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Strongly Correlated Electrons in Atomic Liquids:
Gutzwiller Molecular Dynamics Simulations

Chen Cheng

(ABSTRACT)

In this thesis, we study the intricate interplay between the electronic structure and

atomic distribution in liquid metal models featuring electron-electron interaction.

In Chapter 2, we introduce the model employed to examine correlated electrons in

liquids. Furthermore, we delve into the Gutzwiller variational method, offering an

in-depth discussion alongside modern formulations. Additionally, we detail the im-

plementation of Gutzwiller molecular dynamics for our study.

In chapter 3, we study the influence of the atomic distribution on the electronic struc-

ture. Our focus lies in the Mott transition in metallic liquids, and draws comparisons

to its manifestation in amorphous solids. We demonstrate a rather counter-intuitive

phenomenon in metallic fluids where the electrical conductivity of a liquid system

can be enhanced by electron correlation effects. We show that while electron hopping

is indeed suppressed by a larger Hubbard repulsion, the reduced electronic cohesive

forces give rise to atomic clusters with a larger coordination number. The increased

atomic connectivity in turn results in an enhanced electrical conductance.

In Chapter 4, we delve into the impact of electron localization on atomic transport

properties. Our investigation unveils an unusual peak in atomic diffusion in proxim-

ity to the Mott transition in the Hubbard liquid model. To elucidate this intriguing

observation, we proposed a general theory based on the Chapman-Enskog method.

Remarkably, our theoretical framework successfully replicates this phenomenon in
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classical simple liquids.

In chapter 5, we employed the Gutzwiller molecular dynamics to study the liquid-

liquid transition in dense hydrogen. We constructed an ab initio tight-binding model

tailored specifically for hydrogen. Our simulation results characterise a metal-insulator

transition in liquid hydrogen. Notably, this transition arises not from correlated in-

teractions but rather from the dissociation of hydrogen molecules.
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Chapter 1

Introduction

Understanding the metal-insulator transition (MIT) is one of the central problems

in condensed matter physics [1, 2]. In 1931, Wilson [3, 4] gave the first successful

theoretical depiction of metals, insulators, and the transitions connecting them, based

on non-interacting or weakly interacting electron systems. This theory establishes a

broad differentiation between metals and insulators at absolute zero temperature,

based on the filling of electronic bands. Namely, insulators according to this picture

are materials where all energy bands are completely occupied or empty. No current

can flow under this situation and the conductivity is zero. A metal, on the other

hand, is a material in which one or more energy bands are partially full. In other

words, insulators have the Fermi level situated within a band gap, whereas in metals, it

resides within a band. According to the non-interacting electron theory, the formation

of band structure entirely stems from the periodic lattice arrangement of atoms within

crystals.

The correlation induced insulator

This model has been very successful. However, it does not always work. In 1937, de

Boer and Verwey [5] were the first to point out; for instance, cubic nickel oxide should

be a metal according to the model. In the same year, Peierls first pointed out [6] the
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electron-electron interaction could be the origin of the insulating behaviour. Materials

with open d and f electron shells, where electrons inhabit confined orbitals, exhibit

properties that pose challenges for explanation. In transition metals, such as vana-

dium, nickel, iron, and their oxides, electrons experience strong Coulomb repulsion

because of their spatial confinement in those orbitals. These strongly interacting or

correlated electrons cannot be described as embedded in a static mean field generated

by other electrons. The impact of each electron on the others is too substantial to

permit independent consideration of each.

The effect of correlations on material properties is often profound. The interplay of

electrons’ internal degrees of freedom, spin, charge, and orbital moment, can give rise

to a diverse array of exotic ordering phenomena at low temperatures. The extraor-

dinary phenomena range from huge changes in the conductivity across the metal-

insulator transition (MIT) in vanadium oxide, and substantial volume changes across

phase transitions in actinides and lanthanides, to high-temperature superconductivity

in cuprates. These unique properties contribute to the excitement surrounding the

potential applications of strongly correlated materials. Nevertheless, the complexity

of these phenomena and their heightened sensitivity to microscopic details present

significant challenges for both experimental investigation and analytical study.

Mott [7, 8, 9] took the first important step towards understanding how electron-

electron correlations could explain the insulating state, recognized as the Mott insu-

lator. The transition from a metal to a Mott insulator is called Mott transition (MT).

A theoretical framework outlining the MT was achieved by using simplified lattice

fermion models, notably in the celebrated Hubbard model. The Hubbard model [10,

11, 12, 13, 14] serves as the standard model for electrons with strong short-range

interactions, it consists in allowing electron hopping between atoms and considering
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a short-ranged on-site electron-electron repulsion while neglecting all other effects of

the electron-electron interaction. Despite its simplicity, the Hubbard model does not

have exact solutions, except for the one-dimensional lattice systems [15].

The Gutzwiller method

The search for the ground state of a many-electron system is a challenging task for

condensed-matter physicists, since the complexity of the exact solution increases ex-

ponentially with the number of particles, and in many interesting cases, it is still not

affordable with modern computers. One of the most powerful and widely used solver

is the quantum Monte-Carlo algorithm [16, 17], it suffers from the well-known sign

problem and can provide reliable results only for a limited class of models. Other nu-

merically accurate methods include exact diagonalization, numerical renormalization

group, density matrix renormalization group [18] and dynamical mean field theory [19,

20]. Nevertheless, these computationally advanced methods come with a high cost, a

factor that becomes more pronounced in larger systems or when aiming to implement

them in dynamic simulations.

In the early 1930s, Gutzwiller [21, 22, 23] proposed a variational approach to inves-

tigate the Hubbard model. He proposed a simple variational wave function (GWF),

which introduces correlations into the non-interacting wave function via a local cor-

relation factor in real space. To compute the ground state energy analytically, he

further introduced a Gutzwiller approximation (GA) where spatial correlations are

neglected, i.e. the many-body configurations at different lattice sites are assumed to

be independent of each other. In the limit of infinite dimensions, for a single band

GWF, the results of GA were found to be exact in these works [24, 25]. The results of
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the Gutzwiller variational method can also be derived by the Kotliar-Ruckenstein [26]

slave-boson mean-field theory, these two approaches are shown to be equivalent on a

mean-field level [27, 28, 29].

In 1970, Brinkman and Rice [30] realized that, at half-filling, the Gutzwiller method

describes a transition from a paramagnetic metal to a paramagnetic insulator at a

finite interaction strength, where all electrons are localized. The Brinkman-Rice the-

ory provides important insight into the Mott insulator. The Gutwiller method is

perhaps the most efficient approach to successfully capture the crucial correlation

effects. Contrary to a solitary Slater determinant forming the basis for either the

Hartree-Fock (HF) or Kohn-Sham (KS) [31, 32] methods, the GWF comprises multi-

ple Slater determinants is variationally optimized, aiming to strike a balance between

the kinetic energy gain resulting from electron delocalization and the local Coulomb

repulsion that occurs when two electrons occupy the same orbital [33].

Correlated electrons in liquids

While extensive efforts have been devoted to the MIT in crystals and amorphous

solids [34, 35, 36, 37, 38], the MIT in liquid is less investigated. Early theoretical

models studying liquid assumed no particular short-range order of atoms [39, 40, 41,

42], such approach to MIT in liquid is not much different from those developed for

the MIT in amorphous solids.

One of the most unique aspects of MIT in liquids is the interplay between atomic

dynamics and electronic structure. The electronic structure naturally depends on

the atomic configuration. On the other hand, the distribution of atoms in liquids

is determined by the inter-atomic forces, which in turn depend on the electronic
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properties and particularly the degree of electron delocalization. Mott [43] pointed

out this problem long ago: the difficulty in liquids is that we do not know how the

atoms distribute and how they change with volume and temperature.

The development of the density functional theory (DFT) has enabled the ab initio MD

simulation. These simulations are capable of capturing the ion dynamics, and have

been employed to study the MIT in fluid alkali metals [44, 45]. However, one major

drawback of DFT is its inability to capture the strong electron-electron correlation

effects, in particular, it fails to describe the Mott transition.

Expanding fluid alkali metals are good examples to study the MIT in liquids [46].

Upon heating and increasing pressure simultaneously along the liquid-vapor coexis-

tence curve up to the critical point, liquid metals can be substantially expanded. Due

to the low critical temperatures, e.g. cesium (Cs): 1924 K, 9.25 MPa, rubidium(Rb):

2017 K, 12.45 MPa [47], their properties are accessible under laboratory conditions

and have been extensively investigated in the past decades [48, 49, 50, 51, 52]. The

MIT in alkali metals occurs at low densities close to their critical temperatures, and

are suspected to be the Mott-Hubbard type transition. Various experimental obser-

vations support this argument, including the enhanced magnetic susceptibility [53],

the increased density of states in nuclear magnetic resonance experiments [54, 55] and

the enhancement of the effective optical electron mass [56].

For such correlation-induced MIT in liquid, DFT-MD may be insufficient in accu-

rately capturing the intricate dynamics and electronic correlations involved. Ad-

ditional computational techniques or advanced methodologies may be required to

enhance the predictive capabilities and comprehensively model the complex interplay

between electron location and molecular interactions in liquid states. The recently

developed Gutzwiller quantum molecular dynamics (GMD) [57] represents a good
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step in this direction. In this work [57], the Gutzwiller method was incorporated into

MD simulations. This integration revealed a Mott transition in liquids and brought

to light the intriguing structural and transport properties of the atoms.

Outline of the thesis

In this thesis, we extend the research initiated by [57], and delve deeper into the

study of correlated electrons in liquids with the Gutzwiller quantum molecular dy-

namics. Chapter 3, 4 and 5 each contains an independent project, accessible for

reading subsequent to Chapters 1 and 2.

In chapter 2, we give a comprehensive discussion of the model and simulation tech-

niques employed in this study. In section 2.1, we present the model utilized for the

investigation of the correlated electrons in liquids. Additionally, we delve into the

Gutzwiller variational method, providing a comprehensive discussion with modern

formulations in Section 2.2. The implementation of Gutzwiller molecular dynamics

is detailed in Section 2.3.

In chapter 3, we study the influence of the atomic distribution on the electronic

structure. Our focus lies in the Mott transition in metallic liquids, and draw compar-

isons to its manifestation in amorphous solids. The model and formulas are described

in section 3.1, the simulation results and discussion are presented in section 3.2.

In chapter 4, we delve into the impact of electron localization on atomic transport

properties. In section 4.1, we demonstrate and characterize an unusual maximum

of atomic diffusion close to the Mott transition in the Hubbard liquid model. In

section 4.2, we introduce a general theory based on the Chapman-Enskog method to

elucidate this intriguing observation.
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In chapter 5, we utilized Gutzwiller molecular dynamics (GMD) to scrutinize the

liquid-liquid transition in dense hydrogen. In Section 5.1, we constructed an ab initio

tight-binding model specifically tailored for hydrogen, followed by its benchmarking in

Section 5.2. Subsequently, we presented and deliberated upon the simulation results

in Section 5.3, concluding with a summary in Section 5.4.
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Chapter 2

The Hubbard liquid model and the

Gutzwiller molecular dynamics

In this chapter, we introduced the model and main theoretical tools exploited in this

thesis. These include the Hubbard liquid model, the Gutzwiller variational method,

and the Gutzwiller molecular dynamics, each presented in a dedicated section.

2.1 The Hubbard liquid model

The Hubbard model [10, 11, 12, 13, 14] stands as a cornerstone among the canonical

models for strongly correlated electron systems. Despite its apparent simplicity, the

single-band Hubbard model manifests a diverse spectrum of correlated electron be-

haviors, encompassing interaction-driven phenomena such as MIT, superconductivity,

and magnetism. Within the context of this thesis, we introduce a minimal extension

of the Hubbard model, broadening its scope to encompass an atomic liquid, which we

call the Hubbard liquid model. A single-band Hubbard liquid model has the following
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Hamiltonian:

H =
∑
i

|pi|2

2m
+

1

2

∑
i ̸=j

ϕ(|ri − rj|) + Ĥe

(
{ri}

)
, (2.1)

Ĥe

(
{ri}

)
=

∑
ij,σ

tij ĉ
†
i,σ ĉj,σ + U

∑
i

n̂i↑n̂i↓ , (2.2)

tij = h(|ri − rj|), (2.3)

where ri and pi are the classical position and momentum variables, respectively, of

the i-th atom. The first term is the classical kinetic energy, while the second term

represents the short-range repulsive pair potential. The attractive cohesive forces are

provided by itinerant electrons described by Eq. (2.2). Eq. (2.2) is basically the same

as a single-band Hubbard model, with a key distinction that the original Hubbard

model pertains to a lattice, whereas in this context, it characterizes disordered atoms

within a liquid. The first term in Eq. (2.2) describes electron hopping between atoms

with ĉ†i,σ (ĉi,σ) being the creation (annihilation) operator of an electron of spin σ =↑, ↓

at the i-th atom, and n̂i,σ = ĉ†i,σ ĉi,σ the corresponding number operator. The Hub-

bard parameter U in the second term encapsulates the on-site Coulomb repulsion of

electrons.

It is worth noting that the above single-band Hubbard liquid model also serves as

a minimum model for fluid alkali metals mentioned in chapter 1. Assuming well-

localized basis functions, we employ a hopping function which decays exponentially:

h(r) = −t0 e
−r/ξ, (2.4)

where ξ and t0 set the length and energy scales, respectively, of the model. On the
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other hand, a faster-decaying function

ϕ(r) = ϕ0 exp[−(r/λ)− b(r/λ)4] (2.5)

is used for the much sharper repulsive core, where ϕ0, λ and b are parameters in the

model. The form of Eq. (2.5) does not carry specific physical meaning; it merely

symbolizes a sharply defined repulsive potential. Alternative forms of ϕ(r) can be

conceived for different models, but bear in mind, the form of ϕ(r) may qualitatively

affect the atomic dynamics, and also the electronic structure because they are inter-

dependent. In the work of chapter 3 and chapter 4, the set of model parameters

ϕ0 = 4.17 t0, λ = 0.86 ξ, b = 0.1 is used.

2.2 The Gutzwiller variational method

Since its original formulation in the early 1960s, the Gutzwiller variational method [21,

22, 23] remains one of the simplest yet effective tools for addressing correlated elec-

tron systems. Bünemann, Gebhard, Weber et. al. [58, 59, 60] extended the Gutzwiller

method to multi-band models. Later, Fabrizio and Lanatà [61, 62, 63] re-formulated

and extended the method with practical parametrizations of the Gutzwiller param-

eter matrix suitable for numerical calculations. The newly formulated parameters

are called the Φ matrix. In this chapter, we will employ this formulation, placing

particular emphasis on the single-band scenario, as we are simulating a single-band

Hubbard liquid model.
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2.2.1 The Gutwziller wave function

In the Gutzwiller method, the ground state of the Hubbard Hamiltonian is approxi-

mated by the following variational wave function, the Gutzwiller wave function

|ΨG⟩ = P̂|Ψ0⟩ =
∏
i

P̂i|Ψ0⟩, (2.6)

where P is the Gutzwiller operator that can be expressed as a product of the on-

site operators P̂i, and |Ψ0⟩ is a Slater determinant constructed from the eigenstates

of an effective, or renormalized, tight-binding Hamiltonian to be determined self-

consistently.

The Slater determinant |Ψ0⟩, represents an uncorrelated state. A most general many-

body wave function can be built from linear combinations of many Slater determi-

nants. We designate a many-body wave function as ”correlated” when it cannot be

expressed by a single Slater determinant. Conversely, if it can be represented by a

single Slater determinant, we define it as ”uncorrelated”. ΨG goes beyond the uncor-

related wave functions, granting it the capability to capture the MT. In contrast, the

HF method and DFT search the ground state sorely within the space of uncorrelated

states. Additionally, it is also essential to recognize that ΨG does not encompass the

entire space of all possible wave functions, given its nature as a variational approach.

The local Gutzwiller operator P̂i aims to introduce local on-site electron correlation,

e.g. by reducing the statistical weight of the double-occupied states. It can be

expressed in terms of the local electron Fock states |i,Γ⟩,

P̂i(Φi) =
∑
ΓΓ′

Φi,ΓΓ′(P 0
i,Γ)

−1/2|i,Γ⟩⟨i,Γ′| ≡
∑
ΓΓ′

λi,ΓΓ′ |i,Γ⟩⟨i,Γ′|, (2.7)
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where P 0
i,Γ is the occupation probability of the uncorrelated state

P 0
i,Γ ≡ |⟨Ψ0|i,Γ⟩|2 . (2.8)

The expansion coefficients Φi,ΓΓ′ can be grouped into a Hermitian matrix Φi, which

serves as the variational parameters to be determined self-consistently [61, 62, 63]. It

can be shown that the elements of the Φi matrix also correspond to the wave function

of slave bosons. For the single-band Hubbard model, the basis {|i,Γ⟩} of the local

electron Fock space is {|0⟩, ĉ†i,↑|0⟩, ĉ†i,↓|0⟩, ĉ†i,↑ĉ
†
i,↓|0⟩}.

2.2.2 The Gutzwiller approximation and the ground state

The Gutwziller projector P̂ and the variational Slater determinant |Ψ0⟩ are aslo sub-

ject to the Gutzwiller constraints [61, 62, 63],

⟨Φ0|P̂†
i P̂i|Φ0⟩ = 1, (2.9)

⟨Φ0|P̂†
i P̂iĉ

†
i,αĉi,β|Φ0⟩ = ⟨Φ0|ĉ†i,αĉi,β|Φ0⟩. (2.10)

Eq. (2.9) guarantees the normalization of the GWF. In terms of the Φ-matrix, the

normalization of the Gutzwiller wave function in Eq. (2.9) becomes

Tr(Φ†
iΦi) = 1. (2.11)

Eq. (2.10) is introduced for computational convenience, this property of P̂ is extremely

useful in infinite-dimensional lattices. In this limit, the expectation value of any local
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operator Ôi becomes [61]

⟨Φ0|P̂†ÔiP̂|Φ0⟩ = ⟨Φ0|P̂†
i ÔiP̂i|Φ0⟩. (2.12)

In the Φ-matrix representation, it becomes

⟨ΨG|Ôi|ΨG⟩ = Tr(Φ†
i O Φi), (2.13)

where O is the matrix representation of operator Ôi in the local basis, i.e. OΓΓ′ =

⟨i,Γ|Ôi|i,Γ′⟩. We note that since the same basis is used for all atoms, these matrix

representations are independent of the site index.

For inter-site hopping operators, the expectation value is [61, 57]

⟨ΨG|ĉ†i,σ ĉj,σ|ΨG⟩ = Ri,σRj,σ⟨Ψ0|ĉ†i,σ ĉj,σ|Ψ0⟩. (2.14)

This result shows that the expectation of the off-diagonal term is given by a renormal-

ization Ri,σRj,σ of that of the uncorrelated state |Ψ0⟩. The renormalization factors

are given by

Ri,σ =
Tr(Φ†

i M†
σ Φi Mσ)√

ni,σ(1− ni,σ)
(2.15)

where Mσ is the matrix representation of the electron annihilation operator ĉi,σ in

the local basis, and the local electron density is

ni,σ = ⟨Ψ0|n̂i,σ|Ψ0⟩ = Tr(Φ†
i Nσ Φi). (2.16)

Here Ni,σ is similarly the electron number operator in the local basis.
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Again, Eq. (2.14) is a result of Eq. (2.10), it is strictly valid only in the limit of infinite-

coordination lattices. Nevertheless, it is quite common to use them as approximated

formulas for finite-dimensional systems, which is referred to as the Gutzwiller approx-

imation (GA).

The total energy of the Hubbard model is computed from the expectation value

E (|Ψ0⟩, {Φi}) = ⟨ΨG|Ĥe|ΨG⟩, and within the GA it is given by

E =
∑
ij

∑
σ

RiσRjσ tij ρij,σ + U
∑
i

Tr(Φ†
i DΦi), (2.17)

where D is the matrix representation of the local double occupancy operator

D̂i ≡ n̂i,↑n̂i,↓, (2.18)

and we have defined the single-particle density matrix or correlation function

ρij,σ ≡ ⟨Ψ0|ĉ†i,σ ĉj,σ|Ψ0⟩, (2.19)

For a single-band model, a general Φi matrix can be parametrized by four parameters:

Φi =



ϕi,0 0 0 0

0 ϕi,↑ 0 0

0 0 ϕi,↓ 0

0 0 0 ϕi,2


. (2.20)

The normalization of the Gutzwiller wave function corresponds to the constraint

|ϕi,0|2 + |ϕi,↑|2 + |ϕi,↓|2 + |ϕi,2|2 = 1. (2.21)
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From Eq. (2.16), the on-site electron number is

ni,σ = |ϕi,σ|2 + |ϕi,2|2, (2.22)

and the local double occupancy is given by

di ≡ ⟨ΨG|D̂i|ΨG⟩ = |ϕi,2|2. (2.23)

The physical meaning of the ϕ-parameters can be easily read from these identities.

First, |ϕi,σ|2 and |ϕi,2|2 represent the probability of singly occupied state (with spin

σ) and doubly occupied state, respectively, at the i-th site. By interpreting the

normalization condition Eq. (2.21) as a probability conservation condition, we can

view |ϕi,0|2 as the probability of an empty state at the i-th site.

The total energy in Eq. (2.17) is to be minimized with respect to both the Slater

determinant |Ψ0⟩ and the slave-boson amplitudes expressed as the Φi matrices. This

minimization has to be carried out by taking into account the normalization condition

Eq. (2.21) and the Gutzwiller constraint Eq. (2.16). To this end, we introduce two

local Lagrangian multipliers and consider the following energy functional

E ′ = E +
∑
i,σ

µi,σ(|ϕi,σ|2 + |ϕi,2|2 − ⟨Ψ0|n̂i,σ|Ψ0⟩)

+
∑
i

ϵi
[
1− (|ϕi,0|2 + |ϕi,↑|2 + |ϕi,↓|2 + |ϕi,2|2)

]
, (2.24)

The minimization of E ′ with respect to the Slater determinant, ∂E ′/∂|Ψ0⟩ = 0, leads

to the following renormalized quasi-particle tight-binding Hamiltonian

Hqp =
∑
ij

∑
σ

tijRi,σRj,σ ĉ
†
i,σ ĉj,σ +

∑
i

µi n̂i,σ. (2.25)
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The optimal Slater determinant is then obtained from the eigenstates of this renormal-

ized single-particle Hamiltonian. The minimization with respect to the slave bosons,

∂E ′/∂Φi = 0, can be cast into local eigenvalue problem [63]:

Hsb
i



ϕi,0

ϕi,↑

ϕi,↓

ϕi,2


= ϵi



ϕi,0

ϕi,↑

ϕi,↓

ϕi,2.


(2.26)

The effective slave-boson Hamiltonian is

Hsb
i =

∑
σ

∆i,σMσ +∆∗
i,σM†

σ√
ni,σ(1− ni,σ)

+
∑
σ

µi,σNσ + UD, (2.27)

Here the parameter ∆i,σ characterizes the local electron bonding and is given by

∆i,σ =
∑
j

tij Rj,σρij,σ. (2.28)

Due to the interdependence between the quasi-particle and slave-boson Hamiltonians,

the two eigenvalue problems of solving Hqp and Hsb
i are carried out iteratively until

convergence is reached.

2.2.3 The Gutzwiller method at finite temperatures

In this subsection, we discuss the generalization of the Gutzwiller method to finite

temperatures, following the works of Refs. [64, 65]. While the zero-temperature for-

mulation aims to obtain the Gutzwiller wave function |ΨG⟩ variationally, at finite
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temperatures, we seek a variational form for the many-electron density operator

ϱ̂G = P̂ ϱ̂0P̂† (2.29)

where ϱ̂0 denotes the density operator of the quasi-particles in thermal equilibrium.

Effectively, it is described by the following Boltzmann distribution

ϱ̂0 =
e−βĤqp

Tr(e−βĤqp)
(2.30)

Here P is the Gutzwiller operator parametrized in the same way as Eq. (2.6).

Importantly, the various variational parameters at finite temperatures are obtained

from the minimization of the free energy of the system, F = E − TS, instead of just

the energy. The total energy at finite-T is obtained from the trace E = Tr(ϱ̂G Ĥe),

and is given by the same expression Eq. (2.17), except the single-electron correlation

function is now computed from the trace with the quasi-particle density operator

ρij,σ ≡ Tr
(
ϱ̂0 ĉ

†
i,σ ĉj,σ

)
. (2.31)

The entropy of the system S = −Tr(ϱ̂G lnϱ̂G) cannot be computed analytically even

within the GA. In order to efficiently compute the entropy for MD simulations, it

is estimated by a analytical lower bound, which can be separated into contributions

from the quasi-particles and the slave bosons [64, 65]

S = Sqp(ϱ̂0) + Ssb({Φi}). (2.32)

Here the first term is the entropy of free fermions described by the density operator ϱ̂0,

which can be expressed in terms of the occupation probabilities of the quasi-particle
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Hamiltonian

Sqp = −Tr(ϱ̂0lnϱ̂0) (2.33)

= −
∑
m

[fm ln fm + (1− fm) ln(1− fm)] ,

where fm = fFD(ϵm), fFD(ε) is the Fermi-Dirac function, ϵm are eigenenergies of

the renormalized Hamiltonian Ĥqp in Eq. (2.25). The entropy of the slave-bosons

is estimated from the relative entropy between the distribution Φ†
iΦi of the local

correlated state and P 0
i of the uncorrelated one:

Ssb =
∑
i

S(Φ†
iΦi||P 0

i ) (2.34)

= −
∑
i

Tr[Φ†
iΦiln((P 0

i )
−1Φ†

iΦi)],

The free-energy of the system F(ϱ̂0, {Φi}) depends on both the quasi-particle density

operator and the slave-boson amplitudes. The optimized uncorrelated density oper-

ator is again obtained from the eigenstates of a self-consistently determined quasi-

particle Hamiltonian Eq. (2.25), while the minimization of F with respect to slave-

bosons is similarly recast into an eigenvalue problem with an additional entropy term

added to the slave-boson Hamiltonian Eq. (2.27).

2.3 The Gutzwiller molecular dynamics

In this section, we outline the application of the Gutzwiller MD method to simulate

the Mott metal-insulator transition in the Hubbard liquid model [57]. The atomic
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liquid is described by the Hamiltonian

H′ =
∑
i

|pi|2

2m
+

1

2

∑
i ̸=j

ϕ(|ri − rj|) + Ve({ri}) (2.35)

where ri and pi are the classical position and momentum variables, respectively,

of the i-th atom. The first term is the classical kinetic energy, while the second

term represents the short-range repulsive pair potential. The last term denotes the

electron-mediated potential energy which provides the cohesive forces for the atoms.

As in standard quantum MD approaches, the adiabatic or Born-Oppenheimer ap-

proximation is employed, which assumes a fast electronic relaxation compared with

the atomic dynamics. The electron potential with this approximation is given by the

expectation of the disordered Hubbard model Ĥe in Eq. (2.2):

Ve({ri}) = ⟨Ĥe⟩ = Tr(ϱ̂G Ĥe). (2.36)

As discussed above, the Gutzwiller method is used to compute the above expectation.

The atomic dynamics is described by the classical Newtonian dynamics in MD simu-

lations [66, 67]. Here we employ the NV T scheme, which means the atomic number

N , system volume V , and temperature T are kept constant in the MD simulations [66,

67]. With the Langevin thermostat for controlling the simulation temperature, the

atomic trajectories are governed by the Langevin equation [66]

mr̈i = −γṙi −
∂H′

∂ri
+ ηi(t), (2.37)

where γ is the dissipation coefficient, ηi(t) are stochastic forces with statistical prop-

erties
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⟨ηαi (t)⟩ = 0, (2.38)

⟨ηαi (t)η
β
j (t

′)⟩ = 2γkBTδij δαβ δ(t− t′),

where α, β denote the x, y, z Cartesian component of the stochastic forces.

The deterministic forces, the second term in Eq. (2.37), have two contributions. The

first is the repulsive forces due to the pair potential

Frep
i = −

∑
j

∂ϕ(rij)

∂ri
(2.39)

This repulsive component comes from the exclusion of core electrons around the

atomic nuclei. The attractive atomic forces are provided by the electron Hamiltonian,

which can be computed using the Hellmann-Feynman theorem

Felec
i = −∂Ve

∂ri
= −

⟨∂Ĥe

∂ri

⟩
(2.40)

= −
∑
j,σ

[
Ri,σRj,σρij,σ

∂h(rij)

∂ri
+ c.c.

]
.

This expression indicates that the force acting on a particular atom can be partitioned

into contributions from the neighboring atoms: Felec
i =

∑
j felec

ij . From Eq. (2.40), the

inter-atomic forces of an atomic pair can be written as

f elec
ij = −

∑
σ

Ri,σRj,σ ρij,σh
′(rij), (2.41)

where h′(r) = dh/dr. Assuming well-localized basis functions, here we employ a

hopping function which decays exponentially: h(r) = −t0 e
−r/ξ, where ξ and t0 set
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the length and energy scales, respectively, of the model. While the forces are mostly

determined by the inter-atomic distance rij through the hopping function, both the

renormalization factors Ri,σ and the electron correlation function ρij,σ depend on the

immediate neighborhood of the atomic pair (ij), giving rise to a finite distribution

of forces around the curve of an isolated pair fpair
ij = −⟨R2⟩h′(rij), R2 is the aver-

age value over different orbitals. This finite distribution underscores the many-body

nature of the cohesive forces mediated by electrons.
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Chapter 3

Electrical conductivity in the

Hubbard liquid model

Metal-insulator transition (MIT) remains at the forefront of condensed matter re-

search [68, 1, 69]. Contrary to conventional phase transitions which can be described

by order parameters associated with the broken symmetries, a transition from met-

als to insulators is characterized by different dynamical behaviors of electrons. Of

particular interest are MITs induced by the localization of electrons through either

strong disorder or electron interaction. In the former case, which is known as the

Anderson localization [70], the transition to an insulator is caused by the destruc-

tive wave interference between multiple scattering paths of electrons, leading to a

complete localization of all wave functions in the strong scattering limit even in the

absence of electron-electron interaction. In the second scenario, known as the Mott

transition, suppression of electron hopping is induced by strong electron correlations,

as exemplified by a large on-site Coulomb repulsion. Such correlation-induced MITs

are characterized by the enhancement of the electron effective mass and the opening

of a spectral gap.

Understanding the interplay between these two mechanisms has been a subject of

intense activity over the past few decades [69, 71, 35, 72]. One particularly intriguing

phenomenon reported in several studies is the enhancement of electrical conductance
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caused by repulsive electron-electron interactions. The suppression of disordered-

induced electronic localization can be attributed to partial screening of the random

potential. In the weak-coupling regime, this results from a smoother random potential

as the density of the electrons can adjust well to the given disorder configuration [73,

74, 75]. The resultant disorder screening is more prominent in low dimensions and

is sensitive to both temperatures and magnetic field. On the other hand, a differ-

ent screening mechanism, which can be traced to the nonperturbative Kondo-like

processes that lead to strong mass enhancements, is suggested for the screening of

on-site disorder potential in the strong coupling regime.

In this paper, we report a novel mechanism for the enhancement of electrical conduc-

tance that is unique for correlated electrons in an atomic liquid system. It is worth

noting that fluid metals have played an important role in the theoretical develop-

ment of Anderson localization and Mott transition phenomena [76]. Of particular

interest is the MIT in expanded metallic alkali fluids. Various experimental studies

also hinted at a correlation-driven metal-nonmetal transition in supercritical alkali

liquid [47, 77, 78, 79, 80]. In particular, experiments on liquid cesium and rubidium

observed an enhancement of magnetic susceptibility close to the critical density [53,

81, 55], indicating the emergence of localized magnetic moments which is a telltale

sign of Mott-Hubbard type transition.

3.1 Model and formulas

The electron transport in such fluid metals depends on the instantaneous atomic

configurations. On the other hand, within the Born-Oppenheimer approximation [82],

the adiabatic motion of atoms is governed by covalent forces that are mediated by
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itinerant electrons. The fluctuating atomic structures in a liquid can be viewed as

a dynamic disorder for electrons. To incorporate the effects of electron correlations

in such fluid metals, we employ a molecular dynamics scheme where the electronic

structure is solved by the Gutzwiller method. We show that, in the presence of strong

electron correlations, this nontrivial interplay leads to a rearrangement of atoms that

increases the coordination numbers, which in turn enhances the electron transport.

We consider the Hubbard liquid Hamiltonian (2.1), with the model parameters are

described in chapter 2.1,

H =
∑
i

|pi|2

2m
+

1

2

∑
i ̸=j

ϕ(|ri − rj|) +
∑
ij,σ

h(|ri − rj|)ĉ†i,σ ĉj,σ + U
∑
i

n̂i↑n̂i↓ . (3.1)

For random atomic configurations in a liquid, the electron subsystem of Eq. (2.1) cor-

responds to a tight-binding model with off-diagonal disorder, contrary to the diagonal

on-site disorder in the well-studied Anderson-Hubbard model. In order to highlight

the dynamical nature of the off-diagonal disorder in a liquid state, an amorphous-

Hubbard model with random, yet static, atoms is introduced to serve as a reference

system. The atomic positions ri of the amorphous solid are random variables uni-

formly distributed with a cube of linear size L, but subject to the hard-core condition

that the distance between any atomic pair is greater than ac. The resultant radial

distribution function g(r) of the amorphous solid is shown in Fig. 3.1. The radial

distribution function is defined as

g(r) =
ρ(r)

ρ0
, (3.2)

where ρ(r) is the density of the shell at distance r from a reference atom and ρ0 = N/V

is the system’s overall density. The radial distribution function reflects how density
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varies as a function of distance from a reference particle. For a given random con-

figuration {ri}, the hopping coefficients are given by the same exponential decaying

function. In this work, we focus on Mott transitions at half-filling for both models.
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Figure 3.1: The radial distribution functions of the amorphous model as well as
the liquid Hubbard at kBT/t0 = 0.00825 for three different Hubbard parameters.
r0 = 0.526ξ, it is the equilibrium distance of an isolated dimer at U = 0. t0 and ξ
are the energy and length scale of the system given in Eq. (2.4). Uc is the critical
value of U at which the Mott transition occurs, Uc ∼ 1.3t0. The g(r) for both cases
is obtained by averaging 103 disorder realizations from direct sampling in the case of
the amorphous model, and from GMD simulations of the atomic liquid. The sharp
cutoff is a result of the hard-core condition for the amorphous model. The arrows
mark the most probable nearest-neighbor distance, while the dashed lines indicate
the extent of the first coordination shell.

For a given atomic configuration, the electron structure of the amorphous and liquid

Hubbard models is solved by the Gutzwiller method. It is worth noting that this

electronic structure calculation has to be repeated at every time step of the MD sim-

ulations of the liquid system. Compared with other computationally more expensive

methods, the relative simplicity of the Gutzwiller approximation is crucial for effi-
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cient integration with MD simulations [57]. In this approach, the collective electron

behaviors such as the local double-occupation are encoded in the slave-boson degrees

of freedom [26], while the quasi-particles are described by an effective or renormalized

tight-binding Hamiltonian

Ĥqp =
∑
ij

∑
σ

t∗ij ĉ
†
iσ ĉjσ +

∑
i

λin̂i. (3.3)

Here t∗ij = RiRjh(|ri − rj|) is the renormalized hopping coefficient and λi denotes an

effective on-site potential in the Gutzwiller method. The renormalization factors Ri

depend on the slave-boson amplitudes and need to be solved self-consistently with

the quasi-particles solutions [63, 65].

To characterize the electron transport properties of the two disordered systems, we

use the Kubo-Greenwood formula [83, 84] to compute the electrical conductivity.

Given our focus on DC conductivity, we specifically consider the real component of

electrical conductivity given by [85]

σ(ω) =
πh̄

V

∑
mn

(
fn − fm
ϵm − ϵn

)
ℜ(⟨m|̂j|n⟩⟨n|̂j|m⟩)δ(ϵm − ϵn − ω), (3.4)

where ω is the frequency, V is the volume, fm is the Fermi-Dirac factor, ϵm and |m⟩

are the eigenenergy and eigenstate of the quasi-particle Hamiltonian Eq. (3.3), ℜ()

denotes the real part. The current operator is defined as [86, 87]

ĵ = i
e

h̄

∑
ij

∑
σ

(rj − ri) t∗ij ĉ
†
i,σ ĉj,σ. (3.5)
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Note σ(ω) is a tensor, its component is

σµν(ω) =
πh̄

V

∑
mn

(
fn − fm
ϵm − ϵn

)
ℜ(⟨m|̂jµ|n⟩⟨n|̂jν |m⟩)δ(ϵm − ϵn − ω), (3.6)

where µ and ν represent the x, y, z directions.

In practical calculations, due to the finite size effect, the δ function in the formula can

be replaced by a Lorentzian L(x) = η
π
/(x2+ η2), with a finite small η. An alternative

approach is to compute σ(ω) by averaging over a narrow frequency range of 2∆ω.

[88, 89],

σ(ω) =
1

2∆ω

∫ ω+∆ω

ω−∆ω

σ(ω′)dω′, (3.7)

This method is equivalent to replacing the δ function with a rectangular function of

width 2∆ω. The value of ∆ω cannot be too small so that some energy levels can be

included in the δ function, it should also not be too big to give a good resolution.

In this work, we use Eq. (3.7) and choose ∆ω to be twice the average gap between

neighboring energy levels near the chemical potential. The DC conductivity σ0 is the

conductivity at zero frequency, for isotropic systems,

σ0 = σxx(0) = σyy(0) = σzz(0). (3.8)

3.2 Simulation results and discussion

The Gutzwiller MD method is used to simulate the bandwidth-controlled MIT in the

half-filled liquid Hubbard model. Fig. 3.1 shows the pair distribution functions g(r)

at various Hubbard U obtained from GMD simulations. Notably, while the extent
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of the first coordination shell expands slightly with increasing U , the strength of the

first coordination peaks remains roughly the same.

<latexit sha1_base64="/ccLAHhx/KGQGdawIkCcVW6SjUQ=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4CjMBl2PQi8cIZpFkCD2dnqRJL0N3jxCGfIUXD4p49XO8+Td2kjlo4oOCx3tVVNWLEs6M9f1vr7C2vrG5Vdwu7ezu7R+UD49aRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Wh8O/PbT1QbpuSDnSQ0FHgoWcwItk56xELpZKRS0y9X/Ko/B1olQU4qkKPRL3/1BoqkgkpLODamG/iJDTOsLSOcTku91NAEkzEe0q6jEgtqwmx+8BSdOWWAYqVdSYvm6u+JDAtjJiJynQLbkVn2ZuJ/Xje18XWYMZmklkqyWBSnHFmFZt+jAdOUWD5xBBPN3K2IjLDGxLqMSi6EYPnlVdKqVYPL6sV9rVK/yeMowgmcwjkEcAV1uIMGNIGAgGd4hTdPey/eu/exaC14+cwx/IH3+QNGVJC6</latexit>

amorphous

<latexit sha1_base64="D1qXR5QzVbulUcTZUryNy0wgiCk=">AAACBHicbVC7TsNAEDzzDOFloExjESFRRXbEq4ygoQyIPKTYROvLOTnlfLbuzkiRlYKGX6GhACFaPoKOv+HsuICEkVYazexqd8ePGZXKtr+NpeWV1bX10kZ5c2t7Z9fc22/LKBGYtHDEItH1QRJGOWkpqhjpxoJA6DPS8cdXmd95IELSiN+pSUy8EIacBhSD0lLfrLgM+JARNwQ1wsDS2+l93RW51jerds3OYS0SpyBVVKDZN7/cQYSTkHCFGUjZc+xYeSkIRTEj07KbSBIDHsOQ9DTlEBLppfkTU+tIKwMriIQurqxc/T2RQijlJPR1Z3arnPcy8T+vl6jgwkspjxNFOJ4tChJmqcjKErEGVBCs2EQTwILqWy08AgFY6dzKOgRn/uVF0q7XnLPa6c1JtXFZxFFCFXSIjpGDzlEDXaMmaiGMHtEzekVvxpPxYrwbH7PWJaOYOUB/YHz+ADQ/mHc=</latexit>

hR2i

<latexit sha1_base64="R4kPNc2aOb05e2iYVjsHcTPfDnI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY9OIxonlAsoTeyWwyZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nirIGjUWs2gFqJrhkDcONYO1EMYwCwVrB6Hbmt56Y0jyWj2acMD/CgeQhp2is9FDG816x5FbcOcgq8TJSggz1XvGr249pGjFpqECtO56bGH+CynAq2LTQTTVLkI5wwDqWSoyY9ifzU6fkzCp9EsbKljRkrv6emGCk9TgKbGeEZqiXvZn4n9dJTXjtT7hMUsMkXSwKU0FMTGZ/kz5XjBoxtgSp4vZWQoeokBqbTsGG4C2/vEqa1Yp3Wbm4r5ZqN1kceTiBUyiDB1dQgzuoQwMoDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4Ai0uNUg==</latexit>

(a)

<latexit sha1_base64="nM2JpBQPFmvzsYRr6HARFtutP74=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E34OMY9OIxonlAsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDvzW09cGxGrRxwn3I/oQIlQMIpWeigH571iya24c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzolZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuG1PxEqSZErtlgUppJgTGZ/k77QnKEcW0KZFvZWwoZUU4Y2nYINwVt+eZU0qxXvsnJxXy3VbrI48nACp1AGD66gBndQhwYwGMAzvMKbI50X5935WLTmnGzmGP7A+fwBjNCNUw==</latexit>

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1  1.2

 
 

<latexit sha1_base64="O0n9wL3WOz1L43Ar04eKSkQBu/A=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktWD0WvXisYD+gXUo2m21js8maZIWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbCmnAnaMsxw2k0UxXHAaScY38z8zhNVmklxbyYJ9WM8FCxiBBsrtTl7TFk4KFfcqjsHWiVeTiqQozkof/VDSdKYCkM41rrnuYnxM6wMI5xOS/1U0wSTMR7SnqUCx1T72fzaKTqzSogiqWwJg+bq74kMx1pP4sB2xtiM9LI3E//zeqmJrvyMiSQ1VJDFoijlyEg0ex2FTFFi+MQSTBSztyIywgoTYwMq2RC85ZdXSbtW9erVi7tapXGdx1GEEziFc/DgEhpwC01oAYEHeIZXeHOk8+K8Ox+L1oKTzxzDHzifP8hDj0Y=</latexit>

liquid

<latexit sha1_base64="/ccLAHhx/KGQGdawIkCcVW6SjUQ=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4CjMBl2PQi8cIZpFkCD2dnqRJL0N3jxCGfIUXD4p49XO8+Td2kjlo4oOCx3tVVNWLEs6M9f1vr7C2vrG5Vdwu7ezu7R+UD49aRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Wh8O/PbT1QbpuSDnSQ0FHgoWcwItk56xELpZKRS0y9X/Ko/B1olQU4qkKPRL3/1BoqkgkpLODamG/iJDTOsLSOcTku91NAEkzEe0q6jEgtqwmx+8BSdOWWAYqVdSYvm6u+JDAtjJiJynQLbkVn2ZuJ/Xje18XWYMZmklkqyWBSnHFmFZt+jAdOUWD5xBBPN3K2IjLDGxLqMSi6EYPnlVdKqVYPL6sV9rVK/yeMowgmcwjkEcAV1uIMGNIGAgGd4hTdPey/eu/exaC14+cwx/IH3+QNGVJC6</latexit>

amorphous
<latexit sha1_base64="O0n9wL3WOz1L43Ar04eKSkQBu/A=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktWD0WvXisYD+gXUo2m21js8maZIWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbCmnAnaMsxw2k0UxXHAaScY38z8zhNVmklxbyYJ9WM8FCxiBBsrtTl7TFk4KFfcqjsHWiVeTiqQozkof/VDSdKYCkM41rrnuYnxM6wMI5xOS/1U0wSTMR7SnqUCx1T72fzaKTqzSogiqWwJg+bq74kMx1pP4sB2xtiM9LI3E//zeqmJrvyMiSQ1VJDFoijlyEg0ex2FTFFi+MQSTBSztyIywgoTYwMq2RC85ZdXSbtW9erVi7tapXGdx1GEEziFc/DgEhpwC01oAYEHeIZXeHOk8+K8Ox+L1oKTzxzDHzifP8hDj0Y=</latexit>

liquid

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2  0.4  0.6  0.8  1  1.2

 

 

<latexit sha1_base64="v76s8lsBqoIOWtTAJvvfG3StQ9Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU03Er2PRi8cKpi20oWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6m/rNJ1Sax/LRjBMMIjqQvM8ZNVby/TO/y7rlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf2bIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcV71rqqXDxeV2m0eRxGO4BhOwYNrqME91MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPOTiOUQ==</latexit>

U/Uc

<latexit sha1_base64="86u7upgA5MGhf1LLwc8kyh8uTWU=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZD5rHOzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWyd1eoYNBe77/XLFr/pzoFUS5KQCORr98ldvoEgqqLSEY2O6gZ/YMMPaMsLptNRLDU0wGeMh7ToqsaAmzOb3TtGZUwYoVtqVtGiu/p7IsDBmIiLXKbAdmWVvJv7ndVMbX4cZk0lqqSSLRXHKkVVo9jwaME2J5RNHMNHM3YrICGtMrIuo5EIIll9eJa2LalCr1u4vK/WbPI4inMApnEMAV1CHO2hAEwhweIZXePMevRfv3ftYtBa8fOYY/sD7/AHH04/R</latexit>�0

Figure 3.2: (a) the ensemble and spatially averaged renormalization factor ⟨R2⟩ as a
function of the Hubbard parameter U for the amorphous and liquid Hubbard models.
The U dependences of the ensemble averaged DC conductivity σ0 for the two models
are shown in panel (b). Uc is the critical value of U at which the Mott transition
occurs, Uc ∼ 1.3t0, t0 is the energy scale of the system given in Eq. (2.4). The two
systems have the same temperature kBT/t0 = 0.00825.



29

We next compare the bandwidth-controlled Mott transitions in the amorphous and

liquid Hubbard models at half-filling. The correlation-induced bandwidth reduction

in both systems can be characterized by the ensemble and spatially averaged renor-

malization factor ⟨R2⟩. As shown in Fig. 3.2(a), the averaged renormalization factor

in both cases decreases monotonically from the uncorrelated limit ⟨R2⟩ ∼ 1 to zero

for U ≥ Uc. The double occupancy ⟨n̂↑n̂↓⟩ also shows a similar monotonically decreas-

ing trend with increasing U for both models. The vanishing of the double occupancy

indicates a metal insulator transition driven by electronic localization due to strong

Hubbard repulsion. These results also show that the Mott transition in the atomic

liquid seems to follow a similar scenario as in the well-studied amorphous systems.

Yet, despite the similarity in the evolution of bandwidth renormalizations, the liquid

systems exhibit dramatically different electron transport behaviors, compared with

that of amorphous solid. As shown in Fig. 3.2(b), the DC conductivity of the liquid

metal is enhanced by Hubbard U before the rapid drop at the Mott transition. On the

other hand, the conductivity of the amorphous system gradually decreases before a

significant drop near the critical Uc. The behavior in the amorphous case is consistent

with the statistical DMFT calculations [90, 91]. Indeed, it is argued that the DC

conductivity of the metallic phase is pinned at its value in the uncorrelated U → 0

limit for any model obeying a local particle-hole symmetry, which applies to tight-

binding systems at half-filling with arbitrary form of hopping randomness [90].
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liquid

Figure 3.3: Effective density of states ρ∗(ϵ) = ⟨R2⟩ρ(ϵ) at various Hubbard U for (a)
the amorphous solid and (b) the Hubbard liquid. The Fermi level is fixed at ϵ = 0
shown by the red dashed line.

The DC conductivity of the amorphous solid can also be understood from the picture

of a renormalized Fermi liquid. Applying the Kubo-Greenwood formula to a T = 0

degenerate Fermi gas in the presence of randomly distributed scatterers, one obtains
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DC conductivity [92]:

σ0 =
2πe2h̄

m∗2 |⟨p̂⟩|2 ρ2F , (3.9)

where m∗ is the effective mass, ρF is the density of states (DOS) at the Fermi level,

⟨p̂⟩ denotes a matrix element between two different eigenstates at the Fermi level,

and the overline indicates averaging over such states. In the presence of the Hubbard

repulsion, the electron correlation effect results in an enhanced effective mass

m∗ =
m

⟨R2⟩
, (3.10)

where the bracket in ⟨R2⟩ denotes the average of the renormalization at different

orbitals. On the other hand, as the electron bandwidth is reduced, the conservation

of total states implies an enlarged DOS. The increased effective mass and the increased

DOS at the Fermi level are driving the conductivity in opposite directions, whichever

factor prevails dictates the change of the conductivity. For instance, in the case

of amorphous solids, their effects counterbalance each other, resulting in a levelled

conductivity as depicted in Fig. 3.2(b).

To enhance our understanding of this condition, we reformulate Eq. (3.9) as

σ0 =
2πe2h̄

m2
|⟨p̂⟩|2 ρ∗2F , (3.11)

ρ∗F = ⟨R2⟩ρF , (3.12)

where ρ∗F is the effective DOS at the Fermi level. In the form of Eq. (3.11), the change

of conductivity solely depends on the change of the effective density of states ρ∗F . The

effective DOS for both the amorphous solid and the Hubbard liquid at various U are
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Figure 3.4: The effective density of states at the Fermi level ρ∗F versus U , for the
amorphous solid and the Hubbard liquid.

shown in Fig. 3.3. The two figures Fig. 3.3(a) and Fig. 3.3(b) show distinct behaviour

at the Fermi level as the interaction U increases. In contrast to the amorphous case,

the Hubbard liquid exhibits a notable surge in the effective density of states (DOS)

at the Fermi level as U increases, which elucidates the observed enhancement in

conductivity as illustrated in Fig. 3.2. The variation of the effective DOS at the

Fermi level with respect to U is also depicted in Fig. 3.4. It illustrates a substantial

increase for the Hubbard liquid, whereas only a minimal change is observed for the

amorphous solid.

The different behaviour of the electronic structure between the amorphous solid and

Hubbard liquid is attributed to the alteration in atomic distribution within the Hub-

bard liquid as the interaction strength increases. We explore the change of atomic

distribution by computing the coordination number and average nearest-neighbor dis-
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Figure 3.5: The coordination number N1 versus U for the Hubbard liquid, at kBT/t0 =
0.00825. r0 = 0.526ξ, t0 and ξ are the energy and length scale of the system given in
Eq. (2.4). The inset: the average inter-atomic nearest-neighbor distance versus the
interaction for the Hubbard liquid.

tance in the liquid, as shown in Fig. 3.5. The coordination number in liquid refers to

the average number of nearest-neighbor atoms surrounding a central atom, it reflects

the packing efficiency of particles in the liquid. The coordination number is defined

as

N1 = 2

∫ rmax

0

dr4πr2g(r)ρ0, (3.13)

the integral is integrated from 0 to the position of the first peak rmax in g(r), ρ0 = N/V

is the system’s overall density. The coordination number N1 as a function of U is

depicted in Fig. 3.5. It demonstrates a rise with increasing U until the occurrence of

the Mott transition, beyond which the system exhibits no further changes and inter-

atomic force is purely from the classical repulsive potential ϕ(|ri − rj|) in Eq. (3.1).



34

The inset in Fig. 3.5 shows the average inter-atomic nearest-neighbor distance versus

U . As interaction increases, the cohesive inter-atomic force provided by the electron

hopping is reduced, leading to a further nearest-neighbor distance. At higher U ,

despite the increased distance between near-neighbors, the liquid attains a higher

coordination number. The higher coordination number means the atomic clusters

are better connected, resulting in an enhanced electrical conductivity. it is worth

mentioning that the conductivity of a perfect lattice at T = 0 is infinite, for a reference

atom all its near-neighbors are equidistant from it. Moreover, expanding the lattice,

i.e. increasing the lattice constant, will have no impact on conductivity in the absence

of electron interaction.

3.3 Summary

We studied the DC conductivity of amorphous solids and Hubbard liquid with the

Kubo-Greenwood formula. We demonstrate a rather counterintuitive phenomenon in

metallic fluids where the electrical conductivity of a liquid system can be enhanced

by electron correlation effects. Typically, strong electron correlation tends to localize

electrons, which commonly leads to diminished electrical conductivity. We compared

the effective density of states at the Fermi level between the amorphous solid and the

Hubbard liquid at various U , and discovered a substantial increase for the Hubbard

liquid, whereas only a minimal change is observed for the amorphous solid. The

discrepancy is attributed to the alteration of atomic distribution in the Hubbard

liquid due to the reduction of cohesive force at high U . The reduced cohesive force

gives rise to atomic clusters with a larger coordination number, the increased atomic

connectivity in turn results in an enhanced electrical conductance.
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Chapter 4

Atomic diffusion enhancement due

to electron delocalization

The kinetic properties of liquids, such as self-diffusion, viscosity, and thermal con-

ductivity, are a subject of both fundamental interest as well as technological impor-

tance [93, 94, 95]. In particular, the diffusivity is a fundamental property that encodes

the information of how inter-atomic interactions affect the random atomic motion in

a fluid. For example, the Einstein equation, D = kBT/ζ, relates the atomic self-

diffusion D to the friction coefficient ζ which partially quantifies the forces between

atoms [96, 97]; here the temperature T underscores the stochastic nature of the ther-

mally activated diffusive motion. Qualitatively, a stronger interatomic force is thus

expected to increase the viscosity, hence giving rise to a reduced atomic diffusion.

The inter-atomic potential in liquids generally consists of a short-distance sharp re-

pulsion originating from Pauli exclusion of overlapping electron orbitals and a longer-

ranged attraction which provides the cohesive energy [98, 99]. Phenomenologically,

the inter-atomic forces in simple liquids consisting of noble-gas atoms are well approx-

imated by the familiar Lennard-Jones (LJ) potential [100, 101]. Monatomic liquid

metals such as alkali fluids comprise another important family of simple liquids [102,

103]. The inter-atomic interactions in liquid metals, however, are significantly more

complicated due to the formation of metallic bonds [104, 105, 106, 107, 108]. Their
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effective potential exhibits a softer core [109, 110, 111, 112] compared with LJ-type

potentials and a long-range oscillating tail.

While the repulsive core is mostly responsible for the emergence of short-range order

that is characteristic of a liquid state [113, 114], extensive works over past decades

have shown that the repulsive force also dominates the dynamical properties, espe-

cially in the dense limit [115, 116, 117]. The addition of an attractive tail to the re-

pulsion generally leads to further friction and a reduced self-diffusion coefficient [118,

119, 120, 121]. However, the intricate interplay between the repulsive and attractive

interactions has yet to be studied in detail, especially in the context of liquid-state

Mott metal-insulator transitions [122], where the localization of electrons results in a

diminished attractive inter-atomic interaction. Such study is particularly important

for understanding the metal-insulator transition in expanding alkali fluids along the

liquid-vapor coexistence line [80, 123], where several experiments have suggested the

important role played by the electron correlation [53, 54, 55].

More generally, the effects of electron correlation on the atomic dynamics in a liquid

metal remain a largely uncharted territory in the research of both liquid-state physics

and correlated electron systems. This is partly due to the lack of proper molecular

dynamics methods to study such effects. The widely used classical MD [124] methods

which rely on empirical inter-atomic potentials fail to describe electronic phase tran-

sitions. On the other hand, state-of-the-art quantum MD [125, 82] methods based

on density functional theory cannot properly include the strong electron correlation

effects and, hence are inadequate for simulating the Mott transition.

In this chapter, we present a comprehensive theory for the effects of electron cor-

relation on the self-diffusion coefficient of liquid metals with correlated electrons.

We demonstrate and characterize an unusual maximum of atomic diffusion near the
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Mott transition by employing a new quantum MD scheme [57, 126] based on the

Gutzwiller method, which offers an efficient and qualitatively correct description of

the Mott transition [21, 22, 23, 26]. This non-monotonic behavior is counter-intuitive

since the addition of the attractive interaction is expected to increase the friction,

hence reducing the atomic diffusivity. We show that the enhanced diffusion originates

from a reduced repulsive core when the effect of the attractive tail is suppressed by

thermal fluctuations.

4.1 Diffusion in a Hubbard liquid model

To investigate the effects of electron correlations on the motion of atoms in a liquid, we

consider the Hubbard liquid Hamiltonian (2.1), with the model parameters described

in Chapter 2.1,

H =
∑
i

|pi|2

2m
+

1

2

∑
i ̸=j

ϕ(|ri − rj|) +
∑
ij,σ

h(|ri − rj|)ĉ†i,σ ĉj,σ + U
∑
i

n̂i↑n̂i↓ . (4.1)

We perform the GMD simulations on systems of N = 50 atoms, with periodic bound-

ary conditions. The system volume is fixed by setting the Wigner-Seitz radius

rs = (3V /4πN)1/3 (4.2)

to be rs = 1.9ξ. The temperature T is controlled by the Langevin thermostat with a

small damping. The atomic forces, computed using the Hellmann-Feynman formula

Fi = −⟨∂H/∂ri⟩, can also be derived from an effective pair-like potential Fi =
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Figure 4.1: (a) The average double occupancy ⟨d⟩ and (b) the average renormalization
⟨R2⟩ versus the Hubbard interaction at three different temperatures obtained from
GMD simulations of the Hubbard liquid model. W ≈ 0.1875t0 is the energy scale of
the disordered tight-binding model at low temperatures.

−∂V (rij)/∂ri. It consists of two parts:

V (rij) = ϕ(rij)− 2
(
⟨ĉ†i ĉj⟩+ ⟨ĉ†j ĉi⟩

)
h(rij), (4.3)

where the factor 2 accounts for the spin degeneracy, and ⟨Â⟩ = Tr(ϱ̂GÂ), with ϱ̂G

being the many-body electron density matrix within the Gutzwiller approximation,

denotes the quantum average of operator Â. The first term describes the short-

range repulsive core, while the second term denotes a renormalized attractive force.

It should be noted the forces here are not exactly pair-wise since the electron re-

duced density matrix ⟨ĉ†i ĉj⟩ depends also on atoms in the neighborhood of bond (ij).

Given the atomic forces, a velocity-Verlet algorithm is used to integrate the Langevin

equation, and the self-diffusion coefficient is computed from the velocity autocorrela-
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Figure 4.2: The atomic self-diffusion coefficient coefficient D versus the Hubbard pa-
rameter U from the GMD simulations of the Hubbard liquid model at three different
temperatures. The dashed lines indicate an estimate of the critical Uc for the Mott
transition. W is the absolute value of electron band energy at U = 0 at T = 0.0042t0,
W = 0.1875t0. The inset shows the temperature dependence of Dmax/D∞, which pro-
vides a measure of the enhancement; here Dmax is the maximum diffusion coefficient
and D∞ is the value in the large U limit.

tion: [66, 67]

D =
1

3N

N∑
i=1

∫ ∞

0

⟨vi(0) · vi(t)⟩dt. (4.4)

Fig. 4.2 shows the atomic self-diffusion coefficient D as a function of Hubbard re-

pulsion U obtained from the GMD simulations for three different temperatures. The

critical Uc of the Mott transition, estimated by the vanishing of the double occupancy

shown in Fig. 4.1, are indicated by the vertical lines in Fig. 4.2. Perhaps the most re-
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markable feature is the non-monotonic behavior of the diffusion coefficient which was

first reported in Ref. [57]. The diffusion behavior at small U can be understood within

the framework of Stokes-Einstein relation. Assuming that atomic dynamics in this

regime is dominated by the electron-mediated attraction, the increase of self-diffusion

coefficient thus comes from a weakened attractive force. As indicated in Eq. (4.3),

the effective attractive interaction relies on the delocalization of electrons, we thus

introduce the following renormalization factor to characterize the weakening of the

attractive force: η ≡ ⟨ĉ†i ĉj⟩/⟨ĉ
†
i ĉj⟩U=0, where ⟨· · · ⟩ denotes both quantum averages as

well as spatial and ensemble averages from MD simulations. Within the Gutzwiller

approximation, this factor is approximated as η ∼ ⟨RiRj⟩. The top horizontal axis of

Fig. 4.2 shows the η at T/W = 0.056, increasing the Hubbard U leads to a reduced η

and a weakened attractive force, which in turn increases the atomic diffusion. As the

Hubbard parameter is greater than the critical Uc, the nearly complete localization of

electrons leads to a pure repulsive inter-atomic interaction. The resultant diffusion

coefficient is thus independent of U in this Mott insulating phase, giving rise to the

leveled curves on the right side of Fig. 4.2.

The weakening of the electronic forces by the electron correlation is evidenced by

Fig. 4.3, which exhibits the density plots of the magnitude of electronic force f elec
ij

between an atomic pair versus the pair distance rij for various values of Hubbard

U . In contrast to forces due to a classical potential, the data points do not fall on

a single curve. Nonetheless, the distribution of the inter-atomic forces does follow a

well-defined underlying curve related to the hopping function, described by Eq. (2.41):

f elec
ij = −

∑
σ

Ri,σRj,σ ρij,σh
′(rij).

The suppressed renormalization factor Ri,σ, originates from the correlation-induced
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Figure 4.3: Density plots of the electronic forces between atomic pairs f elec
ij versus the

pair distance rij from the Gutzwiller MD simulations for various Hubbard parameter:
(a) U/t0 = 0.167, (b) U/t0 = 0.833, (c) U/t0 = 1.08. The number of atoms in the MD
simulations is N = 100. The force is shown with arbitrary units, while the distance
is measured in terms of ξ. Here t0 and ξ are characteristic energy and length scales,
respectively, of the hopping function h(r). The temperature is set at kBT/t0 = 0.0063.
The system density is fixed by setting the Wigner-Seitz radius rs = (3V /4πN)1/3 to
be rs = 1.9ξ.

localization of electrons, is shown in Fig. 4.1(b). The simulation results clearly show

that as the Hubbard repulsion increases, the electrons become more localized, giving

rise to a reduced average double occupancy and suppressed electron hopping. This

in turn causes the reduction of attractive inter-atomic forces.

The above scenario based on a weakened attraction, however, could not explain the

maximum of diffusion coefficient D in the vicinity of the Mott transition. In partic-

ular, due to the opposite signs of attractive and repulsive forces, their interplay near

Uc could lead to interesting dynamical behaviors. To this end, we will introduce a

simpler classical model to reproduce and elucidate this non-monotonic behavior of

the diffusion coefficient in the subsequent section.
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4.2 Diffusion in a classical Morse potential

We consider an effective inter-atomic pair potential which can be viewed as a gener-

alization of the well-known Morse potential [127, 128]

V (r) = ε0
(
e−r/ℓ+ − η e−r/ℓ−

)
, (4.5)

where ε0 sets the energy scale, ℓ± denote the ranges of the repulsive/attractive in-

teractions. Importantly, we introduce a dimensionless parameter η to mimic the

renormalization of the attractive forces discussed above. The range of the repulsive

core is in general smaller than that of attraction, for simplicity we set ℓ ≡ ℓ− = 2ℓ+.

With this ratio, the special point η = 2/e corresponds to the Morse potential

V (r) = ε0{1− exp[−(r − ℓ)/ℓ]}2. (4.6)

The generalized Morse potential is studied using standard classical MD simulations

in the NV T ensemble with up to N = 1000 atoms. We consider a relatively di-

lute system with an rs = 4.5ℓ. Fig. 4.4 shows the self-diffusion coefficient versus

the renormalization parameter η for three different temperatures. At large η, the

strong attraction binds the atoms into a liquid state, it has a much smaller diffusion

coefficient due to its high density. Upon reducing the parameter η, the system under-

goes a first-order liquid-gas transition, as indicated by the vertical lines in Fig. 4.4.

More relevant to our main interest here is the non-monotonic behavior of the dif-

fusion coefficient as η is further reduced in the gas phase. Importantly, this result

which is similar to that of the Hubbard liquid model indicates that the mechanism of

the diffusion maximum can be understood from this relatively simple classical liquid
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Figure 4.4: The self-diffusion coefficient D versus the renormalization parameter η
obtained from classical MD simulation of the generalized Morse potential Eq. (4.5).
The dashed lines indicate the liquid-gas transitions at the corresponding tempera-
tures. The inset shows the enhancement of self-diffusion defined as Dmax/D0, where
Dmax is the maximum diffusion coefficient and D0 is the value at η = 0.

model.

To this end, we employ the Chapman-Enskog theory [129], which provides an accurate

description for dilute liquids or gases based on binary collisions, to study the kinetic

properties of the generalized Morse potential. Importantly, the Chapman-Enskog

approach also demonstrates a clear maximum of atomic diffusivity when the attractive

component of the interatomic forces is reduced.

Here we briefly review the application of this theory to the calculation of diffusion

coefficient. The Chapman-Enskog method [129, 130] is an analytical approach for

solving the Boltzmann equation. It provides a systematic method for calculating

the transport coefficients of a gas from the knowledge of inter-molecular interactions.
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Figure 4.5: The diffusion coefficient of the generalized Morse potential Eq. (4.5)
versus the weakening factor η computed using the Chapman-Enskog theory.

The transport properties of an atomic liquid, such as the diffusion coefficient and

thermal conductivity, can be expressed by a set of collision integrals Ω(l,s), where

the superscript (l, s) denotes the order in a systematic expansion based on a small

parameter which is the ratio of the mean-free path between collisions to the scale

length of macroscopic variations.

Relevant to our work, the self-diffusion coefficient of a mono-atomic gas to the first

order is given by

D =
3

8mρ

kBT

Ω(1,1)
, (4.7)

where m is the atom mass, and ρ = N/V is the atomic density. The first-order

collision integral is computed as

Ω(1,1) =

(
kBT

2πµ

)1/2 ∫ ∞

0

e
− ϵ

kBT

(
ϵ

kBT

)2

Q(ϵ)
dϵ

2kBT
, (4.8)
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where µ = m/2 is the reduced mass. The integration variable ϵ is related to the

kinetic energy of an atomic pair ϵ = µv2/2 during the collision. For a given incoming

energy ϵ of the atomic pair, the effective cross-section of the collision is

Q(ϵ) = 2π

∫ ∞

0

(1− cosχ)b db, (4.9)

This integral is essentially the summation of cross sections 2πb db at different impact

parameter b weighted by the factor (1−cosχ) to account for the momentum transfer.

Here χ is the deflection angle of the atomic trajectory during the binary collision. It

depends on both the impact parameter and the incoming energy

χ(b, ϵ) = π − 2b

∫ ∞

rm

dr/r2[
1− b2

r2
− V (r)

ϵ

]1/2 . (4.10)

where the minimum distance rm also depends on both b and ϵ.

In general, this set of integrals cannot be computed analytically, except for the case

of the hard-sphere model. The inter-atomic potential for a hard sphere of diameter

σ is defined as infinite repulsion V (r) = +∞ for pair distance r < σ, and V (r) = 0

outside. The collision integral of the hard-sphere model can be seen to be given by

the circular area

Q(ϵ) = πσ2, (4.11)

which is independent of the incoming energy. Substituting this into Eq. (4.8) for the

collision integral, one obtains the following Enskog formula for the diffusion coefficient
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of hard-sphere gas

D =
3

8

(
πkBT

m

)1/2
1

πσ2ρ
. (4.12)

This formula can be used to extract an effective cross-section radius reff = σ for other

inter-atomic potentials.

In this work of Morse potential, we define

reff = (m/πkBT )
1/4Ω

1/2
(1,1) (4.13)

as the effective radius of the scattering cross-section, so that the diffusion coefficient

is given by

D =
3

8

(
πkBT

m

)1/2
1

πr2eff ρ
. (4.14)

Employing the Chapman-Enskog method, Fig. 4.5 shows the diffusion coefficient D

versus η at different temperatures. The curves exhibit a clear maximum, which

becomes more prominent with increasing temperature, consistent with the classical

MD simulations in Fig. 4.4. We note that the condensation phenomena in the strong

attraction region, however, is beyond the Chapman-Enskog theory which is valid only

for dilute systems.

It is worth noting that this non-monotonic behavior is unexpected since even a small

attractive interaction, which operates at a longer range, immediately introduces an

additional friction, which in turn results in a reduced atomic diffusion. While the

enlarged diffusion coefficient is obviously due to a smaller reff, we find that the in-

triguing reduction of the effective radius is well captured by a shrinking repulsive
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Figure 4.6: The generalized Morse potential Eq. (4.5), versus the weakening factor η
computed using the Chapman-Enskog theory. The red dashed line shows the radius
of repulsive core determined by condition V (rcore) = Ekin = 3kBT/2.

core. To see this, we define an effective core radius rcore, which is similar to the so-

called Boltzmann’s hard-sphere diameter [131], as the distance at which the potential

energy equals the average kinetic energy of atoms, i.e.

V (rcore) = Ekin = 3kBT/2, (4.15)

see Fig. 4.6. As shown by the dashed lines in Fig. 4.7, the η dependence of the effective

radius reff is well approximated by rcore almost all the way up to the minimum.

Based on this observation, a theory of the diffusion maximum is presented in the

following. As discussed in the introduction, an inter-atomic potential in general con-

sists of a short-distance repulsive interaction V+ and a longer-ranged attraction V−;

see Fig. 4.8(a). Physically, these two components V± are of rather distinct origins.
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Figure 4.7: Effective radius reff of the scattering cross-section versus η for T/ε0 =
0.0085, shown by the purple circles and line in the figure. The red dashed line shows
rcore defined in Eq. (4.15).

On the other hand, the importance of the inner repulsive core in determining the

short-range correlation suggests a different decomposition V = Vcore + Vtail [114] as

shown in Fig. 4.8(b). The force is purely repulsive inside the core region, and is

entirely attractive outside the core. Based on the Einstein relation, the self-diffusion

coefficient can then be expressed as D = kBT/(ζcore + ζtail). The friction coefficients

ζ are given by the force auto-correlation function, and here ζcore denotes the friction

due to the repulsive core, while the effects of the attractive tail (including the cross

terms) are subsumed into ζtail [118, 119, 120, 121]. It is the cancellation between V+

and V− that leads to a reduction of ζcore, resulting in an enhanced D. However, as

V− continues to increase, ζtail becomes predominant, causing a subsequent decline in

the diffusion coefficient.
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Figure 4.8: (a) Decomposition of an interatomic potential V (r) into its physical
repulsive V+(r) and attractive V−(r) components. (b) The same interaction potential
can also be spatially separated into a repulsive core Vcore(r) for r < rm, and an
attractive tail Vtail(r) for r > rm.

4.3 Summary

To summarize, we have presented a comprehensive theory for the intriguing phe-

nomenon of attraction facilitated enhancement of atomic diffusion in simple liquids.

In general, while both the structural and dynamical properties of simple liquids at

high densities are dominated by the repulsive core [115, 116, 117], our work highlights

interesting kinetic phenomena in the intermediate and dilute regime that results from

the nontrivial interplay between repulsive core and the longer-ranged attractive inter-

action. In particular, our theory naturally explains a maximum atomic diffusivity in

the vicinity of a Mott metal-insulator transition in liquid metals, a phenomenon that

is demonstrated by quantum molecular dynamics simulations on correlated-electron

liquid models.
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Chapter 5

GMD simulation of hydrogen

under extreme conditions

Our preliminary works on the Gutzwiller-MD simulations of the liquid Hubbard

model, provide crucial proof of concept for incorporating electron correlation into

quantum MD simulations. In particular, we show that the Gutzwiller-MD. is able to

describe the MIT dynamics, which is beyond the conventional DFT-MD. The next

step naturally is to implement this framework on real correlated electron materials. In

principle, this can be achieved through the combination of well-established DFT tech-

niques, such as the local density approximation (LDA), with the Gutzwiller method.

This so-called LDA+G approach has recently been proposed as a high-throughput

electronic structure method for real correlated electron compounds [132, 133, 134,

135, 64].

However, there are still obstacles that must be overcome to integrate the LDA+G

into MD simulations. For example, because of the different basis functions used in

the LDA and Gutzwiller methods, technical details of the force calculation have yet

to be worked out. Moreover, since the number of different electron configurations

grows exponentially with the number of correlated orbitals, a huge set of variational

parameters is required in the Gutzwiller calculation of multi-orbital atoms. For in-

stance, this number is in the order of 104 for atoms with d-orbitals in transition metal
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Figure 5.1: Schematic phase diagram of hydrogen adopted from Ref. [136]. The figure
shows the four known solid phases I to IV and two observed liquid phases, together
with the predicted atomic liquid. The liquid-liquid MIT corresponds to the transition
from molecular to atomic liquid hydrogen. The mixed liquid corresponds to the co-
existence region of the first-order MIT.

compounds such as VO2. Consequently, direct quantum MD simulation of the MIT

for such complex atoms is almost impossible even with the already efficient Gutzwiller

method.

Instead of tackling the complex correlated systems head-on, in this thesis we propose

to first develop a linear-scaling ab initio MD framework based on the Gutzwiller and

the ML methods for liquid metallic hydrogen under extreme conditions. In fact, the

liquid Hubbard model used in our pilot study can be viewed as a highly simplified
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version of the liquid hydrogen [57]. Despite being the simplest element of the periodic

table, hydrogen continues to fascinate researchers in condensed-matter physics, energy

application, and planetary science [137, 138]. This is because hydrogen exhibits

a rich phase diagram [136], which contains at least four different solid phases as

well as several liquid phases; see Fig. 5.1. Furthermore, it is predicted to display

remarkable properties such as low-temperature quantum fluidity and high-pressure

superconductivity [139, 140, 141, 142].

In particular, it was conjectured by Wigner and Huntington in the early days of

quantum mechanics that hydrogens might undergo a liquid-liquid insulator to metal

transition with increasing pressure [143]; see Fig. 5.1. The liquid metallic hydrogen at

high pressures is also special in the sense that it is an atomic liquid. Indeed, all other

phases of hydrogen, including the solid phases and the insulating liquid, consist of

hydrogen H2 molecule as the basic unit. The insulator-to-metal transition thus also

corresponds to the dissociation of the hydrogen molecules, which results in the dimin-

ishing of the molecule peak in the radial distribution function g(r), a phenomenon

already observed in our Gutzwiller-MD simulations of the liquid Hubbard model [57].

Tantalizing evidences of this liquid-liquid MIT in hydrogen have been reported in

recent experiments [144, 145, 146, 147]. Moreover, various quantum MD simulations,

with many-body solvers ranging from state-of-the-art DFT to expensive brute-force

quantum Monte Carlo optimization, have been applied to study this intriguing phe-

nomenon [148, 149, 150, 151, 152]. These previous studies thus provide ample numer-

ical data that can be used to benchmark our ab initio Gutzwiller-MD simulations.
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5.1 Ab initio tight-binding model for hydrogen

Instead of using an ad hoc function for t(Rij) and a parameter U as in the liquid

Hubbard model, the starting point of our ab initio MD is the following fundamental

Hamiltonian for hydrogen atoms in a cubic super-cell system with periodic boundary

condition (PBC):

H = − h̄2

2m

∑
p

Ne∑
µ=1

∇2
rp,µ

−
∑
n,p

Ne∑
µ=1

Na∑
i=1

e2

|rp,µ − Ri − nL| +
1

2

∑
p,q

Ne∑
µ,ν=1

e2

|rp,µ − rq,ν |

+
1

2

∑
n,m

Na∑
i,j=1 (i ̸=j if n=m)

e2

|Ri + nL− Rj − mL|
+
∑

n

Na∑
i=1

P2
i

2M
, (5.1)

where Ne and Na are the number of electrons and atoms in a super-cell, in the case

of hydrogen, Ne = Na. L is the box length of the super-cell, i.e. lattice constant.

n, m, p, q are 3D vectors denoting the super-cells, e.g. n = (1, 0, 0), (−1, 0, 0)..., nL

is the central position of the super-cell with index n. Define N as the total number of

super-cells in the system, n, m, p, q iterate through all the N super-cells, we work

in the thermodynamic limit with N → ∞. Ri is the position of the i-th ion in the

original super-cell, i.e. the cell with index n = (0, 0, 0). m and M are the mass of the

electron and the ion. Pi is the momentum of the i-th ion, the i-th ion has identical

momentum in every super-cell in the PBC setup. rp,µ denotes the position of µ-th

electron in the super-cell with p.

We introduce a set of Bloch-like basis functions,

|w̃k
j ⟩ =

1√
N

∑
n

e−ik·nL|wn
j ⟩, (5.2)
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satisfying the orthogonal condition

⟨w̃k
i |w̃k′

j ⟩ = δijδkk′ . (5.3)

wn
i (r) ≡ ⟨r|wn

i ⟩ is a localized wave function in the super-cell of index n with the

translational symmetry

wn
i (r) = wi(r − nL). (5.4)

The basis functions are constructed from the Slater-type orbitals (STOs) with the

Löwdin orthogonalization method, which is discussed in appendix A.

Using the standard procedure of second-quantization based on the basis functions

|w̃k
j ⟩, we derive the following second-quantized Hamiltonian for N super-cells

HN =

∫
BZ

dk
∑
ij

∑
α

T k
ij c

†
k,iαck,jα +

1

2

∫
BZ

dk1

∫
BZ

dk2

∑
ijkl

∑
αβ

Vk1,k2,k1,k2

ijkl

c†k1,iα
c†k2,jβ

ck2,lβck1,kα +
1

2

∑
n,m

Na∑
i,j=1 (i ̸=j if n=m)

e2

|Ri + nL− Rj − mL|
+
∑

n

Na∑
i=1

P2
i

2M
,

(5.5)

where k is integrated over the Brillouin Zone (BZ), α and β denote electron spins.

Numerically, it is impossible to solve the eigenstates for all k points, since the k values

are continuous. In conventional methods, the Hamiltonian is typically computed

solely at some selected high-symmetry points within the Brillouin zone. In this work,

since we are working on super-cells, we exclusively choose the Γ point within the

Brillouin Zone, i.e. k = 0 point. Choosing the k = 0 point is equivalent to requiring

the electronic wave function to be periodic across the super-cells, which is a periodic
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boundary condition for electrons. In the thermodynamic limit of a very large super-

cell Na → ∞, the eigenstates of k = 0 point are equivalent to the eigenstates of all

k points in the Brillouin zone. In that limit, we have HN = NH1, where H1 is the

Hamiltonian of a single super-cell:

H1 =
∑
ij

∑
α

Tijc
†
iαcjα +

1

2

∑
ijkl

∑
αβ

N Vijklc
†
iαc

†
jβclβckα

+
1

2

∑
n

Na∑
i,j=1(i ̸=j if n=0)

V coul
ij,n +

Na∑
i=1

P2
i

2M
, (5.6)

V coul
ij,n ≡ e2

|Ri − Rj − nL| , (5.7)

c†iα = c†0,iα, ciα = c0,iα,

Tij = T 0
ij , Vijkl = V0,0,0,0

ijkl .

At k = 0 point, the basis functions are

|w̃j⟩ ≡ |w̃0
j ⟩ =

1√
N

∑
n

|wn
j ⟩, (5.8)

The hopping coefficient is given by

Tij =

∫
drw̃∗

i (r)
[
− h̄2

2m
∇2

r −
∑
k,p

e2

|r − Rk − pL|

]
w̃j(r)

=
∑

n

∫
drw∗

i (r)
[
− h̄2

2m
∇2

r −
∑
k,p

e2

|r − Rk − pL|

]
wj(r − nL), (5.9)



56

and the interaction potential coefficient is

1

2
N Vijkl =

1

2
N

∫ ∫
dr1dr2w̃∗

i (r1)w̃∗
j (r2)

e2

|r1 − r2|
w̃k(r1)w̃l(r2).

=
∑
n,p,q

∫ ∫
dr1dr2w∗

i (r1)w∗
j (r2 − pL) e2

|r1 − r2|
wk(r1 − nL)wl(r2 − qL).

(5.10)

Define the integer vector νij as the n that minimizes the distance |Ri − Rj − nL|.

νij ≡ {n : minimize|Ri − Rj − nL|} (5.11)

Intuitively, one can think of Rj+νijL as the copy of the j-th atom of the super-lattice

that is closest to the i-th atom.

Assume the functions wi(r) are well-localized, and the super-cell box length is larger

than the range of wi(r), we expect the overlapping w∗
i (r)wj(r − nL) = 0 unless at

n = νij. Then Eq. (5.9) and Eq. (5.10) is simplified as

Tij =

∫
drw∗

i (r)
[
− h̄2

2m
∇2

r −
∑
k,p

e2

|r − Rk − pL|

]
wj(r − νijL), (5.12)

1

2
N Vijkl =

1

2

∑
p

∫ ∫
dr1dr2w∗

i (r1)w∗
j (r2 − pL) e2

|r1 − r2|
wk(r1 − νikL)wl(r2 − p∗

jlL),

(5.13)

p∗
jl ≡ p + νjl (5.14)

In Eq. (5.12), the sum over p blows up the hopping coefficient Tij, since the electron-

ion Coulomb interaction is long-range. Whereas, the sum over n causes no problem
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because the local basis wi(r) decays fast with distance. Eq. (5.13) shares the same

problem, the sum over p blows up N Vijkl due to the long-range electron-electron

Coulomb interaction. The rescue to this problem lies in recognizing that these infini-

ties will cancel out each other.

Effective tight-binding Hubbard model with finite coefficients

So far, the results derived above in this section are exact, at least in the thermo-

dynamic limit Na → ∞, N → ∞. Yet, as previously discussed, the tight-binding

coefficients Eq. (5.12) and Eq. (5.13) become infinite in the PBC setup. In this

subsection, We derive an effective tight-binding model with finite coefficients by in-

vestigating the cancellation among the infinite terms presented in Eq. (5.6), utilizing

certain approximations.

On-site hopping

First, decompose the on-site hopping in Eq. (5.12) as

Tii = tii +
∑
p̸=0

T ip
ii +

∑
k,p (k ̸=i)

T kp
ii , (5.15)

tii ≡
∫

drw∗
i (r)

[
− h̄2

2m
∇2

r −
e2

|r − Ri|

]
wi(r), (5.16)

T kp
ii ≡

∫
drw∗

i (r)
[
− e2

|r − Rk − pL|

]
wi(r), (5.17)

where T kp
ii is the hopping from atom i to itself in the original cell due to the atom k

located in super-cell p. tii and T kp
ii are both finite.
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For the interaction terms, decompose 1
2
N Viiii as

1

2
N Viiii =

1

2
(Ui +

∑
p ̸=0

V 0p0p
iiii ), (5.18)

Ui ≡ V 0000
iiii , (5.19)

V 0p0p
iiii ≡

∫ ∫
dr1dr2w∗

i (r1)w∗
i (r2 − pL) e2

|r1 − r2|
wi(r1)wi(r2 − pL). (5.20)

In general, define

V npmq
ikjl ≡

∫ ∫
dr1dr2w∗

i (r1 − nL)w∗
i (r2 − pL) e2

|r1 − r2|
wi(r1 − mL)wi(r2 − qL).

(5.21)

Again, since wi(r) is a localized function, assume the super-cell box length is larger

than the range of wi(r), we realize

T ip
ii = −V 0p0p

iiii , (p ̸= 0). (5.22)

Eq. (5.22) has a clear physical picture, at a distant range, the electron cloud com-

pletely shields the ion, leading to a cancellation of their effects. With Eq. (5.22), the

second last term on the right side of Eq. (5.15) could to cancel out the last term on

the right side of Eq. (5.18). But there is still a factor of 1
2

with the interaction term

V 0p0p
iiii in Eq. (5.6), only half of T ip

ii is canceled out. Fortunately, we have the ion-ion

interaction V coul
ij,n in Eq. (5.6) to compensate the other half:

T ip
ii +

1

2
V 0p0p
iiii +

1

2
V coul
ii,p = 0, (p ̸= 0). (5.23)
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The finite coefficients tii and Ui are used to define the effective tight-binding Hubbard

model.

Similarly, decompose 1
2
N Vijij (i ̸= j) as

1

2
N Vijij =

1

2
(V

0νij0νij

ijij +
∑

p ̸=νij

V 0p0p
ijij ), (i ̸= j) (5.24)

the definition of V 0p0p
ijij is give in Eq. (5.21), we have

T jp
ii = −V 0p0p

ijij , (i ̸= j, p ̸= νij), (5.25)

the reasoning and physical picture of this equation is similar to that of Eq. (5.22).

Again, there is a factor of 1
2

with the interaction term V 0p0p
ijij , the other half is canceled

by the ion-ion Coulomb interaction,

T jp
ii +

1

2
V 0p0p
ijij +

1

2
V coul
ij,p = 0, (i ̸= j, p ̸= νij). (5.26)

What happens if i ̸= j, p = νij in Eq. (5.26)? It results in a strong short-range inter-

atomic core-core repulsion. At a significant distance between atom i and atom j, the

ion-ion interaction is shielded by the ion-electron interaction. Nonetheless, as they

approach, the ion begins to penetrate the electron cloud of the other atom. At this

point, the screening effect diminishes, and the ion-ion interaction begins to dominate.

This phenomenon underpins the short-range core-core repulsion, originating from the

breakdown of the screening effect. Based on this picture, we define a pair-wise inter-
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atomic repulsive potential

ϕij ≡ T
jνij

ii + T
iνji

jj + V
0νij0νij

ijij + V coul
ij,νij

, (i ̸= j)

= T j
ii + T i

jj + Vijij + V coul
ij , (5.27)

with the definitions

T j
ii ≡ T

jνij

ii , Vijij ≡ V
0νij0νij

ijij , V coul
ij ≡ V coul

ij,νij
(5.28)

The definition of ϕij in Eq. (5.27) has taken advantage of these relations

V
0νij0νij

ijij = V
0νji0νji

jiji , (5.29)

V coul
ij,νij

= V coul
ji,νji

, (5.30)

but in general T jνij

ii ̸= T
iνji

jj , since wi(r) and wj(r) have different distributions.

Off-site hopping

Similar to the on-site hopping Tii, decompose the off-site hopping Tij(i ̸= j) in

Eq. (5.12) as

Tij = tij +
∑

k,p (k ̸=i if p=0, k ̸=j if p=νij)

T kp
ij , (i ̸= j), (5.31)

tij ≡
∫

drw∗
i (r)

[
− h̄2

2m
∇2

r −
e2

|r − Ri|
− e2

|r − Rj − νijL|

]
wj(r − νijL), (5.32)

T kp
ij ≡

∫
drw∗

i (r)
[
− e2

|r − Rk − pL|

]
wj(r − νijL), (5.33)
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The finite hopping coefficient tij considers only the kinetic term and the hopping

induced by atom i and atom j, disregarding contribution from other ions. This

simplification, known as the two-center approximation [153, 154], allows for a more

computationally tractable representation of the system’s electronic behavior while

retaining essential physics. Many writers on tight-binding models have assumed that

three-center integrals, i.e. Eq. (5.33) involving three distinct atoms, were negligible

compared to two-center integrals Eq. (5.32). While they are certainly smaller than

the two-center integrals, they are not entirely negligible. Especially in the PBC setup,

the summation of all three-center integrals blows up Tij. Nevertheless, we will still

use the two-center approximation. The justification is that the three-center integrals

will be canceled by the interaction terms.

Decompose 1
2
N Vikjk as

1

2
N Vikjk =

1

2

∑
p

V
0pνijp
ikjk , (5.34)

the definition of V 0pνijp
ikjk is give in Eq. (5.21). Assume the functions wi(r) are localized,

and the super-cell box length is larger than the range of the wi(r), we have

T kp
ij = −V

0pνijp
ikjk = −V

0,−p,0,(−p)∗ij
kikj (k ̸= i if p = 0, k ̸= j if p = νij), (5.35)

which gives

T kp
ij +

1

2
V

0pνijp
ikjk +

1

2
V

0,−p,0,(−p)∗ij
kikj = 0 (k ̸= i if p = 0, k ̸= j if p = νij), (5.36)

Then the terms in Eq. (5.34) could cancel with the last term on the right side of

Eq. (5.31).
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The Hubbard liquid model of hydrogen

With the finite coefficients defined, tii from Eq. (5.16), tij from Eq. (5.32), Ui from

Eq. (5.19), ϕij from Eq. (5.27), we have the effective Hubbard liquid model extracted

from Eq. (5.6),

H =
∑
ij

∑
α

tijc
†
iαcjα +

∑
i

Uin̂i↑n̂i↓ +
1

2

∑
i ̸=j

ϕij

− 1

2

∑
i ̸=j

∑
α

Vijij(ρijc
†
iαcjα + ρjic

†
jαciα − |ρij,α|2) +

Na∑
i=1

P2
i

2M
. (5.37)

With the definitions

ρji,α ≡ ⟨c†iαcjα⟩, (5.38)

ni,α ≡ ρii,α, (5.39)

which has the property:

ρji = ρ∗ij, (5.40)

in this work the basis functions are real, we have ρji = ρij.

Moreover, we are working on half-filling and non-magnetic systems,

ρji ≡ ρji,↑ = ρji,↓, (5.41)

ni ≡ ni,↑ = ni,↓. (5.42)

In obtaining Eq. (5.37), we applied a Hartree-Fock mean-field method on the inter-
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action terms Vijijc
†
ic

†
jc

†
jc

†
i (i ̸= j) and assumed the charge density ⟨n̂iα⟩ = 0.5. These

approximations enable the cancellations based on Eq. (5.23), Eq. (5.26), Eq. (5.36) to

be valid, since the system’s energy not only depends on the tight-binding coefficients

but also on the charge density matrix ρij.

For example, the energy associated with Eq. (5.26) in the HF mean-field method is

∑
α

T jp
ii ni +

∑
αβ

1

2
V 0p0p
ijij (

1

2
ninj − |ρij|2) +

1

2
V coul
ij,p , ( i ̸= j, p ̸= νij), (5.43)

where the spin summation α, β gives a factor of 2 for the first term and a factor of

4 for the second term. Assume ni = nj = 0.5, Eq. (5.43) equals

−
∑
αβ

1

2
V 0p0p
ijij |ρij|2, (5.44)

which is just the exchange energy in the HF method, all other terms cancel out thanks

to Eq. (5.26). This exchange energy gives rise to the last term in Eq. (5.37). Note in

this work, when solving for the wave function, we only optimize the Hubbard model,

i.e. hopping term tij and on-site interaction Ui term, in Eq. (5.37).

There are other terms in 1
2

∑
ijkl N Vijkl that are not used, e.g. the four-center inte-

grals, we will neglect those in this work. With these formulations and approximations

discussed, eventually we get Eq. (5.37). The last question that remains is how to con-

struct the orthogonal basis functions and obtain the tigh-binding coefficients? We

construct the basis functions with the Slater-type orbitals (STOs) in this work, the

formulations and their derivatives with respect to the atomic positions are presented in

appendix A. Another possibility is to use the Wannier functions constructed from the

band structures of the DFT-LDA computation, but we shall not discuss this method
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Figure 5.2: Energy binding curves of the H2 molecule of different methods, x-axis is
the distance of the two hydrogen atoms and y-axis is the energy per atom. (a) HF
method, the red circle is the analytic result from [155], the blue line is our result from
the Hamiltonian Eq. (5.37) with numerical SCF solution. (b) Gutzwiller method,
the red circle is the analytic result from [155], the blue line is our result from the
Hamiltonian Eq. (5.37) with numerical SCF solution.

extensively here, interested readers are encouraged to refer to these papers [132, 133,

134, 135, 64].

5.2 Benchmarks of the ab initio tight-binding model

Binding energy curve of the H2 molecule

This work [155] gives the analytic solutions of the H2 molecule for various methods.

This provides an important benchmark for our constructed tight-binding Hamiltonian

Eq. (5.37). In our PBC Hamiltonian, the H2 molecule can be computed by setting a

very large super-cell size and placing two atoms in the super-cell. Fig. 5.2 shows the

energy binding curves of different methods, with a comparison of the analytic result
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and our result that is obtained from the Hamiltonian Eq. (5.37) with a numerical

self-consistent field (SCF) solution. Fig. 5.2(a) shows the HF method results, the red

circles show the analytic solution in [155], the blue line shows the numerical solution

of our constructed Hamiltonian Eq. (5.37). Similarly, Fig. 5.2(b) shows the Gutzwiller

method results, the red circles show the analytic solution in [155], the blue line shows

the numerical solution of our constructed Hamiltonian Eq. (5.37). Fig. 5.2 also shows

in the strong correlation limit, i.e. at large inter-atomic distance r, the HF result

deviates significantly from the Gutzwiller result.

Force benchmark, total energy in MD simulation

The forces are computed from the derivatives of the tight-binding coefficients given

in appendix A.4. These are sophisticated formulas. To ensure the implementation

of the forces is accurate, we plot the system’s total energy over time. Of course, the

SCF method always has some convergence error. To eliminate the error from the SCF

solver, we only minimize the first term
∑

ij

∑
α tijc

†
iαcjα in the Hamiltonian Eq. (5.37),

i.e. diagonalize the tij matrix just once without SCF computations. Moreover, the

double occupancies di is fixed at 0.25 on all atoms, the charge density ni is fixed at

0.5 on all atoms when computing the inter-atomic potential ϕij, and the exchange

energy in Eq. (5.37) is not included in this benchmark simulation.

Fig. 5.3 shows the system’s electronic energy, atomic kinetic energy and total energy

versus time. Initially, 10 atoms are randomly positioned in a super-cell of side length

16 Bohr, the system’s total energy is shown to be conservative throughout. Of course,

the Langevin noise is turned off in this simulation. Fig. 5.3 verifies the force is

conservative and our implementation is accurate.
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Figure 5.3: The system’s electronic energy (red line), atomic kinetic energy (blue line)
and total energy (green line) versus time. Initially, 10 atoms are randomly placed in
a super-cell of side length 16 Bohr. The Langevin dynamics was turned off in the
simulation.

5.3 Simulation results of dense hydrogen

To investigate the liquid-liquid transition between the molecular and atomic fluids in

dense hydrogen. We perform NV T simulations at different densities, observing the

occurrence of a liquid-liquid transition as the system is compressed. The number of

atoms is set as N = 64, the density is determined by the Wigner-Seitz radius

rs = (3V /4πN)1/3. (5.45)

The temperature T is controlled by the Langevin thermostat with a small damping.

The simulation time is ∼ 1 picosecond, long enough to reach equilibrium and gather
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Figure 5.4: The radial distribution function g(r) at various densities specified by the
Wigner-Seitz radius rs. The definition of g(r) is given in Eq. (3.2). The system
temperature is T = 2600 K.

sufficient data thereafter.

To identify the liquid-liquid transition, we simulate at different densities with the same

temperature. Fig. 5.4 shows the radial distribution functions g(r) of different densities

from rs = 1.5 Bohr to rs = 1.28 Bohr, the temperature is set at T = 2600 K. At

the lower densities, the g(r) exhibits a prominent peak slightly above 1.4 Bohr, which

coincides with the molecular bond length of H2. At room temperature, this bond

length is approximately 1.4 Bohr. However, at higher temperatures, it is expected to

be slightly longer due to thermal expansion. With increasing density, the prominence

of the molecular peak diminishes, indicating the gradual dissociation of H2 molecules.

This transition signifies the transformation of hydrogen into a monatomic liquid state.
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Figure 5.5: The DC conductivity σ versus the system density. In the unit of σ,
AMU is the atomic mass unit, e is the elementary charge. The system temperature
is T = 2600 K.

The direct current conductivity is evaluated across various densities, with the results

depicted in Fig. 5.5 showcasing conductivity plotted against rs. The formulas we use

to compute the DC conductivity is given in section 3.1. Notably, as density rises

from rs = 1.5 Bohr, the conductivity increases by a few orders of magnitude. This

observed behaviour indicates a metal-insulator transition in hydrogen.

The density of states at different atomic densities are shown in Fig. 5.6 At the molec-

ular end, there is a large gap between the bonding states and anti-bonding states, this

is responsible for high resistivity. As the density increases, the molecular H2 grad-

ually dissociates, the distinction between bonding and anti-bonding states becomes

less defined, thus the energy gap narrows, resulting in an amplified conductivity.

The molecular dissociation offers a convincing explanation for the observed band
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Figure 5.6: The density of states at various densities specified by the Wigner-Seitz
radius rs. The energy spectrum is set to be 0 at the system’s chemical potential. The
system temperature is T = 2600 K, kBT = 0.00823 Hartree.

narrowing in the liquid-liquid transition. However, it’s also essential to investigate

whether electron correlation influences this process. Fig. 5.7 shows the average double

occupancy and renormalization factor at different densities in the GMD simulations.

The results show the renormalization factor ⟨R2⟩ is close to 1 and the double oc-

cupancy is significantly lower from 0.25, suggesting that the system is not strongly

correlated. Despite the double occupancy and renormalization factor showing weak

dependence on density, there is a slight increase observed as density rises. This is

anticipated because as hydrogen atoms get closer, the hopping becomes stronger,

leading to a decrease in electron correlation.
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Figure 5.7: The average double occupancy ⟨d⟩ and (b) the average renormalization
factor ⟨R2⟩ versus the system density, where ⟨...⟩ denotes both quantum and ensemble
averages in MD simulations. The system temperature is T = 2600 K.

5.4 Summary

We developed an ab initio tight-binding Hubbard model using local STO-3G orbitals

to describe liquid hydrogen. Employing the GMD, we simulated the liquid-liquid

transition in dense hydrogen, during which a metal-insulator transition is observed.

We attribute this MIT to the narrowing of the band gap between the bonding and

anti-bonding states, stemming from the dissociation of H2 molecules. Investigation

into the double occupancy across various densities under study revealed that the

system does not exhibit strong correlation effects.



71

Appendices



72

Appendix A

Basis functions and tight-binding

coefficients, and derivatives

The orthogonal basis functions used in chapter 5 are built from the linear combina-

tion of atomic orbitals (LCAO). There are two types of functions commonly used

for atomic functions, the Slater-type orbitals (STOs) and Gaussian-type orbitals

(GTOs) [156]. A 1s STO has the form

ϕζ(r) = (ζ3/π)1/2e−ζ|r|, (A.1)

A 1s GTO has the form

gα(r) = (2α/π)3/4e−α|r|2 , (A.2)

where ζ is the Slater orbital exponent, α is the Gaussian orbital exponent. The major

differences between the two functions occur at r = 0 and large r. At r = 0, the STO

has a finite slope, whereas the GTO has a zero slope. At large r, the GTO decays

much faster than the STO.

For electronic wave function calculations, the STO is usually preferred. Since at large

distance molecular orbitals decay as ∼ eζr, and STOs usually yield better results than

GTOs for the same number of basis functions. The advantage of GTOs is that the



73

integrals are analytic, thus much more efficient than the STOs. One is faced with

a dilemma here. A compromise is to emulate an STO with linear combinations of

GTOs of different exponents, this approach is widely used in the quantum chemistry

community. These bases are denoted as STO-LG, where L = 1, 2, 3 ... denotes how

many Gaussians are used to emulate an STO.

A popular choice is STO-3G [156], which is presented in section A.2. In this work,

only 1s orbitals are used for hydrogens. Section A.1 gives the GTO integrals and their

derivatives with respect to the atomic positions. Section A.3 introduces the Löwdin

orthogonalization method. Section A.4 gives the tight-binding coefficients in the

orthogonal basis functions constructed from the STOs and Löwdin orthogonalization,

and their derivatives with respect to the atomic positions.

A.1 Gaussian-type orbitals

A normalized 1s primitive Gaussian-type orbital (GTO) is

gα(r) = (2α/π)3/4e−α|r|2 , (A.3)

where α is the orbital exponent, the center is at r = 0. The following integrals

involves four different GTOs centering at RA,RB,RC ,RD, with corresponding ex-
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ponents α, β, γ, δ, we simply denote them as A, B, C, D.

(A|B) =

∫
drg∗α(r − RA)gβ(r − RB), (A.4a)

(A| − 1

2
∇2|B) =

∫
drg∗α(r − RA)(−

1

2
∇2)gβ(r − RB), (A.4b)

(A| − 1

|r − RC |
|B) =

∫
drg∗α(r − RA)(−

1

|r − RC |
)gβ(r − RB), (A.4c)

(AB|CD) =

∫
dr1r2g∗α(r1 − RA)g

∗
β(r1 − RB)

1

|r1 − r2|
gγ(r2 − RC)gδ(r2 − RD),

(A.4d)

where the electron charge is set as e = 1.

Define

RP ≡ (αRA + βRB)/(α + β), (A.5a)

RQ ≡ (γRC + δRD)/(γ + δ), (A.5b)

F0(t) ≡
√
π

2

1√
t

erf(
√
t) =

1√
t

∫ √
t

0

dxe−x2

, (A.5c)

where erf() is the error function, F0(t) has the property

lim
t→0

F0(t) = 1. (A.6)
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The normalized GTO integrals are [156],

(A|B) = (αβ)3/4[2/(α + β)]3/2exp[− αβ

α + β
|RA − RB|2], (A.7a)

(A| − 1

2
∇2|B) =

αβ

α + β
[3− 2

αβ

α + β
|RA − RB|2](A|B), (A.7b)

(A| − 1

|r − RC |
|B) = − 2√

π

(4αβ)3/4

(α + β)
exp[− αβ

α + β
|RA − RB|2]× F0[(α + β)|RP − RC |2],

(A.7c)

(AB|CD) =
16

π1/2

(αβγδ)3/4

(α + β)(γ + δ)(α + β + γ + δ)1/2
× exp[− αβ

α + β
|RA − RB|2

− γδ

γ + δ
|RC − RD|2]× F0[

(α + β)(γ + δ)

α + β + γ + δ
|RP − RQ|2]. (A.7d)

Where the integral (AB|CD) is in the chemists’ notation,

(AB|CD) =

∫ ∫
dr1dr2gα(r1 − RA)gβ(r1 − RB)

1

|r1 − r2|
gγ(r2 − RC)gδ(r2 − RD),

(A.8)

it would have been ⟨AC|BD⟩ = (AB|CD) in the physists’ notation.

The derivatives of the GTO overlap integrals are

∂(A|B)

∂RA

= −2
αβ

α + β
(RA − RB)× (A|B), (A.9a)

∂(A|B)

∂RB

= −∂(A|B)

∂RA

. (A.9b)
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For the kinetic term

∂(A| − 1
2
∇2|B)

∂RA

= −4(
αβ

α + β
)2(RA − RB)× (A|B)

− 2
αβ

α + β
(RA − RB)× (A| − 1

2
∇2|B), (A.10a)

∂(A| − 1
2
∇2|B)

∂RB

= −
∂(A| − 1

2
∇2|B)

∂RA

. (A.10b)

For the nuclear-electron interaction

F1(t) ≡
∂F0(t)

∂t
= −

√
π

4
t−3/2 erf(

√
t) +

1

2t
e−t =

1

2t
(−F0(t) + e−t), (A.11a)

∂(A| − 1/|r − RC ||B)

∂RA

= −2
αβ

α + β
(RA − RB)× (A| − 1

|r − RC |
|B)

− 2√
π

(4αβ)3/4

(α + β)
exp[− αβ

α + β
|RA − RB|2]× F1[(α + β)|RP − RC |2]2α(RP − RC),

(A.11b)

∂(A| − 1/|r − RC ||B)

∂RC

= − 2√
π

(4αβ)3/4

(α + β)
exp[− αβ

α + β
|RA − RB|2]

× F1[(α + β)|RP − RC |2]2(α + β)(RC − RP ), (A.11c)

we have

lim
t→0

F1(t) = −1

3
. (A.12)

∂(A|−1/|r−RC ||B)
∂RB

can be obtained by the symmetry

∂(A| − 1/|r − RC ||B)

∂RA

=
∂(B| − 1/|r − RC ||A)

∂RA

, (A.13)
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expand the left side with Eq. (A.11b) and swap the symbol ”A” with ”B”, ”α” with

”β” throughout the equation.

For the electron-electron interaction

∂(AB|CD)

∂RA

= −2
αβ

α + β
(RA − RB)× (AB|CD) +

16

π1/2

(αβγδ)3/4

(α + β)(γ + δ)(α + β + γ + δ)1/2

× exp[− αβ

α + β
|RA − RB|2 −

γδ

γ + δ
|RC − RD|2]× F1

[
(α + β)(γ + δ)

α + β + γ + δ
|RP − RQ|2

]
× 2α(γ + δ)

α + β + γ + δ
(RP − RQ), (A.14)

the derivative with respect to other atoms can be obtained with the symmetries

∂(AB|CD)

∂RA

=
∂(BA|CD)

∂RA

=
∂(CD|AB)

∂RA

=
∂(CD|BA)

∂RA

, (A.15)

and similarly swap corresponding symbols in a manner that is demonstrated on

Eq. (A.13).

A.2 STO-3G

Denote the 1s STOs as ϕ1, ϕ2, ..., ϕi represents the orbital centered at the i-th atom.

In the STO-3G basis,

ϕi = d1 gi1 + d2 gi2 + d3 gi3, (A.16)

gi1, gi2, gi3 are the three GTOs used to construct ϕi with exponents 0.109818ζ2,

0.405771ζ2, 2.22766ζ2. The standard value of the orbital exponent ζ for hydrogen is

ζ = 1.24 [156], we use this value in this work. {d1, d2, d3} = {0.444635, 0.535328, 0.154326}
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are the GTO coefficients in STO-3G.

The STO integrals are given by the GTO integrals

(ϕi|ϕj) =
3∑

ab=1

dadb(gia|gjb), (A.17a)

(ϕi| −
1

2
∇2|ϕi) =

3∑
ab=1

dadb(gia| −
1

2
∇2|gjb), (A.17b)

(ϕi| −
1

|r − RC |
|ϕi) =

3∑
ab=1

dadb(gia| −
1

|r − RC |
|gjb), (A.17c)

(ϕiϕj|ϕkϕl) =
3∑

abcd=1

dadbdcdd(giagjb|gkcgld). (A.17d)

A.3 Löwdin orthogonalization

The Löwdin orthogonalization method is a symmetric orthogonalization (as opposed

to the Schmidt orthogonalization), it treats all the wave functions on an equal foot-

ing [157]. An important feature of the Löwdin orthogonalization is that it ensures

∑
i

|ϕi − ϕ′
i|2 = minimum, (A.18)

where ϕi is the original vector, ϕ′
i is the vector obtained from Löwdin Orthogonaliza-

tion. This means the symmetrically orthogonalized vectors ϕ′
i are the least distant in

the Hilbert space from the original vector ϕi, it is the gentlest push on the vectors to

get them orthogonal [158].



79

Formulas

For a set of normalized but non-orthogonal vectors ϕ = [ϕ1 ϕ2 ...]T . Define S as the

overlap matrix with elements Sij = ⟨ϕi|ϕj⟩, U is the unitary matrix that diagonalize

S,

Sdiag = U †SU. (A.19)

Since S is a Gram matrix, its eigenvalues are always positive, we define S
1
2
diag as the

matrix that Sdiag replacing all its diagonal elements by their square roots. Define

S
1
2 ≡ US

1
2
diagU

†, (A.20)

S− 1
2 ≡ (S

1
2 )−1 = US

− 1
2

diagU
†, (A.21)

S− 1
2 is the transformation matrix that symmetrically orthogonalize ϕ:

ϕ′ = S− 1
2ϕ, (A.22)

ϕ′ is the set of ortho-normal vectors obtained from Löwdin orthogonalization. Note

S− 1
2 is symmetric [157],

(S− 1
2 )ij = (S− 1

2 )ji. (A.23)
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Derivatives

To our purpose, we also compute the derivative of the Löwdin transformation matrix

S− 1
2 [159],

∂(S−1/2)ij
∂RX

=
∑
pq

−TipS
X
pqTjq

s
1/2
p s

1/2
q (s

1/2
p + s

1/2
q )

, (A.24)

where

SX
pq ≡

∑
mn

Tmp
∂Smn

∂RX

Tnq, (A.25)

sp are eigenvalues and the matrix T are the eigenvectors of the overlap matrix S.

Note, SX
pq is symmetric SX

pq = SX
qp.

Plug in

∂Smn

∂RX

=
∂Smn

∂Rm

∂Rm

∂RX

+
∂Smn

∂Rn

∂Rn

∂RX

=
∂SXn

∂RX

δmX +
∂SmX

∂RX

δnX , (A.26)

we have

SX
pq =

∑
mn

Tmp
∂Smn

∂RX

Tnq

=
∑
n

TXp
∂SXn

∂RX

Tnq +
∑
m

Tmp
∂SmX

∂RX

TXq

=
∑
n

TXp
∂SXn

∂RX

Tnq +
∑
n

Tnp
∂SnX

∂RX

TXq

=
∑
n

∂SXn

∂RX

(TXpTnq + TnpTXq), (A.27)
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where we changed the dummy variable m → n, and in the last step we used

∂SXn

∂RX

=
∂SnX

∂RX

, (A.28)

since the wave functions are real in this work.

A.4 The tight-binding coefficients

The Bloch-like wave functions in a cubic super-cell lattice are

ϕ̃i(r) =
1√
N

∑
n

ϕi(r − nL), (A.29)

where N is the number of super-cells, L is the box length, n iterates through all

super-cells. ϕi(r) is the normalized STO centered at the i-th atom. Apply the Löwdin

orthogonalization to Eq. (A.29), and assume the Löwdin transformation matrix is L,

which is the S− 1
2 matrix in section A.3. We have the ortho-normal basis functions:

w̃i(r) =
∑
j

ϕ̃j(r)Lji. (A.30)

The local functions can be chosen as

wi(r) =
∑
j

ϕj(r)Lji. (A.31)

or alternatively,

wi(r) =
∑
j

ϕj(r − νij)Lji, (A.32)
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where νij is defined in Eq. (5.11). They both satisfy

w̃i(r) =
1√
N

∑
n

wi(r − nL), (A.33)

here we choose Eq. (A.32) as the definition because it is more localized than Eq. (A.31).

A.4.1 Hopping terms

Define the simplified symbols

K ≡ −1

2
∇2, (A.34)

Vion(Ri) ≡ − 1

|r − Ri|
. (A.35)

For off-site terms i ̸= j,

tij = ⟨wi(r)|K + Vion(Ri) + Vion(Rj + νij)L|wj(r − νij)⟩

=
∑
mn

LmiLnj⟨ϕm(r − νim)|K + Vion(Ri) + Vion(Rj + νij)L|ϕn(r − νij − νjn)⟩,

(A.36)

To simplify the notation, define

⟨ϕm|T (ij)|ϕn⟩ ≡ ⟨ϕm(r − νim)|K + Vion(Ri) + Vion(Rj + νij)L|ϕn(r − νij − νjn)⟩,

(A.37)
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we have

tij =
∑
mn

LmiLnj⟨ϕm|T (ij)|ϕn⟩. (A.38)

It has the symmetry property

⟨ϕm|T (ij)|ϕn⟩ = ⟨ϕm(r − νim)|K + Vion(Ri) + Vion(Rj + νij)L|ϕn(r − νij − νjn)⟩

= ⟨ϕm(r + νij − νim)|K + Vion(Ri − νijL) + Vion(Rj)|ϕn(r − νjn)⟩

= ⟨ϕn(r − νjn)|K + Vion(Rj) + Vion(Ri + νji)L|ϕm(r − νji − νim)⟩

= ⟨ϕn|T (ji)|ϕm⟩, (A.39)

where we used νij = −νji.

The derivative

∑
ij:i ̸=j

∂tij
∂RX

ρij =
∑

ijmn:i ̸=j

LmiLnj
∂⟨ϕm|T (ij)|ϕn⟩

∂RX
ρij +

∑
ijmn:i ̸=j

∂Lmi

∂RX
Lnj⟨ϕm|T (ij)|ϕn⟩ρij

+
∑

ijmn:i ̸=j

Lmi
∂Lnj

∂RX
⟨ϕm|T (ij)|ϕn⟩ρij . (A.40)

The first term on the right side of Eq. (A.40) can be simplified, with

∂⟨ϕm|T (ij)|ϕn⟩
∂RX

=
∂⟨ϕm|T (ij)|ϕn⟩

∂Rm

∂Rm

∂RX
+

∂⟨ϕm|T (ij)|ϕn⟩
∂Rn

∂Rn

∂RX
+

∂⟨ϕm|T (ij)|ϕn⟩
∂Ri

∂Ri

∂RX
+

∂⟨ϕm|T (ij)|ϕn⟩
∂Rj

∂Rj

∂RX

=
∂⟨ϕm|T (ij)|ϕn⟩

∂RX
δmX +

∂⟨ϕm|T (ij)|ϕn⟩
∂RX

δnX +
∂⟨ϕm|T (ij)|ϕn⟩

∂RX
δiX +

∂⟨ϕm|T (ij)|ϕn⟩
∂RX

δjX ,

(A.41)
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we have

∑
ijmn:i ̸=j

LmiLnj
∂⟨ϕm|T (ij)|ϕn⟩

∂RX
ρij

=
∑

ijn:i ̸=j

LXiLnj
∂⟨ϕX |T (ij)|ϕn⟩

∂RX
ρij +

∑
ijm:i ̸=j

LmiLXj
∂⟨ϕm|T (ij)|ϕX⟩

∂RX
ρij

+
∑

jmn:j ̸=X

LmXLnj
∂⟨ϕm|T (Xj)|ϕn⟩

∂RX
ρXj +

∑
imn:i ̸=X

LmiLnX
∂⟨ϕm|T (iX)|ϕn⟩

∂RX
ρiX

=
∑

ijn:i ̸=j

LXiLnj
∂⟨ϕX |T (ij)|ϕn⟩

∂RX
ρij +

∑
ijn:i ̸=j

LnjLXi
∂⟨ϕn|T (ji)|ϕX⟩

∂RX
ρji

+
∑

jmn:j ̸=X

LmXLnj
∂⟨ϕm|T (Xj)|ϕn⟩

∂RX
ρXj +

∑
jmn:j ̸=X

LnjLmX
∂⟨ϕn|T (jX)|ϕm⟩

∂RX
ρjX

= 2
∑

ijn:i ̸=j

LXiLnj
∂⟨ϕX |T (ij)|ϕn⟩

∂RX
ρij + 2

∑
jmn:j ̸=X

LmXLnj
∂⟨ϕm|T (Xj)|ϕn⟩

∂RX
ρXj , (A.42)

where we changed dummy variables in the second step, and the last step used the

symmetry property

∂⟨ϕX |T (ij)|ϕn⟩
∂RX

=
∂⟨ϕn|T (ji)|ϕX⟩

∂RX

. (A.43)

The last two terms on the right side of Eq. (A.40) can be proven equal:

∑
ijmn:i ̸=j

Lmi
∂Lnj

∂RX
⟨ϕm|T (ij)|ϕn⟩ρij =

∑
ijmn:i ̸=j

Lnj
∂Lmi

∂RX
⟨ϕn|T (ji)|ϕm⟩ρji

=
∑

ijmn:i ̸=j

∂Lmi

∂RX
Lnj⟨ϕm|T (ij)|ϕn⟩ρij (A.44)

in the first step we changed dummy variables i → j, m → n, the second step used

Eq. (A.39).
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Put Eq. (A.42) and Eq. (A.44) into Eq. (A.40), we get

∑
ij:i ̸=j

∂tij
∂RX

ρij = 2
∑

ijn:i ̸=j

LXiLnj
∂⟨ϕX |T (ij)|ϕn⟩

∂RX
ρij + 2

∑
jmn:j ̸=X

LmXLnj
∂⟨ϕm|T (Xj)|ϕn⟩

∂RX
ρXj

+ 2
∑

ijmn:i ̸=j

∂Lmi

∂RX
Lnj⟨ϕm|T (ij)|ϕn⟩ρij . (A.45)

The computation over all the RX in the last term of Eq. (A.45) has O(N5) time

complexity at first glance, but the summation can be re-formulated as

2
∑

ijmn:i ̸=j

∂Lmi

∂RX

Lnj⟨ϕm|T (ij)|ϕn⟩ρij = 2
∑
im

∂Lmi

∂RX

( ∑
jn:j ̸=i

Lnj⟨ϕm|T (ij)|ϕn⟩ρij
)
,

(A.46)

For a given {i,m}, this term

∑
jn:j ̸=i

Lnj⟨ϕm|T (ij)|ϕn⟩ρij (A.47)

requires O(N2) time complexity. Summing over {i,m} requires another O(N2) time

complexity, thus the overall time complexity is O(N4).

For on-site terms tii

tii = ⟨wi|K + Vion(Ri)|wi⟩ =
∑
mn

LmiLni⟨ϕm(r − νim)|K + Vion(Ri)|ϕn(r − νin)⟩,

(A.48)

define

⟨ϕm|T (i)|ϕn⟩ ≡ ⟨ϕm(r − νim)|K + Vion(Ri)|ϕn(r − νin)⟩, (A.49)
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we have

tii =
∑
mn

LmiLni⟨ϕm|T (i)|ϕn⟩. (A.50)

Similar to Eq. (A.39), we can prove the symmetry property

⟨ϕm|T (i)|ϕn⟩ = ⟨ϕn|T (i)|ϕm⟩. (A.51)

The derivative

∑
i

∂tii
∂RX

ρii =
∑
imn

LmiLni
∂⟨ϕm|T (i)|ϕn⟩

∂RX
ρii +

∑
imn

∂Lmi

∂RX
Lni⟨ϕm|T (i)|ϕn⟩ρii

+
∑
imn

∂Lmi
Lni

∂RX
⟨ϕm|T (i)|ϕn⟩ρii. (A.52)

The first term on the right side of Eq. (A.40) can be simplified, with

∂⟨ϕm|T (i)|ϕn⟩
∂RX

=
∂⟨ϕm|T (i)|ϕn⟩

∂Rm

∂Rm

∂RX
+

∂⟨ϕm|T (i)|ϕn⟩
∂Rn

∂Rn

∂RX
+

∂⟨ϕm|T (i)|ϕn⟩
∂Ri

∂Ri

∂RX

=
∂⟨ϕm|T (i)|ϕn⟩

∂RX
δmX +

∂⟨ϕm|T (i)|ϕn⟩
∂RX

δnX +
∂⟨ϕm|T (i)|ϕn⟩

∂RX
δiX , (A.53)

we have

∑
imn

LmiLni
∂⟨ϕm|T (i)|ϕn⟩

∂RX
ρii

=
∑
in

LXiLni
∂⟨ϕX |T (i)|ϕn⟩

∂RX
ρii +

∑
im

LmiLXi
∂⟨ϕm|T (i)|ϕX⟩

∂RX
ρii +

∑
mn

LmXLnX
∂⟨ϕm|T (X)|ϕn⟩

∂RX
ρXX

=
∑
in

LXiLni
∂⟨ϕX |T (i)|ϕn⟩

∂RX
ρii +

∑
in

LniLXi
∂⟨ϕn|T (i)|ϕX⟩

∂RX
ρii +

∑
mn

LmXLnX
∂⟨ϕm|T (X)|ϕn⟩

∂RX
ρXX

= 2
∑
in

LXiLni
∂⟨ϕX |T (i)|ϕn⟩

∂RX
ρii +

∑
mn

LmXLnX
∂⟨ϕm|T (X)|ϕn⟩

∂RX
ρXX . (A.54)

The last two terms on the right side of Eq. (A.52) can also be proven equal, similar
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to Eq. (A.44),

∑
imn

∂Lmi

∂RX

Lni⟨ϕm|T (i)|ϕn⟩ρii =
∑
imn

∂Lmi
Lni

∂RX

⟨ϕm|T (i)|ϕn⟩ρii. (A.55)

Put Eq. (A.54) and Eq. (A.55) into Eq. (A.52), we get

∑
i

∂tii
∂RX

ρii = 2
∑
in

LXiLni
∂⟨ϕX |T (i)|ϕn⟩

∂RX
ρii +

∑
mn

LmXLnX
∂⟨ϕm|T (X)|ϕn⟩

∂RX
ρXX

+ 2
∑
imn

∂Lmi

∂RX
Lni⟨ϕm|T (i)|ϕn⟩ρii. (A.56)

The derivative
∑

ij
∂tij
∂RX

ρij is the combination of Eq. (A.45) and Eq. (A.56),

∑
ij

∂tij
∂RX

ρij =
∑
ij:i ̸=j

∂tij
∂RX

ρij +
∑
i

∂tii
∂RX

ρii. (A.57)

A.4.2 electron-electron interaction terms

For the interaction terms, we only need to compute the Ui and Vijij terms that are
used in our Hubbard liquid model Eq. (5.37). First, the Vijij term

Vijij = ⟨wi(r1)|⟨wj(r2 − νij)|
1

|r1 − r2|
|wi(r1)⟩|wj(r2 − νij)⟩

=
∑
mnpq

LmiLniLpjLqj⟨ϕm(r1 − νim)|⟨ϕp(r2 − νij − νjp)|
1

|r1 − r2|
|ϕn(r1 − νin)⟩|ϕq(r2 − νij − νjq)⟩

=
∑
mnpq

LmiLniLpjLqj(ϕm(r1 − νim)ϕn(r1 − νin)|ϕp(r2 − νij − νjp)ϕq(r2 − νij − νjq))ij . (A.58)

To simplify the notation, define

(ϕmϕn|ϕpϕq)ij ≡ (ϕm(r1 − νim)ϕn(r1 − νin)|ϕp(r2 − νij − νjp)ϕq(r2 − νij − νjq))ij,

(A.59)
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we have

Vijij =
∑
mnpq

LmiLniLpjLqj(ϕmϕn|ϕpϕq)ij. (A.60)

We can prove the symmetry property

(ϕmϕn|ϕpϕq)ij = ⟨ϕm(r1 − νim)|⟨ϕp(r2 − νij − νjp)|
1

|r1 − r2|
|ϕn(r1 − νin)⟩|ϕq(r2 − νij − νjq)⟩

= ⟨ϕm(r1 + νij − νim)|⟨ϕp(r2 − νjp)|
1

|r1 − r2|
|ϕn(r1 + νij − νin)⟩|ϕq(r2 − νjq)⟩

= ⟨ϕm(r2 + νij − νim)|⟨ϕp(r1 − νjp)|
1

|r2 − r1|
|ϕn(r2 + νij − νin)⟩|ϕq(r1 − νjq)⟩

= ⟨ϕp(r1 − νjp)|⟨ϕm(r2 − νji − νim)| 1

|r1 − r2|
|ϕq(r1 − νjq)⟩|ϕn(r2 − νji − νin)⟩

= (ϕpϕq|ϕmϕn)ji, (A.61)

where we swapped dummy variables r1, r2 in the second step, and used νij = −νji.

Similarly,

(ϕmϕn|ϕpϕq)ij = (ϕnϕm|ϕpϕq)ij = (ϕmϕn|ϕqϕp)ij. (A.62)

The derivative with i ̸= j

∑
ij:i ̸=j

∂Vijij

∂RX
=

∑
ijmnpq:i ̸=j

LmiLniLpjLqj
∂(ϕmϕn|ϕpϕq)

∂RX
+

∑
ijmnpq:i ̸=j

∂Lmi

∂RX
LniLpjLqj(ϕmϕn|ϕpϕq)ij

+
∑

ijmnpq:i ̸=j

Lmi
∂Lni

∂RX
LpjLqj(ϕmϕn|ϕpϕq)ij +

∑
ijmnpq:i ̸=j

LmiLni
∂Lpj

∂RX
Lqj(ϕmϕn|ϕpϕq)ij

+
∑

ijmnpq:i ̸=j

LmiLniLpj
∂Lqj

∂RX
(ϕmϕn|ϕpϕq)ij . (A.63)
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The first term on the right side of Eq. (A.63) can be simplified, with

∂(ϕmϕn|ϕpϕq)ij
∂RX

=
∂(ϕmϕn|ϕpϕq)ij

∂Rm

∂Rm

∂RX
+

∂(ϕmϕn|ϕpϕq)ij
∂Rn

∂Rn

∂RX
+

∂(ϕmϕn|ϕpϕq)ij
∂Rp

∂Rp

∂RX
+

∂(ϕmϕn|ϕpϕq)ij
∂Rq

∂Rq

∂RX

=
∂(ϕmϕn|ϕpϕq)ij

∂RX
δmX +

∂(ϕmϕn|ϕpϕq)ij
∂RX

δnX +
∂(ϕmϕn|ϕpϕq)ij

∂RX
δpX +

∂(ϕmϕn|ϕpϕq)ij
∂RX

δqX ,

(A.64)

we have

∑
ijmnpq:i ̸=j

LmiLniLpjLqj
∂(ϕmϕn|ϕpϕq)ij

∂RX

=
∑

ijnpq:i ̸=j

LXiLniLpjLqj
∂(ϕXϕn|ϕpϕq)ij

∂RX
+

∑
ijmpq:i ̸=j

LmiLXiLpjLqj
∂(ϕmϕX |ϕpϕq)ij

∂RX

+
∑

ijmnq:i ̸=j

LmiLniLXjLqj
∂(ϕmϕn|ϕXϕq)ij

∂RX
+

∑
ijmnp:i ̸=j

LmiLniLpjLXj
∂(ϕmϕn|ϕpϕX)ij

∂RX

= 4
∑

ijnpq:i ̸=j

LXiLniLpjLqj
∂(ϕXϕn|ϕpϕq)ij

∂RX
. (A.65)

The last four terms on the right side of Eq. (A.63) can be proven equal with symmetry
property, together with Eq. (A.65), Eq. (A.63) is simplified as

∑
ij:i ̸=j

∂Vijij

∂RX
= 4

∑
ijnpq:i ̸=j

LXiLniLpjLqj
∂(ϕXϕn|ϕpϕq)ij

∂RX
+ 4

∑
ijmnpq:i ̸=j

∂Lmi

∂RX
LniLpjLqj(ϕmϕn|ϕpϕq)ij .

(A.66)

For Hubbard Ui, the result is obtained simply by setting i = j

Ui =
∑
mnpq

LmiLniLpiLqi(ϕmϕn|ϕpϕq)ii, (A.67)

∑
i

∂Ui

∂RX
di = 4

∑
inpq

LXiLniLpiLqi
∂(ϕXϕn|ϕpϕq)ii

∂RX
di + 4

∑
imnpq

∂Lmi

∂RX
LniLpiLqi(ϕmϕn|ϕpϕq)iidi,

(A.68)
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where di = ⟨n̂i↑n̂i↓⟩ is the double occupancy.

A.4.3 inter-atomic potential

The inter-atomic potential ϕij is defined in Eq. (5.27)

ϕij ≡ T j
ii + T i

jj + Vijij + V coul
ij , (i ̸= j)

For ion-ion Coulomb interactions

V coul
ij =

1

|Ri − Rj − νijL|
,

∂V coul
ij

∂Ri

= − Ri − Rj − νijL

|Ri − Rj − νijL|3
. (A.69)

Using

∂V coul
ij

∂RX

=
∂V coul

ij

∂Ri

∂Ri

∂RX

+
∂V coul

ij

∂Rj

∂Rj

∂RX

=
∂V coul

ij

∂Ri

δiX +
∂V coul

ij

∂Rj

δjX , (A.70)

we get

∑
ij:i ̸=j

∂V coul
ij

∂RX
=

∑
ij:i ̸=j

∂V coul
ij

∂Ri
δiX +

∑
ij:i ̸=j

∂V coul
ij

∂Rj
δjX

=
∑

j:j ̸=X

∂V coul
Xj

∂RX
+

∑
i:i ̸=X

∂V coul
iX

∂RX

= 2
∑

j:j ̸=X

∂V coul
Xj

∂RX
. (A.71)
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For the on-site hopping term

T j
ii = ⟨wi|Vion(Rj + νijL)|wi⟩

=
∑
mn

LmiLni⟨ϕm(r − νimL)|Vion(Rj + νijL)|ϕn(r − νinL)⟩. (A.72)

Define

⟨ϕm|V (j)|ϕn⟩i ≡ ⟨ϕm(r − νimL)|Vion(Rj + νijL)|ϕn(r − νinL)⟩ (A.73)

we have

T j
ii =

∑
mn

LmiLni⟨ϕm|V (j)|ϕn⟩i. (A.74)

It has the symmetry property

⟨ϕm|V (j)|ϕn⟩i = ⟨ϕn|V (j)|ϕm⟩i. (A.75)

The derivative

∑
ij:i ̸=j

∂T j
ii

∂RX

=
∑
mn

LmiLni
∂⟨ϕm|V (j)|ϕn⟩i

∂RX

+
∑

ijmn:i ̸=j

∂Lmi

∂RX

Lni⟨ϕm|V (j)|ϕn⟩i

+
∑

ijmn:i ̸=j

Lmi
∂Lni

∂RX

⟨ϕm|V (j)|ϕn⟩i. (A.76)
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The first term in Eq. (A.76) can be simplified, using

∂⟨ϕm|V (j)|ϕn⟩i
∂RX

=
∂⟨ϕm|V (j)|ϕn⟩i

∂Rm

∂Rm

∂RX
+

∂⟨ϕm|V (j)|ϕn⟩i
∂Rn

∂Rn

∂RX
+

∂⟨ϕm|V (j)|ϕn⟩i
∂Rj

∂Rj

∂RX

=
∂⟨ϕm|V (j)|ϕn⟩i

∂RX
δmX +

∂⟨ϕm|V (j)|ϕn⟩i
∂RX

δnX +
∂⟨ϕm|V (j)|ϕn⟩i

∂RX
δjX . (A.77)

we have

∑
ijmn:i ̸=j

LmiLni
∂⟨ϕm|V (j)|ϕn⟩i

∂RX

=
∑

ijn:i ̸=j

LXiLni
∂⟨ϕX |V (j)|ϕn⟩i

∂RX
+

∑
ijm:i ̸=j

LmiLXi
∂⟨ϕm|V (j)|ϕX⟩i

∂RX
+

∑
imn:i ̸=X

LmiLni
∂⟨ϕm|V (X)|ϕn⟩i

∂RX

=
∑

ijn:i ̸=j

LXiLni
∂⟨ϕX |V (j)|ϕn⟩i

∂RX
+

∑
ijn:i ̸=j

LniLXi
∂⟨ϕn|V (j)|ϕX⟩i

∂RX
+

∑
imn:i ̸=X

LmiLni
∂⟨ϕm|V (X)|ϕn⟩i

∂RX

= 2
∑

ijn:i ̸=j

LXiLni
∂⟨ϕX |V (j)|ϕn⟩i

∂RX
+

∑
imn:i ̸=X

LmiLni
∂⟨ϕm|V (X)|ϕn⟩i

∂RX
. (A.78)

The last two terms in Eq. (A.76) can be proven equal,

∑
ijmn:i ̸=j

∂Lmi

∂RX

Lni⟨ϕm|V (j)|ϕn⟩i =
∑

ijmn:i ̸=j

Lmi
∂Lni

∂RX

⟨ϕm|V (j)|ϕn⟩i. (A.79)

Put Eq. (A.78) and Eq. (A.79) into Eq. (A.76), we have

∑
ij:i ̸=j

∂T j
ii

∂RX
= 2

∑
ijn:i ̸=j

LXiLni
∂⟨ϕX |V (j)|ϕn⟩i

∂RX
+

∑
imn:i ̸=X

LmiLni
∂⟨ϕm|V (X)|ϕn⟩i

∂RX

+ 2
∑

ijmn:i ̸=j

∂Lmi

∂RX
Lni⟨ϕm|V (j)|ϕn⟩i. (A.80)

With Eq. (A.66), Eq. (A.71) and Eq. (A.80), we have the derivative

∑
ij:i ̸=j

∂V coul
ij

∂RX

=
∑
ij:i ̸=j

∂V coul
ij

∂RX

+
∑
ij:i ̸=j

∂Vijij

∂RX

+ 2
∑
ij:i ̸=j

∂T j
ii

∂RX

. (A.81)
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