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Abstract

In a long-haul optical fiber communication system, fiber attenuation, dispersion,

and nonlinearity combine with non-deterministic noise from optical amplifiers used

for periodic regeneration and cause adverse effects on system performance. In this

dissertation, we study and mitigate such undesirable effects.

We present a modified nonlinear decision feedback equalizer designed for use

in a legacy optical communication system with periodic dispersion compensation.

The effects of noise and nonlinearity on the equalizer coefficients are investigated,

and a suboptimal convergence algorithm to reduce such effects is proposed and

verified.

Noting the limited ability of existing signal processing tools to combat signal-

noise nonlinear interaction effects, we next consider a fundamental scenario to

study these effects. We apply Gaussian mixture modeling (GMM) techniques to

better understand how noise interacts with the signal in a nonlinear optical fiber

span. We validate our technique and learn that at higher levels of nonlinearity,

the GMM analysis is more accurate than an additive Gaussian noise or a Volterra

series transfer function model.

Finally we present an approach to generalize our analysis. We validate our

claims that transmitting a small number of pulses is a good approach to predict

the analysis of a practical communication system. We also show that using a 3- or

higher-order GMM is necessary to fully understand the nonlinear interaction.
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Chapter 1

Introduction

1.1 Research Motivation

We are nearing the performance limits of communication networks, not just

in this country, but all over the world [3]. The problem can only get worse, since

we need to transmit more information than ever over the same limited amount of

resources. The demand for more bandwidth and capacity will only increase with

technological advances such as connected cars, smart grids, machine-to-machine

communication, and domestic installations such as at-home health monitoring

systems. In Fig. 1.1, we note how the number of devices online has increased

steadily over the years.

It was realized long ago that the demand for reliably transmitting more and

more data will gradually increase over time. However, it was also believed that the

design of transmitters, receivers, and other devices would also improve and thus

keep pace with the increasing demand, so that the need for excess capacity would

be able to be addressed. However, this hasn’t been proved to be the case as seen

in Fig. 1.2. Effective coding strategies, resourceful use of multiplexing and other

1
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Figure 1.1: Online devices increasing over time [1]

Figure 1.2: Demand vs capacity [2]

techniques can help optimize the bandwidth usage. We turn our attention to the

use of optical fiber as an effective communication channel which offer potential for

high speed communication over long distances.

However, there are significant challenges which must be overcome. Optical fibers

have several kinds of dispersion, including material and waveguide dispersions,

the combined effect of which is broadening of pulses during propagation, and

when severe would lead to a pulse spreading outside its symbol slot [4]. An

optical fiber is a dielectric, and exhibits nonlinearity. In long-haul optical fiber

communication systems, optical amplifiers are present at the end of each span (a

length of 80− 100 kms) to periodically restore the signal strength. The amplifiers
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add random amplified spontaneous emission (ASE) noise to the signal.

In the dispersive and nonlinear optical channel, the ASE noise interacts

nonlinearly with the deterministic signal, while the signal interacts with itself, as

does the noise, to generate crosstalk at the receiver. Intersymbol and interchan-

nel interference, self, cross and interchannel cross phase modulation, four-wave

mixing and amplifier noise all affect the performance of the communication system,

especially the periodically dispersion compensated legacy systems [5]. Such legacy

systems consist of a dispersion-compensating (DCF) fiber after each span to reverse

the effects of dispersion, and also an optical amplifier to reverse the effects of fiber

attenuation. A large percentage of existing fiber communication networks are such

systems. We initially turn our attention to designing tools and techniques which

can be applied to these. (Later in this document, we look at systems which do not

employ dispersion compensation.)

For long-haul high-speed wavelength division multiplexed (WDM) optical

communication systems, coherent detection is often preferred since it supports

spectrally efficient modulation formats, and offers potential for superior signal

sensitivity and the possibility of electronic compensation algorithms [6]. These

spectrally efficient modulation formats require higher signal-to-noise power ratio.

However, nonlinear impairment effects are also greater at higher power levels.

We note that our resources are limited, and therefore we should press for the

most efficient use of what we have at our disposal. Shannon’s theorem [7] states

that it is theoretically possible to transmit information at a rate which equals the

channel capacity with arbitrarily low error probabilities if suitable coding or signal

processing techniques exist. Recently, however, progress in WDM capacity research

has markedly slowed down as experiments are closely approaching what has been

thought of as the fundamental Shannon limits of nonlinear fiber transmission [8].
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In a nonlinear noisy channel, the received signal is a combination of the

transmitted signal, noise and interaction terms. In this dissertation, we further

our understanding of the nonlinear interactions in our optical fiber communication

channel, propose and validate that using improved signal processing techniques

can overcome certain limitations, and ultimately increase capacity.

1.2 Technical Background

Faced with the aforementioned challenges, we can design better equalizers

to recover the transmitted signal. An equalizer approximates the transmitted

information by methods such as removing impairment effects using filters or

searching for likely transmitted sequences using probability measures [9]. As

outlined above, the optical fiber communication channel has linear impairments

such as attenuation and dispersion, and several kinds of nonlinear impairments.

The combination of these linear and nonlinear impairments, especially in the

presence of non-Gaussian noise, makes our task difficult.

Optical and electrical techniques have been developed to reduce the effects

of physical impairments and amplifier noise and extract the transmitted signal

with a desired degree of accuracy. Electrical solutions can be integrated into

electronic chips and mass-produced at a reasonable cost, and can be applied to

existing optical networks. We concentrate on signal processing techniques in this

dissertation [10] to learn the nature of, and combat the nonlinear interaction

effects.

While both linear and nonlinear equalizers have been proposed and tested,

nonlinear equalizers are far more suited to combat the effects of nonlinear impair-

ments in an optical fiber channel. Speaking generally, equalizer designs which
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promise high performance also have high computational complexity. This, of

course, is not desirable. We set out to correct this issue, and propose and test

an intuitive nonlinear equalizer design which allows us good performance at low

complexity.

Our equalizer performs as well as the popular digital backpropagation (a high

complexity method to jointly compensates linear and nonlinear impairments)

benchmark [11]; however, we are still not at the maximum performance limit.

We know this since in the presence of nonlinear noise, backpropagation (or our

equalizer) cannot exactly reconstruct the transmitted signal, and there is a gap

between the no-nonlinearity limit and the actual performance. If we can find and

address the reason(s) for this, we can approach the said limit.

This is a situation which can be addressed by obtaining more precise knowl-

edge about the nonlinear interaction between signal and noise. If there were

no signal-signal and signal-noise nonlinear interaction, we would have matched

the no-nonlinearity performance limit. While we have studied Gaussian noise

for decades and the pertinent theory is well-developed, the same cannot be said

about non-Gaussian noise. We contend (and later show) that in our optical

fiber communication channel, the popular additive white Gaussian noise model

assumption is not satisfactory [12].

The nonlinear Schrödinger equation (NLSE) [5] describes the propagation of

an optical pulse through a span of fiber. The usual practice to solve the NLSE

is using numerical methods such as the split-step Fourier transform. However,

the Volterra series transfer function (VSTF) [13] may be used to compute an

approximate analytic solution.

There has been considerable work published on the effects of noise in optical

fibers. However, some of these works make a low or zero dispersion assumption.



6

It is the interaction of noise with all the linear and nonlinear impairments which

makes this a challenging research problem. Some other works look at important

system properties (such as bit error rate or capacity) with or without making

assumptions or using existing simplified models [14].

We would like to understand the nature of the nonlinear interaction without

any assumptions about the system properties. If we succeed in this, we can use

this knowledge to design better receivers or signal processing algorithms which

would help us achieving performance closer to the no-nonlinearity limit.

Using a fundamental yet non-trivial situation, we show that we can use clus-

tering techniques to decompose the nonlinear interaction components into several

Gaussian components. We validate our technique with suitable tests and show

that our algorithm works better than existing techniques when nonlinearity is

significant. We then attempt to generalize our study, and approach a practical

communication system.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we present a

modified nonlinear decision feedback equalizer designed for use in a legacy optical

communication system with periodic dispersion compensation. Chapter 3 explains

the theory and application of GMM to the fundamental problem of analyzing signal-

noise interaction in a single pulse single channel system and presents compelling

evidence that mixture modeling is an useful tool for analyzing the optical fiber

channel. Chapter 4 generalizes the fundamental system and studies transmission

of multiple pulses. Chapter 5 summarizes the whole dissertation and points out

opportunities for some future work.



Chapter 2

Modified Nonlinear Decision

Feedback Equalizer

As the transmitted signal pulses travel through several spans of an optical fiber

communication channel, they are affected by, and affect each other, due to the

fiber physical impairments (both linear and nonlinear). The nonlinear Schrödinger

equation (NLSE)

∂ψ

∂z
= −α

2
ψ − iβ2

2

∂2ψ

∂t′2
+ iγ|ψ|2ψ (2.1)

describes the propagation of the pulses, where ψ is the varying amplitude of

the field, z denotes space, and α, β2, and γ are respectively the attenuation,

second-order dispersion and the nonlinearity in the fiber.

The split-step Fourier method [15] is a numerical method often used to solve the

NLSE. This method computes the solution in small steps treating the linear and

the nonlinear steps separately. The linear step is made in the frequency domain

while the nonlinear step is made in the time domain. Thus it is necessary to

7
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Fourier transform back and forth between the time and frequency domains.

Digital backpropagation [11] jointly compensates linear and nonlinear impair-

ments. The basic principle is to solve an inverse NLSE through the fiber to

estimate the input signal. In the absence of stochastic noise, backpropagation can

reconstruct the originally transmitted sequence with perfect accuracy. The main

disadvantage of backpropagation is its excessive computational complexity. It is

also practically difficult to implement with hardware or at high data-rates due to

its oversampling rate requirement.

This first task is to see how far we can go in performance improvement

by just handling the effects of other pulses. We consider the theoretical best

(backpropagation) and practical (equalizer) options. This will indicate a limit after

which we need to look at the noise-signal interaction more closely.

Equalizers can be divided into two categories: linear and nonlinear. Linear equal-

izers may be designed using a linear(ized) or affine model for the communication

channel. The simplest form of equalization uses a linear filter which applies the

inverse of the channel transfer function on the received symbols to estimate the

transmitted data. Equalizers using finite impulse response (FIR) type filters have

been studied in works such as [16]. Dispersion compensation techniques [17]

also fall under this category. Linear equalizers can only compensate the linear

impairments.

On the other hand, a nonlinear equalizer can successfully mitigate nonlinear

impairment effects as well and are thus much more suitable for long-haul optical

communication system applications. Nonlinear equalizers utilizing methods such

as maximum likelihood sequence estimation (MLSE) or maximum a posteriori

sequence detection (MAP) have been well studied. MAP equalizers rely on assumed

statistical information about the transmitted signal. MLSE equalizers require a
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Viterbi decoder and soft decision for decoding [18]. The computational complexity

is considerable due to the large number of states and this might be prohibitive at

the data rates of interest (hundreds of Gbit/s). Channel memory when coupled

with nonlinearity makes this a challenging problem as well.

The complexity of MLSE and MAP-based methods grows exponentially with

the equalizer memory size and the number of WDM channels since it needs a look-

up table of possible sequences of transmitted symbols. MAP-based equalizers for

multi-channel transmission or WDM coherent systems having good performance but

high signal processing complexity have been proposed in [19] and [20] respectively.

Frequency domain equalization methods [21] have also been studied, using

a look-up table or a constant-modulus based algorithm to adjust tap-weights

(in polarization multiplexed transmission systems), or by estimating the channel

transfer function (in optical orthogonal frequency division multiplexed (OFDM)

transmission) [22].

Some authors have designed nonlinear equalizers based on analytical closed-

form approximations from appropriate order Volterra kernels to mitigate nonlinear

effects. Using third-order inverse Volterra theory on a mathematical description

of an optical system which includes all the impairments effects, a model-centric

nonlinear equalizer for single channel systems is found in [23]. The disadvantage

of a Volterra-model-based design is its complexity and truncated models are often

used [24]. A Wiener-Hammerstein model based equalizer (for OFDM transmission)

is presented as a simpler alternative [25].

We propose to apply a decision feedback equalizer (DFE) with nonlinear filters,

which we refer to as a nonlinear DFE. In general, for communication systems

with additive noise and pre- and post-cursor interference effects (such as ours),

DFEs offer a good compromise between complexity and performance [26], and
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can be applied to any modulation format. Linear decision feedback approaches

(DFEs with linear filters) have been used before in related fields such as wireless

optical communication [27] or channel estimation for OFDM [28]. A DFE based

structure with a nonlinear Volterra filter feedback for recording systems is found

in [29], and with nonlinear Volterra filters in feedforward and feedback paths for

reading information stored in optical discs in [30]. The structure and design of a

digital DFE is conceptually simple, and it can be implemented using hardware [31].

Compared to a single feedforward equalizer, a nonlinear DFE (with a nonlinear

feedforward and a nonlinear feedback filter) can mitigate pre- and post-cursor

impairment effects simultaneously without enhancing noise while requiring a lower

number of filter coefficients.

Only a few applications of decision feedback in optical fiber communication

systems are found in literature. In [32], the authors study the impact of the channel

bandwidth on performance and the maximization of spectral efficiency in a multi-

channel system using a constant modulus algorithm feed forward equalizer (CMA

FF) with a feedback loop. This design compensates for intersymbol interference

(ISI) (which would cause one symbol to interfere with subsequent symbols). The

equalizer filter coefficients are calculated from the impulse responses of the feed

forward and feedback paths. In [33], a DFE architecture integrating error detection

code capability and consisting of one or more linear or nonlinear Volterra filters is

investigated for a single channel system. This work is conceptually similar to the

Volterra filter based equalizers discussed above, with the addition of a decision

feedback loop, as done in [30]. The authors conclude that integration of the

error detection capability with a Volterra filter in the forward path provide good

performance over a range of input power. The transmission distance is 480 km,

and the equalizer performance is not compared against that of standard techniques
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such as backpropagation.

The novelty of the current work is in identifying a receiver end electrical

nonlinear DFE suitable for a long-haul coherent optical fiber system, understanding

that system noise and uncompensated nonlinearity affect tuning of the coefficients,

and presenting a modified DFE training which uses multiple iteration least mean

squares (LMS) algorithm [34] to mitigate it. We report results from long-haul

legacy systems having total lengths varying between 2800 and 4000 km and find

the equalizer performance (bit error rate) is comparable to that from digital

backpropagation while being computationally simpler.

This chapter is organized as follows. In Section 2.1, we decide on the DFE

structure from an input-output model of the optical system and describe the

equalizer in training and decision modes. In Section 2.2, we study the effect of

noise and uncompensated impairments on the filter coefficients. Finding that

the coefficients do not achieve steady-state values with the conventional tuning

method (in general), we implement and verify a suboptimal convergence training

approach. In Section 2.3, we evaluate the performance of the DFE, and compare

the results with other approaches including backpropagation. In Sections 2.4 and

2.5, we investigate the computational complexity and the performance analysis of

the DFE. Section 2.6 summarizes this chapter.

2.1 DFE Structure and Coefficient Tuning

The basic decision feedback equalizer (DFE) structure contains two filters [26],

a feed forward filter (FFF), a feedback filter (FBF) and also includes a nonlinear

decision device. The FBF feeds back a function of the decisions on the past

symbols. The filters may both be linear, or at least one of them can be nonlinear.
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If the past decisions were correct, we are in fact feeding back a certain function of

the actual past transmitted symbols. Thus the DFE can suppress or cancel the

post-cursor interference effects for a number of past symbols.

Our long-haul single-channel optical communication system (Fig. 2.1) is a legacy

network. At the transmitter, an M-ary electrical symbol sequence xq is converted

into the corresponding optical signal s(t) after pulse shaping and modulation. We

choose a square-root raised cosine pulse shaping filter to minimize intersymbol

and other interference effects. The optical signal s(t) is then transmitted through

a finite number of spans of standard single mode fibers (SSMF) and is affected

by the linear and nonlinear effects (and amplifier noise) to evolve into r(t), the

input to the receiver. Our channel model has n spans of SSMF fibers with each

span of length L, with dispersion compensating fiber (DCF) sections and optical

amplifiers (EDFA- erbium doped fiber amplifiers) at the end of each span (after

the DCF). We assume full (100%) and ideal dispersion compensation, and any loss

or nonlinearity in the DCF is neglected.

The coherent receiver downconverts the optical signal into electrical signal pulses

and it consists of an optical filter to limit the ASE noise, a photo-detection device,

and an electrical filter to reduce (electrical) noise [5]. Our receiver-end electrical

filter also has a square-root raised cosine pulse shape matched to the transmitter

filter. The narrow bandpass nature of the receiver-end electrical filter removes

all second-order nonlinearity [35] from the photodetector output. Sampling once

per symbol period T at optimal discrete times tq = qT (ignoring synchronization

issues) then generates yq = y(tq) which is the input to the equalizer module. Note

that, since the pulses are broadened in frequency due to the impairment effects,

sampling once per symbol time is suboptimal and does not capture all the nonlinear

effects.
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Figure 2.1: Block diagram of the optical fiber communication system

When ASE noise is not considered, using the result in [36] obtained from

a discrete-time Volterra model, we determine that yq is a (mainly third-order)

nonlinear function of the modulating data. The general form of this relation would

be

yq =
∞∑

i=−∞

ρixq+i +
∞∑

i,j,k=−∞

ρijkxq+ix
∗
q+jxq+k +H.O.T. (2.2)

The coefficients ρi’s and ρijk’s are related to the fiber impairments, and the

abbreviation H.O.T indicates fifth and higher-order terms (O(x5)).

For the equalization problem, we need to estimate the transmitted symbols

xq’s from the yq’s. Assume that from (2.2), by application of inverse Volterra
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theory [23], we can obtain

xq =

N−q−1∑
i=−q

Ciyq+i +

N−q−1∑
i,j,k=−q

Cijkyq+iy
∗
q+jyq+k +H.O.T., (2.3)

where N is the total size of transmitted data, still ignoring the effect of ASE noise

in the system. Ci and Cijk are respectively the linear and nonlinear coefficients,

related to ρi and ρijk in (2.2).

Analytical methods are sometimes used in comparable scenarios to determine

the DFE filter coefficients, but lacking an accurate description of the system

noise to include in (2.2), we tune these numerically with training data. From

(2.3), we determine that a DFE with third-order filters in both the forward and

feedback paths would compensate the impairments, the significant nonlinearity

being of third-order. Since the noise affects the calculation of the filter coefficients

(tuning), we retain only the largest of the third-order nonlinear terms (from the

few adjacent samples), and not the smaller third-order and all higher-order ones,

the latter having a greater chance of being inaccurate and adversely affecting the

equalization.

Thus, our nonlinear DFE has the structure

pq = decision
[
f1(yq) + f2(pq)

]
, (2.4)

where the FFF output is

f1(yq) =

n1∑
i=−n1

ciyq+i +

n2∑
i,j,k=−n2

cijkyq+iy
∗
q+jyq+k, (2.5)
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and the output of the FBF is

f2(pq) =
−1∑

i=−n1

dipq+i +
−1∑

i,j,k=−n2

dijkpq+ip
∗
q+jpq+k, (2.6)

The vector yq holds values of past, current and future received symbols; that is,

yq = [yq−n1 , yq−n1+1, . . . , yq+n1−1, yq+n1 ]. Likewise, pq is the vector of past decisions;

pq = [pq−n1 , pq−n1+1, . . . , pq−1]. The linear and nonlinear coefficients for the FFF

are ci and cijk, and those for the FBF are di and dijk, respectively. The length of

the linear parts of the two filters is denoted by n1, and that of the nonlinear parts

by n2.

The FFF and the FBF blocks contain the necessary memory and circuits to

form the functions f1(yq) and f2(pq) from yq and pq respectively, for each q. In

the absence of any decision errors, pq = xq for each q.

The coefficients of the two filters (FFF and FBF) are tuned during a training

period. A known sequence of xq is transmitted, and the same is fed back to the FBF

(instead of the previous decisions from the decision device which is disconnected

from the FBF in this mode). The error signal, which is the difference between the

training signal and the decision device input, is minimized by adapting the FFF

and FBF coefficients, as presented in Fig. 2.2.

Let gq be a combined coefficient vector composed of the filter coefficients (as

yet untuned) ci(i = −n1, . . . , n1), cijk(i, j, k = −n2, . . . , n2), di(i = −n1, . . . ,−1)

and dijk(i, j, k = −n2, . . . ,−1). xq is the combined vector of the appropriate first

and third-order terms from the received symbols and the past decisions and their

conjugates such that gq × xq = f1(yq) + f2(pq).

Recursive least squares (RLS) and least mean squares (LMS) are two popular

algorithms used in adaptive filtering. RLS-based algorithms have good performance
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Figure 2.2: Decision feedback based equalizer training and decision modes

when applied in non-stationary channel models [37] but at the costs of increased

computational complexity and possible instability [38]. Since the optical fiber

channel changes very slowly, we choose the LMS algorithm. It has been successfully

used before to adapt the tap weights for nonlinear equalizers [29] [30]. We

use multiple iterations for every symbol to increase the convergence rate of the

algorithm, as previously done in [34]. The tuning process is stopped after a certain

number of iterations imax (Algorithm 1). Nt denotes the size of the training

dataset, and ei
q denotes the (generally complex) error signal after iteration i. The

convergence parameter µ must be carefully selected for proper convergence. µ

can be a scalar, or if separate parameters for the different first and third-order

coefficients are desired, a vector. The coefficients are tuned once for each q.

After the training is completed, it can be expected that the equalizer coefficients

are properly tuned. The coefficients can then be obtained from g
(imax)
Nt

. Let the
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Algorithm 1 Tuning of FFF and FBF coefficients

for q = 1 to Nt do
for i = 1 to imax do
e(i)
q ← pq − g(i)

q xq

g(i+1)
q ← g(i)

q + 2µe(i)
q xq

end for
g
(1)
q+1 ← g(i)

q

end for

decision device input be denoted by zq. That is,

zq =

n1∑
i=−n1

ciyq+i +

n2∑
i,j,k=−n2

cijkyq+iy
∗
q+jyq+k

+
−1∑

i=−n1

dipq+i +
−1∑

i,j,k=−n2

dijkpq+ip
∗
q+jpq+k. (2.7)

A decision is made on zq according to standard demodulation. We do not

update the filter coefficients in the decision mode. This would add to the complexity

and overhead. More importantly, if a particular decision is wrong, the resulting

adjustments to the filter coefficients would be incorrect and may adversely affect

future performance by increasing the probability of subsequent decision errors.

The decision device output pq = x̂q is the decision on the received symbol yq, and

the FBF forms its input from the decision device output.

2.2 Nature and Convergence of Coefficients

During training, the equalizer must decide on a set of coefficients ci, cijk, di

and dijk that would–with help from the decision device–correctly map the received

symbols yq’s to the transmitted symbols xq’s, in the presence of all the linear and

nonlinear impairments, noise and crosstalk.
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When the equalizer is trained conventionally as described in Section 2.1, the

coefficients never converge to particular fixed values except under special circum-

stances, such as low fiber nonlinearity coupled with absence of ASE noise. (If we did

have a model for the additive noise to use in (2.2), this observation might not have

been true.) During the training phase, an optimization problem is solved, for each

q, so that zq equals the corresponding training symbol pq = xq. For any particular

symbol pair, the optimization is performed very efficiently indeed, giving rise to

very low values of individual e(imax)
q . Also, the effects of the residual third-order

nonlinearity, the higher-order nonlinearity and the ASE noise unaccounted for in

(2.4) all enter into the coefficient tuning process in an unpredictable manner for

each q, and are deposited into the coefficients of the other terms.

In Figs. 2.3 – 2.4 we illustrate the behavior of the coefficients c1 and c000 from

a (single) simulation experiment run on QPSK (quadrature phase shift keying)

modulated data transmitted at 21.4 Gbit/s over 50 SSMF spans at 2 dBm input

power. The inline amplifiers have a noise figure (NF) of 5 dB. We found n1 = n2 = 3

to be a good compromise between performance and computational complexity.

Other relevant system parameters are given in Table 2.1. Although noise in the

system is relatively low, nonlinearity and nonlinear phase noise (NLPN) are not.

Thus the coefficients fail to converge to steady values even as the training size

increases. (Increasing the filter lengths does not seem to affect this.)
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Table 2.1: Simulation Parameters

Description Symbol Value
pseudo-random binary sequence length 215

transmission wavelength 1550 nm
data-rate B 21.4 to 50 Gbit/s

bits per symbol k
symbol rate Fs B/k

oversampling rate (at transmitter) ns 16
sampling frequency F nsFs

attenuation constant α 0.2 dB/km
group-velocity dispersion parameter β2 −20 ps2/km

nonlinear parameter γ 2/(Wkm)
span length L 80 km

number of spans n 35 to 50
transmitter filter 3 dB bandwidth 1/Fs

transmitter filter rolloff factor 0.5
amplifier noise figure (practical) 5 dB

amplifier noise figure (ideal) 3 dB
optical filter bandwidth 2B/F

receiver filter 3 dB bandwidth 1/Fs
receiver filter rolloff factor 0.5

tolerance ε 0.5
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Figure 2.3: Coefficient c1 vs training data length for conventional training
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Figure 2.4: Coefficient c000 vs training data length for conventional training

To reduce the oscillation in the coefficients, at least to some degree, we modify

the way the coefficients are tuned by forcing suboptimal convergence of zq to pq

for each q. This scheme consists of a two-stage training mode. The stages are

sequential, the second stage starts after the first ends. The training set is divided

into two distinct subsets (which need not be equal in size), one for each stage. In

the first stage, we train the equalizer conventionally to get the coefficients in the

ballpark. In the second, instead of tuning the coefficients until zq equals pq, we set

a condition so that the coefficient updating stops as soon as zq is sufficiently close

(to be defined) to pq, and the training moves on to the next (q + 1)th symbol.

Recalling that in the training mode as described in Section 2.1, for each q,

the coefficients are updated such that after each iteration in the LMS algorithm,

zq moves little by little towards pq. Also, g
(1)
q+1 = g(imax)

q . That is, for the first

iteration for the (q + 1)th training (yq+1, pq+1) pair, the coefficients are the same
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as that for the last iteration for the qth pair. Then g
(i)
q+1, i = 1, 2, · · · , imax, may

move away from g(imax)
q as zq+1 = g

(i)
q+1 × xq+1 gets closer to pq+1 with every

iteration.

We would like g
(imax)
q+1 to be close to g(imax)

q to identify the filter coefficients to

be used in the decision mode. We define a region around pq so that if zq is in that

region, we consider it close enough (a decision device would map the region to a

desired point). For QPSK modulated data; for the normalized constellation point

pq = ±1± j, we consider the optimization sufficiently good if |pq − zq| < ε; ε being

a non-negative real number to be tuned empirically, after considering the desired

margin against possible noise that could hurt performance. The modified second

training stage is illustrated in the pseudocode given in Algorithm 2. The result of

this modification is not the same as setting imax to be low: a low imax may not

always guarantee the desired amount of convergence, and the additional criterion

minimizes the computational effort. Since the non-steadiness of the coefficients

cannot always be perfectly eliminated, we use the arithmetic means of the filter

coefficients over each q in the second training phase to find the corresponding fixed

coefficients for use in decision mode.

Algorithm 2 Modified coefficient training

for q = 1 to Nt do
for i = 1 to imax do
e(i)
q ← pq − g(i)

q xq

if |e(i)
q | ≥ ε then

g(i+1)
q ← g(i)

q + 2µe(i)
q xq

else
g(imax+1)
q ← g(i)

q

i← imax
end if

end for
g
(1)
q+1 ← g(i)

q

end for
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Besides ensuring the coefficients do not change much with q, the suboptimal

convergence modification allows us to run the LMS algorithm, for each q in the

second training stage, a smaller number of iterations, since we neither seek not

want perfect convergence of zq to pq. Simulation runtimes indicate that this cuts

down on computations by 30% or more.

In Figs. 2.5 and 2.6 we have the behavior of the same coefficients c1 and

c000 from a simulation experiment run at 2 dBm input power when suboptimal

convergence is applied. The second training stage starts at q = 2000. (As long as

the second training set is of a reasonable length, the actual starting point is not

important, since all the coefficients are affected at the same time by the training

procedure for proper equalization.) These are the counterparts to Figs. 2.3 and 2.4

respectively, and are generated under identical conditions. In Table 2.2, we present

the absolute values of the coefficient of variations (ratio of standard deviation

to mean) of c1 and c000 for conventional and suboptimal convergence training,

and conclude that suboptimal convergence is successful in keeping the coefficients

reasonably constant even as q changes.
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Figure 2.5: Coefficient c1 vs training data length for suboptimal convergence
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Figure 2.6: Coefficient c000 vs training data length for suboptimal convergence
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Table 2.2: Coefficient of Variation (CV) of c1 and c000

Conventional Training Suboptimal Convergence
|CV (c1)| 0.5605 0.2301
|CV (c000)| 1.9560 0.3805

Fig. 2.7 shows the behavior of the coefficient d−1 when suboptimal convergence

is employed. The results are from a simulation experiment run at 2 dBm input

power and the second training stage starts at q = 2000.

Figure 2.7: Coefficient d−1 vs training data length for suboptimal convergence

2.3 Simulation Results

In this section, we apply our DFE to data obtained from simulation experiments

(using the split-step Fourier method) conducted under different system conditions

and modulation formats (OOK, on-off keying or QPSK, quadrature phase shift
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keying) to verify that the performance is satisfactory. We primarily compare

the performance of the DFE against that of digital backpropagation, which is

considered a benchmark in the literature [11]. The relevant simulation parameters

are indicated in Table 2.1.

In Fig. 2.8, we have plotted the bit error rate (BER) curves for the unequalized,

linearly equalized (phase rotation filter), conventional nonlinear DFE equalized,

modified nonlinear DFE equalized (with n1 = n2 = 3), backpropagated (with full

nonlinearity compensation) and the no-nonlinearity limit cases. (The nonlinear

effects become more pronounced with increasing input power.) The BER for the

unequalized case is quite high, mostly due to the nonlinear phase rotation [39]. The

first-order filter performs well at lower levels of nonlinearity. At the lower end of

the input power range, the performances of all four techniques are comparable and

close to the no-nonlinearity limit. At higher levels of nonlinearity, backpropagation

and the nonlinear DFE outperform the other techniques.

The slight differences in performance between the DFE and the backpropagation

method can be attributed to the fact that the modified DFE equalizer makes an

adjustment for the uncompensated terms so that the equalized constellations are in

a region around the respective symbol points. Backpropagation, on the other hand,

works methodically span by span undoing the effects of the linear and nonlinear

impairments. Noise in the system causes inaccuracy in the backpropagation

solution, regardless of the backpropagation step size.

Next, in Fig. 2.9, we have the BER curves from a simulation experiment

run on a higher rate system. This plot is of a similar nature as Fig. 2.8. At

this higher data-rate, the nonlinear impairment effects are greater [36], as is the

effect from the interaction of the ASE noise with the nonlinearity. The nonlinear

DFE and backpropagation again both perform better than the linear filter or the
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Figure 2.8: BER performance (21.4 Gbit/s QPSK, 50 spans, 5 dB amplifier NF)

conventionally trained DFE.

Additional results on the performance of the nonlinear DFE are presented in

Table 2.3. The conditions for the simulation experiments are:

A: 21.4 Gbit/s data-rate, 50 SSMF spans, 3 dB amplifier noise figure,

B: 50 Gbit/s data-rate, 30 SSMF spans, 5 dB amplifier noise figure,

C: 50 Gbit/s data-rate, 40 SSMF spans, 3 dB amplifier noise figure.

Table 2.3: Minimum BER for QPSK Modulated Data (×10−3)

Conditions Unequalized Nonlinear DFE Backpropagation
A 4.3838 0.133 0.133
B 10.4412 0.343 0.343
C 11.0841 0.457 0.429

From Figs. 2.8- 2.9 and Table 2.3, we conclude that the proposed nonlinear
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Figure 2.9: BER performance (50 Gbit/s QPSK, 40 spans, 5 dB amplifier NF)

DFE works satisfactorily for QPSK modulated data transmitted at different data-

rates over different lengths of fibers, with different noise characteristics, and its

performance matches that of backpropagation.

In Fig. 2.10 we have results from a simulation experiment run on OOK

modulated data. Comparing with Fig. 2.8, we first note that the unequalized

BER is higher for QPSK modulated data. This is due the effect of nonlinear

phase noise on PSK modulation schemes. Next, we note that the minimum BER

after equalization is lower for QPSK. QPSK is a more power efficient modulation

technique, and modulated data has constant amplitude.

Additional results on the performance of the nonlinear DFE are presented in

Table 2.4. The conditions for the simulation experiments are:



28

−10 −8 −6 −4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

10
0

Input Power (dBm)

B
it 

E
rr

or
 R

at
e 

(B
E

R
)

 

 

uneq
lin eq
DFE
mod DFE
BP
no NL

Figure 2.10: BER performance (25 Gbit/s OOK, 40 spans, 5 dB amplifier NF)

D: 25 Gbit/s data-rate, 50 SSMF spans, 3 dB amplifier noise figure,

E: 25 Gbit/s data-rate, 50 SSMF spans, 5 dB amplifier noise figure,

F: 50 Gbit/s data-rate, 40 SSMF spans, 5 dB amplifier noise figure.

Table 2.4: Minimum BER for OOK Modulated Data (×10−3)

Conditions Unequalized Nonlinear DFE Backpropagation
D 9.658 0.667 0.667
E 28.459 4.345 3.886
F 61.261 5.031 5.029

We can draw similar conclusions as from the corresponding QPSK performance

results, that is, lower amount of noise produces a lower BER in the equalized data,

as do a lower number of spans. A higher data-rate hurts the minimum equalized

BER. From Fig. 2.10 and Table 2.4, we conclude that the DFE is just as effective
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Table 2.5: Notations

Description Symbol
data block size N

size of data for first training stage N1

size of data for second training stage N2

total training data size Nt

number of filter coefficients nc
iterations per symbol for first training stage imax

mean iterations per symbol for second training stage iavg

in suppressing linear and nonlinear physical impairments for OOK modulated data

transmitted under different conditions.

2.4 Complexity Analysis

In this section, we study if the modified DFE algorithm is computationally

attractive. We would like to note that the only overhead in our proposed equaliza-

tion algorithm arises from the need to train the filter coefficients. Once the tuning

process is complete, there is no further introduction of overhead since the optical

transmission link changes very slowly compared to the data-rate. The notations

used are explained in Table 2.5.

For the modified DFE, the number of calculations during first training stage is

(N1nc+N1imaxnc+N1imax). Since nc and imax are much smaller than the size of the

training data for either stage, the complexity of this stage is O(N1). The number

of calculations during the second training stage is (N2nc + N2iavgnc + N2iavg),

and the complexity of this stage is O(N2). Since N1 ≈ N2, the complexities are

or the same order. The second training stage involves a comparison to check if

|pq − zq| < ε; however iavg is usually less than half of imax to compensate for this.

For the conventional DFE, the number of calculations during the single training
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stage is (Ntnc + Ntimaxnc + Ntimax), and thus the complexity is O(Nt), with

Nt � N due to the very slowly changing channel. For either DFE configuration,

the decision mode (actual operation) is identical. The number of calculations

required for a decision on each symbol is of the order of nc.

For backpropagation, an oversampling rate of 3 or 4 is sufficient [11]. The

computational complexity of back- propagation algorithm is O(N logN) [40]. The

complexity of digital backpropagation is also a function of the number of the

segments, which can be huge. For reduced complexity backpropagation methods

[41], the complexity remains of the same order. This shows that the DFE or the

modified DFE is computationally less taxing than digital backpropagation for a

transmission link with periodic dispersion compensation. For an uncompensated

link, the channel has a larger memory necessitating a larger number of equalizer

taps and a corresponding increase in the algorithm complexity. The complexity of

digital backpropagation remains unaffected.

2.5 Performance Analysis

The error probability evaluation of a DFE can be studied in two subcategories

— with and without error propagation. A wrong decision on a particular symbol

increases the probability of subsequent errors by worsening the post-cursor impair-

ment effects. Thus the error is propagated. In the absence of error propagation, we

assume that as far as post-cursor compensation is concerned, all previous decisions

are correct.

Due to residual and higher-order uncompensated nonlinearities, unmodeled

ASE noise and NLPN in the system, and possibility of decision errors in the

equalizer, zq in (2.7) is different from xq in (2.3). Let us call this deviation



31

δq = zq − xq. For no error propagation, using (2.5), (2.6) and (2.7),

δq = zq − xq = f1(yq) + f2(pq)− xq = f1(f3(xq)) + f2(xq)− xq, (2.8)

where

f3(xq) =

N−q−1∑
i=−q

ρixq+i +

N−q−1∑
i,j,k=−q

ρijkxq+ix
∗
q+jxq+k (2.9)

from (2.2) when the higher-order terms are ignored. If error propagation is

considered,

zq = f1(yq) + f2(pq) = f1(f3(xq)) + f2(decision[zq]), (2.10)

setting up a recursive equation to be solved.

There will be an error in decision for a particular q if δq crosses a certain

threshold. For normalized QPSK modulated data, the conditions for error in the

in-phase and quadrature components are respectively |Re[δq]| > 1 and |Im[δq]| > 1.

Theoretically, in the absence of noise, we can obtain δq analytically to find the

error probability. However, if there is no noise in the system, then the FFF and

FBF lengths can be chosen large enough such that the error probability is zero at

all but the highest input power levels (the effect of the higher-order nonlinearities

become more significant with increasing power level). When noise is present,

having large filter lengths can be useless or hurt the design, as already discussed.

Related work in existing literature, such as [42], make use of limitations and

assumptions about the channel, signals and the noise in the system which are not

satisfied by our nonlinear optical communication system that has interacting and

co-propagating amplifier noise. The problem is further complicated since we use
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training to tune the filter coefficients. Thus we cannot directly use such results.

The condition that a particular decision error does not influence future error

probability is enforced by setting the previous pq’s to the corresponding xq’s while

a decision is being made for the current yq. We measure the deviations δq = zq−xq

and analyze the distributions of the in-phase and the quadrature components of

δq. A numerical estimate of the DFE error probability (BER) can be obtained by

observing the percentage of each component of δq having magnitudes greater than

unity.

We provide an illustration in Fig. 2.11. The optical amplifiers do not introduce

any noise in the system, only for this example. The nonlinearity is quite high

due to the large number of spans and the high power level, but the effect of the

residual third-order and unaccounted higher-order terms are only just beginning to

affect the performance. The distribution of indicates that the tails are stretching a

little over the −1 and +1 limits. The bit error rate is found to be 0.0011.

We illustrate how previous decisions can affect the equalizer performance. We

consider a situation where all inline amplifiers have a noise figure of 5 dB. The

numerical best case error probability estimates (assuming all previous decisions

to be correct) and actual BERs obtained via a simulation experiment are plotted

across a range of input power levels in Fig. 2.12. In addition, we plot the BER

which would have been obtained if half the previous decisions from the DFE were

incorrect.

The equalizer performance is close to the no error propagation BER curve.

Even in the presence of a decision error, the DFE can provide a large enough

margin to provide correct decisions and recover quickly. We conclude that not

considering enough higher-order terms and the contribution from all signals within

the range of influence are the more important factors affecting the BER performance.
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Figure 2.11: Distributions of δq (21.4 Gbit/s QPSK, 60 spans, 3 dBm power)

The difference between the measured BER and the no-error-propagation error

estimate curves is a little larger at higher power levels since the post-cursor

nonlinear impairment enhancement in case of a decision error is magnified with

more nonlinearity.

We can model the error propagation mechanism as a Markov chain [43] using

stochastic states, transition probabilities (to be determined numerically), and use

some simplifications since the number of FBF taps is not unreasonably large. Also,

most optical communication systems employ modulation formats for which the

number of constellation points (and distinct magnitudes of possible errors) is not

very large either.

We consider separately the decisions on the in-phase and quadrature compo-
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Figure 2.12: Effect of error propagation on DFE performance (21.4 Gbit/s QPSK,
50 spans, 5 dB NF)

nents. For each component, each previous decision which enters into the current

decision calculation can either be correct or wrong. Thus the total possible number

of combinations of previous decision errors is 22n2 , including the case where all

previous 2n2 decisions are correct. A state is assigned to each error combination.

We denote a correct decision with 0, and an erroneous one with 1. As an

example, assume that we have n2 = 3, and that the DFE is making a decision

on the qth symbol. Also assume the current state of the system is Vq = [000000],

where the first two bits indicate the decision on the (q − 1)th symbol, the middle

two that on the (q − 2)th one, and the last two on the (q − 3)th one, with the

first, third and fifth bits in a state reserved for in-phase symbol bits. The state
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Vq = [000000] indicates the decisions on all three past symbols were correct. If the

decision on the in-phase bit is incorrect, the next state will be Vq+1 = [100000],

and so on. This allows us to create a state transition table, or equivalently, a state

transition diagram, for the error propagation mechanism. With the knowledge

of current state, corresponding distributions of the deviation δq are generated to

yield the transition probabilities.

The error propagation mechanism system can reside in exactly one state at any

sampling instant q, and the number of total possible states is finite, as is each of

the states. State transition probabilities are determined only by the current state

and are independent of all previous states. Also, these probabilities are constant

over time, as long as the optical communication system parameters are unchanged.

Thus the error propagation mechanism system is a Markov chain process.

The transition matrix of this Markov chain contains the state transition proba-

bilities. Also, by the nature of definition of the states, none of them are absorbing.

The limiting distribution is numerically obtained by raising the transition matrix

to a sufficiently high power and observing any row.

The above methodology allows us to predict the probability that the error

propagation mechanism system is in a certain state, the probabilities being constant

in the limiting case. The appropriate state probabilities are then added to compute

the required probability of error of the in-phase or the quadrature bit, or the

symbol error probability.

Assume that we wish to numerically estimate of the bit error probability when

the input power level is 2 dBm in the system in the previous example. With

n1 = n2 = 3, the number of states is 22×3 = 64. With the filter coefficients fixed

from training, we apply the DFE to a known dataset. The current state Vq contains

the previous decisions and we check the probability of a wrong decision for all
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Table 2.6: State Transition Table for DFE Error Propagation System

Present State Next State Transition Probability
S0 = [000000] S0 = [000000] 994.23× 10−3

S0 = [000000] S1 = [010000] 2.57× 10−3

S0 = [000000] S2 = [100000] 3.20× 10−3

S0 = [000000] S3 = [110000] 0
S1 = [010000] S4 = [000100] 933.11× 10−3

S1 = [010000] S5 = [010100] 61.69× 10−3

S1 = [010000] S6 = [100100] 5.20× 10−3

S1 = [010000] S7 = [110100] 0
...

...
...

S62 = [101111] S56 = [001011] 926.25× 10−3

S62 = [101111] S57 = [011011] 4.57× 10−3

S62 = [101111] S58 = [101011] 69.18× 10−3

S62 = [101111] S59 = [111011] 0
S63 = [111111] S60 = [001111] 839.70× 10−3

S63 = [111111] S61 = [011111] 76.09× 10−3

S63 = [111111] S62 = [101111] 84.21× 10−3

S63 = [111111] S63 = [111111] 0

possible Vq’s. The resulting percentage of errors in the in-phase and the quadrature

bits generate the transition probabilities. Sections of the state transition table are

given in Table 2.6.

The transition probabilities in the state transition table form the elements of

the transition matrix (with 64 rows and 64 columns). By raising the transition

matrix to a sufficiently high power, each row of the limiting distribution of the

transition matrix is numerically determined to be [982.31 2.54 3.17 0 0 0 0 0] ×

103.

Finally, from the probabilities of the system being in the relevant states, we

determine the bit error rate to be 3.09× 10−3, which is a good estimate for the

simulated BER of 3.83× 10−3. We also check the BER corresponding to particular

current state Vq’s, and this is illustrated in Table 2.7,
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Table 2.7: BER as a Function of Current States

Vq BER
[001000] 3.69× 10−3

[000100] 3.43× 10−3

[000010] 3.26× 10−3

[000001] 3.20× 10−3

[001100] 3.49× 10−3

[001010] 3.20× 10−3

[001001] 3.52× 10−3

[000110] 3.57× 10−3

[000101] 3.23× 10−3

[000011] 3.12× 10−3

2.6 Chapter Summary

This chapter discusses the application of a modified nonlinear DFE in a long-

haul coherent optical fiber communication system. The channel is lossy, dispersive,

nonlinear and contains random amplifier noise along with NLPN. We design the

equalizer structure from a mathematical description of the system, and study the

effects of noise, NLPN and residual or uncompensated nonlinearity on the filter

coefficients when the DFE is trained conventionally, and also using our modified

convergence method.

We note the possible benefits of the modified training scheme and apply the

designed DFE to a fiber-optic system under various conditions and modulation

formats, comparing with results obtained from backpropagation. We conclude that

the performance is satisfactory, and that the computational complexity is modest.

Finally we study the problem of performance prediction of the DFE when applied

to an optical communication system, and use a numerical method for the same

both in absence and in presence of error propagation.

In the future, we would like to apply a DFE to a dispersion unmanaged system
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where the effects of dispersion, nonlinearity and their interaction are stronger.

A rigorous mathematical analysis on the effects of noise and NLPN on filter

coefficients is also desirable. This would enable us to design more effective training

schemes to tune the coefficients. Finally, when error propagation is taken into

account, analytical performance prediction of a DFE when applied to fiber-optic

communication systems is a topic which requires further investigation.

The performance limit in the absence of nonlinearity is not approached in a

noisy nonlinear channel for high power levels by digital backpropagation or our

equalizer, and there is an opportunity of achieving even better performance. To

close this gap, we seek to obtain more precise knowledge about the nonlinear

interaction between signal and noise.



Chapter 3

Single Pulse Analysis of

Nonlinear Fiber Transmission

In the last chapter, we presented a nonlinear equalizer to correctly predict

the transmitted signal. We made an approximate adjustment for the nonlinear

signal-noise interactions to mitigate the same, and provide good performance. It

is important to note that we did not use an accurate model of the interaction, and

merely used an approximation. This chapter seeks to understand the nature of

such interactions using the simplest non-trivial scenario possible so that we can

approach the performance which can be achieved when such nonlinear interactions

are absent. We study a single signal pulse plus noise propagating through a single

span of fiber.

Optical fibers–due to their inherent advantages–are well-suited for high speed

long distance communication. However, the optical fiber channel is dispersive

and nonlinear [44] when the communication link stretches for a few thousands

of kilometers. In a legacy optical system, periodic restoration of signal strength

and dispersion compensation are performed. The random amplified spontaneous

39
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emission (ASE) noise from inline amplifiers interacts nonlinearly with the deter-

ministic signal, while the signal interacts with itself, as does the noise, to generate

crosstalk at the receiver [5]. In general, the noise component at the receiver end of

an optical communication channel is neither uncorrelated nor Gaussian due to the

signal-signal, signal-noise and noise-noise interactions.

Communication in the presence of additive Gaussian noise is well understood

and has been extensively studied in the past [45]. If the noise is non-Gaussian,

sufficient number of independent noise components from individual sources may

combine together through the central limit theorem to approximate Gaussian

statistics [46]. However, if the number of additive noise sources is not high

enough, or in general, if the Gaussian approximation does not hold for a particular

communication system, a different approach may be necessary. We employ Gaussian

mixture modeling to study the interaction between amplifier noise, nonlinearity and

data in optical fiber communication systems so that signal processing techniques

may be used to improve the system performance.

There has been considerable work published on the effects of noise in optical

fibers. Some authors have investigated the bit error rate of the transmitted signal

or the signal-to-noise ratio at the receiver end of an optical fiber transmission

channel under conditions of zero or negligible dispersion [47], [48]. When dispersion

is present, [49] derives the received signal statistics in the limit of low dispersion.

In [50], the author analyzes the probability density function for a phase modulated

communication system. Receiver end statistics such as phase noise distribution,

bit error rate, signal detection have been analytically studied utilizing different

methods in the literature [51], [52].

For a dispersive channel with ASE noise, researchers have also analyzed the

achievable information rate and the multiuser capacity [53], [54]. While works
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discussing the actual propagation of the signal and the ASE noise in the channel are

comparatively rare, one such piece of literature is [55]. The authors develop a model

which describes the ASE noise in systems with distributed Raman gain, and study

the interaction between the signal and noise. Simulations and experiments are used

to validate the model. It is shown that for larger realistic input signal power levels,

the noise statistics deviate significantly from the Gaussian distribution. Another

work of a similar nature is [56] where the author studies correlated noise behavior.

This work uses computational techniques for the analysis and characterization of

nonlinear phase noise and its impact on system performance.

We would like to understand the effects of ASE noise (originating from the

amplifiers used to restore signal power) affecting an optical signal as it travels

through an optical communication system. As seen above, while there has been

considerable research done in this field, critical knowledge about the nature of the

signal-noise nonlinear interaction is incomplete. To this end, we investigate the

simplest non-trivial scenario possible: the transmission of a single pulse through a

single span of standard single mode optical fiber (SSMF), the single signal pulse

being affected by a single ASE noise source.

Our communication system consists of a transmitter with a pulse-shaping filter

and a noise source which adds additive white Gaussian noise (AWGN) to the single

pulse which is transmitted through a single fiber span. We note that the noise

source is before the optical fiber span so that the noise can interact with itself

and the transmitted signal. We denote the digital data by x, the noise by w(t),

and the observed receiver output signal by y(t). We transmit s(t) = xp(t) + w(t),

where p(t) is the pulse shape. At the receiver end, the received signal is coherently

detected, filtered and sampled. The set-up is illustrated in Fig. 3.1.
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Figure 3.1: Single pulse transmission over a single span

This is the most fundamental situation which can be imagined. There are no

interference effects from other adjacent pulses, or the noise affecting them. We

have one span of fiber only. We assume no effects from the amplifier other than

additive noise, nor do we have dispersion compensation. The propagating signal is

affected by itself and the single noise source. In effect, this study can serve as the

building block for subsequent research, when other effects are included. This is

the motivation behind studying this fundamental scenario.

Let f denote the effect of the fiber (physical impairments). Then, for the set-up

in Fig. 3.1, y(t) = f(x(t) + w(t)). After filtering and sampling, we assume that

the output variable can be written as y = x̃ + w̃, and study the statistics of w̃.

The signal term x̃ is deterministic.

We use different techniques to analyze, describe and understand the various

interaction effects. Gaussian mixture modeling (GMM) is a popular tool in data

clustering applications [57]. In essence, a GMM is a technique to decompose an

unknown distribution into a mixture of two or more Gaussian components, which

can then be studied separately. Gaussian mixture models (GMM) have been used to

model a variety of non-Gaussian noise environments [58]. Signal processing methods

can be developed to work on the actual distribution by combining algorithms

suited to each Gaussian component, making understanding, analysis and further

processing more convenient [59]. Few existing works discuss application of GMM
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in communication theory. In [60], the authors show that the interference in a

wireless random-access communication system network could be modeled as a

mixture of Gaussian and alpha-stable noise. In [61], independent component

analysis using a mixture of Gaussian kernels is applied for separation of quadrature

amplitude modulated (QAM) sources. In [62], the authors employ GMM for source

localization. GMM is used to approximate a probability density function and this

aprroximation is shown to be theoretically arbitrarily accurate. A related work [63]

is concerned with finding analytical upper and lower bounds for an MMSE using

Gaussian mixture distributions.

In this chapter, we explain the theory and application of GMM to the research

problem and present compelling evidence that this is an useful tool for analyzing

the optical fiber channel. We reduce the complicated receiver end noise to Gaussian

components for which signal processing techniques already exist and obtain channel

descriptions (such as mutual information and optimum constellations) which would

enable us to find or predict useful characteristics of our fiber-optic communication

system. While for lower levels of nonlinearity, the existing methods (such as VSTF)

have been proved to be capable, we present evidence that at higher nonlinearity,

our proposed analysis technique using GMM is superior.

The rest of the chapter is organized as follows. Section 3.1 provides a brief

background on the Expectation Maximization (E-M) algorithm which is our

algorithm of choice for obtaining the Gaussian Mixture Model description. Section

3.2 shows how GMM can be utilized to decompose the receiver output into

individual Gaussian components. Section 3.3 reviews the use of VSTF for analyzing

the mutual information and channel capacity of our communication system. In

Section 3.4, we check the accuracy of our decomposition methods using some

standard techniques and in Section 3.5, we use the stated techniques to compute
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the mutual information of the channel. Section 3.6 summarizes the chapter and

discusses possible future research directions.

3.1 Gaussian Mixture Modeling with Expecta-

tion Maximization Algorithm

A GMM is a parametric probability density function represented as a weighted

sum of Gaussian component densities. Mathematically, this can be expressed as

PGMM := PW (w) =
M∑
m=1

rmP (w|µm,Σm), (3.1)

where W is a data vector we are interested in decomposing into Gaussian com-

ponents, M is the number of mixture components, rm is the weight of the mth

component, with µm and Σm being its mean vector and covariance matrix, re-

spectively. Gaussian mixture modeling may be more appropriate than k-means

clustering when clusters have different sizes and correlation within them [64].

In our problem, the noise component of the received signal is not entirely

Gaussian. However, we can classify it into separate groups, or clusters, with

each group being distributed normally. GMMs have an unique capability of

representing a large class of sample distributions and are often used to form

smooth approximations to arbitrarily shaped densities [65].

We intend to classify the interference into separate groups, or clusters, with each

group being distributed normally. The clusters in a GMM are assigned by selecting

the component which maximizes the posterior probability of a particular data

point (observation) belonging to a cluster. This decomposition technique—which

is sometimes considered a soft clustering method—uses an iterative algorithm
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which converges to a local optimum. The posterior probabilities for each point

indicate that each data point has some probability of belonging to each cluster.

Each component in the GMM has its multivariate density expressed as

P (w|µm,Σm) =
1

2π
1
2 |Σm|

1
2

e−
1
2

(w−µm)Σ−1
m (w−µm)T (3.2)

The Expectation-Maximization (EM) algorithm [66] is a popular method for

obtaining a GMM. Let for a GMM model with M components, Θ denote the

complete set of parameters; that is

Θ = {r1, r2, · · · , rM , µ1, µ2, · · · , µM ,Σ1,Σ2, · · · ,ΣM}, (3.3)

where ri, µi and Σi are respectively the weight, mean vector and covariance matrix

of the ith GMM component.

For our system, each term is bivariate, because we, in general, transmit complex

(phase modulation) data, and in any case, the noise is complex. In our work we

assume single polarization. If dual polarizations are used, the model can be

extended to four terms.

In the expectation step, denoting the current parameter values as Θ, we compute

the membership weights rm for all data points wi, 1 ≤ i ≤ N and all mixture

components 1 ≤ m ≤ M to which we want to fit a GMM. (The membership

weights are calculated using Bayes’ rule.) This gives us an NM matrix (N rows

and M columns) of membership weights. Each row of the matrix should sum to 1.

In the maximization step, we use the membership weights and the data and

calculate new parameter values for the next step. We assign to component m the

sum of the membership weights for the mth component. Next we calculate the
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updated means µnewm , 1 ≤ m ≤M as

µnewm =
1

N

N∑
i=1

ri,mwi, (3.4)

and the updated Σnew
m ’s as

Σnew
m =

1

N

N∑
i=1

ri,m(wi − µnewm )(wi − µnewm )T , (3.5)

with N being the number of measurements.

After the new parameters have been computed, the maximization step is

complete, and we recompute the membership weights in the expectation step, and

continue in this manner for a set number of iterations. One pair of expectation

and maximization steps constitute one iteration of the algorithm.

3.2 Gaussian Mixture Models Illustration

In this section, we illustrate the GMM method by fitting an M-GMM with

M = 2, 3 and 4 components to the noise component at the receiver output for

the single pulse single span fiber communication system (as illustrated in Fig.

3.1) using the E-M algorithm. Each GMM component has two dimensions, one

corresponding to the real part of the noise term, and the other to the imaginary

part. The received signal is a combination of the original transmitted signal, the

noise from the amplifier, and all the components resulting from the signal-signal

and signal-noise interactions. We isolate the noise component (including interaction

effects) by removing the original transmitted signal from the received signal. The

simulation parameters used are indicated in Table 3.1.
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Table 3.1: Simulation Parameters

Description Symbol Value
transmission wavelength 1550 nm

oversampling rate (at transmitter) ns 16
attenuation constant α 0.2 dB/km

group-velocity dispersion parameter β2 −20 ps2/km
nonlinear parameter γ 2/(Wkm)

span length L 100 km
number of spans n 1

optical filter bandwidth 2B/F
receiver filter 3 dB bandwidth 1/Fs

receiver filter rolloff factor 0.5

We plot the data obtained (from split-step Fourier simulation of NLSE equation)

for the noise component and superimpose the fitted GMM distributions. In Fig.

3.2, we present the contours of the fitted two or three component Gaussian models

for observations obtained at P = 0 dBm input power level, and in Fig. 3.3, we

present the corresponding contours for P = 8 dBm. At the higher power level, the

nonlinear effects become more prominent, and this is observed from the scatter

plot of the data. The system as a whole becomes more non-Gaussian, and as a

result the dominating components have means further away from the origin and

the covariance matrices become more non-diagonal, as shown in Figs. 3.4 and

3.5. The larger mean vectors indicate that with increasing nonlinearity, the noise

components become more significant, which is to be expected, since the system

is nonlinearity-dominated. Also, the real and imaginary parts of the components

become more correlated, and an additive independent noise model can no longer

be considered sufficient. Nonlinearity and the nonlinear signal-noise interactions

increase with larger input power levels.
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Figure 3.2: (a) 2-GMM and (b) 3-GMM fitted to simulation data at 0 dBm input
power

Figure 3.3: (a) 2-GMM and (b) 3-GMM fitted to simulation data at 8 dBm input
power
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Figure 3.4: Mean of dominant GMM component

Figure 3.5: Correlation coefficient of dominant GMM component (95% confidence
intervals)
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We investigate the weights of the largest component of the different GMM

models in Fig. 3.6. We note that the more significant component in the 2-GMM

model is always very dominant. However, there is a significant difference between

the results obtained for the two ends of the power spectrum.

At a low input power level of P = 0 dBm, we note that the weight (proportion)

of the less correlated component (the component with a mean closer to zero and

a more diagonal covariance matrix) is much higher (0.9994 for a 2-GMM, and

0.8463 for a 3-GMM). At the higher input power level of P = 8 dBm when

nonlinearity prevails, the corresponding numbers are much lower (0.0562 and

0.0016 respectively), and the correlated Gaussian components dominate. This is

why the 2-GMM model fails to perform much better than the 1-GMM model, as

we show in Section 3.4. A 3-GMM or a 4-GMM allows for more freedom and a

better fit. However, we must also be careful to not overfit to the noise data [67].

We will find in Section 3.4 that a 3-GMM is ideal for our purposes.

Although this chapter is concerned with analyzing a single pulse transmission

through a single SSMF span, we present some results which show the consistency

of our technique. We know that the nonlinear effects in a fiber scales with the

number of spans of the fiber, and also as the 1.5th power of the input optical

power [68]. In Table 3.2, we note the consistency of the covariance matrix of the

largest 2-GMM component when the span length (L) or the nonlinearity (γ) or

the input optical power (P ) is increased as described above. This result is the

average of five experimental runs.
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Figure 3.6: Weight of most significant GMM component for different power levels
(95% confidence intervals)

3.3 Volterra Series Transfer Function

The Volterra series transfer function in the time or frequency domain is a

nonlinear relationship between the input and the output of a system. Let us denote

the input and output of the channel by x and y, respectively. Using the third-order

Volterra model for the fiber (discarding higher-order kernels), the observed receiver

output after sampling for a digital real-valued data x can be modeled as [69]

y ∝ x+ w + ρ1(x3 + 2wx2 + w∗x2 + 2x | w |2 +xw2 + w | w |2), (3.6)
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Table 3.2: Covariance Matrix of Most Significant 2-GMM Component

Conditions Covariance Matrix

2 spans of L = 80 km, γ = 2/(Wkm), P = 10 dBm

[
0.0330 0.0405

0.0405 0.0888

]

L = 80 km, γ = 4/(Wkm), P = 10 dBm

[
0.0340 0.0423

0.0423 0.0914

]

L = 80 km, γ = 2/(Wkm), P = 101.5 dBm

[
0.0351 0.0444

0.0444 0.0945

]

ρ1 being a constant coefficient [13]. We can see that y consists of a signal component

x+ ρ1x
3 and a noise component, which includes the cross terms resulting from the

interaction between complex noise and the transmitted signal.

Instead of numerically solving the nonlinear Schrödinger equation, the Volterra

series transfer function (VSTF) computes an approximate analytic solution. Due

to high computational complexity associated with integration, we usually truncate

the VSTF to third-order. The first-order Volterra kernel represents the linear effect

from fiber loss and dispersion, and the third-order kernel represents the nonlinear

effect. The VSTF method is equivalent to the perturbation method [70].

At lower power levels, the nonlinearity in the fiber is low. So the higher-order

terms in y in (3.6) are small. At a high signal to noise ratio (SNR), the terms

containing w2 are small, and thus an additive Gaussian noise model holds. If we

assume a high SNR environment, the last three terms in (3.6) can be ignored. We

contend that at higher power levels, using VSTF and GMM is more accurate than

the additive Gaussian model in optical fiber communication systems.

Using the results in [71], for our single span single pulse set-up (if the pulse
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shape is Gaussian), the received signal can be approximated as

y(t) = xP
1
2 exp

[
− (t− T )2

2T 2
+ jΦ

]
+ jγxx∗xP

3
2 exp[jΦ]exp

[
− (t− T )2

6T 2

]
∫ L

0

exp(−αz)

K1(z)
exp

[
−4(t−T )2

3

T 2(1 + j3β2z
T 2 )

]
dz + w̃(t), (3.7)

where

K1(z) =

√
1 +

j2β2z

T 2
+

3β2
2z

2

T 4
, (3.8)

Φ is the phase of x and w̃(t) is the noise at the output of the fiber, which cannot

be modeled using this theory. All other symbols have usual meanings.

3.4 Validation

In probability and information theory, the Kullback–Leibler divergence [72]

is a measure of the difference between two probability distributions P and Q. It

is not symmetric in P and Q. In applications, P typically represents the actual

distribution of data, observations, or a precisely calculated theoretical distribution,

while Q typically represents a theory, model, description, or approximation of P.

The Kullback–Leibler divergence is defined as

DKL(P ||Q) =
N∑
j=1

PW̃ (w̃j) log
PW̃ (w̃j)

QW̃ (w̃j)
. (3.9)

In Fig. 3.7, we plot the Kullback–Leibler divergences on 1-GMM (additive

Gaussian), 2-GMM, 3-GMM and 4-GMM as compared to SSF simulation for

different power levels. No restrictions are set on any of the Gaussian components.
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The point of this exercise is to observe how closely our Gaussian component

decomposition(s) Q matches the actual noise distribution P. We use the simulation

data to obtain P. As indicated above, Q is the sum of the weighted GMM component

distributions.

From Fig. 3.7, we find that at lower power levels (when nonlinearity is low),

the match between the density estimated using simulated sample points and the

Gaussian decomposition is better than at higher power levels. Also, there is no

appreciable difference if more components are added. However, when there is

more nonlinearity in the system and the noise distribution PW as a whole is more

non-additive Gaussian, the additional components can reduce the Kullback–Leibler

divergence and provide a more accurate model of the noise.

We also note that there are only minor differences between the Gaussian model

and the 2-GMM decomposition. In addition, 3-GMM and 4-GMM perform similar

to each other. As seen above in Fig. 3.6, this is due to the significant domination

of one component in the 2-GMM. This leads to the conclusion that for all practical

power levels, using a 3-GMM with no restrictions on any components (means and

covariance matrices of all components are chosen by the E-M algorithm) would be

sufficient for analysis. Using a 4-GMM adds only a little performance gain, but at

the cost of much higher computations. In fact, the performance benefits start to

saturate after a 3-GMM, while computations keep increasing.

3.5 Mutual Information

In this section we show how the GMM model can be used to approximate

the mutual information between the input to the fiber x and the sampled output

y. We note the mutual information I(X;Y ) between two variables X and Y
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Figure 3.7: K-L divergences for different GMM models vs. input power (95%
confidence intervals)
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depends only on the probability and conditional probability of the input and

output distributions [73].

The capacity of a channel is the maximum rate of communication for which

arbitrarily small error probabilities can be achieved. The channel capacity is

defined as

C = sup
PX(x)

I(X;Y ), (3.10)

where the supremum is taken over all possible choices of PX(x), the input distribu-

tion of X. The capacity of a channel is the supremum over all achievable rates. In

general, achievable rates— for conditions placed on PX(x)— are smaller than the

channel capacity.

For an ideal channel with additive white Gaussian noise (AWGN), Shannon’s

law defines the theoretical maximum rate at which error free information can be

transmitted over the channel in the presence of noise [7]. The information capacity

in bits per transmission can be calculated as

C =
1

2
log

(
1 + SNR

)
, (3.11)

where SNR is the signal to noise ratio for the transmission. We note that the

above expression does not hold true when the noise is non-Gaussian. As already

discussed, while each noise source in our system satisfies AWGN requirements, due

to the nonlinear interaction with signal, and itself (or other noise sources), the

resultant noise at the receiver end is not Gaussian.
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The mutual information between two discrete variables X and Y is defined as

I(X;Y ) =
∑
y

∑
x

PXY (x, y) log

(
PXY (x, y)

PX(x)PY (y)

)
, (3.12)

where each summation is over the spaces of the two variables, PXY is the joint

probability distribution function of the random variables X and Y having marginal

distributions PX and PY respectively.

We note that (3.12) can be re-written as an expectation of the log entity. The

expectation operation can then be replaced by the sample mean when we use the

law of large numbers. We can replace the probability density functions with our

GMM estimates to yield the mutual information

I(X;Y ) ≈ 1

N

N∑
n=1

log

(
PGMM(xn, yn)

PX(x)PGMM(yn)

)
, (3.13)

with N being the number of data samples. PGMM is the weighted sum of the

mixture component densities (3.1).

The mutual information between two Gaussian variables is given by

I(X;Y ) =
1

2
log
|Σxx||Σyy|
|Σ|

, (3.14)

where Σ is the joint covariance matrix expressed as

Σxx Σxy

Σyx Σyy

, and |.| denotes

the determinant.

For the VSTF method, we use (3.6) and (3.14) to compute the mutual infor-

mation. The noise at the input w(t) is a zero mean Gaussian random variable,
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and

Σxx = E((X − E(X))(X − E(X))′), (3.15)

Σyy = E((Y − E(Y ))(Y − E(Y ))′), (3.16)

Σxy = E((X − E(X))(Y − E(Y ))′), (3.17)

Σxy = Σyx, (3.18)

where E(.) denotes the expectation of a random variable.

We present the covariance matrices obtained from the 3-GMM and the VSTF

models for comparison. The covariance matrices for largest 3-GMM compo-

nents at 0 and 10 dBm input power (averaged over 10 trials) are respectively0.0773 0.0075

0.0075 0.0730

 and

0.0320 0.0388

0.0388 0.0864

, and the corresponding VSTF matrices

are respectively

 0.0713 −0.0021

−0.0021 0.0860

 and

0.0348 0.0413

0.0413 0.0914

. We conclude that

there is a close match between the results obtained using the two tools. We note

that the VSTF is not energy preserving, so it is not unexpected that the variance

and covariance values are larger than simulation.

Next, we investigate the achievable rate of the network for the Gaussian, VSTF

and 3-GMM noise models. We calculate the mutual information and find its upper

limit at the different power levels to obtain the achievable rate with a constellation

size of 256. We start with random constellations (of the same size 256) and with

each constellation point having a random probability (which together add up to

unity). We use the closed-form densities provided by our two models: the correlated

Gaussian model for the VSTF, and the M-GMM model. Trying to achieve this
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using SSF simulation would involve significant amounts of computational effort.

Depending on the noise model, each constellation yields a mutual information

value. The upper limit boundary of the mutual information values is traced and

this yields the achievable rate. The results for the three different noise models

(additive Gaussian, VSTF and 3-GMM) are presented below in Fig. 3.8. We see

that at lower power levels, as expected, the independent Gaussian model performs

well, and approaches (3.11). However, the independent Gaussian model cannot

model the effects from the non-additive terms at higher power levels, and we need

to employ more advanced techniques, such as 3-GMM, to effectively understand it.

The VSTF model appears to overestimate capacity over the entire range of power

levels. At the higher power levels, the GMM model is more accurate.

Figure 3.8: Mutual information for varying input powers for different techniques
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We plot example input constellations which result in the highest mutual

information at 10 dBm input power in Figs. 3.9. We see that the Gaussian and

3-GMM models choose different looking constellations that optimize the mutual

information. The 3-GMM model avoids large power constellation points, thereby

reducing the effective nonlinear nature at this high power level. The diameter of

each circular symbol denotes the probability of the corresponding constellation

point.

Figure 3.9: (a) 3-GMM and (b) Gaussian constellations (256 constellation points)
for highest mutual information at 10 dBm average input power

We describe the power distributions of the optimum constellations for the

different models, and note the different factors affecting the distributions. Each

constellation point in Fig. 3.9 has a power and a probability associated with it.

We use a kernel-based density estimation technique to draw the power density. For

each such point, we draw a Gaussian kernel— whose height is determined by the

corresponding probability— around the power level. We sum all the kernels (the

number of kernels is the same as the number of constellation points) to obtain

the power distribution estimation. In Fig. 3.10, we present the power distribution
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for the optimum 3-GMM constellation with 256 points at four times the nominal

nonlinearity level (γ = 8/(Wkm)), and input power P = 10 mW. We include the

average of 20 trial runs, and also superimpose one single sample run result.

Figure 3.10: Distribution of constellation (256 points) power for 3-GMM at 10
mW average input power (γ = 8/(Wkm))

We note that this distribution is dependent on the constellation size for both

3-GMM and Gaussian models and present related results in Fig. 3.11 for four

times the nominal nonlinearity level (γ = 8/(Wkm)), and input power P = 10

mW. The peaks become sharper with increasing number of constellation points,

and at this combination of high nonlinearity level, high input power and large

number of constellation points, we can see four distinct peaks for both 3-GMM

and Gaussian models.

Compared to the Gaussian noise model, the 3-GMM noise model does not go
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Figure 3.11: (a) 3-GMM and (b) Gaussian constellation power distributions
(64, 128, 256 constellation points) for highest mutual information at 10 mW average
input power (γ = 8/(Wkm))

to as high power levels. This is reasonable since at the higher power levels, the

noise is not Gaussian at all, as we noted. Therefore, the GMM power distribution

has a much higher central tendency compared to the Gaussian model distribution.

Kurtosis is a measure of the tail-heaviness of a distribution, and is calculated

at the ratio of its mean to its standard deviation raised to the fourth power. We

present kurtosis results in Table 3.3 for both 3-GMM and Gaussian model for the

different number of constellation points to illustrate the dependence of the power

distribution.

Table 3.3: Kurtosis of 3-GMM and Gaussian Constellations as a Function of the
Constellation Size

Constellation Size 3-GMM Gaussian
64 0.0781 0.0572
128 0.2397 0.1175
256 0.3536 0.1319

Lastly, we investigate how changing the nonlinearity level affects the power

distribution. The results are presented in Fig. 3.12 for two different levels
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Figure 3.12: Distribution of constellation (256 points) power for 3-GMM at 10
mW average input power (γ = 8/(Wkm), 20/(Wkm))

of nonlinearity and for 256 constellation points. We find that the higher the

nonlinearity, the sharper the peaks are (in general).

3.6 Chapter Summary

We present a novel method to decompose the receiver end noise of an optical

fiber communication system into Gaussian components using GMM decomposition.

We propose that understanding the noise-nonlinearity-signal interaction on a single

optical pulse propagating through a single span of optical fiber is a fundamental step

in understanding and combating the effects of ASE. We propose and validate the

use of GMM as a tool to understand the various single pulse and noise interaction

effects in the simplest optical fiber communication channel. We explain how GMM
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and VSTF techniques can be applied to the present problem, and validate them.

For lower levels of nonlinearity, the Gaussian model is satisfactory. However, as

nonlinearity increases, we need to make use our GMM model. We also find that

3-GMM model avoids large power constellation points, and that the resulting

power distribution concentrates more power in the higher end of the power domain.

In the next chapter, we extend this work to a multi-pulse transmission system.



Chapter 4

Multi-pulse Transmission with

Gaussian Mixture Models

In the last chapter, we use Gaussian mixture modeling to study the nonlinear

interaction effects between a signal pulse and a single noise source being transmitted

over a single span of SSMF. This chapter furthers that knowledge by generalizing

the scenario. We transmit multiple signal pulses, sometimes dissimilar, and find a

setup through which we can predict the performance of a practical communication

system. Once again, we use Gaussian mixture modeling to decompose the receiver

end signal-noise interaction outputs into individual components and study them.

We already investigated the simplest non-trivial scenario possible: the trans-

mission of a single pulse through a single span of standard single mode optical

fiber (SSMF), the single signal pulse being affected by a single ASE noise source.

This is the most fundamental situation that can be imagined. In this chapter, we

add interference effects from other adjacent pulses, and the noise affecting those.

We still have one span of fiber only, with no optical dispersion compensation. The

propagating signal pulses are affected by themselves, each other, and the noise

65
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source.

Our communication system consists of a transmitter with a pulse-shaping filter

and a noise source which adds additive white Gaussian noise (AWGN) to the

signals pulses which are transmitted through a single fiber span. We note that the

noise source is before the optical fiber span so that the noise can interact with

itself and the transmitted signal.

For comparison (including comparison with the single pulse case), we also

consider a scenario with digital backpropagation to eliminate all signal-signal

interactions. The interactions between the signal pulses were not present when

a single pulse transmission was studied. When backpropagation is employed, we

have the noise source after the optical fiber span (otherwise the backpropagation

would precisely undo the impairment effects leaving us with just the additive noise).

In effect, this study generalizes the approach we have already used.

Importance sampling is a technique that allows us to obtain some samples

from an interesting or important region of a distribution. In many applications,

we want to learn some measure of a distribution PX(x) where PX(x) is nearly

zero outside a particular region. That is, the probability of the random variable

assuming a value in the region of interest is minute. A Monte-Carlo sample from

the distribution of X could fail to have any significant number of points inside

the region of interest. We solve this problem by sampling from a distribution

which overweights the important region [74]. For importance sampling, the sample

distribution P ∗X that minimizes the variance of the sample is often chosen. It can

be shown that the distribution that minimizes the above variance is [75]

P ∗X(x) =
|X|PX(x)∫
|x|PX(x)dx

. (4.1)
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We use this tool in combination with GMM to calculate the bit error rate.

Kernel density estimation (KDE) is a statistical tool to estimate the probability

density function of a random variable. A histogram is not smooth, since it depends

on the width of the bins and the end points of the bins. Kernel density estimation

solves these problems. Kernel estimators center a kernel function at each data point.

We can obtain a smooth density estimate using a smooth kernel function as our

building blocks. Kernel estimators smooth out the contribution of each observed

data point over a local neighborhood of that data point [76]. We use kernel density

estimation after importance sampling to validate our GMM decomposition.

This chapter is organized as follows. In Section 4.1, we study the Gaussian

decomposition when two adjacent pulses are transmitted, including the scenario

when the twin pulses are not adjacent any more. Section 4.2 describes how the

signal pulses affect each other, when the pulses are dissimilar. We also increase the

number of pulses (from two) and generalize the analysis. In Section 4.3, we validate

our GMM decomposition of nonlinear signal-noise interactions in a multiple pulse

transmission. Sections 4.4 and 4.5 respectively presents the theory and the results

of the bit error rate calculation in such a transmission. Section 4.6 summarizes

the chapter and discusses possible future research directions.

4.1 Transmission of Two Pulses

We study the Gaussian decomposition when two adjacent pulses are transmitted,

including the scenario when the twin pulses are not adjacent any more. The goal is

to study the effect of one pulse on the other, and also on itself. We concentrate our

analysis on QPSK modulation, and transmit two identical pulses 1 + j. We remove

the original signal(s) to isolate the noise and interaction effects. We decompose
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the isolated noise, noise-signal and signal-signal interaction terms into two or three

Gaussian components using 2- or 3-GMM techniques. We perform 2D 2-or 3-GMM

on the first pulse of the complex signal unless noted otherwise. (When digital

backpropagation is employed, it removes the signal-signal interaction.)

Digital backpropagation is a technique used to jointly compensate linear

and nonlinear impairments. The basic principle is to solve an inverse NLSE

through the fiber to estimate the input signal. In the absence of stochastic noise,

backpropagation can reconstruct the originally transmitted sequence with perfect

accuracy.

We note that digital backpropagation eliminates the effect of other pulses

leaving us with only the signal-noise interaction. The set-up using backpropagation

is illustrated in Fig. 4.1. In this set-up, we place the noise source after the fiber

span. The reasoning behind this is: backpropagation undoes the effects of all

physical impairments. If we had placed the noise source before the fiber span, after

backpropagation, we would be left with just the additive noise.

Let f denote the effect of the fiber (physical impairments). Then, for the set-up

in Fig. 4.1, y(t) = f−1(f(x(t)) + w(t)).

After filtering and sampling, we assume that the output variable can be written

as y = x̃+ w̃, and study the statistics of w̃. The signal term x̃ is deterministic.

Figure 4.1: Adjacent pulse transmission over a single span with backpropagation

In Figs. 4.2 – 4.3, we plot the weights of the most significant mixture component
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for both 2- and 3-GMM over a range of input power including the confidence

intervals when we transmit two adjacent pulses. In Chapter 3, we provide similar

results for a single pulse transmission scenario. At the lowest power levels, we

would expect the weight of the most significant GMM component to be very close

to unity from the knowledge that Gaussian noise dominates in this region. However,

this is not seen in Fig. 4.2. We contend this is due to the additional effect of the

adjacent pulse. To confirm this, we employ the backpropagation method.

When digital backpropagation is not employed, at a lower (more linear) input

power level, the largest component has a mean vector closer to the origin. The

covariance matrix of the largest component shows that the effect of one pulse on

the other is also low, compared to the situation when nonlinearity is significant.

When digital backpropagation is used to reduce the signal-signal interaction, this

effect is nullified (at all input power levels). As a result, we have a situation where

the most significant Gaussian mixture component has a less correlated covariance

matrix. This is expected because we remove all interaction effects from the adjacent

signal pulse.
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Figure 4.2: Most significant GMM component weights for different power levels
without backpropagation (95% confidence intervals)

Figure 4.3: Most significant GMM component weights for different power levels
with backpropagation (95% confidence intervals)
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Next, we study how one pulse affects itself as it is transmitted in the presence

of the other (adjacent) pulse. However, first we need to isolate one pulse’s effect

on itself. This is done by inspecting the corresponding elements in the covariance

matrix. Once again, we transmit two identical pulses 1+ j, and remove the original

signal(s) to isolate the noise and interaction effects. This we decompose into

two or three Gaussian components using 2- or 3-GMM techniques. We employ

the backpropagation method to remove the signal-signal interaction and study

each effect separately. The reader should note that now the analysis is on a

four-dimensional vector, and the GMM components are 4-dimensional, the real

and imaginary components of each pulse.

We present the results in Figs. 4.4 –4.5. We see that as nonlinearity increases,

the sum of variances of the real and imaginary components increases. The effects

are similar for either pulse, as should be expected, since we are transmitting

identical pulses.

When the adjacent pulses are not identical, however, the results are slightly

different. In a QPSK modulation scheme, a −1 + j and a 1− j pulse would affect a

1 + j pulse similarly (these are mathematically adjacent). The QPSK constellation

diagram is presented in Fig. 4.6.
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Figure 4.4: Effect of pulse 1 on itself as a function of input power

Figure 4.5: Effect of pulse 2 on itself as a function of input power
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Figure 4.6: QPSK constellation

We present results from four representative scenarios in Figs. 4.7 – 4.8. These

correspond to Figs. 4.4 – 4.5. We conduct four separate experiments to obtain

these results, and the two adjacent pulses transmitted are (−1− j), (−1− j) or

(1 + j), (−1 + j) or (1 + j), (−1− j) or (1 + j), (1− j). Once again, we see that as

nonlinearity increases, the sum of variances of the real and imaginary components

increases. There is no statistically significant difference in the noise level based on

the modulation value of the adjacent pulse.
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Figure 4.7: Dissimilar pulses: effect of pulse 1 on itself as a function of input power

Figure 4.8: Dissimilar pulses: effect of pulse 2 on itself as a function of input power
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Figure 4.9: Correlation coefficient as a function of input power (dissimilar pulses)

We also analyze how the covariance and the cross-correlation of the most

significant GMM component vary as a function of input power. As nonlinearity

is increased, both parameters increase as seen in Figs. 4.9 – 4.10. As before, we

conduct four separate experiments to obtain these results, and the two adjacent

pulses transmitted are (−1− j), (−1− j) or (1 + j), (−1 + j) or (1 + j), (−1− j)

or (1 + j), (1− j). This is further validation of results presented above. We note

that the correlation and the cross-correlation coefficients are much higher (in both

cases) when the two pulses are (1 + j), (−1− j). This probably happens because

the (−1− j) constellation point is furthest away from (1 + j), which causes the

largest change in the field amplitude. The nonlinear effect is strongest when there

is a large change in instantaneous power.

We also experimentally increase the distance between the twin pulses (at 10 dBm

input power) and analyze the effect this has on the interaction. In Fig. 4.11,
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Figure 4.10: Cross-correlation coefficient (normalized to variance) as a function of
input power (dissimilar pulses)

we plot the cross-correlation coefficient (normalized to variance) as the distance

between the two identical (1 + j) pulses are increased. As expected, the further

the pulses are moved from each other, the less effect they have on each other. For

comparison, we include the cross-correlation coefficient for a single pulse. As the

distance between the pulses is increased, we approach this limiting value.

4.2 Generalization

In this section we generalize our setup by increasing the number of pulses

and note the resulting differences. In Fig. 4.12, we plot the cross-correlation

coefficient (normalized to variance) as a function of the number of interacting

pulses for different input power levels. We perform a 2D 3-GMM of the center

pulse are backpropagation to do this analysis. Our aim is to predict what might
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Figure 4.11: Cross-correlation coefficient as a function of distance between pulses
(10 dBm input power)

happen when we transmit an infinite number of pulses, as would be done in a real

transmission. The cross-correlation is seen to increase both with increasing power,

and increasing number of pulses. This happens because we have more nonlinear

interactions at a higher input power, and also with a larger number of pulses.

However we note that the interaction effects also begin to saturate after about 7

or 9 adjacent pulses depending on the power level.

This fact is corroborated when we plot the correlation coefficient between several

interacting pulses (drawn from QPSK constellation) at two different input power

levels in Fig. 4.13 at an increased (twofold) level of nonlinearity. The correlation

coefficient increases with higher number of pulses due to more interactions, however

it also starts to saturate out after a certain number of pulses. At 10 dBm input

power, when the nonlinearity is much higher (compared to 0 dBm), there is more
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Figure 4.12: Cross-correlation coefficient for different number of pulses at different
input power levels

nonlinear interaction, leading to the saturation for a larger number of interacting

pulses.

4.3 Validation

We validate our GMM decomposition by calculating the K-L divergences with

respect to the distribution of kernel densities. A kernel density estimator smooths

out the contribution of each observed data point over a local neighborhood of that

data point [77] and can estimate the probability distribution of any continuous

random variable. The data points are obtained from importance sampling.

In importance sampling method (IS), the statistics of the noise in the system

are biased to increase the probability of bit errors. The samples are generated

from a biased density function instead of the original distribution. The sample
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Figure 4.13: Correlation coefficient of most significant component for different
number of pulses (γ = 4/(Wkm))

distribution is a Gaussian with the mean shifted to the decision threshold.

In Figs. 4.14 – 4.16, we compare between several different Gaussian decompo-

sitions, namely the AWGN model, and 1-, 3- and 5-GMM at three different input

power levels (-10 dBm, 0 dBm and 10 dBm respectively) for different number of

adjacent pulses transmitted (after performing digital backpropagation). We vary

the input power to learn the relative effect of increasing nonlinearity. We also

include a curve for the no-nonlinearity case (zero nonlinearity) to compare.

When the nonlinearity is low (at -10 dBm), all models perform similarly, and

close to the zero nonlinearity scenario. Also, the K-L divergences are low, and

vary little as the number of pulses are increased. We conclude this is due to little

nonlinear interaction between the pulses.

As we increase the input power level, we can make several observations. First,
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the AWGN model performs the worst. However the 1-GMM model is not much

better either. From the results of our single pulse analysis with 2-GMM, we know

the reason: one of the two Gaussian components significantly dominates the other.

The 5-GMM model performs better than the 3-GMM, but not significantly.

We conclude that increasing the number of components in our GMM (beyond the

3-GMM) may promise only diminishing returns, while increasing computational

complexity.

Also, the K-L divergences get worse (increase) both with the increase in

nonlinearity and an increasing number of pulses. Once again, this is due to the

extra nonlinear interactions.

Figure 4.14: K-L divergence for KDE vs GMM at -10 dBm input power (95%
confidence intervals)
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Figure 4.15: K-L divergence for KDE vs GMM at 0 dBm input power (95%
confidence intervals)

Figure 4.16: K-L divergence for KDE vs GMM at 10 dBm input power (95%
confidence intervals)



82

4.4 Bit Error Rate Calculation

In communication systems, the performance indicator of the quality of the

transmission is the bit error rate (BER). The BER represents the probability of

receiving an erroneous bit. Thus, BER is an end-to-end performance measurement

and can be used to quantify the reliability of the communication system.

A decision device is assumed to make an error whenever the decoded information

sequence Y falls inside an error region E. The BER Pe can thus be defined as

Pe = P [Y ∈ E] =

∫
E

PY (y)dy. (4.2)

We introduce an error indicator function 1E(r) that equals 1 when r ∈ E and

equals 0 when r /∈ E. Using this definition, (4.2) can be expressed as

Pe =

∫ ∞
−∞

1EX
PX(x)dx, (4.3)

PX being the distribution of the input random variable.

In general, it is difficult, and sometimes impossible, to calculate the BER

analytically and it often must be estimated. The popular Monte-Carlo simulation

technique is convenient for estimating BER. We set up a simulation (involving the

SSF method) to transmit a large number of bits, count the number of errors, and

obtain the BER by dividing the number of incorrectly received bits by the total

number of transmitted bits during a given time. Unfortunately, the Monte-Carlo

method has a high computational cost for very low BER, simply because a very

large number of bits need to be sent to obtain a reasonable number of flipped

bits [78].
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In the importance sampling method (IS), the statistics of the noise sources in the

system are biased in some manner so that bit errors occur with greater probability,

thereby reducing computations. Essentially, the importance sampling technique is

a modification of the standard Monte-Carlo procedure. This modification leads

to a biased estimator. However, since the function which modifies the original

distribution is selected by us, we can account and correct for its effect on the

overall estimator, and still have an unbiased estimator. The method is a variance

reduction technique, since for a given number of trials, the method is expected

to produce a BER estimate with lower variance as compared to the Monte-Carlo

technique.

For importance sampling simulations, the samples are generated from a biased

density function P ∗X , instead of the original distribution PX . Thus (4.3) can now

be expressed as

Pe =

∫ ∞
−∞

1EX
h(x)P ∗X(x)dx, (4.4)

where h(.) is a weight function defined as h(x) = PX(x)
P ∗
X(x)

.

Using the importance sampling method, we generate a 3-GMM employing the

weighted expectation-maximization algorithm [79]. We need a Gaussian model

mixture that would match the actual distribution near the tail(s). The sample

distribution P ∗X is a Gaussian with twice the variance. We estimate the probability

density function of the received signal Y and then compute the BER estimate

using Monte-Carlo simulation but with the biased distribution P ∗X . The GMM of

course can give us an estimate PGMM of the distribution, as a weighted sum of

Gaussian pdfs, as shown in (3.1).
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4.5 Results

Finally, we are ready to use the methods discussed in this chapter to predict

the bit error rate of a practical system. We calculate the bit error rate for 11

transmitted pulses sent over one span of SSMF for no-nonlinearity case, Monte-

Carlo simulation, importance sampling, and importance sampling with 3-GMM.

In Fig. 4.17, we present the bit error rate curves when the nonlinear parameter

γ = 2/(Wkm). As long as the nonlinearity (input power level) is low, all three

approaches yield results close to the no-nonlinearity limit. We do not have enough

errors at higher input power levels to use Monte-Carlo simulation (counting the

number of errors), and the corresponding curve is incomplete. This is the reason

we need to use importance sampling or our 3-GMM model.

We note that there are slight differences when 3-GMM is used. Our guess

is that the importance sampling is unbiased only when there is no memory in

the system. This condition is not exactly true for our optical communication

system. The backpropagation removes the ISI, but the dispersion has already

interacted with the nonlinearity creating some memory in the system which cannot

be removed by backpropagating.

4.6 Chapter Summary

In this chapter, we analyzed the transmission of multiple pulses (adjacent and

sometimes not adjacent) over a single optical fiber span. This is one more step

closer to an actual communication system. We learned that our GMM is still a

valuable tool in understanding this situation and we validated the same. We saw

that adding a second pulse may significantly change our analysis when we do not
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Figure 4.17: BER for different models at regular nonlinearity (γ = 2/(Wkm))
(95% confidence intervals)

account for the signal-signal interaction, and we used digital backpropagation to

isolate the effects of noise.

We also studied transmission of several dissimilar pulses and reached similar

conclusions. We showed that sending 7 or 9 pulses is a good approximation to

predict the analysis of a practical communication system (when an infinite number

of signal pulses would be transmitted).

Finally, we proved that using a 3- or higher-order GMM is necessary to fully

understand the nonlinear interaction, and that using an additive Gaussian model

may be futile. We used importance sampling to compare our results with kernel

density decomposition, and also presented bit error rate curves which show our
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GMM techniques provide a better tool to analyze the optical fiber communication

system.



Chapter 5

Conclusions and Future Work

In this work, we note the limited ability of existing signal processing tools to

understand or mitigate signal-noise nonlinear interaction effects in an optical fiber

communication system.

We proposed and validated a nonlinear decision feedback equalizer utilizing a

modified training scheme. We applied the designed DFE to a fiber-optic system

under various conditions and modulation formats and showed that our DFE

promises good performance at low computational complexity. We also studied the

problem of performance prediction of the DFE both in absence and in presence of

error propagation.

Next, we sought to understand the nature of the noise component at the receiver

end of an optical communication channel which is not additive Gaussian due to

the signal-signal, signal-noise and noise-noise interactions. We used a fundamental

scenario (transmission of a single signal pulse) for our setup and performed GMM

decomposition on the isolated noise and nonlinear interaction components. We

validated our technique and learned that at higher levels of nonlinearity, the GMM

analysis is more accurate than an additive Gaussian or a Volterra series transfer

87
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function model.

Finally, we generalized the single pulse analysis by transmitting multiple signal

pulses, both similar and dissimilar. We showed that sending 7 or 9 pulses is a good

approximation to predict the analysis of a practical communication system (when

an infinite number of signal pulses would be transmitted). We proved that using a

3- or higher-order GMM is necessary to fully understand the nonlinear interaction,

and that an additive Gaussian noise model is an unsatisfactory tool for analysis.

As future work, we propose to study in depth the interaction between more

than two pulses. This would lead to large (multi-dimensional covariance matrices)

and new methods may have to be designed. With the knowledge on signal-noise

nonlinear interaction gleaned from the research presented in this thesis, better

receivers, and especially new signal processing algorithms can be designed.
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