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Abstract - The goal of this work is to investigate novel 

proximity detection techniques by researching and testing 

various sensor technologies and investigate their feasibility 

in an athletic context. COVID-19 has challenged sports 

teams to come up with reasonable and easy-to-implement 

solutions to provide a safe training environment for their 

players and staff. For this reason, proximity data is more 

important than ever, as many teams are in need of a way 

to measure social distancing and maintain contact tracing 

of their athletes. Bluetooth has been widely used to detect 

colocation and monitor social distancing. However, there 

are many other sensing technologies that may prove to be 

more accurate, robust, and secure. Therefore, the focus of 

this work is to investigate how Bluetooth compares with 

ultra-wideband and ultrasound technologies when 

monitoring the distance between users. We have 

implemented and compared the three modalities in a 

controlled experiment to investigate their accuracy at 

detecting distance between users at various levels. Our 

results indicate that the UWB signals are the most 

accurate at monitoring co-location.   

This is in-line with previous research suggesting that 

Bluetooth cannot accurately measure the distance between 

fast moving objects and needs about 20 seconds to stabilize 

distance measurements; therefore, it is not feasible to use 

for sports. In addition, we recorded that UWB models 

yielded an accuracy of over 95%, while ultrasound 

correctly classified the observations over 80% of the time, 

and Bluetooth had an accuracy of less than 50% when 

predicting if a given signal is within 6 feet or not.   
 
Keywords - sensors, co-location, wearable technology 

INTRODUCTION 

Due to the continuous advancements in smart phones and 

smart watches, biometric sensors and monitors have been  

 

 

incorporated into wearable technologies, allowing them to 

revolutionize the ways in which performance and training 

data can be evaluated [1]. Coupled with low prices and an 

increased social media presence, wearable devices have 

become popular tools for people to analyze their physical 

activities across the world. Wearable sensors have allowed 

athletics teams to constantly monitor the status of players’ 

health and provide accurate data to assist in maximizing 

athletic performance and enhancing recovery [1]. The 

technological capabilities of personal fitness devices have 

advanced significantly in recent years which has led 

researchers to question if those health tracking 

measurements can be leveraged as tools to help combat 

COVID-19. Several companies have developed devices that 

monitor social distancing and contract tracing of 

individuals; however, how the distance tracking 

technologies compare with each other is still under-

investigated.  

In this work, we identify three sensor technologies 

within wearable devices that could be used to track 

distances including Bluetooth, ultrasound and ultrawide-

band (UWB) and we evaluate their performance at 

monitoring colocation. The first sensor, Bluetooth, 

estimates distance between athletes through the received 

signal strength indicator (RSSI) between two devices [2]. 

Bluetooth combines sought after attributes such as 

widespread use, easy implementation, and energy 

efficiency. However, it tends to perform less accurately 

than other potential solutions. Ultrasound waves can 

similarly be analyzed to measure co-location. In an 

ultrasound sensor, distance is measured using the received 

signal from a reflected wave. While ultrasound sensors are 

cost effective and reliable, they can be disrupted by excess 

noise or impenetrable objects [3]. Recently, UWB 

technology has been the frontrunner of proximity 

detection.  Sensors with UWB technology follow a similar 



 

process of measurement to that of Bluetooth, but differ in 

their communication via electrical pulses [4]. UWB is 

considered to be highly accurate and reliable, but more 

difficult to implement. Through this paper, these three 

technologies will be implemented and analyzed to 

determine the best combination of accuracy and 

effectiveness in the measurement of proximity between 

athletes.  

RELATED WORKS 

Many professional and college sports teams use wearable 

devices and sensors to track the performance and health of 

their athletes. For instance, a study conducted in 2016 

leveraged smartwatch Bluetooth technology at a 

rehabilitation facility to monitor the location, posture, and 

movement of patients [5]. 

The smart device we used for this project is the Huawei 

Watch 2 smartwatch which contains an accelerometer, a 

heart rate sensor, geomagnetic sensor, Bluetooth, 

ultrasound capabilities, GPS, and Wi-Fi connectivity [6]. 

Bluetooth devices use RSSI values to estimate the distance 

between the beacon and the receiver. RSSI measures the 

power of the beacon’s signal as seen by the smart device.  

Ultrasound waves are sound waves with frequencies 

greater than approximately 20 kHz, higher than the limit of 

human perception [7]. It has proved to be a very versatile 

solution to many technological applications in chemistry, 

food technology, materials science, and medicine [8, 9].  

For example, a study from 2009 described a measurement 

system that used an ultrasonic transmitter, receiver, and 

microcontroller to be implemented in a robotic sewer 

inspection system [10].  This paper identified ultrasound 

technology as a low-cost, effective solution to the sewer 

system use-case.  The technology performed quickly in 

both water and air. In this application, however, only small 

distances were necessary to be measured (5-20 cm).  This 

paper intends to apply ultrasound at distances up to 6 feet 

and more, with social distancing protocols in mind.  

UWB technology is similar to Bluetooth and Wi-Fi in that 

it is used for wireless communication; however, instead of 

using RSSI values to estimate distances, UWB devices emit 

several short electrical pulses that allow for wideband 

transmission bandwidths [4]. These devices can estimate the 

distance between two devices by measuring how long it takes 

for a pulse to move between the devices. Shortly after 

COVID-19 hit in the United States, the National Football 

League (NFL) and National Basketball Association (NBA) 

began monitoring social distancing and contract tracing of 

players by using Kinexon Safezone tags which employ UWB 

technology [11]. The NCAA employed the same devices to 

athletes participating in the 2021 NCAA tournament as they 

attempted to maintain a COVID-19-free “bubble” in 

Indianapolis [12]. Although the Safezone tags do not collect 

biometric data from individuals who wear the devices, other 

Kinexon products that incorporate UWB technology do have 

that capability and have helped revolutionize the way in which 

athlete performance can be maximized and injuries can be 

reduced. 

METHODOLOGY 

 This study analyzes three technologies’ distance 

measurement accuracy: Bluetooth, Ultrasound, and UWB.  

The models for each technology will be compared using 

statistics such as accuracy, F1 score, and root mean square 

error (RMSE) to investigate which performed the best at 

certain distances.  A “best” model would be created that 

selects the model with the lowest error at any given 

distance in order to provide the most accurate prediction 

[13]. 

I. BLUETOOTH 

The Bluetooth data was collected through a set of Huawei 2 

smartwatches connected to an Android phone. These 

smartwatches collected RSSI values and their corresponding 

timestamps through an app called ‘SixFeet’. The app is 

specially designed by a team at UVA to communicate between 

smartwatches in order to record ultrasound audio files and 

Bluetooth RSSI measurements. The app was built on top of 

SWear, a crowdsensing platform developed by the same team 

and available on the Google Play store for use by any android 

based smartwatch with the correct sensor capabilities [14, 15]. 

Figure 1 shows the graphical user interface of the app, 

including the Home page for activation of the sensor 

technology and the Status page indicating both the number of 

files available and the Amazon Simple Storage service (S3) 

bucket connection. 

 
Fig. 1. User Interface of SixFeet App Used to Collect Data 

 

After the data was collected, it had to be retrieved from the 

AWS server for further analysis. Figure 2 shows how the 

Bluetooth and ultrasound data is uploaded to an AWS S3 

bucket connected to the watches through the app and 

downloaded via AWS Command Line Interface with a 

specified set of access keys. The data was then uploaded to a 

Box folder for shared access between team members for 

analysis. A python script was run to clean the raw encrypted 

and compressed files and output them as a CSV. 



 

 
Fig. 2. Collection of Bluetooth Data 

 

A preliminary experiment was run with the Huawei 2 

smartwatches in which 2 smartwatches were held constant for 

50 seconds at various distances: from 1 to 6 feet with 

increments of 1 foot, from 6 to 15 feet with increments of 3 

feet, and from 15 to 90 feet with increments of 15 feet. Since 

Bluetooth data needs about 20 seconds to stabilize [16], we 

discarded the first 20 seconds and averaged the remaining 

RSSI values for each distance measurement. The average 

RSSI values for each watch and each distance measurement 

were then inserted into a power regression model as predictors 

[17]. The average RSSI values at each distance were then 

divided by the reference RSSI at 1 meter to obtain a ratio to 

insert into the predicted distance equation. The independent 

and dependent regression variables were set as the ratio values 

and the distances in meters, respectively. The variable values 

were then pasted into a power regression calculator that output 

values for the A and B constants [17].  

Predicted distance values were then calculated using Equation 

1: 

 

 𝑦 =  𝐴 ∗  (𝑟/𝑡)𝐵  (1) 

       

where 𝑦represents predicted distances, 𝐴and 𝐵are constants, 𝑟 

is the RSSI value and 𝑡 is the reference RSSI value at 1 meter, 

which is -59 for both watches. We chose to optimize distance 

measurements to 6 feet, due to the minimum social distancing 

requirements, and the constant 𝐶 was calculated by subtracting 

the predicted distance from the actual distance at the 6-foot 

measurement. The addition of the 𝐶 constant is necessary 

because an assumption for power regression is that the 

intercept value is 0 [17]. Updated distance predictions were 

then calculated using Equation 2: 

  

 𝑦 =  𝐴 ∗  (𝑟/𝑡)𝐵 +  𝐶  (2) 

 

 

Figure 3 shows a plot of the actual and the predicted distances 

obtained from the calibration model.  

 
Fig. 3. Actual vs. Predicted Distances for Calibration Model 
 

Additional experiments were then run with the Huawei 

smartwatches that included one person holding a watch and 

walking away from the other watch at various speeds (slow, 

medium, and fast) to a distance of 30 feet. The other 

experiment involved two people walking 20 feet in the same 

direction with the watches being held at various distances 

apart: 3, 6, 9, and 12 feet. For the experiment involving 

walking at different speeds, average RSSI values were 

calculated for the slow, medium, and fast paces and for the 

experiment involving the watches moving in the same 

direction, average RSSI values were calculated for 3, 6, 9, and 

12 feet. These average RSSI values were then inputted into the 

distance equation from the calibrated regression model. To 

assess prediction errors for the predictor models, the RMSE 

was calculated for each distance.  

II. ULTRASOUND 

DATA COLLECTION 

 Ultrasound data was also collected by the Huawei 
smartwatches in the same preliminary experiments discussed 
above.  The data was again uploaded to AWS via the SixFeet 
app and then extracted to the shared Dropbox.  Each file was 
saved in one-minute segments in the .m4a format, with the UTC 
timestamp in the file name.  These timestamps were then 
compared to the recorded times of the experiments to match the 
audio data to specific experimental times. 

DATA MANIPULATION 

 The .wav file associated with the experiment was then 
imported into Python with the Librosa package [18].  The audio 
loads as an array of floats with a sampling rate of 44,100 Hz.  
Using the experiment's timestamps, this array was then divided 
into segments associated with the controlled distances.  Then, 
rolling time windows were created for each of these distances 
with a frame length of 500 ms and 50% overlap.  These were 
then transformed into a DataFrame in preparation for feature 
extraction and analysis.      

FEATURE EXTRACTION 

 In order to create a meaningful model that predicts 

distance using ultrasound, sound features were extracted from 

the audio frames.  It was determined that the Fast-Fourier-

Transformation (FFT) and Mel-frequency cepstral coefficients 

(MFCCs) were the most applicable to this application [19, 20].  



 

The Fast-Fourier-Transformation is a commonly used 

algorithm to convert sound data in the time domain to the 

frequency domain [19].  This means the transformation 

outputs an array of amplitudes corresponding to a certain 

frequency.  The FFT feature of audio is important for this 

paper’s scenario. Each smartwatch emits a unique frequency 

(above 19,000 Hz).  In theory, the amplitude of this frequency 

would be directly related to the watches’ distance from one 

another.  In order to account for error, however, only 

frequencies from 18,000 - 22,050 Hz were considered as 

features for the machine learning models. Figure 4 below 

shows the FFT of the audio data collected at different 

distances from preliminary experiments.  
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 4. FFT Plot of Watches at Different Distances 

 

Due to the large amplitude spike present at lower distances, 
there appears to be strong potential in using ultrasound as a 
proximity sensor.  This frequency spike was much more 
confounded by noise at larger distances, which was kept in 
consideration moving forward.  

The Mel-Frequency Cepstrum represents the linear cosine 
transformation of a short-term, log power spectrum, based on 
a non-linear Mel scale of frequency [20].  MFCCs collectively 
make up this cepstrum and are often used for speech 
recognition. Through cross-validation techniques, it was 
determined practical to use 20 coefficients in the feature space 
and effectively represent the time windows.   

Therefore, FFT amplitudes associated with 18,000 – 22,050 
Hz and 20 MFCC coefficients were extracted for each time 
window and formatted in a data frame.  The corresponding 
distance between the watches at the time was then added to 
each window feature DataFrame as a final column. 

PREDICTING DISTANCE FROM ULTRASOUND SIGNALS 

Two different prediction models were created: a regression 

model predicting distance and a classification model 

predicting whether or not two users were within 6 feet of one 

another.  Several model types were considered, but it was 

determined that random forest was the most applicable due to 

the dataset’s vast size, the algorithm’s insensitivity to outliers, 

and ease of interpretation [21].  The algorithm is particularly 

powerful for classification, and a primary interest of this study 

is to determine whether or not an interaction within 6 feet 

occurred. 

Next, dimension techniques were considered due to the 

dataset containing 2045 features.  It was determined that 

principal component analysis (PCA) may be effective, and the 

number of components used in the model would depend on 

their explained variance. 

III. ULTRA-WIDEBAND 

HARDWARE SETUP 

 To be able to measure co-location distance with UWB 

sensor technology, we implemented a custom setup using a set 

of  UWB sensors manufactured by Decawave (DWM1001) 

[22]. To set up the devices, each had to be configured as either 

a gateway, a tag, or an anchor for the system. In a typical 

network of DWM1001 sensors, anchors are stationary nodes 

with a known location and tags are mobile nodes of which 

distances between tags and anchors are calculated 

periodically. A gateway node can be used within the network 

in order to view the location of the nodes using an included 

online web application, but is not necessary and was not used 

in this study. An overview of the system is in Figure 5 below 

[22]. 

 
Fig. 5. Typical DWM1001 System Architecture 

 

 For the purposes of this study, two DWM1001 sensors were 

configured such that one was a tag and one was an anchor. 

This was done in order to achieve ranging between the two 

devices, as shown in Figure 6 below. Additionally, the 

sampling rate was set on each device to be 10 Hz. 

 
Fig. 6. The 1 Anchor, 1 Tag DWM1001 System Architecture Used 
 

 As this study, we measured the distance between two 

DWM1001 sensors with one in a stationary node, the most 

straightforward configuration of a DWM1001 for this purpose 

was chosen. As each node can be accessed through a universal 



 

asynchronous receiver-transmitter (UART) shell, the tag node 

was configured through a Python script to output calculated 

distances at the 10 Hz refresh rate. As this can be only done 

with a DWM1001 sensor configured as a tag, the other anchor 

node was used as the mobile node in this experiment design. 

DATA COLLECTION 

 After configuring all the necessary DWM1001 UWB 

sensors, we had to be able to access the data that was being 

generated. To do this effectively, a Python script was created 

that would configure the devices upon set up, establish a 

connection with the UART shell, and then output distance 

calculations based on an x, y, and z position. To go along with 

the outputted distance, there was an attached timestamp. The 

data was outputted to the terminal of a team member and then 

compiled into a spreadsheet for further analytics as explained 

below. 

EVALUATION 

I. STUDY DESIGN 

Fig. 7. Design of Final Trial Experiment 

After analyzing the results and building models from the 

preliminary experiments, a final experiment was run for each 

of the sensor types: Bluetooth, Ultrasound, and UWB. The 

experiment setup, shown in Figure 7 below, involved the 

measurement of stationary distances at 1-10 feet with 

increments of 1 foot and 12-21 feet with increments of 3 feet. 

All of the sensors were measured with attempts to control for 

sound in order to minimize potentially disruptive conditions. 

II. COMPARATIVE ANALYSIS OF RESULTS 

Regression statistics were used to compare the performance 

of each technology at predicting distance.  Similarly, binary 

classification was used to determine the accuracy of all three 

sensors by calculating the F1 score (precision), the accuracy, 

and the sensitivity. A positive result is defined as the real or 

measured value having a distance of less than or equal to 6 

feet. A negative result is defined as the real or measured value 

having a distance greater than 6 feet.  

TABLE IV. OVERALL RESULTS FOR EACH SENSOR TYPE 

Sensor  RMSE RMSE (6ft) Accuracy F1 Score 

Bluetooth 10.2347 7.5434 0.4803 0.3854 

Ultrasound 2.9252 2.3137 0.8109 0.7438 

UWB 0.44198 0.04573 0.9595 0.9542 

 The results in Table IV above show that UWB performed 

the best across all metrics, while Bluetooth performed the 

worst in the overall and 6 feet models. RMSE, a standard 

regression metric used to evaluate performance of multiple 

models, was compared, and the results show that UWB has the 

lowest RMSE at 0.44198 whereas Bluetooth has the highest 

RMSE at 10.2347. The UWB model’s RMSE within 6 feet 

was calculated to be 0.04573, significantly lower than any 

other mode.  This proves that UWB is very effective at 

predicting distance, especially when in closer proximity. As 

shown by the lower RMSE value for the 6-foot model, the 

RMSE has a positive relationship with distance, meaning that 

the models yield higher error at increasing distances.  

 UWB performed the best with regards to accuracy in the 

classification models. The UWB model yielded an accuracy of 

over 95%, while ultrasound correctly classified the 

observations over 80% of the time, and Bluetooth had an 

accuracy of less than 50%.  An accuracy of 95% is strong, but 

could be improved further when classifying an “interaction” in 

context of 6 feet social distancing and contact tracing.  

 The F1 score is another performance metric of 

classification models. It takes into account the number of true 

positive, false positive, and false negative realizations to 

output a score on a scale of 0 to 1 to measure precision. A 

value closer to 1 indicates high precision while those closer to 

0 show irregularities and lack of fit [23]. Adhering to the 

results of the rest of the evaluation metrics, UWB outperforms 

both ultrasound and Bluetooth by a significant margin.  With 

an accuracy and F1 score of 0.48 and 0.39 respectively, 

Bluetooth continued to prove its ineffectiveness as a proximity 

sensor.   

 The residuals of the three regression models were analyzed 

to see how the errors of each technology compared as distance 

increased.  Figure 8 shows the results of this analysis. 

 
Fig. 8. Model Errors across Distances 

 

Ultimately, UWB configuration outperformed the other two 

modes of technology in predicting distance. UWB had the 

lowest prediction error at essentially all distances, making it 

the best model, and it only strayed from the best model at 10 

feet, where ultrasound was slightly more accurate. The UWB 

model’s performance was particularly impressive at large 

distances, with its average error barely increasing with 

distance, even up to 21 feet. The ultrasound model’s errors 

seemed to be random at distances up to 10 feet, but then 

steadily increasing at distances past 10 feet.  Bluetooth had 

very high error at low distances but became constant as 



 

distance increased. We hypothesize that this is due to the fact 

that we recorded significantly less Bluetooth observations 

during longer distance because the watches couldn’t sense 

Bluetooth signals when originating from farther sources.  

DISCUSSION AND CONCLUSION 

Limitations of this project included external noise, differing 

transmission abilities, and physical barriers. External noise 

can skew data by disrupting the signals that are measured via 

Bluetooth and ultrasound waves. Due to the COVID-19 

pandemic, we were limited to where these experiments could 

be run and the only option we had was to run them on an 

outdoor field that was open for public use. We attempted to 

control for external noise as much as possible by being silent 

while conducting measurements; however, noises from other 

people using the field or from the nearby road could have 

caused some disturbances in the data. 

Overall, UWB significantly outperformed ultrasound and 

Bluetooth in all metrics at almost every measured distance; 

therefore, UWB would be the optimal solution for measuring 

co-location proximity between college athletes during the 

COVID-19 pandemic. The technology combines high 

accuracy under 6 feet with the ability to predict distance in 

real time. Although UWB sensors are not integrated into most 

wearables and smartphones, they could be adapted to be used 

as wearable technology in the athletics field. 

 However, it’s worth noting that UWB and Bluetooth 

signals have the ability to transmit through walls and other 

physical barriers while ultrasound devices do not [23]. This 

means that UWB and Bluetooth devices could potentially 

record false positives if another device is identified behind a 

barrier even if it is not a direct interaction. This can also 

indicate that ultrasound methods are less prone to security and 

privacy concerns, given that ultrasonic signals are confined by 

the physical space that the user is embedded in.  

Future studies using the three technologies could be 

designed to consider a greater set of participants and account 

for various external conditions and scenarios. These scenarios 

could be designed to emulate sports environments, with one or 

more devices in motion to imitate real interactions between 

athletes. This would help test the accuracy in a realistic setting 

and ensure that the technologies will perform at a high level 

with fewer variables controlled. Similarly, running several 

trials with the three technologies at the same time and under 

the same conditions would help provide a stronger comparison 

of the accuracy and performance of the three modes. Future 

work with UWB technology could include the development of 

a system that does not use any anchors. Finally, all three of 

these sensors could be implemented in one wearable 

technology, where data from each could be analyzed together 

in a singular prediction model. This would likely improve 

performance greatly across all evaluation statistics and 

eliminate some of the variance in prediction error. 
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