
Video Game Development with Microcontrollers, Emulators, and
Snap! Code

CS4991 Capstone Report, 2024

Anisha Poudel

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

ap6acf@virginia.edu

ABSTRACT
The Snap! code video game development
guide created during my independent
research during the 2023-2024 school year is
designed primarily for students with little to
no experience with arcade game
development. The project consists of creating
arcade games using emulators,
microcontrollers, and Snap! code. The
project was developed using an agile
framework called Kanban. The development
team had a two to three week iteration period
during which members would work
independently and reconvene to showcase
what they had been working on, discuss
updates, and address any questions. The
guide aims to introduce audiences to a wide
range of technical concepts including
software and hardware development. As the
project is still in the works, more chapters
need to be created before publishing.

1. INTRODUCTION

The Arcade game creation guide consists
of 4 sections: 1) Introduction, 2) Emulation,
3) Control Bar, 4) Microcomputers. The
introduction covers the early history of
arcade games and the key tools used in the
project. The emulation chapter covers how to
install the correct emulator to the user's PC.
The control bar chapter reviews the central
components of the Raspberry Pico
microcontroller and how to design a control
bar. The last chapter focuses on how to install

an operating system on the Raspberry Pi and
the tools needed.

Each chapter needs to be reviewed and
revised as it is written. These reviews
consisted of ensuring that the code is logical,
instructions are compatible with varying
operating systems, along with other revisions
that adds clarity to readers.

2. BACKGROUND

Snap! is a drag and drop programming
language, implemented with building blocks.
The language was first introduced by
developers at the University of California,
Berkeley in 2011 (UC Berkeley Snap!, 2019).
It also features first class list, procedures, and
continuations. These capabilities make it
ideal for an introductory language. Snap!
runs on a user’s browser, and is implemented
using JavaScript. An emulator is a computer
or program that imitates another computer or
program.

The emulation capability can differ based
on the type of the emulator, but the goal of
each emulator is the same: replicating the
experience of the original software or
hardware. Emulator allows software and
hardware to be used cross platform.
Microcontrollers are simplified
microcomputers functioning to govern
specific operations in an embedded system. It
consists of a central processing unit, memory,
and peripherals. The Snap! code logic needs
to be translated to a language that the

microcontroller can interpret, which is done
by an emulator.

3. RELATED WORKS

In this project, Snap! is used to introduce
arcade development concepts. Similarly,
Khan et al. (2018) explores Snap! in an
educational context, teaching children in
developing countries AI programing. Their
study illustrated how block-based
programming makes topics as complex as AI
accessible and engaging for young learners.
The study found that students who had prior
programming experience deemed AI
programming straightforward, while those
without took longer time to grasp these
concepts. Their work highlights the
importance of scaffolded learning
environments to bridge learning gaps among
students.

In the process of exploring the
foundational aspects of microcontroller
programming for arcade game development,
the work of Kohli (2023) serves as an
essential resource. This article functions as a
comprehensive technical guide for
microcontrollers, discussing various
platforms such as Raspberry Pi and Ardunio,
alongside their application in real world
embedded systems. Kohli outlines critical
programing tools and techniques, including
IDEs, debuggers, and PVM, which are all
integral to designing and optimizing game
performance and functionality. This resource
not only enriched my knowledge of hardware
functionalities but also paralleled the
project’s use of emulators and
microcontrollers to translate programming
code into game logic, allowing for
compatibility across different hardware
systems.

4. PROGRAM DESIGN

The team met to discuss possible
applications and coding languages to use in
the instruction guide and how to display that

information. The following subsections
describe each chapter in the book and
possible refinements.

4.1 Introduction
 The readers are briefly introduced to the
early history of microprocessors and their
contribution to arcade game development.
The operating system and hardware of
today’s computers significantly differ from
early microcomputers. Emulators are so
called because they emulate the operating
system of early computers allowing
instructions that were previously stored in
read-only memory (ROM) to be now
executed by contemporary computers.
Microcomputers like Raspberry Pi combined
with emulators allow for a new generation of
open source video games inspired by classic
video games.

4.2 Introduction to Emulators
 For this section, I reviewed and tested the
instructions on how to install MAME, one of
the most popular arcade emulators, on
various operating systems. This is where I ran
into my first issue regarding compatibility
with Windows and Macs OS. There had been
many issues installing MAME on non-
Windows operating systems. The team chose
to switch to Ruffle, an open source flash
emulator. This was specifically made to run
on all modern operating systems, which is the
scope of our project.
If any issues arise with further development,
this is subject to change.

4.3 Creating an Arcade Control Bar
 An arcade control bar can replace
keyboard controls, and can even be
customized to mimic retro video game
remotes. This essentially creates a
microcontroller that can be programmed to
mimic key presses on a computer keyboard.
This section taught users how to program
their microcontroller to interpret signals from

their arcade controllers that can be translated
to the computer.

Figure 1: Raspberry Pico Microcontroller

The first step was to create instructions to
design the arcade controller.

Figure 2: Button Signal Connection

 Figure 2 illustrates how the switches on
the arcade button should connect. Each signal
is connected to one another through the
ground input and connected to four different
digital pins on the microcontroller as well.

Figure 3: Circuit layout

 Figure 3 is an example of ways signals
can be connected to digital pins. In this case,
four buttons are connected to digital input
pins 6, 7, 8, and 9 on the microcontroller.
Users do not need to make the same
configuration with their digital pins as the
example as long as they match the number of

the physical pins on the microcontroller to the
corresponding references in the computer
that monitors these inputs. The four ground
connections are connected to a ground input
on the microcontroller. Additionally, the four
microswitches on the joystick are connected
to the input pins of the microcontroller in a
similar configuration.

4.4 Programming the Microcontroller
 The Raspberry Pico can be programmed
to emulate keystrokes on a keyboard using
MicroBlocks, a block-based coding
language. To use MicroBlocks, users must
first install firmware on the microcontroller.
Firmware is a software that provides basic
machine instructions that allow the hardware
to function and communicate with other
software running devices.

Figure 4: Firmware Setting Menu

 Further instructions are given to readers
to load Keyboard and Mouse libraries in
MicroBlocks. In keyboard emulation,
MicroBlocks sends the correlated keypress to
the program running the arcade when the
joystick is pushed up, down, left, or right,
simulating a keystroke on a computer
keyboard. Additionally, the hold key code
block can emulate pressing and holding keys
by entering the associated letter. In Figure 5,
when the appointed button on the arcade
control panel is pressed, the letter “S” is
emulated:

Figure 5: Keyboard “S” Emulation

 In the case of keys such as arrow keys, a
numeric code is used in place of the letter, as
seen in Figure 6:

Figure 6: Figure 5: Keyboard Up Arrow

Emulation

4.5 An Introduction to Microcomputers
 First, an operating system must be
installed on the Raspberry Pi. To accomplish
this, the user needs internet access, a
microSD card, a microSD card reader, and
the microcomputer. First step is to download
the Raspberry Pi Disk Imager install file and
select the appropriate operating system for
the user's computer. Disk imagers are
programs that copy an operating system from
memory of one computer to another.

Figure 7: Raspberry Pi 4 Microcomputer Labels

 Figure 7 helps readers set up their
microcomputers and connect appropriate
ports. After the microcomputer is connected
to a monitor by the HDMI port, it can be
powered through the USB-C port. Shortly
after, the operating system will be launched.
 One benefit of using microcomputers for
a project is being able to directly launch into
a program. As seen in Figure 9, users can
enter the following command to their
terminal: sudo
nano/etc/xdg/lxsession/LXDE-pi/autostart

Figure 8: Terminal Input

 If entered correctly, this should open the
autostart file and allow you to edit it. The file
should already contain several lines of text.
To run Snap! program on start, move the
cursor to beneath the other text and enter the
commands below:

@chromium-browser --kiosk --disable-web-
security --allow-file-access-from-files
file:////home/[your
username]/Snap/snap.html#run:file:////home
/[your username]/Snap/[your program].xml

 Once this is set up, the file can be
launched.

5. RESULTS

Preliminary testing has shown that users
can follow the manual to replicate the project
outcome with ease regardless of experience
level. However, future testing on all chapters
remains pending. After comprehensive
testing concludes for the remaining chapters,
I anticipate the publishing process will begin.

6. CONCLUSION

This Snap! code video game development
guide represents advancements in making
game development more inclusive for all.

The project not only serves as an educational
guide but intentionally caters to those who
have little to no experience in video game
development, different compared to many
other development guides. This project has
deepened my understanding of both
programming and project management which
has been invaluable to my professional
growth.

7. FUTURE WORK

This guide needs more chapters to be
completed. Multiple games are in the works
for students to follow. Further testing will be
conducted on these games and chapters to
ensure compatibility within all devices. A
handful of other tasks need to be finished by
the end of 2024. Each chapter goes through
multiple iterations in which the content is
refined and tested. The team will continue to
work together throughout the year to
complete the guide.

R|EFERENCES
[1] UC Berkeley, Snap! (2019). Snap! Build
Your Own Blocks. Snap! Build Your Own
Blocks. Retrieved April 16, 2024, from
https://snap.berkeley.edu/about
[2] Kahn, K., Megasari, R., Piantari, E., &
Junaeti, E. (2018). AI Programming by
Children using Snap! Block Programming in
a Developing Country. European Conference
on Technology Enhanced Learning.
[3] Kohli, V. (2023, April 12).
Microcontroller Programming: Mastering the
Foundation of Embedded Systems.
Wevolver. Retrieved April 13, 2024, from
https://www.wevolver.com/article/microcont
roller-programming-mastering-the-
foundation-of-embedded-systems

https://snap.berkeley.edu/about
https://www.wevolver.com/article/microcontroller-programming-mastering-the-foundation-of-embedded-systems
https://www.wevolver.com/article/microcontroller-programming-mastering-the-foundation-of-embedded-systems
https://www.wevolver.com/article/microcontroller-programming-mastering-the-foundation-of-embedded-systems

