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ABSTRACT 

 

Concrete bridge decks are a critical structural component in most bridges and the 

characterization of their deteriorating condition remains as an ongoing challenge for the 

Department of Transportation. These challenges include lane closures, inspector safety, and 

subjective results. Visual inspection remains as the primary and most common 

nondestructive evaluation technique for bridge decks, but recently there has been an 

increased interest in enhancing or even replacing this method with digital image processing 

techniques. An automated system would not only increase inspector safety but also produce 

reliable and repeatable results.   

 

This thesis presents findings pertaining to the evaluation of non-contact measurement 

techniques in their use in quantifying cracks. In particular, the research compares promising 

image acquisition systems and analysis techniques. Images from both a controlled laboratory 

and outdoor environment were used to test the image acquisition systems and image 

processing methodologies, and establish a measure of both accuracy and efficiency. The 

outcome of the investigation provides confidence to the feasibility of the automated image 

processing approach, but also creates a foundation for the application to more complex 

environments. 
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1.0 INTRODUCTION 

 

1.1 Background 

As of 2013, the United States public road network consisted of 604,493 bridges (U.S. Department 

of Transportation 2013). The American Society of Civil Engineers (ASCE) states that “more than 

thirty percent of these bridges have exceeded their 50-year design life, meaning that maintenance, 

repair, and rehabilitation programs will still require significant investment in the upcoming years” 

(2013). These bridges must be inspected for degradation and repaired before they pose a threat to 

the commuting public.  

 

A major component of a bridge is the bridge deck, and the degradation of the bridge deck will 

contribute greatly to the degradation of the entire bridge. The forms of surface degradation in 

concrete bridge decks include spalling and cracking, while subsurface degradation includes 

delamination (Federal Highway Administration 2012). Bridge inspectors currently rely on a visual 

analysis to evaluate a bridge deck for surface degradation. This type of evaluation method is costly, 

timely, and highly subjective. With the large amount of bridges that need to be inspected yearly, 

there is an increased need for a completely automated visual inspection system that can easily be 

used in the field to accurately monitor bridge deck conditions. In recent years, both image 

acquisition systems and image processing methods have improved greatly, thus potentially 

offering a means to develop a fully automated bridge inspection system. 

 

1.2 Thesis Overview and Scope 

This study was conducted as a means of evaluating potential image acquisition systems and image 

processing methods that can be used in an automated system. The research was conducted in two 



2 
 

phases. The first phase focused on evaluating the errors associated with the set-up and the amount 

of error within feature detection methods. The goal of the first phase was to gain an understanding 

of how to select proper camera parameters in order to accurately analyze surface defects. The 

second phase of the research focused on evaluating and comparing various image processing 

algorithms that could be used to identify and quantify deterioration features.  

 

1.3 Thesis Organization 

The following chapter, Chapter 2, presents a summary and review of the literature relevant to this 

research. The chapter includes background information on current bridge inspection methods and 

various image acquisition systems. The section also details past research on crack detection 

algorithms. Chapter 3 describes the experimental methodology, and the results are discussed in 

Chapter 4. Chapter 5 provides a summary of the research conducted and an overarching 

conclusion. Finally, Chapter 6 will describe possible future research in continuing to develop a 

fully automated bridge deck inspection system.  
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2.0 LITERATURE REVIEW 

There are many different materials used in bridge decks, such as timber, steel, and concrete and 

the evaluation of these decks are vital in ensuring the overall structural stability of a bridge. The 

following chapter details current bridge inspection methods used for concrete bridge decks within 

the United States. It also explains different technologies that can aide in the creation of a fully 

automatic inspection system. Finally, it details various algorithms that have been created to detect 

and analyze the geometric attributes of cracks in concrete specimens.   

 

2.1 Bridge Deck Deterioration Mechanisms 

According to the Bridge Inspector’s Reference Manual, the function of a concrete bridge deck is 

to provide a smooth riding surface and transfer both dead and live loads to the superstructure, thus 

making it a critical component to the structurally integrity of the bridge (Federal Highway 

Administration 2012). Common deficiencies in bridge decks include but are not limited to, 

cracking, delamination, and spalling. Delamination is the surface separation of concrete into layers 

near the level of the reinforcing steel (Federal Highway Administration 2012). Delamination can 

be caused by the expansion of corroding steel or severe overstress of the deck (Federal Highway 

Administration 2012). Spalling occurs when a portion of the concrete completely separates from 

the surface concrete, as shown in Figure 1 (Federal Highway Administration 2012). Spalls can be 

caused by overstress, corroded reinforcement, or overfinishing (U.S. Department of Transportation 

et al. 2013).   
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Figure 1: Example of a Spall 

 

Another deterioration mechanism is cracking. Cracks can occur on concrete bridge decks in even 

the highest quality of concrete. They are caused by either stress due to applied loads or stress due 

to volume changes (Kosmatka and Wilson 2011). The cracks that form can be described as either 

pattern cracks, shown in Figure 2a, or linear cracks, shown in Figure 2b (Virginia Department of 

Transportation 2009). Both types of cracks can pose problems to bridges and need to be accurately 

evaluated. The larger cracks can allow access for water and other corrosive materials to reach the 

reinforcing steel thus leading to the steel’s deterioration (Ganapuram et al. 2012).  

 

 

Figure 2: Types of Cracks: a) Pattern Cracking; b) Linear Cracking 
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2.2 Bridge Deck Inspection Methods 

According to the Federal Highway Administration (FHWA), bridges are typically inspected every 

24 months, but bridges that show advanced deterioration are inspected more frequently (2012).  

Bridge inspectors are required to examine all components of the 604,485 bridges across the nation 

based on a criteria outlined in the National Bridge Inspection Standards (NBIS) (U.S. Department 

of Transportation et al. 2013). 

 

A condition rating system is used to measure the bridge’s components over time. The rating 

categories vary from zero to nine, where nine rates the condition as excellent and zero rates the 

condition as failed (U.S. Department of Transportation et al. 2013).  Using this data bridges can 

be classified, for example, as structurally deficient or functionally obsolete. According to the 2013 

Status of the Nation’s Highways, Bridges, and Transit report (2013) bridges will be labeled as 

structurally deficient if a main component has a rating of four or lower, thus indicating that the 

bridge is in poor condition due to deterioration. The bridge could also be labeled as functionally 

obsolete if the bridge’s geometry and design-load carrying capacity does not meet the standards 

required to carry the current amount of traffic. In 2010, 11.7 percent of bridges were considered 

structurally deficient and 14.2 percent were functionally obsolete (U.S. Department of 

Transportation et al. 2013).  

 

As of July 2013, the Virginia Department of Transportation (VDOT) is responsible for the 

maintenance and inspection of 20,997 structures identified as bridges or culverts  (Virginia 

Department of Transportation 2013). VDOT personnel typically inspect these bridges every two 

year. The data collected from the inspection are used to deem if the structures require repair, 
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maintenance, or replacement. In 2013, VDOT inspected around 10,700 bridges and culverts at a 

cost of about 26.1 million dollars (Virginia Department of Transportation 2013). 

 

In addition to gathering data required by the NBIS, VDOT collected data of bridge’s structural 

elements (Virginia Department of Transportation 2013). An element is defined as a component of 

a bridge, such as an abutment, pile, or girder. The elements are then subdivided into material type, 

such as timber or concrete (Virginia Department of Transportation 2007). Inspectors will inspect 

the elements and VDOT will incorporate this data into a database called Pontis (Virginia 

Department of Transportation 2007). Unlike the NBI inspection program, which has inspectors 

give an average rating to indicate the overall condition of the component, Pontis rates bridge 

elements in “quantitative units so that an inspector rates the entire element for the NBIS and then 

subdivides it into various condition states for Pontis” (Virginia Department of Transportation 

2007). The condition states, using Pontis, for concrete bridge decks can be seen in Table 1.  

 



7 
 

Table 1: PONTIS Rating for Concrete Bridge Decks  

(Virginia Department of Transportation 2007). 

Element 

Rating 

Condition State Description for  

Concrete Deck and Slabs 

Condition State Description for  

Deck Cracking 

1 

This element exhibits no patched 

areas and/or deficiencies such as 

spalling, delamination, etc. 

The surface of the deck is cracked, but the 

cracks are either filled/sealed or 

insignificant in size and density (cracks 

less than 1/16 inch in width and spaced 

greater than 10 feet apart) 

2 

Patched areas, 

spalling/delamination and/or 

potholes exist. Their combined 

area is 10% or less of the total 

deck area 

Unsealed crack exist which are of 

moderate size or density (cracks greater 

than or equal to 1/16 inch and less than 

3/16 inch in width or where cracks are 

spaced 5 feet to 10 feet apart). 

3 

Patched areas, 

spalling/delamination and/or 

potholes exist. Their combined 

area is more than 10% but 25% 

or less of the total deck area 

Unsealed cracks exist in the deck that are 

of moderate size and density (cracks 

greater than or equal to 1/16 inch and less 

than 3/16 inch in width and where cracks 

are spaced 5 feet to 10 feet apart). 

4 

Patched areas, 

spalling/delamination and/or 

potholes exist. Their combined 

area is 25% but less than 50% of 

the total deck area 

Unsealed cracks exist in the deck that are 

of severe size and/or density (cracks 

greater than 3/16 inch in width and/or are 

spaced less than 5 feet apart). 

5 

Patched areas, 

spalling/delamination and/or 

potholes exist. Their combined 

area is 50% or more of the total 

deck area 

  

 

2.2.1 Non-Destructive Evaluation Techniques 

Inspectors will employ a variety of non-destructive evaluation techniques, shown in Table 2, when 

inspecting a concrete bridge deck.  

 



8 
 

Table 2: Common Nondestructive Evaluation Methods for Evaluating Concrete Bridge Decks 

Inspection Method Purpose Example Defects 

Visual  

Inspection 
Detection of Surface Defects Cracks, Spalling, Rebar Rust Staining 

Infrared 

Thermography 

Detection of Near-Surface 

Defects 
Delamination, Honeycombing 

Ground 

Penetrating Radar 

Detection of Near-Surface 

Features 

Delamination, Air Voids, Location of 

Rebar 

Impact Echo 
Detection of Near-Surface 

Features 

Delamination, Air Voids, Thickness 

of Concrete  

 

2.2.1.1 Infrared Thermography 

Infrared thermography, outlined in ASTM D4788-03, can be used to detect subsurface defects in 

concrete bridge decks, such as delamination, honeycombing, and voided tendon ducts (Clark et al. 

2003). Two types of thermal inspection techniques are used in civil engineering. The first is passive 

thermography, which only observes the surface temperatures of objects by using an infrared 

detector. The second is active thermography, which supplies heat to an object and then observes 

the surface temperatures by using an infrared detector. For concrete bridges, delamination will 

modify the heat transfer properties of concrete and thus the image will be able to detect the location 

of the delamination (Vaghefi et al. 2013). If the delamination or voids are deep within the concrete, 

they will take longer to appear and have less contrast than if they were located at a shallower 

position (Washer et al. 2013). Figure 3 shows an example of a subsurface defect in a concrete 

bridge that was found using an infrared camera.  
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Figure 3: Example of Subsurface Defect Found by Using an Infrared Camera 

 

The data acquired from the imaging equipment provides an instant image of the specimen for 

inspectors to analyze, and can visually show the locations of near surface defects. Some problems 

with infrared thermography include the subjectivity of its results. If the emissivity is different for 

each material, the objects will show different brightness, which does not necessarily mean they 

have different temperatures (Clark et al. 2003). Infrared thermography also cannot be accurately 

used if the weather conditions are not favorable or if voids are filled with water (Washer et al. 

2013).  

 

2.2.1.2 Ground Penetrating Radar 

Another non-destructive evaluation technique for concrete bridge decks is ground penetrating 

radar (GPR). ASTM D6432-11 describes the equipment and the test method for conducting 

subsurface investigation using GPR (ASTM 2011). GPR uses an electromagnetic energy signal 

that penetrates through a surface (Daniels 2004). The waves interact throughout the specimen and 

are reflected back to the surface and recorded. These waves can be analyzed to assess the rebar, 
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rebar cover depth, and voids (Alani 2013). GPR is more sensitive to detecting metallic components 

that are perpendicular to the polarization (Geophysical Survey Systems, Inc. 2006). If steel is 

present in the concrete, the entire electromagnetic wave is reflected from the steel. Therefore, data 

that might lie beneath the steel, such as possible voids, cannot be gathered (Geophysical Survey 

Systems, Inc. 2006). To avoid this issue and allow the machine the ability to detect voids, it is 

recommended that the GPR system is oriented parallel to metallic components (Geophysical 

Survey Systems, Inc. 2006). Figure 4 shows an example of GPR data gathered when inspecting a 

concrete slab.  

 

 

Figure 4: Example GPR Data 

 

The advantages of GPR testing include its ability to detect defects such as voids, delamination, 

and metallic objects. It can also provide quantitative data; however, the interaction between the 

electromagnetic waves and the materials can be difficult to interpret. Therefore, extensive training 

is required in order to interpret this data accurately.  
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2.2.1.3 Impact Echo 

Impact echo inspection is described in ASTM C1383-04 (ASTM 2010) and provides another 

means of inspecting concrete decks. The theory behind impact echo testing is stress waves are 

propagated into a concrete deck’s surface through a mechanical impact (Carino 2001). The wave 

interacts with boundaries and interfaces causing low frequency waves to be reflected back to the 

surface and recorded (Sansalone 1997). The waves can then be used to evaluate the concrete deck 

to determine the thickness of the concrete and the location of voids or delamination (Sansalone 

1997). The impact echo system can detect defects includes the defect’s orientation and depth, and 

is affected by the contact time of the impact during the test (Carino 2001). Figure 5 shows an 

example an impact echo scanner and a thickness plot recorded during an impact echo inspection 

of a drainpipe underneath a concrete surface. 

 

 

Figure 5: Example Impact Echo Inspection: a) Impact Echo Scanner; b) Thickness Scan 
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The advantages of impact echo testing include its ability to provide quantitative data, such as the 

depth to the defect and thickness of the concrete. However, impact echo systems are expensive, 

they can only perform local inspection, and inspectors must receive extensive training to accurately 

interpret the data.  

 

2.2.1.4 Visual Inspection 

The most common method is visual inspection, which is only effective in detecting surface defects. 

For bridge decks, surface defects include spalling, cracking, and rebar rust staining. For cracking, 

the inspector should note the orientation, width,  and length of the crack (Atomic and Agency 

2002). In August 2014, two VDOT inspectors were shadowed as they conducted a visual 

inspection of multiple bridges decks in the Charlottesville area. On the concrete bridge decks, the 

inspectors used visual inspection to look for cracks, spallings, and areas of possible delamination. 

They would use extended rulers to measure lengths of cracks and areas of spalling.  

 

Although this method is efficient and low cost compared to other methods, there can be 

discrepancies in the identification and quantification of the condition state of the bridge. Factors 

influencing the accuracy of inspection include object characteristics, light, environmental factors, 

and human psychological factors (Hellier, 2013). Over the years, visual aids have been developed 

to help inspectors when they are on a job site. Such aids include flashlights, measuring devices, 

and cameras (Chase, 2013). However, even with these aids, the contrast between the defect and 

the surface, along with the lighting conditions still determine how easily a defect can be detected. 

The analysis of the surface defects found during visual inspection can also be subjective, causing 

discrepancies in the condition assessment of the bridge deck (Hellier, 2013). 
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2.3 Feature Detection – Image Acquisition  

An automated system would help eliminate some of the logistical and accuracy challenges 

involved in the traditional visual-based bridge deck inspection process. If designed properly, this 

system could provide reliable results and involve minimal disruption in motorist activities on the 

bridge. To maintain compatibility with current practices, an optical characterization method would 

be appropriate; however, current optical characterization techniques have major limitations in 

accuracy for both detection and quantification of cracks. The capturing and analysis of cracks 

within the concrete are difficult due to blemishes, voids, debris, shading, and the geometric 

features of the crack (Higgins and Turan 2013). Researchers have attempted to overcome these 

challenges through both digital image processing techniques and by using various camera 

technology to image the concrete. The focus in this investigation is on visual methods. 

 

2.3.1 Imaging Platforms 

The most common image acquisition systems used are optical cameras. These cameras use only 

the visible light range, which has a wavelength between 400nm and 700nm, shown in Figure 6 

(Ishikawa et al. 2014).  To analyze a specimen, the optical cameras can either take a single 

photograph or take a series of photographs over a given period of time, which is called 

multitemporal images (Chen et al. 2006). There are generally two categories of techniques used 

for gathering the photographs. The first is aerial photography where images are taken from an 

aircraft (Jiang et al. 2008). Small-format aerial photography was used in 2011 to detect large cracks 

and joint openings on bridge decks from a height of 1,000ft  (Chen et al. 2011). The other category 

is terrestrial, where images are taken near or on the surface (Jiang et al. 2008). These images are 

typically taken with either a Charged Couple Device (CCD) camera or a Digital Single-Lens 
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Reflex (DSLR) camera. There have also been instances of use with video microscopes, such as in 

2002 when a video microscope was used to analyze defects in concrete slabs and beams (De 

Schutter 2002).  

 

Another type of image acquisition system is the near infrared (NIR) camera. The NIR camera uses 

wavelengths just beyond the visible spectrum, usually between 800nm and 2,500nm (Hedrick et 

al. 2007). A comparison between the wavelengths for the visible and NIR spectrum can be seen 

below in Figure 6.  

 

 
Figure 6: The Electromagnetic Spectrum 

 

Most applications of NIR camera technology have been restricted to chemical, agriculture, 

polymers, and medical sciences (Siesler, Ozaki, Kawata, & Heise, 2002). However, there has been 

an increased interest in using NIR camera technology for analyzing materials used in 

infrastructures, such as wood, mortar, and concrete. In 2007, NIR sensors were used to measure 
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the longitudinal stiffness and longitudinal tensile strength of treated wood by obtaining the near 

infrared reflectance spectra along the radial-longitudinal face of the specimen (Hedrick et al. 

2007). In 2015, NIR cameras were used to classify recycled aggregate, thus allowing aggregate 

that contained gypsum, autoclaved aerated concrete, or organic particles to be removed (Vegas et 

al. 2015).  

 

Research has also been conducted using multi-spectral analysis. Multi-spectral analysis combines 

the blue, green, and red bands from the visible spectrum with the near-infrared band. Multi-spectral 

analysis was used to semi automatically detect materials within a masonry wall in Valencia, Spain 

(Lerma 2005). The materials it was able to identify included wood, glass, rock, and various mortars 

used in the pilaster and the face (Lerma 2005). Multi-spectral analysis has also been used to 

identify damage on concrete surfaces. In 2013, multi-spectral analysis was used to assess damage 

on roofs in Coimbra, Portugal (Valença et al., 2013). In particular, the experiments analyzed and 

measured areas that contained biological colonization, moisture, cracks, and repaired materials 

(Valença et al. 2013). The work done by both Valença et al (2013) and Lerma (2005) showed that 

combining the visible spectrum with the near-infrared spectrum can be used to better assess 

multiple materials in a structure.  

 

2.4 Feature Detection – Image Processing 

After gathering the images, researchers will use various digital image processing techniques to 

identify the location of cracks and their geometrical features. Many algorithms developed combine 

both basic and more advanced digital image processing tools. Some researchers process the images 

captured by using the RGB spectrum or the HSV color space. The HSV color space concentrates 
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on the variations of the hue, saturation, and intensity values of an image (Sural and Pramanik 

2002). However, the majority of images are processed using grayscale. Grayscale converts the 

RGB values in an image to shades of gray, typically images are 8 bits and therefore have 256 gray 

levels (Bovik 2009). Grayscale serves as an advantage because it can simplify an image and allows 

for faster processing when converting to a binary image (Acton, 2013). Figure 7 shows an example 

of an image that has been converted to both a grayscale image and a binary image. 

 

 

Figure 7: Example of a Grayscale and Binary Image 

 

A binary image is an image that has converted the grayscale values into logical values, either a 1 

or a 0 (Bovik 2009). Such processing allows an individual to see the absence and presence of 

certain properties. In order to convert a grayscale image to a binary image, the image must undergo 

thresholding. The quality of an image depends heavily on the thresholding process (Acton, 

2013).The goal of thresholding is to separate the objects from the background and can be achieved 

through global thresholding or local thresholding (Bovik 2009). Figure 8 shows the methodology 

and an example of the two threshold methods.  
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Figure 8: Comparison of Global and Local Threshold Methods 

 

The example image displays the University of Virginia’s Rotunda. The global threshold method 

takes into account all of the intensity values in the image, while the local threshold method 

segments parts of an image based on the surrounding pixels’ intensities. Using the global threshold 

method, the Rotunda and the bushes are selected as the objects and segmented. However, with the 

local threshold method, the details of the Rotunda and bushes are locally segmented from the 

background. The outlines of the individual bricks can be seen in the local thresholding image, 

while in the global thresholding image the sky in the upper right corner is mistaken as part of the 

Rotunda. Global threshold methods are not as computationally expensive as local threshold 

methods, but local threshold methods excel when there are variations of lighting within an image 

(Bradley and Roth 2007). 
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One of the digital image processing methods used to identify the shape of a crack is morphological 

filtering. These are used to filter objects within an image. They can expand, shrink, smooth, or 

eliminate features within the image (Bovik 2009). Common morphological filters include: 

 Dilation, which will remove holes that are very small and will remove gaps that are very 

narrow.  

 Erosion, which will remove objects that are very small and will remove peninsulas that 

are very narrow.  

 Median filter, which does not change the size of objects of background (Bovik 2009). The 

median filter will remove small object and small holes. 

 Open function, which is erosion followed by dilation and will remove small objects but 

not holes. Similar to the median function, it does not affect the object’s size (Bovik 2009). 

 Close function, which is dilation followed by erosion and will remove small holes but not 

objects. Like the median filter, it does not affect the object’s size (Bovik 2009).  

An illustration of example outcomes for the various functions can be found in Figure 9 (Acton 

2013).  
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Figure 9: Morphological Operations (Adapted from Acton 2013) 

 

These morphological operations are implemented within a predefined geometric rule, called a 

window or a structuring element. The structuring element will have a predefined shape and size in 

which pixel data will be collected and modified (Bovik 2009). Common window shapes include a 

line, a square, or a cross (Acton, 2013). The size and shape of the window will have a great effect 

on the results of the morphological operation.  

 

Another tool used in image processing is edge detections. Edges are defined as either points along 

which there is an abrupt change in orientation and surface features, or points which separate 

different materials (Bovik 2009). Two common edge detection methods include the Sobel edge 

detector and the Canny edge detector. The Sobel edge detector is a gradient edge detector that is 

simple and quick, but does not do well with noisy images (Acton, 2013). It detects the locations 
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that exhibit the greatest rate of change in image intensity and uses two convolution edge templates, 

∆𝑥 and ∆𝑦 shown below, to help reduce noise (Bovik 2009).  

∆𝑥=  
−1 0 1
−2 0 2
−1 0 1

              ∆𝑦=  
−1 −2 −1
0 0 0
1 2 1

                                                              Equation 2.1 

 

The Canny edge detector is also a gradient detector, but it incorporates features of a Laplacian 

detector (Bovik 2009). This edge detector finds the edges based on the local maxima of the image 

gradient, which is calculated using the derivative of the Gaussian filter (Canny 1986). A 

comparison of the Sobel edge detection and the Canny edge detection can be seen in Figure 10. 

Comparatively, the Canny edge detector performs better than the Sobel edge detector because the 

Canny edge detector employs a blurring technique that helps eliminate the noises that the Sobel 

edge detector mistakes for edges (Abdel-qader et al. 2003). In Figure 10, the Canny edge detector 

distinguishes the shading in the image, unlike the Sobel edge detector.  

 

 

Figure 10: Example of Edge Detection Methods 
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A more advanced image processing method is called the active contour model, or snake (Tang et 

al. 2006). Snakes “deform on the image domain and capture a desired feature by minimizing an 

energy functional subject to certain constraints” (Li and Acton 2007). The snake model is 

influenced by image forces that push the snake onto features such as edges, and an external 

constraint force that puts the snake near the local minimum (Kass et al. 1987). The result is a 

curved object that converges on the closed boundary of the intended object (Chen and Hutchinson 

2010). Figure 11 shows an example of this image processing technique.  

 

 

Figure 11: Example of the Active Contour Technique 

 

Another advanced model is the percolation model, which is based on the principles of liquid 

permeation. To begin the process, a focal pixel is chosen, if that pixel is part of the crack, the 

region will grow linearly; however, if the focal pixel is not part of the crack, the region will grow 
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in all directions (Yamaguchi and Hashimoto 2009b). To determine if the focal pixel is part of a 

crack, the circularity, or roundness of a feature, is calculated using the following equation: 

F =
4 ∗ 𝐶𝑐𝑜𝑢𝑛𝑡

π ∗ 𝐶𝑚𝑎𝑥
2⁄                                                                                               Equation 2.2 

where F is the circularity, 𝐶𝑐𝑜𝑢𝑛𝑡 is the number of pixels in the region, and 𝐶𝑚𝑎𝑥 is the length of 

the region (Yamaguchi and Hashimoto 2009a). If F is close to one, the region is circular and thus 

the focal pixel is not part of the crack, but if F is close to zero, then the region is linear and the 

focal pixel is part of the crack (Yamaguchi and Hashimoto 2009a). Figure 12 shows an example 

of the percolation process when the focal pixel is in the background, and when it is part of the 

crack.  

 

 

Figure 12: Percolation Technique: a) Focal Pixel in the Background; b) Focal Pixel in the Crack  

 

2.4.1 State of Practice – Concrete Crack Detection 

Image processing techniques used in identifying and analyzing cracks in concrete bridge decks can 

also be found in the analysis of other common infrastructures. Underground pipelines pose an issue 

for inspectors to accurately analyze the cracks. In 2005, experiments were conducted using an 

algorithm that uses a geometry-based image modeling concept to segment the cracks (Iyer and 

Sinha 2005). The authors used an algorithm that concentrated on dark regions of images and 

implemented filters that included features such as constant width and tree-like features (Iyer and 

Sinha 2005). Another infrastructure conducive to cracking is sewers. In 2014, cracks were detected 
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using an algorithm consisting of Sobel edge detection to identify possible crack fragments, the 

Hough transform to remove errant edges, morphological operations to enhance the possible cracks, 

and then a filtering mechanism to remove noise (Halfawy and Hengmeechai 2014). In 2007, a 

mobile robot inspection system was created in South Korea to analyze cracks within a tunnel (Yu 

et al. 2007). The other most common infrastructure conducive to cracking is asphalt roadways. In 

2014, researchers developed an algorithm to help detect cracks on roadways using fragment 

grouping by dilation and fragment connection by thinning processes (Wu et al. 2014).  

 

Some of the image processing techniques are even used in the medical field for segmenting 

cartilages and neurons. In 2006, studies were conducted on extracting cartilage surfaces and 

computing their thicknesses through complicated algorithms that use gradient vector flow snakes 

to segment the image (Tang et al. 2006).  Studies have been done on segmenting neurons by using 

a technique called tubularity flow field, which perform regional growing guided by the direction 

of the tubularity and by also using an attraction force based motion (Mukherjee et al. 2014). The 

active contour model technique has also been used in concrete crack detection. The Chen-Vese 

Active Contour model was used to segment cracks because it can automatically detect and evolve 

its contours and it has the capability of extracting geometric properties of the crack (Chen & 

Hutchinson, 2010).  

 

Percolation has also been used. Zhu et al. (2011), used an algorithm based on percolation models 

to evaluate concrete structures after an earthquake. Unlike typical percolation models, this 

algorithm performed percolation on pixels with high gradient magnitudes (Zhu et al. 2011). 
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Another percolation algorithm was developed to detect the cracks on concrete surfaces, then the 

cracks were dilated and thinned before being measured (Yamaguchi and Hashimoto 2009b). 

 

Other researchers have decided to rely solely on basic digital image processing techniques, such 

as morphological operations, thresholding, and edge detection. In 2001, microcracks were 

analyzed within a concrete structure by putting red dye into the cracks to increase contrast. Then 

once the image had been taken they were post-processed using erosion and closing operations and 

thresholded based off of the entropy of the image (Ammouche et al. 2001). In 2003, Abdel-qader 

et al. (2003) compared multiple edge detections and their relation to identifying cracks on bridges. 

The edge detection methods analyzed included the Sobel edge detector, the Canny edge detector, 

the Fourier transform, and the Fast Haar transform. It was found that the Fast Haar transform 

performed better than both the Sobel and Canny edge detectors while the Fourier transform 

performed the worst (Abdel-qader et al. 2003).  

 

Similarly, Lattanzi and Miller compared various methods for segmenting concrete cracks (2014). 

The methods included a clustering method based on k-means, a clustering method based on k*-

means, Canny edge detection, and Haar wavelet filtering. The k*-means clustering method was 

developed as an improvement of the k-means method (Lattanzi and Miller 2014). The k-means 

method is an iterative partitioning method that separates an image into different clusters 

(MathWorks 2015). The k*-means algorithm began with specifying a certain number of clusters 

and setting the initial value to bright pixels. It then proceeded to assign each pixel to a cluster, set 

a new cluster value based on the average value of pixels within the cluster. It repeated this until 

the cluster value remained the same. The cluster with the lowest value was segmented. It was found 
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that the clustering method was more robust than the Canny edge detection or the Haar wavelet 

filtering (Lattanzi and Miller 2014).  

 

An extremely accurate crack detection algorithm was developed by Fujita and Hamamoto (2011). 

The structure of their algorithm can be seen in Figure 13.  

 

 

Figure 13: Crack Detection Algorithm by Fujita and Hamamoto (Adapted from Fujita & 

Hamamoto, 2011) 

 

 

The subtraction-preprocessing step subtracts the original image from the corrective image, which 

is obtain by applying a median filter to the original image. The multi-scale line emphasis uses a 

line filter based on the Hessian matrix. The Hessian matrix is the partial second derivative of the 

image. The eigenvalues found from this matrix can describe the difference between structures, 

such as a line or a blob structure (Fujita and Hamamoto 2011). If the eigenvalues are about zero 

then the structure is considered line-like, while if they are greater than zero the structure is 

considered blob-like. This helps eliminate stains and aggregates from the image because they 

typically have blob-like structures. The image then undergoes probabilistic relaxation, which helps 

eliminate noisy data. Finally, adaptive thresholding is used to segment the image. The adaptive 

thresholding is not susceptible to lighting variations like the global thresholding methods, 

however, it is very computationally expensive (Fujita and Hamamoto 2011). 

 

Another accurate crack detection algorithms that was not computationally expensive, was 

developed by Jahanshahi et al. (2011). The structure of their algorithm can be seen below in Figure 
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14. The authors decided to use a line shape for their structuring element because when cracks are 

perpendicular to the direction of the structuring element, the morphological operations can 

successfully segment the crack (Jahanshahi et al. 2011). 

 

 

Figure 14: Crack Detection Algorithm by Jahanshahi et al (Adapted from Jahanshahi et al., 2011) 

 

 

Segmentation is performed by using the morphological operations of open and close functions. 

The line-structuring element’s size is calculated based on five parameters. The parameters are the 

distance from the target, the focal length of the camera, the camera sensor resolution, the camera 

sensor, and the smallest crack size that the algorithm needs to detect. The line-structuring element 

is then rotated to 0 degrees, 45 degrees, 90 degrees, and 135 degrees. Finally, Otsu’s global 

thresholding is performed on the image. The features extracted include eccentricity, solidity, 

compactness, the area of the segmented crack divided by the area of an ellipse, and the absolute 

value of the correlation coefficient. The algorithm effectively segments a crack; however, the 

ability to detect the crack becomes heavily dependent on lighting conditions. (Jahanshahi et al. 

2011) 
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3.0 METHODOLOGY 

This section describes the methodology used to conduct experimental testing on the optimal 

camera parameters needed to resolve various size concrete cracks. Section 3.1 defines the different 

image acquisition equipment and camera parameters used throughout the experimental testing. 

Section 3.2 and Section 3.3 details the algorithms utilized to resolve and quantify the concrete 

cracks. In order to compare the algorithms and the different acquisition systems, three stages of 

experimental testing were conducted. These stages, described in Section 3.4, include the analysis 

of simulated cracks, idealized laboratory cracks, and in-service cracks. The experiments conducted 

on simulated cracks assessed the errors associated with the feature detection and quantification 

methods used in the algorithms. The experiments conducted on the idealized laboratory cracks 

evaluated the errors associated with the image acquisition system and camera parameters within a 

controlled environment. Finally, in-service cracks were analyzed under ideal lighting conditions.  

 

3.1 Image Acquisition Equipment 

Multiple image acquisition systems, shown in Table 3 below, were used to capture images of 

cracks. The cameras provided a range of sensor sizes, sensor types, resolutions, and image 

wavelengths. The cameras chosen represent commonly available systems.  
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Table 3: Image Acquisition Systems and Their Properties 

  Nikon D610 Canon 7D Point Grey Nikon D3200 

Electromagnetic 

Spectrum Region 
Optical Optical Optical Near-Infrared 

Megapixels 24.3 18 5 24.2 

Sensor Size 35.9 x 24 mm 22.3 x 14.9 mm 8.8 x 6.6 mm 23.2 x 15.4 mm 

Pixel Pitch 5.95 µm 4.29 µm 3.45 µm 3.84 µm 

Focal Lengths 24 mm x x   x 

35 mm x   x   

60 mm x     x 

85 mm x     x 

 

The electromagnetic spectrum indicates whether the acquisition system used wavelengths within 

the visible spectrum or just beyond the visible spectrum. The systems that used the visible spectrum 

were labeled as Optical. The optical cameras include the Nikon D610 and the Canon 7D, which 

are both Digital Single Lens Reflex (DSLR) cameras, and the Point Grey, which is a Charge-

Couple Device (CCD) camera. The Nikon D3200 was converted to a near-infrared camera that 

operates in a wavelength of 715 nm by removing the stock glass in the camera and replacing it 

with WG280 glass (LDP LLC 2014). The images captured by the converted camera will appear 

red because red pixels are the most open to the infrared. The Megapixels, Sensor Size, and Pixel 

Pitch are all dependent on the actual camera.  

 

Megapixels are a unit equal to one million pixels and can be used to measure the resolution of an 

image. Typically, a higher amount of megapixels results in a higher resolution image. However, if 

the sensor size is not increased along with the increasing amount of megapixels, the camera will 

capture a noisier image. The sensor size indicates the amount of surface area a camera has to 

capture light to create an image. A comparison of the four cameras and their sensor sizes can be 
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seen in Figure 15. Usually, a larger sensor size leads to a higher quality image. Similarly, a larger 

pixel pitch, meaning the distance from the center of one pixel to the center of the next pixel, gathers 

more light resulting in a higher quality image. If there are two cameras with the same sensor sizes 

but different pixel pitches, the camera with the smaller pixel pitch will produce a nosier image than 

a camera with a larger pixel pitch. 

 

 

Figure 15: Comparison of Camera Sensor Sizes 

 

The lenses used during experiments were both normal lenses and macro lenses. The macro lens 

allows the photographer to capture an image that is either half its life size or its actual life size 

(Nikon, 2015). This can be beneficial when imagining small objects. The lenses used were a macro 

lens with a 60 mm focal length and a standard lens with a variable focal length between 24 mm to 

85 mm.  

 

Table 3 describes the focal lengths that were used with each particular acquisition system. 

Different focal lengths capture a different field of view. The angle of view, also known as the field 

of view and shown in Figure 16, can be calculated using the Equations 3.1 and 3.2. 

Horizontal FOV = 2 ∗ tan−1(0.5 ∗ 𝑊
𝐹𝐿⁄ )                                                                  Equation 3.1 

Vertical FOV = 2 ∗ tan−1(0.5 ∗ 𝐻
𝐹𝐿⁄ )                                                                       Equation 3.2 
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Where Horizontal FOV is the horizontal field of view in degrees, W is the width of the camera 

sensor, Vertical FOV is the Vertical field of view in degrees, H is the height of the camera sensor, 

and FL is the focal length.  

 

 

Figure 16: Field of View Diagram 

 

Short focal lengths capture a wide angle of view with lower magnification. While, long focal 

lengths capture a narrow angle of view and a higher magnification. The longest focal length used 

during the experiments was 85 mm. and the shortest focal length was 24 mm, as shown in Figure 

17. 
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Figure 17: Comparison of Focal Lengths 

 

3.2 Feature Detection – Crack Identification  

In order to meet the goals of this research, a series of image processing techniques, shown below 

in Table 4, were evaluated for their potential to locate and analyze crack characteristics in concrete 

specimens.  
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Table 4: Previous Crack Detection Methods 

Researchers Method for Segmenting Cracks 

Ammouche et al.  

2001 

Morphological Operations:  

Erosion and Close Functions 

Tung et al.  

2002 

Edge Detection: 

Sobel 

Abdel-qader et al.  

2003 

Edge Detection: 

Canny, Fast Haar, Sobel, and Fast Fourier Transform  

Chen et al.  

2006 
Manual seed points used to create skeletization 

Oh et al.  

2009 

Morphological Operations: 

Median and Dilation Functions 

Yamaguchi and Hashimoto 

2009b 

Percolation and Morphological Operations: 

Dilation and Erosion 

Yamaguchi and Hashimoto  

2009a 
Percolation Method 

Chen and Hutchinson  

2010 

Active Contour Model: 

Chen-Vese 

Zhu et al.  

2011 
Percolation-Based Method 

Fujita and Hamamoto 

2011 

Morphological Operations: 

Median Function 

Jahanshahi et al.  

2011 

Morphological Operations: 

Open-Close Function 

Jahanshahi and Masri  

2012 

Morphological Operations: 

Open-Close Function 

Jahanshahi and Masri  

2013 

Morphological Operations: 

Open-Close Function 

Lattanzi and Miller  

2014 

Edge Detection, K-means Clustering: 

Canny, Haar Wavelet, and k*-means 

Liu et al.  

2014 
3D Crack Detection Methods 

Torok et al.  

2014 
3D Crack Detection Methods 

Wu et al.  

2014 

Morphological Operation: 

Dilation 

 

After the literature review of these techniques, three algorithms were chosen based on their ability 

to accurately identify concrete cracks under less than ideal environmental scenarios. The first 

method was adapted from the journal article An innovative methodology for detection and 
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quantification of cracks through incorporation of depth perception by Jahanshahi et al. (2011). 

The second method was adapted from the journal article A robust automatic crack detection 

method from noisy concrete surfaces by Fujita and Hamamoto (2011). The last method was 

adapted from Lattanzi and Miller (2014) as described in the article Robust automated concrete 

damage detection algorithms for field applications. Finally, the author created an algorithm for 

detection that combined the work from Jahanshahi et al. (2011) and Fujita and Hammato (2011). 

After the cracks were identified their width and length were calculated using a distance transform 

method. It should be noted that none of the code for the methods was provided by the sources, but 

rather, were created using the processes described within the articles. The MATLAB codes used 

during the experiments is provided in Appendix E of this thesis.  

 

3.2.1 Jahanshahi Adapted Method 

The first algorithm, adapted from Jahanshahi et al. (2011), segments cracks based on the camera 

parameters used during the acquisition of the image. The camera parameters needed to use this 

algorithm are focal length, working distance, number of megapixels, and the sensor size of the 

camera. The algorithm also assumes that the image was captured perpendicular to the object of 

interest. 

The steps used in feature detection are as follows: 

1. Convert the image to grayscale 

2. Select a line structuring element and define its size by using the developed equation 

S = FL
WD ⁄ x SR

SS⁄  x CS                                                                              Equation 3.3 

where S is the size of the structuring element in pixels, WD is the distance from the target 

in mm, FL is the focal length of the camera in mm, SR is the number of megapixels, SS is 
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the camera sensor size in mm, and CS is the crack size in mm. The minimum crack size 

of interest should be used in calculating the size of the structuring element. This ensures 

the small cracks will not be removed from the image. 

3. To remove non-crack like features from the image, perform open and then close functions 

with the line structuring element rotated at 0 degrees 

a. Repeat the open and then close functions with the line-structuring element rotated 

at 45 degrees, 90 degrees, and 135 degrees. An illustration of the outcomes of open 

and then close functions are shown in Figure 18 (Acton 2013).  

 

Figure 18: Example of Open-Close Functions (Adapted from Acton 2013) 

 

4. Perform Otsu’s global thresholding to convert the grayscale image to a binary image.  

 

The complete method is illustrated in Figure 19. The red boxes are placed to show how a line-

structuring element would move through the image. Typically, the element would start in the left 

top corner of the image and make its way to the bottom right corner. The first round would have 

the line element rotated to 0 degrees; it would move through the whole image while performing 

open and then close functions, which are discussed in Section 2.4. The line structuring element 

would then be rotated to 45 degrees and begin the process again. This would be repeated for the 

remaining two rotations. Finally, the results from each rotation would be added together and 

thresholded to produce the binary image shown.  
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Figure 19: Illustration of the Jahanshahi Adapted Method 

 

3.2.2 Fujita Adapted Method 

The second algorithm, adapted from Fujita and Hamamoto (2011), was developed to detect cracks 

in noisy concrete conditions. Noisy concrete images include concrete that has stains, aggregates 

visible on the surface, or shading.  

The steps used in feature detection are as follows: 

1. Convert the image to grayscale 

2. Apply a median filter to the grayscale image and then the original image is subtracted from 

the median filtered image.  

3. The image undergoes a multi-scale line emphasis, which uses a line filter based on the 

Hessian matrix. Typically, noise in concrete images comes from stains or aggregates, 
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which have blob-like structures. The multi-scale line emphasis will help eliminate these 

components. 

4. The image then undergoes probabilistic relaxation; this will help eliminate any other noisy 

data from the image. For probabilistic relaxation, it is set so that an image would undergo 

a variable amount of iterations and that the pixels could only be placed into either two 

categories, background or crack. The probability of a pixel being part of a crack can be 

seen below: 

P = 
log(R(xi)+1)

log(Rmax+1)⁄                                                                      Equation 3.4 

where P is the probability of being a crack, Rmax is the maximum pixel value of an image, 

and R𝑖 is the value at that specific pixel. The probability of a pixel being in the background 

is found by subtracting P from 1. 

5. Implement Wellner’s Adaptive Threshold Method to segment the image (Wellner 1993). 

The adaptive threshold method used a filter size one thirtieth of the image size and used 

Gaussian smoothing. Upon experimentation, it was found that the local threshold is set 

between 30 and 40 percent of the local average gray value. 

 

The complete method is illustrated in Figure 20. The median filter smoothed the image and when 

subtracted from the original image, the crack appeared as the main component of the picture. After 

the multi-scale line emphasis and the probabilistic relaxation, the crack was identified as the 

foreground and the rest as the background. Finally, the results were thresholded to produce the 

binary image shown in Figure 20.  
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Figure 20: Illustration of the Fujita Adapted Method 

 

3.2.3 Lattanzi Adapted Method 

The third algorithm use the k*-means method developed by Lattanzi and Miller (2014). The 

authors recognized that cracks typically appear in the darker areas of an image. Using that 

knowledge, they developed a k*-means method, which improves upon the k-means algorithm, 

which is a clustering based method.  

The steps used in feature detection are as follows: 

1. Convert the image to grayscale. 

2. Perform histogram equalization to lessen lighting variations in the image. This enhances 

the contrast between the crack and the concrete.  

3. Choose a number of clusters to use and skew the initial cluster values to bright pixel values 

using logarithmic spacing. In their paper, they used 10 clusters. However, upon 

corresponding with the authors it was disclosed that the number of clusters should be 



38 
 

between 6 and 12. Six clusters proved to be optimal in computational time and accuracy 

for this research project. 

4. Assign the pixels in the image to a cluster and then set the cluster value to match the 

average pixel value in the respective cluster.  

5. Compare the new cluster value to the old cluster value. If the cluster values have changed, 

repeat the algorithm. If the cluster values have not changed, select the cluster with the 

lowest value. 

6. Segment the image using Otsu’s global thresholding method.  

 

The complete method is illustrated in Figure 21. The histogram equalization darkened the crack, 

making it easier to segment. Then the image was assigned into clusters and iterated until the cluster 

values did not change. The clustering image shows the final clusters separated by color. Finally, 

the results were thresholded to produce the binary image shown. 
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Figure 21: Illustration of the Lattanzi Adapted Method 

 

3.2.4 Combined Algorithm 

The final algorithm, called the Combined Algorithm, was developed by combining techniques 

described in Section 3.2.1 and Section 3.2.2. The line structuring element equation from the 

Jahanshahi Adapted Method and their morphological operations are combined with Fujita Adapted 

Method’s adaptive local threshold idea.  

The steps used in feature detection are as follows: 

1. Convert the image to grayscale 

2. Select a line-structuring element and define its size by using Equation 3.3, outlined in 

Section 3.2.1. As with the other method, the minimum crack size of interest should be used 

in calculating the size of the structuring element. This ensures the small cracks will not be 

removed from the image. 
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3. To remove non-crack like features from the image, perform open and then close functions 

with the line structuring element rotated at 0 degrees 

a. Repeat the open and then close functions with the line-structuring element rotated 

at 45 degrees, 90 degrees, and 135 degrees.  

4. Implement the adaptive threshold method described in Section 3.2.2. The adaptive 

threshold method used a filter size one thirtieth of the image size and used Gaussian 

smoothing. Upon experimentation, it was found that the local threshold is set between 30 

and 40 percent of the local average gray value. 

 

The complete method is illustrated in Figure 22. The line structuring element in combination with 

the open and close functions move through the image and produce the results shown. These results 

are then added together and thresholded to produce a binary image, where the crack is shown in 

white and the background is black.  
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Figure 22: Illustration of Combined Algorithm 

 

3.3 Feature Evaluation – Crack Measurement 

In addition to detecting crack features, an algorithm was used to quantify crack dimensions. The 

dimensions of interest included width and length of the crack.  

The steps used in feature evaluation are as follows: 

1. Calculate the orientation of the feature detected. The orientation is specified as the angle 

between the x-axis and the major axis of an ellipse that is generated from the second 

moments of the object region (MATLAB, 2013). Figure 23 illustrates this process.  
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Figure 23: Calculating Object Orientation (Adapted from MATLAB, 2013) 

 

 

2. Rotate the object until it has an orientation of zero degrees. This helps reduce the errors of 

miscalculating distances due to the stair step effect of pixels when the crack is at angle, as 

shown below in Figure 24.  

 

 

Figure 24: Example of Stair-Step Pixels 

 

3. Use the Euclidean distance transform to calculate the straight line distance between two 

pixels by using Equation 3.5: 
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Distance Transform= √(x1-x2)2+(y
1
-y

2
)

2
                                                    Equation 3.5 

The values of x1, x2, y
1
, and y

2
 are dependent on the dimension being measured. Figure 25 

shows the values used when measuring both thickness and length. The left image is 

calculating the amount of pixels in length and the right image is calculating the amount of 

pixels in width. 

 

 

Figure 25: Euclidean Distance Transform 

 

3.4 Experimental Testing 

To meet the goals of this research in assessing optimal camera parameters needed to resolve 

various concrete cracks, a series of experiments were conducted. The experiments can be described 

in three stages and in each stage the camera captured static images. The first stage primarily 

assesses the ability of the selected algorithms to detect and accurately analyze geometric features 

of simulated cracks. These experiments isolated errors that were solely due to the feature detection 

and quantification from the methods used in the algorithms. The second stage of experiments used 

ideal laboratory cracks to assess environmental errors within a controlled setting. In this stage, 

multiple experiments were conducted to test different acquisition systems, focal lengths, and 

working distances. The final stage of experiments analyzed in-service cracks under ideal lighting 
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conditions. Ideal lighting conditions are defined as an area that is illuminated with no shadows 

present. 

 

3.4.1 Simulated Cracks 

In order to measure the amount of error produced from the code itself, ideal cracks were created 

in MATLAB (2013). The steps used in creating simulated cracks are as follows: 

1. Select crack dimension, working distance, and image acquisition system that will be used 

to capture data. 

2. Calculate the amount of pixels needed for a specified crack dimension using the equation 

below: 

Pixels = FL
PP⁄  x 𝐶𝑉

D⁄                                                                                    Equation 3.6             

where Pixels is the number of pixels occupied by the object, FL is the focal length in mm, 

PP is the pixel pitch in mm, CV is the dimension of the crack being measured in mm, and 

D is the working distance from the crack in mm.  

3. Because a computer cannot read fractions of a pixel, all calculated pixels found in step 2 

need to be rounded to the nearest whole number.  

4. Create a rectangle matrix in MATLAB using the dimensions found in step 3.  

5. Analyze the matrix using the image processing techniques outlined in Section 3.2 and 

Section 3.3. 

6. Repeat steps 1 through 5 for multiple crack dimensions, working distances, focal lengths, 

and image acquisition systems.  

This process calculates how many pixels a crack will occupy when imaged with a specified 

acquisition system and focal length. For example, the amount of pixels needed for crack specimens 
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analyzed with the Nikon D610 and a 24 mm focal length can be seen in Table 5. Additional tables 

for the pixel requirements of other focal lengths and cameras can be seen in Appendix A. An 

example of a simulated crack is shown in Figure 26. This crack has a total length of 448 pixels and 

a total width of 28 pixels.  

 

Table 5: Pixel Requirements for the Nikon D610 with a 24mm Focal Length 

Nikon D610  

 3 ft 4 ft 5 ft 6 ft 7 ft 8 ft 

Crack Width 

0.250 in 28.01 21.01 16.81 14.01 12.00 10.50 

0.125 in 14.01 10.50 8.40 7.00 6.00 5.25 

0.060 in 6.72 5.04 4.03 3.36 2.88 2.52 

0.020 in 2.24 1.68 1.34 1.12 0.96 0.84 

Crack Length 

4 in 448.18 336.13 268.91 224.09 192.08 168.07 

6 in 672.27 504.20 403.36 336.13 288.12 252.10 

 

 

Figure 26: Simulated Crack 
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3.4.2 Idealized Laboratory Cracks 

The first series of physical experiments were performed in a laboratory environment. The idealized 

cracks were created in AutoCAD (2014) which allowed for the creation of features with precise 

lengths and thicknesses. Using the approach a total of seven specimens were created with the 

geometric properties shown in Table 6. The Teaching Laboratory in the Civil Engineering 

Department at the University of Virginia was used to conduct the experiments. The lighting in this 

space is primarily derived from artificial lighting sources, fluorescent lighting to be exact, with an 

average light intensity of 500 lux. The simulated cracks were printed on white paper, creating an 

idealized black and white pattern, where the crack was represented in black and the background in 

white. The cracks can be seen in Appendix A. The intent of the idealized image was to remove the 

errors associated with environmental noise and provide a measure of the imaging performance. 

The following subsections describe the structure and format of the experiments presented in Table 

7 and Figure 27.  

 

Table 6: Geometric Properties of Ideal Laboratory Crack Specimens 

Ideal Laboratory Specimens 

 Width (in) Length (in) 

Crack 1 0.02 4 

Crack 2 0.06 4 

Crack 3 0.125 4 

Crack 4 0.25 4 

Crack 5 0.02 6 

Crack 6 0.06 6 

Crack 7 0.125 6 
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Table 7: Experiments Conducted for the Idealized Laboratory Cracks 

Idealized Laboratory Crack Experiments 

 Purpose Camera 1 Camera 2 
Specimens 

Photographed 
Focal 

Length  
Working 

Distances 

Exp. 1 

Focal Lengths, 

Working 

Distances, 

Crack 

Geometry 

Nikon D610 x All Specimens 

24 mm,  

60 mm,  

85 mm 

3 ft - 8 ft 

Exp. 2 
Different 

Sensor Sizes 
Nikon D610 Canon 7D 4 in x 0.25 in 24 mm 3 ft - 8 ft 

Exp. 3 
CCD vs. 

DSLR 
Nikon D610 Point Grey 4 in x 0.125 in 35 mm 

1.5 ft, 5 ft, 

8.5 ft 

Exp. 4 
Near-Infrared 

vs. Optical 
Nikon D610 

Nikon 

D3200 
6 in x 0.125 in 24 mm 3 ft - 8 ft 

 

 

Figure 27: Experimental Set-Up for the Ideal Laboratory Crack Experiments 

 

3.4.2.1 Experiment 1 – Crack Geometry, Working Distances and Focal Lengths 

Experiment 1, gathered data related to crack dimensions, working distances, and focal lengths. All 

images were acquired with the Nikon D610. Three different focal lengths were used to compare 

how focal lengths affect image quality. The specimens were photographed in one-foot increments 

from 3 ft to 8 ft to determine optimal distances needed to resolve various crack widths. In order to 

help eliminate systematic errors, each specimen was photographed five times at every distance 
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with every focal length. The orientation of the specimen was randomized, as shown in Table 8. D 

dictates the crack should be placed at approximately an angle of 45 degrees, V dictates the crack 

should be placed vertically, and H dictates the crack should be placed horizontally. This equated 

to 480 ideal laboratory crack images analyzed for Stage 1. Sample images can be seen in Appendix 

A. 

 

Table 8: Orientation of Specimens for Experiment 1 

  3 ft 4 ft  5 ft 6 ft 7 ft 8 ft 

Crack 

Width: 

0.02 in 

D V H D H D 

D V V V D D 

H V H V V V 

D V V V D D 

H V H V V V 

  

Crack 

Width: 

0.06 in 

H D D V H V 

V D H V V D 

H D D V H V 

V D H V V D 

D V H H V H 

  

Crack 

Width: 

0.125 in 

V H D H H V 

H H D V H D 

V H D H H V 

H H D V H D 

V H H D D V 

  

Crack 

Width: 

0.25 in 

V V D H V D 

H V V H V D 

V V D H V D 

H V V H V D 

D H D H D H 

 

The lighting in the laboratory was not consistent for every distance imaged, requiring variation in 

the aperture for each configuration to restrict the amount of light on the camera sensor. The light 
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intensity was measured using a handheld light meter, the cal-LIGHT 400, positioned at the camera 

sensor for each working distance.  

 

To illustrate the effect of light intensity on image quality, Figure 28 includes a comparison of a 

sample 4 in. by 0.125 in. crack. Changes in the aperture, or size of the opening in the lens, allows 

for adjustments to the light transmitted to the camera sensor (Nikon, 2015). Aperture is measured 

and controlled with f-stop values. An f-stop value is the focal length divided by the aperture. An 

increase in the f-stop value, or a decrease in aperture value, decreases the light resulting in a lower 

contrast image (Sheppard 2010). Whereas a decrease in f-stop value, or an increase in aperture 

value, increases the light resulting in a higher contrast image.  

 

 

Figure 28: Sample Image of a) F-stop (f/8); b) F-stop (f/14) 

 

3.4.2.2 Experiment 2 – Sensor Size Comparison 

Experiment 2 compared different sensor sizes by using the Nikon D610, which has 24.2 

megapixels, and a Canon 7D, which has 17.9 megapixels. Typically, a larger amount of megapixels 

provides a more detailed image, but requires more light to fully capture a high quality image of all 

those details. They will also require more time to capture an image, thus using a tripod becomes 

necessary to avoid a blurry image (Sheppard 2010). For this experiment, a focal length of 24mm 
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was used as the specimens were imaged every foot from a distance of 3 feet to a distance of 8 feet. 

To help eliminate systematic errors, each specimen was photographed five times at every distance 

equating to thirty images analyzed per camera. Figure 29 shows a comparison of an ideal 4 in by 

0.25 in crack imaged at 3 feet. The image on the left was photographed using 17.9 megapixels and 

the image on the right was photographed using 24.2 megapixels.  

 

 

Figure 29: Sample Images of a) 17.9 Megapixels; b) 24.2 Megapixels 

 

3.4.2.3 Experiment 3 – CCD versus DSLR 

The Nikon D610 uses a complementary metal oxide semiconductor (CMOS) sensor, which is the 

typical sensor used in DSLR cameras. The Point Grey camera, however, uses a CCD sensor. The 

CCD sensor transfers every pixel’s charge to be converted to voltage, where a CMOS sensor has 

each pixel convert its own charge to voltage (Litwiller, 2001). The CMOS sensor has a smaller 

area available for light capture than the CCD sensors. Thus, the CCD sensors tend to be easily 

overloaded by extreme light. In Experiment 3, a DSLR camera is compared with a CCD camera 

by using the Nikon D610 and the Point Grey. Due to constraints of the CCD camera, a 35 mm 

focal length was used and the specimen was only imaged at the distances of 1.5ft, 5ft, and 8.5ft. 

To help eliminate systematic errors, each specimen was photographed five times at every distance 
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equating to fifteen images analyzed per camera. Figure 30 shows a comparison of an ideal 4 in by 

0.125 in crack imaged at 5 ft. The image on the left was photographed using the CCD camera and 

the image on the right was photographed using the DSLR camera. 

 

 

Figure 30: Sample Images of a) CCD Camera; b) DSLR Camera 

 

3.4.2.4 Experiment 4 – Comparison of Near-Infrared Cameras and Optical Cameras 

Using the near-infrared spectrum allows the acquisition system to capture an image using a 

wavelength just beyond what the human eye can see. However, the conversion of a camera to the 

near-infrared spectrum can also cause distortions when an image is taken. The common distortions 

include having out of focus pictures around the corners when using a wide-angle lens, not being 

able to focus the near infrared light as sharply as focusing the visible light, and light bouncing 

inside a camera when shooting with a small aperture.  

 

Experiment 4 compared the near-infrared camera to the optical camera. A focal length of 24mm 

was used as the specimens were imaged every foot from a distance of 3 feet to a distance of 8 feet. 

The largest F-stop used with the near infrared was f/20. To help eliminate systematic errors, each 

specimen was photographed five times at every distance equating to thirty images analyzed per 

camera. Figure 31 shows a comparison of an ideal 6 in by 0.125 in crack imaged at 5 feet with the 
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near-infrared camera and an optical camera. The image on the left was photographed with the 

Nikon D3200 and the image on the right was photographed with the Nikon D610. Both used an F-

stop value of f/20. 

 

 

Figure 31: Sample Images of a) Nikon D3200; b) Nikon D610 

 

3.4.3 In-Service Cracks  

The last experiment imaged in-service cracks with the Nikon D610 camera and the Near-Infrared 

Nikon D3200 camera. Both cameras used a focal length of 24 mm. at a working distance of 3 ft. 

A sample pair of images is shown in Figure 32, where the Nikon D610 took the left image and the 

Near-Infrared Nikon D3200 took the right image. Images of the other specimens can be seen in 

Appendix A.  

 

 

Figure 32: Sample Sidewalk Crack Images: a) Optical Image; b) NIR Image 
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Each crack specimen was measured in the field using a crack card and a ruler. The measurement 

values can be seen in Appendix A. The analysis then compared the selected image processing 

techniques’ ability to detect the given crack. For the cracks that could be detected, their geometric 

properties were found using the process outlined in Section 3.3.  

 

The following steps were used to compare the detection abilities of the selected image processing 

technique: 

1. Convert the image to grayscale 

2. Manually segment the image, using the MATLAB (2013) ‘roipoly’ function. An example 

can be seen in Figure 33. 

 

 
Figure 33: Example of Manually Segmented Image 

 

a. Use Equation 3.5 to determine the geometric properties of the crack. Compare these 

findings to the measurements taken in the field. If they are similar, proceed to Step 

3. If they are not similar, re-segment the crack. 

3. Process the grayscale image using the selected image processing technique 

4. Subtract the processed image from the manually selected image. The subtraction process 

visually represents the differences between the two images, as shown in Figure 34. If two 
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images are the same, the subtracted image will appear black, but if they are not the same, 

the differences will appear in white. The white pixels are considered residual pixels. 

 

 
Figure 34: Example of Subtracting Images 

 

 

5. Count the amount of residual pixels.  

 

3.5 Summary of Methodology 

The experiments discussed in this section were selected to analyze multiple camera parameters 

and track where errors occur while acquiring and analyzing an image. The simulated cracks show 

the amount of error inherent to the image processing while the idealized laboratory cracks and the 

in-service cracks illustrated the impact of image acquisition and environmental factors have on the 

quality of an image and therefore the measurement of the crack feature.  
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4.0 RESULTS 

Presented in this section are the results from experimental testing conducted to assess the optimal 

camera parameters needed to resolve various concrete cracks. The first section details the findings 

of analyzing geometric features of simulated cracks. The second section presents the results of 

experiments conducted under ideal laboratory conditions and the final section details the findings 

of the in-service crack experiment.  

 

4.1 Simulated Crack Results 

After the simulated cracks were created, three random specimens were chosen to analyze the effect 

rotation had on accurately calculating the width of the crack. The three widths chosen were 28-

pixel, 11-pixel, and 5-pixel. The cracks began at zero degrees and were rotated up to one degrees. 

Rotation is known to cause a stair-step effect, discussed in Section 3.3, which can lead to errors 

when quantifying the dimensions of cracks. Figure 35 shows the stair-step effect for both the 5-

pixel specimen when rotated 0.2 degrees and 1 degrees. The red circle on each of the images shows 

a gap between the true width and the calculated width.  
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Figure 35: Example of Rotation Errors: a) 0.2 degrees; b) 1 degrees 

 

The rotation errors due to the stair-step effect, as shown in Figure 36, were calculated by using 

Equation 4.1. 

Rotation Error =
(𝑃𝐾 − 𝑃𝐹)

PK⁄ x 100                                                                      Equation 4.1        

where PK is the amount of known pixels and PF is the amount of pixels calculated by the distance 

transform after the simulated crack was rotated. The results, shown in Figure 36, showed that even 
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the smallest amount of rotation caused errors. As shown in Figure 36, a rotation of 0.2 degrees 

causes the 5-pixel specimen to have an error of 20 percent and a 28-pixel specimen to have an 

error of 7 percent. Larger rotations produced greater errors, and the smaller amount of pixels a 

specimen required, the larger amount of errors were induced by rotation. The raw data for the 

rotation experiments can be seen in Appendix B.  

      

 
Figure 36: Error Due to Orientation of a Crack: a) Up to 1 degrees; b) Up to 0.2 degrees 

 

The simulated cracks were also used to measure the amount of error produced from the selected 

image processing techniques. It was found that the chosen image processing techniques did not 

produce any errors when analyzing the simulated cracks. The errors were induced because the 

simulated cracks rounded the required amount of pixels to the nearest whole number, as discussed 

in Section 3.4.1. The process of rounding the pixels resulted in an automatic geometric error, which 

was calculated using Equation 4.2: 

Pixel Error = 𝑃𝑖𝑥𝑒𝑙𝑠 − 𝑃𝐶
Pixels⁄  x 100                                                                   Equation 4.2             

where Pixels is the calculated amount of pixels, using Equation 3.6, for the specified crack 

dimension, and PC is the amount of required pixels rounded to the nearest whole number.  

 



58 
 

Table 9 shows the amount of required pixels for a 0.25 in crack and for a 0.02 in crack when 

imaged with the Nikon D610 and a focal length of 24 mm. It also shows the amount of required 

pixels rounded to the nearest whole number and the resulting pixel error. Additional tables for 

other focal lengths and cameras can be seen in Appendix B.  

 

Table 9: Example of Calculated Pixel Errors 

 Crack Width 0.25 in.  

Distance 3 ft. 4 ft. 5 ft. 6 ft. 7 ft. 8 ft. 

Required Pixels 28.01 21.01 16.81 14.01 12.00 10.50 

Rounded No. 28 21 17 14 12 11 

Pixel % Error 0.04 0.04 1.15 0.04 0.04 4.72 

 

 Crack Width 0.02 in. 

Distance 3 ft. 4 ft. 5 ft. 6 ft. 7 ft. 8 ft. 

Required Pixels 2.24 1.68 1.34 1.12 0.96 0.84 

Rounded No. 2 2 1 1 1 1 

Pixel % Error 10.75 19 25.63 10.75 4.13 19 

 

The results showed that if a crack had a required amount of pixels that was close to a whole 

number, the amount of pixel error was relatively small. For example, when the 0.25 in crack was 

imaged at 3 ft the required amount of pixels was 28.01 and the rounded number of pixels was 28 

thus resulting in an error of 0.04 percent. However, if the required amount of pixels was closer to 

half a pixel the pixel error was larger. For example, when the 0.25 in crack was imaged at 8 ft the 

required amount of pixels was 10.50 and the rounded number of pixels was 11 thus resulting in an 

error of 4.72 percent.  

 

The magnitude of the pixel error also increased as the required amount of pixels decreased. This 

occurred as the crack size decreased and the distance from the crack increased. For example, the 
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0.02 in crack when imaged from farther than 7 feet had a width that was less than one pixel, thus 

resulting in a large pixel error. This can be avoided by increasing the focal length, decreasing the 

working distance, or changing the sensor size.  

 

4.2 Ideal Laboratory Results 

The following sections outline the results of the experiments conducted under ideal laboratory 

conditions. The first section defines the type of errors found from the experiments. The next section 

compares the selected four image processing techniques that were discussed in Section 3.2. The 

third section compares different variables and their effects on quantifying dimensions of a crack. 

The variables include focal lengths, crack dimensions, and working distances. The next section 

compares the different acquisition systems and their ability to accurately detect and quantify crack 

widths and lengths. The final section discusses the findings related to aperture values and lighting 

conditions. The raw data for all sections can be found in Appendix C.  

 

4.2.1 Definition of Error  

Throughout the experiments conducted in the ideal laboratory settings, multiple types of errors 

were measured. The first type of error was the pixel error, which was discussed in Equation 4.1. 

The next type of error was calculated using Equation 4.3. 

Processing Error =
(𝐺 − 𝐺𝑓)

𝐺⁄ x100                                                                       Equation 4.3             

where G is the known geometric value of the crack specimen and Gf is the geometric value 

calculated from the selected image processing techniques described in Section 3.2 and 3.3. This 

value was calculated for every data point. 
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Each algorithm has its strength and weaknesses, to create a more average understanding of the 

errors being produced due to camera parameters, the processing error for each image processing 

technique was averaged using Equation 4.4.  

Imaged Error =
(𝐶 + 𝐹 + 𝐽 + 𝐿)

4⁄                                                                            Equation 4.4 

where C is the processing error from the Combined Algorithm, F is the processing error from the 

Fujita Adapted Method, J is the processing error from the Jahanshahi Adapted Method, and L is 

the processing error from the Lattanzi Adapted Method.              

 

The final type of error calculated was the environmental error, which was calculated using 

Equation 4.5. The pixel error exists despite environmental conditions. By subtracting it from the 

imaged error, the effects the environmental conditions had on the ability to accurately quantify a 

crack’s dimensions are isolated. 

Environmental Error = Imaged Error − Pixel Error                                               Equation 4.5 

 

4.2.2 Comparison of Image Processing Techniques  

The crack specimens were analyzed through four image processing techniques, as discussed in 

Section 3.2. In order to compare the accuracy of each image processing technique, the processing 

error was averaged over all working distances, focal lengths, and crack widths. Then a one-way 

analysis of variance (ANOVA) was conducted by using the Fisher Least Significant Difference 

Method was used to compare the means for each technique (Minitab, 2007). It was hypothesized 

that the digital image processing techniques varied in mean error. The test had a significance level 

of 0.05 and all of the data passed the Anderson-Darling Normality Test (Minitab, 2007).  
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The ANOVA test for a difference in mean processing error produced a p-value of 0.864. Therefore, 

it could not be concluded that the image processing techniques significantly varied in mean 

processing error. Table 10 shows the technique and the mean processing error it produced. 

Similarly, the ANOVA test for the difference in mean processing error concerning length produced 

a p-value of 0.961. Therefore, it also could not be concluded that, in regards to quantifying length, 

the mean processing error of the image processing techniques varied.  

 

Table 10: Mean Processing Errors for Calculating Width 

Method 
Mean Processing Error  

Width 

Mean Processing Error  

Length 

Combined 26.33 8.77 

Fujita 33.80 7.87 

Jahanshahi 39.26 7.87 

Lattanzi 38.15 7.60 

 

4.2.3 Comparison of Crack Geometry, Working Distances and Focal Lengths 

Experiment 1 compared how the crack dimensions, working distances, and focal lengths affected 

the environmental error for both length and width. All of the ideal specimens were imaged using 

the Nikon D610 and analyzed with the selected image processing techniques. A factorial design 

analysis, with an alpha value of 0.05, was conducted to study the effects multiple factors had on 

the environmental error (Minitab, 2007). The factors analyzed were crack width, focal length, and 

working distance.  

 

The analysis provided effect values, p-values, and interaction effects. The absolute value of the 

effect value indicates the relative strength of the factor, while its sign determines the correlation 

between the factor and the response. A negative effect value indicates that as the factor value is 



62 
 

decreased, the environmental error increases. A positive effect value indicates that as a factor value 

increases, the environmental error also increases. If the p-value is less than or equal to 0.05 than it 

can be concluded that the factor has a significant effect on the environmental error. Finally, an 

interaction effect would occur if the effect one factor has on the response was dependent on the 

level of another factor. If an interaction effect is found to be significant, the results cannot be 

accurately analyzed without discussing both of the factors. Table 11 shows the factors, their effect 

values, and their associated p-values when analyzing the environmental error related to width and 

length. 

 

Table 11: Factorial Design Analysis Results 

Factor 
Width Calculations 

 

Length Calculations 

Effect P-Value Effect P-value 

Crack Width -53.67 0.000 1.545 0.232 

Working Distance 5.78 0.54 -6.49 0.000 

Focal Length -16.86 0.035 -8.431 0.000 

Interaction:  

Crack Width & 

Working Distance 

-17.05 0.137  11.817 0.335 

Interaction:  

Crack Width &  

Focal Length 

15. 0.101  -1.668 0.288 

Interaction:  

Working Distance & 

Focal Length 

-26.13 0.026  4.135 0.032 
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When looking at the width calculations, Table 11 shows that the crack width, the focal length, and 

the interaction between the working distance and focal length have a significant effect on the 

environmental error. The effect values suggest that the crack width, with an effect value of -53.67, 

has the greatest influence on the value of environmental error. It also suggests that as the crack 

width decreases, shown in Figure 37, the environmental error increases. Similarly, the effect value 

for focal length suggests that as the focal length is decreased the environmental error increases. 

However, the interaction effect between working distance and focal length is significant. 

Therefore, the effect working distance has on the error is dependent on the size of the focal length. 

 

 

Figure 37: Post Processed Laboratory Cracks: a) 0.125 in; b) 0.06 in; c) 0.02 in 

 

Table 11 shows for the length calculations that the working distance, the focal length, and the 

interaction between the working distance and the focal length have a significant effect on the 

environmental error. The effect values for both the working distance and the focal length are 

negative, thus indicating that as these factors are decreased the environmental errors increase. 

However, because of the interaction effect being significant, the effect working distance has on 

the error is dependent on the size of the focal length. 

 

 



64 
 

4.2.3.1 Relationship Equation 

The factorial design experiment also produced coefficients for each factor analyzed. These 

coefficients can be used to create an equation, shown in Equation 4.6, which can be used to 

estimate an expected environmental error. To create a more accurate model the non-significant 

interactions were removed from the calculation of coefficient values and from the generated 

equation. 

Equation 4.6 

𝐸𝐸 = 24.62 − (502.19 ∗ 𝐶𝑊) + (10.77 ∗ 𝑊𝐷) + (0.65 ∗ 𝐹𝐿) − (0.17 ∗ 𝑊𝐷 ∗ 𝐹𝐿)  

 

EE is the resulting environmental error in percent, CW is the crack width in inches, WD is the 

working distance in feet, and FL is the focal length in millimeters. This relationship equation only 

produced an R-squared value of 0.53. The equation, in its present state, does not provide an 

accurate representation of the amount of environmental error that would be produced; however, 

the equation can be improved upon. In order to increase the R-squared value more variety needs 

to be added to the factors. In this experiment, only three focal lengths and six working distances 

were measured. By increasing the number of focal lengths and working distances used, a revised 

equation would be created. This new equation would have a more accurate representation of 

resulting environmental errors and in theory could provide a starting point for choosing the 

optimum environment to capture an image.  

 

4.2.3.2 Changing Crack Length 

A series of crack specimens were also created with a longer length than the original specimens. 

These specimens were compared to determine if a crack’s length affects the ability to quantify its 
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width and length. Both sets of specimens were analyzed with a 24 mm focal length from distances 

ranging from 3 feet to 8 feet. The resulting environmental errors were tested for normality using 

the Anderson-Darling Normality Test, and all data sets were proven normal. Then a t-test was 

conducted on the data sets to test the hypothesis that the mean environmental error between the 

longer crack and the shorter crack was significantly different at a 95 percent confidence level. 

When analyzing the environmental errors related to width, there was not enough evidence to 

conclude that the means differed at a 0.05 significance level. The analysis of the environmental 

errors related to length produced the same result. These results showed that the smallest dimension 

determines the accuracy of quantifying crack dimensions, which in most cases is the crack width. 

 

4.2.4 Comparison of Image Acquisition Systems 

Experiments 2 through 4 compared different acquisition systems. The specified cracks, discussed 

in Table 7 in Section 3.4.2, were imaged by the various acquisition systems and analyzed with the 

selected image processing techniques. The following results are broken into two categories, the 

first details the findings on quantifying a crack’s width and the second details the findings on 

quantifying a crack’s length.  

 

4.2.4.1 Accuracy in Quantifying Width 

The environmental error data for quantifying width was tested for normality using the Anderson-

Darling Normality Test. All of the data passed the test for normality. A t-test was conducted on 

the three data sets to test the hypothesis that the mean environmental error between the cameras 

was significantly different at a 95 percent confidence level. The statistical analysis showed that 

there was enough evidence to conclude that there was a difference in the mean environmental error 
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produced from the different sensor sizes. However, in Experiment 3 there was not enough evidence 

to conclude that the mean environmental error produced when using a CCD camera was different 

from the mean error produced when using a DSLR camera. Likewise, there was not enough 

evidence to conclude that the mean environmental error produced when using a near-infrared 

camera was different from the mean error produced when using an optical camera.  

 

The data was then tested using a factorial design and an alpha value of 0.05 to examine if there 

were any interaction effects between factors. The factors analyzed were the various working 

distances and the type of image acquisition system. An interaction effect would occur if the effect 

the working distance has on the environmental error, were dependent on which acquisition system 

was used. Table 12 shows the factors, the effect value, and the associated p-values. Negative effect 

values indicate an inverse relationship, while positive values indicate a direct relationship. 

 

Table 12: Factorial Design Results Regarding Width for Different Image Acquisition Systems 

Factor 

Experiment 2: 

24.2 MP vs. 17.9 MP 

 

Experiment 3: 

CCD vs. DSLR 

 

Experiment 4: 

NIR vs. Optical 

Effect P-Value Effect P-value Effect P-value 

Working Distance 4.24 0.237 -9.74 0.138 -11.26 0.000 

Acquisition System -10.09 0.002 -2.893 0.473 -0.217 0.849 

Interaction: 

Acquisition System 

& Working Distance 

-13.74 0.003 1.61 0.729 1.763 0.305 

 

For Experiment 2, the t-test had proven there was a significant difference between mean error 

values. The factorial design test showed that a decrease in megapixels leads to an increase in 

environmental error. However, the test also showed that, at a 95 percent confidence level, the 

interaction of the working distance and the acquisition system are significantly dependent on one 
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another. This indicates that, despite having a low p-value for the acquisition system, the effect the 

amount of megapixels has on the environmental error is dependent on the working distance. Unlike 

the results for the sensor size comparison, Experiment 3 and Experiment 4 showed that there was 

not a significant interaction between the working distance and the type of acquisition system used 

to image the specimens.  

 

4.2.4.1 Accuracy in Quantifying Length 

As with the environmental error data for quantifying width, the environmental error data for 

quantifying length was tested for normality using the Anderson-Darling Normality Test and all of 

the data passed. A t-test was conducted on the three data sets to test the hypothesis that the mean 

environmental error between the cameras was significantly different at a 95 percent confidence 

level. The statistical analysis produced results similar to the width analysis. Experiment 2 had 

enough evidence to conclude the mean environmental errors differed, while Experiment 3 and 

Experiment 4 did not have enough evidence to conclude that the means differed.  

 

A factorial design analysis was also conducted, with an alpha value of 0.05, to study the effects 

that working distance and type of image acquisition system had on the accuracy of quantifying 

crack length (Minitab, 2007). The statistical analysis showed, for all three experiments, that there 

was not a significant interaction between the working distances tested and the type of acquisition 

system chosen. Yet, it did indicate that unlike the width measurements, which had an inverse 

correlation to sensor size, there was a direct correlation between sensor size and the amount of 

environmental error. This means that as the amount of megapixels increase the accuracy in 

quantifying length decreases and the accuracy in quantifying the width increases. 
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4.2.5 Aperture Analysis 

Throughout the images taken at each distance, a variety of f-stop values were utilized ranging from 

f/4.5 to f/20. A factorial design analysis with a 0.05 significance level was conducted to study the 

effects multiple factors had on the environmental error regarding width calculations. The factors 

chosen included aperture value, working distance, and crack width. All of the specimens analyzed 

were imaged with a 24 mm focal length. Table 13 shows the factors and their associated p-values. 

 

Table 13: Factorial Design Results Relating To Aperture 

Factor P-Value 

Aperture 0.277 

Working Distance 0.000 

Crack Width 0.000 

Interaction: Aperture  

& Working Distance 
0.043 

Interaction: Crack Width 

& Working Distance 
0.000 

Interaction: Aperture  

& Crack Width 
0.257 

 

At a 95 percent confidence level, it can be concluded that the working distance, crack width, and 

their interaction had a significant effect on the environmental error. The test also showed the effect 

the f-stop value has on the results is dependent on the working distance.    
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4.3 In-Service Crack Results 

The following sections outline the results of the in-service crack experiment. The first section 

compares the ability of selected image processing techniques to detect the given crack specimens. 

The following section analyzes their ability to quantify the geometric dimensions of the cracks. 

The results for all crack specimens, including data and post-processed images, can be seen in 

Appendix D 

 

 4.3.1 Crack Detection  

The first part of the experiment compared the ability of the selected image processing techniques 

to detect cracks, through the method outline in Section 3.4.3. When analyzing the images taken 

with the optical camera, the Jahanshahi Adapted Method, the Fujita Adapted Method, and the 

Combined Adapted Method were all able to successfully segment the cracks. The Lattanzi Adapted 

Method, however, was not able to distinguish between concrete surface features and the crack. An 

example of the processed images can be seen in Figure 38.  
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Figure 38: Example Segmentation of In-Service Cracks Imaged with the Optical Camera 

 

For the near infrared camera, all of the algorithms could not successfully segment that cracks, as 

shown in Figure 39. The Jahanshahi Adapted Method and the Lattanzi Adapted Method could not 

distinguish the crack from the concrete surface. While, the Fujita Adapted Method and the 

Combined Method were able to better detect the crack, they both contained noisy pixels produced 

from the near infrared camera’s sensitivity to the aggregates. 
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Figure 39: Example Segmentation of In-Service Cracks Imaged with the NIR Camera 

 

 After all of the images were processed, the algorithms were compared to one another by 

quantifying the difference between the manually segmented image and the processed image. As 

discussed in Section 3.4.3, this was completed by subtracting the processed image from the 

manually segmented image. If the processed image perfectly segmented the crack, the subtracted 
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image would appear black. If the algorithm failed to perfectly segment the crack, the difference 

between the two images would result in residual pixels. An example of the residual pixels, shown 

in white, can be seen in Figure 40.  

 

 

Figure 40: Example of Residual Pixels 

 

The amount of residual pixels were greater when an image was captured with the near infrared 

camera than when it was captured with the optical camera, as can be seen in Table 14. For both 

acquisition systems, the Lattanzi Adapted Method performed the worst at detecting cracks. When 

the images were captured using the optical system, the Combined Method performed the best. 

However, when the images were taken with the near infrared camera the Fujita Adapted Method 

was the best. 
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Table 14: Average Residual Pixels from the In-Service Cracks 

Camera Type Jahan Fujita Lattanzi Combined 

Optical 7,391 9,230 665,699 4,779 

NIR 948,806 117,826 1,093,962 236,050 

 

 

4.3.2 Crack Geometry 

None of the cracks that were captured with the near infrared camera were segmented enough to 

quantify their geometric properties. The optically imaged cracks segmented by the Lattanzi 

Adapted Method could also not be quantified. Unlike the ideal specimens, the in-service cracks 

are not straight lines and therefore are subject to the stair-step effect. Therefore, the processed 

image dimensions were compared to the manually segmented image dimensions. Another issue in 

accurately comparing the techniques came from the noise pixels and non-continuous crack pixels, 

as shown in Figure 41.  

 

 

Figure 41: Example of Issues in Segmented Images: a) Noise; b) Non-continuous Pixels 

 

The average errors shown in Table 15 result from the extra noise pixels and the non-continuous 

crack pixels. Error is defined using equation 4.7. 
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Technique Error =
(𝑆 − 𝑃)

𝑆 ⁄ x 100                                                                          Equation 4.7 

 where S is the amount of dimension pixels found in the manually segmented image and P is the 

amount of dimension pixels found in the processed image. For the five specimens analyzed with 

the optical camera, the Combined Method Produced the best results in quantifying the width and 

length of a crack. 

 

Table 15: Average Optical Measurement Errors for In-Service Cracks 

Dimension 
Jahan 

(%) 

Fujita 

(%) 

Lattanzi 

(%) 

Combined 

(%) 

Width 30.22 31.49 x 18.61 

Length 34.45 27.99 x 20.46 

 

If the image contains non-continuous pixels, the algorithms underestimated the length and the 

width of the crack. Morphological operations can be used to bridge the gaps between the non-

continuous pixels, thus providing a way to reduce the errors in calculating crack dimensions. If 

the image contains noisy pixels, the algorithms overestimate the length and the width of the 

crack. This error can also be reduced by using morphological operations to clean the image from 

erroneous pixels. However, the type of morphological operation and window size must be 

carefully chosen so that the shape of the crack does not change. 
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5.0 CONCLUSIONS 

Bridge inspectors typically use visual inspection methods to monitor the condition of concrete 

bridge decks. These methods can be both time consuming and subjective. An automated crack 

detection system would provide a less subjective system. Such a system would need to be efficient, 

accurate, and practical. This investigation concentrated on evaluating non-contact evaluation 

techniques used to quantify concrete cracks. 

 

During the simulated crack testing phase it was found that there is an inherent error within an 

idealized geometric analysis driven by pixel orientation and pixel quantity. The smallest amount 

of rotation causes an error in calculating geometric dimensions because of the stair-step effect. To 

eliminate this error, the object’s orientation should be zero degrees relative to the x-axis. This is 

not possible with in-service cracks and it should be noted that all in-service cracks would be subject 

to errors caused by the stair-step effect. Errors related to pixel quantity occur because binary 

images only present whole numbers. Therefore, if the amount of pixels needed is a fraction of a 

number, an error is produced through the rounding process. These errors can be reduced by 

selecting a sensor size, focal length, and working distance that creates a pixel count close to a 

whole number. 

 

After the simulated crack phase, tests were performed on ideal laboratory cracks in order to analyze 

various image processing techniques and different camera parameters. When they analyzed ideal 

specimens, it was found that there was not enough statistical evidence to conclude that the selected 

algorithms performed differently. However, the Fujita Adapted Method and the Combined Method 
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used adaptive thresholding, which proved to be more computationally expensive and time 

consuming than the methods that used global thresholding.  

 

The experiments showed that the crack width, working distance, and focal length had a significant 

effect on accurately quantifying geometric properties. Larger crack thicknesses are easier to detect 

and analyze because they occupy more pixels than smaller cracks. Although, shorter focal lengths 

have cracks that occupy a small amount of pixels than if they were imaged with a longer focal 

length, the accuracy of quantifying dimensions is dependent on the working distance. The results 

also showed that width, not length, is the controlling factor for analyzing and detecting cracks. 

Lighting conditions and aperture values likewise affect the quality of an image taken. For this 

experiment it was found that , with a 95 percent confidence level, the effect the f-stop values has 

on the error, is dependent on the working distance being used. Although the experiments proved 

that there is an inherent error even in ideal cases, this error can be reduced by selecting the optimum 

sensor size, focal length, and working distance. The regression equation can eventually provide a 

starting point to selecting the optimum values of these factors to reduce the inherent error. 

 

When comparing image acquisition systems it was found that the effect the amount of megapixels 

has on accurately detecting crack dimensions is dependent on the working distance. When 

quantifying crack width the experiments showed that a decrease in the sensor size led to an increase 

in error, but when quantifying crack length an increase in sensor size increased the error. There 

was not enough evidence to conclude that a CCD camera produced a different amount of error 

compared to the DSLR camera.  
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It also could not be concluded that the near infrared camera produced a different amount of error 

compared to the optical camera when imaging under ideal conditions. However, during the in-

service crack experiment the near infrared camera was more sensitive to the concrete surface and 

the aggregate; therefore, the near infrared camera could not successfully segment the cracks. The 

Fujita Adapted Method was able to most successfully segment the cracks when the near infrared 

camera was used. The Combined Method was the best at both segmenting and quantifying crack 

dimensions when the optical camera imaged the specimens. The errors calculated by this 

experiment could be reduced by changing the sensor size, focal length, or working distance. The 

digital image processing techniques could also be improved upon by including morphological 

operations that bridge non-continuous pixels or operations that eliminate noisy pixels. 

 

When inspecting concrete cracks on a bridge deck, the goals of the project need to be well defined. 

This includes the desired crack size to be detected, the amount of acceptable error, and the area of 

the bridge that needs to be captured. Then the proper camera parameters, such as the focal length 

and working distance can be determined. These variables should be chosen to minimize the amount 

of inherent error in the processing techniques used to quantify the crack dimensions. 
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6.0 FUTURE WORK 

This investigation focused on testing different acquisition systems and image processing methods 

that could be used as another means of conducting non-contact evaluation of concrete bridge decks. 

Only a select number of camera parameters, image acquisition systems, and image processing 

techniques were analyzed. Further study is needed in the following areas to completely assess the 

optimal parameters needed to effectively analyze concrete bridge deck defects. 

 

 The camera parameters in this study were limited to two sensor sizes, three focal 

lengths, and six working distances. Adding more variety to these factors, i.e. more focal 

lengths, would increase the understanding of camera parameters and ultimately lead to 

a more precise regression equation. The regression equation could then be used as a 

guideline to setting up the optimum environment for imaging concrete bridge defects. 

 

 This study only focused on the use of four image processing techniques that have been 

developed. Other techniques that are more robust in the handling of environmental 

factors, such as shadows and debris, need to be researched and developed.  

 

 Each of the image processing techniques used had parameters that needed to be 

manually inputted in order to obtain the best result. These parameters varied depending 

on crack size, working distance, and the camera system. There needs to be a conclusive 

study on what parameters are optimal for various crack dimensions and environmental 

conditions.  
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 The current study focused on taking images while being perpendicular to the crack. 

This eliminated any error due to angles of the camera. More research should be done 

on the effects the camera has on the accuracy in detecting a crack’s geometry. 

 

 The current study also only focused on 2D images. By extending the study to focus on 

3D images, data can be detected on crack depth. This could help inspectors recognize 

if the crack depth extends to the location of the reinforcement thus leading to a higher 

chance of steel corrosion.  

 

 Mounting a camera on top of a moving vehicle would allow images to be taken at 

highway speeds thus eliminating the need to close traffic lanes. However, this concept 

presents numerous variables that need to be analyzed. These variables include the 

distance and angle in which the camera should be mounted, the effect vibration has on 

the quality of images, the quality of images captured at different speeds, and the ability 

of image processing techniques to detect cracks under less than ideal conditions. It can 

be expected that when imaging at highway speeds the bridge deck will have debris that 

could hide the cracks or hinder the ability of the cracks to be detected. There is also 

inconsistency of weather conditions, such as snow or rain, and the interference of 

shadows.  
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 In this investigation, images were taken in the field and then post-processed within 

MATLAB at the office. More research should be conducted in evaluating the feasibility 

of inspectors being able to take an image with their phone, send it to a server, and then 

immediately see the results on their phone.  

 

 The experiments conducted with the near-infrared camera provided promising results. 

Although the camera was more sensitive to aggregate at closer distances, it could 

become a valuable tool when imaging from greater distances, for example on top of a 

van. More studies should be done on the ability of a near-infrared camera to accurately 

analyze cracks from greater distances. 

 

 The near-infrared camera also proved throughout the investigation its ability to enhance 

the contrast of various materials such as steel, aggregates, and concrete. By combining 

the near-infrared camera with other image acquisition systems, a complete analysis of 

bridges can be accomplished. This analysis could include a surface investigation for 

rust stains, cracks, and spalls.  

 

 Combining the near-infrared camera or the optical camera with a thermal camera could 

also provide interesting results. Combining the two cameras would allow investigators 

to see both surface and near surface defects. More research should be done to see the 

capability of this idea, the challenges it presents, and the advantages that could come 

from combining the technologies.  
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APPENDIX A: EXPERIMENTAL SET-UP 

 

Table 16: Pixel Requirements for Nikon D610 with 60 mm Focal Length 

Nikon D610  

 3 ft 4 ft 5 ft 6 ft 7 ft 8 ft 
Crack Width 
0.125 in 35.01 26.26 21.01 17.51 15.01 13.13 
0.060 in 16.81 12.61 10.08 8.40 7.20 6.30 
0.020 in 5.60 4.20 3.36 2.80 2.40 2.10 
Crack Length 
4 in 1120.45 840.34 672.27 560.22 480.19 420.17 
6 in 1680.67 1260.50 1008.40 840.34 720.29 630.25 

 

Table 17: Pixel Requirements for Nikon D610 with 85 mm Focal Length 

Nikon D610  

 3 ft 4 ft 5 ft 6 ft 7 ft 8 ft 
Crack Width 
0.125 in 49.60 37.20 29.76 24.80 21.26 18.60 
0.060 in 23.81 17.86 14.29 11.90 10.20 8.93 
0.020 in 7.94 5.95 4.76 3.97 3.40 2.98 
Crack Length 
4 in 1587.30 1190.48 952.38 793.65 680.27 595.24 
6 in 2380.95 1785.71 1428.57 1190.48 1020.41 892.86 

 

Table 18: Pixel Requirements for Canon 7D with 24 mm Focal Length 

Canon 7D 

 3 ft 4 ft 5 ft 6 ft 7 ft 8 ft 
Crack Width 
0.25 in 38.85 29.14 23.31 19.43 16.65 14.57 
Crack Length 
4 in 621.60 466.20 372.96 310.80 266.40 233.10 
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Table 19: Pixel Requirements for CCD and DSLR with 35 mm Focal Length 

CCD DSLR 

 1.5 ft 5 ft 8.5 ft 1.5 ft 5 ft 8.5 ft 
Crack Width 
0.125 

in 70.45 21.14 12.43 40.85 12.25 7.21 
Crack Length 
4 in 2254.43 676.33 397.84 1307.19 392.16 230.68 

 

Table 20: Pixel Requirements for NIR Camera with 24 mm Focal Length 

Nikon D3200 

 3 ft 4 ft 5 ft 6 ft 7 ft 8 ft 
Crack Width 
0.125 in 21.70 16.28 13.02 10.85 9.30 8.14 
Crack Length 
6 in 1041.67 781.25 625 520.83 446.43 390.63 

 

 

Figure 42: Ideal Laboratory Cracks 
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Table 21: Light Intensity Values 

Location Light Intensity 
 (Iz) 

At Ideal Crack 104 
3 feet 228 
4 feet 490 
5 feet 630 
6 feet 670 
7 feet 690 
8 feet 680 

 

 

 

Figure 43: 4 in by 0.02 in Crack Imaged at 4 feet with a 60 mm and 85 mm Focal Length 
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Figure 44: 4 in by 0.02 in Crack Imaged with a 24 mm at 3 feet and 8 feet 

 

 

Figure 45: 4 in by 0.06 in Crack Imaged at 4 feet with a 60 mm and 85 mm Focal Length 
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Figure 46: 4 in by 0.02 in Crack Imaged with a 24 mm at 3 feet and 8 feet 

 

 

Figure 47: 4 in by 0.125 in Crack Imaged at 4 feet with a 60 mm and 85 mm Focal Length 
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Figure 48: 4 in by 0.125 in Crack Imaged with a 24 mm at 3 feet and 8 feet 

 

 

Figure 49: 6 in with a Width of 0.125 in Imaged at 3 feet and 8 feet 
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Figure 50: 6 in with a Width of 0.06 in Imaged at 3 feet and 8 feet 

 

 

Figure 51: 6 in with a Width of 0.02 in Imaged at 3 feet and 8 feet 
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Figure 52: Imaged with 24.3 Megapixels at 3 feet and 8 feet 

 

 

Figure 53: Imaged with 18 Megapixels at 3 feet and 8 feet 
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Figure 54: DSLR Images at 1.5 feet and 8.5 feet 

 

 

Figure 55: CCD Images at 1.5 feet and 8.5 feet 
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Figure 56: Optical Images at 3 feet and 8 feet 

 

 

Figure 57: NIR Images at 3 feet and 8 feet 
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Figure 58: In-Service Cracks Optically Imaged 

 

 

Figure 59: In-Service Cracks NIR Imaged 
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Table 22: In-Service Field Measurements 

Image 
Name 

Type of 
Camera 

Length 
Measured 

(in) 

Width 
Measured 

(in) 

NIR_1 NIR 13 0.50 

NIR_2 NIR 6 0.50 

NIR_3 NIR 13 0.50 

NIR_4 NIR 14 0.50 

NIR_5 NIR 7 0.50 

Op_1 Optical 8 0.50 

Op_2 Optical 8 0.80 

Op_3 Optical 3 0.20 

Op_4 Optical 6 0.30 

Op_5 Optical 8 0.30 
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APPENDIX B: SIMULATED CRACKS 

 

Table 23: Rotation Errors for 28 by 448 Pixel Crack 

Angle: Width Length W-

Error 

L-Error 

0 28 448 0 0 

0.02 29 448 3.57 0.00 

0.04 29 448 3.57 0.00 

0.05 29 448 3.57 0.00 

0.1 29 448 3.57 0.00 

0.2 30 448 7.14 0.00 

0.3 31 448 10.71 0.00 

0.4 31 448 10.71 0.00 

0.5 32 449 14.29 0.22 

0.6 33 448 17.86 0.00 

0.7 34 448 21.43 0.00 

0.8 33 448 17.86 0.00 

0.9 35 448 25.00 0.00 

1 36 449 28.57 0.22 

 

Table 24: Rotation Errors for a 11 by 169 Pixel Crack 

Angle Width Length W-

Error 

L-Error 

0 11 169 0 0 

0.02 11 169 0 0 

0.04 11 169 0 0 

0.05 11 169 0 0 

0.1 11 169 0 0 

0.2 12 169 9.09 0 

0.3 12 169 9.09 0 

0.4 12 169 9.09 0 

0.5 12 169 9.09 0 

0.6 13 169 18.18 0 

0.7 13 169 18.18 0 

0.8 13 169 18.18 0 

0.9 14 169 27.27 0 

1 14 169 27.27 0 
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Table 25: Rotation Errors for a 5 by 169 Pixel Crack 

Angle Width Length W-

Error 

L-Error 

0 5 169 0 0 

0.02 6 169 20 0 

0.04 6 169 20 0 

0.05 6 169 20 0 

0.1 6 169 20 0 

0.2 6 169 20 0 

0.3 6 169 20 0 

0.4 7 169 40 0 

0.5 7 169 40 0 

0.6 7 169 40 0 

0.7 7 169 40 0 

0.8 8 169 60 0 

0.9 8 169 60 0 

1 8 169 60 0 

 

Table 26: Pixel Width Errors for the Nikon D610 and a 60 mm Focal Length 

Pixel Errors 
Distance 3 ft. 4 ft. 5 ft. 6 ft. 7 ft. 8 ft. 
  0.125 in. 
No. of Pixels 35.01 26.26 21.01 17.51 15.01 13.13 
Rounded Pixels 35 26 21 18 15 13 
% Error 0.04 0.99 0.04 2.82 .04 0.99 
  0.06 in. 
No. of Pixels 16.81 12.61 10.08 8.40 7.20 6.30 
Rounded Pixels 17 13 10 8 7 6 
% Error 1.15 3.13 0.83 4.80 2.82 4.80 
  0.02 in. 
No. of Pixels 5.60 4.20 3.36 2.80 2.40 2.10 
Rounded Pixels 6 4 3 3 2 2 
% Error 7.10 4.80 10.75 7.10 16.70 4.80 
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Table 27: Pixel Width Errors for the Nikon D610 and an 85 mm. Focal Length 

 

Table 28: Pixel Width Errors for the Canon 7D and a 24 mm. Focal Length 

 

Table 29: Pixel Width Errors for the CCD and DSLR camera with a 35 mm. Focal Length 
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Table 30: Pixel Width Errors for the Nikon D3200 and a 24 mm. Focal Length 
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APPENDIX C: IDEAL LABORATORY CRACK 

 

 

Figure 60: Image Processing Errors for a 0.25 in Crack Using a 24 mm Focal Length 

 

 

Figure 61: Image Processing Errors for a 0.125 in Crack Using a 24 mm Focal Length 

 

 

Figure 62: Image Processing Errors for a 0.125 in Crack Using a 60 mm Focal Length 
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Figure 63: Image Processing Errors for a 0.125 in Crack Using an 85 mm Focal Length 

 

 

Figure 64: Image Processing Errors for a 0.06 in Crack Using a 24 mm Focal Length 

 

 

Figure 65: Image Processing Errors for a 0.06 in Crack Using a 60 mm Focal Length 
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 Figure 66: Image Processing Errors for a 0.06 in Crack Using an 85 mm Focal Length  

 

 

Figure 67: Image Processing Errors for a 0.02 in Crack Using a 24 mm Focal Length 

 

 

Figure 68: Image Processing Errors for a 0.02 in Crack Using a 60 mm Focal Length 
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Figure 69: Image Processing Errors for a 0.02 in Crack Using an 85 mm Focal Length 

 

 

Figure 70: Image Processing Errors for a 6 in by 0.125 in Crack Using a 24 mm Focal Length 

 

 

Figure 71: Image Processing Errors for a 6 in by 0.06 in Crack Using a 24 mm Focal Length 
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Figure 72: Image Processing Errors for a 6 in by 0.02 in Crack Using a 24 mm Focal Length 

 

 

Figure 73: Image Processing Errors for a 4 in by 0.25 in Crack Using a 24 mm Focal Length and 

the Canon 7D 

 

 

Figure 74: Image Processing Errors for a 4 in by 0.125 in Crack Using a 35 mm Focal Length 

and the CCD Camera 
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Figure 75: Image Processing Errors for a 4 in by 0.125 in Crack Using a 35 mm Focal Length 

and the DSLR Camera 

 

 

Figure 76: Image Processing Errors for a 6 in by 0.125 in Crack Using a 24 mm Focal Length 

and the NIR Camera 

 

 

Figure 77: Comparison of 24 mm Focal Length 
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Figure 78: Comparison of 60 mm Focal Length 

 

 

Figure 79: Comparison of 85 mm Focal Length 
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Figure 80: Comparison of Focal Lengths 

 

 

Figure 81: Comparison of Crack Thickness 

 

 

Figure 82: Comparison of Crack Length 
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Figure 83: Comparison of Megapixels 

 

 

Figure 84: Comparison of CCD vs DSLR 

 

 

Figure 85: Comparison of NIR versus Optical 
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Table 31: P-Values for Normality - Nikon D610 Imaging 

Data Set P-value 

Width Error: 6 in by 0.125 

in 
0.277 

Width Error: 6 in by 0.06 

in 
0.315 

Width Error: 6 in by 0.02 

in 
0.54 

Width Error: 4 in by 

0.0125 in 
0.403 

Width Error: 4 in by 0.06 

in 
0.64 

Width Error: 4 in by 0.02 

in 
0.23 

Length Error: 6 in by 0.125 

in 
0.263 

Length Error: 6 in by 0.06 

in 
0.387 

Length Error: 6 in by 0.02 

in 
0.235 

Length Error: 4 in by 

0.0125 in 
0.394 

Length Error: 4 in by 0.06 

in 
0.158 

Length Error: 4 in by 0.02 

in 
0.744 

 

Table 32: P-values for Normality - Acquisition Systems 

Acquisition 

System 
Dimension P-value 

18 MP Width 0.731 

24.3 MP Width 0.551 

18 MP Length 0.427 

24.3 MP Length 0.295 

CCD Width 0.433 

DSLR Width 0.318 

CCD Length 0.551 

DSLR Length 0.425 

NIR Width 0.756 

Optical Width 0.378 

NIR Length 0.27 

Optical Length 0.064 
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Table 33: P-values for T-test - Length Comparison 

Data 

Set 
Dimension P-value 

0.125 Width 0.308 

0.125 Length 0.262 

0.06 Width 0.632 

0.06 Length 0.13 

0.02 Width 0.963 

0.02 Length 0.789 

 

Table 34: P-values for T-test - Acquisition Systems 

Data Set Dimension 
P-

Value 

Sensor 

Size 
Width 0.015 

Sensor 

Size 
Length 0 

CCD vs. 

DSLR 
Width 0.937 

CCD vs. 

DSLR 
Length 0.623 

NIR vs 

Optical 
Width 0.579 

NIR vs 

Optical 
Length 0.064 
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Table 35: Average Aperture Errors for a 0.02 in. Crack 
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Table 36: Average Aperture Errors for a 0.06 in. Crack 
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Table 37: Average Aperture Errors for a 0.125 in. Crack 
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Figure 86: Interaction Plot for Width Errors (Minitab, 2007) 

 

 

Figure 87: Interaction Plot for Length Errors (Minitab, 2007) 
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APPENDIX D: IN-SERVICE CRACKS 

 

 

Figure 88: Manually Segmented Optical Images 

 

 

Figure 89: Optical Images Segmented by Jahanshahi Adapted Method 
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Figure 90: Optical Images Segmented by Fujita Adapted Method 

 

 

Figure 91: Optical Images Segmented by Lattanzi Adapted Method 
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Figure 92: Optical Images Segmented by Combined Method 

 

Table 38: Width Errors for In-Service Optical Images 

Image 
Name 

Rotation 
(degrees) 

Manually 
Segmented 

Width 
(pixels) 

Jahan 
Error 
(%) 

Fujita 
Error 
(%) 

Combined 
Error (%) 

Op_1 -30.7894 41 31.71 21.95 17.07 

Op_2 -79.886 95 50.53 6.32 30.53 

Op_3 82.9048 19 10.53 84.21 36.84 

Op_4 -28.6699 36 25.00 5.56 5.56 

Op_5 -32.0745 33 33.33 39.39 3.03 
 

Table 39: Length Errors for In-Service Optical Images 

Image 
Name 

Rotation 
(degreed) 

Manually 
Segmented 

Length (pixels) 

Jahan 
Error 
(%) 

Fujita 
Error 
(%) 

Combo 
Error 
(%) 

Op_1 -30.7894 926 27.54 61.02 2.05 

Op_2 -79.886 931 17.08 43.07 13.96 

Op_3 82.9048 381 16.80 21.00 0.79 

Op_4 -28.6699 645 21.86 14.11 33.95 

Op_5 -32.0745 916 88.97 0.76 51.53 
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Figure 93: Manually Segmented NIR Images 

 

Figure 94: NIR Images Segmented by Jahanshahi Adapted Method 
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Figure 95: NIR Images Segmented by Fujita Adapted Method 

 

Figure 96: NIR Images Segmented by Lattanzi Adapted Method 
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Figure 97: NIR Images Segmented by Combined Method 
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APPENDIX E: MATLAB CODES 

 

Jahanshahi Adapted Method: 

% An innovative methodology for detection and quantification 

%of cracks through incorporation of depth perception by: Jahanshahi, Masri, and Padgett 

clear all 

close all 

%% 

 

%Properties 

I = imread('NIR_5.jpg'); %Import Image 

 

dis = 3; %Working Distance in feet 

 

thick = 0.1; %Crack width in inches 

 

sensor_res = 24.3;% Megapixels 

 

sensor_size = 0.00595; %Pixel Pitch in mm  

 

focal_length = 24; %mm 

 

I = rgb2gray(I); %Convert to grayscale 

     

working_distance = (dis*12)*25.4; %Convert Working Distance to mm 

 

crack_width = thick*25.4; %Convert Crack Width to mm 

 

crack_length = 8*25.4; %Input Crack Length in mm 

 

% All Variables must be manually changed for each picture 

 

%% 

%Establish structuring element 

 

LEN = (focal_length / working_distance) * (sensor_res / sensor_size) * crack_width; 

 

Cstart = I; 

%based off of equation (2) in paper 

 

SE1 = strel('line', round(LEN), 0); % 0 degrees rotation 

O1 = imclose(I, SE1); 

C1 = imadd(imopen(O1, SE1), Cstart); 
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SE2 = strel('line', round(LEN), 45); % 45 degrees rotation 

O2 = imclose(Cstart, SE2); 

C2 = imadd(imopen(O2, SE2), Cstart); 

 

 

SE3 = strel('line', round(LEN), 90); % 90 degrees rotation 

O3 = imclose(Cstart, SE3); 

C3 = imadd(imopen(O3, SE3), Cstart); 

 

SE4 = strel('line', round(LEN), 135); % 135 degrees rotation 

O4 = imclose(Cstart, SE4); 

C4 = imadd(imopen(O4, SE4), Cstart); 

 

% % 

%Prepare to Threshold 

 

T = C4; 

thresh = graythresh(T); % Threshold Value 

 

bw = (T <= thresh * 255); % Global Threshold  

 

imshow(bw) % View Image 

 

% % 

%Rotation 

 

C = bw; 

 

STATS11 = regionprops(C, 'Orientation'); 

 

O = extractfield(STATS11, 'Orientation'); 

 

C = imrotate(C, -O); 

 

C = bwmorph(C, 'spur'); 

 

imshow(C) 
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Fujita Adapted Method: 

%A robust automatic crack detection method from noisy concrete surface by Fujita and 

%Hamamoto 

clear all 

close all 

%% 

 

%Load in images 

 

I = imread('NIR_5.jpg'); 

  

dis = 8; %Working Distance feet 

 

thick = 0.125; % Crack Width in inches 

 

iter = 10; % Number of iterations for probabilistic relaxation 

 

tt = 30; % Percentage of local average in which the threshold is set 

  

sensor_res = 24.2;%Megapixels 

 

sensor_size = 0.00595; %Pixel Pitch in mm  

 

I = rgb2gray(I);%Convert image to grayscale 

 

focal_length = 85; %mm 

    

working_distance = (dis*12)*25.4; %Convert working distance to mm 

 

crack_width = thick*25.4; %Convert crack width to mm 

 

crack_length = 4*25.4; %Convert crack length to mm 

 

%must maually change for each picture 

  

%% 

 

%Median Filter 

I_median = medfilt2(I, [11 11]);  

 

%Subtract the two images 

I_new = imadd(I_median,I); 

 

%% 

 

 



127 
 

%Multi-scale line emphasis  

I_new2=FrangiFilter2D(double(I_new));  

%Not built into MATLAB, must download and write separately  

 

%% 

%Probablistic relaxation 

im0 = I_new2; 

 

im0 = double(im0); 

 

P_drk= log(im0 + 1)/log(max(im0(:) +1)); 

 

P_lgt = 1-P_drk; 

 

P=cat(3,P_drk,P_lgt); 

 

L=RelaxLabel2D(P,[],[2 1 iter 8]);  

%Not built into MATLAB, must download and write separately  

 

%P – array of probabilities 

 

% iter – number of max iterations 

 

%8 – indicates the neighborhood connectivity 

 

 

T = (L==2); %Where the crack is located 

 

%% 

 

%Adaptive Threshold 

T = double(T); 

 

[x y] = size(T); 

 

if x>y 

    fsize = fix(x/30); 

else 

    fsize = fix(y/30); 

end 

 

bw = adaptivethresh(T, fsize, tt, 'gaussian', 'relative');  

%Not built into MATLAB, must download and write separately  

 

%T – Image to be thresholded 

 



128 
 

% fsize – filter size used to determine the local weighted average 

 

% tt – percentage relative to local average 

 

% Gaussian – use Gaussian smoothing to obtain local weighted mean 

 

%Relative – means “tt” is the percentage relative to the local average gray value below which the 

%threshold is set 

 

figure; imshow(bw) 

 

%% 

%Rotation 

 

C = bw; 

 

STATS11 = regionprops(C, 'Orientation'); 

OO = extractfield(STATS11, 'Orientation'); 

 

C = imrotate(C, -OO); 

 

C = bwmorph(C, 'spur'); 

 

imshow(C) 
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Lattanzi Adapted Method: 

% Robust automated concrete damage detection algorithms for field applications 

%% 

clear all 

close all 

 

I = imread('DSC_2126.jpg'); 

 

A = rgb2gray(I);% Convert image to grayscale 

 

J = histeq(A); %Histogram Equalization 

 

ab = double(J); 

 

nrows = size(ab,1); 

 

ncols = size(ab,2); 

 

[id centroid] = kmeans(ab(:),6, 'emptyaction', 'drop', 'Replicates',5);  

%Manually change number of clusters and iterations 

 

%Use cluster value between 6 and 12 

 

%Iterate to avoid local minimas and to reach a point where the values in the clusters do not 

%change 

 

%Drop – removes any clusters that become empty 

 

 

pixel_labels = reshape(id,nrows,ncols); 

 

figure; imshow(pixel_labels,[]), title('image labeled by cluster index'); 

  

segmented = cell(1,3); 

 

rgb_label = repmat(pixel_labels, [1 1 3]); 

 

for k = 1:6 %Separate the clusters 

    color = I; 

    color(pixel_labels ~=k)=0; 

    segmented{k} = color; 

end 

 

%Find mean values of clusters 

a = mean(segmented{1}(:)); 
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b= mean(segmented{2}(:)); 

 

c= mean(segmented{3}(:)); 

 

d= mean(segmented{4}(:)); 

 

e= mean(segmented{5}(:)); 

 

f= mean(segmented{6}(:)); 

 

mean_val = [a;b;c;d;e;f]; 

  

%Segment the cluster with the lowest mean 

num = find(mean_val == min(mean_val(:))); 

 

num = min(num); 

 

figure; imshow(segmented{num}); 

 

T = rgb2gray(segmented{num}); 

 

thresh = graythresh(T); 

 

bw = (T <= thresh * 255); 

 

 %Rotation 

 C = bw; 

 

STATS11 = regionprops(C, 'Orientation'); 

 

OO = extractfield(STATS11, 'Orientation'); 

 

C = imrotate(C, -OO); 

 

C = bwmorph(C, 'spur'); 

 

figure; imshow(C) 
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Combined Method: 

clear all 

close all 

 

%Properties 

L = imread('NIR_1.jpg'); 

 

focal_length = 24; %in mm  

 

dis = 3; %Working Distance in feet 

 

thick = 0.01; %Crack width in inches 

 

tt = 30; % Percentage of local average in which the threshold is set 

 

sensor_res = 24.2;%Megapixels 

 

sensor_size = 0.00595; %Pixel Pitch in mm 

 

I = rgb2gray(L); %Convert to grayscale image 

  

 working_distance = (dis*12)*25.4; %Convert working distance to mm 

 

crack_width = thick*25.4; %Convert crack width to mm 

 

crack_length = 6*25.4; %Convert crack length to mm 

%must maually change for each picture 

 

%% 

%Establish structuring element 

LEN = (focal_length / working_distance) * (sensor_res / sensor_size)* crack_width; 

 

Cstart = I; 

 

SE1 = strel('line', round(LEN), 0); 

O1 = imclose(I, SE1); 

C1 = imadd(imopen(O1, SE1), Cstart); 

 

SE2 = strel('line', round(LEN), 45); 

O2 = imclose(Cstart, SE2); 

C2 = imadd(imopen(O2, SE2), Cstart); 

 

SE3 = strel('line', round(LEN), 90); 

O3 = imclose(Cstart, SE3); 

C3 = imadd(imopen(O3, SE3), Cstart); 
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SE4 = strel('line', round(LEN), 135); 

O4 = imclose(Cstart, SE4); 

C4 = imadd(imopen(O4, SE4), Cstart); 

 

%% 

 

%Adaptive Threshold 

% “adaptivethresh” is not built into MATLAB, must download and write separately  

 

%T – Image to be thresholded 

 

% fsize – filter size used to determine the local weighted average 

 

% tt – percentage relative to local average 

 

% Gaussian – use Gaussian smoothing to obtain local weighted mean 

 

%Relative – means “tt” is the percentage relative to the local average gray value below which the 

%threshold is set 

 

T = C3; 

 

T = double(T); 

 

[x y] = size(T); 

 

if x>y 

    fsize = fix(x/30); 

else 

    fsize = fix(y/30); 

end 

 

bw1 = adaptivethresh(C1, fsize, tt, 'gaussian', 'relative'); 

bw1= bwmorph(bw1, 'spur'); 

 

bw2 = adaptivethresh(C2, fsize, tt, 'gaussian', 'relative'); 

bw2= bwmorph(bw2, 'spur'); 

 

bw3 = adaptivethresh(C3, fsize, tt, 'gaussian', 'relative'); 

bw3= bwmorph(bw3, 'spur'); 

 

bw4 = adaptivethresh(C4, fsize, tt, 'gaussian', 'relative'); 

bw4= bwmorph(bw4, 'spur'); 

 

%% 

A = imadd(bw1,bw2); 
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B = imadd(A, double(bw3)); 

 

C = imadd(B, double(bw4)); 

 

%Additional Morphological Operations to bridge non-continuous pixels 

C = bwmorph(C,'bridge'); 

 

C = imfill(C, 'holes'); 

 

imshow(C) 

 

%Rotation 

STATS11 = regionprops(C, 'Orientation'); 

 

OO = extractfield(STATS11, 'Orientation'); 

 

C = imrotate(C, -OO); 

 

C = bwmorph(C, 'spur'); 

 

figure; imshow(C) 
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Euclidean Distance Transform: 

C_skel = bwmorph(C, 'skel', Inf);  %Create image skeleton 

 

C_skel = imcomplement(C_skel); %Compute the complement of the image 

 

dist_trans  = bwdist(C_skel); %Compute the Euclidean distance transform of the image 

 

%% 

 

%Compute Width 

[xd, yd] = size(dist_trans); 

 

for i = 1:xd     

    

 for j = 1:yd 

 

    if dist_trans(i,j) > 0 

 

        p(i,:) = dist_trans(i,j); 

 

    end   

 

    end 

 

end 

 

pp = bwlabel(p); 

 

[ap,bp] = histc(pp,unique(pp)); 

 

%% 

%Compute Length 

for i = 1:xd     

 

    for j = 1:yd 

 

    if dist_trans(i,j) > 0 

 

        l(j) = dist_trans(i,j); 

 

    end   

 

    end 

 

end 
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ll = bwlabel(l); 

 

[al,bl] = histc(ll,unique(ll)); 

 

 

%% 

%Combine answer into one matrix 

answer = [mean(ap); sum(al)] 

 

%For in-service results use the mean of “ap” to find the mean width  

 

%For in-service results use the sum of “al” to find the total length 

 

%For ideal cases mean(ap) = ap 

 

%For ideal cases sum(al) = al 

 


