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Abstract

In this thesis we focus on stochastic LQ control problems with prob-

abilistic constraints. We will briefly review the history of LQ control

and the related classical results for constrained and unconstrained

cases. Then we formulate the problem studied, where the system

has linear dynamics and a quadratic cost, and states are required to

satisfy a probabilistic constraint. We sample the most recent tech-

niques for such probability constrained control problems and propose

our own approach. We consider two types of probability constraints:

all-stage and per-stage. In the first case, there is a joint probabilistic

constraint on all the system states over the whole predicting horizon

while in the second one the states are restricted by individual proba-

bility constraints at each stage. The contribution of this thesis has two

parts: first we develop a recursive state feedback control algorithm for

a special class of state constrained stochastic LQR, and a disturbance

feedback controller for the general case using quadratic programming

for the all-stage problems. Second, we design a recursive algorithm

for the per-stage problem based on sub-gradient method. We also

implement a practical Model Predictive Control algorithm for such

problems. The control algorithm is tested on a simple temperature

control problem for analysis.
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1

Introduction

This thesis is concerned with theoretical development of stochastic linear quadratic

stochastic control problems with probabilistic constraints and its extensions. In

this chapter, we will introduce the background of the thesis and walk through the

existing results in the area.

1.1 Overview

This section is an overview of the thesis, aiming to give the reader a sense of what

the problem is and what is the value of the research. We will formulate our prob-

lem mathematically and summarize the difficulties and the major contributions

of this thesis. The contents are covered with more care and technical detail in

later chapters.

1.1.1 Problem formulation and terminology

Here we formulate the control problem we consider through out the thesis. In

control theory, a system is described by a set of states x ∈ Rn and a system evo-

lution equation that captures the dynamics. In this thesis, without particularly

pointing out, we are studying linear systems with quadratic costs

xk+1 = Axk +Buk + wk

1



1. INTRODUCTION

for k ∈ {0, . . . , N−1}. In period k, xk is the system state, uk is the control input,

and wk is the disturbance input. The disturbance inputs are independent, have

zero mean, and have covariance matrix W . Our goal is to minimize the classical

LQR objective in expectation,

E

[
N−1∑
k=0

xT
k+1Qxk+1 + uT

kRuk

]
,

where the matrix Q is positive semidefinite and the matrix R is positive definite.

In this thesis we consider both state feedback and disturbance feedback control

laws. The state feedback control law considered in the thesis is of the form

uk = uk +Kk(xk − xk).

Here, xk denotes the expected value of the state and uk denotes the expected value

of the control input. In a following section, we consider a disturbance feedback

control law of the form

uk = uk +

k−1∑
j=0

K(k,j)wj .

So far it is very similar to the standard unconstrained stochastic linear quadratic

control problem, which can be solved recursively by Algebraic Riccati equation.

So what is the big difference here? The complicating factor in our problem is

a linear or quadratic constraint on the system states that must hold with some

specified probability. Specifically, for a given α ∈ [0, 1), we must select a control

law that ensures

P (gk(xk, uk) ≤ 0) ≥ αk

In this thesis, we assume that gk is a linear or quadratic function. This is the part

that complicates the entire problem. The probabilistic constraint above means

that the constraint:

gk(xk, uk) ≤ 0

must be satisfied with at least probability αk. A few simple questions can be

helpful to grasp a glimpse of the difficulties lie ahead.

� How to test joint probabilistic constraints?

2



1.1 Overview

� What is the structure of the controller if we want to introduce feedback?

� What is the complexity of this problem?

All these issues must be tackled in one shot when we are developing an algorithm

for it. And what makes things worse is that they are highly correlated to each

other too. For example, the complexity of the approach to test the probabilistic

constraint is critical to the total solving time of the problem as the testing is called

repeatedly. Also, a different feedback structure may bring fundamental change to

the complexity of the problem. In fact, there are research papers covering each of

the questions above. Stochastic control with probabilistic constraints lies right at

the intersection of those subareas and has attracted much attention in the recent

few years. However, it is still a very open problem today because of its many

difficulties. This thesis aims to derive new algorithms to solve stochastic linear

quadratic control problem with probabilistic constraints. The contributions of

this thesis are, in response to the questions we raised before:

� Proposed to use a multi-dimensional Chebyshev bound to replace the prob-

abilistic constraint

� Designed feedback controllers for the problem

� Developed efficient algorithms to solve the probability constrained stochas-

tic LQ control problem

� Compared our algorithms to other existing results in the literature

3
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2

Literature review

Constrained stochastic linear quadratic control is a relatively new research area.

Although unconstrained SLQR was solved a few decades ago, constrained prob-

lems are still not well understood. In this chapter we will sample the most recent

development in this area, especially new algorithms for probabilistic constrained

SLQR. We will first start with constrained deterministic LQ control. Then we

introduce the classical recursive algorithm for unconstrained SLQR and the rep-

resentative approaches to solve constrained SLQR in the literature. As we men-

tioned before, this area is still relatively new so there exist different but similar

formulations for the problem. This is basically because there are many possible

ways to replace constraints on a SLQR problem and the different feedback control

structure. We will try to extract the most fundamental aspects of the different

formulations and make clear the differences of the approaches as well as their re-

spective strengths and weaknesses. Despite the different setups, one will find the

formulations soon to be investigated have the following things in common. The

system evolution is linear with additive noise and for simplicity we assume the

noise has zero mean. Besides introducing control algorithms we will also briefly

talk about the techniques used to approximate probabilistic constraints as they

play a key role in probability constrained SLQR problems.

5



2. LITERATURE REVIEW

2.1 Constrained deterministic LQ control

In practice, so many control problems are formulated deterministically. And

it is hard to image that a system runs without some restrictions. That is the

motivation to study constrained deterministic LQ control. It is one of the most

important areas in control theory and is widely used in many other fields. To date,

the most elegant approach to solve a constrained LQR is proposed by Bemporad

and Morari [1]. Let us first look at the problem formulation

min
N−1∑
k=0

{xT
k+1Qxk+1 + uT

kRuk}

s.t. xk+1 ≤ xk+1 ≤ xk+1

uk ≤ uk ≤ uk

xk+1 = Axk +Buk,

k = 0, . . . , N − 1

The above finite state constrained LQR is solved repeatedly in a model predictive

control(MPC) algorithm [Chmielewski96]. And it is proved that for determinis-

tic LQR, open loop control is equivalent to closed loop control. The authors in

[1] thus proposed to formulated the above problem as a multi-parametric pro-

gramming problem. They proved that the optimal control is a piece-wise linear

function of system states and correspondingly the optimal cost function is piece-

wise quadratic in states.

We will now show how to formulate the constrained deterministic LQ control

as a multi-parametric program. Let us rewrite the above formulation in a more

compact way. First we need some definitions

X =

⎡⎢⎣ x1
...
xN

⎤⎥⎦, U =

⎡⎢⎣ u0
...

uN−1

⎤⎥⎦,X =

⎡⎢⎣x1
...
xN

⎤⎥⎦ ,X =

⎡⎢⎣x1
...
xN

⎤⎥⎦ ,U =

⎡⎢⎣ u0
...

uN−1

⎤⎥⎦ ,U =

⎡⎢⎣ u0
...

uN−1

⎤⎥⎦ ,

Using the new notations, the system dynamics become

X = Fx0 +HU

6



2.1 Constrained deterministic LQ control

Where the block matrices F and H are given by:

F =

⎡⎢⎣ A
...

AN

⎤⎥⎦ H =

⎡⎢⎢⎢⎣
B
AB B
...

. . .

AN−1B AN−2B . . . B

⎤⎥⎥⎥⎦

Q =

⎡⎢⎣ Q
. . .

Q

⎤⎥⎦ , R =

⎡⎢⎣ R
. . .

R

⎤⎥⎦
We can then equivalently reformulate the problem as

min xT
0 F

TQHU +
1

2
UT (R+HTQH)U (2.1.1)

s.t. U ≤ U ≤ U (2.1.2)

X− Fx0 ≤ HU ≤ HU+ Fx0 (2.1.3)

Further more, (2.1.2) and (2.1.3) can be combined as

ĤU ≤ Ê+ Ex0 (2.1.4)

where

Ĥ =

⎡⎢⎢⎣
H

I
−H

−I

⎤⎥⎥⎦ , Ê =

⎡⎢⎢⎣
X

U

−X

−U

⎤⎥⎥⎦ , E =

⎡⎢⎢⎣
−F

0
F

0

⎤⎥⎥⎦
Note that now the only variable is U and it is clear that (2.1.1) together with

(2.1.4) is a quadratic programming (QP) with linear inequality constraints, pa-

rameterized in initial states x0.

Obviously, for any given x0 the QP can be solved by a conventional solver.

However ,in a MPC setting the QP is solved at the beginning of each stage and

only the first control is actually applied. When the program size grows big, solving

the QP real-time becomes difficult and that was one of the biggest issues for a

MPC algorithm until the idea of multi-parametric programming was introduced

into the context. Parametric programming is not a new topic, there already were

many results a few decades ago. However, most of them are for scalar parameters.

Multi-parametric cases were first studied by Pistikopoulos, Aecedevo and Duo [2]

7



2. LITERATURE REVIEW

[3], [4], based on the post-optimality sensitivity analysis results of Fiacco [5] and

Gal [6]. We will only summarize the results of multi-parametric programming

that used to solve (2.1.1) with (2.1.4), which we called MPQP(x0) from now

on. There are more in the literature such as [7] and [8] about multi-parametric

programming if the reader is interested.

Now we show why the optimal solution of MPQP(x0) is linear in x0. The

KKT conditions are

L(λ,U) = xT
0 F

TQH+ UT (R+HTQH) +
2Nn∑
i=1

λiĤi = 0 (2.1.5)

λi(ĤiU− (Êi + Eix0)) = 0 (2.1.6)

ĤiU− (Êi + Eix0) ≤ 0 (2.1.7)

λi ≥ 0 (2.1.8)

whereHi, Ĥi,Ei, Êi present the ith row ofH, Ĥ,E, Ê respectively and i = 1, . . . , 2Nn.

Given an optimal solution pair (U∗, λ∗) associated with a parameter x0, we can

obtain the active constraint set A and the inactive set Ã, which are defined as{
A = {i|ĤiU

∗ − (Êi + Eix0) = 0}
Ã = {i|ĤiU

∗ − (Êi + Eix0) < 0}

We then use λA and λÃ to denote the Lagrangian multipliers associated with A

and Ã respectively (we use the same notation for other vectors/matrices). Now we

summarize the main results. First we need an assumption. We say an active set

satisfies linearly independence constraint qualification(LICQ) if the set of

active constraint gradients are linearly independent. In our case, this assumption

means that ĤA has full row rank. Using (2.1.5) and (2.1.6) we get

U∗ = −(R+HTQH)−1(HTQFx0 + ĤTλ∗) (2.1.9)

Replace U in (2.1.6) with (2.1.9) and under the assumption of LICQ, we obtain

λ∗
A = −M

(
ĤA(R+HTQH)−1HTQF+ EA

)
x0 +MÊA (2.1.10)

where M =
(
ĤA(R+HTQH)ĤT

A

)−1

. We can see from (2.1.10) that λ∗ is an affine

function of parameter x0 and with (2.1.9) we can conclude that so is U∗. Note that

8



2.1 Constrained deterministic LQ control

we assume at the beginning of the above analysis that we already have an optimal

solution pair (U∗, λ∗) and the corresponding active constraint set A. So the above

conclusion is valid locally within the region in parameter space associated with A,

which is called critical region. The critical region is defined by (2.1.7) and (2.1.8).

As one can see, the whole parameter space is divided into polyhedrons, each of

which is associated with an affine structure of the corresponding optimal solution

pair of the MPQP. We formally summarize the above result with a theorem

Theorem 2.1. Consider the optimization problem (2.1.1) and (2.1.4). Suppose

the feasible region defined by (2.1.4) is a polyhedron, then the optimal solution

pair (U∗, λ∗) is piece-wise affine in the parameter x0. Further more, if LICQ holds

everywhere in the polyhedron, λ∗(x0) is continuous.

Proof. We have shown the first part in our previous analysis. Please refer to

[1] for the second half.

So if we know a feasible parameter x0 and the active set A, we can characterize

the optimal solution of the MPQP in the corresponding critical region. And if we

can explore all the critical regions in parameter space we can then obtain explicit

solutions for the control problem in terms of the parameter x0 using (2.1.9) and

(2.1.10). That is the basic idea of solving the constrained deterministic LQR as a

MPQP. There are a few things missing before a method to explore the parameter

space is developed. The first one is how to obtain a starting point of x0. Assume

that the parameter space Θ we want to explore is defined as

Θ = {θ|Tθ ≤ Z}

We can obtain an initial feasible x0 in Θ by solving the following LP

max
x,u,ε

ε (2.1.11)

s.t. Tix+ ε||Ti|| ≤ Zi (2.1.12)

Ĥiu− (Êi + Eix) ≤ 0 (2.1.13)

The above LP aims to find a point x ∈ Θ and at the same time ensures that

(2.1.7) defines a non-empty set. If the optimal ε is positive, we can use the

obtained x as the starting point to explore Θ. Otherwise, the MPQP (2.1.1)

9



2. LITERATURE REVIEW

and (2.1.4) is infeasible with any x ∈ Θ. Now if given a parameter subspace to

explore we know how to find a starting point x0 in it. However, we don’t know

what are the critical regions. Remember we can only have the explicits solutions

after we determine the critical regions. The following theorem can serve as a tool

to answer the question [1].

Theorem 2.2. Let Θ be a polyhedron and R0 a non-empty subset of Θ defined

by

R0 = {x ∈ Θ|Ax ≤ b}
Let Ri be

Ri = {x ∈ Θ|Aix > bi, Ajx ≤ bj , ∀j < i}, i = 1, . . . , m.}

where m is the number of rows of A. If we define CR =
⋃m

i=1Ri, then {R0, . . . , Rm}
is a partition of Θ.

Proof. It is easy to see that R0, . . . , Rm are disjoint with each other. We need

to show that
⋃m

i=0Ri = Θ. It suffices to show that for any x ∈ Θ, there exists

i ∈ 0, . . . , m such that x ∈ Ri. Suppose x ∈ R0, it is done. Now assume that

x /∈ R0. Then there exists i such that Aix > bi. Without loss of generality we

assume that i = mini≤m i : Aix > bi. Obviously, by definition x ∈ Ri.

The above theorem gives us a way to partition a polyhedron into smaller

polyhedrons. In particular, it can be used to enumerate all critical regions. Now

we have enough tools to solve the constrained deterministic linear quadratic con-

trol problem (2.1.1) and (2.1.4) and obtain the piece-wise affine optimal solution.

Fore more details and improvement of the procedure please refer to [1] and [9].

It seems that solving the deterministic LQC problem as a MPQP makes things

complicated. However, it should be pointed out that most of the computation can

be done off-line. First one needs to figure out a polyhedral region Θ of parameter

space to be explored. Then use the LP (2.1.11)-(2.1.13) to determine the starting

point in Θ. With this starting point, using (2.1.9) and (2.1.10) we can obtain the

explicit optimal control U and the corresponding Lagrangian multipliers λ. Note

that the explicit solution is valid only within the critical region defined by (2.1.7)

and (2.1.8). For the rest of Θ, we can use the procedure described in theorem

10



2.1 Constrained deterministic LQ control

(2.1). The procedure is repeated until Θ is fully explored. All of these can be

done off-line. For a on-line MPC algorithm, all it has to do is to check its initial

state x0 and look up the critical region where x0 lies in and use the pre-recorded

explicit solution to obtain the optimal control. This approach is very suitable for

on-line implementation.

11



2. LITERATURE REVIEW

2.2 Unconstrained Linear Quadratic Control

In this section we consider a linear system with additive disturbance

xk+1 = Akxk +Bkuk + wk, k = 0, ..., N − 1

Given initial condition x0, our goal is to minimize the following quadratic cost

function

E[
N−1∑
k=0

xT
k+1Qxk+1 + uT

kRuk]

In the above expressions, xk is a n dimensional vector representing system states

and uk is a m dimensional vector representing controls. We assume here Ak, Bk

are constant matrices, but we point out that there exists extensions of this for-

mulation where they are random [10]. wk is a random vector with zero mean and

covariance matrix Σwk
. Note that although all these are in a stochastic setting,

the corresponding deterministic problem has similar solution as it can be viewed

as a special case of the stochastic case where wk is constant zero. It is well-known

that the unconstrained LQ control problem has a closed form solution obtained

by solving it as a dynamic program. Before we show the explicit solution we

briefly introduce dynamic programming.

2.2.1 Dynamic Programming

We use the same notation here for system states, controls and disturbances. In

a dynamic program, the system evolution is not necessarily linear. It can be any

form, as we denote by fk and we write down the general case as

xk+1 = fk(xk, uk, wk), k = 0, 1, ..., N − 1

Suppose there is a random cost ck(xk, uk, wk) at stage 0, . . . , N−1 when choosing

action uk at state xk and a terminal cost cN(xN ) at the last stage, our goal is to

minimize the total expected cost over the problem horizon N .

E[cN(xN ) +
N−1∑
k=0

c(xk, uk, wk)]

12



2.2 Unconstrained Linear Quadratic Control

Dynamic programming can be used to model many applications. Here we will

give a water supplying example to illustrate the basic idea of such a problem.

Example: Water supplying

Suppose we have a water processing plant. We are in the water supplying market

as a provider. At the beginning of each month our internal analysts will provide

a forecast (distribution) of our clients’ demand of clean water. At the end of the

month if our storage of clean water can not meet our client’s demand we have to

buy the difference from other water suppliers at market rate. If there is too much

clean water left we have to either waste it or pay for extra storage. Let us denote

� xk: amount of clean water in our storage at the beginning of the kth month

� uk: amount of water we plan to process at the beginning of the kth month

� wk: random amount of demand of clean water of the kth month

Our objective is to minimize our operational cost. We assume the demands are

independent of each other. The system evolution is:

xk+1 = xk + uk + wk

At any month other than the final month N , the cost contains two parts: the cost

of processing water and the penalty of insufficient supply or excessive processing.

Let c(uk) be the cost of processing and p(xk) the cost of insufficient supplying or

excessive processing respectively. The cost at month k is c(uk) + p(xk) and the

cost of final month is p(uN). So our objective function is

E{p(xN ) +

N−1∑
k=0

(p(xk) + c(uk))}

Intuitively we are trying to find a solution so that we can satisfy our clients

demands with our best effort while keeping the penalties low. It is possible that

we decide to buy from the market instead of process water ourselves at some

stages. Running a DP algorithm will tell us exactly what we should do when

we are at a situation at stage k. Now let us consider the general mathematical

13
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formulation for a dynamic programming problem. Suppose the system dynamics

are

xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1

The cost at each stage is denoted by ck(xk, uk, wk) and cN(xN ). Our objective is

to find the optimal control uk at each stage associated with xk to minimize the

expected total cost

E{cN(xN) +

N−1∑
k=0

ck(xk, uk, wk)}

The basic idea to solve such a problem was first discovered by Richard Bellmam:

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision. This is

captured mathematically in the famous Bellman’s equation, if we define Vk(xk)

as the cost-to-go at stage k from stage xk.

Vk(xk) = min
uk

E{ck(xk, uk, wk) + Vk+1(f(xk, uk, wk))} (2.2.1)

If we apply (2.2.1) backward, starting with VN(xN ) = cN(xN ), it can be proved

that the the solution is optimal and the optimal expected total cost is given by

V0(x0). This is proved by induction. Let V ∗
k (xk) be the optimal cost-to-go starting

from state xk. By definition, V ∗
N(xN ) = cN(xN ). Assuming that for some k we

have V ∗
k (xk) = Vk(xk), then

V ∗
k (xk) = min

uk,...,uN−1

E{ck(xk, uk, wk) + cN(xN ) +

N−1∑
i=k+1

ck(xk, uk, wk)}

=min
uk

E{ck(xk, uk, wk) + min
uk+1,...,uN−1

E{cN(xN ) +
N−1∑
i=k+1

ck(xk, uk, wk)}

=min
uk

E{ck(xk, uk, wk) + V ∗
k+1(f(xk, uk, wk))}

=min
uk

E{ck(xk, uk, wk) + Vk+1(f(xk, uk, wk))}
=Vk(xk)

Note that using the DP algorithm yields closed-loop solution, which incorporate

feedback of previous information. Correspondingly, an open-loop solution does

14



2.2 Unconstrained Linear Quadratic Control

not consider previous system trajectories and controls. Open loop solutions are

often computed ahead of time. Computing closed-loop solutions ahead of time

can be tricky (we will learn how to do that in later chapters), as the calculation

of control at a certain stage k requires the information of stage k − 1 and even

earlier stages. The DP algorithm is evidence of this: the optimal actions are

computed sequentially as the system marches forward. Dynamic programming

has many applications. In general, any decision problem that can be formulated as

a multi-stage optimization problem with finite state space and control space can

be solved optimally using the DP algorithm (approximate DP can solve infinite

state space or action space problems, but often approximately). However, the

problem of dynamic programming is that the computational requirement grows

rapidly with the size of the state space and action space as well as with the

horizon. This issue is often known as curse of dimensionality. There are

different techniques can be tried to mitigate the computational burden, which

are beyond the scope of this thesis. Solving a big dynamic program is not always

frustrating. Sometimes when special structures appear we can actually obtain

elegant closed-form optimal solutions. For example, when the cost function is

quadratic and the system evolution equation is linear. We will see how special is

this structure in the following subsection.

2.2.2 Closed form solution of unconstrained LQ Control

In this subsection we show that when the cost function is quadratic and the system

evolution equation is linear, using the DP algorithm we can derive a closed form

solution. Let us recall the problem formulation at the beginning of this chapter

minE

N−1∑
k=0

{xT
k+1Qxk+1 + uT

kRuk}

s.t. xk+1 ≤ xk+1 ≤ xk+1

uk ≤ uk ≤ uk

xk+1 = Axk +Buk + wk,

k = 0, . . . , N − 1

15
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Now we show the optimal control uk of unconstrained LQ Control is an affine

function of xk. We begin with the base case N − 1. According to DP algorithm

uN−1 = argmin E{uT
N−1RN−1uN−1 + VN(xN )}

= argmin E{uT
N−1RN−1uN−1 + xT

NQNxN}
= argmin E{uT

N−1RN−1uN−1

+ (AN−1xN−1 +BN−1uN−1 + wN−1)
TQN (AN−1xN−1 +BN−1uN−1 + wN−1)}

We can see that expected cost is a quadratic function. The optimal control uN−1

is the one that gives zero gradient. So if we set the derivative of the right hand

side of the above equation to zero we can obtain the optimal control at stage

N − 1

uN−1 = LN−1xN−1, LN−1 = −(RN−1 +BT
N−1QNBN−1)

−1BT
N−1QNAN−1

Note that we assume here that both Rk and Qk are positive semidefinite and at

least one of them is strictly positive definite so that the inverse exists. Now we

look at VN−1(xN−1)

VN−1(xN−1) =uT
N−1RN−1uN−1 + VN(xN )

=(LN−1xN−1)
T (RN−1 +BT

N−1QNBN−1)(LN−1xN−1)

+(AN−1xN−1)
TQN(AN−1xN−1) + Tr(WN−1QN )

We want to express VN−1 in terms of xN−1. Replace uN−1 in the expression of

VN−1(xN−1) and define YN = QN , we get

VN−1(xN−1) =xT
N−1YN−1xN−1 + Tr(WN−1YN)

YN−1 =AT
N−1(YN − YNBN−1(B

T
N−1YNBN−1 +RN−1)

−1BT
N−1YN)AN−1 +QN

Now we need to verify the general case to see if the optimal solution indeed

satisfies a recursive structure. Assume that for some k we have⎧⎪⎨⎪⎩
Vk+1(xk+1) = xT

k+1Yk+1xk+1 +
∑N−1

i=k+1 Tr(WiYi+1)

Yk+1 = AT
k+1(Yk+2 − Yk+2Bk+1(B

T
k+1Kk+2Bk+1 +Rk+1)

−1BT
k+1Yk+2)Ak+1

+Qk+1

16



2.2 Unconstrained Linear Quadratic Control

With Vk+1 and Yk+1 we can formulate the subproblem at stage k by applying

Bellman’s equation. The next step is to find the optimal control uk.

uk = argmin E{uT
kRkuk + Vk+1(xk+1)}

= argmin E{uT
kRkuk + xT

k+1Yk+1xk+1 + Tr(Wk+2Yk+2)}
= argmin E{uT

kRkuk

+ (Akxk +Bkuk + wk)
TYk+1(Akxk +Bkuk + wk)}

It is not hard to verify that

uk = Lkxk (2.2.2)

Lk = −(BT
k Yk+1Bk +Rk)

−1BT
k Yk+1Ak (2.2.3)

and further we have that

Vk(xk) = xT
k Ykxk + Tr(Wk+1Yk+1) (2.2.4)

Yk = AT
k (Yk − Yk+1Bk(B

T
k Yk+1Bk +Rk)

−1BT
k Yk+1)Ak +Qk (2.2.5)

Compare the above expressions with the base case we can conclude that (2.2.2)-

(2.2.5) give the closed-form optimal solution to the control problem. Note that

although the result is for stochastic settings the deterministic version is identical

except that the covariance matrices Wk will not present. (3.1.5) is called discrete

time Riccati equation and when Ak, Bk, Qk, Rk are constant and satisfy some mild

assumptions (the system is controllable and observable), there exists a stationary

solution Y to the following equation

Y = AT (Y − Y B(BTY B +R)−1BTY )A+Q

It suggests that for a time-invariant system the controls tend to converge over

time. LQR is a special case where there exists a closed form solution of the DP

algorithm and are able to construct a closed loop controller ahead of time. Things

are not always nice, as we will see in later chapter. In fact, incorporate feedback

in a controller without making the problem intractable is one of the big challenges

we face.
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2.3 Probabilistic Constraints

Probabilistic constraints or chance constraints were first introduced by Charnes,

Cooper, and Symonds [11], Miller and Wagner [12]. Generally a probabilistic

constraint of linear inequalities can be expressed as

P (Ax ≤ b) ≥ α (2.3.1)

where b can be a scalar or a vector and correspondingly A can have one row or

multiple rows. α is the probability requirement. The uncertainty comes from

either A or b (in some cases, both). The interpretation of the above expression

is that the linear inequality Ax ≤ b is satisfied at least with probability α. So

far there is no solver that can directly handle probabilistic constraints. To solve

a problem with probabilistic constraints, one must translate it in a way existing

solvers can read. The basic idea of dealing with the probabilistic constraints is to

replace them with equivalent or conservative deterministic constraints. We will

see how to do it in the following sections.

2.3.1 Exact Evaluation of Probabilistic Constraints

There are different techniques to convert probabilistic constraints, corresponding

to where the uncertainty is. We will use Fb(.) to represent the CDF of b. In

(2.3.1) if b is the uncertainty vector, we can simply substitute (2.3.1) with

Fb(Ax) ≥ 1− α

The idea seems straightforward. However, the conversion is meaningful only if it

is convex and smooth, which is exactly why this is a difficult topic. There are

results established by Prekopa, Dupacova and Ruszczynski. To use the above

exact conversion, one first needs to verify the concavity of Fb and its differen-

tiability. It is guaranteed that Fb is continuously differentiable if the probability

density function (PDF) of b as well as all its one-dimensional marginal PDFs are

continuous. Using this approach, we need to know the explicit form of PDF and

CDF of b. This is itself an active area of research and we refer the interested

readers to [13], [14] and references therein. The problem of this approach is that
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2.3 Probabilistic Constraints

explicit PDFs and CDFs are not always available. Even we know them, not all

of them are nice enough to apply the exact evaluation.

2.3.2 Approximating Probabilistic Constraints

As we saw that the conditions to exactly convert the probabilistic constraint

(2.3.1) are difficult to meet in many cases, people often resort to approximations.

There are two main-stream methods to approximate probabilistic constraints,

namely sampling and probabilistic approximation. In the sampling approach,

the uncertainty is sampled sufficiently and the probabilistic constraint is replaced

by multiple deterministic ones where the uncertainty is substituted with sampled

realizations.

Ax ≤ bi

where bi are the realizations and i = 1, . . . , Ns. Ns is the number of realizations.

The catch here is the number of realizations one needs to approximate a proba-

bilistic constraint. Let δ be an arbitrary number between 0 and 1. It is proved

that if Ns satisfies

ceil[2n(1− α)−1log(12/(1− α)) + 2(1− α)−1log(2/δ + 2n)]

then the probabilistic constraint will be satisfied with confidence level 1−δ. This

is proved by using independent Bernoulli trials. It is quite general and it is easy

to implement. However, if α is large and δ is small, Ns can be huge, which can

heavily drag down the solving process. To learn the details about how to set up

the sampling procedure and how to compute the number of realizations needed,

one can refer to [15] and [16], [17], and [18]. Sampling is an easy-to-apply method,

however, it is not efficient to be used in large problems. In this thesis, we adopt

the probabilistic approximation method, which is much faster with some sacrifice

to accuracy.

In fact, (2.3.1) can have different variations depends on which side of the

inequality contains the uncertainty. In the optimization publications one often

finds cases where A is a random row vector whose components are independent

and b a constant. We will briefly discuss how to treat them. Let ā be the mean
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vector of A and ã the vector of variance (of each component). The probabilistic

constraint can be replaced by

ā + Ω(
n∑

i=1

ã2ix
2
i )

1
2 ≤ b

where Ω is a carefully chosen constant. This approach is called Bernstein approx-

imation and was first used in [19]. In [20], the authors proposed a way to test the

tightness of the approximation and generalized the result. Similar approaches are

found in [21].

Now we look at the case in which the uncertainty is on the right hand side

of the inequality. One important thing to notice here is that if b is a scalar or a

vector has a significant impact on the complexity of converting the probabilistic

constraint. For example, in the case where the probability requirement α is 0.5,

the probabilistic constraint can be simply replaced by Ax ≤ 0. Let us use F ()

as the cumulative distribution function of the standard normal random variable.

We all know that F (0) = 0.5. However, joint probabilistic constraints (when b is

a vector) are totally different. For example, suppose we are to replace the joint

probabilistic constraint

P

([
A1

A2

]
x ≤

[
b1
b2

])
≥ α

where b1, b2 are i.i.d. standard normal variables, we know that there exist at least

two realizations [0; 3.9] and [3.9; 0] (note that F(3.9) = 1) that can be used to

replace the probabilistic constraint.[
A1

A2

]
x ≤

[
3.9
0

]
,

[
A1

A2

]
x ≤

[
0
3.9

]
So we have two different ways to replace the probabilistic constraints but they

yield different feasible regions and hence may lead to quite different optimal ob-

jective values. The the problem is: do we know which one is the one that gives

the best solution? In general when b is a continuous multi-dimensional random

vector there are infinitely many of such valid realizations and this is a problem

because it is not clear which realization we should choose before we have knowl-

edge of the optimal objective of the optimization. One way to evaluate a joint

probabilistic constraint is to approximate it with scalar probabilistic constraints.
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This is approach that was mentioned in [20] and used in [22]. The basic idea is

to use Boole’s inequality. Suppose A is a matrix and b a vector and Aj represents

the jth row of A and bj the jth component respectively, we have

P (Ax ≤ b) = P

(⋂
j

{Ajx ≤ bj}
)

= P

(⋃
j

{Ajx ≥ bj}
)

By Boole’s inequality

P

(⋃
j

{Ajx ≥ bj}
)

≤
∑
j

P (Ajx ≥ bj)

Let us look at an example of applying this approach. Suppose we are trying to

approximate

P

(
Ax ≤

[
b1
b2

])
≥ 0.8

It is equivalent to

P (A1x ≥ b1 or A2x ≥ b2) ≤ 0.2

Which can be safely replaced by

P (A1x ≤ b1) ≥ 1− α1, P (A2x ≤ b2) ≥ 1− α2

As long as α1 + α2 ≤ 0.2. This approach is easy to implement, however, it intro-

duced another problem: how to assign the individual probabilities P (Ajx ≥ bj)?

In [22] they were left as decision variables. It is reported that Boole’s inequal-

ity is sharp when the probability requirement α is close to 1 and the correlations

between the random components (Aj for left-hand-side uncertainty or bj for right-

hand-side uncertainty) are weak.
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2.4 Constrained Stochastic Linear Quadratic Con-

trol

Constrained stochastic control is an active research area recently and has drawn

much attention within the optimization and control community [23],[24], [25],

[26], [27], [28]. In chapter 2 we introduce unconstrained stochastic LQ control

and how it can be solved recursively by dynamic programing. In this chapter we

will show a couple of stochastic LQ control problems with constraints, which are

much more difficult to solve in general. Stochastic LQ control is a relatively new

area and there are quite a couple of different formulations of the problem because

of the introduction of randomness. Any problem formulation is a combination of

a set of chosen objective function, constraints and system dynamics. Unlike the

deterministic versions, in stochastic LQ control, there is more than one way to

enforce a constraint on states or controls such as constraints on expected value or

covariance. The noise term in the system dynamics can be additive, multiplicative

or even is embedded in the coefficient matrices. We point out here that in this

thesis we consider the additive noise model of system dynamics if there is no

special statement. Since the goal is to sample the most representative results in

this area and develop the core content of this thesis, we will be explicit about the

problem formulations and explore the differences.

2.4.1 Generalized Linear Quadratic Control

It is well-known that unconstrained LQ control has nice recursive solution. In

this section we will show how to solve a stochastic LQ control problem with power

constraints recursively [29]. The problem we are trying to solve is

min
N−1∑
k=0

{xT
k+1Qxk+1 + uT

kRuk}

s.t. xk+1 = Axk +Buk + wk,

E

[
xk+1

uk+1

]T
Qk+1

[
xk+1

uk+1

]
≤ γk+1

k = 0, . . . , N − 1
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The quadratic constraint is also called power constraint, which can be used in

stability analysis. Note that since we only place constraint on the system states,

only the upper left part of QN is non-zero. Recall that we assume that wk has

zero mean and the initial state x0 is known. If we define

V (k) = E

[
xk

uk

] [
xk

uk

]T
, F =

[
I 0

]
The system dynamics can be written as

FV (k + 1)F T =E
[
I 0

] [xk+1

uk+1

] [
xk+1

uk+1

]T [
I 0

]T
=Exk+1x

T
k+1

=E(Axk +Buk + wk)(Axk +Buk + wk)
T

=E{[A B
] [xk

uk

] [
xk

uk

]T [
A B

]T
+ wkw

T
k }

=
[
A B

]
V (k)

[
A B

]T
+Wk

and the initial condition is FV (0)F T = x0x
T
0 . Let Vxx(k) be the upper left part

of V (k) (which is Exkx
T
k ) and Q̃ =

[
Q 0
0 R

]
, the optimization problem can be

written as (P 3.1)

min
V (k)�0

Tr(QVxx(N)) +

N−1∑
k=0

Tr(Q̃V (k))

s.t. FV (0)F T � x0x
T
0

FV (k + 1)F T � [
A B

]
V (k)

[
A B

]T
+Wk

Tr(Qk+1V (k + 1)) ≤ γk+1

k = 0, . . . , N − 1

Note that (P 3.1) is convex in V (k). We would like to see that if there is a better

way to solve the problem other than throwing it to a semi-definite programming
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solver. We can dualize the constraints into the objective. The dual function is

L(S, λ) = min
V (k)�0

Tr(QVxx(N)) +

N−1∑
k=0

{Tr(Q̃V (k))

− Tr
(
S(k + 1)(FV (k + 1)F T − [

A B
]
V (k)

[
A B

]T −Wk)
)
}

− Tr
(
S(0)(FV (0)F T − x0x

T
0 )
)
+

N−1∑
k=0

λk+1 (Tr(Qk+1V (k + 1)− γk+1)

where S(k) ∈ Sn and λ � 0. After recollecting the terms we have

L(S, λ) = min
V (k)�0

Tr
(
(Q̃− F TS(0)F +

[
A B

]T
S(1)

[
A B

]
)V (0)

)
+ Tr(S(0)x0x

T
0 )

+

N−1∑
k=1

Tr
(
Tr(Q̃− F TS(k)F +

[
A B

]T
S(k + 1)

[
A B

]
+ λiQi)V (i)

)
+ Tr

(
(F T (Q− S(N))F + λNQN)V (N)

)
+

N−1∑
k=0

(Tr(S(k + 1)Wi)− λk+1γk+1)

Now if we define

J(0) =Q̃− F TS(0)F +
[
A B

]T
S(1)

[
A B

]
(2.4.1)

J(k) =Q̃− F TS(k)F +
[
A B

]T
S(k + 1)

[
A B

]
+ λkQk, k = 1, . . . , N − 1

(2.4.2)

J(N) =F T (Q̃− S(N))F + λNQN (2.4.3)

We know that J(k) must be positive semi-definite in a feasible solution, where

k = 0, . . . , N , otherwise maxL(S, λ) will be unbounded. Since (P 3.1) is convex

we can conclude that the optimal dual solution gives the same objective value

as the optimal primal solution does. We can actually get the dual solution by

solving a sequence of semi-definite programs and construct the dual variables so

that J(k) = 0. Let us start with stage N and examine the following subproblem

max
S(N),λN

Tr(J(N)V (N)) + Tr(S(N)WN−1)− λNγN

s.t. F T (Q− S(N))F + λNQN � 0
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Since V (N),WN−1 are positive semi-definite, we can conclude that the optimal

S(N) given any fixed λN is

S(N) = Q+ λNQ
xx
N , J(N) = 0

where QN =

[
Qxx

N 0
0 0

]
. So the optimal S(N) can be obtained by solving the

following semi-definite program

max
S(N),λN

Tr(S(N)WN−1)− λNγN (2.4.4)

s.t. S(N) � Q + λNQ
xx
N (2.4.5)

Once we have S(k+1), we can solve for S(k), for any k between 0 and N. Let us

look at the following optimization

max
S(k),λk

Tr(J(k)V (k)) + Tr(S(k)Wk−1)− λkγk

s.t. Q̃+ λkQk +

[
ATS(k + 1)A− S(k) ATS(k + 1)B

BTS(k + 1)A BTS(k + 1)B

]
� 0

If we define

P (k) =Q̃+ λkQk (2.4.6)

L(k) =(Pxu(i) + ATS(k + 1)B)
(
Puu(k) +BTS(k + 1)B(k)

)−1
(2.4.7)

and assume that (BTS(k+1)A+Pux(k)) is non-singular, we can apply the Schur

complement condition to the constraint, which leads to(
Pxx(k) + ATS(k + 1)A− S(k)

)− L(k)
(
Puu(k) +BTS(k + 1)B

)
L(k)T � 0

(2.4.8)

Now we can obtain the optimal S(k) given S(k + 1) by solving this problem

max
S(k),λk

Tr(S(k)Wk−1)− λkγk (2.4.9)

s.t. S(k) � (
Pxx(k) + ATS(k + 1)A

)− L(k)
(
Puu(k) +BTS(k + 1)B

)
L(k)T

(2.4.10)

We can drop the term Tr(J(k)V (k)) because we know the optimal solution

of the above problem will satisfy the equality of (2.4.8), and thus minimize
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Tr(J(k)V (k)) for any fixed V (k). This procedure can be repeated until we get

all the optimal dual variables. The next step is to recover the optimal primal so-

lution. Now we look back at the dual function with all the optimal dual variables

known.

L(S, λ) = min
V (k)�0

N∑
k=0

Tr (J(k)V (k)) + Tr
(
S(0)x0x

T
0

)
+

N−1∑
k=0

{Tr (S(k + 1)W (k))− λk+1γk+1}

Recall that with the optimal dual variables we see that J(k) has the following

shape

J(k) =

[
L(k)Y (k)L(k)T L(k)Y (k)
Y (k)L(k)T Y (k)

]
where Y (k) = Puu(k) + BTS(k + 1)B. Now we construct the optimal primal

solution that satisfies Tr(J(k)V (k)) = 0. For any given Vxx(k), we define

V (k) =

[
Vxx(k) −L(k)Vxx(k)

−Vxx(k)L
T (k) L(k)Vxx(k)L(k)

T

]
Since the initial condition Vxx(0) is given, we can obtain the optimal primal

solution by ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Vxx(0) = x0x

T
0

V (k) =

[
Vxx(k) −Vxx(k)L(k)

T

−L(k)Vxx(k) L(k)TVxx(k)L(k)

]
Vxx(k + 1) =

[
A B

]
Vxx(k)

[
A B

]T
+Wk

where L(k) is defined in (2.4.7) and k = 0, . . . , N − 1. The optimal cost is

Tr
(
S(0)x0x

T
0

)
+

N−1∑
k=0

{Tr (S(k + 1)W (k))− λk+1γk+1}

And the optimal control law is given by

uk = Vxu(k)V
−1
xx (k)xk = −L(k)xk, k = 0, . . . , N − 1.

This method is elegant as it only needs to solve up to N subproblems, whose

size is in proportion to the dimension of system states. However, the weakness
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of this approach is that the nice property that the dual function of the objective

can be broken into subproblems and solved recursively does not preserve when

the formulation changes. In other words, although the method is powerful it is

not easy to be applied to other similar problems. For more details, please refer

to [29].

2.4.2 Semi-definite Programming Formulation

In this section we introduce a general way to formulated stochastic LQ control as

a semi-definite program and how different constraints can be added [30],[31],[32].

We will begin with the reformulation of the unconstrained stochastic LQR. Recall

the problem formulation is

min

N−1∑
k=0

{xT
k+1Qxk+1 + uT

kRuk}

s.t. xk+1 = Axk +Buk + wk

k = 0, . . . , N − 1

First we need to introduce some new notations

xk = Exk; Σ(k) = E[(xk − xk)(xk − xk)
T ]

In this subsection we also assume the control has the following form

uk = uk +K(k)(xk − xk)

where in fact uk is the mean of uk and K(k) is a gain matrix., both are to be

determined. With the new notations the system dynamics become, assuming the

disturbance wk has zero mean.

xk+1 = Axk +Buk (2.4.11)

Σ(k + 1) = (A +BK(k))Σ(k) (A +BK(k))T +Wk (2.4.12)

The initial condition is

x0 = x0; Σ(0) = 0 (2.4.13)
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Note that (2.4.11) can not be processed by a semi-definite programming solver

as it is not a linear matrix inequality (LMI). To address this issue we define

Ψ(k) = K(k)Σ(k) and using Schur complement lemma we rewrite (2.4.11) as[
Σ(k + 1) (AΣ(k) +BΨ(k))

(AΣ(k) +BΨ(k))T Σ(k)

]
� 0 (2.4.14)

Note the in (2.4.12) Σ(k + 1) becomes an upper bound instead of the exact

expression of Σ(k) in (2.4.11), but we the inequality will be tight in the optimal

solution. What we need to do next is to use the new notations to represent the

terms in the objective. We have

E

[
xk

uk

] [
xk

uk

]T
=E

[
xk + (xk − xk)

uk +K(k)(xk − xk)

] [
xk + (xk − xk)

uk +K(k)(xk − xk)

]T
=

[
xk

uk

] [
xk

uk

]T
+

[
Σ(k)
Ψ(k)

]
Σ(k)+

[
Σ(k)
Ψ(k)

]T
where Σ(k)+ is the pseudo inverse of Σ(k). If we define V (k) as the upper bound

of the above expression. We have

V (k) �
[
xk

uk

] [
xk

uk

]T
+

[
Σ(k)
Ψ(k)

]
Σ(i)+

[
Σ(k)
Ψ(k)

]T
(2.4.15)

which again can be turned into a LMI using Schur complement lemma.⎡⎢⎢⎣ V (k)

[
Σ(k)
Ψ(k)

] [
xk

uk

]
[
Σ(k)T Ψ(k)T

]
Σ(k) 0[

xT
k uT

k

]
0 1

⎤⎥⎥⎦ � 0 (2.4.16)

The above LMI is for k = 1, . . . , N − 1. As we assumed that the initial state x0

is known and we can also conclude that u0 has no random component. Thus we

have ⎡⎣ V (0)

[
x0

u0

]
[
xT
0 uT

0

]
1

⎤⎦ � 0 (2.4.17)

And for k = N we have[
Vxx(N)− Σ(N) xN

xN 1

]
� 0 (2.4.18)
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Using these new notation, the objective function becomes

N−1∑
i=0

Tr
(
V (k)Q̃

)
+ Tr(Vxx(N)Q) (2.4.19)

Recall that Q̃ =

[
Q 0
0 R

]
. So the unconstrained SLQR problem is

min
V (k),Σ(k),Ψ(k),xk,uk

(2.4.18)

s.t. (2.4.10), (2.4.12)− (2.4.13), (2.4.15)− (2.4.17)

Now we consider how to add constraints. Suppose the constraint we want to

add has the following form

E

[
xk

uk

]T
C(k)

[
xk

uk

]
+ dTkE

[
xk

uk

]
≤ γk (2.4.20)

It can be reformulated as

Tr(V (k)C(k)) + dTk

[
xk

uk

]
≤ γk (2.4.21)

In [32], the authors proposed a way to convert a probabilistic constraint to a

constraint has the form of (2.4.21). Suppose we are considering the following

scalar case probabilistic constraint

P(aTxk + cTuk ≤ b) ≥ α

Using the idea of normal approximation, we can view aTxk + cTuk as a normal

random variable z. And we have

P(
z − z

σz
≤ b− z

σz
) ≥ α

which is equivalent to
b− z

σz
≥ N−1(α)

That is

(N−1(α))2σ2
z ≤ (b− z)2
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where z is the mean of z and σz the standard deviation of z. We can express the

above inequality in terms of moments of x and u as

(
N−1(α)

)2
E

([
xk − xk

uk − uk

]T [
a
c

] [
a
c

]T [
xk − xk

uk − uk

])
≤

(
b−

[
xk

uk

])2

which can be replaced with

(
N−1(α)

)2
Tr(V (k)M) ≤

(
b−

[
xk

uk

])2

(2.4.22)

where M is defined as

M =

[
a
c

] [
a
c

]T
Since V (k) and z̄ are both variables, (2.4.22) is not a convex constraint. We can

approximate it with

(
N−1(α)

)2
Tr(V (k)M) ≤ b2 − 2bz + 2z0(z − z0) (2.4.23)

where z̄0 = aTxk + cTuk (which in a MPC setting can be computed using the

information obtained from the previous LQR solution). Constraints like (2.4.21)

and (2.4.23) can be added to the semi-definite programming formulation of the

unconstrained LQR, and the resulting problem can be solved by a conventional

SDP solver. This formulation of problem has the power of flexibility, as we

showed that different constraints can be attached easily. However, we can see this

formulation introduces extra variables so is more suitable for small or medium

size problems.

2.4.3 A Tractable approximation of probability constrained

stochastic LQR

In this subsection we introduce a method to approximate a stochastic LQR with

probability constraints. This approach is different from the previous ones in that

it approximates the probability constraints using linear inequalities and the value

function is also a certainty equivalent version [33]. We summarize a slightly
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2.4 Constrained Stochastic Linear Quadratic Control

different version here (P 2.4.3.1)

min

N−1∑
k=0

{xT
k+1Qxk+1 + uT

kRuk}

s.t. xk+1 = Axk +Buk + wk,

P(Tkxk ≤ bk) ≥ α

wk ∼ N(0, I)

k = 0, . . . , N − 1

Note that in (P 2.4.3.1), the objective is a convex function. What complicates

things is the probabilistic constraint P(Tkxk ≤ bk) ≥ α. Generally an exact,

convex conversion is difficult to find for such a constraint. So people seek ways to

approximate it. We will show how to do this using the method in [34],[33]. Let

us introduce a more concise presentation. With the notations defined in section

2.1, the system dynamics can be rewritten as

X = Fx0 +HU +GW

where G and W are defined as

G =

⎡⎢⎢⎢⎣
I
A I
...

. . .

AN−1 AN−2 . . . I

⎤⎥⎥⎥⎦ ,W =

⎡⎢⎣ w0
...

wN−1

⎤⎥⎦
Our control U has an affine disturbance feedback structure

U = U+ LW

where L is the gain matrix given by

L =

⎡⎢⎢⎢⎢⎢⎣
0

L(1,0) 0
L(2,0) L(2,1)
...

. . .
. . .

L(N−1,0) . . . L(N−1,N−2) 0

⎤⎥⎥⎥⎥⎥⎦
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Note that L has a lower triangular structure meaning that a control output at

a certain stage can only use the revealed disturbances at previous stages. Now

Tkxk ≤ bk, k = 1, . . . , N can be written as

TFx0 + THU+ THLW + TGW ≤ b

For simplicity we define

g(L,U,W) = TFx0 + THU+ THLW + TGW− b

If we define gi represents the kth row of g then for any stage k between 1 and N

by Boole’s inequality we get

(i+1)n∑
k=in+1

αk =

(i+1)n∑
k=in+1

P(gk(L,U,W) ≤ 0)

≥ P

⎛⎝ (i+1)n⋃
k=in+1

gk(L,U,W) ≤ 0

⎞⎠
= P(Tixi ≤ bi) = α

In many real-world applications, the noise W is often bounded. So it is reason-

able for one to assume that there exists such Ω that ||W || ≤ Ω. Under such

assumption, it can be seen that gi ≤ 0 can be replaced by

max
||W||≤Ω

gi(L,U,W) ≤ 0

The remaining question is how to choose this Ω. The following theorem 34 gives

us a clue. It is also used to approximate the probabilistic constraints.

Theorem 1. Let random variable w ∼ N(0,I) and be in Rm. And let x be a n

dimensional vector and ⎧⎨⎩ ΔD = a0 +ΔAw

D0 = b0 +ΔbTw

where a0 ∈ Rn, ΔA ∈ Rn×m, b0 ∈ R and Δb ∈ Rm.

P(D0 +ΔDTx ≥ 0) ≤ Ω
√
e exp(−Ω2

2
)
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2.4 Constrained Stochastic Linear Quadratic Control

We can see that gi can be rewritten as the form D0 +ΔDTx. As a summary,

the probabilistic constraint can be conservatively approximated by

max
||v||≤Ω

g(L,U, v) ≤ 0

where Ω is determined by Ω
√
e exp(−Ω2

2
) ≥ α. But obviously the above expres-

sion cannot be used directly to substitute a constraint in an optimization problem

because itself is not a constraint. This can be addressed by using duality theory.

Let us look at the above inequality row by row

max (TFx0 + THU− b)i + (THL+ TG)kv ≤ 0

s.t. − Ω1 ≤ v ≤ Ω1

where the (.)i operator on a matrix means the ith row. Now consider v as the

variable, using duality we can see it is equivalent to

min (TFx0 + THU− b)i + Ω(1Tμi + 1Tλi) ≤ 0

s.t. (THL+ TG)i = μi − λi

μi, λi ≥ 0

where i = 1, . . . , nN . The above expression can be used to replace the proba-

bilistic constraint. We can now formulate the convex programming problem P

2.4.3.2 after converting the probabilistic constraint

min (Fx0)
TQ(Fx0) + 2(Fx0)

TQHU + U
T
(R+HTQH)U

s.t. (TFx0 + THU− b)i + Ω(1Tμi + 1Tλi) ≤ 0

(THL+ TG)i = μi − λi

μi, λi ≥ 0

where i = 1, . . . , nN and Q,R are nN × nN are block diagonal matrices with Q

and R at the diagonal respectively. The above is a quadratic program and can

be solved by conventional solvers.
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3

Feedback controller design for

Probability Constrained SLQR

In the previous chapter we introduced the probability constrained SLQR and sam-

pled related techniques in the literature including the generalized SLQR method,

the semi-definite programming approach and the tractable approximation ap-

proach. Those are the state-of-the-art results and their strengths and weaknesses

were discussed. In this chapter, we will present the original work of the thesis,

from a perspective different from the proposed ones. In particular we will de-

sign a disturbance feedback controller and two state feedback controllers for two

differently formulated probability constrained SLQR problems. The goal of our

work is to develop tractable, reliable and fast algorithms.

3.1 A Chebyshev bound approach to convert

probabilistic constraints

In this section we present an approximation for the probabilistic constraint

P

(
N∑
k=0

Tkxk ≤ b

)
≥ α.

Where Tk is a constant matrix and b is a random vector. As we introduced in

the previous chapter, such a constraint can be replaced by using the cumulative
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density function of b or the sampling technique. However, we do not assume the

distribution of b so we cannot applied the first approach. And we tend to not

use the sampling approach either because the large number of deterministic con-

straints it would generates. We will approximate it using the multi-dimensional

Chebyshev inequality. As we will show, the Chebyshev-based constraint can be

handled naturally within the framework of stochastic LQR. The Chebyshev con-

straint is an inner approximation, in the sense that control laws that satisfy this

constraint are guaranteed to satisfy the original probabilistic constraint.

The goal for this section is to derive a method to approximate multidimen-

sional chance constraints, which serves as the foundation of our control algorithms

in the later sections. The following theorem provides a multi-dimensional Cheby-

shev inequality [35]:

Theorem 3.1. Let z be a random vector in Rd and S a subset of Rd defined by a

collection of linear inequalities. If P ∈ Sd, q ∈ Rd and r ∈ R are chosen so that

{y ∈ Rd | yTPy + 2qTy + r ≤ 1}

is an inscribed ellipsoid of set S, then we have

1−E[zTPz + 2qT z + r] ≤ P(z ∈ S)

Proof. Let f(z) = zTPz + 2qz + r. Then f(z) ≥ 0 for z ∈ S and f(z) ≥ 1 for

any z ∈ Sc, where Sc is the complement of S. Let ISc(.) be the indicator function

on Sc, then

f(z) ≥ ISc(z)

Therefore,

E[f(z)] ≥ E[ISc(z)]

= P(z ∈ Sc),

which is the same as

1−E[zTPz + 2qz + r] ≤ P(z ∈ S).
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3.1 A Chebyshev bound approach to convert probabilistic constraints

The underlying probability distribution of z does not affect the nature of the

bound. In other words, the bound is valid for any distribution, or an ambiguous

distribution (see [36] for example), as long as its first and second moments coincide

with the given ones.

The above theorem gives a lower bound on the probability that z falls into

S, or an upper bound on the probability that z falls outside S. However, this

theorem does not mention the way for selecting the inscribed ellipsoid. In [37]

the authors proposed a way using this theorem to approximate probabilistic con-

straints. There are many possible ways to choose the ellipsoid and as one can

expect, the quality of the bound largely relies on the choice of the ellipsoid. In our

algorithms, we will use the maximum volume inscribed ellipsoid (see [35]). This

ellipsoid can be easily computed using conventional semidefinite programming

(SDP) solvers.

For the general case of approximating a linear constraint, suppose we have a

probabilistic constraint of the form

P (Tz ≤ b) ≥ α.

Let T (i) be the i-th row of T , bi the i-th component of b, and S the polyhedron

defined by the linear inequalities. The maximum volume inscribed ellipsoid of S

is given by

{Φu+ c | ‖u‖2 ≤ 1}
where Φ ∈ Sd, and c ∈ Rd are obtained from the following log-det program:

max log det Φ

subject to: ‖ΦT (i)T‖2 + T (i)c ≤ bi for i = 1, ..., m
(3.1.1)

Using the affine mapping z = Φu + c, we can obtain the formulation of the

maximum volume inscribed ellipsoid (P, q, r) in terms of z,

{z| zTPz + 2qTz + r ≤ 1},

where the transformation is given by

P = (ΦΦT )−1, q = −Pc and r = cTPc (3.1.2)
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One potential problem arises when Tz ≤ b is unbounded, so the maximum volume

inscribed ellipsoid is not applicable. This issue can be addressed by adding box

constraints,

−M ≤ z ≤ M,

where M is sufficiently large. There are different ways to use the theorem to

convert the probabilistic constraint, depending on what the random variable z

represents. It can be the system state or a combination of state and control.

These lead to different design of controllers, as we will discuss in the following

sections.

3.2 SLQR with all-stage probabilistic constraint

In this section we consider both state feedback and disturbance feedback con-

trollers for the LQ control problem

min E
∑N−1

k=0 {xT
k+1Qxk+1 + uT

kRuk}
subject to: xk+1 = Axk +Buk + wk

With the presence of a all-stage probabilistic constraint

P

⎛⎜⎝T

⎡⎢⎣x1
...
xN

⎤⎥⎦ ≤ b

⎞⎟⎠ ≥ α

We call the above constrained problem (P 3.2.1) from now on. Note that we

call it an all-stage probabilistic constraint because it requires the linear inequality

constraint on the system state of the whole predicting horizon to be met with at

least probability α. The probabilistic constraint is the major source of complexity

of the problem. After we convert it to a deterministic constraint we still need to

figure out how to design the controller. In this section, we will first design a state

feedback controller of the from

uk = uk +Kk(xk − xk).

We will develop an efficient algorithm to solve for such state feedback controller

when the probabilistic constraint is state separable. For cases where the proba-

bilistic constraint is state non-separable we will derive an algorithm to construct
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an affine disturbance feedback controller of the form

uk = uk +

k−1∑
j=0

K(k,j)wj.

where uk and Kk or K(k,j) are to be determined.

3.2.1 State Separable Approximation

In this subsection we study a special case in which the state probability con-

straint is approximated by a state separable Chebyshev bound, and show how

that property can be used in an algorithm for computing a control law. First we

will define the state separable Chebyshev bound of a state probability constraint.

Definition 3.2. If an inscribed ellipsoid (P, q, r) of
∑N

k=0 Tkxk ≤ b has P such

that the Chebyshev bound can be written as

N∑
k=0

E
[
xT
kPkxk + 2qTk xk

]
+ r − (1− α) ≤ 0,

then the ellipsoid gives what is called a State Separable Chebyshev Bound.

If we replace the probabilistic constraint in (P 3.2.1) with a state separable

Chebyshev bound, the resulting problem is called a State Separable Approx-

imation of (P 3.2.1). It turns out that a state separable approximation can be

solved very effectively by recursive algorithms, as we will show soon. A nice prop-

erty of the maximum volume ellipsoid algorithm is that it always gives a state

separable Chebyshev bound when the probabilistic constraint satisfies a certain

structure. In the next lemma, we will show that a state separable Chebyshev

bound results from the special case where the linear constraint is equivalent to

N + 1 individual constraints of the form Tkxk ≤ bk.

Lemma 3.3. For the state probability constraint

P (T0x0 ≤ b0, . . . , TNxN ≤ bN ) ≥ α

applying Theorem 3.1 using the maximum volume ellipsoid algorithm always gives

a state separable Chebyshev bound.
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Proof. Let us look at the constraint ‖ΦT (i)T‖2 + T (i)c ≤ bi in (3.1.1). Again

here T (i) represents the i-th row of T . Without loss of generality we assume that

only the i-th block of n entries of T (i) is nonzero. For example, for T (0), only

the first n entries are nonzero. The constraint above is equivalent to:

T (i)ΦTΦT (i)T ≤ bi − T (i)c

As we can see, the constraints are only placed on the diagonal blocks of ΦTΦ. The

off-diagonal blocks have no contribution to either the constraints or the volume

of the ellipsoid, so they are set to zeros. Since P = (ΦΦT )−1, it is also block

diagonal.

Given the definition of the state separable Chebyshev bound, we are ready to

show the convenience granted by this property. Now the original problem can be

conservatively approximated by the following problem, which we call (P 3.2.2):

min
∑N−1

k=0

(
xT
k+1Qxk+1 + uT

kRuk +Tr(QΣk+1) +Tr(RKkΣkK
T
k )

)
s.t.

∑N
k=0

(
xT
k Pkxk +Tr(PkΣk) + 2qTk xk

)
≤ 1− α− r

xk+1 = Axk +Buk

Σk+1 = (A+BKk)Σk(A+BKk)
T +W

k = 0, . . . , N − 1

In fact, (P 3.2.2) is closely related to the classical unconstrained LQR and can be

solved very efficiently. Before we establish the main algorithm of this subsection,

we will establish some building blocks. Our algorithm for the state separable

approximation will bring the Chebyshev constraint into the objective using La-

grange duality. Since there is a single Chebyshev constraint, this algorithm will

alternately search over a single Lagrange multiplier and a controller for an uncon-

strained LQR problem. The search over a single Lagrange multiplier will make

use of a simple but useful property, which we review next in a general setting.

Consider the following optimization problem:

min f(θ)
s.t. g(θ) ≤ 0

The following lemma characterizes the relationship between Lagrange multiplier

values, objective values, and feasibility of the constraint.
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3.2 SLQR with all-stage probabilistic constraint

Lemma 3.4. Let θi be a global minimizer of

f(θ) + λig(θ)

for fixed λi ≥ 0. If λ1 < λ2, then f(θ1) ≤ f(θ2) and g(θ1) ≥ g(θ2).

Proof. By definition of θ1 and θ2,

f(θ2) + λ2g(θ2) ≤ f(θ1) + λ2g(θ1) (3.2.1)

f(θ1) + λ1g(θ1) ≤ f(θ2) + λ1g(θ2) (3.2.2)

The inequality (3.2.1) can be written as

f(θ2) + λ2g(θ2) ≤ f(θ1) + λ1g(θ1) + (λ2 − λ1)g(θ1)

Combining the right-hand side with the inequality (3.2.2) gives

f(θ2) + λ2g(θ2) ≤ f(θ2) + λ1g(θ2) + (λ2 − λ1)g(θ1),

which is equivalent to

(λ2 − λ1)g(θ2) ≤ (λ2 − λ1)g(θ1).

Since λ2 − λ1 > 0, this implies g(θ2) ≤ g(θ1).

Combining g(θ2) ≤ g(θ1) with the inequality (3.2.2) yields

f(θ1) + λ1g(θ1) ≤ f(θ2) + λ1g(θ1),

which is equivalent to f(θ1) ≤ f(θ2).

This property gives us a way to find the optimal Lagrange multiplier for the

constraint in (P 3.2.2). Inspired by the above lemma, we examine the Lagrangian

relaxation of (P 3.2.2). For any fixed λ we call the following problem LRPA(λ):

min

N∑
k=1

(
xT
k (Q+ λPk)xk + 2λqTk xk +Tr((Q + λPk)Σk)

)
+

N−1∑
k=0

(
uT
kRuk +Tr(RKkΣkK

T
k )

)
s.t. xk+1 = Axk +Buk k ∈ {0, . . . , N − 1}

Σk+1 = (A+BKk)Σk(A+BKk)
T +W k ∈ {0, . . . , N − 1}
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The above problem is equivalent to the classical unconstrained stochastic LQR

problem, which can be solved using dynamic programming. The backward recur-

sion for this dynamic program is given by

VN(xN) = xT
N (Q+ λPN) xN + 2λqTNxN

Vk(xk) = min
uk

{
xT
k (Q+ λPk)xk + uT

kRuk + 2λqTk xk + E [Vk+1(Axk +Buk + wk)]
}

where k = 0, . . . , N − 1. It is well known that the dynamic programming value

function in the recursion above has the form

Vk(xk) = xT
k Ykxk + sTk xk + tk

for all k, where the matrix Yk is positive semidefinite. For a value function of this

form, the optimal control input at period k is

uk = −(R +BTYk+1B)−1BT

(
1

2
sk+1 + Yk+1Axk

)
We can express this as a control law of the form uk = uk +Kk(xk − xk), where

Kk = −(R +BTYk+1B)−1BTYk+1A

and uk is obtained from the recursion

uk = −(R +BTYk+1B)−1BT

(
1

2
sk+1 + Yk+1Axk

)
xk+1 = Axk +Buk

The parameters of the quadratic value function are given by

YN = Q + λPN

sN = 2λqN

tN = 0

and

Yk = Q + λPk + ATYk+1A− ATYk+1B(R +BTYk+1B)−1BTYk+1A

sk = AT sk+1 − ATYk+1B(R +BTYk+1B)−1BT sk+1 + 2λqk

tk = tk+1 +Tr(Yk+1W )− 1

4
sTk+1B(R +BTYk+1B)−1BT sk+1
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for k ∈ {0, . . . , N − 1}.
This recursion, together with Lemma 3.4, now provides a way to solve the

Chebyshev bound constrained problem (P 3.2.2). Specifically, an optimal con-

troller for (P 3.2.2) is provided by the solution to LRPA(λ) with the smallest

λ such that the resulting controller is feasible for (P 3.2.2). This observation

offers an efficient way to solve (P 3.2.2), however we still need a strategy to

search for the optimal Lagrange multiplier λ∗. Here we simply use binary search

as the basis of our implementation. For convenience, Table 3.1 summarizes the

algorithm solving (P 3.2.2). Note that not all probabilistic constraints are State

Table 3.1: Recursive algorithm for State Separable Approximation

Step 1: Find an inscribed ellipsoid (P, q, r) and corresponding

Chebyshev bound.

Step 2: Choose an initial search region [λL, λU ] for λ.

Step 3: Set λ := 1
2
(λL + λU) and solve LRPA(λ).

Step 4: If the resulting solution is infeasible for (P 3.2.2), set λL := λ.

Otherwise, set λU := λ.

Step 5: Stop if λU − λL < ε. Otherwise, return to Step 3.

Separable. When they are not we resort to the following approach.

3.2.2 State Non-Separable Approximation

In the previous subsection we derived an effective algorithm for the probabilis-

tically constrained LQR problem in the case where a state separable Chebyshev

bound can be utilized. In this subsection we will develop a convex program surro-

gate of (P 3.2.1) for the general case where there is no reasonable state separable

approximation for the probabilistic constraint[(? )].

Here we recall some notation that is frequently used throughout this section.

The quantities below are the vectorized states, controls, disturbances, and covari-

ance matrix of the vectorized disturbances:

X =

⎡⎢⎣ x1
...
xN

⎤⎥⎦ U =

⎡⎢⎣ u0
...

uN−1

⎤⎥⎦ W =

⎡⎢⎣ w0
...

wN−1

⎤⎥⎦ W =

⎡⎢⎣ W
. . .

W

⎤⎥⎦
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In this subsection we adopt an affine disturbance feedback structure which is

another major feedback strategy other than state feedback in stochastic control.

It should be pointed out here that using an affine feedback of all past disturbances

is proven in [38] to be equivalent to using an affine feedback of all past states in

constrained stochastic LQR.

Let us briefly recall the notations we used in the previous chapter. In terms

of the vectorized states and inputs, the system dynamics can be expressed as

X = Fx0 +HU +GW,

where the block matrices F, H and G are given by:

F =

⎡⎢⎣ A
...

AN

⎤⎥⎦ H =

⎡⎢⎢⎢⎣
B
AB B
...

. . .

AN−1B AN−2B . . . B

⎤⎥⎥⎥⎦ G =

⎡⎢⎢⎢⎣
I
A I
...

. . .

AN−1 AN−2 . . . I

⎤⎥⎥⎥⎦
Our next step is to reformulate the original problem (P 3.2.1) with this new

notation. Let the diagonal N ×N block matrices Q and R be defined as follows:

Q =

⎡⎢⎣ Q
. . .

Q

⎤⎥⎦ R =

⎡⎢⎣ R
. . .

R

⎤⎥⎦
Using the notation above, we can rewrite (P 3.2.1) as a more compact form:

min E[XTQX+ UTRU]

s.t. P (TX ≤ b) ≥ α
(3.2.3)

Now we replace the probabilistic state constraint in (3.2.3) by the multi-

dimensional Chebyshev inequality. Let

z =

[
U

W

]
, b̂ = b− TFx0

and

T̂ = T
[
H G

]
The state constraint simply becomes

T̂ z ≤ b̂ (3.2.4)
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3.2 SLQR with all-stage probabilistic constraint

As described in Section 3, now we can substitute the probabilistic constraint with

E[zTPz + 2qTz + r] ≤ 1− α

where P , q and r are the parameters for an inscribed ellipsoid of the convex set

defined by (3.2.4), which we can calculate using the maximum volume ellipsoid

algorithm.

Now let us consider the following affine closed-loop control law

ui = ui +

i−1∑
j=0

K(i,j)wj i = 0, ..., N − 1,

where K(i,j) are constant gain matrices. This approach is similar in spirit to

[26]. Also, note that this control law is an affine function of past disturbances

instead of past states. Given the structure of the G, H, and K matrices in our

problem, it is always possible to recover the disturbances w0, . . . , wN−1 from the

states x0, . . . , xN . So, this control law can be equivalently implemented as a state

feedback control law.

This control consists of a constant component and a linear combination of

the uncertainties. To be consistent, it is more convenient to write them in the

following form

U = U +KW

where K is the gain matrix given by

K =

⎡⎢⎢⎢⎢⎢⎣
0

K(1,0) 0
K(2,0) K(2,1)

...
. . .

. . .

K(N−1,0) . . . K(N−1,N−2) 0

⎤⎥⎥⎥⎥⎥⎦
As it can be seen, the gain matrix K is strictly block lower triangular due to

the causality of the control law. We leave K to be a variable of the optimization

problem.

To summarize, recall that our aim is to minimize

E[XTQX+ UTRU],

45



3. FEEDBACK CONTROLLER DESIGN FOR PROBABILITY
CONSTRAINED SLQR

where
X = Fx0 +HU + (G+HK)W

U = U+KW

z =

[
U

W

]
Tr(PE[zzT ]) + 2qTE[z] + r ≤ 1− α

and the optimization variables are the vector U and the strictly block lower tri-

angular matrix K. Directly in terms of these optimization variables we can write

this problem as (P 3.2.2):

min

[
x0

U

]T [
FTQF FTQH

HTQF HTQH+ R

] [
x0

U

]
+Tr(KT (HTQH+ R)KW+ 2KTHTQGW)

s.t. U
T
P11U+ 2qT1 U+Tr(KTP11KW+ 2KTP12W) ≤ 1− α− r −Tr(P22W)

Here we have partitioned P and q as

P =

[
P11 P12

P T
12 P22

]
q =

[
q1
q2

]
When the problem is solved, we obtain an optimal control policy expressed as a

constant term plus a linear term associated with the disturbances. The problem

(P 3.2.2) turns out to be a convex quadratic program with respect to (U,K).

This is shown in the following theorem.

Theorem 3.5. (P 3.2.2) is a convex quadratic program.

Proof. First we look at the objective. The objective is expressed as a sum

of two quadratic terms, one exclusively in terms of the variable U and the other

exclusively in terms of the variable K. Since Q and R are both positive semidefi-

nite, the term in U is convex. The term in K is convex if Tr(KT (HTQH+R)KW)

is convex. Since any positive semidefinite matrix can be expressed as a sum of

matrices of the type ββT , we have

Tr(KT (HTQH+ R)KW)

= Tr(KT (HTQH+ R)K

t∑
i=1

βiβi
T )

=

t∑
i=1

(Kβi)
T (HTQH+ R)(Kβi)
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3.2 SLQR with all-stage probabilistic constraint

which is a non-negative linear combination of convex functions of Kβi. So this

term is convex in K and therefore the objective is convex.

Now we prove the constraint is also convex. As with the objective, the left

hand side of the constraint is expressed as a sum of two quadratic terms, one

exclusively in terms of the variable U and the other exclusively in terms of the

variable K. Since P11 is positive semidefinite, the term in U is convex. The term in

K is convex if Tr(KTP11KW) is convex. Using the same analysis for the objective

here, we conclude that Tr(KTP11KW) is a non-negative linear combination of

convex functions. Hence, the constraint is a convex quadratic constraint.

We showed the approach to replace the probabilistic constraint and designed

a causal affine control law for the resulting problem. We further proved that the

this control law can be computed by solving a convex program. For completeness,

the algorithm that is used to solve (P 3.2.1) is summarized in Table 3.2.

Table 3.2: Convex programming algorithm for State Non-separable Approxima-

tion

Step 1: Compute F, H, G, W, Q and R.

Step 2: Construct T̂ , b̂ and the set S using (3.2.4).

Step 3: Find a qualified inscribed ellipsoid (P, q, r) of S.

Step 4: Solve (P2) for U and K.

The algorithm using convex programming is more computationally demand-

ing than the recursive algorithm we proposed in the previous section. However,

this algorithm offers a tractable approximation for a more general class of state

constrained stochastic LQR. In the next subsection, we will test our algorithms

on numerical examples and point out the connection between the two algorithms.
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3.2.3 Numerical Example

In this subsection we demonstrate our algorithms on two state-constrained LQR

problems with 2 states and 2 control inputs. The examples are chosen in a way

that the maximum volume ellipsoid gives state separable Chebyshev bounds, so

that we can run all algorithms on the same examples. We compare our approaches

with the certainty equivalent approach, which replaces random variables with

their expected values. All the examples are implemented in Matlab, using Yalmip

[39] and SDPT3 [40].

In our examples, the system dynamics and disturbance parameters are given

by

A =

[
1.02 −0.1
0.1 0.98

]
B =

[
0.5 0
0.05 0.5

]

Q =

[
10 0
0 10

]
R =

[
5 0
0 5

]
QN =

[
50 0
0 50

]
The initial system state and the uniform box state constraint are given by

x0 =

[
10
10

] [
0
0

]
≤ xk ≤

[
30
30

]
Note that this example contains a terminal cost matrix QN . The addition of

terminal costs to our framework is trivial, and facilitates the use of our algorithms

as part of a stochastic model predictive control procedure.

In our examples, the disturbance vectors are multi-dimensional normal and

i.i.d.:

wk ∼ N

([
0
0

]
,

[
0.81 −0.648

−0.648 0.81

])
The probability requirement α is set to be 0.92. To make the comparison more

interesting, all approaches here use feedback. The recursive approach uses the

state feedback structure while the convex programming approach, scenario-based

approach and CE approach adapts the disturbance feedback structure.

The results of the above example are shown in the following figures. Figure

3.1(a) contains the trajectories of the state-constrained stochastic LQR problem

with a horizon containing 10 periods solved using the recursive algorithm. Figure

3.1(b) gives the trajectories generated using our convex programming algorithm,
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(a) Recursive approach
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(b) Convex programming approach
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(c) Scenario approach
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(d) CE approach

Figure 3.1: 2D trajectories

Figure 3.1(c) gives the result obtained from the scenario-based approach and Fig-

ure 3.1(d) shows the trajectories solved using the certainty equivalent approach.

The simulation is repeated 50 times. As we can see, both of our approaches

successfully keep the trajectories within the red dotted boundary box, which

represents the state constraints. However compared with the scenario-based ap-

proach, our algorithms show some degree of conservatism. This is caused by the

selection of ellipsoids in the Chebyshev bounds. The trajectories of the certainty

equivalent control fall out of the boundaries quickly as the controller acts risky

towards the origin, where the cost is minimized. Figure 2 gives the trajectories

in detail by showing them state-by-state. Figure 3.2(a) and Figure 3.2(b) are the

state trajectories for the recursive algorithm. Figure 3.2(c) and Figure 3.2(d) are

those for the convex programming algorithm. Figure 3.2(e) and Figure 3.2(f) are

for the scenario-based approach and Figure 3.2(g) and Figure 3.2(h) are for the

certainty equivalent approach. From the above figures we see that in terms of

solution quality, the scenario-based approach is the best. We then take solving

time into consideration and look at exact numbers.

49

recursive_2D.eps
convex_2D.eps
scenario_2D.eps
CE_2D.eps


3. FEEDBACK CONTROLLER DESIGN FOR PROBABILITY
CONSTRAINED SLQR

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Stage

S
ta

te
 1

 (
x1

)

 

 
boundaries
trajectories

(a) Recursive approach: x1
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(b) Recursive approach: x2
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(c) convex programming approach: x1
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(d) convex programming approach: x2
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(e) scenario-based approach: x1
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(f) scenario-based approach: x2
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(g) CE approach: x1
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(h) CE approach: x2

Figure 3.2: state trajectories
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3.2 SLQR with all-stage probabilistic constraint

The running result comparison is shown in Table 3.3. The testing environ-

ment is Windows x64 on a PC with Intel Core i7 2630 2Ghz and 8 gig ram. We

use maximum volume ellipsoids in the Chebyshev bound and the total solving

time (including the time used to compute the ellipsoids) is shown below. The

scenario-based approach takes a bit less than an hour to finish. While the re-

cursive approach uses merely 1.8 seconds, and is almost as fast as solving the

CE formulation. In the scenario-based approach, the probability that the test of

the probabilistic constraint is insufficient is less than or equal to 1 percent which

results in 21739 constraints. It is interesting to see in Table 3.3 that the optimal

cost we get from the recursive approach is lower than the one provided by the

convex programming approach. One reason is that when applying the Chebyshev

bound to approximate the probabilistic constraint, the maximum volume ellip-

soid algorithm is used for different polyhedrons as z is defined differently. Overall,

our algorithms are more conservative than the scenario-based approach. This is

alleviated by a MPC framework proposed in a working paper by the authors [41].

Table 3.3: Running results

Approach Solving time Optimal obj value

Recursive 1.82s 3.01× 104

Convex 35.33s 4.25× 104

Scenario 3278.4s 4.49× 103

CE 1.81s 1.52 ×103
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3.3 SLQR with per-stage probabilistic constraints

There are two main points in this section. The first one is that we propose a fast

algorithm to solve a stochastic linear quadratic control problem with a proba-

bilistic constraint at each stage. In the literature, most similar problems enforce

probabilistic constraints on linear inequalities. In our formulation, the proba-

bilistic constraints are placed on intersections of ellipsoids, which are represented

by quadratic inequalities. We developed an algorithm based on a sub-gradient

method to solve the SLQR. The second point is that we designed a MPC frame-

work using the SLQR solver as a subroutine to solve long-horizon probability

constrained control problems. This framework can significantly reduce the com-

putational complexity of the problem while increasing the quality of the control.

We test the MPC framework on a 120-hour-long temperature control problem and

the results show that the framework is efficient and reliable against disturbances,

and has the potential to be implemented online.

3.3.1 A sub-gradient method approach

The problem formulation of this section is not fundamentally different from the

one in the previous section. To make this section self-contained, we briefly review

the problem setup and point out the difference here. We consider a probabilisti-

cally constrained version of the classical finite-horizon stochastic LQR problem.

We aim to control a linear system with stochastic dynamics given by

xk+1 = Axk +Buk + wk

for k ∈ {0, . . . , N − 1}. In period k, xk is the system state, uk is the control

input, and wk is the disturbance input. The disturbance inputs are independent,

have mean vector wk, and have covariance matrix Wk. Our goal is to minimize

the classical LQR objective in expectation,

E

[
N−1∑
k=0

xT
k+1Qxk+1 + uT

kRuk

]
,

where the matrix Q is positive semidefinite and the matrix R is positive definite.

We assume the initial state vector x0 is known. N is the problem horizon. The
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3.3 SLQR with per-stage probabilistic constraints

state feedback control we consider has the form

uk = uk +Kk(xk − xk).

Here, xk denotes the expected value of the state and uk denotes the expected

value of the control input. The complicating factor in our problem is a linear

constraint on the system states that must hold with some specified probability.

Specifically, for a given α ∈ [0, 1), we must select a control law that ensures

P (xk+1 ∈ Sk+1) ≥ α

where Sk is the intersections of some ellipsoids.

Sk+1 =

mk+1⋂
i=1

{z|zTTk+1,iz + 2aTk+1,iz + bk+1,i ≤ 0}

A similar problem was solved in the previous section [42]. The difference here is

that the big probabilistic constraint is replaced by the per-stage probabilistic con-

straints and Sk is defined by quadratic inequalities instead of linear inequalities.

The new formulation is more flexible as now we can place different probability

requirements on system state at each stage. This is useful when one wants to en-

force a changing risk tolerance. For example, when using the model for portfolio

management, one may care more about how much money he/she has at the end

of the operation rather than the trajectory of getting there. In this case, one can

place the probabilistic requirements of final stages to be more significant than

those of the intermediate stages. The model can also be used in other applica-

tions such as supply chain management and temperature control. We will give a

simple example of temperature control in the numerical experiment subsection.

To solve the per-stage constrained SLQR The first thing we need to do is to

replace the probabilistic constraints. The idea is to substitute it with a deter-

ministic approximation. We will adopt the approach proposed in the section 3.1,

using a multi-dimensional Chebyshev inequality. An important question here is

how to choose the inscribed ellipsoid in Theorem 3.1. We will get to that later

and let us assume that the ellipsoids are given at this time.

Note that when finding the state feedback controller, the variables to be op-

timized are uk and Kk, representing the mean of the control and the gain of the
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linear state feedback respectively. As we can see, the control contains feedback

only if the system state is deviated from its mean. To see what it means, in an ex-

treme case suppose the noise is so small that we can ignore it, then the controller

reduces to an open-loop controller, which is optimal in that case. The feedback

part Kk(xk − xk) is used to compensate the offset of the state with respect to

its projected mean. Now if we substitute the probabilistic constraints with the

Chebyshev bounds and apply the control law, the original problem becomes

minimize:
∑N−1

k=0 xT
k+1Qxk+1 + Tr(QΣk+1) + Tr(RKkΣkK

T
k ) + uT

kRuk

subject to: xT
k+1Pk+1xk+1 + Tr(Pk+1Σk+1) + 2qTk+1xk+1 + rk+1 − 1 + α ≤ 0

xk+1 = Axk +Buk + wk

Σk+1 = (A+BKk)Σk(A+BKk)
T +Wk

for k = 0, . . . , N − 1

We call the above problem (P 3.3.1). The system dynamics are reflected by

means and covariance matrices, which further reminds us our goal in this problem

is to control not only the expected positions of the state but also the shape of

its distribution. Note that the above formulation is a safe approximation of the

original problem which means any feasible solution of (P 3.3.1) is guaranteed to

be feasible in the original problem. There is something special about (P 3.3.1)

if we examine it closely. Actually, (P 3.3.1) is very similar to the unconstrained

SLQR, except that there is an additional constraint that is quadratic in the state.

To see their connection clearly, let us dualize the Chebyshev bounds into the

objective. For any fixed λ we call the following Lagrangian relaxation LRPP(λ)

minimize:
∑N−1

k=0 xT
k+1(Q+ λk+1Pk+1)xk+1 + Tr((Q+ λk+1Pk+1)Σk+1)

+Tr(RKkΣkK
T
k ) + uT

kRuk + 2λk+1q
T
k+1xk+1 + λk+1(rk+1 − 1 + α)

subject to: xk+1 = Axk +Buk + wk

Σk+1 = (A+BKk)Σk(A+BKk)
T +Wk

for k = 0, . . . , N − 1

On can see that now for any fixed Lagrangian multipliers LRPP(λ) is exactly an

unconstrained SLQR, which can be solved quickly. Indeed, maxλ≥0LRPP(λ) is

the problem we are going to solve, and therefore it is very important to investigate

the relationship of its optimal solution and that of (P 3.3.1). Are they equal

to each other? Or maxλ≥0LRPP(λ) is just a lower bound of the optimal value

of (P 3.3.1)? If (P 3.3.1) is a convex optimization problem, we are sure that
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solving (P 3.3.1) and its dual maxλ≥0LRPP(λ) yield the same optimal solution.

However, it is not obvious that (P 3.3.1) is convex or not. So it can not be

directly told that whether the optimal objective value of maxλ≥0LRPP(λ) equals

that of (P 3.3.1). But after a reformulation and making a couple of connections

we will be able to conclude that the two turn out to be the same. We summarize

this in the following lemma.

Lemma 3.6. The optimal objective value of (P 3.3.1) equals that of its dual

maxλ≥0LRPP(λ)

Proof. We can rewrite (P 3.3.1) as SDP1

minimize:

N−1∑
k=0

Tr
(
VkQ̃

)
+ Tr(V xx

N Q) (3.3.1)

subject to: xk+1 = Axk +Buk (3.3.2)[
Ωk+1 −Wk (AΩk +BΨk)

(AΩk +BΨk)
T Ωk

]
� 0 (3.3.3)

Vk+1 �
[
xk+1

uk+1

] [
xk+1

ūk+1

]T
+

[
Ωk+1

Ψk+1

]
Ω+

k+1

[
Ωk+1

Ψk+1

]T
(3.3.4)⎡⎣ V0

[
x0

ū0

]
[
xT
0 uT

0

]
1

⎤⎦ � 0 (3.3.5)

[
V xx
N − ΩN xN

xN 1

]
� 0 (3.3.6)

xT
k+1Pk+1xk+1 + Tr(Pk+1Vk+1) + 2qTk+1xk+1 + rk+1 − 1 + α ≤ 0

(3.3.7)

k = 0, . . . , N − 1 (3.3.8)

where V xx
N represents E[xNx

T
N ] and Ω+

k the pseudo inverse of Ωk and Q̃ is the cost

coefficient matrix defined as

Q̃ =

[
Q

R

]
In the above formulation, the variables are xk+1, uk,Ωk+1, Vk+1 and Ψk+1. (3.3.2)-

(3.3.6) capture the system dynamics and (3.3.7) is the Chebyshev bound. As we

can see SDP1 is semi-definite program and it is convex. Let us dualize (3.3.7)

into the objective and call the resulting dual function DSDP1(λ). Assuming

55



3. FEEDBACK CONTROLLER DESIGN FOR PROBABILITY
CONSTRAINED SLQR

feasibility, we can conclude that the optimal objective value of SDP1 collides

with that of maxλ DSDP1(λ) because of strong duality. We also know that

for any fixed Lagrangian multipliers λ, LRPP(λ) gives the identical solution

and objective value as DSDP1(λ). DSDP1(λ) is just a reformulated version

of LRPP(λ). So we can conclude that maximizing LRPP(λ) is equivalent to

maxλDSDP1(λ), which gives the same optimal objective value of solving SDP1.

And since SDP1 is just (P 3.3.1) reformulated, we now see that maximizing

maxλ≥0LRPP(λ) gives the same optimal objective value as (P 3.3.1) does.

Lemma 3.6 tells us if we want to solve (P 3.3.1), we only need to worry about

the optimal Lagrangian multipliers λ∗. One way to approach it is to use a sub-

gradient method. The sub-gradient method we use is similar to a conventional

projected sub-gradient method, but we use the recursive LQR solver as a sub-

routine instead of a nonlinear programming solver to solve LRPP(λ) for fixed λ.

We need to prove that our sub-gradient method converges. Despite the difference

of the internal solver, the convergence property of sub-gradient method remains

the same in our analysis. Let e(u,K) represent the objective function of (P 3.3.1)

and g(u,K) the inequality constraints of (P 3.3.1) (the Chebyshev bounds) at

(u,K). If we dualize g into the objective function and call the objective of the

resulting dual problem f(λ), we have the following lemma [43]

Lemma 3.7. Assuming ‖g‖ is bounded, if we update the sequence of Lagrangian

multipliers as λi+1 = max[0, λi+aigi], and the positive step size sequence satisfies

∞∑
i=1

(ai)2 ≤ ∞,

∞∑
i=1

ai = ∞

then limi→∞maxi f(λ
i) = f(λ∗), where λ∗ is an optimizer of f(λ)

Proof. First we point out some properties of f and g, which we are going to

use. Notice that f(λ) is a minimization problem with λ fixed so it is always a

concave function. g(u,K) is a sub-gradient of f at λ. To see this note that for

any λ̃
f(λ̃) ≤ e(u,K) + g(ū, K)T λ̃

= e(u,K) + g(u,K)Tλ+ g(u,K)T (λ̃− λ)

= f(λ) + g(u,K)T (λ̃− λ)
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Now we continue to prove the special property of the sequence {λi}. Let λ∗ be

an minimizer of f , we have

‖λi+1 − λ∗‖
= ‖λi + aigi − λ∗‖
= ‖λi − λ∗‖+ 2ai(gi)T (λi − λ∗) + (ai)2‖gi‖2
≤ ‖λi − λ∗‖+ 2ai(f(λi)− f(λ∗)) + (ai)2‖gi‖2

The last inequality is true because f(λ) is concave and g(ui, Ki) is a sub-gradient

of it at λi, which means

f(λi)− f(λ∗) ≥ (gi)T (λi − λ∗)

If we repeat the above inequality, we get

‖λi+1 − λ∗‖ ≤ ‖λ1 − λ∗‖+ 2
∑i

j=1 a
j(f(λj)− f(λ∗)) +

∑i
j=1(a

j)2‖gj‖2

which implies

2
i∑

j=1

aj(f(λ∗)− f(λj)) ≤ ‖λ1 − λ∗‖+
i∑

j=1

(aj)2‖gj‖2

Note that we also have

i∑
j=1

aj(f(λ∗)− f(λj)) ≥
i∑

j=1

aj(f(λ∗)−max
j

f(λj))

Comparing the last two inequalities, we obtain

f(λ∗)−max
j

f(λj) ≤ ‖λ1 − λ∗‖+∑i
j=1(a

j)2‖gj‖2
2
∑i

j=1 a
j

Since the right hand side goes to zero if i → ∞ and

∞∑
j=1

(aj)2 ≤ ∞,

∞∑
j=1

aj = ∞

we can conclude that

lim
i→∞

max
i

f(λi) = f(λ∗)
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Lemma 3.7 tells us how to get a set of optimal Lagrangian multipliers λ,

which also means we can use the sub-gradient method to solve LRPP(λ) given a

pair (u,K). Combining Lemma 3.7 with Lemma 3.6 we find ourselves at a good

position to summarize the optimality condition for solving (P 3.3.1).

Theorem 3.8. For a given set of ellipsoids (Pk, qk, rk), the optimality condition

for LRPP(λ) is ⎧⎪⎪⎪⎨⎪⎪⎪⎩
λTg(u,K) = 0,

g(u,K) ≤ 0

λ ≥ 0

The optimal solution of (P 3.3.1) is given by (u,K).

Proof. When the condition is satisfied we know that (u,K) is primal feasible

and from Lemma 3.6 we know that complementary slackness implies zero duality

gap between (P 3.3.1) and its dual max LRPP(λ). So from strong duality the

optimality follows.

We have proved that solving maxLRPP(λ) is equivalent to solving (P 3.3.1)

but we have not shown how to actually solve LRPP(λ) for a fixed λ. As one

can see that for any fixed λ, LRPP(λ) is just a unconstrained SLQR and can be

solved recursively by Dynamic programming. The backward recursion is given

by

VN(xN) = xT
N (Q+ λPN) xN + λN2q

T
NxN

Vk(xk) = min
uk

xT
k (Q+ λkPk)xk + uT

kRuk + 2λkq
T
k xk + E[Vk+1(Axk +Buk + wk)]

where k = 0, . . . , N − 1. It is well-know that the value function has a quadratic

form

Vk(xk) = xT
k Ykxk + sTk xk + tk

The optimal control at stage k can be obtained by applying the recursion below:

uk =− (R +BTYk+1B)−1BT

(
1

2
sk+1 + Yk+1Axk + Yk+1wk

)
Let us express the control in terms of the linear structure we specified before

uk = uk +Kk(xk − xk)
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3.3 SLQR with per-stage probabilistic constraints

The solution of the control is given by⎧⎪⎨⎪⎩
Kk = −(R +BTYk+1B)−1BTYk+1A

ūk = −(R +BTYk+1B)−1BT
(
1
2
sk+1 + Yk+1Axk + Yk+1w

T
k

)
xk+1 = Axk +Buk

The recursion of the parameters of the value function are given by⎧⎪⎨⎪⎩
YN = Q + λNPN

sN = 2λNqN

tN = λN(rN − 1 + α)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yk = Q + λkPk + ATYk+1A−ATYk+1B(R +BTYk+1B)−1BTYk+1A

sk = AT sk+1 + 2λkqk −ATYk+1B(R +BTYk+1B)−1BT sk+1

+2ATYk+1

(
I −B(R +BTYk+1B)−1BTYk+1

)
wk

tk = tk+1 + Tr(Yk+1Σk) + λk(rk − 1 + α) + 1
4
sTk+1B(R +BTYk+1B)−1BT sk+1

+sTk+1wk − (wT
k Yk+1B + 1

2
sTk+1B)(R +BTYk+1B)−1BT sk+1

where k = 0, . . . , N − 1. So for any fixed λ, we can easily recover the optimal

control by applying the above recursions.

So far we have enough for an algorithm to solve (P 3.3.1) for a set of fixed

ellipsoids. But we have not talked about how to update the ellipsoids. We want

to make sure that every time we update, the optimal objective value of (P 3.3.1)

is improved and its previously computed solution should remain feasible with the

new ellipsoids. This can be done by minimizing the Chebyshev bounds at fixed

(u,K) (Σ can be computed with the pair).

minimize: xTPx+ Tr(PΣ) + 2qTx+ r

subject to:

[
P q
qT r

]
� 0, (3.3.9)[

P q
qT r − 1

]
� γi

[
Ti ai
aTi bi

]
(3.3.10)

γi ≥ 0, (3.3.11)

i = 1, . . . , m. (3.3.12)

Here (P, q, r) is the ellipsoid to be updated and (Ti, ai, bi) are the ellipsoids whose

intersection contains (P, q, r). As we can see that by relaxing the Chebyshev
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bounds, we create more room for minimizing the objective value of (P 3.3.1).

Also, we will not lose feasibility as we know that the fixed (u,K) are still feasible

with the new ellipsoids.

3.3.2 Model Predictive Control implementation

Model Predictive control is a class of algorithm that computes a sequence of

finite horizon problems to optimize the long term behavior of a system and is

one of the most studied algorithm in the industry [44] [45] [46]. In our MPC

algorithm, (P 3.3.1) is repeatedly solved at each stage. The difficulty solving

(P 3.3.1) is that there are two things are simultaneously being optimized: the

ellipsoids and the Lagrangian multipliers and the problem as a whole is not a

convex optimization problem. There are two strategies here to implement the

MPC algorithm. First, we can for each set of ellipsoids compute the optimal

Lagrangian multipliers and the associated optimal control. Based on the optimal

control and the predicted information we then update the ellipsoids. The proce-

dure is repeated until complementary slackness is achieved. Another strategy is

that we alternatively update the ellipsoids and the Lagrangian multipliers until

the ellipsoids become stable. In this paper we adopt the second strategy, which

will be described in detail soon. From our experience, the first strategy is slower

than the second. But it is more likely to generate reliable approximation. The

second implementation is fast and is less influenced by the conservatism intro-

duced by the Chebyshev bound and the initial set of ellipsoids. Now let us get

into the details of the second strategy. We will alternate between updating the

ellipsoids and the Lagrangian multipliers. Once we find that the ellipsoids are

stable and can not be improved much, we will focus on computing the optimal

Lagrangian multipliers and the associated control with the ellipsoids. (P 3.3.1)

is considered solved when complementary slackness is achieved. Then the MPC

algorithm moves forward to the next stage and start over to solve another SLQR.

One thing worth notice is that the Lagrangian multipliers λ actually carry

important information about the probabilistic constraints. If a component λi

is zero, it implies that the ith probabilistic constraint can be ignored. In other
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words, only the probabilistic constraints associated with positive Lagrangian mul-

tipliers are considered and their priorities are weighted by the absolute values of

the multipliers. Since using the closed-form solver as the subroutine, the sub-

gradient method is fast. During the solving process, the probabilistic constraints

that are detected as dangerous will be taken into account and their possibilities

of being violated are reflected by the Lagrangian multipliers. At each stage, all

the probabilistic constraints in the predicting horizon are under supervision and

the prediction moves forward as the MPC algorithm runs. We summarize the

MPC implementation in the following table

Step 1: Compute a set of initial ellipsoids (Pk, qk, rk)

Step 2: Set the Lagrangian multipliers λ to zero.

Step 3: Solve LRPP(λ) and obtain the control and the expectation xk

and covariance Σk. Compute the sub-gradient.

Step 4: Update the ellipsoids at xk and Σk

Step 5: Check if the change of ellipsoids is significant. If it is go to Step 7,

otherwise follow through

Step 6: Check complementary slackness. If it is satisfied go to Step 8,

otherwise follow through.

Step 7: Update the Lagrangian multipliers λ and go to Step 3.

Step 8: Apply the control at the current stage. Go to Step 2 and start over

for the next stage.

Table 3.4: MPC implementation

There are a couple of practical considerations when implementing the MPC

algorithm. In Step 5, when testing complementary slackness ‖λigi(u,K)‖ ≤ ε.

The parameter ε has impact on several things. A small ε is crucial for the sub-

gradient to correctly identify inactive/active probabilistic constraints and thus

find the optimal solution of (P 3.3.1). But a small ε also means longer running

time for the sub-gradient method. It may take a long time for it to be satisfied

if ε is too small. Another one is in Step 5, when we determine if an update of

ellipsoids is significant. One can used the decrease of sub-gradient to measure the

significance. As we can imagine the measurement is again a trade-off between
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efficiency and accuracy. Better ellipsoids can provide better Chebyshev bounds,

which can give better optimal control. In the other hand, updating ellipsoids is

time-consuming. So the threshold of judging if an update is significant is crucial

to the MPC implementation.

3.3.3 Numerical Example

We test our algorithm on a temperature control problem adapted from [33]. The

system has three states x(1), x(2) and x(3), which represent the room tempera-

ture, the temperature in the wall connected with another room and the temper-

ature in the wall connected to the outside respectively. There is a temperature

control device that can cool down as well as heat up the air in the room. There

exist three disturbance sources w(1), w(2) and w(3), associated with outside tem-

perature, solar radiation and internal heat gain respectively. The objective of

the problem is to conserve energy while keeping the temperature above 20 C◦

with probability at least 0.85 (this is enforced stage-wise). Here are the details

regarding the system dynamics

xk+1 = Axk +Buk +Gwk

A =

⎡⎣0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

⎤⎦ , B =

⎡⎣0.17500.0150
0.0100

⎤⎦
G =

⎡⎣0.0222 0.0018 0.0422
0.0015 0.0007 0.0029
0.1032 0.0001 0.1960

⎤⎦
We implemented the MPC framework with 5-hour predicting horizon and ran

it with a 150-hour simulation. The testing environment was Matlab on Windows

x64. The tool-sets we used were Yalmip [39] and SDPT3 [40]. The computer

we used was a laptop with Intel Core i7 2630QM 2.0GHz and 8 gig ram. The

following figures give us an outlook of the behavior of the controller. The data

we use here is extracted from one single simulation among many others.

As we can see in Figure 3.3, the uncontrolled trajectory falls far below 20

degree a few times while the controlled one stays above the lower bound most of

the time. The occasional violation of the constraint is because we are using the
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ellipsoids from the previous prediction to compute the control at current stage.

It is the fact that we cannot perfectly predict the future trajectories that causes
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the violation. If we look at Figure 3.4 and compare it with Figure 3.3, we can find

that the controller does nothing (which is the most aggressive control strategy in

this example) to conserve energy but when it decides there is no risk of leaving the

safe zone temporarily. As the trajectory approaches the boundary, the controller

detects the danger in advance and reacts accordingly to avoid it. Once the system

is back into a safer track, the controller goes back to the aggressive mode again

until it faces another potential constraint violation. Figure 3.5 is one extraction

from the disturbance samples, in which we can see that although the controlled

trajectory in Figure 3.3 seems to be smooth the controller was actually dealing

with substantial disturbances. We repeated the simulation for 20 times and we

show all the trajectories in Figure 3.6. We can see that the system under control

is quite reliable speaking of staying out of the undesirable area, under the 0.85

probability requirements.

65



3. FEEDBACK CONTROLLER DESIGN FOR PROBABILITY
CONSTRAINED SLQR

3.4 Conclusion and Extensions

We have presented original results so far in this chapter. We proposed a way to

use multi-dimensional Chebyshev bound to approximate state probability con-

straints. We also showed how to use the Chebyshev bound to convert the original

problem to conservative convex programs. For all-stage cases we developed a

way to solve for an optimal disturbance feedback controller using convex pro-

gramming. We also explored the connection between the resulting problem and

the classical unconstrained SLQR and designed a recursive algorithm to efficiently

find the optimal state feedback controller. For per-stage case, we similarly pro-

posed a state feedback controller and used it in a MPC framework. The simple

numerical experiments showed that our approaches have their advantages over

existing results. New research results are coming out frequently in this area. As

the author is writing this thesis, some of results in the literature review were up-

dated and a couple of times the author needed to revise the manuscript to reflect

the advancements. For any interested reader, we want to share our experience

and thoughts on how the work here can be possibly extended or related to other

similar problems.

In our problem set-up, the probabilistic constraints are on system states.

However, similar results can be derived for control constrained problems. To get a

state feedback controller, one can apply the Chebyshev bound on the probabilistic

constraints of control. The resulting constraints will contain first and second

moments of control. Assuming the probability constraint has the following form

P (T0u0 ≤ b0, . . . , TNuN ≤ bN ) ≥ α

The resulting constraint after applying the Chebyshev bound is

N∑
k=0

E
[
uT
kPkuk + 2qTk uk

]
+ r − (1− α) ≤ 0,

One can imagine that it can be handled the same way as in the State-Separable

case. For general cases, where the probabilistic constraint has the form

P

⎛⎜⎝T

⎡⎢⎣ u0
...

uN−1

⎤⎥⎦ ≤ b

⎞⎟⎠ ≥ α
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One can use the convex programming approach and let z be the concatenated

control when applying the Chebyshev bound.

In our problems, we assumed that we have perfect estimation of the system

states x1, . . . , xN . In reality this may not be the case. To be specific, say that

at stage k the best we could do is to estimate system state xk based on all the

information Ik we have collected through stage 1, . . . , k, i.e., we can only estimate

E[xk|Ik]. Our recursive algorithm still works in such case. One can walk through

the DP algorithm to compute the closed-form optimal control for the new problem

and should find that in the closed-form E[xk|Ik] replaces xk. However, the cost

function will be different to reflect the estimation errors xk − E[xk|Ik]. Since a

closed-form optimal control still exists in such cases, we can still use our recursive

algorithm with some changes. The convex programming approach will work as

long as we have accurate information about the means and covariance matrices

of the disturbances w1, . . . , wN−1 and it does not rely on perfect state estimation.

Another possibly useful extension is the case where in the system dynamics

the uncertainty comes from coefficient matrices. To be specific, matrix A and B

are random in

xk+1 = Axk +Buk

In such cases, if E[A] andE[B] are known and E[ATQA], E[BTQB] and E[BTQA]

can be efficiently evaluated then the DP algorithm still gives a closed-form solu-

tion for optimal control and our recursive algorithm still can be used.

In the per-stage problem we proposed a MPC framework that alternates be-

tween computing optimal controls and updating ellipsoids. This scheme also can

be used in all-stage case. However, one should be noted that the cost for updating

ellipsoids can be quite prohibitive when comes to time complexity for problems

with long predicting horizons. One possible way to mitigate this is to pre-compute

the ellipsoids and load them in on-the-fly. This is possible because the ellipsoids

are only determined by the boundary constraints and system states with which

they are computed. Additional structure constraints are needed when computing

ellipsoids for the recursive algorithm in all-stage problems, as the structure is

required for state-separable Chebyshev bounds.
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