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Abstract 
Myocardial strain imaging is used for the evaluation of multiple types of heart disease including 

the detection of chemotherapy-induced cardiotoxicity (1), for optimization of cardiac 

resynchronization therapy (CRT) (2), for outcome prediction after myocardial infarction (3) and 

for identification of subclinical cardiac dysfunction in obesity and diabetes (4). CMR methods 

such as myocardial tagging (5), displacement encoding with stimulated echoes (DENSE) (6, 7), 

and strain-encoded imaging (8) acquire images specifically designed to measure intramyocardial 

deformation and strain, and can be referred to as strain-dedicated methods. Alternatively, feature 

tracking (FT) (9) estimates strain from routine cine balanced steady-state free precession (bSSFP) 

images. Recent studies that evaluated both DENSE and FT in the settings of acute myocardial 

infarction and CRT found that DENSE outperformed FT for prognostication (2, 3). Studies have 

shown that DENSE is reproducible for global and segmental strain (10), whereas FT has poor 

reproducibility for segmental strain (11). While DENSE provides well-validated and more 

predictive strain than FT, the time needed to acquire DENSE images may not always be compatible 

with an efficient clinical workflow. A strain method with performance similar to DENSE and the 

efficiency of FT would be ideal.   

In this thesis, a novel deep learning workflow termed StrainNet was developed and 

validated to predict intramyocardial tissue motion and strain from myocardial contours. StrainNet 

was trained using 2D+t DENSE data and applied to cine bSSFP MR images, and validated on both 

healthy volunteers and patients from multiple sites. The performance of StrainNet was compared 

with commercial FT algorithm, with DENSE as the reference. To further improve the model 

performance in complex motion patterns especially motions with spatiotemporal long-term 

dependencies, we developed TransStrainNet, a transformer-based network combining the self-
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attention mechanisms for long-term dependencies and the locality properties of convolution, to 

capture both global and local patterns for improved intramyocardial motion estimation from 

contour motion. TransStrainNet was validated against StrainNet on general testing dataset and the 

subgroup of left bundle branch block (LBBB) with distinctive and complicated mechanical 

contraction patterns. In addition to technical development, TransStrainNet models were assessed 

on the prognostication of CRT patients and compared with commercial FT. The strain-based 

parameter (circumferential uniformity ratio estimated with singular value decomposition) from 

commercial FT and TransStrainNet would be calculated and used for 6-month response, 4-year 

survival predictions and risk stratifications. 

In summary, StrainNet models provide accurate and convenient global and segmental 

strain analysis of routine cine MR images in healthy controls and patients with heart diseases, 

providing better prognostic performance for cardiac resynchronization therapy response and 

outcome predictions. These findings will facilitate greater use of strain cardiac MRI in research 

and in clinical settings. 
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1.1 Cardiac Function and Myocardial Strain Imaging 

Heart failure is a prevalent condition that is linked with substantial morbidity, mortality, and 

economic impact on healthcare system (12). The critical step in managing heart disease involves 

identifying heart anomalies in both structure and function. Techniques like echocardiography 

(ECHO), computed tomography (CT), and MRI play a pivotal role in the non-invasive examination 

of heart structures and the measurement of cardiac performance (13). The left ventricular ejection 

fraction (LVEF), a measure based on the contrast between end-systolic and end-diastolic 

ventricular volumes, is a primary metric used in cardiac function quantification. It represents the 

percentage fluctuation in left ventricular (LV) volume and is instrumental in both the diagnosis 

and patient categorization during treatment for various conditions. Nevertheless, due to LVEF’s 

volumetric nature, it might not capture regional and subtle changes in ventricular function, 

especially evident in cases involving minor or subclinical tissue modifications. For instance, LVEF 

might inaccurately suggest heightened systolic function in patients with a hypertrophic 

myocardium (14). It generally measures overall heart performance, potentially overlooking 

regional disparities or nuanced shifts that regional assessments could capture more effectively (15). 

Myocardial strain imaging evaluates LV mechanics through myocardial deformation and 

provides a more in-depth characterization into heart function (16, 17). This approach, evaluating 

heart function by quantifying myocardial muscle deformation, allows for detailed analysis across 

ventricular segments and throughout multiple frames of the cardiac cycle. Specifically, as shown 

in Figure 1-1, parameters such as circumferential shortening, radial thickening, or longitudinal 

shortening provides different aspects of measurements of myocardial contractile function, both 

globally and regionally.  Myocardial strain imaging has been shown to add incremental diagnostic 

or prognostic value over conventional imaging of ejection fraction (EF) in many clinical contexts 
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and, in general, detects cardiac dysfunction earlier than imaging of EF (18). For example, 

myocardial strain imaging is routinely performed and guideline recommended for monitoring of 

cardiotoxicity in patients undergoing certain anti-cancer therapies (19-21). Other clinical 

applications include image-guidance and prognostication for heart failure patients undergoing 

cardiac resynchronization therapy (CRT) (22, 23), optimizing the timing of aortic valve 

replacement surgery (24), prognosis after acute myocardial infarction (25), and risk stratification 

in dilated cardiomyopathy (26). Myocardial strain imaging is most commonly performed using 

echocardiography; however, the use of CMR is increasing and CMR is considered the reference 

standard modality for myocardial strain imaging (27, 28). Furthermore, CMR strain can be 

combined with CMR cine imaging of left ventricular (LV) volumes and EF, perfusion imaging, 

late gadolinium enhancement, and T1 mapping, facilitating a multiparametric evaluation of the 

heart for precision diagnosis, prognosis, and procedure planning.   

Regarding strain calculation, the equation for Lagrangian strain calculation (29) is defined 

by how much the myocardium is deformed as follows:  

𝑠𝑡𝑟𝑎𝑖𝑛(𝑡) = 	
𝐿! − 𝐿"
𝐿"	

× 100 

where 𝐿"  is the initial myocardial length at end-diastole, and 𝐿!  stands for the length at any 

subsequent time point length. This is quantified by determining the percentage of shortening or 

lengthening throughout the cardiac cycle. 

To illustrate the segmental deformation of the myocardium spatially, the American Heart 

Association (AHA) bull's-eye plot is utilized, a visual representation of myocardial contractility 

based on the 16 or 17-segment model (30) (Figure 1-2). Strain-time curves offer values of peak 

systolic strain, time to peak strain and depict changes in strain across the cardiac cycle. 
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Figure 1-1: Schematic showing the definition of circumferential strain. 

 

 

Figure 1-2: The circumferential strain bullseye plot with respect to the 16-segment left ventricular 

model. Adapted from (30). 
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1.2 CMR Strain Methods 

Myocardial deformation can be assessed from all imaging modalities of ECHO (31-33), MRI (5-

9) and CT (34-36). Myocardial strain imaging is most commonly performed using speckle-tracking 

echocardiography (STE); however, the use of CMR is increasing and CMR is considered the 

reference standard modality for myocardial strain imaging (27, 28). Within CMR there are multiple 

strain imaging methods with either strain-dedicated sequences or post-processing algorithms based 

on routine cine MRI, such as MR tagging (5, 37), harmonic phase (HARP) MRI (38), strain-

encoded (SENC) MRI (8), cine displacement-encoded stimulated echoes (cine DENSE) (7) and 

feature tracking (9). 

MR tagging consists of a preparation phase where tag lines or tag grids are superimposed 

to the myocardium at the beginning of a cine sequence. The tag lines, deforming along with 

myocardial movements throughout the cardiac cycle, facilitate the direct quantification of 

myocardial displacement. The motion estimation is achieved by tracking the tags and interpolate 

the intersect points throughout consecutive frames. Despite its high reproducibility, MR tagging 

post-processing is complicated and time-consuming, which impedes its clinical application. HARP 

is an advanced post-processing algorithm from MR tagging acquisition. HARP simplifies the 

tracking steps and improve accuracy by applying a band-pass filter in the k-space extract the 

spectral peaks and produce the harmonic phase images. Myocardial motion between consecutive 

frames are then tracked by matching the HARP values in the later time frame. 

SENC applies tag lines as a series of planes in the through‐plane direction rather than as a 

series of lines in the in‐plane direction as in MR tagging. The myocardial motion causes a shift in 

the location of the peak spectrum in k space, from which myocardial strain is estimated.  However, 
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SENC can only provide the longitudinal strain component but not circumferential or radial strains. 

Further, SENC requires prior knowledge of strain ranges and the k-space slice profile (39). 

1.2.1 Cine DENSE  

DENSE is a highly reproducible method (40) that directly measures intramyocardial motion and 

strain with high accuracy (41). Rather than tracking image features after the acquisition, DENSE 

measures myocardial displacement and strain by directly encoding the displacement into phase 

images (Figure 1-3). DENSE sequence is performed by a displacement encoding module 

consisting of two 90-degree RF pulses with encoding gradients in between. DENSE signal could 

be represented by the following equation: 

𝑀#$(𝑥, 𝑡) =
𝑀
2 sin

(𝛼) 𝑒%
!
&!𝑒%'(")# 

+	𝑀" sin(𝛼) :1 − 𝑒
% !
&!; 𝑒%'("(#+)#) 

+	
𝑀
2 sin

(𝛼) 𝑒%
!
&!𝑒%'(")#𝑒%'-("# 

There are three components in DENSE signal that correspond to three echoes centered at 

0, 𝑘. , 2𝑘., respectively. The first signal is the desired stimulated echo whose phase is proportional 

to the myocardial displacement Δ𝑥 since the application of displacement encoding module. The 

second term is 𝑇/-relaxation echo, which will be eliminated by phase cycling. The third term is 

complex conjugate echo which be adjusted to outside the acquisition window by an appropriate 

𝑘. value. 

After acquiring the cine DENSE images, motion-guided segmentation of the LV 

myocardium (42), phase-unwrapping algorithm for the LV myocardial pixels, and Lagrangian 

displacement and strain calculation were sequentially performed using previously developed and 
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validated fully-automatic methods (41). For the semi-automatic motion-guided segmentation, an 

initial region-of-interest of the left ventricular (LV) region is delineated manually on a single 

frame, followed by automatic propagation across all other frames. Manual correction will be 

applied if needed. Then phase unwrapping algorithm is applied to LV pixels to obtain true phase 

values. Next, the displacement fields are directly derived from the unwrapped phase images. By 

interpolating within these displacement fields, the motion trajectories of individual pixels 

throughout the cardiac cycle are estimated. Finally, the strains are calculated from the through-

time displacement maps for each myocardial pixel. Figure 1-3 shows a healthy volunteer example 

of cine DENSE images, displacement map, circumferential strain map at end-diastole and 

segmental strain-time curves. 

 

Figure 1-3: Example of cine DENSE images, displacement map, circumferential strain map and 

segmental strain-time curves on a healthy subject at end-systole. (A) Magnitude image. (B) Phase 

image with displacement-encoded in the X direction. (C) Phase image with displacement-encoded 

in the Y direction. The phase values in the myocardium reflect the tissue displacement in the two 
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directions respectively. (D, E) Myocardial displacement field and circumferential strain map at the 

same frame. (F) Segmental circumferential strain-time curves along the cardiac cycle. 

1.2.2 Feature Tracking 

FT is the most widely used and convenient CMR technique (43), as it applies post-

processing algorithms to standard CMR cine images. Conventional CMR FT techniques are based 

on optical flow technology which recovers image motion at each pixel from spatiotemporal image 

variations (44). Specifically, the endocardial and epicardial contours are detected and tracked as 

they move through time in the cardiac cycle (43). Then, the optical flow algorithm is applied to 

the tracked contours to estimate the motion of pixels within the myocardium, from which strain is 

computed (43). It is important to recognize that FT directly tracks contour features, but does not 

track intramyocardial features, as the myocardium on standard CMR images generally produces a 

very uniform signal and doesn’t present intramyocardial features suitable for tracking. Figure 1-4 

shows a healthy volunteer example of feature tracking on short-axis cine MRI stacks by a 

commercial software NeoSoft, SuiteHeart. 
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Figure 1-4: Example of commercial feature tracking algorithm on short-axis cine MRIs. (A) LV 

segmentation on a series of cine MRIs at end-diastole. (B) Bull’s Eye plots of peak circumferential 

strain derived from feature tracking. (C) Segmental circumferential strain-time curves along the 

cardiac cycle. 
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1.3 Deep Learning in Cardiac MR and Myocardial Strain 

Analysis 

1.3.1 Deep Learning in Cardiac MR 

Deep learning (DL) is one of the branches of artificial intelligence that has seen exponential 

growth in recent years. The scientific community has focused its attention on DL due to its 

versatility, high performance, high generalization capacity, and multidisciplinary uses, among 

many other qualities.  

Convolutional neural networks (CNN) with contracting and expanding paths plays a vital 

role in image processing for a decade (45). U-Net is an extension of encoder-decoder structures 

with a U-shaped architecture (46). Skip connections are used to combine the high-level semantic 

features from the decoder and the corresponding detailed feature maps from the encoder, which 

takes the advantage of both the latent features and reducing distortion by preserving the original 

high-resolution information. U-Net shows ground-breaking performance on biomedical imaging 

tasks because it perfectly meets the requirements of medical imaging in terms of its combination 

of both latent and high-resolution features, convenient and fast training procedure and the small 

amount of training data used (47). 

Recently, vision transformers have emerged as a competitive alternative to CNNs (48). The 

attention mechanism (49) central to transformers offers several advantages over convolutions, 

including but not limited to the long-term relationships capture and built-in saliency to give 

insights into what the model focuses on (50). The excellent global representation capabilities of 

transformers enable them to exploit long-distance dependencies along the temporal dimension of 

dynamic cardiac images. 

https://www.sciencedirect.com/topics/computer-science/deep-learning
https://www.sciencedirect.com/topics/computer-science/artificial-intelligence
https://www.sciencedirect.com/topics/computer-science/exponential-growth
https://www.sciencedirect.com/topics/computer-science/exponential-growth
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In terms of the CMR domain, deep learning has various applications such as reconstruction, 

segmentation, motion and deformation analysis and outcome prediction. As shown in Figure 1-5, 

the number of AI CMR publications per year is increasing rapidly, and with applications ranging 

from different tasks and sequence modalities, reflecting the increasing research interest and various 

application with artificial intelligence in CMR domain. 

 

Figure 1-5: Literature review. (A) Number of AI-CMR publications per year. (B) AI-CMR studies 

categorized by machine learning tasks. (C) AI-CMR studies categorized by CMR modalities.  

Figure source: Improving the efficiency of CMR with AI – review of evidence and proposition of 

a roadmap. 
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1.3.2 Deep Learning in Myocardial Motion Estimation and Strain 
Analysis 

Recently, learning-based myocardial motion tracking methods have been investigated (51-54) and 

demonstrated the potential for high performance that ought to be achievable by leveraging big data 

and the ability of convolutional neural networks to extract intangible and multi-scale features.  

In terms of cardiac structure and diseases, DL-based automatic or semi-automatic 

segmentation applied to structures including the LV, RV, and LA also facilitates the efficient use 

of feature tracking or other methods to compute strain for each of these chambers (55-58). In terms 

of network design, most of the cardiac motion tracking models are based on convolutional neural 

network, particularly using the U-Net structure. In addition, recurrent neural networks (59) and 

transformers have also been used to better exploit the time dimension. Network inputs are paired 

2D (60) or 3D (51) image frames or a sequence of cardiac images (52, 61).  

The main challenge in the development of motion tracking methods using deep learning is 

the lack of ground-truth displacement, velocity, or strain data (52). Previous studies have shown 

the feasibility of regional strain assessment by deep learning using cine MR images, but they used 

classical optical-flow to generate the motion ground truth (52) or unsupervised warping loss and 

smoothness regularizations during training (51, 53, 54). For clinical evaluation, DeepStrain 

demonstrated high correlation of global circumferential strain and global radial strain with 

commercial feature tracking in 533 patients (62). 

DL for strain also extends beyond the analysis of cine imaging to strain-dedicated CMR 

sequences. For example, DL-based methods to analyze tagged CMR images has been shown to be 

superior to harmonic phase analysis with regard to tag tracking accuracy and inference efficiency 

(63). For the analysis of DENSE CMR, DL for LV segmentation and phase unwrapping provides 
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fully-automated, and highly accurate and reproducible results for both global and segmental 

circumferential strain (64).    

1.4 Cardiac Resynchronization Therapy (CRT) 

CRT is a therapy that uses a biventricular pacemaker to enhance cardiac function by pacing late-

activating myocardium which can improve survival rate, enhance heart function, and improve 

quality of life (65). However, the nonresponse rate is around 40%, and therefore improved 

prediction of CRT response is of vital importance in managing patients who are potential CRT 

candidates (66). The results obtained from CMR can be used to select patients likely to benefit 

from CRT, as well as to guide the implantation of the LV pacing lead in the optimal region (67). 

Considering that 60,000 new CRT devices are implanted each year and that HF is associated with 

increased morbidity and decreased survival, there is a need to address the CRT nonresponder 

problem (68). MRI using cine DENSE, LGE, and coronary vein imaging can assess dyssynchrony, 

regional mechanical activation time, presence of scar, and potential for CRT lead accessibility 

(leads are placed in coronary veins). The circumferential uniformity ratio estimated with singular 

value decomposition (CURE-SVD) (69) is a validated measure for quantifying cardiac 

discoordination based on regional circumferential strain, and a lower CURE-SVD from DENSE 

has shown to be strongly associated with the outcomes of CRT patients (2). Alternative CURE-

SVD based on FT from bSSFP cine images may be more compatible with an efficient clinical 

workflow, but the poor reproducibility for segmental strain of FT (11) limits its performance in 

the CURE-SVD calculation and in CURE-SVD based prognostics. 
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1.5 Scope of Dissertation 

This dissertation focuses on developing deep learning-based methods that estimate 

intramyocardial motion from contour motion, and validate the models for global and segmental 

circumferential strain analysis and for clinical prognostication. 

As DENSE provides both myocardial contours and accurate intramyocardial tissue 

displacement measurements, we investigated the use of DENSE data to train a supervised deep 

network for intramyocardial tissue motion prediction from contours. The trained StrainNet model 

could then be applied to contours from routine cine bSSFP MRI. In this study, our goal is to use 

deep learning to improve strain analysis of routine cine MRI, and to demonstrate the advantages 

of DL-models over conventional feature tracking for prognostication in cardiac resynchronization 

therapy.  

This thesis investigates the use of DENSE data to train a 3D (2D+t) convolutional neural 

network model called StrainNet for predicting intramyocardial tissue motion and strain from 

myocardial contours. StrainNet will be trained using DENSE data and applied to cine bSSFP MR 

images. The results will be validated on both healthy volunteers and patients from multiple sites. 

The performance of StrainNet will be compared with commercial FT algorithm, with DENSE as 

the reference (Aim 1). The development of the technique is summarized in Chapter 2. 

Additionally, a Transformer-based deep neural network, termed TransStrainNet, will be 

developed to capture the long-distance dependency of the temporal dimension. The Transformer-

based network may outperform the convolutional layers by better exploiting both local and global 

features (Aim 2). The development of the technique is summarized in Chapter 3. 

Lastly, we will test the hypothesis that TransStrainNet will outperform conventional 

feature tracking for prognostication on heart failure patients who underwent cardiac 
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resynchronization therapy (CRT). The outcomes of 6-month post CRT remodeling and 4-year 

survival will be predicted through a strain-based parameter circumferential uniformity ratio 

estimated with singular value decomposition (CURE-SVD) (Aim 3). The results of these 

experiments are summarized in Chapter 4. 

 

  



28 
 

____________________________________________________ 

Chapter 2 – StrainNet 
____________________________________________________ 
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2.1 Introduction 

Myocardial strain imaging using cardiac magnetic resonance (CMR) has applications in many 

types of heart conditions including the detection of chemotherapy-induced cardiotoxicity (1), for 

optimization of cardiac resynchronization therapy (CRT) (70), for outcome prediction after 

myocardial infarction (3) and for identification of subclinical cardiac dysfunction in obesity and 

diabetes (4). CMR methods such as myocardial tagging (5), displacement encoding with 

stimulated echoes (DENSE) (6, 7), and strain-encoded imaging (8) acquire images specifically 

designed to measure intramyocardial deformation and strain, and can be referred to as strain-

dedicated methods. Alternatively, feature tracking (FT) (9) estimates strain from routine cine 

balanced steady-state free precession (bSSFP) images. Recent studies that evaluated both DENSE 

and FT in the settings of acute myocardial infarction and CRT found that DENSE outperformed 

FT for prognostication (3, 70). Studies in phantoms and humans have shown that DENSE provides 

accuracy and reproducibility equivalent to or better than tagging (71, 72) (often considered the 

reference standard), and that DENSE is reproducible for global and segmental strain (10), whereas 

FT has poor reproducibility for segmental strain (11). While DENSE provides well-validated and 

more predictive strain than FT, the time needed to acquire DENSE images may not always be 

compatible with an efficient clinical workflow. A strain method with performance similar to 

DENSE and the efficiency of FT would be ideal.   

Conventional FT utilizes endocardial and epicardial contours and optical flow (9) and/or 

an incompressibility model (73) to compute intramyocardial displacement; however, these models 

have limitations when applied to two-dimensional images. Recently, deep learning (DL) has 

demonstrated better performance for general motion tracking tasks than optical flow (74, 75), and 

has been introduced for cine bSSFP motion estimation (51-54). However, to date, DL-based 
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motion estimation for bSSFP has used either unsupervised learning (51, 53, 54) or supervised 

learning with suboptimal training data (52), providing suboptimal results.   

As DENSE provides both myocardial contours and accurate intramyocardial tissue 

displacement measurements, we investigated the use of DENSE data to train a supervised deep 

network (StrainNet) for intramyocardial tissue motion prediction from contour motion. Since 

multiphase endocardial and epicardial contours segmented from DENSE and bSSFP images reflect 

the same underlying cardiac motion, we reasoned that the model trained using DENSE contours 

could be applied to contours from bSSFP. We aimed to show that StrainNet analysis of bSSFP 

images could provide the clinical convenience of FT and better agreement with DENSE. 

2.2 Methods 

2.2.1 Subjects and Imaging Protocol 

Eight centers (University of Virginia, Charlottesville, USA; University Hospital, Saint-Etienne, 

France; University of Kentucky, Lexington, USA; University of Glasgow, Scotland, UK; St. 

Francis Hospital, New York, USA; the Royal Brompton Hospital, London, UK; Emory University, 

Atlanta, USA; and Stanford University, Palo Alto, USA) provided data for this study. 144 healthy 

volunteers and 161 patient subjects with (a) myocardial infarction (n = 62), (b) heart failure with 

left bundle branch block (n = 47), (c) hypertrophic cardiomyopathy (n = 17), (d) amyloidosis (n = 

13), (e) dilated cardiomyopathy (n = 10), (f) ischemic heart disease without infarction (n = 7), and 

(g) myocarditis (n = 5) were included. Within the 144 healthy volunteers, 45 of them were children 

(12.4 ± 2.7y). One-hundred and ninety-six datasets were acquired using 3.0 T scanners 

(MAGNETOM Prisma, Skyra or Trio, Siemens Healthcare, Erlangen, Germany) and 109 were 
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acquired using 1.5 T scanners (MAGNETOM Aera or Avanto, Siemens Healthcare, Erlangen, 

Germany).  

For each subject, short-axis cine bSSFP images were acquired during repeated breatholds 

covering the LV (field of view, 320 × 320–380 × 380 mm2; temporal resolution, 30–55 msec, 

depending on heart rate). Three–four short-axis cine DENSE slices were also acquired (field of 

view 200 × 200–360 x 360 mm2; temporal resolution, 30–34 msec, resulting in 18–43 frames 

across the cardiac cycle). DENSE images were analyzed using previously described methods. For 

bSSFP images, the endocardial and epicardial contours were automatically detected and FT was 

performed using commercial software (SuiteHeart, NeoSoft).  

2.2.2 Algorithm Performance Evaluation Using DENSE Contours 

and DENSE Displacement 

The accuracy between the StrainNet-estimated displacement from DENSE contours and DENSE 

ground truth displacements was assessed using the end-point-error (EPE), defined by: 

𝐸𝑃𝐸 =
1
𝑛A

BC𝑑.0!# (𝑡) − 𝑑1!# (𝑡)E
- + C𝑑.0!

$ (𝑡) − 𝑑1!
$ (𝑡)E-

2

!3/

. 

Average EPE within the myocardial region for the whole time series was calculated, where 

𝑑1!# (𝑡) and 𝑑1!
$ (𝑡) are the ground truth displacements from DENSE for the x and y directions at 

time frame t, respectively, 𝑑.0!# (𝑡)  and 𝑑.0!
$ (𝑡)  are the StrainNet-estimated displacements, and 𝑛 

is the number of frames. 

2.2.3 Deep Learning Architecture 

A 3D (2D+t) U-Net (46) was trained to predict intramyocardial displacement from contour data. 

The network depth was 3 and the numbers of filters were 64, 128, 256 and 512, from the top to the 
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bottom levels, respectively. The kernel sizes were 3 × 3 × 3 for the convolutional layers and 4 × 4 

× 2 for the pooling layers. During training, the U-Net inputs were a time series of myocardial 

contours derived from DENSE magnitude images and the ground-truth output data were 

Lagrangian displacement measurements derived from DENSE phase images, with EPE as the loss 

function. For testing, StrainNet was applied to contours derived from FT software applied to 

standard bSSFP images, and DENSE at matched slice locations served as the reference (Figure 2-

1). Lagrangian strain was computed from StrainNet displacements using the same methods as used 

for DENSE.  

 

Figure 2-1: Schematic showing the proposed StrainNet to predict intramyocardial displacement 

from contour motion. A 3D Unet architecture consisting of convolution, batch normalization, 

ReLU layers, residual connections and pooling layers was used. Our models were trained with the 

Adam optimizer using a total of 120 epochs. The initial learning rate was set to 1e-4, with a halving 

schedule at 20 and 100 epochs. During training, the inputs were a time series of myocardial 

contours derived from DENSE magnitude images and the ground truth data were displacement 



33 
 

measurements computed from DENSE phase images. End-point-error (EPE) was the loss to 

calculate the difference between the estimated displacement maps and ground truth DENSE 

displacements. During testing, the inputs were a time series of myocardial contours derived from 

routine bSSFP cine images. 

2.2.4 Data Pre-processing 

After LV segmentation, images were binarized by filling the myocardial area with ones and the 

non-myocardial area with zeroes. DENSE images were cropped to a fixed size (48 × 48) which 

included the LV. Cine images were scaled to match the mean spatial resolution of DENSE (pixel 

size, 2.73 × 2.73 mm2). Morphological dilation was applied to the bSSFP binary mask to 

approximately match the wall thickness of bSSFP cine MRI and DENSE, and then the mask 

images were cropped to the same size as the DENSE training data. Data augmentation on-the-fly 

was performed by random ± 90° and 180° rotations. The input data for the network was a series of 

binarized images of LV myocardium of size Nx × Ny × Nt, with Nt representing the number of 

temporal frames. The output was the corresponding Lagrangian displacement maps of size 2 × Nx 

× Ny × Nt, with the factor of 2 accounting for 2D displacement. 

2.2.5 Selection of Training and Independent Testing Datasets 

The 305 subjects were randomly divided 80:20 into training and independent testing datasets, and 

this ratio was applied to each sub-group (healthy adults, healthy pediatrics and each disease type). 

Basal, mid-level and apical slices were analyzed, resulting in 670 slices from 243 subjects for 

training and 190 slices from 62 subjects for testing (Figure 2-2). Five-fold cross-validation was 

applied within the training datasets, and a single final model was trained using all training data 

with the optimal hyperparameters selected by cross-validation.  
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Figure 2-2: Flow diagram showing patient (n = 161) and volunteer (n = 144) datasets. The 

StrainNet CNN was trained with the DENSE training dataset (80% of study participants), and 

assessed using an independent testing dataset including DENSE and cine images (20% of study 

participants). 

2.2.6 Statistical Analysis 

End-systolic global and segmental circumferential strain (Ecc) computed by StrainNet and FT were 

compared with DENSE using the intra-class correlation coefficient (ICC), Pearson correlation 

coefficient (Pearson CC), coefficient of variation (CV) and Bland-Altman analysis. Transmural 

strain differences among the subendocardium, middle layer and subepicardium and strain 

differences among StrainNet, FT and DENSE for each segment were assessed by linear mixed-

effects models. P < .05 (two-sided) was considered statistically significant. Statistical analyses 

were performed using MATLAB R2018b (Mathworks Inc, Natick, MA). 

2.3 Results 

2.3.1 Examples of End-systolic Displacement and Ecc Maps and Ecc-

time Curves from Volunteers and Heart Disease Patients 

Examples of end-systolic displacement and Ecc maps from StrainNet processing of bSSFP image 

contours and from DENSE for a healthy subject and a heart failure patient with left bundle branch 

block are shown in Figure 2-3 For the healthy subject, qualitatively StrainNet depicted normal 
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displacement and Ecc, in good agreement with DENSE. For the heart failure patient, StrainNet 

showed simultaneous stretching of the septal segments and contraction of the lateral wall, also 

with generally good agreement with DENSE.  

 

Figure 2-3: Example end-systolic displacement and Ecc maps comparing StrainNet analysis of 

bSSFP cine images and DENSE for (A) a healthy volunteer (female; age, 23 year) and (B) a heart 

failure patient with left bundle branch block (female; age, 71 year). 
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Figure 2-4: Example segmental circumferential strain-time curves for StrainNet analysis of bSSFP 

cine MRI, FT analysis of bSSFP cine MRI, and DENSE for (A) a healthy volunteer (age, 28 year; 

female) and (B) a myocardial infarct patient (age, 42 year; male).The healthy volunteer has 30 

frames with repetition time (TR) = 32.17ms for bSSFP cine MRI, and 24 frames with TR = 30ms 

for cine DENSE; the patient has 25 frames with TR = 34.44ms for bSSFP cine MRI, and 29 frames 

with TR = 30ms for cine DENSE.  

Figure 2-4 shows example segmental strain-time curves for a healthy volunteer and a 

myocardial infarction patient computed using FT, StrainNet processing of standard cine images 

and DENSE. For the healthy volunteer, qualitatively, segmental strain-time curves computed using 

StrainNet showed better agreement than FT with DENSE. FT showed more variability, both 

spatially and temporally than StrainNet and DENSE. For the myocardial infarction patient, both 

DENSE and StrainNet showed diminished circumferential shortening in the anteroseptal and 

inferoseptal segments and normal strain elsewhere, whereas FT showed the least amount of 
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circumferential shortening in the anterior and inferior segments, in disagreement with the reference 

standard DENSE method. 

2.3.2 End-Point-Error 

To compute EPE for displacement, where a one-to-one pixel-wise mapping of the StrainNet output 

to the DENSE displacement field is needed for the calculation, StrainNet was applied to the 

myocardial contours of DENSE magnitude images. For the independent testing datasets, the 

average EPE within the myocardium for the whole time series was 0.75 ± 0.35 mm (0.30 ± 0.12 

pixels). 

2.3.3 Detection of Transmural Strain Gradient 

A layer-specific analysis of end-systolic Ecc was performed for the 30 independent testing 

volunteers, with results shown in Figure 2-5. A transmural gradient of Ecc within the LV 

myocardial wall was detected by DENSE, StrainNet processing of bSSFP cine images, and FT, 

and the layer-specific strain values computed using StrainNet displacements showed better 

agreement than FT with DENSE. The transmural strain gradient is also evident in the volunteer 

example in Figure 2-3. A slice-by-slice layer-specific analysis for basal, mid-ventricular, and 

apical slices is provided in Supplementary Table 2-4.  
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Figure 2-5: Layer-specific Ecc measurements for FT analysis of bSSFP cine MRI, StrainNet 

analysis of bSSFP cine MRI, and DENSE. FT: subendocardium, -22.88 ± 2.92%; middle layer, -

16.40 ± 2.54%, subepicardium, -10.13 ± 2.35%, [P<.001]. StrainNet: subendocardium, -22.62 ± 

2.26%; middle layer, -19.20 ± 1.89%; subepicardium, -15.71 ± 1.62%, [P<.001]. DENSE: 

subendocardium, -21.60 ± 3.34%; middle layer, -18.71 ± 2.92%; subepicardium, -15.75 ± 2.95%, 

[P<.001]. There was significant difference between FT and DENSE for all three layers [P=.007 

for subendocardium, P<.001 for middle layer, and P<.001 for subepicardium]; there was 

significant difference between StrainNet and DENSE for subendocaridum [P=.002], and no 

significant difference for middle layer [P=.09] and subepicardium [P=.91].  

2.3.4 Correlations and Agreement of End-systolic Ecc between 

StrainNet, FT, and DENSE 

Figure 2-6 shows linear correlations and Bland-Altman plots comparing end-systolic Ecc computed 

using StrainNet and DENSE and computed using FT and DENSE for global and segmental Ecc 

from all three slice positions. The 59 out of 62 independent testing subjects with images from 

basal, mid-level and apical slices were included. There were no significant differences between 
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StrainNet and DENSE for end-systolic global Ecc [P=.42] and segmental Ecc [P=.08], with the 

corresponding biases (limits of agreements) of -0.51 (-5.74, 4.72) % and -0.55 (-9.16, 8.07) %, 

respectively; whereas there were significant differences between FT and DENSE for global Ecc 

[P=.003] and segmental Ecc [P<.001], with the corresponding biases (limits of agreement) of 1.6 

(-4.97, 8.09) % and 1.5 (-12.2, 15.3) %, respectively.  
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Figure 2-6: Correlation and Bland-Altman plots comparing StrainNet and FT analyses of bSSFP 

cine MRI with DENSE for end-systolic (A) global and (B) segmental Ecc.  
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Table 2-1: Comparison of agreement of global and segmental Ecc for all slices. 

 Global Ecc Segmental Ecc 

 StrainNet 
Feature 

Tracking 
StrainNet 

Feature 

Tracking 

ICC 0.87 0.72 0.75 0.48 

Pearson CC 0.88 0.79 0.75 0.49 

CV 13.42 17.73 22.22 36.42 

Bias ± 95% Limits -0.51 ± 5.15 1.62 ± 6.64 -0.55 ± 8.61 1.53 ± 13.75 

 

Table 2-2: Comparison of agreement of per-slice global and segmental Ecc. 

 Global Ecc Segmental Ecc 

 StrainNet 
Feature 

Tracking 
StrainNet 

Feature 

Tracking 

Basal     

ICC 0.80 0.76 0.67 0.43 

Pearson CC 0.85 0.78 0.71 0.45 

CV 15.08 15.18 26.49 40.68 

Bias ± 95%Limits -1.66 ± 4.63 -0.88 ± 5.68 -1.71 ± 8.89 -0.79 ± 15.20 

Mid-level     

ICC 0.92 0.83 0.79 0.56 

Pearson CC 0.92 0.92 0.79 0.59 

CV 11.84 18.38 23.89 38.92 

Bias ± 95%Limits 0.33 ± 4.51 2.25 ± 4.37 0.31 ± 8.75 2.35 ± 12.70 

Apical     

ICC 0.88 0.67 0.78 0.56 

Pearson CC 0.88 0.81 0.78 0.63 

CV 14.45 3.31 20.65 30.41 

Bias ± 95%Limits -0.24 ± 5.72 3.31 ± 6.58 -0.27 ± 8.51 3.43 ± 10.89 
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Note. -ICC = Intra-class correlation coefficient, Pearson CC = Pearson correlation coefficient, CV 

= Coefficient of Variation.  

Table 2-1 summarizes ICC, Pearson CC, CV and the corresponding biases and limits of 

agreement results comparing FT and StrainNet to DENSE for the assessment of global and 

segmental Ecc. The ICCs between StrainNet and DENSE and FT and DENSE were 0.87 vs. 0.72, 

respectively, for global Ecc and 0.75 vs. 0.48, respectively, for segmental Ecc, showing that 

StrainNet showed good agreement with DENSE and outperformed FT for both global and 

segmental Ecc. Table 2-2 summarizes per-slice quantitative results for global and segmental Ecc for 

basal, mid-level and apical slices respectively, showing StrainNet had better correlation and less 

variation from DENSE for basal, mid-level and apical slices, and smaller biases for mid and apical 

slices.  

Bull’s eye plots shown in Figure 2-7 summarize per-segment ICC, CV, bias, and 95% 

limits of agreement between StrainNet and DENSE and between FT and DENSE. StrainNet 

showed better agreement with DENSE and less bias for all metrics. 
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Figure 2-7: Bull’s eye plots of per-segment Ecc for intraclass correlation coefficient (ICC, %), 

coefficient of variation (CV), bias and limits of agreements comparing StrainNet and FT with 

DENSE. A linear mixed-effects model was performed over techniques for each segment, and an 

asterisk in the bias column was indicated as having statistical significance with reference DENSE. 

2.4 Discussion 

While strain-dedicated methods such as DENSE provide the most accurate assessment of global 

and segmental strain, in busy clinical settings it may not always be practical to add strain-dedicated 

acquisitions to the CMR protocol. The ability to perform strain analysis of routine bSSFP cine 

images supports an efficient clinical workflow, and DL-models trained on strain-dedicated data 

may provide a means to outperform conventional FT for this task. In our study, we leveraged 

DENSE data from more than 300 subjects to develop a DL framework that can predict 

intramyocardial displacement from myocardial contours and showed that the resulting 3D U-net, 

StrainNet, can be successfully used for strain analysis of standard cine images. There are several 

major findings of our study. First, for both healthy volunteers and patients, StrainNet predicts 

intramyocardial displacement and strain from myocardial contour motion and shows good 

agreement with DENSE. Second, for the analysis of routine cine MRI, StrainNet shows better 

agreement than FT with DENSE for global and segmental circumferential strain. Additional 

conclusions are: a) StrainNet is effective when applied to contours from either DENSE images or 

cine images; b) StrainNet showed good reliability for segmental Ecc with an ICC over 0.75 for 

mid-ventricular and apical slices; and c) transmural layer-specific Ecc measurements using 

StrainNet were more consistent than FT with DENSE.  

Learning-based myocardial motion tracking methods have been investigated previously 

(51-54) and demonstrated the potential for high performance that ought to be achievable by 



45 
 

leveraging big data and the ability of convolutional neural networks to extract intangible and multi-

scale features. The main challenge in the development of motion tracking methods using deep 

learning is the lack of ground-truth data (52). Previous studies have shown the feasibility of 

regional strain assessment by deep learning using cine MR images, but they used classical optical-

flow to generate the motion ground truth (52) or unsupervised loss functions during training (51, 

53, 54). Our study benefitted from the availability of multi-center DENSE datasets from 305 

subjects with healthy hearts and various types of heart diseases, and from the strong 

correspondence of the depiction of heart motion between DENSE and standard cine images 

allowing us to generate accurate displacements, global Ecc and segmental Ecc from routine cine 

MRI. StrainNet performance benefited from diversity of the data including multiple diseases, 

multiple data acquisition sites, multiple observers for data post-processing, a wide range of ages 

(adults and pediatrics), and different magnetic field strengths (1.5T and 3T). Since cine MRI and 

cine DENSE generally have similar temporal resolution, we found that no additional manipulation 

was needed to handle variability in temporal resolution or number of cardiac phases. Compared 

with previous DL-based cardiac motion tracking networks, our supervised learning framework 

took advantage of the accuracy of DENSE, resulting in a lower average EPE of 0.75 ± 0.35 mm 

compared to previously reported DL-based motion tracking results of 2.9 ± 1.5mm (51) and 0.94 

± 1.59mm (52). 

Our study had several limitations. First, additional work is needed to improve the 

performance of StrainNet in analyzing the basal slice as it is not as fully optimized as that for the 

mid-level and apical slices. We believe it is the segmentation error for the basal slices that has to 

be corrected to improve the output from StrainNet. Second, future work should focus on training 

StrainNet using long-axis DENSE data to predict 2D displacement in these planes to facilitate the 
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computation of longitudinal strain. Lastly, the current study did not consider radial strain (Err). 

Presently neither StrainNet nor FT show good agreement with DENSE for radial strain (64), thus 

more development is needed before comparing radial strain results generated by the various 

methods.  

In the future, StrainNet could likely be improved by further increasing the size and diversity 

of the training data set and retraining the network.  With the sound framework of StrainNet applied 

to contoured images of the heart proved by the current work, we will investigate the application of 

the network to other modalities such as cardiac CT and echocardiography cine images. Along these 

lines, StrainNet provides the potential to standardize strain values across different imaging 

modalities.  

In conclusion, using data from healthy adult and pediatric volunteers and adults with 

various types of heart disease, a deep learning framework to accurately predict intramyocardial 

motion from contour motion was developed. Its application to standard cine MRI showed better 

agreement than FT for the quantification of global and segmental circumferential strain using 

DENSE as the reference standard. This approach enables strain analysis of routine cine MRI with 

accuracy similar to strain-dedicated DENSE. StrainNet may facilitate greater use of strain CMR 

in research and in the clinical setting. 

2.5 Appendix 

2.5.1 Demographic Information of the Dataset 
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Table 2-3 Supplementary: Demographic information and left ventricular volumetric data for 

patients and volunteers. 

 Training Testing 

 
Patients 

(n=129) 

Adult 

volunteers 

(n=78) 

Pediatric 

volunteers 

(n=36) 

p 

value
4 

Patients 

(n=32) 

Adult 

volunteers 

(n=21) 

Pediatric 

volunteers 

(n=9) 

p 

value
4 

 

Male 87 (67.4%) 31 (39.7%) 17 (47.2%) <.001 22 (68.8%) 13 (61.9%) 4 (44.4%) 0.61 

Age (y) 61.8 ± 12.8 36.7 ± 15.6 12.4 ± 2.8 <.001 58.9 ± 17.6 27.9 ± 7.9 12.4 ± 2.6 <.001 

Height (cm) 
169.5 ± 

10.4 
170.8 ± 9.5 

155.1 ± 

12.7 
0.016 

168.1 ± 

21.1 

172.1 ± 

11.6 

164.7 ± 

18.2 
0.44 

Weight (kg) 79.8 ± 16.6 68.5 ± 14.5 59.8 ± 22.3 <.001 81.1 ± 23.7 71.6 ± 17.3 63.5 ± 18.0 0.12 

LVEDV (mL)1 
177.5 ± 

75.9 

138.7 ± 

34.0 

130.5 ± 

30.4 
0.003 

185.9 ± 

73.3 

156.3 ± 

35.0 

147.2 ± 

33.9 
0.23 

LVESV (mL)1 
104.0 ± 

74.7 
59.8 ± 17.5 50.2 ± 13.9 <.001 

107.7 ± 

76.2 
73.5 ± 18.1 56.1 ± 15.8 0.15 

LVEF (%)1 41.1 ± 17.1 56.9 ± 4.9 61.9 ± 4.0 <.001 43.2 ± 18.0 53.0 ± 3.7 62.2 ± 3.7 0.28 

HR (BPM)2 72.3 ± 13.4 66.3 ± 12.5 72.3 ± 8.8 0.024 74.9 ± 14.0 74.6 ± 10.1 72.1 ± 10.0 0.94 

SV (mL/m2)1 73.5 ± 24.9 79.0 ± 21.1 80.4 ± 18.1 0.23 78.2 ± 18.9 82.8 ± 19.0 91.2 ± 19.3 0.48 

CO (L/min)2 5.4 ± 1.9 5.2 ± 1.5 5.7 ± 1.1 0.75 6.3 ± 1.7 5.8 ± 1.2 6.5 ± 1.0 0.45 

BP Dias 

(mmHg)3 
75.0 ± 14.9 72.1 ± 9.8 70.8 ± 7.0 0.43 78.3 ± 6.7 73.7 ± 10.4 73.3 ± 7.2 0.28 
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BP Sys 

(mmHg)3 

127.5 ± 

24.0 

122.9 ± 

13.1 

109.1 ± 

12.7 
0.42 

127.6 ± 

17.5 

122.1 ± 

15.0 
116.2 ± 3.9 0.43 

Note. -Unless otherwise indicated, data are means ± standard deviations. Independent t tests were 

used to compare the differences between two groups for continuous numerical variables. LVEDV 

= Left ventricular end-diastolic volume, LVESV = Left ventricular end-systolic volume, LVEF = 

Left ventricular ejection fraction, HR = Heart rate, SV = Stroke volume, CO = Cardiac output, BP 

Dias = Diastolic blood pressure, BP Sys = Systolic blood pressure. 

1Data are from all patients and 91 volunteers. 
2Data are from 105 patients and 97 volunteers. 
3Data are from 51 patients and 86 volunteers. 
4p values are calculated between patients and adult volunteers. 
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2.5.2 Correlation and Bland-Altman Plots of StrainNet and FT 

Analyses of Basal Cine bSSFP Slices with DENSE 

 

Figure 2-8 Supplementary: Correlation and Bland-Altman plots of StrainNet and FT analyses of 

basal cine bSSFP slices with DENSE for end-systolic (A) global and (B) segmental Ecc.  
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2.5.3 Correlation and Bland-Altman Plots of StrainNet and FT 

Analyses of Mid-ventricular Cine bSSFP Slices with DENSE 

 

Figure 2-9 Supplementary: Correlation and Bland-Altman plots of StrainNet and FT analyses of 

mid-ventricular cine bSSFP slices with DENSE for end-systolic (A) global and (B) segmental Ecc.  
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2.5.4 Correlation and Bland-Altman Plots of StrainNet and FT 

Analyses of Apical Cine bSSFP Slices with DENSE 

 

Figure 2-10 Supplementary: Correlation and Bland-Altman plots of StrainNet and FT analyses 

of apical cine bSSFP slices with DENSE for end-systolic (A) global and (B) segmental Ecc. 
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2.5.5 Comparison of Layer-specific End-systolic Ecc (%) among FT, 

StrainNet and DENSE for Basal, Mid-level and Apical Slices 

Table 2-4 Supplementary: Comparison of Layer-specific End-systolic Ecc (%) among FT, 

StrainNet and DENSE 

 Subendocardium Middle Layer Subepicardium 

Basal    

Feature Tracking -23.94 ± 2.94 -18.09 ± 2.20 -11.41 ± 2.09 

StrainNet -21.83 ± 1.48 -18.73 ± 1.26 -15.40 ± 1.15 

DENSE -19.00 ± 2.87 -16.41 ± 2.50 -13.68 ± 2.36 

Mid-level    

Feature Tracking -21.45 ± 2.28 -15.39 ± 1.87 -9.73 ± 1.86 

StrainNet -21.36 ± 1.74 -18.10 ± 1.70 -14.82 ± 1.54 

DENSE -21.64 ± 2.34 -18.86 ± 2.04 -15.85 ± 2.50 

Apical    

Feature Tracking -23.25 ± 2.98 -15.71 ± 2.63 -9.23 ± 2.55 

StrainNet -24.73 ± 1.92 -20.81 ± 1.55 -16.97 ± 1.36 

DENSE -24.24 ± 2.55 -20.92 ± 2.30 -17.78 ± 2.52 

 

2.5.6 Full Details of Cine and DENSE Imaging Parameters 

For each sample, short-axis cine bSSFP images were acquired during repeated breath holds 

covering the whole left ventricle. Typical imaging parameters were as follows: repetition time, 
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3.0–3.4 msec; echo time, 1.5–1.7 msec; matrix size, 192 × 224–224 × 256; field of view, 320 × 

320–380 × 380 mm2; and temporal resolution, 30–55 msec, depending on heart rate. 

For each sample, 3–4 short-axis cine DENSE sections were also acquired. Typical DENSE 

imaging parameters were as follows: repetition time, 15–17 msec; echo time, 1.06–1.26 msec; 

pixel size, 1.56 × 1.56–3.13 × 3.13 mm2; matrix size, 64 × 64–128 × 128; field of view 200 × 200–

360 × 360 mm2; temporal resolution, 30–34 msec (resulting in 18–43 frames across the cardiac 

cycle); region of signal generation, 120 × 120–360 × 360 mm2; 1D or 2D in-plane displacement 

encoding using the simple three-point method; displacement-encoding frequency, 0.1 cycles/mm, 

ramped flip angle with final flip angle of 15°, fat suppression, and 4–6 spiral interleaves per image 

with 2 interleaves acquired per heartbeat. Each cine DENSE acquisition was performed during 

end-expiratory breath-holding over 14 cardiac cycles. 
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____________________________________________________ 

Chapter 3 – TransStrainNet 
____________________________________________________ 
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3.1 Introduction 

The 3D (2D + t) U-Net has a relatively small receptive field which may limit its accuracy for 

modeling time-series data, especially to learn long-range dependencies such as those that may be 

present in cine CMR of the heart (76). As an example of a long-range dependency in cine CMR, 

consider left bundle branch block, where stretch occurring early in the cardiac cycle is closely 

associated with a stronger and later end-systolic contraction. While recurrent neural networks 

(RNNs) (59) and long short-term memory (LSTM) (77, 78) were developed for time-series data, 

the state-of-the-art transformer model can outperform RNNs and LSTM for time-series data, 

particularly when long-range dependencies are important (79). Unlike models that process data 

sequentially, the transformer takes the entire sequence of data as input and uses self-attention 

mechanisms to learn relationships in the sequence. We note that for modeling cardiac motion, the 

attention mechanism (49) may be particularly well suited, as key phases in the cardiac cycle should 

likely be emphasized. As examples of key phases, end-systole marks a change from contraction to 

relaxation, the onset of shortening marks a change from diastasis or prestretch to contraction, and 

the end of early diastole marks a change from rapid relaxation to diastasis.  Because of the self-

attention mechanism and the ability to model long-range dependencies, we propose that the 

transformer is well suited for modeling the complex dynamics of physiological and 

pathophysiological heart motion, thus we will develop a transformer-based version of StrainNet, 

termed TransStrainNet. 



56 
 

3.2 Methods 

3.2.1 Convolution vs. Attention 

StrainNet is a recently-developed convolutional deep learning model trained with displacement 

encoding with stimulated echoes (DENSE) data to predict intramyocardial motion and strain from 

myocardial contours of routine cardiac cine MRI (61). While StrainNet provides good-to-excellent 

strain agreement with DENSE (ICC: 0.87 whole-slice, 0.75 segmental), performance for the 

subgroup of patients with left bundle branch block (LBBB) and dyssynchrony was worse. The 

locality of convolutional neural networks (CNNs) may limit their ability to capture long-range 

dependencies/associations of cardiac motion. Hence, we investigated the use of Transformers (48, 

49), known for modeling long-range dependencies, to develop the next generation of StrainNet, 

termed TransStrainNet. We were particularly interested in the context of mechanical 

dyssynchrony, as these patients display simultaneous septal stretching and lateral wall contraction, 

a long-range spatial dependency, as well as the sequence of lateral wall prestretch with a later 

strong contraction, a long-range temporal dependency. Figure 3-1A compares convolution and 

attention mechanism in terms of 2D pixels. Compared with convolution which only look at the 

surrounding pixels, self-attention allows the receptive field to be the entire spatial 

locations. Therefore, it enables the modeling of long-term dependencies. Figure 3-1B compares 

the convolutional approaches with Transformer-based methods in the context of cardiac motion, 

specifically examining long-term dependencies in heart motion for a heart failure patient with 

LBBB. The study underscores the significance of capturing both spatial and temporal long-term 

dependencies prevalent in mechanical dyssynchrony observed in such patients. Convolution, due 

to its localized receptive field, as delineated by the blue box, can only process information from 
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adjacent areas. This limits its ability to capture the broader spatial dynamics within the cardiac 

cycle, such as the compensatory mechanisms between septal stretching and lateral wall contraction 

seen in LBBB. On the contrary, the Transformer's attention mechanism, represented by the green 

box, offers a substantially larger receptive field, enabling the model to recognize and integrate 

these complex spatial relationships over greater distances within the myocardium. 

For the strain-time curves, the temporal dimension of long-term dependencies becomes 

apparent. The attention mechanism's capacity to evaluate the entire temporal context allows it to 

detect the sequence of the lateral wall's pre-stretch phase followed by a strong contraction. This 

temporal pattern is crucial for understanding the heart's mechanical dyssynchrony in LBBB 

patients, as it provides insights into the interplay between different regions of the heart muscle 

over time. The ability of Transformer models to capture such long-term dependencies both 

spatially and temporally positions them as potentially powerful tools for analyzing complex 

physiological phenomena and could lead to improved diagnostic and therapeutic strategies for 

heart failure patients with LBBB. 
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Figure 3-1: Illustration and Comparison of Convolution and Attention Mechanisms. (A) illustrates 

the fundamental differences between convolution and attention mechanisms. Convolution, 

depicted by the blue arrows, focuses on local regions, processing information in a confined 

receptive field. In contrast, the attention mechanism, indicated by green arrows, captures 

dependencies over larger distances, allowing a broader context to be considered in the analysis. 

(B) contrasts the ability of convolution and attention mechanisms to capture long-term 

dependencies in cardiac motion. The orange box at the septum highlights the area of interest. 

Convolution, marked by the blue box, is limited to immediate surroundings, while attention, shown 

by the green box, encompasses a wider field, capturing the compensatory relationship between 

septal stretching and lateral contraction. The strain-time curve further demonstrates the attention 

mechanism's capacity to discern temporal long-term dependencies, such as the sequence of the 

lateral wall's prestretch and subsequent contraction.  
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3.2.2 Transformer with Self-attention Mechanisms 

Previously, a sequence is normally compressed into a fixed length vector and information may be 

lost in the compression especially for long input sequences. Attention mechanism relates different 

positions of a single sequence to compute a presentation of the sequence. An attention function 

could be described as the mapping between a query vector and a set of key-value pairs to an output 

(80). The output is the weighted sum of the values where the weight assigned to each value is 

computed by a similarity function between the input query and the corresponding key. The 

attention function can be computed as the following equation: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 O
𝑄𝐾&

P𝑑(
Q𝑉 

where 𝑄 is the query matrix, 𝐾 is the key matrix and 𝑄 is the value matrix. A scaling factor /
√5#

is 

applied, where 𝑑(is the dimension of key matrix. Self-attention is an attention mechanism that also 

pay attention to the relativities within encoder and decoder themselves in additional to encoder-

decoder attention. Although convolutional architectures remain dominant in vision tasks, multiple 

works have shown great promises by applying transformers with self-attention to images (48, 76, 

81).  

Figure 3-2 provides an overall illustration of the Transformer architecture. The 

Transformer encoder consists of several identical layers stacked together. Each of these layers 

comprises two distinct sublayers: a multi-head self-attention mechanism and a position-wise feed-

forward network. In the encoder's self-attention process, the queries, keys, and values all originate 

from the outputs of the preceding layer in the encoder, and both sublayers are encircled by a 

residual connection. This addition from the residual is followed by layer normalization, enhancing 

the model's stability and performance. 
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Similarly, the Transformer decoder is built from multiple identical layers with residual 

connections and layer normalizations. In addition to the two sublayers in the encoder, the decoder 

introduces an additional sublayer, termed encoder-decoder attention. In this cross-attention, the 

queries are from the decoder's self-attention, while the keys and values are sourced from the 

encoder's outputs. 

 

Figure 3-2: Illustration of the encoder-decoder structure of the Transformer architecture.  

Figure source: Attention is All You Need (49). 
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3.2.3 Transformer with 3D Patches as Inputs 

As typical for biomedical imaging processing, we will employ the encoder-decoder scheme. The 

encoder will compress the input into a latent-space representation containing high-level features, 

and the decoder will predict the output from the latent vector. A vision transformer block will be 

used as an embedding for global self-attention due to its abilities for compression, time-series 

modeling and for capturing long-range dependencies and global features. A standard transformer 

will receive the input as a 1D sequence of token embeddings. However, in order to simultaneously 

explore the long-term dependency of spatial and temporal dimensions, we design to directly feed 

Transformer with 3D patches. For 3D images, the (2D+t) input volume will be reshaped into a 

sequence of flattened patches, and project the patches into a constant latent vector space by a linear 

layer. To directly process the 3D patches, 3D Transformer blocks would be used as the backbone. 

After the linear projection of the patches, position embeddings will be combined with patch 

embeddings to preserve positional information, which will then serve as the input to the 

transformer blocks. The transformer block consists of alternating multiheaded self-attention 

(MSA) and feed-forward (FF) layers. LayerNorm (LN) will be applied before each MSA and FF, 

and skip connections will be used to connect LN and MSA layers and LN and FF layers (49). 

These elements are used to achieve long-term dependencies among temporal feature maps within 

the latent space. To project the latent features back to the original image size, a CNN decoder will 

be applied after the Transformer blocks. The decoded output will finally be fed into a  1 × 1 × 1 

convolutional layer to generate the two-channel pixel-wise semantic predictions of displacement 

maps, with the two maps representing the x and y directions, respectively.  
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3.2.4 Swin Transformer Blocks 

While Vision Transformer (ViT) has achieved superior performance on various vision tasks, 

adapting the high performance of Transformer from language models to visual tasks faces certain 

difficulties. One major distinction lies in the significantly higher resolution of pixels in images or 

voxels in volumetric images, relative to the number of words in text contexts. For example, in the 

motion estimation tasks explored by this dissertation, dense displacement estimation that requires 

the prediction at per-pixel level will impose huge computation burden for Transformer models 

because the complexity of self-attention is quadratic to image size. To enable practical model 

training, Swin Transformer, a more suitable general-purpose architecture for vision tasks, will be 

used as the backbone. 

There are two key concepts introduced in Swin Transformer to address the issues faced by 

the original ViT - hierarchical feature maps and shifted window attention. 

Hierarchical structure is one of the vital designs in vision models where shallower layers 

learn more local features and deeper layers capture more abstracted and high-level information. 

Standard transformer blocks need additional pooling layers to resize the feature maps to achieve 

hierarchical architecture, such as the deconvolutional layers demonstrated in the previous section. 

To expand the applicability of transformers and use it as a more general-purpose backbone for 

vision tasks, the Hierarchical Vision Transformer using Shifted Windows (Swin Transformer) (81) 

is adopted. Due to its hierarchical design by patch merging and expanding, the Swin Transformer 

could be easily incorporated into a Unet architecture without the assistant of additional sampling 

layers. Patch merging is used for down-sampling where the input features of each group are 

concatenated depth-wise which effectively downsample the input size, and projected by a linear 

layer. Patch expanding, in reverse, will up-sample the compressed features into higher resolutions.  
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For the shifted window part, rather than the standard MSA used in ViT, Swin Transformer 

architecture uses a Window MSA (W-MSA) and a Shifted Window MSA (SW-MSA) module as 

shown in Figure 3.3B. The typical MSA mechanism computes global self-attention, establishing 

connections between each patch and every other patch. Consequently, this leads to a computational 

complexity that is quadratic in relation to the patch count, rendering it inefficient for processing 

high-resolution images. 

The proposed StrainNet with Swin Transformer method is shown schematically in Figure 

3-3. The innovation contribution is the combination of 3D U-Net and Swin Transformer block, 

which facilitates effective and simultaneous exploitation of long-term dependencies of 

spatiotemporal features. Different patch embedding size, embedding dimensions, shifted-window 

size, number of multi-heads and number of hierarchical levels will be optimized. Due to the 

difference of spatial and temporal sizes, isotropic hyperparameters will designed for spatial and 

temporal respectively. The Swin Transformer blocks were modified to use both multi-layer 

perceptron (MLP) and convolutional layers as the feedforward layer to incorporate convolution 

within the attention blocks rather than only using MLPs. The network depth was 3 and the number 

of filters was 48. Patch merging was used for down-sampling where the input features of each 

group of 2 × 2 × 2  were concatenated depth-wise and projected by a linear layer. Patch 

expanding, in reverse, up-sampled the compressed features by 2 × 2 × 2. The depths of each Swin 

Transformer stage were 2, 4 and 2, and the number of multi-heads were 3, 6 and 12, from the top 

to bottom levels, respectively. The window size for Swin Transformer blocks was 3 for spatial 

dimensions and 2 for the temporal dimension.  
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Figure 3-3: General description of Swin transformer-based StrainNet architecture. Encoder, 

decoder and bottleneck are all composed of 3D (2D+t) Swin transformer blocks. Patch merging 

and expanding were used to provide the hierarchical architecture, and the encoder latent features 

were skip connected to decoder features to compose an UNet architecture. Patch merging was used 

for down-sampling where the input features of each group of 2 × 2 × 2 are concatenated and 

projected by a linear layer. Patch expanding, in reverse, up-sampled the compressed features into 

higher resolutions. Our model was trained with the AdamW optimizer using a total of 200 epochs. 
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The initial learning rate was set to 1e-4, with a halving schedule every 50 epochs. During training, 

the inputs were a time series of myocardial contours derived from DENSE magnitude images and 

the ground truth data were tissue displacement measurements computed from DENSE phase 

images. End-point-error (EPE) was the loss to calculate the difference between the estimated 

displacement maps and ground truth DENSE displacements. During testing, the inputs were a time 

series of myocardial contours derived from routine bSSFP cine images. DENSE data at matched 

slice locations served as the reference. 

3.2.5 Model Training and Testing 

The model was trained with myocardial contours from DENSE magnitude images with ground 

truth as the Lagrangian displacement from DENSE phase images. The inputs were a time series of 

binarized LV myocardium images and the outputs were the corresponding estimated 

intramyocardial displacement maps. Data augmentation on-the-fly was performed by random ± 

90° and 180° rotations. The loss function was defined by the average end-point-error within the 

myocardial region for the whole time series between the estimated displacements and the ground 

truth DENSE displacements. For testing, TransStrainNet was applied to contours derived from the 

segmentation of routine cine MRI, and DENSE at matched section locations served as the 

reference.  

Same datasets will be used for StrainNet-Transformer and StrainNet-Unet training and 

testing as demonstrated in Aim1. The network was trained and tested on the general dataset 

containing a total of 305 healthy controls and patients with various types of heart diseases, and 

with a train-test split of 4:1. 

3.2.6 Model Performance Evaluation 

End-systolic global and segmental circumferential strain (Ecc) computed by TransStrainNet and 

StrainNet were compared with DENSE using the intra-class correlation coefficient (ICC). The 
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whole Ecc-time curve differences between TransStrainNet and DENSE and between StrainNet and 

DENSE were assessed by root-mean-square-error (RMSE) averaged for each time point. The Ecc-

time curves from bSSFP cines were interpolated to match with DENSE temporal resolution and 

the longer Ecc-time curves were truncated by the minimum time length of cine MRI and DENSE 

acquisitions. 

3.3 Results 

3.3.1 Computation Time 

TransStrainNet training and testing were performed with PyTorch on a 24G GPU server (Quadro 

RTX 6000; NVIDIA). Testing on one slice with the entire cardiac cycle was accomplished in < 

0.1 second.  

3.3.2 End-systolic Displacement, Ecc Maps and Ecc-time Curves from 
Healthy Volunteers and Patients with Heart Disease 

Examples of end-systolic displacement, Ecc maps and segmental Ecc-time curves from StrainNet 

and TransStrainNet processing of bSSFP image contours and from DENSE for a healthy control 

(Figure 3-4) and a patient with heart failure with left bundle branch block (Figure 3-5) are shown. 

For the healthy control, both StrainNet and TransStrainNet depicted normal displacement and Ecc, 

showing good agreement with DENSE. For the patient with LBBB, StrainNet displayed less septal 

stretch and less lateral wall shortening than DENSE, whereas TransStrainNet showed much better 

agreement with DENSE in all segments. 
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Figure 3-4: Example of end-systolic displacements and Ecc maps and segmental circumferential 

strain-time curves comparing (A) StrainNet and (B) TransStrainNet analysis of bSSFP cine images 

and (C) ground-truth DENSE for a healthy volunteer. 
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Figure 3-5: Example of end-systolic displacements and Ecc maps and segmental circumferential 

strain-time curves comparing (A) StrainNet and (B) TransStrainNet analysis of bSSFP cine images 

and (C) ground-truth DENSE for a heart failure patient with left bundle branch block. 
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3.3.3 Correlations and Agreement of End-systolic Ecc and Whole Ecc-
time Curves 

Table 3.1 summarizes the ICCs validated on general testing dataset and on the LBBB subgroup 

comparing FT, StrainNet and TransStrainNet with DENSE for the assessment of global and 

segmental Ecc. For the general testing dataset, the ICCs between FT and DENSE, StrainNet and 

DENSE, TransStrainNet and DENSE and were 0.72, 0.87 and 0.87, respectively, for global Ecc 

and 0.48, 0.75 and 0.75, respectively, for segmental Ecc, showing that both StrainNet and 

TransStrainNet had good agreement with DENSE and outperformed FT for both global and 

segmental Ecc. For the LBBB subgroup, TransStrainNet demonstrated the best agreement with 

DENSE with an ICC of 0.64 for segmental Ecc, better than StrainNet and FT with ICCs of 0.57 

and 0.49, respectively. RMSE of segmental whole-strain time curves between StrainNet and 

DENSE and TransStrainNet and DENSE were 3.11 vs. 3.02 for general testing dataset and were 

3.96 vs. 3.62 for LBBB subgroup, showing that TransStrainNet had improved performance on 

segmental strain analysis across the cardiac cycle.  

Table 3-1: Comparison of agreement between StrainNet, TransStrainNet and Feature Tracking 

with DENSE for global and segmental peak-systolic Ecc and whole Ecc-time curve errors 

 

Group Metrics StrainNet TransStrainNet FT 

All Testing 
Data 

ICC (Global Peak Ecc) 0.87 0.87 0.72 

ICC (Segmental Peak Ecc) 0.75 0.75 0.48 

RMSE (Whole Ecc-Time Curve) 3.11 3.02 / 

LBBB 
Subgroup 

ICC (Global Peak Ecc) 0.35 0.41 0.31 

ICC (Segmental Peak Ecc) 0.57 0.64 0.49 

RMSE (Whole Ecc-Time Curve) 3.96 3.62 / 
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Note. Ecc = circumferential strain, ICC = Intra-class correlation coefficient, LBBB = left bundle 

branch block, RMSE = root mean squared error. 

3.4 Discussion 

While DL-based motion estimation and strain analysis of routine bSSFP cine images have 

achieved improvements than conventional FT, it is still challenging to accurately track complex 

cardiac motion such as the patients with mechanical dyssynchorny. In our study, we developed a 

transformer-based DL framework, named TransStrainNet, that combines the self-attention 

mechanisms for long-term dependencies and the locality properties of convolution, to capture both 

global and local patterns for improved intramyocardial motion estimation from contour motion. 

TransStrainNet showed similarly good performance with StrainNet on general dataset on patients 

with heart diseases and healthy controls, and demonstrated improved performance on LBBB 

patients with complex cardiac motion patterns with distinctive long-term spatiotemporal 

dependencies. The improved strain analysis accuracy also provided the opportunity for providing 

strain-based prognostics from cine bSSFP images, which was previously limited due to its 

suboptimal calculation. There are several major findings of our studyTransStrainNet generally 

demonstrated similarly good performance to StrainNet for predicting intramyocardial 

displacement and strain. Further, for LBBB patients with dyssynchrony and distinctive long-term 

spatiotemporal relationships of heart motion, the TransStrainNet, which is well-suited for long-

term dependencies, led to better performance for the prediction of segmental strain. In addition, 

TransStrainNet showed better performance on the whole-strain time curves as well as the end-

systole peak strain values  

Learning-based myocardial motion tracking methods have been investigated previously 

(51-54) and demonstrated the potential for the performance and inference efficiency than 
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conventional FT algorithms which were mainly based on optical-flow (9) or deformable (73) 

models. Although convolutional neural networks are well-suited for vision tasks by extracting 

high-level and multi-scale features, convolution has a relatively small receptive field which may 

limit its accuracy for modeling time-series data, especially to learn long-range dependencies such 

as those that may be present in cine CMR of the heart (76). Our design combined Swin Transformer 

with convolution in a 2D+t U-Net structure which could simultaneously capture the multi-scale 

global and local spatiotemporal features, and therefore have improved performance for modeling 

the complex dynamics of physiological and pathophysiological heart motion. In addition to the 

architecture design, TransStrainNet also benefited from the availability of multi-center, multi-

disease datasets to develop a comprehensive mapping from contour motion to accurate 

displacement maps for various cardiac motion patterns. To further validate TransStrainNet in 

clinical applications on CRT patient outcome prediction and showing its promises in risk 

stratification, our study will go beyond the displacement and strain accuracy assessment and 

validated strain metrics from bSSFP cine images in the next Chapter. 

While the dataset in this study are diverse and substantial, a larger dataset would be better 

to train transformer models from scratch compared to convolutional neural networks due to the 

increased complexity and larger number of model parameters. In addition, an external testing 

dataset may be needed in the future to validate the model generalization ability and the potential 

data leakage between the training and testing groups. Moreover, reproducibility experiments of 

the segmentation of endocardial and epicardial contours from different segmentation algorithms 

and different users should be conducted. In this study, we have developed the DL pipeline with 

the aim of improved motion estimation from contour motion and the consequence strain analysis. 
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However, the actual impact on clinical workflows remains to be validated, and we will test our 

models in inline settings on the scanners in the future. 

In conclusion, a transformer-based DL framework combining self-attention and 

convolution was developed to accurately predict intramyocardial motion from contour motion by 

capturing both global and local feature patterns. TransStrainNet showed better performance than 

StrainNet for the peak-systole global and segmental circumferential strain and better accuracy on 

through-time strain estimation on LBBB subgroup with complex spatiotemporal motion patterns, 

using DENSE as the reference. 
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____________________________________________________ 

Chapter 4 – Application in CRT Patient 

Prognostication 
____________________________________________________ 
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4.1 Background 

4.1.1 Strain in CRT 

Heart failure is a growing burden for the United States, with around one million new cases 

emerging annually (82). Forecasts indicate that by 2030, over 8 million Americans will be living 

with heart failure, translating to a prevalence of 1 in every 33 individuals (83). Cardiac 

resynchronization therapy (CRT), using a pacemaker or implantable cardioverter defibrillator to 

restore the normal patterns of the heartbeat, has proven effective in improving mechanical 

synchrony and thus enhancing outcomes in selected heart failure patients - demonstrating a 

reduction in symptoms, hospitalizations, and an increase in survival rates (84-91). However, the 

clinical challenge lies in discerning the appropriate recipients for CRT, as its significant benefits 

are observed in only 55-65% of patients deemed responders in observational studies (92, 93). 

Cardiovascular Magnetic Resonance (CMR) has been highlighted for its critical role in 

optimizing CRT application, as detailed in a white paper by the SCMR Clinical Trials Committee 

(94). CMR techniques are pivotal in identifying patients poised to benefit from CRT by quantifying 

the degree of cardiac dyssynchrony (95) and in pinpointing the most effective pacing sites by 

mapping mechanical activation time (96). The circumferential uniformity ratio estimate (97) with 

singular value decomposition (CURE-SVD) derived from DENSE (93) stands as a robust 

biomarker to quantify dyssynchrony, and CURE-SVD by DENSE has been proved to be a stable 

predictor of of CRT response, survival, and arrhythmia outcomes (93, 95, 98).  The CURE-SVD, 

a validated metric for assessing cardiac discoordination based on regional circumferential strain, 

has been strongly associated with CRT patient outcomes, with a lower CURE-SVD from DENSE 

indicating a favorable response. Although alternative CURE-SVD calculations based on FT from 
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bSSFP cine images might align with an efficient clinical workflow, the limited reproducibility for 

segmental strain of FT hampers its effectiveness in prognostics and CURE-SVD computations. 

Development of a technique to accurately evaluate dyssynchrony using CURE-SVD from 

standard bSSFP cine images would significantly enhance CMR's utility in CRT management, 

expanding its availability to more patients and centers via a more rapid CMR examination. CRT's 

capacity to improve cardiac function through biventricular pacing, particularly in late-activating 

myocardium, underscores its potential can improve survival rate, enhance heart function, and 

improve quality of life (65). Nevertheless, with a nonresponse rate of about 40%, refining the 

prediction of CRT responsiveness is crucial for managing potential CRT candidates (66). Utilizing 

CMR results to select suitable patients for CRT and to direct the implantation of the left ventricular 

(LV) pacing lead to the optimal region can substantially impact treatment outcomes (67).  

4.1.2 StrainNet Analysis of CRT Patients 

TransStrainNet has shown outperformed performance than FT on the regional circumferential 

strain analysis in Aim 2.  We developed and validated a general TransStrainNet model for 

improved motion estimation and strain analysis on healthy volunteers and patients with various 

types of heart disease. It leverages a broad dataset from multiple centers and multiple diseases for 

general intramyocardial motion tracking. As a foundational model, it could serve as an ideal pre-

trained model for further fine-tuning on specialized tasks using additional, specific datasets. Since 

CRT is a very important application of strain for prognosis where we have bSSFP images, DENSE 

ground truth and outcomes, we will investigate whether DL strain analysis outperforms feature 

tracking for prognostication in CRT patients. The first, Study A, develops and validates a general 

TransStrainNet model for improved motion estimation and strain analysis on healthy volunteers 

and patients with various types of heart disease. It leverages a broad dataset from multiple centers 
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and multiple diseases for general intramyocardial motion tracking. As a foundational model, it 

could serve as an ideal pre-trained model for further fine-tuning on specialized tasks using 

additional, specific datasets. The second study, Study B, focuses on the clinical validation of strain 

metrics derived from TransStrainNet for prognostication of CRT patients, utilizing the baseline 

TransStrainNet model developed in Study A for the initial model weights and fine-tuning the 

model using the CRT cohort.  

4.2 Methods 

4.2.1 Patient Cohort Description 

We included 120 patients with CRT and cardiac MRI examinations with DENSE between 2008 

and 2023 (2, 98, 99). All patients had LV ejection fraction of 35% or less, NYHA functional class 

II-IV, and QRS greater than 120ms and qualified for CRT based on AHA/ACC/HRS guidelines. 

Before the CRT procedure at University of Virginia Health System, patients provided information 

on demographics, health conditions, and medications. There are 38 baseline characteristics 

available for this cohort, including 6 demographic characteristics (gender, age, Body Mass Index 

(BMI), weight, New York Heart Association (NYHA) heart failure class, and race), 6 comorbid 

conditions (ischemic cardiomyopathy, hypertension, atrial fibrillation, chronic kidney disease, 

diabetes mellitus, and prior Coronary Artery Bypass Graft (CABG)), 5 medications (beta-blocker 

use, Angiotensin-Converting Enzyme (ACE) inhibitor use, loop diuretic dose, digoxin, and statin), 

7 laboratory studies, vital signs, and exercise testing (systolic blood pressure, sodium, creatinine, 

hemoglobin, Glomerular Filtration Rate (GFR), B-Type Natriuretic Peptide (BNP), and Peak 

VO2), 8 Cardiac Magnetic Resonance (CMR) and echocardiography assessment parameters (Left 

Ventricular Ejection Fraction (LVEF), Left Ventricular End-Diastolic Volume Index (LVEDVI), 
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Left Ventricular End-Systolic Volume Index (LVESVI), Right Ventricular Ejection Fraction 

(RVEF), Right Ventricular End-Diastolic Volume Index (RVEDVI), Right Ventricular End-

Systolic Volume Index (RVESVI), presence of Late Gadolinium Enhancement (LGE), and 

Circumferential Uniformity Ratio Estimate with Singular Value Decomposition (CURE-SVD)), 

and 6 Electrocardiogram (ECG) parameters (QRS, QRS-LV Electrogram Time (QLV), Left 

Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Paced rhythm, and upgrade 

or new device). 

There are three response parameters available at 6 months post CRT, including Left 

Ventricular End-Systolic Volume Index Fractional Change (LVESVI-FC), B-type natriuretic 

peptide (BNP), and Δ Peak VO2. 6-month LVESVI-FC was determined by a second 

echocardiography scan 6 months after their CRT procedure.  Determination of death was based on 

clinical follow-up, reports of deaths from families, and a regional death index. Demographics and 

clinical data are summarized in Table 4.1. 

Table 4-1: Demographics of the 200 CRT patients. Values are median (interquartile range) or n 

(%). ACE = angiotensin-converting enzyme; ARB = angiotensin receptor blocker; BMI = body 

mass index; BNP = B-type natriuretic peptide; BP = blood pressure; CABG = coronary artery 

bypass graft; CURE-SVD = circumferential uniformity ratio estimate with singular value 

decomposition; GFR = glomerular filtration rate; LBBB = left bundle branch block; LGE = late 

gadolinium enhancement; LVEDVI = left ventricular end-diastolic volume index; LVEF = left 

ventricular ejection fraction; LVESVI = left ventricular end-systolic volume index; NYHA = New 

York Heart Association; QLV = QRS-LV electrogram time; RBBB = right bundle branch block; 
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RVEDVI = right ventricular end-diastolic volume index; RVEF = right ventricular ejection 

fraction; RVESVI = right ventricular end-systolic volume index. 

 



79 
 

4.2.2 Determination of CURE-SVD 

CURE-SVD will be calculated from the circumferential strain in 18 segments per slice. 

Specifically, the circumferential strain data will be used to create a 2D strain matrix 𝐸66 and a 

rank-1 approximation of the matrix 𝐸66/  will be calculated using Singular Value Decomposition 

(SVD) as shown in the following equation:  

𝐸66/ = 𝑈𝑆/𝑉∗, 

where the columns of	𝑈 and 𝑉 consist of the left and right singular vectors, respectively. 𝑆 is a 

diagonal matrix whose diagonal entries are the singular values of 𝐸66, and 𝑆/ contains only the 

first singular value (69). Fourier Transform will be applied on one column of  𝐸66/ , and CURE-

SVD will be calculated based on 𝑓"/(𝑓" + 𝑓/), where 𝑓"	is the zero-order term of the Fourier 

transform, and 𝑓/ is the first-order term, representing low frequency changes. CURE-SVD score 

ranges from 0 to 1, with 1 indicating perfect synchrony. 

For bSSFP images, the endocardial and epicardial contours will be automatically detected 

and regional circumferential strain will be calculated from a commercial software (suiteHEART, 

NeoSoft). StrainNet will be applied to the same bSSFP images and get the displacement and 

circumferential strain values. The alternative CURE-SVD scores will be derived from FT and 

StrainNet, respectively. The imaging analysis will be conducted blinded to DENSE analysis and 

survival outcomes. 

For cine MRI, the CURE-SVDs were calculated for mid-ventricular slices and averaged to 

get a single CURE-SVD value for each subject. The CURE-SVD scores were derived from 

TransStrainNet and FT, respectively, termed CURE-SVD-TransStrainNet and CURE-SVD-FT. 

The CURE-SVD values from DENSE were calculated as previously reported (2, 98).  
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4.3.3 Prediction of CRT Response and Outcomes 

CRT response was measured as the fractional change over 6 months in LV end-systolic volume 

index (FC-LVESVI = [post-LVESVI - baseline LVESVI] / baseline LVESVI, with negative as 

favorable response), and with the decrease larger than 15% considered as a favorable responder. 

Logistic regressions were used to predict the 6-month response and 4-year survival free of heart 

transplantation and LV assist device based on CURE-SVDs.  

4.3.4 Statistics Analysis 

Short-axis (base, mid, apex) endocardial and epicardial contours will be automatically detected 

from bSSFP images from all subjects and FT will be performed by experienced individuals using 

commercial software (SuiteHeart, NeoSoft). The endocardial and epicardial contours will be 

exported to a personal computer and used as input into TransStrainNet for displacement and global 

and segmental circumferential strain analysis.  

The Receiver operating characteristic (ROC) curves for each fold within the 5-fold cross-

validation for CURE-SVD-TransStrainNet and CURE-SVD-FT were generated, and areas under 

the ROC curves (AUC) were calculated to evaluate and compare the performances of response 

and survival predictions, respectively. Kaplan-Meier analysis and Cox proportional hazards 

regression was used to construct the 4-year survival curves based on the medium cluster identified 

by CURE-SVDs for TransStrainNet, NeoSoft and DENSE, respectively. P < .05 was considered 

statistically significant. Statistical analyses were performed using MATLAB R2018b (Mathworks 

Inc, Natick, MA) and Python 3.9.7 (Python Software Foundation). 
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4.4 Results 

4.4.1 CRT Patients Response and Outcome Predictions 

Binary classification was performed based on CURE-SVD-FT, CURE-SVD-TransStrainNet and 

CURE-SVD-DENSE, and the prediction performance was shown for 6-month response (Figure 4-

1) and 4-year survival (Figure 4-2) with ROC curves. The AUCs for each fold within the cross-

validation was displayed along with the area under the average ROC curve. The average AUC 

values for FT, TransStrainNet and DENSE were 0.67 ±  0.12, 0.72 ± 0.07 and 0.80 ± 0.09 for 6-

month response prediction, and 0.65 ± 0.08, 0.69 ± 0.07 and 0.72 ± 0.13 for 4-year survival 

outcome prediction. TransStrainNet demonstrated better prognostication performance and less 

variability than FT for both 6-month remodeling and survival prediction. 
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Figure 4-1: Time-Dependent Receiver-Operating Characteristic Curves for CRT patient 6-month 

response prediction with 5-fold cross validation. Time-dependent receiver-operating characteristic 

curves based on CURE-SVDs are shown for 3 models: (A) Commercial Feature Tracking, (B) 

TransStrainNet and (C) DENSE. 
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Figure 4-2: Time-Dependent Receiver-Operating Characteristic Curves for CRT patient 4-year 

survival prediction with 5-fold cross validation. Time-dependent receiver-operating characteristic 

curves based on CURE-SVDs are shown for 3 models: (A) Commercial Feature Tracking, (B) 

TransStrainNet and (C) DENSE. 
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4.4.2 CRT Cohort Risk Stratification 

The Kaplan-Meier survival analysis was displayed in Figure 4-3 and demonstrated that patients 

with lower CURE-SVD scores (Group 1) had better survival probability than patients with higher 

CURE-SVD scores (Group 2) in all three methods of FT, TransStrainNet and DENSE. FT showed 

obvious overlapping of the two survival curves after Year 2 compared to the overlapping area of 

TransStrainNet and DENSE. The hazard ratios (HR) for the two subgroups were 1.77 (95% CI: 

0.95-3.31) for FT, 2.70 (95% CI: 1.40-5.21) for TransStrainNet and 2.88 (95% CI: 1.46-5.61) for 

DENSE. There were significant differences between the two survival groups stratified by CURE-

SVD-TransStrainNet [P=.03] and by CURE-SVD-DENSE [P=.02]; whereas we found no evidence 

of differences between the survival groups stratified by CURE-SVD-FT [P=.07].  



85 
 

 

Figure 4-3: Stratified Kaplan-Meier analysis. Kaplan-Meier survival curves are presented for the 

two groups (Group 1: with lower CURE-SVD score, Group 2: with higher CURE-SVD score) 

stratified by the medium of CURE-SVDs from (A) Commercial Feature Tracking, (B) 

TransStrainNet and (C) DENSE.
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      ____________________________________________________ 

Chapter 5 – Conclusions and Future Directions 
____________________________________________________ 
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5.1 Conclusions 
Deep Learning characterization of cardiovascular diseases from cardiac MRI has clinical potentials 

in many aspects. This dissertation aims to address most of the technical challenges related to cine 

strain analysis by utilizing strain-dedicated DENSE data to demonstrate the potential at the 

quantification level and clinical prognostication level.  

We developed StrainNet model to predict intramyocardial displacement from contour 

motion trained with DENSE data and tested with cine MRI. We showed that StrainNet 

outperformed commercial feature tracking for global and segmental circumferential strain analysis 

of cine MRI. We also investigated the use of self-attention mechanisms and transformer blocks 

(TransStrainNet) for improved motion estimation ability by capturing the complex heart motion 

patterns and long-term dependencies. TransStrainNet demonstrated better performance than 

StrainNet for the peak-systole global and segmental circumferential strain and better accuracy on 

through-time strain estimation on LBBB subgroup. In addition to the strain value assessment, we 

experimented on the clinical applications of TransStrainNet by predicting the prognostication of 

CRT patients based on CURE-SVDs to quantify cardiac dyssynchrony, and showed better 

performance than the results from commercial FT on 6-month response and 4-year outcome 

prediction.  

5.2 Future Directions 

5.2.1 Reproducibility of StrainNet 

In this dissertation, we have developed and validated StrainNet on multi-site, multi-disease dataset 

containing healthy volunteers and patients. However, we have not done extensive experiments on 

the reproducibility of StrainNet. In the future, reproducibility experiments, especially in the 
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context of segmentation of endocardial and epicardial contours from different segmentation 

algorithms and different users, should be conducted to validate the robustness and reproducibility. 

In addition, an external testing dataset may be needed to validate the model generalization ability 

and the potential data leakage between the training and testing groups.  

5.2.2 StrainNet Extension to Multi-modality 

StrainNet is trained using DENSE images to predict intramyocardial displacement from 

myocardial contours and can be applied to any image series that provides myocardial contours. In 

this dissertation, we have developed and validated StrainNet application in cine MRI images. Since 

the input of StrainNet only utilizes the contour motion, StrainNet can be applied to any image 

series that provides myocardial contours such as echocardiographic images and CT images. 

Echocardiography is the most commonly used modality in myocardial strain imaging and 

is more practical in clinical applications (31, 33, 100). Myocardial deformation analysis based on 

echocardiography is an easily accessible and low-cost procedure with no patient discomfort 

(101).  StrainNet provides the opportunity to combine the accuracy of strain-dedicated images by 

training from DENSE and the convenience of echocardiographic images in real clinical settings. 

Although CT images are not very commonly used in myocardial strain imaging, there are 

still some promising research recently to show the feasibility of CT in the calculation of regional 

cardiac function assessment. For example, Stretch QUantification of Endocardial Engraved Zones 

(SQUEEZ) has been developed for the quantitative evaluation of left ventricular function through 

automated 3D tracking of endocardial surface structures (36, 102, 103). Due to the generalization 

ability of StrainNet, it can also be applied to CT images for strain analysis. 

StrainNet may provide more accurate strain analysis of echo images than speckle tracking 

echocardiography (STE). More importantly, by utilizing the same technique in different 
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modalities, StrainNet may provide more interchangeable strain values between echo and CMR, 

which used to be not interchangeable by utilizing STE to analyze echo imaging and FT or strain-

dedicated images in MRI. Preliminary results were shown in Appendix B. 

5.2.3 StrainNet Extension to Longitudinal Strain  

Although short-axis images are commonly used in cardiac MRI, longitudinal strain is dominant in 

systolic strain especially in echocardiography (104-107). For example, imaging of global 

longitudinal strain is recommended for the early detection and monitoring of chemotherapy-

induced cardiotoxicity (1, 108, 109). Extending StrainNet to long-axis images has great potentials 

and more clinical values. The development and validation of StrainNet analysis of cine MRI to 

assess global and segmental longitudinal strain will be valuable for a more comprehensive strain 

analysis pipeline. This could not only enhance the accuracy of cardiac function assessment but 

also broaden the scope of detectable cardiac abnormalities via myocardial strain imaging. 

The long-axis version of StrainNet can also be applied to echocardiography will also be 

important for more accurate longitudinal strain analysis of echo images and for building up 

interchangeable longitudinal strain values between echo and MRI.  

5.2.4 StrainNet Application to Cardiotoxicity 

One of the most important clinical applications of myocardial strain imaging is the monitoring and 

early detection of chemotherapy-induced cardiotoxicity. Current treatment for cancer has led to 

cancer therapy-related cardiac dysfunction, heart failure and increased cardiovascular mortality in 

cancer survivors (110).  The early detection of cardiac dysfunction is important and LV ejection 

fraction is commonly used to monitor the heart function. However, cardiac dysfunction may 

happen before the decreases of LVEF, a global metrics for function evaluation. Therefore, strain 
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imaging, especially segmental strain analysis, is critical in the detection of early and regional 

dysfunction. Although end-systolic global longitudinal strain assessed by echocardiography is 

routinely used for this application, CMR is also an important and likely superior modality as it can 

provide accurate LVEF and strain values. Previous studies have shown that CMR end-systolic 

global circumferential strain using FT is a new potentially powerful outcome predictor (111). 

We have shown that StrainNet provides more accurate circumferential strain than 

commercial FT and therefore the application of StrainNet to the cardiotoxicity patient data will be 

of interest and may provide better prognostication performance. Figure 5-1 shows an example of 

impaired strain 3 months after initiating chemotherapy vs baseline detected using the StrainNet 

applied to bSSFP cine images from one breast cancer patient. 

Figure 5-1: Example Ecc maps from a breast cancer patient before (A) and 3 months after (B) 

intitiating chemotherapy.  Impaired strain, especially in the septum and inferior wall are detected 

and quantified in (B).  

5.2.5 Inline StrainNet 

In this study, we have developed the DL pipeline with the aim of improved motion estimation from 

contour motion and the consequence strain analysis. However, the actual impact on clinical 

workflows remains to be validated, and we will test our models in inline settings on the scanners 

in the future. The integration with Siemens Framework for Image Reconstruction (FIRE) prototype 
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framework (112) may directly visualize the StrainNet analysis results on the console, providing 

real-time feedback in the clinical settings. 
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____________________________________________________ 

Appendix A – FlowNet2-based StrainNet 
____________________________________________________ 
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A.1 Background and Rationale 
Before the current design of StrainNet architecture, a FlowNet2-based DL network was 

implemented to predict the intramyocardial displacement from myocardial contours. FlowNet 2.0 

is one of the best 2D end-to-end optical flow convolutional neural networks (CNN) and is widely 

used for motion tracking in video imagery (113, 114).  We implemented a DL-based FT model 

that uses FlowNet 2.0 but is retrained with DENSE data to estimate intramyocardial displacement 

from contour motion.  This approach combines properties of optical flow with DENSE training 

data.  In addition to these methods that primarily exploit spatial heart motion patterns, we will also 

exploit temporal patterns of heart motion by adding a subsequent through-time correction network 

and training it with dynamic through-time cine DENSE data.  

The results were compared with StrainNet as shown in the A.2 Abstract below. Although 

we finally showed that a single 3D network as in StrainNet and TransStrainNet were better than 

FlowNet2-based networks two-step framework. The FlowNet2-based model showed the proof-of-

concept to develop a DL-based FT framework using DENSE data to enable accurate and 

convenient myocardial strain imaging.  

A.2 Abstract 
Synopsis:  Cine DENSE provides both myocardial contours and intramyocardial displacements. 

We propose to use DENSE to train deep networks to predict intramyocardial motion from contour 

motion. Two workflows were implemented: a two-step FlowNet2-based framework with a 

through-time correction network and a 3D (2D+t) Unet framework. Both networks depicted 

cardiac contraction and abnormal motion patterns. The 3D Unet showed excellent reliability for 



94 
 

global circumferential strain (Ecc) and good reliability for segmental Ecc, and it outperformed 

commercial FT for both global and segmental Ecc. 

Summary of Main Findings: DENSE-trained deep networks can predict intramyocardial motion 

from contour motion, show good agreement with DENSE ground truth, and outperform a 

commercial feature tracking algorithm for global and segmental circumferential strain.  

Background: CMR myocardial strain imaging is used diagnostically and prognostically for many 

types of heart disease. Feature tracking (FT) is a widely used and convenient method for strain 

MRI, as it applies post-processing algorithms directly to standard cine images to assess strain. It 

is, however, less accurate than strain-dedicated acquisitions like displacement encoding with 

stimulated echoes (DENSE) (1-4), especially for segmental strain. FT methods track myocardial 

contours rather than intramyocardial tissue because the myocardium presents uniform signal on 

cine MRI, lacking features to track. The intramyocardial motion is then (imperfectly) estimated 

using optical-flow based methods applied to the times series of endocardial and epicardial contours 

(5). In contrast, DENSE directly measures intramyocardial tissue displacement; however, it 

requires additional acquisitions. As DENSE provides both myocardial contours and accurate 

intramyocardial tissue displacement information, we investigated the use of DENSE data to train 

deep networks to predict intramyocardial tissue motion from contour motion. This deep learning 

(DL) approach may provide the clinical convenience of FT and accuracy similar to DENSE. 

Methods: Two approaches were developed and evaluated: (a) a two-step FlowNet2-based 

framework with a through-time correction network (TC-FlowNet2), and (b) a 3D Unet. TC-

FlowNet2 framework: This network was built upon a successful optical-flow convolutional neural 

network (CNN) called FlowNet2 (6), which is widely used for frame-to-frame motion tracking of 

video imagery. We fine-tuned FlowNet2 using DENSE datasets, and we added a 3D through-time 
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correction network to exploit the time dimension (Fig. 1A). 3D Unet framework: For this approach, 

a 3D Unet was trained to predict intramyocardial displacement from contour motion (Fig. 1B). For 

both approaches, during training, the inputs were a time series of myocardial contours derived 

from DENSE magnitude images and the ground truth data were DENSE tissue displacement 

measurements. Because DENSE and cine images at matched slice locations share similar motion 

patterns, we tested our trained model using contours derived from standard cine images (Fig. 1C). 

Data pre-processing for network training: We segmented the left-ventricular myocardium on 

DENSE and cine images, binarized the images by filling the myocardial area with 1 and the outside 

area and blood pool with 0, and cropped the images to a fixed size: Nx*Ny. Data augmentation was 

performed using 90° rotations. Cine images were scaled to match the resolution range of DENSE 

images. The input size for the FlowNet2-based network was two frames of endocardial and 

epicardial contours and the output of the DT-FlowNet2 was the frame-to-frame displacement field. 

The input of the through-time correction network was a stack of sequential displacements fields 

from DT-FlowNet2 with size of 2*Nx*Ny*Nt, where the factor of 2 accounts for displacements in 

two directions and Nt represents the number of temporal frames. The output was also size of 

2*Nx*Ny*Nt. For the 3D Unet, the input size was Nx*Ny*Nt and the output size was 2*Nx*Ny*Nt. 

Datasets: Training datasets are described in Fig. 1D, and included a total of 60 volunteers and 42 

patients with various pathologies such as left bundle branch block (LBBB), hypertrophic 

cardiomyopathy, dilated cardiomyopathy, coronary artery disease and hypertension. The model 

was tested on cine images of 10 volunteers and 18 patients using 3 short-axis views (base, mid-

level and apex). For TC-FlowNet2, datasets were divided into two parts to separately train 

DENSE-trained FlowNet2 and the correction network, thus the testing dataset number (15 subject, 
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48 slices) was half the size as that used for the 3D Unet. Commercial feature-tracking 

(suiteHEART, Neosoft, WI) was also used to measure strain from cine images. 

Results: Fig. 2 shows examples comparing TC-FlowNet2, 3D Unet and DENSE for computing 

end-systolic displacement and circumferential strain (Ecc) for a healthy subject and a LBBB 

patient. In these examples, both methods detect cardiac contraction in the healthy volunteer and 

stretching of the septum in the LBBB patient, but TC-FlowNet2 shows less contraction. Fig. 3 

shows examples comparing commercial FT, TC-FlowNet2, 3D Unet and DENSE for computing 

global and segmental circumferential strain-time curves, with the 3D Unet showing better 

agreement with the ground truth (DENSE). Correlation plots and Bland-Altman plots (Fig. 4A, B) 

show that 3D Unet outperformed both TC-FlowNet2 and commercial FT for global and segmental 

Ecc. Also, as shown in Table 1, the intraclass correlation coefficient (ICC), coefficient of variation 

(CoV), and Pearson correlation coefficient (Pearson CC) showed that the 3D Unet provides the 

best agreement with DENSE, where the 3D Unet achieved ICC = 0.89 for global Ecc and ICC = 

0.75 for segmental Ecc. Although TC-FlowNet2 showed good linearity relationship with DENSE, 

it has a relatively big bias, leading to its high Pearson CC but relatively low ICC.  

Conclusions: A 3D Unet, trained using DENSE datasets to predict intramyocardial motion from 

contour motion, outperformed both TC-FlowNet2 and commercial FT for the measurement of both 

global and segmental Ecc, for which DENSE data at matched locations served the reference 

standard.  
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Figure Appendix A-1: Schematics showing (A) the through-time-corrected FlowNet2 

framework, (B) the 3D Unet framework to predict intramyocardial displacement from contour 

motion, and (C) testing procedure to apply the trained network to cine images. (D) Also provided 

is a tabulation of the datasets used for training and testing. 
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Figure Appendix A-2: Examples comparing TC-FlowNet2, 3D Unet and DENSE for mapping 

end-systolic displacement and end-systolic circumferential strain (Ecc) in a healthy subject (A) and 

a LBBB patient (B).  
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Figure Appendix A-3: Examples comparing TC-FlowNet2, 3D Unet, DENSE, and commercial 

FT (SuiteHEART, NeoSoft) for global and segmental circumferential strain-time curves in a 

healthy subject (A) and a LBBB patient (B).  
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Figure Appendix A-4: Correlation plots and Bland-Altman plots comparing TC-FlowNet2, 3D 

Unet and commercial FT with DENSE ground truth data for global (A) and segmental (B) analysis 

of Ecc.  
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Table Appendix A-1: Summary of ICC (Intraclass Correlation Coefficient), CoV (Coefficient of 

Variation) and Pearson CC comparing TC-FlowNet2, 3D Unet and commercial FT with DENSE 

ground truth for global and segmental Ecc. 
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____________________________________________________ 

Appendix B – StrainNet Applied to Echocardiography 
____________________________________________________  
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B.1 Abstract 
Myocardial strain imaging is used diagnostically and prognostically for many types of heart 

disease. Strain-dedicated CMR techniques such as displacement encoding with stimulated echoes 

(DENSE) and myocardial tagging serve as the gold standard for strain assessment and for 

validating other strain measurement techniques [1-3]. StrainNet is a recently-developed deep 

learning model trained with DENSE data that predicts intramyocardial motion from myocardial 

contours (Fig. 1A), and has been validated on cine MRI [4]. Since StrainNet can be applied to any 

image series that provides myocardial contour motion, we investigated the application of StrainNet 

to echocardiography images (StrainNet-echo). Leveraging a deep network trained from gold 

standard strain-dedicated DENSE CMR, we hypothesized that StrainNet would provide more 

accurate strain analysis of echocardiography than speckle tracking echocardiography (STE) and 

provide more interchangeable strain values between the two modalities. 

Datasets: Eighteen patients with heart failure and left bundle branch block (LBBB) 

underwent CMR with DENSE and echocardiography examinations, and the imaging studies were 

performed within 2 days of each other to minimize time-dependent variations in myocardial 

function. Forty slices from these patients at 3 short-axis views (base, mid-level and apex) were 

analyzed. Data processing: Segmentation and speckle tracking of echocardiography images were 

performed using TomTec-Arena 2D Cardiac Performance Analysis 1.3.0.147 on Agfa Healthcare 

Enterprise Imaging platform. For StrainNet analysis, echo images were scaled to match the mean 

spatial resolution of DENSE, and then were cropped to a fixed size. Images were binarized by 

filling the myocardial area with ones and the non-myocardial area with zeroes after LV 

segmentation using the TomTec STE LV contours (Fig. 1B). 
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Examples of end-systolic displacement and circumferential strain (Ecc) maps from 

StrainNet-echo and from CMR DENSE for a heart failure patient with LBBB are shown in Fig. 

2A, and segmental strain-time curves corresponding to STE, StrainNet-echo and DENSE are 

shown in Fig. 2B. StrainNet-echo shows simultaneous stretching of the septal segments and 

contraction of the lateral wall, with good agreement with DENSE, whereas STE fails to show 

septal stretching, in disagreement with reference DENSE. While StrainNet-echo shows good 

agreement with STE for global Ecc, with an ICC of 0.90, with regard to agreement with DENSE, 

correlation plots, Bland-Altman plots (Fig. 3A, B), intraclass correlation coefficient (ICC), 

Pearson correlation coefficient (Pearson CC) and coefficient of variation (CV) (Fig. 3C) all show 

that StrainNet-echo outperformed STE for circumferential strain assessment, especially for 

segmental strain.  

StrainNet predicts intramyocardial displacement and strain from echocardiography 

contours and showed good agreement with speckle tracking. StrainNet applied to 

echocardiography showed better agreement than STE with DENSE for both global and segmental 

Ecc.  
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Figure Appendix A-1: (A) Schematic showing that, using CMR DENSE data, StrainNet was 

trained to predict intramyocardial displacement from contour motion. (B) Generalization of 

StrainNet to predict intramyocardial motion from echocardiography contour motion. The input 

size for the network was Nx*Ny*Nt, with Nt representing the number of temporal frames. The 

output size was 2*Nx*Ny*Nt, with the factor of 2 accounting for displacements in two directions. 
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Figure Appendix A-2: Example of a heart failure patient with left bundle branch block. (A) End-

systolic displacement and Ecc maps comparing StrainNet analysis of echocardiography images and 

DENSE. Anterior right ventricular insertion points were annotated with red asterisks. (B) 

Segmental circumferential strain-time curves for speckle tracking, StrainNet analysis of 

echocardiography, and CMR DENSE. There are 19 frames with 41 ms per frame for 

echocardiography, and 19 frames with TR = 30ms for CMR DENSE.  
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Figure Appendix A-3: Correlation and Bland-Altman plots comparing STE, StrainNet analysis 

of echocardiography and DENSE for end-systolic (A) global and (B) segmental Ecc. (C) 

Comparison of agreement of global and segmental Ecc for ICC, Pearson and CV. 
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