 2 QNM frequencies of the Poly-H model

at different central densities. We consider the f -modes and p1-modes with β =

−10, 0, 10. Focusing on the real part (left panel), the frequency increases with central

densities in the isotropic case, while the two anisotropic cases do not show monotonic

behavior. For β = −10, both the f -mode and p1-mode real frequencies increase with

central density initially and drop after a certain central density. In particular, the

turning point of the f -modes encounters the minimum of the p1-mode, which is a clear

feature of avoided crossings [158]. For the imaginary part, the f -mode frequencies are

all positive, with a rise initially and a steep drop after the central density passes the

avoided crossing. On the other hand, the p1-mode crosses zero and becomes negative

in certain ranges of central densities.

In the case with β = 10, the real part of the f -mode and p1-mode frequencies decrease
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Table 5.1: Numerical data of the first three ℓ = 2 QNM frequencies of the anisotropic
NS models. The central densities of the Poly models and the SLy4 models are set at
7.455× 1014g cm−3 and 9.88× 1014g cm−3 respectively.

Model β M (M⊙) Re(ω) (kHz) Im(ω) (Hz)
f p1 p2 f p1 p2

Poly 0 1.40 1.574 4.344 6.784 0.550 5.93× 10−2 1.95× 10−4

Poly-H −10.0 2.18 1.945 4.364 6.104 2.262 −1.573 1.212
Poly-H 10.0 1.10 1.233 4.215 6.948 0.156 −0.259 −0.265

Poly-BL −0.5 1.74 1.791 4.347 6.561 1.231 0.351 7.80× 10−3

Poly-BL 0.5 1.16 1.325 4.324 6.931 0.221 −2.01× 10−2 −3.59× 10−3

SLy4 0 1.40 1.934 6.304 9.348 0.830 3.77× 10−2 2.25× 10−5

SLy4-H −10.0 2.52 2.527 5.715 7.672 5.561 13.24 −11.78
SLy4-H 10.0 1.06 1.322 6.147 8.877 0.129 −1.082 −0.361

SLy4-BL −0.5 1.75 2.226 6.070 9.029 2.046 0.186 0.121
SLy4-BL 0.5 1.16 1.556 6.437 9.109 0.274 −3.90× 10−2 −1.24× 10−2

for high central density stars. Again, the p1-mode imaginary frequency becomes

negative in a wide range of central densities. The f -mode real frequency approaches

zero when the star is near the maximum mass, indicated by the red asterisk symbol.

The imaginary part of the f -mode stays positive but tends to decrease towards zero.

This suggests that the f -mode is moving towards the origin in the complex plane

as the central density increases towards the value corresponding to the maximum

mass. Understanding how general this phenomenon requires more data on the QNM

frequencies versus central densities with different EOSs, which is some planned future

work.

More numerical data are provided in Table. 5.1, including the real and imaginary

frequencies of the first three ℓ = 2 QNMs. The β = 0 case of the SLy4 EOS has been

checked against numerical data available (e.g., [159]), and attains good agreement.

We see that with the same ρ–pr relation, the real part of the frequencies is not

very sensitive to the change in β, while the imaginary part can change by orders of

magnitude and even change the sign.
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5.4 Unstable quasinormal modes

Here we show the results of the ℓ = 2 QNMs of anisotropic NS models where the p-

mode frequencies can have a negative imaginary part for a certain range of anisotropic

parameters. These modes are interpreted as unstable QNMs. We performed our

calculations using two independent numerical codes and found consistent results with

a difference of ∼ 1%.

In Fig. 5.5, we present the imaginary parts of the QNM frequencies of the f -mode, p1-

mode, and the p2-mode against β for various combinations of the ρ–pr EOS (Poly and

SLy4) and the anisotropy EOS (H and BL models). First, we see that the f -modes

all have positive imaginary frequencies. Next, the imaginary part of all modes in the

isotropic limit (β = 0) is also positive, which serves as a sanity check of the numerical

results, as the governing equations readily reduce to the isotropic case given in [155,

157]. As β varies away from 0, the imaginary parts of the p-modes cross zero and

become negative in a certain range of β. For the p2-modes of the Poly-H model, it

even crosses zero 3 times within the range of β we consider. Similar zero-crossing

behaviors are also found in higher radial order p-modes. This illustrates that there

are multiple unstable p-modes within the anisotropic NSs. For a particular value of

β, even the lowest order modes being stable does not necessarily mean the star is

stable. In principle, one needs to solve for an infinite number of p-modes to check for

stability.

We further illustrate the instability in contrast to the isotropic case, in which a smooth

sequence of QNMs is forbidden to cross the real axis [151, 160]. We focus on the p1-

mode frequencies and present in Fig. 5.6 a set of anisotropic NS models with different

β in the complex frequency plane. We start increasing β from the corresponding lower
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Figure 5.5: The imaginary part of the first three ℓ = 2 QNM frequencies, f = ω/(2π),
against the anisotropy parameter β for different combinations of the EOS (Poly vs
SLy4) and the anisotropic model (H vs BL). The p-mode frequencies are scaled up
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zero-crossings. The central densities of the Poly models and the SLy4 models are
set at 7.455× 1014g cm−3 and 9.88× 1014g cm−3 respectively, such that the isotropic
(β = 0) model has a mass of 1.40 M⊙.
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bound value in the direction indicated by the arrow in each sequence of models. The

frequency crosses the real axis for a number of times depending on the EOSs. In the

case of isotropic stars, these crossings are forbidden by the equation of motion [151]

as we describe in more detail in the subsequent paragraphs.

We next perform a further analytic study by following [151] that was devised for

variational principle. They showed, in the isotropic case, that the QNM frequency

can be related to the eigenfunctions as an integral formula consisting of pairs of the

perturbation variables, schematically written in the form

ω2

∫ ∞

0

I1dr =

∫ ∞

0

I2dr + I3(R) + I4(∞), (5.40)

where ω is the QNM frequency and I1 to I4 are sums of pairs of the perturbation

variable eigenfunctions, which are in general complex. The term I3 is evaluated at
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the stellar radius R while I4 is evaluated at infinity. In I1 to I3, the perturbation

variables are expressed in complex conjugate pairs such that they are guaranteed to

be real. That is, any pair of complex variables, a and b, are either paired as a∗a,

b∗b, or ab∗ + a∗b, where the asterisk sign denotes complex conjugation. For I4, the

outgoing wave condition for QNMs makes its imaginary part non-zero, except when ω

is purely imaginary. As a result, ω cannot be real unless there is no outgoing wave at

infinity, meaning that the QNM frequencies cannot cross the real axis in the complex

frequency plane except at the origin. For the anisotropic case, we find the following

extra terms on the right-hand-side of Eq. (5.40):

−ω2

∫ R

0

J1dr +

∫ R

0

J2dr + J3(R), (5.41)

where J1 and J3 are real functions formed by paired perturbation variables similar

to I1, while J2 is in general complex. All the terms J1 to J3 scale with β (see

Appendix D.4 for the explicit forms of these terms). Note that the boundary term,

J3(R), is zero in the anisotropy models we consider. As a result, ω2 is allowed to

cross the real axis for β ̸= 0.

5.4.1 Implications of the instability

The implication of the instability still requires further analysis. We can expect the

nonlinear effects will become important as the unstable mode amplitude grows ex-

ponentially with time, causing the linearized theories to eventually break down. A

feedback mechanism is expected to explain the source of energy for the growth of

QNMs while gravitational waves carry away the energy. This should cause some

permanent changes in the stellar background and/or the anisotropy model while ex-
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tracting the energy for the growth.

We can draw some insights from the Chandrasekhar-Friedman-Schutz (CFS) insta-

bility of a rotating star [130, 161], in which a QNM is seen as a prograde mode in

the inertial frame, but retrograde in the co-rotating frame, thus having opposite an-

gular momenta (see e.g., [13]). When it loses positive angular momentum through

gravitational wave emission, it is driven to even larger amplitudes since the mode

carries a negative angular momentum. In this case, the energy source that drives the

instability comes from the rotation of the background star. Such an effect cannot be

captured without considering the feedback on the background rotation.

In the setup of this study, there is no background rotation to source the growth in

the mode amplitude. However, some permanent changes to the background star are

expected for the mode to spontaneously increase its amplitude. One possibility is

that the anisotropy will decay in a short time due to certain feedback mechanisms

from the unstable mode, which can only be obtained through calculations beyond

linearized perturbation theories. This may restrict the form of the anisotropy models

that can be sustained in a NS.

5.5 Chapter Summary

In this chapter, we discuss the modeling of spherically symmetric NSs with anisotropic

pressure. We consider the H-model modified from Horvat et al. [68] and the BL-model

by Bowers and Liang [63] for the anisotropy parameter σ, and the Poly model [73]

and SLy4 model [111] for the relation between radial pressure and energy density.

With that, we can construct the static equilibrium background stars by solving the

Einstein field equations.
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Then, we proceed to consider the non-radial time-dependent perturbations of the

background models. We first provide a formulation derived from the perturbed Ein-

stein field equations and perturbed stress-energy conservation that is consistent with

the existing formulas in the Cowling limit in [73]. We numerically solve the equations

and discover a new instability in the QNMs found within some anisotropic models:

the p-mode frequencies with a negative imaginary part. This means that the am-

plitude of those modes grows over time, while they are dissipating energy via the

emission of GWs.

We next look into the unstable p-modes by considering the integral relation between

the eigenfrequencies and the eigenfunctions, which we derive based on the isotropic

case in [151]. We demonstrate that while the integral relation suggests that these

pulsating unstable QNMs cannot exist in the isotropic case, they are allowed when

there is non-zero anisotropy.

An extension of this study is to derive the feedback mechanism associated with the

growth of the mode on the background quantities. We anticipate that the background

has to evolve as energy is taken to cause the pulsation mode to grow. This requires

us to find the work used to drive the instability, which is expected to be derived from

a variational principle beginning with perturbing the integral formula relating the

eigenfunctions and eigenfrequencies [151] (i.e., Eqs. (5.40) and (5.41)).

Another future direction is to study a wider variety of anisotropic models to assess

the stability of the f -modes. So far in our models, the f -modes are always stable for

all β. It is worth exploring whether there are any underlying reasons that this mode

cannot have a negative imaginary frequency. Or if it is simply because our models do

not cover enough parameter range.
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Chapter 6

Testing gravity with white dwarf

binaries

This chapter discusses the prospects of testing gravity theory with DWD binaries

within the Milky Way with LISA. GW signals from galactic DWDs have the potential

to place stringent bounds on certain theories that deviate from GR in less compact

binaries, such as through scalar radiation. Nevertheless, the orbital evolution of these

systems is also affected by various astrophysical effects, such as self-rotations, tidal

interactions, and magnetic interactions, which add complexity to the gravity tests. In

this work, we employ the parametrized post-Einsteinian (ppE) model to capture the

leading beyond-GR effect on the signal and estimate the measurement uncertainties

using the Fisher information matrix. We then focus on the astrophysical effects

that can be confused with the deviation from predictions due to alternative gravity

theories. These effects include the tidal deformation, and the spin of the WDs, as

well as the magnetic field. We demonstrate that if these astrophysical effects are not

properly modeled, they will cause significant systematic errors in our measurements

and affect the ability to constrain alternative theories.

In the following, we first discuss the various factors that can affect the orbital evolution

of DWD systems in Sec. 6.1. We also introduce the ppE model for the non-GR effects

on the orbital phase evolution. Next, we go through the method we construct the



98

GW waveforms and analysis the measurement error in Sec. 6.2. Lastly, we apply the

analysis with the ppE model on the specific class of non-GR theory known as screened

modified gravity in Sec. 6.3.

6.1 Factors affecting orbital evolution

The theory of GR predicts the orbital frequency of a binary system evolves at the

2.5PN order in the leading order, effectively meaning that the effective orbital interac-

tion force has a dependence of D−4.5 (D−2.5 higher than the Newtonian gravitational

force for point masses), where D is the orbital separation. Deviations from GR can

cause the orbital evolution rate to differ from the GR predictions and can be captured

by the change of frequency in the GW signal. One can then measure the non-GR

effects from the signal.

The GW frequency evolves over time due to various factors. In detached DWD sys-

tems, GR predicts that the leading point-mass contribution to the radiation reaction

effect goes as

ḟGR =
96

5πM2
ν11/2, (6.1)

f̈GR =
33792

25πM3
ν19/2, (6.2)

where M = (m1m2)
3/5/(m1+m2)

1/5 is the chirp mass, and ν = (πMf0)
2/3 is the PN

parameter proportional to the square of the ratio between the relative velocity of a

binary and the speed of light. The GW frequency f0 is taken to be the initial value

at the start of the observation.

For theories beyond GR, the frequency evolves at a different rate. Testing GR involves
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treating GR as the “null hypothesis” and looking for deviations from its predictions.

The ppE waveform is used to model the deviations due to the leading non-GR effect.

In this model, we write the (initial) time derivatives of the GW frequency as

ḟ0 =ḟGR(1 + γνn), (6.3)

f̈0 =f̈GR

[
1 +

(
1 +

2n

11

)
γνn
]
, (6.4)

where γ is a dimensionless parameter that characterizes the magnitude of the non-GR

effect, and n is the post-Newtonian (PN) order relative to the GR effect. The relation

between γ and the ppE parameter β entering in the gravitational wave phase is given

by Eq. (20) of [162] while the expressions for β in example non-GR theories can be

found in Table I of [162].

As mentioned above, the astrophysical effects also contribute to the frequency evolu-

tion. Up to the leading order of each astrophysical effect, the true waveform would

then have the derivatives of the initial frequency

ḟ
(tr)
0 =ḟGR(1 + γνn +∆), (6.5)

f̈
(tr)
0 =f̈GR

[
1 +

(
1 +

2n

11

)
γνn +

(
1 +

2k

11

)
∆

]
, (6.6)

where ∆ denote the astrophysical contributions as described below, and k is the PN

order of ∆ with respect to the point-mass contribution, namely ∆ ∝ νk. We describe

below several examples of the astrophysical effects.

1. moment of inertia:

The rotation of the WDs can affect the frequency evolution by providing a

channel for orbital energy to dissipate as rotational energy. Following [163],
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assuming that the binary remains synchronous, this effect is given by

∆I =
3I

M3
ν2, (6.7)

where I = I1+I2, is the sum of the moment of inertia of the two WDs, estimated

using Eq. (23) in [164], which provides a fit of the moment of inertia factor as

a function of the mass of the cold WDs. This contributes to a 2PN correction

to the frequency evolution.

2. quadrupole moment:

For DWD systems with synchronized spins, the spin-induced quadrupole mo-

ment Qs can be shown to contribute at 5PN order [76, 163] 1:

∆Qs =
8αη2/5

M4
ν5, (6.8)

where η = m1m2/(m1 + m2)
2, α = (Qs1/m1 + Qs2/m2)/(πf0)

2. Through the

I-Qs universal relation (originally discovered for neutron stars [165–167]) for

WDs [168], it can be written as

Q̄s,i = aĪbi , (6.9)

where Q̄s,i = miQs,i/(πIif0)
2 and Īi = Ii/m

3
i for i = 1, 2, and a = 5.255,

b = 0.4982. The constants a and b are determined by fitting the numerical values

of Ii and Qs,i of a set of cold WD models within the Newtonian framework. The

formalism for determining Qs,i follows [168, 169].

1The numerical factor here differs from these references as Qs is assumed to be constant, while
it goes as Ω2 in our derivation under the assumption that the spin remains synchronous all time,
where Ω is the orbital frequency.
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3. tidal deformability:

Another astrophysical contribution comes from the tidal deformation of the

WDs. Similar to the spin-induced quadrupole moment, the tidally induced

quadrupole moment provides an extra sink of orbital energy to dissipate into,

causing a 5PN correction as derived in [170, 171]:

∆Λ =
39Λ̃

8η2
ν5, (6.10)

where Λ̃ is a weighted average of the individual tidal deformability defined as

[11]

Λ̃ =
8

13

[
[(1 + 7η − 31η2)(Λ1 + Λ2)

+
√

1− 4η(1 + 9η − 11η2)(Λ1 − Λ2)
]
, (6.11)

and Λi = λi/m
5
i , with i = 1, 2, are the dimensionless tidal deformability of

the WDs. The tidal deformability λi serves as the proportionality constant

of the linear relation between the tidally induced quadrupole moment and the

external tidal field from its binary companion (see Sec. 2.4.1). Note that the

tidal effect enters at the same PN order as the spin-induced quadrupole moment

due to the assumption that both WDs are synchronized. The tidal deformability

parameter also enjoys EOS-independent relations with the moment of inertia

and the spin-induced quadrupole moment [168].

4. magnetic field:

The magnetic dipole interaction between magnetized WDs also induces a change

in the orbital decay rate through the magnetic force and the electromagnetic
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radiation [172, 173]. The effect enters at 2PN order, assuming the two WDs

are bare magnetic dipoles. However, in a realistic situation, the plasma around

the WDs will form a magnetosphere under the magnetic field, and the inter-

action between the magnetic dipole moment and the magnetosphere will play

an important role. Assuming the presence of the magnetosphere, the binary

system can form a close electric circuit with finite resistivity. This effect can

be described by the DC circuit model, which was first introduced to describe

the magnetic interaction between Jupiter and its satellite Io [174] and has been

applied to various binary systems including DWDs and neutron star binaries.

To briefly describe the model, an electromotive force is generated by the orbital

motion of the WDs within the magnetosphere and drives a DC current in the

system. The orbital energy is dissipated through the resistivity within the

circuit. Assuming WD1 is magnetized with a surface magnetic field B1, the

model gives [77]

∆B =
5

64
ηζϕ

∆Ω

Ω

µ2
1R

2
2

M6
ν3/2, (6.12)

where ζϕ is the azimuthal twist parameter, ranging from 0 to 1, Ω is the orbital

frequency, ∆Ω is the difference between the spin frequency and the orbital

frequency, and the magnetic moment follows µ1 = B1R
3
1 with RA representing

the radius of the Ath WD. The above effect enters at 1.5PN order.

The above effects enter at different PN orders and therefore scale differently with

the frequency of the source. In Fig. 6.1, we show the sizes of these effects for two

DWD systems of masses (0.6, 0.2)M⊙ and (0.4, 0.4)M⊙. Among ∆I , ∆Λ, ∆Qs , the

moment-of-inertia effect dominates at low frequency due to its 2PN dependence, while
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Figure 6.1: Fractional difference of astrophysical effects relative to the point-particle
contribution on the frequency evolution rate against the gravitational wave frequency
of DWD systems of masses (0.6, 0.2)M⊙ (left) and (0.4, 0.4)M⊙ (right) respectively.
The effects from moment of inertia (MoI), tidal deformation (Tide), spin-induced
quadrupole moment (Qs), and magnetic field (B = 105, 107G) are included.

the tidal effect becomes more important for very close orbits. The effect from spin-

induced quadrupole moment has the same power law dependence as the tidal effect

but is about an order of magnitude smaller. The dissipative effect from unipolar

induction enters at 1.5PN order and has a B2
1 dependence. For WDs with a strong

magnetic field above 105G, it is comparable to or even exceeds that of the rotation

effect. In Fig. 6.1, we also illustrate the potential of this effect in the strong field

case with B1 = 107G. The parameters ∆Ω/Ω and ζϕ are both taken to be 1, denoting

maximal asynchronous rate and twist. As discussed in [77] and references therein,

ζϕ ≳ 1 would cause the flux tube connecting the circuit to break up. This leads to

more complicated situations that are beyond the scope of this study.

Other possible astrophysical effects include the disturbance due to the external bodies,

e.g., the Kozai-Lidov oscillations [175, 176] in a hierarchical triple system, or mass

transfer between the binary [137, 164, 177]. The former can affect the orbital elements

other than the orbital decay rate, like the eccentricity and inclination, and the latter
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has a significant impact on the orbital evolution and may cause an out-spiral. Other

than that, GR contributions to the orbital motion, like the 1PN effect or the spin-spin

interaction [178], can also lead to deviations from ḟGR. These effects have a different

origin from the astrophysical effects mentioned above but can still cause a systematic

error if not properly included. However, these effects are not expected to play an

important role except for very massive WDs [170]. For simplicity, we ignore these

effects.

6.2 Parameter inference

In this section, we quantify the statistical error caused by the detector noise on the

measurement of the non-GR parameter of the ppE model, γ, as well as the systematic

error due to astrophysical mismodeling of the waveform. We use a Fisher analysis that

has been proven to agree well with results from Bayesian Markov-chain Monte-Carlo

analyses for tests of GR with DWDs [74].

6.2.1 Statistical error

We start by introducing the time-domain waveform model for quasi-monochromatic

sources. The strain of the nearly monochromatic GW signal from DWD systems can

be described as

h(t) = A(t) cosΦ(t), (6.13)
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Figure 6.2: (Left) Statistical error on γ for non-GR effects at different PN or-
der n in the ppE waveform model using the DWD listed in the first row of Table
E.1. For comparison, we also present constraints set by the binary BH coalescence
event GW150914, the double pulsar binary PSR J0737-3039, and the GWTC-3 data.
(Right) Similar to the left panel but with different priors on the mass estimate for a
3-year observation.

where A(t) and Φ(t) are given by

A(t) =
√

(F+(t)A+)2 + (F×(t)A×)2, (6.14)

Φ(t) =ΦLISA(t) + ϕ0 + 2πf0t+ πḟ0t
2 + πf̈0t

3/3, (6.15)

ΦLISA(t) =ΦD(t) + ΦP (t), (6.16)

where F+(t), F×(t) are the LISA antenna pattern functions (see, e.g., [179], for the

explicit form) while ϕ0 and f0 are the phase and frequency at t = 0. The plus- and

cross-polarization amplitudes are A+ = A0(1+cos2 ι)/2, A× = A0 cos ι, where ι is the

inclination angle while A0 = 4M5/3(πf0)
2/3/D is the dimensionless amplitude that

depends on the luminosity distance from the source, D, and the chirp mass of the

binary. In our analysis, A0 is fixed by the signal-to-noise ratio (SNR) of the source.
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The Doppler modulation and polarization phases are given by

ΦD(t) =2πfL sin θ cos (2πfmt− ϕ), (6.17)

ΦP (t) = tan−1

(
−F×(t)A×

F+(t)A+

)
, (6.18)

where fm = 1yr−1, L = 1AU. The angles, θ and ϕ, are the ecliptic colatitude and

longitude respectively. The functions F+(t), F×(t) depend on θ, ϕ and the polarization

angle ψ.

For these quasi-monochromatic signals, we can approximate the Fisher matrix using

a time-domain integration [33, 144, 148, 180]:

Γij =4Re
[∫ ∞

0

df
(∂ih̃)

∗∂jh̃

Sn(f)

]
,

≈ 2

Sn(f0)

∫ Tobs

0

dt (∂ih∂jh) , (6.19)

where the inner product ⟨..|..⟩ is introduced in Sec. 2.6.1, h̃ represents the Fourier

transform of the signal h, and ∂i represents the partial derivative with respect to the

waveform parameter θi. The power spectral density, Sn(f), of LISA follows from [181].

Here, the ppE model contains 9 parameters in total: θ = {A0, ϕ0, ψ, ι, θ, ϕ, f0,M, γ}.

For signals with long integration time, we can further separate the fast-oscillating

part from the slow-evolving part to reduce the computation time [144]:

Γij ≈
1

Sn(f0)

∫ Tobs

0

dt
(
∂iA∂jA+A2∂iΦ∂jΦ

)
. (6.20)

To make this approximation, we have assumed that the fast oscillating parts cosΦ(t) ≈

cos (2πf0t+ ϕ0) and sinΦ(t) ≈ sin (2πf0t+ ϕ0) can be integrated separately from the

slowly evolving parts. We further assume that
∫ Tobs
0

dt cos2 Φ(t) =
∫ Tobs
0

dt sin2 Φ(t) =
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1/2 and
∫ Tobs
0

dt cosΦ(t) sinΦ(t) = 0. Similarly, the SNR is given by

||h|| ≈

√
1

Sn(f0)

∫ Tobs

0

dtA2. (6.21)

Using the ppE waveform, we compute the statistical uncertainties of γ by first ig-

noring the astrophysical effects. For each chosen value of n, we estimate the 1-σ

uncertainty as the diagonal component of the inverse of the Fisher matrix as de-

scribed in Sec. 2.6.3.

In Fig. 6.2, we show the statistical uncertainties of γ for theories with different n

for one simulated detached close DWD systems used in [74] whose parameters are

listed in Table E.1 while the fiducial value of γ has been set to 0. The left panel

shows results for Tobs of 3 and 6 years respectively. The statistical uncertainties have

scaling of TD
obs, where D lies between −3.5 and −5 (see Appendix E.1), and hence

6 years of observation provides better constraint by an order of magnitude. The

constraints on γ by some other observations are included for comparison. The first

detected binary BH merger event, GW150914, gives a tighter bound on γ for positive

n due to the higher frequency of the signal. Meanwhile, the binary pulsar constraint

from PSR J0737-3039 provides better bounds than DWDs at almost all PN orders,

especially for more negative n. The updated bounds on γ from the third gravitational

wave transient catalog (GWTC-3) [182] for n = −1 and 0 to 2 are also shown. The

mapping between the measured bounds in [182] and the ppE parameter β is given

in Eqs. (10) and (11) of [183], while that between β and γ is described in Sec. 6.1

(below Eq. (6.4)). From the figure, the GWTC-3 provides a better bound at n = −1

and similar bounds for other values compared to GW150914.

Among the detached DWD systems in the LISA verification binaries [184], the indi-
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vidual masses of the WDs have been measured up to ∼3% (e.g., J0651+2844 [185]).

Assuming we have electromagnetic counterparts or other means of measurement (e.g.,

GW measurements in other frequency bands [186]), the GW signal can provide better

bounds on γ. In the right panel of Fig. 6.2, we place priors of different r.m.s. width

on the chirp mass (1%, 0.1% of the fiducial value respectively) following [74]. Because

we are using a Fisher analysis, we impose Gaussian priors through the replacement

Γij → Γij + δij/σ
2
i [187, 188] (see also Sec. 2.6.3), where δij is the Kronecker delta

function and σi is the r.m.s. width of the ith parameter. Note that the repeated

indices are not summed over. We then computed the statistical error of γ for an

observation time of 3 years. We find that, as expected, imposing tighter priors can

improve the bounds on γ. In particular, a precise measurement of the chirp mass up

to 0.1% would result in more stringent constraints than the pulsar for some n. This

result is similar to that in [74] for the constraints on the coupling parameters of a

specific class of scalar-tensor theories.

6.2.2 Systematic error

The astrophysical effects introduced in Sec. 6.1 causes deviation of ḟ (tr)
0 and f̈

(tr)
0

(Eqs. (6.5) and (6.6)) from the approximate model used in Sec. 6.2.1. In this sub-

section, we focus on estimating the systematic errors on γ caused by neglecting these

effects in the waveform model following [189]. We first briefly review the formalism

and apply it to each astrophysical contribution to the waveform.

We assume that the true waveform signal that includes all contributions from the

astrophysical effects, as well as the non-GR effects, is given by

h0(t) = A0(t) cosΦ0(t), (6.22)
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while the approximate waveform model we use for parameter estimation is

hA(t) = AA(t) cosΦA(t). (6.23)

The true waveform parameters are denoted by θ0. In particular, Φ0(t) is expressed

as Eq. (6.15) with ḟ0 and f̈0 replaced with ḟ
(tr)
0 and f̈

(tr)
0 while the approximate

waveform is described in Eq. (6.13). Using the latter waveform model, the measured

parameters, denoted by θA, would then have a systematic shift from the true values

estimated by the formula2

∆θisys =
(
Γ−1
)ij ⟨∂jh|∆A cos(Φ)−A∆Φsin(Φ)⟩|θ=θA , (6.24)

where ∆A = A0(t;θA)−AA(t;θA) and ∆Φ = Φ0(t;θA)−ΦA(t;θA). Notice that all the

amplitudes and phases are evaluated at the parameter values estimated by the approx-

imate waveform. As mentioned in [189], this formula is valid for ∆θisys∆θ
j
sys∂ijΦ ≪ 1.

Using the source parameters of “sim.” in Table E.1, we compute systematic errors

caused by the astrophysical effects listed in Sec. 6.1 and show the results in Fig. 6.3.

Since the astrophysical effects depend on the individual masses while we only give the

chirp mass in the table, we vary the binary’s mass ratio, q 3, and fix n = −1. Without

priors on M, the statistical error dominates over the systematic error contribution

from the astrophysical effects we consider. To impose better constraints on γ, priors

on M can be imposed, assuming that we are given independent measurements on

the masses of the binary constituents, as described in Sec. 6.2.1. For systems with

a large mass ratio, the systematic error becomes significant enough to affect the

2The original formula in [189] is in frequency domain while we extended it to time domain.
3Note that the original simulated source has a fixed mass ratio. Here, we show how the astro-

physical effects depend on it by varying its value between 0 and 1.
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Fig. 6.2

.

constraints on γ if the chirp mass is independently measured up to 1% level or below,

and therefore should not be ignored in the waveform model.

6.2.3 Parameter estimation with astrophysical effects

As shown above, the astrophysical effects can affect our ability to constrain γ. To

place accurate bounds, we need to perform parameter estimation that accounts for

these additional effects. In this subsection, we briefly discuss how ∆γ gets affected

when we include the additional astrophysical parameters to the search parameter set.

The information about the orbital evolution is contained in the frequency evolution

of the signal, i.e., within ḟ0 and f̈0. In the approximate model, we relate (ḟ0, f̈0)

to (M, γ) through Eqs. (6.3) and (6.4). When we include the astrophysical contri-

butions, the waveform model depends on additional parameters like the moment of

inertia or the magnetic field. In principle, higher-order derivatives of the frequency

need to be measured in order to determine those. However, that can be challenging
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given the limited observation time and sensitivity of the detector. We are then prone

to having strong degeneracies between the parameters.

On the other hand, some of the astrophysical parameters have scaling relations with

the WD masses. We can therefore impose priors on these additional parameters

to break the degeneracies. As an example, we consider the statistical error on γ,

denoted by ∆γI , with a waveform model containing the original 9 parameters and

the total moment of inertia of the WDs through a 10×10 Fisher information matrix.

For different n, the fractional difference (∆γI −∆γ)/∆γ (where ∆γ is the statistical

error on γ for 9 parameters without the total moment of inertia) ranges from 15%

to 40% if we assume a Gaussian prior of 50% of the fiducial value of I (see Fig. 6.4).

The result converges to values slightly smaller than ∆γ as we impose tighter priors.

This difference is due to the change in the phase of the signal by including ∆I , which

causes a change in the Fisher matrix elements. This causes a non-vanishing difference

between ∆γI and ∆γ even if we use an extremely tight prior. Still, the result shows

that if we have a certain knowledge of the astrophysical parameters, the constraints

on γ are expected to be close to the 9-parameter case.

6.3 Application to screened modified gravity

The SMG is a class of scalar-tensor theories that has a screening mechanism forcing

deviations from GR significant only on a large scale, allowing them to pass some of

the most stringent constraints from solar system tests while being able to explain

cosmological scale observations [190, 191]. Since the screening mechanism works less

efficiently for WDs than NSs or BHs, WD binaries may place more stringent bounds

on the theory than binary neutron stars or BHs.
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The action of a scalar-tensor theory in the Einstein frame is written as

S =

∫
d4x

√
−g
[
M2

Pl
2
R− 1

2
(∇Φ̃)2 − V (Φ̃)

]
+ SM, (6.25)

where MPl =
√

ℏ/(8π) is the reduced Planck mass, R is the Ricci scalar, V (Φ̃) is

the bare potential for the scalar field Φ̃, and SM is the matter action. Note that the

matter fields are minimally coupled to the Jordan frame metric, ḡαβ, which is related

to the Einstein frame metric gαβ through a conformal coupling ḡαβ = A2(Φ̃)gαβ.

The scalar field follows the Klein-Gordon equation

□Φ̃ =
∂Veff

∂Φ̃
, (6.26)

where □ is the Einstein frame d’Alembertian, Veff is the effective potential that de-

pends on the bare potential and the conformal coupling A2(Φ̃) (see [190] for details).

The minimum of Veff represents the physical vacuum and gives the vacuum expecta-

tion value of the field ΦVEV. Within SMG theories, this Veff has density dependence
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Figure 6.5: Statistical and systematic error on the non-GR parameter of SMG for
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such that the field around the vacuum acquires an effective mass that increases with

density.

At the leading PN order (−1PN), these theories introduce a non-GR effect scaling

inversely as the compactness of the stars [190]:

γ =
5

192
η2/5

(
ΦVEV

MPl

)2(
1

C1

− 1

C2

)2

, (6.27)

where CA = mA/RA is the compactness of the Ath WD. Using Eq. (6.27), we can

convert the measurement errors of γ into bounds on the SMG non-GR parameter.

We show the results for systems with orbital parameters given in Table E.1, but of

various mass ratios, q = m1/m2, in Fig. 6.5. Due to the dependence on compactness,

both the statistical error and systematic error increase with q. Similar to the results

in Sec. 6.2.2, the statistical error reaches the level of the current observation bounds

set by the pulsar-WD binary PSR J1738+0333 [192, 193] for tight priors on the chirp

mass of ∼0.1%. If the DWD system has q < 0.3, the GW signal can potentially

improve the bound on ΦVEV/MPl. Even in those optimal cases, the astrophysical
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effects still need to be accounted for in the waveform model.

6.4 Chapter summary

In this chapter, we study the possibility of testing GR with GW signals from galactic

DWD systems using LISA in the presence of various astrophysical effects. We employ

the ppE waveform model to parameterize the non-GR effect with γ at different PN

order n. First, we illustrate the ability of LISA to constrain γ with the ppE waveform

without the astrophysical effects by computing the Fisher matrix. Compared to GW

signals from binary BH coalescence, the DWD signal can provide more stringent

bounds at negative PN order like that of pulsar observations. However, it requires a

tight prior on the chirp mass of the system in order to reach the same level as the

most stringent binary pulsar bounds.

We then consider the astrophysical effects on the parameter estimation, namely the

rotation effect, tidal effect, spin-induced deformation, and dissipation through the

unipolar induction within the magnetosphere. Assuming that the waveform model is

missing these effects, we estimate the systematic shift of the measured γ and show

that it becomes significant when the required accuracy of γ is near that of the binary

pulsar constraint. In other words, one cannot leave out these effects in the waveform

model.

Lastly, we apply the results of ppE model to constrain the SMG theory. The non-GR

parameter, ΦVEV/MPl has inverse dependence on the compactness of the stars of the

binary, making DWDs a good type of source to test this theory. Our results however

show that using DWD to pose better constraints than the current bound from PSR-

WD binaries is challenging as it requires a tight prior and accurate modelling of
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several astrophysical effects involved.

Regarding future work, we plan to extend the study of testing GR with other potential

LISA GW sources with smaller spacetime curvature (see Appendix E.2) that are also

promising in testing theories with screening mechanisms like the SMG. However, the

population of some of these sources is still poorly known. Further studies on the

population models and the orbital dynamics are required for such systems.
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Chapter 7

Probing crystalline quark matter

within the neutron star core

This chapter is based on the results reported in [21]. We study the prospects of using

the resonance effect of dynamical tide on the GW signals to probe the crystalline QM

inside the NS core. We focus on the i-mode of an HS with a CCS phase core [22,

28, 44]. This i-mode originates from the density and the shear modulus discontinuity

between the QM core and HM envelope. We demonstrate that this mode can be

resonantly excited during the inspiral phase of a binary NS merger, leaving a shift in

the GW phase and time before coalescence in the GW signal [18, 194].

We then use a Fisher analysis to estimate the detectability of the shift for various HS

models and find that the mode can be detected even with the current generation of

GW detectors, if the CCS phase shear modulus is large enough and the phase transi-

tion happens at low pressure. Since the i-mode depends strongly on the properties of

the quark-hadronic matter interface, detection of such a mode would provide strong

evidence of deconfinement within the HSs.

In the following, we first introduce the EOS of the HS models in Sec. 7.1. Next, we

study the effects of the i-mode on the GW signal in Sec. 7.2. We then describe the

details of the Fisher analysis in Sec. 7.3. We provide the numerical results of the

i-mode properties and the Fisher analysis in Sec. 7.4. Lastly, we comment on the
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numerical method we use

7.1 Equation of state

We start by describing the construction of the EOSs used in our analysis.

7.1.1 Quark matter EOS: Modified Bag Model

The QM core is assumed to be described by the phenomenological modified MIT bag

model. In addition to the ρ-p relation given in Eqs. (2.14) and (2.15) of Sec. 2.2.2,

we also need the shear modulus of the CCS phase. Ref. [97] performed the study of

the elastic properties and gave the formula for the shear modulus:

µ = ν0

(
∆

10 MeV

)2 ( µq

400 MeV

)2
, (7.1)

where the constant ν0 has a value of 2.47 MeV/fm3. ∆ is the gap parameter of the

CCS phase with a range between 5 MeV and 25 MeV [97].

7.1.2 Hadronic matter EOS

Next, we explain hadronic EOSs (HEOSs) for constructing HSs. It is expected that

the EOS gets softened as quark matter appears inside the core. To ensure that

the HS EOSs have the maximum stable mass beyond the 2 M⊙ constraint from

observations, we do not consider HEOSs that are too soft. The models we classify as

intermediate in terms of stiffness are: MPa1 [195], DDHδ [196], Hebeler2; and those

with high stiffness are: MS1 [197], NL3 [113], TM1 [198], Hebeler3. The models
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Hebeler2 and Hebeler3 are taken from the subtables labelled as “intermediate” and

“stiff” respectively in Table 5 of [199]. They are the representative HEOSs with the

low-density part satisfying the results derived from CFT. The sub- and supranuclear

density parts satisfy the constraints from massive pulsars. For simplicity, we do not

include detailed crust models containing additional phase transitions and possible

density gaps in the outer crust region that can give rise to additional i-modes or

g-modes in the low-frequency region (10-100 Hz) [44].

7.1.3 Hybrid star models
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Figure 7.1: M -R relations of the HS models (dashed lines) and hadronic matter
models (solid lines) constructed with intermediate (left) and stiff (right) HEOSs.

We now use the quark and hadronic matter EOSs explained in the previous subsec-

tions to construct HS models. The first-order phase transition from hadronic matter

to quark matter is modeled with Maxwell construction, which requires the continuity

of pressure and the baryon chemical potential, assuming local charge neutrality. The

density is discontinuous at the transition point. The procedure of the construction is

presented in Appendix F.2.
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We construct HS models with different combinations of a4, a2, Beff, ∆ and nuclear

matter EOSs, requiring the HS EOSs to satisfy the observational constraints on the

maximum mass (MTOV > 2 M⊙), radius (R1.4M⊙ ∈ [8.9, 13.5] km from various multi-

messenger observations; see Table 1 of [200]) and tidal deformability (Λ̄ < 800). The

EOS parameters of the HS models constructed are listed in Table 7.1.

EOS a4 a
1/2
2 B

1/4
eff HEOS Pt ρQM

t ρHM
t

(MeV) (MeV) (dyn cm−2) (g cm−3) (g cm−3)
MS1-QM 0.52 108 135 MS1 6.21E33 3.73E14 2.26E14

Heb3-QM-1 0.5 102 134 Hebeler3 1.14E34 3.78E14 3.52E14
NL3-QM 0.53 90 140 NL3 1.04E34 4.23E14 2.86E14
TM1-QM 0.55 105 140 TM1 1.32E34 4.45E14 3.18E14

Heb3-QM-2 0.53 143 128 Hebeler3 5.02E34 5.13E14 4.78E14
Heb3-QM-3 0.53 156 123 Hebeler3 4.75E34 4.84E14 4.83E14
DD2-QM 0.55 100 140 DD2 4.32E34 5.46E14 5.29E14
MPa1-QM 0.57 90 140 MPa1 1.23E35 8.13E14 7.94E14
Heb2-QM 0.55 70 140 Hebeler2 1.26E35 8.04E14 7.78E14
DDHδ-QM 0.57 87 142 DDHδ 1.53E35 9.22E14 9.17E14

Table 7.1: HS EOSs with the quark matter EOS parameters, the HEOSs and Pt

for the envelope listed. The EOSs are divided into 3 sections characterized by the
transition pressures: low Pt (top), intermediate Pt (middle), high Pt (bottom). The
transition densities (ρt) are also shown, with superscripts “QM” denoting the quark
matter phase and “HM” denoting hadronic phase.

In Fig. 7.1, we show the mass-radius relations of the HS models and the HEOSs. We

classify the EOSs into “intermediate” and “stiff” EOSs based on their radius within

the mass range between 1–2 M⊙. We do not consider HEOSs that are too soft, since

the appearance of quark matter softens the EOSs further for densities beyond the

quark-hadron transition point compared to the corresponding HEOSs, which leads

to a maximum stable mass below the current bound of 2 M⊙. The quark matter

EOS parameters are also restricted within a certain range due to this maximum mass

constraint.
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models against ∆. A low Pt EOS (MS1-QM; in black squares) and an intermediate
Pt EOS (Heb3-QM-3; in orange dots) are chosen to construct the models. (Right)
Similar to the left panel but for the total overall phase shift. The phase shift of
Heb3-QM-3 near ∆ = 10 MeV exceeds over 10 due to the avoided crossing between
the i-mode and the f -mode (not shown in this figure). Near this region, the phase
shift of the two modes comes close to each other and the resonant frequencies repel
to avoid a degeneracy.

Putting the observational constraints into consideration, we expect that the transition

pressure Pt of the HS EOSs in Table 7.1 is loosely correlated with the stiffness of the

HEOSs in order to produce models that are stiff enough to support 2 M⊙, but cannot

be too stiff not to exceed the upper bound set on the tidal deformability and radius

measurements. Roughly speaking, the maximum mass observations constrain the

EOS stiffness from below while the upper bound set on radius and tidal deformability

measurements constrain from above. Since the appearance of quark matter softens

the EOSs and generally lowers the maximum mass, soft HEOSs that barely meet the

constraints on maximum mass cannot be used to construct valid HS EOSs. Also, an

HS EOS with a hadronic part of intermediate stiffness must have a high Pt, which in

turn gives a transition point at relatively high mass on the M -R curve (see the left

panel of Fig. 7.1), to satisfy the 2 M⊙ lower bound on the maximum mass. Meanwhile,

those with a stiff HEOS cannot have a high Pt, or else it would exceed the 13.5 km



121

upper bound on the radius (see the right panel of Fig. 7.1).

In the following analysis, we classify the HS EOSs according to Pt. The models with

HEOSs of intermediate stiffness will have a high Pt in order to meet the observational

constraints. For those with a stiff HEOS, we can construct a wider range of Pt covering

intermediate Pt and low Pt as indicated in Table 7.1, while the HS models still satisfy

the observation bounds.

7.2 Mode contribution to waveforms

In this section, we first explain how to compute the i-mode oscillations of HSs via a

hybrid method. We next describe how such oscillation modes affect the GW wave-

forms from binary HS inspiral.

7.2.1 Non-radial pulsation modes in a hybrid formalism

To calculate the effects of the i-modes on the GW signal, we need to first solve for the

i-mode frequencies and eigenfunctions for a given EOS and use this to find the tidal

overlap integral which will be introduced in Sec 7.2.2. The formulation within the

Newtonian framework is described in [194], which requires one to use the Newtonian

equations to construct the background solution and the perturbed, pulsating solution.

In this study, we take a different approach called a hybrid formulation (see, e.g.,

[15, 18]), where we include fully relativistic effects for the background but keep the

perturbation to a Newtonian level. We also assume that the shear stress from the

solid component enters at the perturbative level, i.e. the background is unsheared for

the crystalline structure, such that the background is isotropic unlike in Chapter 5.
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For the background non-rotating, radially-symmetric solution, we solve the TOV

equations explained in Sec. 2.1. The formulae governing the pulsation in Newtonian

theory can be found in various literature. We employ a formulation consistent with

that of [201, 202]. The formulation and the corresponding derivation are briefly

discussed in Appendix F.1. By numerically solving the set of pulsation equations, we

can obtain the eigenfrequencies and eigenfunctions of a set of non-radial modes for

each spherical degree ℓ. This hybrid method of using a relativistic background and

Newtonian perturbation is expected to deviate from a fully consistent approach. In

Appendix F.3, we perform a numerical check to quantify the difference.

7.2.2 Tidal coupling and phase shift in the waveform

During a HS-HS inspiral, the i-modes resonate as the orbital frequency sweeps through

the resonant frequency and causes a phase shift in the GW waveform. Here we first

focus on the mode excitation of one of the HS in the binary, for which the physical

quantities are indicated with the subscript 1. Following Lai [194], the overall phase

shift for an ℓ = 2 mode is given by the equation

δϕα = − 5π2

4096

(
R1

m1

)5
2q

(1 + q)

1

Ω2
n2m

|In2m|2 , (7.2)

where m1 and R1 are the stellar mass and radius of the pulsating HS, q is the ratio

of the companion mass to that of the pulsating HS, Ωn2m is the normalized resonant

frequency for the ℓ = 2 mode defined by

Ω2
nℓm =

R3
1ω

2
nℓm

m1

, (7.3)
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with ωnℓm representing the mode angular frequency, Inℓm = Iα is the tidal coupling

coefficient defined in Sec. 2.4.2. Here we use the set of subscripts α = (n, ℓ,m)1 to

specify an eigenmode with a radial quantum number n, spherical harmonics degree

ℓ and order m. The quantum number n is an index that labels all the non-radial

modes with the same ℓ and m, ranked in ascending order of resonant frequencies. For

a typical NS with a solid crust, this includes the f -mode, the i-mode and the gravity

(g1, g2, ...) modes, etc.2 [28]. The eigenvectors are normalized by

∫
d3xρ |ξα|

2 = m1R
2
1. (7.4)

Note the slight difference in normalization constant compared to Eq. (2.38) in Sec. 2.4.2.

We use this normalization throughout this chapter for consistent leading coefficients

in our formulas with [194].

We investigate only the (ℓ,m) = (2,±2) i-mode contribution on the GW phase, which

dominates the phase shift. From Eq. (2.41), we can easily see that In22 = In2−2.

Hence, we have the i-mode overall phase shift given by

δϕαi
= − 5π2

2048

(
R

M

)5
2q

(1 + q)

1

Ω2
ni22

|Ini22|
2 , (7.5)

where ni is the radial quantum number corresponding to the i-mode, and αi is the

index representing the combined contributions from the ℓ = 2 i-modes, i.e., the sum

of (ni, 2, 2) and (ni, 2,−2) modes.

1In Sec. 2.4.2, we have an additional index s to specify the sign of the frequency, which is needed
in general for a rotating star. Here, we can combine the positive frequency mode and the negative
frequency mode into one and drop the index s as they are identical if we consider only non-rotating
stars.

2f and i do not have any subscripts since for each (ℓ,m) there is only one f -mode and one i-mode
per interface.
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The contribution from a pulsation mode on a binary inspiral waveform appears as a

shift in the phase and time when the binary sweeps through the resonant frequency.

The resulting correction to the phase in the frequency domain is given by [9, 18, 203]

∆Ψαi
(f) = −

∑
A=1,2

δϕ(A)
αi

(
1− f

f
(A)
αi

)
θ(f − f (A)

αi
), (7.6)

where ∆Ψαi
(f) is the phase correction in frequency domain, δϕ(A)

αi and f
(A)
αi are the

overall phase shift and the resonant frequency due to the i-mode of the Ath body, and

f is the GW frequency from the inspiral. θ(f−fαi
) is the Heaviside step function. To

reduce the number of parameters, we follow [204] and rewrite the above phase shift

as

∆Ψαi
(f) ≈ −δϕ̄αi

(
1− f

f̄αi

)
θ(f − f̄αi

), (7.7)

where the total phase shift δϕ̄αi
and the weight-averaged mode frequency f̄αi

are given

by

δϕ̄αi
= δϕ(1)

αi
+ δϕ(2)

αi
, (7.8)

f̄αi
= δϕ̄αi

(
δϕ

(1)
αi

f
(1)
αi

+
δϕ

(2)
αi

f
(2)
αi

)−1

. (7.9)

In the following, we drop the subscript αi on the mode frequency and phase shift to

simplify the expressions.

7.3 Waveform analysis

To estimate the statistical uncertainties in measuring the waveform parameters, we

employ the Fisher matrix approach described in Sec. 2.6.3. The Fisher matrix Γij is



125

constructed from the phenomenological waveform model denoted as “IMRPhenomD”

with tidal and resonance contributions.

The GW waveform has the form

h(f) = A(f)e−iΨ(f). (7.10)

The functional forms of the amplitude A(f) and phase Ψ(f) contain the point particle

contributions described in [205, 206] (the IMRPhenomD model). In addition, the 5PN

and 6PN tidal contributions in [10, 207], and the effect of mode resonance given in

Eq. (7.7) are added to the phase. The elements of the parameter set θi are given by

θi =
{
lnA, ϕc, tc, lnMz, ln η, χs, χa, Λ̄, δΛ̄, f̄ , δϕ̄

}
. (7.11)

The meaning of each element is as follows: the sky-averaged normalized amplitude

A =
M5/6

z√
30π2/3dL

; (7.12)

with the luminosity distance from the source dL; the redshifted chirp mass Mz =

M (1 + z), where

M =
(m1m2)

3/5

(m1 +m2)1/5
(7.13)

is the chirp mass; the symmetric mass ratio

η =
m1m2

(m1 +m2)2
; (7.14)

the symmetric and asymmetric spin parameters χs,a = (χ1 ± χ2) /2, where χ1,2 are

the dimensionless spins of the individual stars; the reparametrization of the mass
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weighted tidal deformabilities (see e.g. [207])

Λ̄ =
8

13

[ (
1 + 7η − 31η2

)
(Λ1 + Λ2)

+
√

1− 4η
(
1 + 9η − 11η2

)
(Λ1 − Λ2)

]
, (7.15)

δΛ̄ =
1

2

[√
1− 4η

(
1− 13272

1319
η +

8944

1319
η2
)
(Λ1 + Λ2) ,

+

(
1− 15910

1319
η +

32850

1319
η2 +

3380

1319
η3
)
(Λ1 − Λ2)

]
, (7.16)

where Λj are the individual ℓ = 2 tidal deformabilities normalized by m5
j , i.e., Λj =

λj/m
5
i , for j = 1, 2 (also see Sec. 2.4.1 for the method of determining λ2); the phase-

shift-weighted i-mode frequency f̄ and the overall phase shift due to the i-mode δϕ̄.

Note that if we consider binaries of identical stars, we have Λ̄ = Λ1 = Λ2 and δΛ̄ = 0.

At high frequencies, the tidal part of the waveform that we use becomes less accurate

as the HSs will eventually come to contact. Following [133], we only consider the

inspiral waveform, which terminates at a separation of 6(m1+m2), which is equivalent

to the radius of the innermost stable circular orbit (ISCO) of an object orbiting

around a non-spinning central object with mass (m1 + m2). This corresponds to a

cutoff frequency fISCO =
[
63/2π(m1 +m2)

]−1 in the Fisher estimate3.

In the following analysis, we pick the fiducial values for (ϕc, tc, χs, χa) to be (0, 0,

0, 0). The tidal deformability parameters (Λ̄, δΛ̄) are set as (800, 0) for identical HS

binaries 4 and are specified otherwise in asymmetric cases. We use the spin priors of

3For stiff EOSs, the HSs may come to contact before reaching the separation of 6(m1 + m2),
i.e., R1 + R2 > 6(m1 + m2), where R1 and R2 are the radii of the HSs. In these cases, the
actual cutoff frequency should be set lower than fISCO. However, since the spectral noise density
increases quickly in the high-density region, the uncertainty estimates using the Fisher matrix is not
significantly affected as long as the actual cutoff frequency does not differ too much from fISCO and
the i-mode resonant frequencies are not too close to the cutoff frequency.

4In reality, Λ̄ varies for different EOSs. However, we have checked that ∆δϕ̄ is insensitive to the
choice of Λ̄ and thus in this study, we fix its value to be 800 for simplicity . Same applies to δΛ̄ with
its value fixed to be 0.
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|χs,a| < 1 and tidal priors of 0 < Λ̄ < 3000 and |δΛ̄| < 500 [207]. The values of f̄

and δϕ̄ depend on the HS models and are calculated with the method described in

Sec. 7.2.

7.4 Numerical results

Let us now present all the numerical results. We first show how the i-mode frequency

and phase shift depend on the quark parameters, in particular ∆. We next present

the detectability of such modes with current and future GW observations, including

the existing GW events of GW170817 and GW190425.

7.4.1 i-mode dependence on the properties of the phase tran-

sition

The frequency and phase shift of the i-mode depend strongly on both the density gap

and shear modulus gap at the interface. Each EOS listed in Table 7.1 has a specific

value of density gap, while the shear modulus for each model can still vary with ∆

according to Eq. (7.1). To get an idea of how the elastic properties affect the i-mode,

we consider HSs with quark matter in the CCS phase with different ∆s.

In Fig. 7.2, we show the i-mode frequency and phase shift against ∆ of two repre-

sentative HS models with 1.4 M⊙. MS1-QM, denoted by the black squares, is a HS

model with a low Pt, while Heb3-QM-3, denoted by orange dots, is a model with

intermediate Pt.

The ∆ dependence of f̄ and δϕ̄ are found to be much stronger for the intermediate Pt

model. Besides, the ∆ dependence for δϕ̄ for this model is not monotonic in contrast



128

to the low Pt models. This is because δϕ̄ varies as the square of the tidal coupling

coefficient, Inℓm, and inversely with the square of the mode frequency (see Eq. (7.5)).

For small ∆, the rate of increase in |Inℓm| outweighs that of the mode frequency, while

the opposite happens at large ∆. This causes δϕ̄ to increase initially and fall off for

large ∆.

The peak of |δϕ̄| with a value of ∼ 40 near ∆ = 10 MeV is a consequence of mode

repulsion. When the frequency of the i-mode is close to another mode, such as a

spheroidal shear mode, the mode frequencies repel with each other without crossing

while the phase shift of the two modes comes close to each other. This phenomenon

is the avoided crossing and is commonly observed in stellar pulsation problems (see

e.g., Ch.17 of [27]) as well as other eigenvalue problems. The avoided crossing near

∆ = 10 MeV in Fig. 7.2 happens between the i-mode and the f -mode. To further

demonstrate this phenomenon, we show in Fig. 7.3 both the i-mode and f -mode for ∆

between 7 and 11 MeV with the EOS Heb3-QM-3. Observe that there is a repulsion

in mode frequencies around ∆ = 9.5 MeV, while |δϕ̄| of the two modes cross each

other.

As mentioned in Sec. 7.2, the i-mode results are obtained from a hybrid method

which we solve the TOV equation to construct the accurate HS background models

and the Newtonian pulsation equations to obtain the i-mode frequencies and overlap

integrals. In Appendix F.3, we perform a numerical check to evaluate the validity

of this hybrid method. Since there is no consistent full relativistic approach to si-

multaneously compute the background, the i-mode and the resonant effects on the

GW phase, we only compare the difference between our hybrid method and a fully

Newtonian approach. The result shows that the two approach predict frequencies

differ by ∼25% and phase shifts by a factor of two.
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Figure 7.3: The avoided crossing of the i-mode and f -mode as ∆ changes from 7 to
11 MeV of a 1.4 M⊙ HS model with the EOS Heb3-QM-3. The left panel shows the
repulsion of the frequencies of the higher frequency mode and the lower frequency
mode. The right panel shows the exchange in |δϕ| between the two modes.

Before we discuss the detectability of the i-mode of HSs, it is worth pointing out

its difference from the typical i-modes associated with the interface(s) inside a NS

(such as the one between the hadronic fluid envelope and the solid crust or phase

transitions inside the crust). The i-mode frequency of HSs typically ranges between

300 and 1500 Hz, while that of a NS is generally lower. Krüger et al. [44] computed

the ℓ = 2 i-modes of a NS with the SLy4 EOS and a crust model with multiple

first-order phase transitions using a general relativistic formalism. All of the i-modes

have frequencies below 121 Hz. From the difference in mode frequencies, the i-mode

of a HS can be clearly distinguished from that of a NS.

7.4.2 i-mode detectability with gravitational waves

Upon the observation of a GW signal, one can estimate the parameters that “best

fit” the waveform to the measured signal buried inside the noise. Due to this, the

estimated parameters always come with uncertainties. In Sec. 7.3, we have briefly

discussed how the parameter estimation errors can be found using the Fisher matrix
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for a large SNR. In particular, the statistical uncertainties of f̄ and δϕ̄ in the pa-

rameter estimation determine whether they are measurable from the signal. As our

numerical result shows that the relative uncertainty in δϕ̄ is always larger than that

of f̄ , the detection criterion of the i-mode can therefore be set as ∆(δϕ̄) <
∣∣δϕ̄∣∣.

Equal-mass systems

Let us first analyze the detectability of the phase shift due to the excitation of the

i-mode during the inspiral of a symmetric (equal-mass, non-spinning) HS-HS merger,

which consists of identical HSs. With this assumption, f̄ is identical to the i-mode

resonant frequency, and δϕ̄ is twice the phase shift of the individual HS. If we fix the

mass of our models and assume no spin, there are 4 parameters that depend on the

EOSs: the tidal deformability parameters Λ̄ and δΛ̄, the (weighted-averaged) i-mode

resonant frequency f̄ , and the overall orbital phase shift δϕ̄. One might expect the

detectability of the i-mode to depend on all of the parameters. However, we found that

the correlation between the tidal deformability parameters and the i-mode parameters

is small. For example, the correlation coefficient CΛ̄ δϕ̄ defined in Eq. (2.61) is about

0.001–0.03 and similar for other combinations between the tidal deformability and

i-mode parameters, which is much lower than that for the correlation between f̄ and

δϕ̄ (Cf̄ δϕ̄ ∼ 0.3 − 0.8). Hence, we can estimate the detectability by varying fiducial

values of f̄ and δϕ̄ only, keeping those of Λ̄ and δΛ̄ fixed.

In the left panel of Fig. 7.4, we show |δϕ̄| and the corresponding f̄ for each of the

HS models from Table 7.1 with mass fixed at 1.4 M⊙, together with the minimum

|δϕ̄| required for detection based on the Fisher analysis using the Advanced LIGO

(aLIGO) [208] with its design sensitivity and the Cosmic Explorer (CE) [2]. As

discussed above, we set the minimum required |δϕ̄| to be its root-mean-square error
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Figure 7.4: (Left) The magnitude of the i-mode’s total overall phase shift |δϕ̄| and
the corresponding weight-averaged resonant frequency f̄ for each HS EOS from Ta-
ble 7.1, together with the detectability threshold with aLIGO (green solid) and CE
(red dashed). If a point is above these curves, such an effect is detectable with
the corresponding detector. Here we have assumed an equal-mass HS system with
an individual mass of 1.4 M⊙. We consider intermediate Pt models (Heb3-QM-3,
Heb3-QM-2, DD2-QM in blue) and low Pt models (MS1-QM, Heb3-QM-1, NL3-QM,
TM1-QM in black). The i-mode becomes undetectable if the frequency f̄ is higher
than the inspiral cutoff frequency (shaded region) that we choose to be at ISCO
(fISCO). (Right) Similar to Fig. 7.4 but for individual masses of 1.8 M⊙. We also
present the high Pt models (MPa1-QM, Heb2-QM, DDHδ-QM) in magenta symbols.
The SNR for the 1.4 M⊙ system is 20 for aLIGO and 620 for CE, and that of the
1.8 M⊙ system is 24 for aLIGO and 760 for CE respectively.
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∆(δϕ̄), obtained from Eq. (2.62). We have assumed the luminosity distance, dL, to

be 100 Mpc. This corresponds to a signal-to-noise (SNR) ratio of 20 for aLIGO and

620 for CE. To account for the number of interferometers, we set N = 2 for aLIGO

and N = 1 for CE5. The detection threshold for |δϕ̄| increases with f̄ because the

detector sensitivity deteriorates at higher f and the i-mode contributes to the phase

only for f ≥ f̄ (see Eq. (7.7)) and thus its contribution becomes smaller for higher f̄ .

Based on our results, the i-mode of some of the low Pt models with large ∆ causes a

large |δϕ̄| (∼ 10) in the waveform, making its phase shift above the minimal threshold

required for detection with aLIGO. Models with lower ∆ are still above the detectabil-

ity threshold of CE except for those with zero or very small ∆. As for the intermediate

Pt EOSs, the i-mode of all the models cannot be detected with the aLIGO detector.

With CE, the i-mode of a few models within a narrow range of ∆ are detectable. The

cutoff frequency, fISCO (see Sec. 7.3), is also indicated in the figure with a vertical

dashed line. The i-modes with resonant frequency above this limit cannot be de-

tected from the inspiral signal alone. Since the i-mode frequency of the intermediate

Pt models depends strongly on ∆ as illustrated in Fig. 7.2, models with ∆ larger than

15 MeV are beyond this cutoff frequency. Hence, only a few models with ∆ between

5 to 15 MeV have the i-mode detectable with CE. For high Pt EOSs, since the central

pressure is below Pt for models with 1.4 M⊙, there is no i-mode being excited and

therefore are not present in the figure.

We also consider the HS binaries consisting of two 1.8 M⊙ HSs with the results shown

in the right panel of Fig. 7.4. Compared to the 1.4 M⊙ case, the low Pt models have

lower |δϕ̄| in general, while that of the intermediate Pt models are within the same

order of magnitude. Most of the HS models are below the detectability threshold of

5The amplitude of GWs is effectively enhanced by
√
N .
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the aLIGO detectors except for a few low Pt models with large ∆, while there is still

a considerable portion of the low Pt and intermediate Pt models within the detectable

region of CE.

The 1.8 M⊙ models with high Pt EOSs have a phase transition at the core, unlike the

1.4 M⊙ models. These models, represented by magenta symbols in the right panel of

Fig. 7.4, have low |δϕ̄| and are below the detectability threshold of both detectors.

The points of the intermediate Pt models are less scattered than the 1.4 M⊙ case,

indicating a weaker dependence of f̄ and |δϕ̄| on ∆. In contrast, the high Pt models

show a widespread along f̄ , which is similar to the case with the 1.4 M⊙ intermediate

Pt models.

From the above discussion, we see that ∆ affects the detectability in different ways

depending on Pt. As ∆ increases, the models in Fig. 7.4 shift towards larger values of

f̄ and |δϕ̄| in general. For the low Pt models, the i-mode frequency is generally below

fISCO for the range of ∆ corresponding to the CCS phase. Hence, the large ∆ models

would be more detectable due to their larger phase shift magnitude. On the other

hand, the i-mode frequency of the high Pt models is more sensitive to ∆. Some models

with large ∆ have the i-mode frequency higher than fISCO, which means the mode

is not excited during the inspiral stage. As a result, the models with large ∆ have a

higher chance of being detected for the low Pt EOSs, while those with intermediate

∆ are the most detectable ones for the intermediate Pt EOSs. This is similar to the

case with 1.4 M⊙ HSs.
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Figure 7.5: (Left) Similar to Fig. 7.4 but for parameters consistent with GW170817.
The detection threshold curve is computed with the noise curve of aLIGO O2 run. We
present the intermediate Pt models (Heb3-QM-3 in blue) and low Pt models (MS1-
QM, Heb3-QM-1 in black). (Right) Similar to the left panel but for parameters
consistent with GW190425. The detection threshold curve is computed with the
noise curve of the aLIGO O3 run. We present the high Pt models (MPa1-QM in
magenta), the intermediate Pt models (Heb3-QM-3 in blue) and low Pt models (MS1-
QM, Heb3-QM-1 in black).

GW170817 and GW190425

Let us now study the GW events that have been detected, in particular GW170817

and GW190425 that are considered as binary NS mergers. If at least one of the stars

in these events has a quark-hadron phase transition, the excitation of the i-mode will

be encoded in the phase of the inspiral signal. We can apply the method from the

previous subsection to analyze its detectability with the corresponding aLIGO run.

In our Fisher analysis which gives us the threshold values of |δϕ̄|, the parameters of

the signal (m1, m2, dL) are taken to be (1.46 M⊙, 1.27 M⊙, 40 Mpc) for GW170817

and (1.60 M⊙, 1.75 M⊙, 159 Mpc) for GW190425. The tidal deformability param-

eters Λ̄ and δΛ̄ are also adjusted accordingly. We take (Λ̄, δΛ̄) to be (588, 94) for

GW170817 and (160, -20) for GW190425, which are computed with the formulation

described in [120], assuming the Heb3-QM-1 EOS with a fluid core. Nevertheless,

due to their negligible correlations with the i-mode parameters, fiducial values of the
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tidal parameters should not have any significant impact on the numerical results.

The noise spectral density data corresponding to the aLIGO second Observing run

(O2) for GW170817 and the third Observing run (O3) for GW190425 respectively are

obtained from [209]. We select the high Pt model MPa1-QM, intermediate Pt model

Heb3-QM-3 and low Pt models M09m, Heb3-QM-1 from Table 7.1 for the analysis.

The left panel of Fig. 7.5 presents the detectability of HS models for GW170817 with

the i-mode excitation during the inspiral. Part of the low Pt models with large ∆

have |δϕ̄| above the detectability threshold. Certain models, even having a large ∆,

are below the threshold due to the high resonant frequency. It is worth noting that

the values of |δϕ̄| can go as high as ∼100 for large ∆, which is comparable to that

of the f -mode (see, e.g., [41, 194], for values of |Inℓm|). The large value of the phase

shift mainly comes from the secondary (1.27 M⊙) HS in the binary. The intermediate

Pt models have a smaller i-mode phase shift in general, and are below the threshold.

The strong ∆ dependence of the i-mode frequency for the intermediate Pt models

makes the frequency go beyond fISCO when ∆ is larger than 15 MeV.

Meanwhile, the models with the high Pt EOSs do not excite an i-mode during inspiral

as they consist only of hadronic matter. These findings mean that if GW170817

consists of HSs with a low Pt EOS, it might be possible detect such a feature by

performing a data analysis on the GW170817 data similar to that in [204, 210–212],

given that the CCS ∆ has a value larger than 10 MeV. On the other hand, if such

an effect is absent, one should be able to constrain the parameter space of Pt and

∆ of the HS EOSs provided we have reasonably good knowledge on the other EOS

parameters.

In comparison, the right panel of Fig. 7.5 presents the results for GW190425. Observe

that the detection threshold curve for this case is higher due to the increased luminos-



136

ity distance (and smaller SNR). The low Pt models also have smaller |δϕ̄|, and some

of the models are only marginally above the threshold. The intermediate Pt models

and high Pt models are both below the threshold curve. This agrees with our finding

in the previous subsection, that |δϕ̄| decreases for larger Pt in general. Besides, the

secondary star with 1.60 M⊙ with the high Pt EOS have a central pressure lower than

Pt and therefore does not have a quark matter core. Therefore, only the primary star

with a higher mass (1.75 M⊙) in the binary contributes to the i-mode phase shift.

This further lowers the value of |δϕ̄| of the high Pt models. Moreover, the higher

mass of HSs in the binary leads to a smaller fISCO, which makes the detection of the

i-mode challenging for high resonant frequencies.

7.5 Chapter summary

In this chapter, we considered the i-mode of HSs with a CCS quark matter core

and a hadronic matter envelope, which features an extremely rigid solid core and

a fluid envelope. The phase transition is assumed to be first order with a density

discontinuity. We studied the resonant excitation of the i-mode in HS-HS binary

mergers during the inspiral and the corresponding phase shift on the emitted GW

waveforms. We then estimated its detectability using a Fisher analysis.

We found that the i-mode resonant frequency and the phase shift are rather sensi-

tive to change in the shear modulus of the CCS phase as well as Pt, the pressure

corresponding to the first-order phase transition. We also found that the chance of

detecting the i-mode is higher for EOSs with low Pt. For such low Pt models, the

phase shift of the i-mode can be above the detection threshold limit if ∆ is large

enough, even for GW170817 (Fig. 7.5).
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For the intermediate Pt EOSs, we showed that the sensitivity of aLIGO was insuf-

ficient to detect the i-mode due to the smaller magnitude of the phase shift. With

the third-generation detectors like the CE, a portion of the models with intermediate

values of ∆ can be detected. However, those with a large ∆ have high i-mode fre-

quencies above the cutoff frequency for inspiral phase and therefore the mode is not

excited. For the high Pt EOSs, quark matter appears inside the core only when the

model has a high central pressure, namely the low mass models are simply hadronic

NSs without a quark-hadron transition. Focusing on the high mass HSs with a high

Pt phase transition, we found that the i-mode phase shift of such models is below the

detectability threshold of the CE.

As explained in Appendix F.3, we find that the hybrid method in calculating the i-

mode by combining a GR background model with Newtonian pulsation equations and

Newtonian tidal coupling equations can potentially cause a factor of 2 difference in

the GW phase shift predicted. A fully consistent GR method is required to accurately

determine the detectability of the i-mode in HSs, which we leave for future work.
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Chapter 8

Summary

In this thesis, we discuss several research topics in astrophysics, gravitation, and

nuclear physics related to compact stars.

We begin with studying the measurability of tidal interactions in eccentric DWD

binaries using LISA (Chapter 3). We demonstrate that the periastron precession rate

causes amplitude modulation in the GW signal and allows us to measure not only

the equilibrium tide, but also the dynamical component. This effect is found to be

more measurable in higher mass systems as the radiation reaction effect due to GW

emission helps constrain the eccentricity of the system.

We then discuss an improved iterative mapping method to compute the long-timescale

binary orbit evolution under the influence of dynamical tide (Chapter 4). Compared

to the previous formalism that focuses on highly eccentric orbits (1−e≪ 1), the new

method is valid even for low eccentricities. This method is not restricted to compact

star binaries but can be applied to generic binary stellar systems with tides.

In Chapter 5, we study the non-radial stellar pulsation modes of anisotropic NSs in

full GR. We provide the formalism for the first time and check its consistency in

the Cowling limit. By numerically solving these equations, we find ℓ = 2 QNMs

with complex frequencies as in the isotropic NSs. However, some of the p-modes

have frequencies with negative imaginary parts when there is anisotropy, denoting
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an unstable mode that grows with time. This instability leads to interesting further

discussions as this implies at least the anisotropy models we study here cannot be

long-lasting.

In Chapter 6, we present a study on testing GR using the theory-agnostic ppE wave-

form model with the GW signals from DWD binaries. We demonstrate that LISA can

constrain the non-GR theories well with negative PN orders, which is consistent with

previous literature. However, it requires prior constraints on the mass of the system

to reach the same level as the most stringent bounds from pulsar observations. Fur-

thermore, the astrophysical factors, like the magnetic interactions of the WDs, that

affect the DWD orbital motion have a significant impact on the measurement of the

non-GR parameters. Mismodelling of these effects can pose large systematic errors

and invalidate the constraints on GR.

Lastly, we investigate the state of matter inside the NS core in Chapter 7. We focus

on the HS models with an HM envelope and a QM core. We further assume the QM

is in the crystalline phase known as the CCS phase. We propose using the i-mode

resonance as a probe of the transition between the hadronic phase and quark phase,

which causes a shift in the phase and time to coalescence in the GW signal. Through

a Fisher analysis, we show that for models with low phase transition pressure Pt, the

phase shift is detectable even with the current GW detectors if the shear modulus of

the core is large enough.

There are multiple directions to extend the work presented in this thesis. Aside

from the ones discussed in the individual chapter summaries, we can also consider

applying the i-mode study on DWD systems to see how the resonance can affect

the GW signals detected by LISA. Crystallized cores are expected to exist within

WDs with a long cooling history [213]. Similar to the case of HSs, these i-modes are
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expected to resonate at lower frequencies than the f -modes. Other than that, we

can apply the new iterative method to studying the long-term evolution of eccentric

DWD binaries. These systems are believed to form from dynamical channels within

dense stellar clusters or through multiple body interactions. The dynamical tidal

interactions can have an important impact on the formation and survival rates of

these eccentric binaries, affecting the results of the population simulations.
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Appendix A

A.1 Abbreviations dictionary

Table A.1: Abbreviations used in the thesis.

WD White dwarf
DWD Double white dwarf

NS Neutron star
HS Hybrid star
GW Gravitational wave
EOS Equation of state
QCD Quantum chromodynamics
QM Quark matter
HM Hadronic matter

HEOS Hadronic equation of state
GR General relativity
BH Black hole

aLIGO advanced Laser Interferometer Gravitational-Wave Observatory
KAGRA Kamioka Gravitational Wave Detector

CE Cosmic Explorer
ET Einstein Telescope

LISA Laser Interferometer Space Antenna
DECIGO Deci-hertz Interferometer Gravitational-Wave Observatory

PN Post-Newtonian
EM Electromagnetic

g-mode Gravity mode
f -mode Fundamental mode
p-mode Pressure mode
i-mode Interfacial mode
QNM Quasi-normal mode
RCA Relativistic Cowling approximation

TOV equations Tolman-Oppenheimer-Volkoff equations
ppE formalism parametrized Post-Einsteinian formalism

SMG Screened modified gravity
XMRI Extreme-mass-ratio-inspiral
ISCO Innermost stable circular orbit
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A.2 Units and constants

We mainly use the geometrized unit system with G = c = 1. Another commonly

used unit system is the cgs units. The masses of stars are usually expressed in terms

of solar mass. The conversion of some of the constants are given below:

Constant Symbol Value (in cgs units)
Gravitational constant G 6.67430×10−8 cm3g−1s−2

Speed of light c 2.99792458×1010 cm s−1

Solar mass M⊙ 1.98855×1033 g
Astronomical unit AU 1.495978707×1013 cm

Parsec pc 3.08567758×1018 cm
Reduced Planck’s constant ℏ 1.0545718×10−27 erg s

Table A.2: The numerical values of the constants used in the following computations
or unit conversions.
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Appendix B

Measuring tides in eccentric

double white dwarf binaries with

gravitational waves

B.1 The numerical waveform

The far-field metric perturbation from the leading order GW emission is given by the

quadrupole formula

hij =
2Q̈ij

d
, (B.1)

where Qij is the quadrupole moment of the source while d is the distance between

the source and the point of observation. We consider only the quadrupole moment

of the orbit and ignore the effects from the non-radial deformations of the individual

WDs.

The orbit is governed by the equation

a = −m1 +m2

D2
n+ a1PN + atide, (B.2)
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where a1PN is the acceleration due to the 1PN effect while the tidal acceleration term

atide is given in Eq. (2.42). The dissipative effects like radiation reaction are ignored

here. The 1PN effect is given by the Einstein-Infeld-Hoffmann equation [214]:

a1PN =− m1 +m2

D2

{[
(1 + 3η)v · v − 3

2
η (n · v)2

− 2 (2 + η)
m1 +m2

D

]
n− 2 (2− η) (n · v)v

}
, (B.3)

where η = m1m2/(m1+m2)
2 is the symmetric mass ratio and v is the relative velocity.

Equation (B.2) is numerically integrated and the result is substituted into Eq. (B.1)

to obtain the quadrupolar waveform of the plus and cross polarizations, h+ and h×

in the transverse-traceless gauge. The strain signal detected is written as

hj(t) =F
j
+(t)h+(t) + F j

×(t)h×(t), (B.4)

where j = I, II , and F j
+, F j

× are the antenna pattern functions (see [144, 215–217]).

The functions F j
+ and F j

× depend on the source’s angular position (θS, ϕS) and its

orientation (θL, ϕL) in the ecliptic coordinate system. For simplicity, we set θL = π/4

and the rest as zero here.

B.2 Peters and Mathews waveform

The Peters and Mathews waveform [142, 217] describes the leading order gravitational

radiation emitted from a binary system in an eccentric Keplerian orbit. In this section,

we write down the formulation of the waveform used in [142], without including the

full evolution equations of the orbital elements.
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Choosing the orbital plane as the x-y plane of the coordinate system, with the pericen-

ter lying on the positive x-axis initially, the plus and cross polarizations are written

as a sum of harmonics

h+ =
1

d

∑
k

{(
1 + cos2 ι

) [
C(k)

a cos (kΦ) cos(2γ)− C
(k)
b sin (kΦ) sin(2γ)

]
+ C(k)

c cos (kΦ) sin2 ι

}
, (B.5)

h× =
2 cos ι

d

∑
k

[
C(k)

a cos (kΦ) sin(2γ) + C
(k)
b sin (kΦ) cos(2γ)

]
, (B.6)

where ι is the inclination angle of the source, given by

cos ι = cos θL cos θS + sin θL sin θS cos (ϕL − ϕS), (B.7)

and the precession is given by γ = γ̇t and C
(k)
i , with i = a, b, or c, are the Fourier

coefficients of the quadrupole moment components:

1

2

(
Q̈11 − Q̈22

)
=
∑
k ̸=0

C(k)
a cos kΦ(t), (B.8)

Q̈12 =
∑
k ̸=0

C
(k)
b sin kΦ(t), (B.9)

1

2

(
Q̈11 + Q̈22

)
=
∑
k ̸=0

C(k)
c cos kΦ(t). (B.10)

In the Keplerian orbits, the coefficients can be written in terms of the Bessel functions:

C(k)
a =− k

2
µ [(m1 +m2)Ω]

2/3
[
Jk−2(ke)− 2eJk−1(ke) +

2

k
Jk(ke)

+ 2eJk+1(ke)− Jk+2(ke)
]
, (B.11)

C
(k)
b =− k

2
µ [(m1 +m2)Ω]

2/3
√
1− e2

[
Jk−2(ke)− 2Jk(ke) + Jk+2(ke)

]
, (B.12)
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Figure B.1: The waveform amplitudes A(k)
+ , A(k)

− and A(k)
0 at different eccentricities

for the k = 1 harmonic.

C(k)
c =µ [(m1 +m2)Ω]

2/3 Jk(ke), (B.13)

where µ is the reduced mass of the binary. The effect of the tide and 1PN correction

are included only through γ̇. The amplitude corrections are not included as they are

expected to be small within the parameter range of interest. The waveform model

serves as a good approximation as long as γ̇ is much smaller than Ω [143].

Without chirping, the precession effect splits each harmonic of the waveform into

three distinct frequencies at kΩ and kΩ±2γ̇. This can be illustrated by re-expressing

Eqs. (B.5) and (B.6) in terms of A(k)
± cos (kΩt± 2γ) and A(k)

0 cos (kΩt) as in [143,

215], where the amplitudes A(k)
± and A(k)

0 are (C
(k)
a ± C

(k)
b )/2 and C

(k)
c without the

prefactor µ [(m1 +m2)Ω]
2/3. Using the series expansion of the Bessel functions, these

amplitude terms can be shown to scale as A(k)
+ ∼ ek−2 for k ̸= 1 and A(k)

+ ∼ e for

k = 1, A(k)
− ∼ ek+2, and A(k)

0 ∼ ek. Therefore, A(k)
+ has the largest amplitude while

A(k)
− is the smallest out of the three harmonics for low to intermediate eccentricities.

The amplitude functions for the k = 1 harmonic at different eccentricities are shown in

Fig. B.1. Except for large eccentricities (e ≳ 0.5), the relation |A(k)
+ | > |A(k)

0 | > |A(k)
− |
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holds for all harmonics [34].

The chirping can be included through expanding the phase of each harmonic as Φ(t) =

Ωt+ Ω̇t2/2, where Ω̇ contains the 2.5PN radiation reaction effect [142] given by

Ω̇ =
96

5

µ

(m1 +m2)3
(1− e2)−7/2 [(m1 +m2)Ω]

11/3
(
1 +

73

24
e2 +

37

96
e4
)
. (B.14)

The Doppler phase term due to LISA’s motion (see [144]) is not included in Φ(t) since

we set θS = 0.
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Appendix C

An improved mapping method for

the dynamical tide contributions to

binary evolution

C.1 Derivation of the orbital element changes in

the modified iterative mapping method

We first consider the term with the double integral after substituting Eq. (4.14) into

Eq. (4.12), written as

∆a

a
=

∫ π

−π

duf(u)

(
Q∗

α(−π)eikπ +
∫ u

−π

du′g(u′)

)
+ c.c. (C.1)

where f and g are given by

f(u) =− B√
1− e2

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)+iωαt(u) [(ℓ+ 1)e sinΦ(u) + im(1 + e cosΦ(u))] ,

(C.2)

g(u) =− ik̃(1− e)

(
1− e

1− e cos u

)ℓ

e−iωαt(u′)+imΦ(u′). (C.3)
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We first focus on the second term in the integrand. Using the parity of the trigono-

metric functions, it can be shown that

∫ π

−π

du

(
f(u)

∫ u

−π

du′g(u′)

)
+ c.c. =2Re

[∫ π

−π

du

(
f(u)

∫ 0

−π

du′g(u′)

)]
=Re

[∫ π

−π

du

(
f(u)

∫ π

−π

du′g(u′)

)]
=Re

[
∆Q∗

α

∫ π

−π

duf(u)

]
. (C.4)

Note that the integral over u′ now has a fixed integration limit and therefore can be

separately integrated, giving us the last line of the equation. We are now left with

two terms

∆a

a
= Re

[(
2Q∗

α(−π)eikπ +∆Q∗
α

) ∫ π

−π

duf(u)

]
. (C.5)

The next step is to integrate f(u). It turns out that the calculation is simpler if we

make a variable transformation from the eccentric anomaly to the true anomaly:

1− e

1− e cos u
=

1 + e cosΦ

1 + e
, (C.6)

and

du =

√
1− e2

1 + e cosΦ
dΦ. (C.7)

Through an integration-by-part, we obtain

∫ π

−π

duf(u) =− B

{
−

[(
1 + e cosΦ

1 + e

)ℓ+1

e−imΦ+iωαt(Φ)

]π
−π

−
∫ π

−π

dug(u)

}
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=B
(
∆Q(eq)

α −∆Qα

)
. (C.8)

Combining Eqs. (C.8) and (C.5), we finally obtain Eq. (4.15).

C.2 The explicit forms of the orbital element in-

tegrals

The explicit forms of the functions in the integrand of Eqs. (4.22) and (4.23) are given

in this section.

Fγ1 =
1

e
√
1− e2

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)+iωαt(u)

×
[
(ℓ+ 1) cosΦ− im sinΦ

(
2 + e cosΦ

1 + e cosΦ

)]
, (C.9)

Fγ2 =− ik̃(1− e)

e
√
1− e2

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)+iωαt(u)

×
[
(ℓ+ 1) cosΦ− im sinΦ

(
2 + e cosΦ

1 + e cosΦ

)]∫ u

−π

du′
(

1− e

1− e cos u′

)ℓ

e−iωαt(u′)+imΦ(u′),

(C.10)

FT 1 =
1

(1− e2)5/2

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)+iωαt(u)Q∗
α(u)

×

{
3

2
√
1− e2

(u− e sin u) [(ℓ+ 1)e sinΦ + im(1 + e cosΦ)]

− (ℓ+ 1)(1 + e)(1− e cos u)

}
, (C.11)

FT 2 =− ik̃(1− e)

(1− e2)5/2

∫ π

−π

du

(
1− e

1− e cos u

)ℓ+1

e−imΦ(u)+iωαt(u)Q∗
α(u)

×

{
3

2
√
1− e2

(u− e sin u) [(ℓ+ 1)e sinΦ + im(1 + e cosΦ)]
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− (ℓ+ 1)(1 + e)(1− e cos u)

}∫ u

−π

du′
(

1− e

1− e cos u′

)ℓ

e−iωαt(u′)+imΦ(u′),

(C.12)
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Appendix D

Unstable pulsation modes of

anisotropic neutron stars

D.1 Direct form of the pulsation equations of anisotropic

neutron stars

The governing equations of the perturbations from the perturbed Einstein equations

and perturbed stress energy conservation are directly listed below. After a series of

substitutions and simplifications, these equations reduce to four coupled first-order

ordinary differential equations (Eqs. (5.18)-(5.21)) as described in Sec. 5.2.1.

∇αT
αt = 0 : W̃ ′ = ℓ(ℓ+ 1)eλ/2(1− σ̄)Ṽ +

r2

2
eλ/2(1− σ̄)K̃

− r2eλ/2

ρ+ pr

(
R̃ + ρ′

e−λ/2

r2
W̃

)
+

2σ̄

r
W̃ (D.1)

(t, t) : 8πr2R̃ = e−λr2K̃ ′′ +

(
3− rλ′

2

)
e−λrK̃ ′ − (ℓ− 1)(ℓ+ 2)

2
K̃

− e−λrH̃ ′
0 −

[
(1− rλ′)e−λ +

ℓ(ℓ+ 1)

2

]
H̃0, (D.2)

(r, t) : K̃ ′ =
ℓ(ℓ+ 1)

2r2
H̃1 +

(
ν ′

2
− 1

r

)
K̃ − 8π(ρ+ pr)e

λ/2

r2
W̃ +

1

r
H̃0, (D.3)

(θ − ϕ, t) : H̃ ′
1 =

[
4π(ρ− pr)e

λr +
1− eλ

r

]
H̃1 + eλK̃ + eλH̃0

+ 16π(ρ+ pr)e
λ (1− σ̄) Ṽ , (D.4)
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(r, r) : − 8πr2P̃r =

(
1 +

rν ′

2

)
re−λK̃ ′ + ω2e−νr2K̃ − (ℓ− 1)(ℓ+ 2)

2
K̃

− 2ω2e−ν−λrH̃1 − e−λrH̃ ′
0 +

[
ℓ(ℓ+ 1)

2
− (1 + rν ′)e−λ

]
H̃0, (D.5)

(θ − ϕ, r) : ω2e−νH̃1 = K̃ ′ − H̃ ′
0 − ν ′H̃0, (D.6)

(θ − ϕ, θ − ϕ) : − 16πeλ
(
P̃r − S̃

)
= K̃ ′′ +

(
2

r
+
ν ′ − λ′

2

)
K̃ ′ + ω2eλ−νK̃ − H̃ ′′

0

−
(
2

r
+

3ν ′

2
− λ′

2

)
H̃ ′

0 + ω2eλ−νH̃0 −
[
ν ′′ + ν ′

(
1

r
+
ν ′ − λ′

2

)
− λ′

r

]
H̃0

− ω2e−ν

[
2H̃ ′

1 +

(
2

r
− λ′

)
H̃1

]
, (D.7)

∇αT
αr = 0 : P̃ ′

r =
ρ+ pr
r2

eλ/2
(
ω2e−ν +

ν ′

2
e−λA

)
W̃ −

(
1 +

1

c2s

)
ν ′

2
P̃r

− ρ+ pr
2

H̃ ′
0 + (ρ+ pr)σ̄K̃

′ − (ρ+ pr)ω
2e−νH̃1 −

2

r
S̃, (D.8)

∇αT
αθ = 0 : P̃r = ω2e−ν(ρ+ pr)(1− σ̄)Ṽ − ρ+ pr

2
H̃0 + S̃. (D.9)

Here, R̃, P̃r, and S̃ are expansion coefficients defined through δq =
∑

ℓ,m Q̃Yℓme
iωt,

where q and Q represents the set of quantities (ρ, pr, σ) and (R̃, P̃r, S̃) respectively.

The perturbation variables with an overhead tilde are related to the perturbation

variables in Sec. 5.2.1 in the following ways:

rℓK = K̃, rℓH0 =H̃0, rℓV = −Ṽ , rℓS = S̃,

rℓ+1H1 =H̃1, rℓ+1W = W̃ . (D.10)

D.2 Alternative derivation of Eq. (5.20)

In this section, we provide an alternative way to derive the pulsation equations,

Eq. (5.20) in specific. Instead of using the t-component of Eq. (5.13), we utilize the

continuity equation of particle number density and the relation of thermodynamics.



172

At the end, we explain how this method allows incorporating a more general form of

the EOS in the perturbed configuration.

In the derivation of the pulsation equations for isotropic stars, it is common to in-

troduce the particle number density, n, which is governed by the continuity equation

(see, e.g., [154]):

∇α(nu
α) = 0 =⇒ ∆n

n
= −1

2
hαβ∆gαβ. (D.11)

The number density is an independent variable in the EOS, i.e., p = p(n), ρ = ρ(n),

but does not enter the equation of motion directly once we have ρ as a function of

p. The pressure p here is the isotropic pressure. The Lagrangian perturbation of n is

related to that of ρ through the thermodynamic relation

∆ρ = (ρ+ p)
∆n

n
. (D.12)

Combining Eqs. (D.11), (D.12) and the adiabatic relation γ∆ρ/(ρ+ p) = ∆p/p gives

the t-component of the stress energy conservation (Eq. (5.13)) of an isotropic fluid.

While Eq. (D.11) still holds in the anisotropic case, Eq. (D.12) needs to be modified,

since the work done on the fluid does not depend only on the volume change, but

is directional dependent. This requires us to explicitly write down the change in

energy due to work done in each direction (see, e.g., [67, 131], for the generalized

thermodynamic relations in an anisotropic medium):

∆ρ =ρ
∆n

n
− pr∆U

r
r − pt(∆U

θ
θ +∆Uϕ

ϕ)

=(ρ+ pr)
∆n

n
+ σ(∆U θ

θ +∆Uϕ
ϕ), (D.13)
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where ∆Uαβ is the perturbative Lagrangian strain tensor [218] 1, given by

∆Uαβ = ∆hαβ =
1

2
hα

µhβ
ν∆gµν , (D.14)

and ∆Uα
β = gαµ∆Uµβ. Equation (D.13), substituted with the adiabatic relation,

Eq. (5.15), reads

∆pr
pr

= γ

[
∆n

n
+ σ̄(∆U θ

θ +∆Uϕ
ϕ)

]
. (D.15)

One can show that this is equivalent to Eq. (5.20) using Eqs. (D.11) and (D.14),

which are explicitly written as

∆n

n
=
∑
ℓ,m

[
1

2
H0 +K − e−λ/2

r
W ′ − ℓ+ 1

r2
e−λ/2W − ℓ(ℓ+ 1)

r2
V

]
rℓYℓme

iωt,

(D.16)

∆U θ
θ +∆Uϕ

ϕ =
∑
ℓ,m

[
−K + 2e−λ/2W

r2
+
ℓ(ℓ+ 1)

r2
V

]
rℓYℓme

iωt. (D.17)

Notice that in general, the anisotropic fluid can have different adiabatic constants in

each direction depending on the anisotropy EOS. That is,

∆pr
pr

= −
∑
i

γi∆U
i
i, (D.18)

where γi denotes the adiabatic index in the i-th spatial direction. We can even include

the stress-strain relation in an elastic medium as given in [43, 44]. This suggests a

further generalization of the pulsation equations described in Sec. 5.2.1. We leave it

1In fluid dynamics, it is more common to use the strain rate tensor to describe the deformation
of fluid elements during the flow. Since each fluid element in the pulsating star oscillates about its
equilibrium position, the strain rate just differs from the strain by a factor of iωe−ν/2.
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for future studies.

D.3 Relativistic Cowling approximation of non-

radial modes in anisotropic stars

To see how our equations reduce to the relativistic Cowling limit, we rewrite the

variable X in terms of the Eulerian pressure perturbation,

δpr =
∑
ℓ,m

rℓPrYℓme
iωt, (D.19)

and using its definition in terms of ∆p, introduced in Sec. 5.2.1:

X = −eν/2Pr − e(ν−λ)/2p′r
W

r
. (D.20)

To see how the pulsation equations reduce to the form in [73], it is better to express

them in terms of differential equations of Pr. Substituting Eq. (D.20) into Eqs. (5.20)

and (5.21), we obtain

W ′ =reλ/2(1− σ̄)K +

(
−ℓ+ 1

r
+

2σ̄

r
− p′r
γpr

)
W − reλ/2

γpr
Pr +

reλ/2

2
H0 −

ℓ(ℓ+ 1)

r
eλ/2(1− σ̄)V,

(D.21)

P ′
r =− ρ+ pr

2

[
rω2e−ν +

ℓ(ℓ+ 1)

2r
(1− 2σ̄)

]
H1 −

ρ+ pr
2

(1− 2σ̄)

(
ν ′

2
− 1

r

)
K

+
ρ+ pr
r

eλ/2
[
4π(ρ+ pr)(1− 2σ̄) + ω2e−ν +

ν ′

2
e−λA

]
W

−
[
ℓ

r
+

(
1 +

ρ+ pr
γpr

)
ν ′

2

]
Pr −

[
ρ+ pr

2

(
1

r
− ν ′

2

)
+
p′r
2

]
H0 −

2

r
S. (D.22)
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We see that the differential equation with Pr is simpler than Eq. (5.21), since most

of the lengthy terms in Eq. (5.21) come from the derivative of the terms other than

P ′
r within Eq. (D.20).

We also have

(ρ+ pr)(1− σ̄)ω2e−νV = −Pr −
ρ+ pr

2
H0 + S. (D.23)

To reduce Eqs. (D.21)-(D.23) to the relativistic Cowling limit given in [73] the ap-

proximation procedure is not by simply taking all metric perturbations to zero.

The steps involved are the same as the isotropic case described in, e.g., [219, 220],

where we set H0, K, H1 to zero in Eqs. (D.21)-(D.23), and further drop the term

4π(ρ+pr)
2e(λ+ν)/2W/r in the second line of Eq. (D.22). The reason for removing this

term comes from Eq. (5.19) in the Cowling limit, assuming H1 does not reduce to

zero in the same way as H0, K and K ′, leaving us an algebraic relation between H1

and W . Reference [221] has given an argument about H1 being larger than the other

metric perturbations in the Newtonian limit2.

The set of pulsation equations in relativistic Cowling approximation is explicitly given

by

W ′ =

(
−ℓ+ 1

r
+

2σ̄

r
− p′r
γpr

)
W − reλ/2

γpr
Pr −

ℓ(ℓ+ 1)

r
eλ/2(1− σ̄)V, (D.24)

P ′
r =

ρ+ pr
r

eλ/2
[
ω2e−ν +

ν ′

2
e−λA

]
W −

[
ℓ

r
+

(
1 +

ρ+ pr
γpr

)
ν ′

2

]
Pr −

2

r
S, (D.25)

Pr =− (ρ+ pr)(1− σ̄)ω2e−νV + S. (D.26)

2The choice of H1 leads to ambiguity in the Cowling limit of the full GR formalism. Refer-
ence [221] has provided another way to treat H1, which leads to another version of relativistic
Cowling approximation that works better for g-modes [219].
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This set of equations is equivalent to Eqs. (27), (29) and (30) of [73] with a barotropic

EOS, and can further be reduced to the isotropic limit of the relativistic Cowling

approximation formulas [222].

D.4 Integral relation of the eigenvalue and eigen-

functions

As given in Eqs. (5.40) and (5.41), the eigenfrequencies and the eigenfunctions of the

pulsation equations are related through the integral equations

ω2

∫ ∞

0

(I1 + J1)dr =

∫ ∞

0

(I2 + J2)dr + I3(R) + J3(R)

+ I4(∞), (D.27)

where J1 to J3 vanish in the isotropic limit and are non-zero only inside the star. In

this section, we provide the explicit forms of the terms I1 to I4 and J1 to J3.

The terms I1 to I4 are obtained from Eq. (16) of [151], and are explicitly written as:

I1 =e
λ−ν
2 r2

{
(ρ+ pr)

[
1

r4

∣∣∣W̃ ∣∣∣2 + ℓ(ℓ+ 1)

r2

∣∣∣Ṽ ∣∣∣2]− ℓ(ℓ+ 1)

16πeλr2

∣∣∣H̃1

∣∣∣2 − 1

16π

[∣∣∣K̃∣∣∣2 + 2Re
(
K̃H̃∗

0

)]}
,

(D.28)

I2 =e
λ+ν
2 r2

{
− (ρ+ pr)ν

′A

2eλr4
|W |2 + 1

γpr

∣∣∣P̃r

∣∣∣2 + [ℓ(ℓ+ 1)

16πr2
− 3(ρ+ pr)

4

] ∣∣∣H̃0

∣∣∣2 − 1

16πeλ

∣∣∣K̃ ′
∣∣∣2

+
ρ+ pr
γpr

Re
(
P̃rH̃

∗
0

)
− (ρ+ pr)A

eλ/2r2
Re(W̃ H̃∗

0 ) +
1

8πeλ
Re
[(
ν ′H̃0 + H̃ ′

0

)
K̃ ′ ∗

]}
,

(D.29)
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I3 =
eνρ

2

[
2e−ν/2 Re

(
W̃ H̃∗

0

)
+
ν ′

r2

∣∣∣W̃ ∣∣∣2] , (D.30)

I4 =
eνr2

16π

[
K̃∗
(
H̃ ′

0 + ν ′H̃0 − K̃ ′
)
− K̃ ′H̃∗

0

]
. (D.31)

Here, P̃r is defined through δpr =
∑

ℓ,m P̃rYℓme
iωt, and the symbol Re denotes taking

the real part. The perturbation variables with overhead tilde are related to those

defined in Sec. 5.2.1 through Eq. (D.10). We see that I1 to I3 are real while I4 is

in general complex if we impose the purely outgoing boundary condition at infinity

[151, 223].

The terms J1 to J3 are derived using the procedures described in Appendix A of [151],

with the Einstein equations and stress energy conservation in the anisotropic case.

J1 =− ℓ(ℓ+ 1)e
λ−ν
2 (ρ+ pr)σ̄

∣∣∣Ṽ ∣∣∣2 , (D.32)

J2 =e
ν
2

[
(ρ+ pr)σ̄

(
−K̃ ′ +

2e−
λ
2A

r3
W̃

)
− 2σ̄

r

(
1 +

ρ+ pr
γpr

)
P̃r +

2

r
S̃

]
W̃ ∗

+ e
ν+λ
2

(
σ̄P̃r +

ρ+ pr
2

σ̄H̃0 − S̃

)[
r2K̃∗ + ℓ(ℓ+ 1)Ṽ ∗

]
, (D.33)

J3 =
2eνρ

r3
σ̄
∣∣∣W̃ ∣∣∣2 . (D.34)

The perturbation variables of the terms J1 and J3 are paired in the same way as

I1, while J2 is in general complex as the complex perturbation variables cannot be

paired in the same ways as I1 to I3. Although it is not obvious that the complex

pulsation variables within J2 cannot be paired up to form a real term, we verified this

by numerically computing the integral using the solutions of the QNMs.
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Appendix E

Testing gravity with double white

dwarfs

E.1 Dependence of the statistical error on the ob-

servation time

The observation time dependence of ∆γ of the DWD system for n = −1 is shown in

Fig. E.1, which follows a power law with an index of −3.78 at large Tobs. Note that

this scaling is close to the T−3.5
obs dependence of the non-GR parameter in Eq. (17) of

[75], where they show an approximate expression for the statistical error of the time-

variation of the Newtonian gravitational constant using a similar waveform model as

the one we use here.

We can also demonstrate this scaling by considering Eq. (6.20) in the large Tobs limit.

The Fisher matrix element of the ppE parameter is given by

Γγγ ≈ π2A2ν2n

38115Sn(f0)

[
7623ḟ 2

GRT
5
obs

+ 385(11 + 2n)ḟGRf̈GRT
6
obs + 5f̈ 2

GR(11 + 2n)2T 7
obs

]
, (E.1)

where we have assumed A is time-independent for simplicity. Hence, for large Tobs,
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Figure E.1: The statistical error on γ of the DWD system in Table E.1 at different
Tobs for n = −1. A fitting formula for the data points with Tobs ≥ 3 years is shown.

the T 7
obs term dominates. Similarly, ΓMγ and ΓMM also have T 7

obs dependence in this

limit. This causes |∆γ| to scale as T−3.5
obs .

E.2 Constraints from other potential LISA sources

In this section, we repeat the calculation of the statistical uncertainties on γ presented

in Sec. 6.2.1 for some other potential LISA quasi-monochromatic sources, includ-

ing neutron star-white dwarf binaries (NS-WD), extreme-mass-ratio-inspiral (XMRI)

[224], and the verification binary ZTF J1539+5027 (see Table E.1).

In Fig. E.2, we present the statistical uncertainties of the SMG non-GR parameter

estimated by the Fisher matrix with the ppE model as described in Sec. 6.2.1 for

various LISA sources. For the XMRI source, we assume it is composed of a 0.05M⊙

brown dwarf and a 4 × 106M⊙ supermassive black hole, emulating a GW source at

the galactic center. All the sources contain at least one star with low compactness

and therefore may give strong constraints on the SMG non-GR parameter. From
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Figure E.2: The statistical error of the SMG non-GR parameter for various sources
that are not considered in Fig. 6.5. The black lines correspond to the statistical
error of the source shown in Fig. 6.5. For each source, the open symbol represents
the statistical error without prior and the solid symbol represents that with a 1%
Gaussian prior on the chirp mass.

the figure, we see that the statistical errors are comparable but are weaker than

the current bound from PSR J1738+0333. One exception is the XMRI, due to its

potentially large SNR [224] if the orbit is close enough. The population of these

systems is currently uncertain1. We also expect the astrophysical systematics to be

much smaller for XMRIs than DWDs due to the smaller radius and magnetic field

strength of the brown dwarfs. That again means the GW measurement alone is

insufficient to improve the bound on the SMG theories. Prior information on the

chirp mass (e.g., 1% Gaussian priors on the chirp mass, as indicated by the solid

symbols in Fig. E.2) is required for better constraints.
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SNR (1 yr) ϕ0 ψ ι θ ϕ f0 M
[rad] [rad] [rad] [rad] [rad] [mHz] [M⊙]

sim. 95 2.2722 0.4413 0.7885 2.1405 4.3525 18.509 0.35
ZTF J1539+5027 14.9 – – 1.4687 1.9869 −2.7048 4.8217 0.30

NS-WD 214 – – 1.5708 1.7208 4.600 20.0 0.53
XMRI 19700 – – 1.5708 1.7208 4.600 2.0 72.5

Table E.1: Source parameters of the DWD binaries. The simulated source (sim.)
corresponds to source 4 of Table 1 in [74]. One of the LISA verification binaries, ZTF
J1539+5027 [225], is also included. For the unspecified angles, we simply take the
values as 0.

E.3 Constraining other non-GR theories

Theories involving axions are also a good candidate to test with DWD systems as

the axion charges become larger for less compact stars [226–228]. Axion-like particles

(ALPs) are pseudo-scalar fields that extend the standard model. One example is the

QCD axions that are introduced to resolve the strong CP problem in quantum chro-

modynamics (QCD) [229–231]. ALPs are also popular dark matter (DM) candidates

[232]. For QCD axion, it has been shown to account for the observed DM abun-

dance if the decay constant is above 1012GeV [233]. The ALP parameters have been

constrained by both laboratory experiments [234–236] and astrophysical observations

[237–239]. The addition of GW observations by LISA can provide an independent

probe of such particles.

During inspiral, the extra force from the ALPs affects the orbital phase. In particular,

the scalar Larmor radiation causes a change in the orbital decay rate [228, 240]. The

effect depends on the axion dipole moment p of a binary sourced by the axion charges,

1In [224], they use a steady state power-law distribution function of the brown dwarfs to estimate
that there are ∼20 such sources within 10−3 pc of the galactic center of the Milky Way. Around 5
are high-frequency sources with circular orbits. However, the actual event rate depends also on the
formation and death rate of these systems.
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Figure E.3: Similar to Fig. 6.5 but showing the statistical and systematic errors of
the axion decay constant fa against the mass ratio q.

which can be approximated by

p = 4πfaMη2/5r
(
C−1

1 − C−1
2

)
, (E.2)

where fa is the axion decay constant (see [240]). Relating to the ppE parameter, γ,

defined in Eqs. (6.3) and (6.4), we have

γ =
5π

48
η2/5

G

ℏc5
f 2
a

(
1

C1

− 1

C2

)2

. (E.3)

Notice that Eq. (E.3) has similar dependence on η, γ and compactness as the SMG

parameter in Eq. (6.27). Hence, similar constraints can be found using the DWD

systems as shown in Fig. E.3.

In Fig. E.3, we show the statistical and systematic error of fa in the same manner as

Fig. 6.5. The statistical errors are obtained by imposing a Gaussian prior of different

widths on the chirp mass and the current bound is obtained from the pulsar-WD

binary PSR J0348+0432 [241] (a similar but less stringent bound is obtained from

J1738+0333). Due to the similarity of the dependence of the non-GR parameter on
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the WD parameters, the constraints obtained are qualitatively the same as SMG.

E.4 Derivation of the spin-induced quadrupole mo-

ment contribution to the frequency evolution

To derive the correction to the orbital decay rate due to the spin-induced quadrupole

moment for a synchronized binary, we first identify the perturbation of the potential

energy. Then, we derive the perturbation to the orbital radius as a function of orbital

frequency (i.e., modified Kepler’s third law). Finally, we apply the energy balance

law to obtain the perturbation to the orbital decay rate. For simplicity, we assume

the system is spin-aligned and consider the contribution of the quadrupole moment

of star 1 only2 and assume that the spin of the star remains synchronized with the

orbit. As we sill see, this leads to a slightly different orbital decay rate from [76] that

considered binaries without synchronization.

The potential of the binary system is given by

V (r) = −M
r

(
1 +

Qs

2m1r2

)
, (E.4)

where M is the total mass of the binary, and the spin-induced quadrupole moment

scalar is defined through

Qij = −Qs

(
ninj −

1

3
δij

)
, (E.5)

and the unit vector is set as n = (0, 0, 1). The radial component of the equation of
2The contribution from star 2 can easily be included by taking the correction, changing the index

1 and 2, and adding this to the correction from star 1 only)
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motion can be obtained from Eq. (E.4):

r̈ − rΩ2 = −M
r2

(
1 +

3Qs

2m1r2

)
, (E.6)

where r̈ is taken to be zero for circular orbits. The modified Kepler’s law is given by

r =

(
M

Ω2

)1/3(
1 +

QsΩ
4/3

2m1M2/3

)
. (E.7)

The change in ḟ is then determined by the rate of energy dissipation

ḟ =
Ė

π dE
dΩ

, (E.8)

where Ω = ϕ̇ and Ė = dE/dt is given by

Ė =− 32

5
µ2r4Ω6,

=− 32

5
µ2M4/3Ω10/3

(
1 + 2

QsΩ
4/3

M2/3m1

)
, (E.9)

and dE
dΩ

is derived from E(Ω)

E(Ω) =
1

2
µr2Ω2 − Mµ

r

(
1 +

Qs

2m1r2

)
=− 1

2
µM2/3Ω2/3

(
1− QsΩ

4/3

M2/3m1

)
. (E.10)

Here, we assume Qs ∝ Ω2, dE
dΩ

is then

dE

dΩ
= −1

3
µM2/3Ω−1/3

(
1− 6QsΩ

4/3

M2/3m1

)
. (E.11)

This leads to a different dE
dΩ

from that in [76] which considered binaries that are not
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synchronized.

By substituting Eqs. (E.9) and (E.11) into Eq. (E.8), we have ∆Qs = ḟ/ḟGR − 1:

∆Qs =
8QsΩ

4/3

M2/3m1

. (E.12)
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Appendix F

Probing crystalline quark matter

within the neutron star core

F.1 Newtonian pulsation equations

The pulsation equations in Newtonian theory are described in Sec. 2.5. For numerical

computation, the radial part of the equations is cast into a system of six coupled

ordinary differential equations:

r
dz1
dr

=−
(
1 + 2

α2

α3

)
z1 +

1

α3

z2 + ℓ (ℓ+ 1)
α2

α3

z3, (F.1)

r
dz2
dr

=

(
−c1V Ω2 − 4V + UV + 12Γ1

α1

α3

)
z1 +

(
V − 4

α1

α3

)
z2

+ ℓ (ℓ+ 1)

(
V − 6Γ1

α1

α3

)
z3 + ℓ (ℓ+ 1) z4 + V z6, (F.2)

r
dz3
dr

=− z1 +
1

α1

z4, (F.3)

r
dz4
dr

=

(
V − 6Γ1

α1

α3

)
z1 −

α2

α3

z2 +

{
− c1V Ω2 +

2

α3

[
(2ℓ(ℓ+ 1)− 1)α1α2

+ 2 (ℓ(ℓ+ 1)− 1)α2
1

]}
z3

+ (V − 3) z4 + V z5, (F.4)

r
dz5
dr

=(1− U) z5 + z6, (F.5)
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r
dz6
dr

=U

(
−ANr +

V

Γ1

− 2 + 2
α2

α3

)
z1 −

U

α3

z2 + ℓ (ℓ+ 1)U

(
1− α2

α3

)
z3

+ ℓ (ℓ+ 1) z5 − Uz6, (F.6)

where the dependent variables z1 to z6 are defined as

z1 =
ξr
r
, (F.7)

z2 = α2

[
1

r2
d

dr

(
r2ξr

)
− ℓ(ℓ+ 1)

r
ξ⊥

]
+ 2α1

dξr
dr
, (F.8)

z3 =
ξ⊥
r
, (F.9)

z4 = α1

(
dξ⊥
dr

− ξ⊥
r

+
ξr
r

)
, (F.10)

z5 =
δΨ

gr
, (F.11)

z6 =
1

g

dδΨ

dr
, (F.12)

where g is the Newtonian gravitational acceleration given by m/r2 and the functions

Ω, c1, α1, α2, α3, AN , U and V are defined as

Ω =

√
R3ω2

M
, c1 =

( r
R

)3 M
m
, AN =

1

ρ

dρ

dr
− 1

Γ1p

dp

dr
,

α1 =
µ

p
, α2 = Γ1 −

2

3

µ

p
, α3 = Γ1 +

4

3

µ

p
,

U =
r

m

dm

dr
, V = −r

p

dp

dr
. (F.13)

Here M and R are the stellar mass and radius, Γ1 = ρ/p(∂p/∂ρ)S is the adiabatic

index defined in Sec. 2.5, AN is the Newtonian Schwarzschild discriminant and it

vanishes in cold compact objects except at the density discontinuities. Also see the

definitions of ξr and ξ⊥ in Eq. (2.50). Equations (F.1)–(F.6) describe the linear

perturbations of the HS solid core. Notice that there are no independent equations
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for δρ and δp since the variable δρ is related to z2 through Eq. (F.8) and the perturbed

continuity equation Eq. (2.45):

1

r2
d

dr

(
r2ξr

)
− ℓ(ℓ+ 1)

r
ξ⊥ = −∆ρ

ρ
, (F.14)

whereas the variable δp can be related to δρ through the linearized thermodynamic

identity:

1

ρ
∆ρ =

1

Γ1p
∆p. (F.15)

Here ∆f represents the Lagrangian perturbation of a variable f depending on r (see

Sec. 2.5), which is related to the Eulerian perturbation δf by

∆f = δf + ξr
df

dr
. (F.16)

To numerically obtain the pulsation modes, we integrate Eqs. (F.1)–(F.6) from the

center to the stellar radius. At the solid-fluid interface, we employ continuity condi-

tions of the pulsation variables z1, z2, z4 and z5. The continuity of z1 is the direct

consequence of the assumption that the volume element at the interface contains no

void if the phase transition happens slowly compared to the pulsation motion (see

e.g., [242]). The continuity of z2 and z4 comes from the continuity of the stress in

the radial and tangential directions. Lastly, the Poisson equation guarantees the

continuity of z51.

The above equations for z1–z6 describe the pulsation problem of the solid core. Al-
1Note that z3 and z6, which are related to the tangential displacement and the first derivative of

the gravitational potential perturbation respectively, are not required to be continuous. The former
is the consequence of the so-called “free-slipping” condition and the latter is allowed by the Poisson
equation.
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though we can in principle obtain the pulsation equations inside fluid by taking the

µ → 0 limit, it is straightforward to see that Eqs. (F.3) and (F.4) become trivial in

this limit and we effectively have only four coupled differential equations. Therefore,

it is often better to introduce another set of dependent variables for the fluid problem.

Inside the fluid envelope, we employ the formulation by [129] (see also P.225 of [27]):

r
dy1
dr

=

(
V

Γ1

− 3

)
y1 +

[
ℓ (ℓ+ 1)

c1Ω2
− V

Γ1

]
y2 +

V

Γ1

y3, (F.17)

r
dy2
dr

=
(
c1Ω

2 + ANr
)
y1 + (1− U − ANr) y2 + ANry3, (F.18)

r
dy3
dr

= (1− U) y3 + y4, (F.19)

r
dy4
dr

= −UANry1 +
UV

Γ1

y2 +

[
ℓ (ℓ+ 1)− UV

Γ1

]
y3 − Uy4. (F.20)

Here the pulsation variables are given by

y1 = z1 =
ξr
r
, (F.21)

y2 =
1

gr

(
δp

ρ
+ δΨ

)
, (F.22)

y3 = z5 =
δΨ

gr
, (F.23)

y4 = z6 =
1

g

dδΨ

dr
. (F.24)

y2 is also related to ξ⊥ through

y2 = c1Ω
2z3 =

ω2

g
ξ⊥. (F.25)

Equation (F.22) implies that the continuity of radial stress across the interface is
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equivalent to

[V (y1 − y2 + y3)]fluid = [z2]solid . (F.26)

Here the square brackets “[ ]” with the subscripts “fluid” or “solid” indicates that

the expression enclosed is evaluated at the fluid side or the solid side of the interface

respectively.

To determine y4 at the interface, one last continuity condition is derived by integrating

Eq. (F.20) across the interface, using the fact that the derivative of ρ in AN behaves

like a Dirac delta function in r. Doing so, one can find:

[Uy1 + y4]fluid = [Uz1 + z6]solid . (F.27)

This equation corresponds to the continuity of the Newtonian gravitational force at

the perturbed interface.

At the surface, we have similar continuity conditions as Eqs. (F.26) and (F.27):

y1 − y2 + y3 =0, (F.28)

Uy1 + y4 =− (ℓ+ 1) y3, (F.29)

where all quantities are evaluated at r = R. The second equation comes from the

continuity of y3 and we have applied the solution to the Poisson equation in vacuum

(i.e., δΨ ∝ r−ℓ−1).

While integrating Eqs. (F.1)-(F.6) from r = 0 numerically for the solid core, we con-

sider only the regular solutions, which can be obtained from a Taylor series expansion

of z1–z6 near r = 0. We modify the expressions of the regular solutions derived by
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[202] to fit our definition of pulsation variables:

z1 =A0r
ℓ−2 + A2r

ℓ, (F.30)

z2 =B0r
ℓ−2 +B2r

ℓ, (F.31)

z3 =C0r
ℓ−2 + C2r

ℓ, (F.32)

z4 =D0r
ℓ−2 +D2r

ℓ, (F.33)

z5 =
E0

gr
rℓ−2 +

E2

gr
rℓ, (F.34)

z6 =
1

g
[F0 + 3σA0 − (ℓ+ 1)E0] r

ℓ−2 (F.35)

+
1

g
[(ℓ+ 2)F2 − 3σA2] r

ℓ, (F.36)

where the coefficients are related by

A0 = ℓC0, (F.37)

B0 = 2(ℓ− 1)α1A0, (F.38)

D0 =
2α1(ℓ− 1)

ℓ
A0, (F.39)

E0 = 3σC0 +
1

ℓ
F0, (F.40)

C2 =
β2
β1
D2 +

ρ

pβ1

{
F0 +

[
ω2 + (3− ℓ)σ

]
A0

}
, (F.41)

A2 = −ℓC2 +
1

α1

D2, (F.42)

B2 = γ1C2 + γ2D2, (F.43)

E2 =
3

2
σ(2l − 3) [(ℓ+ 3)A2 − ℓ(ℓ+ 1)C2] , (F.44)

F2 = (ℓ+ 2)E2 − 3σA2, (F.45)
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and σ, β1,β2, γ1 and γ2 are given by

σ =
4π

3
ρ, (F.46)

β1 =2l2(ℓ+ 2)α2 + 2ℓ(ℓ2 + 2l − 1)α1, (F.47)

β2 =ℓ(ℓ+ 5) + ℓ(ℓ+ 3)
α2

α1

, (F.48)

γ1 =2ℓ(ℓ+ 2)α2 + 2ℓ(ℓ+ 1)α1, (F.49)

γ2 =2(ℓ+ 1) + (ℓ+ 3)
α2

α1

. (F.50)

By choosing arbitrary values of C0, D2 and F0 (or any 3 of the 12 coefficients), we

can obtain three independent regular series solutions about r = 0 for the pulsation

problem in the solid core.

If we consider HS models with a fluid quark matter core (i.e., the ∆ = 0 limit for the

CCS phase), we also need the regular solutions for Eqs. (F.17)–(F.20) near r = 0.

Following [129], the regular solutions satisfy the following equations

y2 =
c1ω

2

ℓ
y1, (F.51)

y4 =ℓy3. (F.52)

Hence, there are two independent regular solutions at the center.

F.2 Maxwell Construction

The quark-hadron matter phase transition can either be of first or second order de-

pending on the charge screening effect and the surface tension between the phases.

They can respectively be constructed through a Maxwell construction or a Gibbs
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construction which results in a mixed phase [243].

We focus on the Maxwell construction, which gives a first-order phase transition with

a sharp density jump at the transition pressure Pt inside the HS. The transition point

is determined by the following equations ([84, 244]):

Pt =p1(µB, µe) = p2(µB, µe), (F.53)

µB =µB1 = µB2, (F.54)

where µB, µe are the baryon chemical potential and electron chemical potential. The

subscripts 1 and 2 of the pressure indicate the hadronic phase and the quark matter

phase respectively. Average chemical potential of quarks µq is given by:

µq =
µu + µd + µs

3
. (F.55)

Since three quarks form one baryon, we can relate the chemical potentials by

3µq = µB. (F.56)

For a given NS EOS, µB can be determined with the Euler equation

µB =
ρ+ p

nB

, (F.57)

where ρ is the energy density and nB is the baryon number density given by

nB = nn + np, (F.58)

where nn and np are the number density for neutrons and protons respectively.
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F.3 Consistency check of the hybrid method

In this section, we comment on the validity of the hybrid method that we employed

in our analysis. We solved the TOV equation to construct accurate HS background

models, while we used Newtonian pulsation theory to compute the i-modes for sim-

plicity and applied the method in [194] to compute the tidal coupling. Ideally, one

should compare the results from such an approximate, hybrid method against a fully

consistent analysis that solves relativistic perturbation equations. However, given

that the framework for solving the latter has not been established yet, we instead fol-

low Yu et al. [18] and compare the hybrid method against a fully-Newtonian one in

which both the background and perturbation equations are solved within Newtonian

gravity2. Such a study allows us to estimate the relativistic effect (in the background

solution).

∆ (MeV) Method f(Hz) |Ini22| |δϕ|
5 Full Newtonian 584.37 0.040 3.167

Hybrid 443.03 0.020 1.136
15 Full Newtonian 1020.3 0.295 55.853

Hybrid 714.86 0.143 21.901
25 Full Newtonian 1128.4 0.399 83.460

Hybrid 863.44 0.248 45.009

Table F.1: The comparison of the numerical results of the 1.4 M⊙ models with
the EOS Heb3-QM-1 with a full Newtonian calculation and hybrid approach (TOV
equations for background and Newtonian equations for pulsation and tidal coupling).
Notice that the frequencies differ by about 25 % and phase shifts are off by a factor
of a few.

To be more precise, Yu et al. [18] studied the detectability of dynamical tides for
2We should also emphasize that the full Newtonian approach, despite being consistent throughout

the background, pulsation modes and tidal coupling calculations, is not the so-called “consistent”
approach either since the background structure is not accurately determined. The Newtonian treat-
ment in the pulsation mode and tidal coupling problem is also expected to have discrepancies in the
size of M/R compared to that of the fully-GR formalism.
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hyperon stars. They compared the deviation in the g-mode tidal coupling coefficient

Inℓm calculated with the hybrid method from that calculated with a full Newtonian

approach and found that Inℓm was off by less than 5%. Since the normalization

of the eigenmodes in their study contains the mode frequencies, Inℓm also has a

different normalization constant compared to our definition (see Eq. (2.41)). We

therefore compare the estimate of δϕ in the two methods, which is independent of the

normalization.

Table F.1 compares the oscillation properties (f , |Ini22| and |δϕ|) computed with the

hybrid and Newtonian methods. We fix the stellar mass at 1.4M⊙ and use the EOS

Heb3-QM-13 while varying ∆. Notice that the phase shift magnitude computed with

the hybrid approach is smaller than that of the full Newtonian approach by a factor

of a few. On the other hand, the difference in the oscillation frequency between

the two methods is about 25%. Although the discrepancy in δϕ between the two

approaches for the i-mode is larger than that for the g-modes in [18], it is still within

the same order of magnitude. Meanwhile, the i-mode phase shift changes by orders

of magnitude as we vary the EOSs. Therefore, we expect that the discrepancy does

not significantly affect our conclusion except for the marginal cases and we consider

the hybrid approach to be a valid order of magnitude estimate of the phase shift. We

leave the consistent analysis in full GR for future work.

3We choose Heb3-QM-1 out of the four low Pt EOS due to its lower i-mode frequency. For the
other EOSs, there are avoided crossings as we change ∆ between the i-mode and other modes which
distort the wavefunction.
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