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Abstract

Pulsars are exotic objects which have yielded a bounty of important astrophysical

results. As rapidly rotating, highly magnetized neutron stars, pulsars’ stable rotation

and beamed radio emission enables their use as interstellar laboratory clocks. The

extraordinary timing regularity of the millisecond pulsar (MSP) population permits

some of the most precise measurements in astronomy. The discovery of MSPs raised

the probability of directly detecting gravitational waves for the first time. Ongoing

efforts by several pulsar timing array (PTA) collaborations compliment the ground-

and space-based efforts of laser interferometers. One such PTA is the North Ameri-

can Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav has

recently employed a new set of wideband instruments to increase the sensitivity of

their PTA, and the future of pulsar astronomy is moving towards progressively larger

bandwidths. In this dissertation, we address the benefits and issues from adopting the

new instrumentation, particularly for the scientific motivations of NANOGrav. We

first develop a measurement technique for simultaneously obtaining pulse times-of-

arrival (TOAs) and dispersion measures (DMs) using 2D models of evolving Gaussian

components. We then apply the methodology broadly to a variety of pulsars, includ-

ing a bright, test MSP in a globular cluster, the Galactic Center magnetar, and the

entire suite of 37 MSPs from the NANOGrav 9-year data set. For a subset of these

MSPs, we make targeted observations at specific orbital phases aimed at improving

the timing models and constraining the Shapiro delay. With a few exceptions, we find

positive or consistent timing results from the implementation of our first generation

wideband timing protocol. Some highlights include: improved measurement uncer-

tainties, mitigation of chromatic ISM effects, a reduction in the number of timing

parameters and TOAs, signs of chromatic DMs, and at least one new pulsar mass.
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plot is worth a thousand words, then consider this document unabashedly verbose; I

am unapologetic about including useful figures for all of the pulsars incoporated in

this study.

I have been fortunate since the beginning of my studies of pulsars to have sam-

pled most areas of the P -Ṗ diagram. This dissertation is primarily concerned with

millisecond pulsars, as well as one magnetar, but I also get to claim discovery for a

single slow pulsar in the GBT 350 MHz Drift-scan Survey (Boyles et al. 2013; Lynch

et al. 2013). In the beginning, as an undergraduate REU student at the NRAO, I

searched through some ten thousand(s) candidate pulsars and finally identified but

one slow, canonical pulsar, the 426-ms pulsar J1612+20081. Let this be a lesson to

new students who are enticed by wily, animated pulsar astronomers quoting discovery

rates!

Along with the document before you, this dissertation has associated with it more
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supported by the NANOGrav PIRE grant (NSF 0968296) and has resulted in at least

two publications.

Enjoy.

18 June 2015, Room 109

1a.k.a. “PSR Tacocat”; attribution by A. Jáuregui, private communication.

www.nrao.edu
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Chapter 1

Introduction to Pulsars

& Pulsar Timing

“Timing is everything.” —The narcissistic horologist
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1.1 Opening Remarks

After nearly fifty years of study, pulsars continue to be extremely fruitful objects

for scientific enquiry. A Nobel Prize was awarded for their discovery1 at least in

part because of the impact that pulsars were anticipated to have on the community.

Indeed, in this half-century, the study of pulsars has contributed to astrophysical fields

relating to the interstellar medium, binary evolution, plasma physics, supernovae,

nuclear physics, extrasolar planets, hierarchical galaxy formation, magnetic fields,

and gravity – the lattermost for which a second Nobel Prize was awarded2. All such

contributions stem from the facts that pulsars are exotic objects and can function

like laboratory clocks situated in interstellar space.

The techniques associated with making use of pulsars’ clock-like behavior are col-

lectively called “pulsar timing”. Pulsar timing — particularly at radio frequencies

— yields some of the most precise measurements in all of astronomy, from nearly

percent-level interstellar distances to neutron star mass determinations that are pre-

cise to several times the mass of Jupiter. The history of pulsar astronomy has been

paralleled by a monotonic increase in the precision obtained from pulsar timing due

to the construction of bigger dishes, the design of more sensitive radio receivers, the

observation of pulsars in broader bandwidths, and the improvements in signal de-

tection and pulsar timing algorithms. One significant discontinuity in this history,

however, was the discovery of the millisecond pulsar population. Because they have

the shortest spin periods and the least amount of unpredictable behavior, millisecond

pulsars provide the most precise timing measurements.

Most of the present work is concerned with the measurements that can be obtained

1A. Hewish, 1974, though the prize was not shared with his postdoctoral student and acknowl-
edged discoverer of pulsars, Jocelyn Bell.

2R. Hulse & J .Taylor, 1993.
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from the current generation of pulsar instruments, which are significant in this history

for being the first set of instruments to process almost a gigahertz of bandwidth

in real time explicitly for the study of millisecond pulsars at frequencies relevant

to high-precision timing experiments. However, the advantages that come with a

broader bandwidth are only achieved if there is a parallel development in pulsar

timing methodologies, as will be explained and explored.

All of the advances mentioned above are leading to what could be the climax of

pulsar astronomy: the direct detection of gravitational waves by means of a pulsar

timing array3. In this dissertation, we make progress on the front of developing meth-

ods for the current and next generation of pulsar timing array experiments and their

instruments, and showcase our developments in a series of cutting edge measurements

of radio pulsars. Here, we give a brief overview to pulsars, millisecond pulsars, pulsar

timing arrays and one of the central problems that we address in the chapters that

follow.

1.2 Pulsars

The observations associated with pulsars have grown to include quite a range

of phenomena since the initial detection of stable, periodic radio emission with a

period of ∼ 1 s (Hewish et al. 1968). A modern, working definition that would

encompass all objects with the designation of “pulsar” might be: a neutron star that

reveals its spin period by the combination of anisotropic emission of electromagnetic

radiation and rotation. Therefore, due to the “lighthouse effect”, any such rotating

neutron star whose anisotropic emission crosses our line of sight might be seen to pulse

and be called a pulsar. In addition to canonical and radio millisecond pulsars, this

3One notable alternative is the discovery of a millisecond pulsar in orbit around a black hole.
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would include accretion-powered millisecond X-ray pulsars, gamma-ray-only pulsars,

magnetars, rotating radio transients, and the so-called isolated neutron stars, but

excludes other transient, pulsed emission (most notably, the as-yet-unidentified “fast

radio bursts”).

The underlying commonality, of course, is that pulsars are neutron stars, which

were predicted to exist some eighty years ago (Baade & Zwicky 1934). While the

original pulsars could have been explained as being white dwarf stars or radial oscil-

lations, the discovery of the Crab pulsar (Staelin & Reifenstein 1968), with its short

33 ms spin period and intrinsic spin down, could only be explained by a rotating

neutron star (Pacini 1967, 1968; Gold 1968; Comella et al. 1969; Richards & Comella

1969; Lyne & Graham-Smith 2012). Because a self-gravitating object can only spin

so quickly without breaking up, a spin period of 33 ms implied a minimum den-

sity approaching nuclear matter; for an object larger than the Chandrasekhar mass

(∼1.4 M⊙), it could be no larger than ∼20 km in radius. This picture is consistent

with the remnants predicted to be the end products of supernovae by Baade & Zwicky

(1934). Incidentally, the discovery of the Crab and Vela pulsars (Large et al. 1968)

also codified the hypothesis that these neutron stars are born as a result of supernova

explosions when high mass stars end their fusion powered life. Neutron stars are

held up against further gravitational collapse in part due to degeneracy pressure of

neutrons, but the equation of state for neutron star material remains a holy grail in

nuclear physics, as it perhaps describes the ultimate state of observable dense matter

in the Universe. Pulsar timing is one of the few ways in which we can make reliable

and precise mass measurements of neutron stars in order to constrain the equation of

state; this is a topic we return to in Chapter 5.

The angular momentum and magnetic field conferred to a neutron star as a result
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of its progenitor’s death leaves it with a spin period on the order of tens of millisec-

onds and a field strength around 1012 G. The range of observed pulsar parameters

spans almost four dex in spin period P (∼0.001–10 s) and 10 dex in spin period

derivative Ṗ (∼10−20–10−10 s s−1). However, most pulsars have a spin-down luminos-

ity (Ė ≈ P−3Ṗ /100 L⊙) close to one solar luminosity, plus or minus three dex. The

combination of the pulsar’s spin, spin down, magnetic field, and gravitational poten-

tial drive all of the exotic observational phenomena seen, which includes: “classical”

coherent, polarized radio emission, giant nanosecond-duration pulses with the largest

brightness temperatures of anything observed, magnetar X-ray outbursts, and pulse

mode switching on the order of a single rotation.

Despite five decades of study, most of these phenomena are still poorly understood.

One standard picture describing the pulsed radio emission, since it is relevant to

the observations we make in the following chapters, is as follows. It was quickly

realized that a rotating neutron star with a dipolar magnetic field will not remain in

a vacuum; the induced electric fields far exceed the strength of gravity and set up a

screening plasma to form the magnetosphere (Goldreich & Julian 1969). Gaps in the

magnetosphere provide accelerating potentials for a primary plasma. This plasma

produces gamma ray photons via curvature radiation or inverse Compton scattering.

In the presence of the magnetic field, an electron-proton pair production cascade

ensues to amplify the original plasma density by several orders of magnitude (Sturrock

1971; Ruderman & Sutherland 1975). The enhanced density plasma is responsible

for the radio emission at some distance away from the neutron star surface — either

above the polar regions, or off near the light-cylinder boundary, where corotation

with the neutron star surface equals the speed of light. An undetermined coherent

process is then responsible for producing the observed average radio light curves,
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which (given the observing geometry) are often characterized by having multiple

components of a wide variety of shapes, polarizations, relative positions, and spectra

(cf. Figures 4.156–4.228).

A detailed overview of pulsar astronomy can be found in the standard texts

Lorimer & Kramer (2005) and Lyne & Graham-Smith (2012). However, next we

further introduce millisecond pulsars since they play a central role in this work.

1.2.1 Millisecond Pulsars

Of the roughly 2400 known pulsars4, about 15% have spin periods less than ∼20 ms

– these are the millisecond pulsars (MSPs), which are further characterized by having

the smallest spin down rates (∼ 10−4 − 10−2 ns yr−1) and smallest magnetic field

strengths (. 1010 G). Almost all MSPs are in binary systems, where the angular mo-

mentum obtained by mass transfer onto the neutron star from the companion during

the latter’s evolution is responsible for the distinctly short spin period. This “recy-

cling model” has only very recently been definitively confirmed (broadly speaking)

with the observations of several systems swinging between an apparent accreting, low-

mass X-ray binary state, and a “normal” radio millisecond pulsar mode (Archibald

et al. 2009; Papitto et al. 2013; Roy et al. 2015)5. While most MSPs are found in the

field6, a large fraction (∼35%) are found in globular clusters due to the old stellar

populations and the increased probability of chance encounters to be spun-up7.

The rough precision with which a pulsar can be timed is proportional to its spin

frequency, making MSPs the best candidates for timing experiments. In addition to

4http://www.atnf.csiro.au/people/pulsar/psrcat/, (Manchester et al. 2005).
5In 2011, the author’s own efforts to find this link by searching for radio pulsations from the

peculiar, 600 Hz accretion-powered millisecond X-ray pulsar J00291+5934 were unsuccessful.
6http://astro.phys.wvu.edu/GalacticMSPs/GalacticMSPs.txt
7http://www.naic.edu/~pfreire/GCpsr.html

http://www.atnf.csiro.au/people/pulsar/psrcat/
http://astro.phys.wvu.edu/GalacticMSPs/GalacticMSPs.txt
http://www.naic.edu/~pfreire/GCpsr.html
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this, however, is the important fact that MSPs are much more stable; slower pulsars

with larger magnetic fields are known to exhibit glitches – sudden changes in the

moment of inertia that translate into an immediate increase (or decrease) in the spin

frequency, followed by decay – and “timing noise”. Timing noise can be modeled

as the result of a random walk in either a pulsar’s rotational phase, spin period, or

period derivative (Shannon & Cordes 2010), and manifests as a stochastic, long-term

drifting trend in the clock’s behavior that ultimately limits the timing precision. The

extent to which timing noise is present in MSPs is an important question for high-

precision experiments, such as pulsar timing arrays, which we will introduce following

the next section.

1.3 Pulsar Timing

Here, we introduce the fundamental concepts of pulsar timing, borrowing from

Lorimer & Kramer (2005) and Demorest (2007), where more thorough treatments

can be found. At the heart of pulsar timing is the fact that one can count rotations of

the neutron star, and so each observed pulse can be assigned an integer8. The pulse

phase φ can be written as a function of time t by integrating a Taylor expansion of

the spin frequency f ,

φ(t) = φ(t0) + f0(t− t0) +
1

2
ḟ(t− t0)

2 +
1

6
f̈(t− t0)

3 + ... (1.1)

This is the most basic timing model for a given pulsar, as seen in the reference frame

of the pulsar. Generally, f̈ and higher terms are only measurably different from zero

8Hence the maxim, “Pulsar timing unambiguously accounts for each and every rotation of the
neutron star.”
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in the cases of timing noise or large intrinsic spin-down evolution9. φ0 = φ(t0) can

be arbitrarily assigned an integer, in turn defining t0. Thus, when the observed pulse

times-of-arrival (TOAs) are transformed into the pulsar’s reference frame, then those

set of times {ti} should correspond to integer values φ(ti).

Most of the complexity in the timing model arises from the non-inertial frame

of the Earth-based observatory, the orbit of a binary pulsar, and the intervening

interstellar medium (ISM). Each of these introduces a number of delays or corrections

into the transformation of the observed TOAs. The parameterizations of these delays

contain useful quantities, e.g., the sky position of the pulsar, its parallax (distance)

and proper motion, the Keplerian orbital parameters, and the column density of

free electrons along the line of sight. This latter quantity is called the dispersion

measure (DM), which quantifies how much a TOA at a given frequency lags an infinite

frequency TOA due to the refractive nature of the ionized ISM. The TOAs need to

be accurately extrapolated to infinite frequency arrival times because a changing DM

will introduce variable delays that are a significant source of noise in high-precision

timing experiments (Lee et al. 2014).

The measurement of TOAs is covered in Chapter 2, which expands upon the stan-

dard template-matching technique to include a simultaneous measurement of the DM.

Once a set of TOAs has been obtained, one bootstraps a timing model by measuring

a small number of parameters with a subset of TOAs, and adds more parameters

into the timing model as they become significant. The timing model should converge

to a “solution”, in which case one says they have “solved the pulsar” or obtained a

phase-connected timing solution; this effectively would allow the observer to go long

periods of time without observing the pulsar and maintain confidence that all rota-

9We are also ignoring non-inertial accelerations from moving in a gravitational potential.
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tions are accounted for in the model, provided it is good enough10. The basic problem

is formulated in Lorimer & Kramer (2005, §8.2.6, Equation 8.15):

χ2
TOA =

# TOAs
∑

i

(ni − φ(ti)

σTOA,i

)2

, (1.2)

where ni is the closest integer to φ(ti) and σTOA,i is the uncertainty on the ith TOA.

The process of minimizing χ2
TOA is synonymous with fitting a timing model with

pulsar timing software such as tempo11. However, because TOAs can be correlated,

it is simpler to formulate the problem in terms of a general covariance matrix, Σ,

which may have off-diagonal elements in addition to the heteroscedastic σ2
TOA,i on the

diagonal:

χ2
TOA = rTΣ−1r, (1.3)

where r = n − Mφ is the vector of timing residuals, obtained from subtracting

the input data n and the timing model evaluated at {ti}, here shown as the design

matrix M applied to the vector of timing model parameters φ. The minimization of

Equation 1.3 is a generalized least-squares problem, which can be developed further

to incorporate a variety of noise terms to model the residuals r (van Haasteren &

Vallisneri 2014; Arzoumanian et al. 2014, 2015a). Such noise modeling is critically

important when the signal of interest is itself stochastic and hidden in the noise. In

particular, the cutting edge of high-precision pulsar astronomy involves teasing out

the gravitational wave signal associated with a background of coalescing supermassive

black holes by means of a pulsar timing array.

10In the cases of the best MSPs that are free of glitches, timing noise, and ignoring the ISM, these
periods of time could be as large as decades.

11http://tempo.sourceforge.net/

http://tempo.sourceforge.net/
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1.4 Pulsar Timing Arrays

Pulsar timing array (PTA) experiments make up one of several attempts to di-

rectly detect gravitational waves (GWs). Other ground- and spaced-based efforts

aim to measure millihertz and kilohertz frequency gravitational waves by observing

the changing path lengths in the arms of laser interferometers. Similarly, Detweiler

(1979) first noted that an Earth-pulsar baseline can act as a gravitational wave an-

tenna, which might be sensitive to GWs with periods on the scale of years — the

scale over which the pulsar observations are made — corresponding to nanohertz

frequencies. The deviations in the pulsar clock arise from the GW-induced Doppler

shifts and can be quantified as a limit on the amplitude in gravitational waves from

a background of sources or an individual source. Detweiler (1979) concludes with a

speculation that the cross-correlation of pulsar signals could identify events extrane-

ous to the pulsars. This idea was carried forward by Hellings & Downs (1983), who

first made use of the cross-correlations in pulsar signals to limit the background of

GW radiation. Their lasting contribution was to predict that the correlations would

be a function of the angular separation of the pulsars, depending on the type of GW

source. This allows GWs to be isolated as the culprit for certain signals that are

correlated across a network of pulsars.

Among several signal classes, the most promising is thought to be the unresolved,

stochastic GW background that is formed from the cosmological history of hierarchical

supermassive black hole formation from mergers (Bertotti et al. 1983). For a GW

frequency ν, the power-law spectrum of the dimensionless characteristic strain hc is

predicted to be hc ∝ ν−2/3, with an amplitude of ∼ 10−15 at ν = 1 yr−1 (Rajagopal &

Romani 1995; Jaffe & Backer 2003). In the power spectrum of the timing residuals,

this corresponds to an index of −13/3. For ∼decade long experiments, this strain
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amplitude corresponds to RMS timing precisions of at least hundreds of nanoseconds.

Obviously, this is achievable only for the best timed MSPs. In fact, only ∼ 20% of field

MSPs are “PTA quality”. However, as soon as the background GW signal dominates

the lowest frequencies of the PTA residuals, the best way to increase sensitivity may be

to add as many pulsars as possible to the array, with less regard to their timing quality

(Siemens et al. 2013). The other known signal classes include “bright” individual

supermassive black hole binaries, cosmic superstrings, and bursts with memory, but

the expectations for their detections in the near future are low (Demorest et al. 2013;

Arzoumanian et al. 2014, 2015b).

Although the very first realization of a PTA was initiated shortly after the discov-

ery of the first MSPs more than 25 years ago (Foster & Backer 1990), there are cur-

rently three PTA experiments working towards opening this brand new window on the

Universe. These are the Parkes Pulsar Timing Array (PPTA, Hobbs 2013)12, which

makes use of the Parkes radio telescope, the European Pulsar Timing Array (EPTA,

Kramer & Champion 2013)13, which makes use of the Effelsberg, Lovell, Nançay,

Sardinia, and Westerbork radio telescopes, and the North American Nanohertz Ob-

servatory for Gravitational Waves (NANOGrav McLaughlin 2013)14, which will be in-

troduced next. Together, they collaborate as part of the International Pulsar Timing

Array15 (IPTA, McLaughlin 2014), which pools talent, data, and ideas to accelerate

the time to a first detection.

12www.atnf.csiro.au/research/pulsar/array/
13www.epta.eu.org/
14nanograv.org
15http://www.ipta4gw.org/

www.atnf.csiro.au/research/pulsar/array/
www.epta.eu.org/
nanograv.org
http://www.ipta4gw.org/
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1.4.1 NANOGrav

The North American Nanohertz Observatory for Gravitational Waves (NANOGrav)

is a collaboration between American and Canadian institutions that includes approx-

imately 65 people from ∼16 institutions in a ratio of about 2:1:1 (senior person-

nel : post-doctoral researchers : graduate students), not including additional staff,

and a large number of involved undergraduate and high-school students. Although

NANOGrav was officially born around 2007, the first released NANOGrav dataset

has its origins in 2005 (Demorest et al. 2013); there are also archival data for a

number of NANOGrav pulsars dating back to ∼1998. NANOGrav currently makes

∼monthly timing observations of all its pulsars using the 100-m Robert C. Byrd

Green Bank Telescope at the National Radio Astronomy Observatory in Green Bank,

West Virginia and the 305-m William E. Gordon Telescope at Arecibo Observatory.

NANOGrav is presently experimenting with making timing observations using the

Karly G. Jansky Very Large Array, and intends to make augmented use of the soon-

to-be-completed 100-meter-class telescope used for the Canadian Hydrogen Intensity

Mapping Experiment. The author has been a participating member of NANOGrav

since 2009. See Chapter 4 for more details about NANOGrav’s observations and the

recently finalized 9-year data set (Arzoumanian et al. 2015a).

1.5 The Next Generation of Instrumentation

It is important to note that PTA experiments are currently sensitivity limited.

That is, we have not yet reached some fundamental pulsar constraint — e.g. timing

noise, pulse jitter, ISM effects — that limits our sensitivity more than the factors

that already limit the experiment: collecting area, allocated observing time, receiver
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sensitivity, bandwidth, number of pulsars, etc. The first four items are encompassed

in the radiometer equation, which is the controllable part of the scaling relation for

a TOA’s uncertainty, σTOA (from Lorimer & Kramer 2005, §8.1.2, Equation 8.2),

σTOA ∝ Tsys

Aeff

√
tobs ∆f

× P δ3/2

Smean
. (1.4)

Tsys is the system temperature, which is related to the receiver sensitivity, Aeff is

the effective collecting area of the telescope, tobs is the observing time, ∆f is the

bandwidth, P is the spin period, Smean is the phase-averaged flux density of the

pulsar, and δ = W/P is the duty cycle for a pulse of width W . As is referenced in

Chapter 4, several large, blind, and directed pulsar surveys are looking for the small

fraction of pulsars that are PTA-quality MSPs; this is the only way to get pulsars with

higher Smean and lower δ. With only one or two noteworthy, planned new telescopes,

the antennas mentioned above will not see upgrades or replacements, so we can expect

Aeff to remain about the same. In a related way, tobs is a finite resource to be split

among all pulsars and has numerous logistical constraints. Therefore, one guaranteed

way to increase a PTA’s sensitivity is to develop new instrumentation. Because the

improvements in Tsys are not expected to be large, the focus has been to increase the

instantaneously observed bandwidth ∆f , while keeping Tsys low. Within Chapters 2

& 4 we provide a background for the movement towards wideband observations and

the two generations of instruments used in NANOGrav; for example, in one step,

going from < 100 MHz bandwidth to > 600 MHz bandwidth increased the timing

precision of many NANOGrav pulsars by factors of ∼ 3. The EPTA has recently

employed a nearly 3 GHz bandwidth receiver and backend system16; the PPTA is

following suit, and NANOGrav is also trying to obtain a similar system. All parties

16http://www3.mpifr-bonn.mpg.de/staff/pfreire/BEACON.html
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involved, however, recognize that traditional timing strategies are quickly outpaced

by the growing bandwidths. The issues that need to be addressed motivated much of

this dissertation.

1.5.1 The Wide-Bandwidth Problem

Although at first glance a wider bandwidth seems to only provide the benefit of

more signal, there are a few important complications to consider. The first issue to

realize is that the steep spectra of most MSPs (∼ −1.4) limits the practical range

of accessible frequencies; a conservative upper cutoff for timing measurements with

100-meter-class telescopes is somewhere between three and five gigahertz. Many PTA

MSPs are already almost undetectable at 2.5 GHz. The second issue comes with the

frequency dependencies of ISM effects; specifically, pulse broadening from interstellar

scattering off of the inhomogeneities in the ISM scales as ν−4. Fortunately for now,

many PTA pulsars are relatively nearby and suffer little from the deleterious effects of

unmitigated scattering. However, as we continue to add MSPs to the array, it becomes

more likely that new MSPs will be less bright and more distant. Also growing at lower

frequencies is the background temperature due to Galactic synchrotron radiation,

which has a steeper spectrum (∼ −2.8) than the average pulsar and yields diminishing

returns on going to lower frequencies even if the ISM is not an issue.

Regardless of the above issues, any broadband observations of pulsars will have to

contend with intrinsic profile evolution with frequency. For two profiles at disparate

frequencies ν1 and ν2, one chooses a “fiducial point” in each profile and ascribes this

phase to the same longitude on the neutron star surface (Craft 1970). An incorrect

alignment is lost in the fit for the DM, which removes a delay ∝ (ν−2
1 −ν−2

2 ). As soon

as more than two frequencies are used, however, an incorrect alignment will not get
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completely absorbed into the absolute DM, but will be propagated as a systematic

error in the infinite-frequency TOA(s). This problem of profile alignment was called

“the wide-bandwidth problem” in Lommen & Demorest (2013). Part of the issue is

alleviated if one has access to a continuous band, where all of the profiles are obtained

simultaneously. With the assumption that a ν−2 dependence of the delays is valid

across the band (and to some degree we know this not to be true (Cordes et al. 2015)),

you can constrain the “allowed” alignments by the dispersion law. The full, absolute

DM will still be covariant with the choice of profile alignment, however, and it isn’t

necessarily justified to simply choose the alignment that maximizes the signal-to-noise

ratio of the band-averaged profile if there is very significant profile evolution. The

changes in DM, which are the important quantities for pulsar timing, will remain

unchanged. Disentangling intrinsic profile evolution and dispersive effects has been

the subject of much study (e.g., Lommen 2001; Ahuja et al. 2007; Hassall et al. 2012;

Liu et al. 2014); we contribute significantly to the resolution of this problem and its

associated effects in the remaining chapters.

There are also two other more subtle issues pertaining to wideband observations.

For nearby pulsars, diffractive interstellar scintillation acts as a variable weighting

function across an observed bandwidth and can introduce timing errors when profile

evolution is not modeled (Cordes in prep.). Furthermore, low-weighted frequency

channels will produce TOAs with non-Gaussian errors, which must be omitted from

the current least-squares timing model fits. A second subtle effect that is now being

discussed due to the use of very broad bandwidths and supplementary low-frequency

observations is the departure from a pure ν−2 law due to a frequency dependent

DM. Inhomogeneities in the ISM lead to different paths of propagation for pulses

of different frequencies, which necessarily sample slightly different total columns of
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free electrons. We address both of these concerns as part of the development of our

wideband timing protocol.

1.6 Synopsis

• In Chapter 2 we tackle the wide-bandwidth problem directly by developing a
novel method for the simultaneous measurement of a TOA and DM. We extend
the standard algorithm and make use of arbitrary phase-frequency “portrait”
models. In particular, we experiment with modeling pulse portraits as a sum
of independently evolving Gaussian components.

— Pennucci et al. (2014, §1–2)

• In Chapter 3 we make the first test of our methods by examining multi-band ra-
dio observations of the bright, fast, high-DM, millisecond pulsar J1824−2452A
(M28A); we chose this pulsar particularly because of its dramatic profile evolu-
tion and display of scattering. We further validate our measurements through
a series of Monte Carlo trials.

— Pennucci et al. (2014, §3–5)

• In Chapter 4 we make further practical developments of the wideband method-
ology in order to apply it broadly and carefully to NANOGrav’s 9-year profile
data set from 37 MSPs. We make timing measurements and model the noise
in all pulsars, completing the analysis in parallel with and in comparison to
Arzoumanian et al. (2015a).

— Pennucci et al. in prep

• In Chapter 5 we detail our specialized observational campaign to measure
or constrain the Shapiro delay parameters in twelve binary MSPs from the
NANOGrav 9-year data set. At least two new neutron star masses may be
reported as a result, and an analysis of the Shapiro delay parameters using the
wideband data is being completed in parallel with others’ efforts.

— Fonseca/Pennucci et al. in prep

• In Chapter 6 we make multi-band radio and X-ray observations of the Galactic
Center magnetar, J1745−2900. Besides determining the absolute phase align-
ment between the radio and X-ray profiles, we use a simple wideband model of
the radio emission to make measurements of the magnetar’s DM and scattering
parameters as a function of time, as well as reveal its evolving low-frequency
radio spectrum.

— Pennucci et al. (2015)

• In Chapter 7 we quickly summarize these chapters and close with a few remarks.



Chapter 2

Wideband Timing

of Radio Pulsars

Note: This chapter comprises the published work: “Elementary Wideband Timing of Radio Pul-
sars”, Pennucci, T. T., Demorest, P. B., & Ransom, S. M. (2014), The Astrophysical Journal, 790, 93.

http://adsabs.harvard.edu/abs/2014ApJ...790...93P
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Abstract

We present an algorithm for the simultaneous measurement of a pulse time-of-arrival

(TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend

the prescription from Taylor (1992) to accommodate a general two-dimensional tem-

plate “portrait”, the alignment of which can be used to measure a pulse phase and

DM. We show that there is a dedispersion reference frequency that removes the covari-

ance between these two quantities, and note that the recovered pulse profile scaling

amplitudes can provide useful information. We experiment with pulse modeling by

using a Gaussian-component scheme that allows for independent component evolu-

tion with frequency, a “fiducial component”, and the inclusion of scattering. The

overall broad application of this new method for dispersion measure tracking with

modern large-bandwidth observing systems should improve the timing residuals for

pulsar timing array experiments, like the North American Nanohertz Observatory for

Gravitational Waves.

2.1 Introduction

The practice of pulsar timing attempts to model the rotation of a neutron star

by phase-connecting periodic observations of its pulsed, broadband radio signal. The

earliest demonstration of long-term timing observations came relatively soon after

the discovery of pulsars (Roberts & Richards 1971). The scientific merits garnered

from pulsar timing span astrophysical fields such as planetary science, the interstellar

medium, nuclear physics, gravitational wave physics, and are all well-documented (for
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a review, see eg. Chapter 2, Lorimer & Kramer (2005)).

Pulsar timing and its related experiments have carved out a “sweet spot” in the

radio frequency regime that naturally emerges as a trade-off between the pulsar’s

steep power-law spectrum at the high-frequency end, and the low-frequency draw-

backs arising from the pulsed radio signal having to propagate through the ionized

interstellar medium (ISM) and the Earth’s ionosphere, as well as having to compete

with the diffuse background of the galactic synchrotron continuum. The latter has

a spectral index in the 1–10 GHz range of ≈ −2.8 (Platania et al. 1998). Popula-

tion studies have shown that pulsars have an average spectral index around -1.4 at

gigahertz frequencies (Bates et al. 2013). The most relevant ISM effect arises from

propagation through a homogeneously ionized medium. Interstellar dispersion alters

the group-velocity of the radio signal, retarding the arrival of pulses by a time tDM

(relative to an infinite frequency signal) according to the cold-plasma dispersion law,

tDM = K × DM × ν−2, (2.1)

where K ≡ e2

2πmec
= 4.148808(3) × 103 MHz2 cm3 pc−1 sec is called the dispersion

constant1, and DM is the dispersion measure. The dispersion measure is defined as

DM ≡
∫

l

ne dl, (2.2)

which is the free-electron column density along the path-of-propagation l to the pulsar.

The pulse-broadening effect of multi-path propagation through a turbulent, inhomo-

geneous ISM, known as interstellar scattering, has an even stronger spectral index

1K is a combination of the electron charge e, electron mass me, and speed of light c.
It is common practice in the pulsar community to adopt the approximation K−1 = 2.41 ×
10−4 MHz−2 cm−3 pc sec−1 (Lorimer & Kramer 2005), which we have used in §3.1 and §3.2.
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≈ −4, and becomes increasingly important at lower frequencies for the highest-DM,

farthest pulsars (Lorimer & Kramer 2005). Scattering not only broadens the pulsed

signal, but delays an intrinsically sharp pulse by an amount roughly proportional to

its width, and so is a source of bias in timing measurements. The determination of

dispersion measures and effects from scattering have been non-trivial problems con-

comitant with timing measurements since the beginning (Rankin et al. 1970, 1971).

Nearly all observations taken for (high-precision) pulsar timing experiments are

taken within the radio window mentioned above, which lies somewhere in the two

decades bounded by about 100 MHz and 10 GHz. The middle decade centered around

1500 MHz seems to be the perennial favorite for timing experiments. Recent develop-

ments in pulsar instrumentation and computing over the last 5–10 years have enabled

more accurate and sensitive timing measurements. Namely, coherent dedispersion,

which completely removes the quadratic time-delay due to a known amount of inter-

stellar dispersion (Hankins & Rickett 1975), required significant advances in computer

technology before becoming feasible in real-time on a wide-bandwidth signal.

Historically, observations that implemented coherent dedispersion were limited by

computing resources to a bandwidth of order ∼100 MHz or less, which is less than

most receiver bandwidths. Thus, if one wanted to cover a large portion of the pulsar

spectrum, either for timing, spectral, or interstellar medium purposes, several adja-

cent receiver bands had to be observed separately, which often meant asynchronous

measurements and non-contiguous frequency coverage. The implementation of real-

time coherent dedispersion to large, instantaneously observed bandwidths has led

to the regime wherein the receiver bandwidth (BW) is becoming a limiting factor.

The first generation of GHz-bandwidth, coherent dedispersion instruments has been

proliferating in the pulsar community for the past several years, beginning with the
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Green Bank Ultimate Pulsar Processing Instrument (GUPPI)2 outfitted for the 100-

m Robert C. Byrd Green Bank Telescope (GBT)3 (DuPlain et al. 2008). GUPPI is

an FPGA- and GPU-based system capable of real-time coherent dedispersion of an

800 MHz bandwidth.

The smearing δtDM incurred from incorrectly dedispersing a narrow frequency-

channel of bandwidth ∆ν = BW
nchan

and center frequency νc by an amount δDM goes

as

δtDM ≈ 2K δDM ∆ν

ν3
c

≈ 8.3
( δDM

cm−3 pc

)( ∆ν

1 MHz

)( νc
1 GHz

)−3

µs. (2.3)

This equation demonstrates why it was difficult to observe millisecond pulsars (MSPs)

prior to coherent dedispersion; incoherent dedispersion shifts subbands of the data

based on the assumed DM, meaning δDM was equivalent to the full, true DM. There-

fore, δtDM could easily exceed the pulse period (Ps . 10 ms for MSPs). Equation 2.3

also highlights why instantaneous measurements of the DM are necessary when one

has access to data from a large fractional bandwidth; the delay across an 800 MHz

bandwidth at νc = 1500 MHz from incorrectly dedispersing by 0.01 cm−3 pc is ∼20 µs,

which is comparable to the width of sharp features observed in the average pulse pro-

files of “high-precision” MSPs (Jacoby et al. 2003).

In particular, tracking the dispersion measure changes in MSP observations is

necessary for mitigating the timing residuals used in gravitational wave searches with

a pulsar timing array (PTA) (You et al. 2007). As part of the Parkes Pulsar Timing

Array4 project (Hobbs 2013), Keith et al. (2013) developed a method to correct for

inaccurate dispersion measures based on modeling the multi-frequency timing residu-

als. However, the authors also postulate that more accurate DM variations could be

2www.safe.nrao.edu/wiki/bin/view/CICADA/NGNPP
3The National Radio Astronomy Observatory is a facility of the National Science Foundation

operated under cooperative agreement by Associated Universities, Inc.
4www.atnf.csiro.au/research/pulsar/array/

www.safe.nrao.edu/wiki/bin/view/CICADA/NGNPP
www.atnf.csiro.au/research/pulsar/array/


22

measured from wideband receivers, which ameliorate the difficulties of aligning pulsar

data taken with different receivers in different epochs.

The desire for very broadband pulsar observations (i.e. with significantly high

fractional bandwidths, &1) necessitates new, unique receiver designs that can cover

much of the frequency range once concatenated from disjoint observations. Wide-

band receivers and their complimentary, real-time coherent dedispersion backends

will quickly facilitate developments in all realms of pulsar astrophysics, including

studies of the pulsar spectrum, magnetosphere, and ISM properties. One such in-

strument, called the Ultra-Broad-Band (UBB) receiver and associated backend5, has

been recently installed at the Effelsberg 100-m Telescope and covers a frequency range

from ∼600 – ∼3000 MHz.

However, the current method for making pulse time-of-arrival (TOA) measure-

ments that is used almost ubiquitously in the pulsar timing community does not use

all of the information contained in new broadband observations. In summary, the

protocol employs frequency-averaged pulse profiles as models of the pulsar’s signal

for entire receiver bands, which ignores any profile evolution intrinsic to the pulsar

or imposed by the ISM. Both intrinsic profile evolution and DM changes are usually

taken into account in the timing model for the pulsar’s rotation, but there is no mod-

eling of the effects from scattering or scintillation. Arbitrary phase-offsets (known

as “JUMPs”) are introduced to align disparate template profiles that are used to

measure TOAs from different frequency bands. Multi-channel TOAs are also param-

eterized by both a quadratic delay (proportional to the DM) and an arbitrary function

to remove residual frequency structure from otherwise unmodeled profile evolution.

These methods are ad hoc and incomplete in that they were developed as the

availability of bandwidth and multi-frequency observations became a “problem” (cf.

5www3.mpifr-bonn.mpg.de/staff/pfreire/BEACON.html

www3.mpifr-bonn.mpg.de/staff/pfreire/BEACON.html
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“the wide-bandwidth problem” (Lommen & Demorest 2013)), and were appropriate

when observations covered a narrow bandwidth: phase JUMPs account for profile

evolution occurring in frequency gaps that are not observed. It seems natural in

the era of wideband receivers — when frequency evolution is observed in the band

— to devise a method for TOA measurement that includes a frequency-dependent

model of the average pulse profile. In doing so, it becomes straightforward to include

a simultaneous measurement of the dispersion measure. As we will show, a very

simple extension to the algorithm that is currently used is a first step in a more

comprehensive and necessary description of the received pulsar signal.

2.2 The Algorithm

2.2.1 Background

We assume that the recorded pulsar signal is cyclostationary for a given frequency,

meaning the observed time-series data can be coherently folded modulo a pre-existing

timing model to obtain an average signal shape that is stable with time. This time-

integrated light curve is often called a “pulse profile”, which we label as D(ϕ). The

quantity ϕ = ϕ(tobs) represents the rotational phase of the neutron star at a particular

moment in time tobs, which is recorded by an observatory clock and later transformed

into a more useful temporal coordinate system.

The central step in determining a pulse time-of-arrival is to measure the relative

phase shift φ ∈ [-0.5, 0.5) between D(ϕ) and a standard template profile, P (ϕ), which

is supposed to represent the noise-free average of the intrinsic pulse profile shape at

the observed frequency. In practice, the signal has been discretely and evenly sampled

so that D(ϕ) becomes D(ϕj = (j + 0.5)/nbin) ≡ Dj, where j runs from 0 to nbin−1,
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and nbin is the number of phase bins in the profile. For pulsar timing purposes,

the sampling time (and therefore the number of bins in the profile) is chosen to be

appropriately small so that all meaningful information about the pulse profile with

respect to the noise level is preserved in Dj.

A simple way to obtain a lag between Dj and a template profile Pj is to interpolate

a maximum point in the discrete time-domain cross-correlation of the two functions.

Appendix A of Taylor (1992) prescribes a Fourier frequency-domain technique for

measuring the phase shift that has been used virtually ubiquitously for the past two

decades in the pulsar timing community. Besides the computational simplicity that

is a consequence of the Fourier cross-correlation theorem, the reason for this ubiquity

is because frequency domain techniques give very precise, accurate shifts for low

duty-cycle pulsars that correspond to less than a single time bin (Taylor 1992; Hotan

et al. 2005). Colloquially, this routine came to be known as FFTFIT, which is the

designation we will use hereafter. The advantage of FFTFIT is that a finite number

of continuously-valued Fourier phases (instead of discrete time lags) are combined

to interpolate a precise phase measurement. An alternate formulation of FFTFIT

can be found in Chapter 2 of Demorest (2007), which also recognizes that FFTFIT

amounts to a cross-correlation completed in the frequency domain. We have drawn

from Demorest (2007) as a starting point for the mathematical framework, and have

borrowed some of its notation in what follows.

2.2.2 Description

Because we are concerned with measurements of a wideband pulsar signal, we

describe the observed pulse profile also as a function of frequency ν, which we denote

by D(ν, ϕ), and refer to as a “pulse portrait”. Similarly, the template portrait is
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P (ν, ϕ) and a simple model for the observed data is

D(ν, ϕ) = B(ν) + a(ν)P (ν, ϕ− φ(ν)) + N(ν, ϕ), (2.4)

where φ(ν) will contain information about chromatic and achromatic phase shifts,

B(ν) is effectively the bandpass shape of the receiver (analogously, B is the “DC” or

“bias” term when considering only a single frequency, as in FFTFIT), a(ν) is a mul-

tiplicative scale factor that can represent scintillation, and N(ν, ϕ) is additive noise.

N(ν, ϕ) is often assumed to be stationary and normally distributed with variance

σ2(ν), so that N(ν) ∼ Normal(0, σ2(ν)). In the absence of radio-frequency interfer-

ence (RFI), the noise in most pulse profiles is radiometer-noise dominated, which is

highly Gaussian. There are numerous methods for the removal of the bandpass shape

B(ν) (which can be thought of as the frequency-dependent mean of the noise term

N(ν)), or one could follow an analogous treatment of the bias term in Taylor (1992).

One simple solution is to start all of the Fourier phase sums in the below equations

at k = 1, as we have done for our implementation.

Again, in practice the signal is discretized into nbin phase bins, but also into

nchan frequency channels with center frequencies νn. We index each of the above

frequency-dependent quantities with the letter n (eg. φn, Dnj, Pnj). The question of

determining nchan will be revisited in §3.2. The Discrete Fourier Transform (DFT) is a

linear transformation, so taking a one-dimensional DFT of Equation 2.4 with respect

to rotational phase ϕ, and making use of the discrete Fourier shift-theorem (Bracewell

2000) implies

dnk = anpnke
−2πikφn + nnk (k > 0), (2.5)
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where i =
√
−1, k indexes the Fourier frequencies, and the DFT of a series Fj is

fk =

nbin−1
∑

j=0

Fje
−2πijk/nbin . (2.6)

The primary quantities of interest φn, and the scaling parameters an in Equa-

tion 2.5 can be found by minimizing the sum of the squares of the residuals between

the data dnk and the shifted, scaled template pnk, weighted by the noise6 in each

frequency channel σ′2
n . In other words, we seek to minimize the statistic

χ2(φn, an) =
∑

n,k

|dnk − anpnke
−2πikφn|2

σ′2
n

. (2.7)

It is useful at this point to make note of the fact that at a given frequency νn, the above

expression is equivalent to the FFTFIT prescription. The fundamental difference in

this approach, besides allowing for an arbitrary evolution of the pulse profile with

frequency encoded in pnk, is that we perform a global fit for both an achromatic

phase φ◦
ref and a dispersion measure DM by implementing the constraint

φn = φ◦
ref +

K × DM

Ps

(

ν−2
n − ν−2

ref

)

, (2.8)

where Ps is the spin period and νref is the dedispersion reference frequency. This con-

straint reduces our minimization problem from having 2nchan parameters, to nchan+2

(i.e. χ2(φn, an) → χ2(φ◦
ref ,DM, an)). Ideally, we want to know what φ◦

ref is for

νref = ∞. However, we have chosen the above parameterization for the delays in

each frequency channel, as opposed to the more specific infinite-frequency case of

Equation 2.1, because it allows us to find a reference frequency that gives zero co-

6Assuming Gaussian noise, the noise variance σ′2
n in each frequency channel of dnk is greater than

σ2
n in Dnj by the factor nbin/2.
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variance between the estimates of the phase and dispersion measure. The form of the

covariance between the estimates of φ◦
ref and DM is given in §2.3, which recommends

that we choose νref wisely (see also §3.2).

By following a similar procedure as that written in Demorest (2007), and expand-

ing and simplifying Equation 2.7 we obtain

χ2(φ◦
ref ,DM, an) = Sd +

∑

n

a2nSp,n − 2
∑

n

anCdp,n (2.9)

where we have made use of the definitions

Sd ≡
∑

n,k

|dnk|2
σ′2
n

, (2.10a)

Sp,n ≡
∑

k

|pnk|2
σ′2
n

, (2.10b)

and

Cdp,n(φn) ≡ ℜ
{

∑

k

dnkp
∗
nke

2πikφn

σ′2
n

}

. (2.10c)

The first two definitions are functions solely of the data and the model portraits. If one

considers discrete values of φn for a particular frequency channel n (φnj = j/nbin),

the third definition contains the inverse DFT of a multiplication of the data and

the model, which is the same as the discrete cross-correlation of the time-domain

quantities Dnj and Pnj. This definition highlights the fact that both FFTFIT and our

extension of it across a discretized bandwidth can be thought of as cross-correlation

techniques.

We can further simplify our minimization problem by recognizing that at the

global minimum of the χ2 expression in Equation 2.9, all of the first derivatives vanish.

Therefore, we only need to seek out a minimum of Equation 2.9 in the subspace where
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its partial derivatives with respect to all of the an parameters are zero. Solving for

these an as a function of the other parameters leads to the constraint

an =
Cdp,n

Sp,n

, (2.11)

which is inserted in Equation 2.9 to reduce our minimization problem to a two-

parameter function,

χ2(φ◦
ref ,DM) = Sd −

∑

n

C2
dp,n

Sp,n
. (2.12)

We retain the use of the label χ2 to emphasize that the above function is a subspace

of Equation 2.9, and shares the global minimum that we seek. In practice, one needs

to maximize only the strictly positive second term in the above equation, since it

contains all of the phase and dispersion information, and the first term is a constant

function of the data. It is easy to see that, for negligible profile evolution, if the

dispersion measure is zero or, equivalently, the data have been correctly dedispersed

for that observation’s epoch, then this algorithm is akin to averaging TOAs obtained

in the usual way using individually aligned templates. However, if the pulsar’s DM

needs to be measured at every epoch, and profile evolution should be accounted for

— which are both likely true for most observations of MSPs with wideband receiver

systems — we claim that this is a natural extension to how TOAs are currently

procured. At the very least, this algorithm should perform no worse than traditional

techniques.

We derive errors and covariances for the maximum-likelihood estimates of the

parameters in §2.3, but here we wish to underscore that it is possible to analytically

determine a dedispersion reference frequency νzero that yields zero covariance between

the estimates for φ◦
ref and DM, which is tested in §3.2. Lastly, we note that Liu et al.
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(2014) have contemporaneously developed a very similar frequency-dependent TOA

algorithm independent of our efforts, which may be employed as part of the European

Pulsar Timing Array7 project (Kramer & Champion 2013).

2.2.3 Implementation

Software

We have implemented our wideband timing algorithm in publicly-available python

code8, which also includes a Gaussian-component-based portrait modeling routine,

which is described below. The code utilizes the python interface to the pulsar data

analysis package PSRCHIVE9 (Hotan et al. 2004; van Straten et al. 2012), as well as

recent versions of numpy10, the optimization functions in scipy11, and the non-linear

least-squares minimization package lmfit12.

The minimization of the function in Equation 2.12 is performed by a truncated

Newton algorithm that comes packaged in scipy. The initial phase parameter value is

estimated by using a one-dimensional brute-force routine in scipy, which is performed

on the frequency-averaged data and template. In order to do this, the data are

dedispersed with respect to an estimate for νzero, which can only be determined after

the minimum is found. The nominal DM from the pulsar’s ephemeris is used in this

dedispersion and also as the initial DM parameter value in the global fit. It is also

possible to exclude fitting for a DM and only determine a phase. The default behavior

in the code transforms the best-fit phase estimate φ̂◦
ref to reference νzero, which gives

7www.epta.eu.org/
8www.github.com/pennucci/PulsePortraiture
9www.psrchive.sourceforge.net/

10www.numpy.org/
11www.scipy.org/
12www.newville.github.io/lmfit-py/; lmfit is a Levenberg-Marquardt algorithm that we use

for the modeling code.

www.epta.eu.org/
www.github.com/pennucci/PulsePortraiture
www.psrchive.sourceforge.net/
www.numpy.org/
www.scipy.org/
www.newville.github.io/lmfit-py/
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the smallest and uncorrelated errors for the TOA and DM (see §2.3).

It is important to use barycentric frequencies for νn, otherwise the Earth’s orbit

induces an apparent yearly oscillation of the DM from the Doppler-shifted frequencies.

Alternatively, one can simply propagate the Doppler factor Γ through the frequency

and temporal terms of Equation 2.1 to correct the observed “topocentric” dispersion

measure DMtopo,

DM =
DMtopo

Γ
, (2.13)

where

Γ ≡
√

1 + β

1 − β
, (2.14)

β ≡ v

c
, (2.15)

and v, the projected velocity of the observatory onto the line-of-sight, is positive for

growing separation. With respect to the demonstration in the next section, our source

is close to the ecliptic plane and has a large DM, so this correction was essential.

Portrait Modeling

It is obvious that there is freedom in the choice of model portrait to use and we

stress that any arbitrary model can be used in the above algorithm for phase and DM

measurements. We have experimented almost exclusively with analytic Gaussian-

component models, but it is also feasible to find an interpolation scheme based on

an average of all the data portraits (or, for example, a principal component analysis

approach). However, Gaussian-component modeling has been used extensively in the

literature (for instance, see Foster et al. (1991); Kramer et al. (1998); Lommen (2001);

Ahuja et al. (2007); Hassall et al. (2012)) and is a simple way to generate analytic

noise-free templates. We model pulse profile evolution with independently changing
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Gaussian components gi of the form

P (ν, ϕ) =
∑

i

gi(ν, ϕ), (2.16)

where

gi(ν, ϕ|Ai, ϕi, σi) = Ai(ν)exp
(

− 4ln(2)
(ϕ− ϕi(ν))2

σi(ν)2
)

. (2.17)

We choose to model the positions ϕi, widths (FWHM) σi, and amplitudes Ai as

power-law functions of frequency,

Xi(ν|X◦,i, αX,i, ν◦) = X◦,i

( ν

ν◦

)αX,i

, (2.18)

for Gaussian parameter X and model reference frequency ν◦. We also include linear

functions for ϕi and σi in the code. The modeling code allows flexibility for any of

the parameters to be fixed; for example, a “fiducial component” with no positional

change as a function of frequency can be selected. Most MSP portraits we have

experimented on seem to be sufficiently characterized by a few to roughly a dozen or

so Gaussian components. We also include an option to include scattering in the fit

for the model via a convolution with a one-sided exponential,

P (ν, ϕ) = Punscattered(ν, ϕ) ∗ e−
ϕPs
τ(ν)H(ϕ) (2.19)

where

τ(ν) = τ◦

( ν

ν◦

)αscat

, (2.20)

H is the Heaviside step function, and we have assumed αscat = −4.0 (Bhat et al.

2004). One could imagine extending our algorithm to include a variable scattering

parameter in the fit to the data, instead of fixing it in the model. The benefits,
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applicability, and practical limitations of doing this are currently being investigated

by the authors. The details of pulse portrait modeling and its physical interpretations

are beyond the scope of this paper, but we demonstrate one application of Gaussian

modeling in the next section.

Finally, one subtlety that we did not address is the averaging of the model within

each frequency channel to match the channel bandwidth of the data. Insofar that

the aim is to have a greater number of channels, this should have a negligible effect.

Presumably, each channel’s profile evolution is minute and, as given in Equation 2.3,

the channel smearing from an inaccurate DM is also small. Similarly, we assumed that

a sufficient number of phase bins are used so that all of the harmonic content of the

profile is retained and an averaging of the model into phase bins is well-approximated

by the Gaussian model values. However, a more rigorous representation for Pnj would

be one that multiplies the model by a sampling function that has been convolved with

both the channel-width and bin-size of the data.

2.3 Appendix: Covariance & Error Estimates of

Fitted Parameters

We will denote our least-squares estimate of the parameters θ = {φ◦
ref ,DM, an}

by θ̂. Equation 2.9 has a minimum at θ̂ = {φ̂◦
ref , D̂M, ân}, where ân =

Ĉdp,n

Sn
=

Cdp,n(φ̂
◦
ref

,D̂M)

Sn
(cf. Equation 2.11). We can approximate the (nchan+2) × (nchan+2)

covariance matrix of the parameters by the inverse of the curvature matrix κ, which

can be derived from a Taylor expansion of the χ2 function near its minimum. The
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entries of the curvature matrix at the minimum point are given by

κkl =
1

2

∂2χ2(θ)

∂θk∂θl

∣

∣

∣

∣

θ̂

, (2.21)

which is one-half of the Hessian. However, because we are primarily interested in

only the errors and covariances of φ̂◦
ref and D̂M, we will only calculate here the

terms of the 2 × 2 Hessian for an arbitrary point of the function χ2(φ◦
ref ,DM) given

in Equation 2.12. Inverting this matrix to arrive at the 2 × 2 covariance matrix

of interest is trivial, particularly because there is a reference frequency νzero that

gives zero covariance between φ̂◦
ref and D̂M13. One can arrive at the same results

for the corresponding entries of the “full” covariance matrix by inverting the matrix

in Equation 2.21 and inserting the values an =
Cdp,n

Sn
. The three unique second-

derivatives of Equation 2.12 are

∂2χ2

∂φ◦2
ref

= −2
∑

n

wn, (2.22a)

∂2χ2

∂DM2 = −2
∑

n

wn

[K

Ps

(ν−2
n − ν−2

ref )
]2

, (2.22b)

and

∂2χ2

∂φ◦
ref∂DM

= −2
∑

n

wn

[K

Ps
(ν−2

n − ν−2
ref)

]

, (2.22c)

where

wn ≡ S−1
p,n × (C ′2

dp,n + C ′′
dp,nCdp,n), (2.23)

and the derivatives of Cdp,n are with respect to φn. Requiring that the cross-term in

Equation 2.22c be equal to zero leads us to the zero-covariance dedispersion reference

13To clarify, the covariances with the ân estimates are already included in the 2 × 2 covariance
matrix; there is only zero covariance at νzero between the fitted phase and DM.
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frequency νzero,

νzero =

√

∑

nwn
∑

n wnν−2
n

. (2.24)

Because Equation 2.10c is a function of φn, we can transform the least-squares esti-

mate φ̂◦
ref to an estimate that has zero covariance with D̂M and ensure we are still at

the minimum point,

φ̂◦
zero = φ̂◦

ref +
[K × D̂M

Ps

(

ν̂−2
zero − ν−2

ref

)]

. (2.25)

Under this transformation of the φ◦
ref coordinate, the Hessian is diagonal and the

variances of the estimates φ̂◦
zero and D̂M are simply twice the inverse of Equations

2.22a and 2.22b, respectively. A derivation starting with the full (nchan+2)×(nchan+2)

Hessian confirms that these errors incorporate the covariances with the an. Further-

more, the Monte Carlo results from §3.2 and Figure 3.10 show that we have accurately

been able to calculate covariances down to low SNR levels. The default output TOAs

from our python code references the phase estimates and TOAs to νzero, which is our

recommendation for any similar implementation.



Chapter 3

Demonstration on

PSR J1824−2452A

& Monte Carlo Tests

Note: This chapter comprises the published work: “Elementary Wideband Timing of Radio Pul-
sars”, Pennucci, T. T., Demorest, P. B., & Ransom, S. M. (2014), The Astrophysical Journal, 790, 93.

http://adsabs.harvard.edu/abs/2014ApJ...790...93P
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Abstract

We showcase the algorithm from the previous chapter using our publicly available

code on three years of wideband data from the bright millisecond pulsar J1824−2452A

(M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates

the algorithm. By using a simple model portrait of M28A we obtain DM trends

comparable to those measured by standard methods, with improved TOA and DM

precisions by factors of a few. Therefore, we expect that the measurements from our

algorithm will yield precisions at least as good as those from traditional techniques,

but is prone to fewer systematic effects and is without ad hoc parameters.

3.1 Demonstration with MSP J1824−2452A

3.1.1 M28A Dataset and Model Portrait

Pulsar J1824−2452A (M28A, hereafter) is a highly energetic, bright, isolated

3.05 ms pulsar in the globular cluster M28 (Lyne et al. 1987; Johnson et al. 2013).

We chose this MSP as a demonstrative case-study because it has a large dispersion

measure (≈120 cm−3 pc), a large DM gradient (several ×10−3 cm−3 pc yr−1) (Backer

et al. 1993; Cognard & Lestrade 1997; Keith et al. 2013), a complex profile with broad

and narrow features, and because it shows component evolution across the frequency

range 720 – 2400 MHz (Foster et al. 1991).

The M28A dataset presented here consists of 25 epochs of multi-frequency obser-

vations spanning more than three years from the Green Bank Telescope. The data

were obtained with GUPPI beginning in February 2010 soon after the implemen-

tation of its real-time coherent dedispersion capability, which was utilized for the

taking of these observations in search-mode (i.e as unfolded time-series). Each of the
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time-series for the 512 channels across each frequency band were dedispersed at a

nominal average DM for the globular cluster, 120 cm−3 pc, and then folded using a

predetermined ephemeris for M28A. The native resolution of the data is 10.24 µs,

which is sufficient to resolve the profile, although we folded the data at nearly twice

this resolution, resulting in 512 phase bins. A more technical description of these

data and their calibration is provided in Bilous et al. (2015). Table 3.1 summarizes

the epochs of the observations presented here.

Figure 3.1 shows a concatenated portrait of several epochs of the M28A data,

displaying an effective bandwidth of ∼1.5 GHz. The complexity of the portrait is

evinced by its asymmetries, its non-Gaussian features, the exchanging dominance of

components from differing spectral indices, and the presence of an obvious scattering

tail at the lower frequencies. To make this portrait, five high signal-to-noise ratio

(SNR) epochs were selected from each set of 1500 MHz and 2000 MHz observations,

they were each averaged together based on the ephemeris, and then joined in tandem

along with the 820 MHz observation in a fit for the two-dimensional Gaussian model,

as described in §2.2.3. The fit included nuisance phase and DM parameters for each

band, as well as a scattering timescale τ◦. In effect, the nuisance parameters attempted

to “align” the data so that the Gaussian parameters can be optimized.

Following the suggestion in Foster et al. (1991), we modeled the widths of M28A’s

components with power-law functions, and had less success when trying linear func-

tions. To obtain initial parameters for the two-dimensional model, we fit ten Gaussian

components to a profile referenced at 1500 MHz, representing 200 MHz of bandwidth

averaged. We chose the dominant component at 1500 MHz to be a fixed “fiducial

component”. The parameters of the fitted model are given in Table 3.2. MSPs like

M28A exemplify how the choice of a “fiducial point” is not simple (eg. see Craft
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Table 3.1. J1824−2452A: Summary of GBT Observations and DMs

Epoch MJD νc Length ∆DM
[UTC] [day] [MHz] [min] [×10−3 cm−3 pc]

2010-02-11 55238.72 1500 43.3 −2.4± 0.2
2010-05-20* 55336.35 2000 129.0 −2.2± 0.4
2010-08-11 55419.15 2000 166.3 −0.6± 0.4
2010-10-05*† 55474.00 820 159.4 0.13 ± 0.07
2010-10-20* 55489.93 1500 149.3 0.18 ± 0.06
2011-03-05 55625.58 1500 157.2 2.58 ± 0.08
2011-04-04 55655.55 1500 98.8 1.56 ± 0.09
2011-04-13* 55664.42 1500 154.2 1.42 ± 0.06
2011-07-02* 55744.25 1500 149.3 −0.12± 0.06
2011-09-29 55833.98 1500 154.4 0.28 ± 0.06
2012-01-06 55932.72 1500 145.3 −1.91± 0.06
2012-04-09* 56026.45 1500 149.3 −2.81± 0.04
2012-04-15* 56032.42 2000 161.4 −2.8± 0.2
2012-07-03 56111.25 1500 138.3 −2.23± 0.06
2012-10-07† 56207.96 1500 152.3 −0.55± 0.06
2013-01-06 56298.70 1500 149.3 1.54 ± 0.06
2013-04-08* 56390.48 1500 176.4 0.02 ± 0.05
2013-04-15*† 56397.46 2000 164.4 0.1± 0.3
2013-05-06 56418.29 2000 82.2 1.0± 0.5
2013-05-09 56421.44 2000 83.2 1.5± 0.7
2013-05-11* 56423.40 2000 77.2 0.8± 0.5
2013-05-13* 56425.43 2000 82.2 1.4± 0.5
2013-05-18 56430.27 2000 83.2 0.7± 0.5
2013-05-24 56436.43 2000 59.1 1.6± 0.7
2013-05-31 56443.18 2000 80.2 0.6± 0.4

Note. — The columns are the UTC YYYY-MM-DD obser-
vation date, the Modified Julian Date, the center frequency,
the total integration time, and the measured DM with 1σ er-
rors. The DMs had the nominal (unweighted) average value of
119.88818 cm−3 pc subtracted. There are 11 epochs observed at
2000 MHz (800 MHz BW), 13 at 1500 MHz (800 MHz BW), and
1 at 820 MHz (200 MHz BW). The fractional bandwidths are ap-
proximately 0.25, 0.53, and 0.40 for the 820, 1500, and 2000 MHz
data, respectively. The starred epochs were used in the fit for the
Gaussian model, and epochs with a dagger are shown as part of
Figure 3.2.
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Fig. 3.1 – A portrait of concatenated M28A data from time-averaged observations
taken at 820 MHz, 1500 MHz, and 2000 MHz. See Table 3.1 for the epochs used in
the averages and the text for a complete description. The horizontal gaps are where
radio-frequency interference was excised, but the widest one is a coverage gap between
receivers. The two white vertical bars show the bandwidth coverage offered by previous
coherent dedispersion backends (64 MHz) and current ones like GUPPI (800 MHz).
Note that the UBB has an instantaneous bandwidth of almost 1.5 times that shown
above.



40

(1970)) because the profile has no obvious symmetries, and the dominant compo-

nent changes as a function of frequency. The model and the residuals are shown in

Figure 3.3.

The thick solid black line in the top panel of Figure 3.1 represents the frequency-

averaged light curve of the aligned data. This profile marginalizes over all of the

frequency structure and scattering tails, and so it would be imprudent to use such

a profile as a template for obtaining phase measurements. To get a sense of the

model for this data, the thinner blue curves show the Gaussian components from the

model fit at 1500 MHz, and the tallest (green) curve is the “fiducial component”. The

components are shown unscattered and scaled (relative to the black light curve) for

clarity; the red dotted line is the sum of the components, including scattering. The

phase-averaged spectral flux density profile in the left panel was fit with a power-

law (yellow dashed line). We obtained a spectral index of −2.36 ± 0.02, although it

appears as though the flux is not perfectly modeled by a single power-law. Details of

M28A’s spectra from this dataset, including an analysis of its polarization properties,

are also presented in Bilous et al. (2015).

Some of the subtle profile evolution for this pulsar can be seen in the top panel of

Figure 3.2, which consists of timing residuals as a function of frequency (see §3.1.2).

As is evident from the top panel, the use of an average template profile to measure

TOAs for a band, or portion thereof, will produce a different residual as a function

of frequency based on the profile’s departure from the frequency-averaged template.

If this frequency-dependent bias were constant, in would be absorbed into the timing

model, but varying scintillation patterns can change which segments of the bias are

weighted more significantly (or, similarly, what the frequency-averaged profile looks

like), thereby introducing random systematic noise into the timing residuals.
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Table 3.2. J1824−2452A: Gaussian Model Parameters

i ϕ◦,i αϕ,i σ◦,i ασ,i A◦,i αA,i

[rot] [% rot]

1 -0.00180 -0.693 10.00 0.3 0.09 -1.2
2 0.00000 0.000 0.88 0.2 1.11 -1.9
3 0.00410 -0.021 2.24 0.3 0.63 -2.1
4 0.00932 -0.017 0.69 -0.1 0.58 -1.4
5 0.02078 0.280 9.96 -2.0 0.13 -0.1
6 0.18894 -0.006 7.93 0.4 0.08 -3.6
7 0.21877 -0.124 10.00 0.0 0.05 -3.3
8 0.70012 -0.007 2.24 -0.1 0.75 -3.0
9 0.71061 -0.025 9.98 5.3 0.05 -6.1
10 0.71651 -0.001 1.09 0.2 0.42 -3.5
τ◦ 4.57 µs
ν◦ 1500.00 MHz

Note. — The column headers are defined in Equa-
tion 2.18. The components are ordered by phase; Fig-
ures 3.1, 3.3, and 3.4 have been rotated for clarity. The
second component listed is the “fiducial component”. A
limit of 0.1 rotations was placed on the FWHM width of
the components to prevent runaway for small-amplitude
components. The precision of all the parameters is ar-
bitrary, since we offer no interpretation of the model in
this paper. The reference frequency for the toy model is
1500 MHz and a scattering kernel corresponding to a fitted
scattering timescale of τ◦ ≈ 5 µs at 1500 MHz was applied
to the model (cf. Equations 2.19 and 2.20). The point es-
timate of the scattering timescale is marginally consistent
with that found independently from a separate analysis of
giant pulses in this M28A data (Bilous, private communi-
cation).
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Fig. 3.2 – Timing residual structure demonstrating profile evolution as a function
of frequency for some M28A data after the DMs have been measured (see §3.1.2 for
discussion). Table 3.1 denotes which epochs are shown. Each point represents 12.5 MHz
of bandwidth averaged. The top panel (“TEMPO”) does not account for any profile
evolution, but only uses a single template profile per receiver band; the opposing trends
in the overlapping region between the 1500 and 2000 MHz residuals signify that there
is no continuous frequency-dependent model. A comprehensive, global model for the
evolution would ideally show flat residuals. The “residuals” from applying our algorithm
with the Gaussian toy-model are shown in the lower panel (“PP”), showing the best
results in the 1500 MHz data. Next generation wideband receivers will simultaneously
cover more than this entire spectrum at once.
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Fig. 3.3 – The constructed Gaussian model and residuals after subtracting the data in Figure 3.1. We used a ten-component
model that captures both the finer structure seen at the higher frequencies and the scattering at the lower frequencies.
Although the model and residuals show that the Gaussian modeling is not perfect, the model still proved sensible for timing
and DM measurements. The phase-averaged spectral index of the model is consistent with that of Figure 3.1.
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The scintillation bandwidth for M28A (∼0.016 MHz at 1 GHz (Foster et al. 1991))

is much smaller than any of the observed channel bandwidths, so the data do not

show obvious scintles in the folded profiles. However, to demonstrate the utility of

fitting for the an parameters “for free”, Figure 3.4 shows an example fit to fake data

of moderate SNR generated by adding a fake “scintillation pattern” and frequency-

independent noise to the M28A model in Table 3.2. A random phase and ∆DM

was added to the data, and then it was run through our code, producing the fitted

model and residuals shown in the figure. The fitted an values provide information

about diffractive scintillation from the ISM, and they effectively act as weights for

individual multi-channel TOAs that have been fitted for a DM and averaged together

to obtain φ◦
ref . Ideally, this advantage obviates the need to cull very low SNR TOAs

of individual frequency channels. In principle, the an values could also be used to

determine if there is residual RFI in the data, although we have not yet investigated

how the presence of RFI will affect the fitting.

Using the algorithm described in §2.2.2, the Gaussian model was used as Pnk to fit

for TOAs and DMs in the twenty-five observed epochs {Dnk}. The average per-epoch

TOA uncertainty is ∼40 ns in the 1500 MHz data, and ∼90 ns in the 2000 MHz

data. Figure 3.5 shows the measured DM variations for the M28A dataset, where

an average DM of 119.88818 cm−3 pc was subtracted. We obtained DM precisions

between several ×10−5 and several ×10−4 cm−3 pc. For the 1500 MHz data, the

average DM precision of ∼7 ×10−5 cm−3 pc corresponds to about 140 ns ≈ 5 ×

10−5 rotations ≈ 0.02 bin of drift across the band, for 512 phase bins. It is interesting

to compare this number to the amount of dispersive smearing in each channel from

coherently dedispersing these data with the incorrect DM of 120 cm−3 pc; at 1500

MHz, δtDM ≈ 430 ns. The first third of our measurements overlap with observations
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Fig. 3.4 – A simple demonstration of how the algorithm automatically manages diffractive scintillation. A random phase,
DM, and “scintillation pattern” was added to the 1500 MHz portion of the model in Figure 3.3, along with frequency-
independent noise (left panel), and then a fit was performed. The fitted model is shown in the middle panel, which encodes
the scintillation in the an scale parameters, and the fit residuals are to the right. The residual statistics match the off-pulse
noise and mean from the input data. A fake-data sample of Medium SNR from §3.2 has about the same SNR as these data.
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of M28A presented in Keith et al. (2013); the overall trend in our DM measurements

in these epochs is consistent with what is seen in their data.

3.1.2 Comparison of Methods

In what follows, we have compared our measurements (labeled “PP”) with those

obtained from the same data using a more traditional procedure (which we collectively

label “TEMPO”). For the latter, multi-channel TOAs were obtained via standard

techniques: each time-averaged epoch’s band was divided into 64 channels, and each

channel’s profile was fit to a smoothed template profile that was obtained by averaging

all the data from a given receiver. An FFTFIT-based algorithm was used for the pulse

phase fitting 1. Each epoch’s DM was then determined by individually fitting a fixed

timing model to the epoch’s TOAs with tempo2, allowing only the dispersion measure

to vary3. In effect, this process fits removes a quadratic delay across the multi-channel

TOAs. No consideration of profile evolution is taken into account besides the usage

of three separate template profiles for the three bands. Therefore, if all of the TOAs

were used in a timing model fit, the use of arbitrary phase-offsets (JUMPs) between

the three sets of TOAs would be needed to align the template profiles.

Mitigation of Profile Evolution

The top panel of Figure 3.2 shows typical tempo multi-channel frequency residuals

from not modeling the profile evolution. Note that the 820 MHz data is shown here

to have the same channel bandwidth as the higher frequencies. Introducing phase-

offsets to align small portions of the band (or from using numerous templates) is one

1Specifically, we used the Fourier phase gradient (PGS) algorithm in the PSRCHIVE program pat.
2www.sourceforge.net/projects/tempo/
3For clarity, at no time did we do a multi-band or multi-epoch fit for DM, although this is one

area of current research.

www.sourceforge.net/projects/tempo/
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approach to remove the frequency-dependent structure, but it adds a large number

of otherwise meaningless parameters into the timing model (Demorest et al. 2013).

A somewhat less arbitrary approach is to characterize the trend with a simple

function that can be included in the timing model. This latter multi-channel TOA

strategy, combined with a tempo fit for the profile evolution and variable DM, is

akin to the current timing methodology employed by the PTA collaboration called

NANOGrav4,5 (McLaughlin 2013; Zhu et al. 2015; Arzoumanian et al. 2015a). Ignor-

ing profile evolution altogether and using frequency-averaged profiles may still be a

sufficient practice for particular pulsars. However, this strategy will become unten-

able with the next generation of receivers. It seems more appropriate and simple to

model directly the profile evolution based on the folded profiles, as we have done, and

then simultaneously measure a TOA and a DM.

For the sake of comparison, we made multi-channel residuals after applying our

algorithm to each of the same epochs in Figure 3.2, and have plotted them in the

lower panel. These “residuals” were calculated by independently fitting each channel’s

profile in the fitted two-dimensional model with the corresponding profile in the data

portrait using our own FFTFIT routine. The greatest improvement in modeling the

profile evolution is seen in the 1500 MHz data, and we will show several consequences

of this in the following sections. This improvement is sensible because the 1500 MHz

data is our best “wideband” data in that it has the largest SNR, the largest fractional

bandwidth, and hence the most profile evolution to be characterized. There is also

continuity in the residuals with the 2000 MHz data (from a separate epoch). The

4The North American Nanohertz Observatory for Gravitational Waves: www.nanograv.org
5Here, we are refering to the use of a tempo functionality called “DMX”, plus a polynomial

function of log-frequency to account for profile evolution. The discrete DMs are measured in situ
with other timing model parameters while using the overall WRMS residual as the discriminating
quantity, which means the DMs and profile evolution parameter can absorb unmodeled, non-ISM
effects like timing noise, or a gravitational wave signal.

www.nanograv.org


48

2000 MHz data remains qualitatively the same because of its lower SNR and smaller

fractional bandwidth (i.e. less observable profile evolution). The scatter of both sets

of points is about the same as the corresponding average residual uncertainty.

On the other hand, the slight arch that remains in the 1500-MHz residuals and

the added scatter into the 820-MHz residuals highlight the insufficiencies of a simple

Gaussian modeling scheme for such a complex profile. The scatter in the 820 MHz

points may be explained by the difficulty of characterizing its simpler profile with

too many evolving Gaussian components, including scattering, although the fact that

we did not apply any averaging to the model within each 3.125 MHz-wide channel

may also play a role. More simply, an evolving Gaussian-component model does not

describe the data well across all of the observed frequencies, but having more data in

the 180 MHz-wide gap between the 1500 MHz and 820 MHz bands could help us find a

better model. Note that these residuals are specific examples from the whole dataset,

and that the goodness of the model’s fit will vary from observation to observation.

Comparison of Dispersion Measures

The absolute DM is not a useful measure for comparison because its values depend

on how the profile and its evolution are modeled, and the DM can even vary based on

its inclusion in a timing model fit (not applicable here). Consequently, the average

values of differently measured DMs will differ by a constant. Figure 3.6 shows that our

mean-subtracted DMs are in agreement with those obtained from the above described

methods. That is, the DMs measured in the 1500 MHz and 2000 MHz epochs are

parallel to the solid line that represents equality, and so they track roughly the same

amount of change in the DM.

The strong agreement in the DMs from the 2000 MHz data corroborates with
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our statement above about the similarity of the multi-channel residuals. The two

sets of 2000 MHz ∆DMs agree within their errors and have a scatter of . 2 ×

10−4 cm−3 pc ≈ 170 ns of drift across the band. In a similar vein, the observed

scatter in the 1500 MHz data implies that our mitigation of the profile evolution

mentioned above has significantly altered the measured DM trend. Here, the ∆DMs

are scattered by . 4 × 10−4 cm−3 pc ≈ 800 ns of drift (with the largest deviation

at three times that level). We address the measurement uncertainties in the next

section.

The offsets seen in the figure between the DMs measured in each receiver band

comes from the different modeling of profile evolution in each band. For example,

the “TEMPO” DMs are measured with three different templates that are assumed

to be constant as a function of frequency in their respective band. If this is a better

assumption at higher frequencies, then the apparent average DM will be a function

of frequency. Indeed, the pairs of observations that were separated by only ∼1 week

and taken at different frequencies show an offset of ∼ 2 × 10−3 cm−3 pc, which is

much larger than any of the differences between DMs measured in the same band, on

the same time scale.

Similarly, having tried a vast number of fitted Gaussian models for M28A, we

found that switching between different families of models produced the same large

offsets (up to a few ×10−3 cm−3 pc) between the DMs measured in different bands.

Given the reasonable assumptions we made about our model, we believe that the large

frequency-dependent offsets seen in the DMs measured by using other fitted models

(and the “TEMPO” templates) is explained by a misrepresentation of M28A’s profile

evolution and not, for instance, a frequency-dependent DM. In fact, we used the

assumption that no such offset exists in temporally proximate data from different
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frequencies as a qualitative model-selection criterion.

Ultimately, dispersion measures will be a function of frequency since the multi-

path propagation of different frequencies will sample slighty different total free-electron

column densities (Cordes et al. 2015). However, there is ambiguity between a frequency-

dependent DM and profile evolution; as noted by Ahuja et al. (2005, 2007), Hassall

et al. (2012), and others, an apparent frequency-dependent DM can be explained by

unmodeled profile evolution. For example, again consider Figure 3.2; the DM mea-

sured using different sets of frequencies would vary because the phase-offset between

arbitrarily chosen pairs of frequencies is not constant.

Potentially, in a bright, highly-scattered, high-DM pulsar like M28A, a frequency-

dependent DM could be detected. A rough estimate of the level of δDM(ν) that

could be expected in the data can be garnered from estimates of M28A’s scattering

measure and distance as reported in Foster et al. (1991) in combination with the

prediction for the form of a frequency-dependent DM in §4.4 of Cordes & Shannon

(2010). However, the prediction is nearly proportional to the unknown distance to

the scattering material. Furthermore, a constant offset between DMs determined in

different frequency bands is highly covariant with profile shape evolution, as described

above.

It may become feasible to disentangle a frequency-dependent DM from profile evo-

lution when truly broadband (eg. fractional bandwidth &1), long-term observations

become readily available, since having both temporal and frequency DM variations

can break the degeneracy. We will save the detailed question of a frequency-dependent

DM for future investigation, as it is important for those who will correct high fre-

quency data with DMs measured at low frequencies. Although we offer no solution

to the problem of disentangling profile evolution and dispersion measure, we can give
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greater credibility to measurements of dispersion measure changes, which are the

more important quantities for timing experiments, and perhaps more interesting for

studies of the ISM.

Comparison of Measurement Uncertainties

Figure 3.7 shows a comparison of the uncertainties on the TOAs (left panel) and

DMs (right panel). The TOA uncertainties shown here are from frequency-averaged

TOAs (one TOA per epoch, per band) that were obtained in a similar fashion as

the multi-channel TOAs. The DMs measured from the multi-channel TOAs were

used to align the profiles before frequency-averaging them; this is one traditional way

of accounting for significant DM changes, which would otherwise smear the average

profile and systematically inflate the TOA error by an amount related to ∆DM. Each

of these TOAs will reference some specific frequency and will be covariant with the

DM. In order to make a fair comparison, we have plotted the transformed “PP”

TOA uncertainties to reference these frequencies; the zero-covariance uncertainties

are smaller by . 20%.

However, we did not use a weighted frequency-average, neglecting any SNR varia-

tion across the band that might originate from ISM effects or profile evolution; this is a

second effect that can lessen the timing precision in the standard protocol. Weighting

the multi-channel TOAs (or the pulse profiles) to obtain a single frequency-averaged

TOA reduced the “TEMPO” TOA uncertainties in Figure 3.7 by factors between one

and three, bringing all of them to within a factor of two of the “PP” uncertainties.

Finally, systematic trends from profile evolution (see Figure 3.2) will enlarge the

uncertainties. The effect on the timing and DM precision from marginalizing M28A’s

profile evolution is unambiguous in the 1500 MHz data; the TOA uncertainties ob-
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Fig. 3.5 – The twenty-five DM measurements from Table 3.1. The calendar range of
the data spans Feb 11, 2010 to May 31, 2013. Keith et al. (2013) reports a similar ∼5
×10−3 cm−3 pc increase in the first third of our data.
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Fig. 3.6 – A comparison of mean-subtracted DM trends as measured in the M28A
data by our technique and a more usual approach. “PP” represents our measurements.
The solid line traces equality. The error bars for the “TEMPO” DMs are given by the
least-squares tempo fit, whereas the calculation of the error on our DM measurements
is provided in §2.3. The ∼2 ×10−3 cm−3 pc offset arises from the difference in how
profile evolution is modeled. See text for further discussion.
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Fig. 3.7 – A log-scale comparison of the TOA and DM uncertainties (left and right, respectively) from the M28A data.
The dash-dot lines indicate differences by factors of two (both panels), three, and four, and the area of each triangle is
proportional to the data’s SNR. The largest improvements are seen in the 1500 MHz data, where profile evolution has been
most mitigated. The “PP” TOA uncertainties have been transformed to the same set of reference frequencies. Two points
in the left plot have the same values, so it appears as though there are only twelve 1500 MHz epochs.
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tained by the new algorithm using a simple Gaussian model are smaller by up to a

factor of four, with an average of about five-halves, and the DM uncertainties are

smaller by up to a factor of two, with an average of about three-halves. There is no

improvement in the 2000-MHz TOA uncertainties, where there is no significant profile

evolution, and the improvement of the 2000 MHz DM uncertainties is marginal, but

may be a function of SNR.

The dependency of the improvement on the signal-to-noise ratio is expected be-

cause any correctable profile evolution becomes evident with increasing SNR. This

is particularly evident for the DM uncertainties, whereas the 1500 MHz “TEMPO”

TOA uncertainties are dominated by systematic error from averaging over the profile

evolution. A comparison of the uncertainties as a function of SNR shows that they

are all roughly proportional to the SNR, except for the 1500 MHz “TEMPO” TOA

uncertainties.

The ad hoc methods to mitigate effects arising from dispersion measure changes,

frequency-dependent SNRs, and profile evolution in wideband data, are all naturally

accounted for by using the new algorithm, which we have seen to yield superior, or

at least as good, measurement precisions.

3.2 Monte Carlo Analyses

3.2.1 Description

We completed a variety of Monte Carlo analyses to explore the accuracy to which

the algorithm can determine parameter estimates, errors, and covariances in a num-

ber of regimes, which included varying the data resolution, the signal-to-noise ratio,

scintillation patterns, and level of δDM. Here, we show results from generating fake
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pulsar data by adding random, frequency-independent noise to the total-intensity

model for M28A given in Table 3.2. The data emulate those from typical pulsar

timing observations with GUPPI; we set the center frequency to 1500 MHz and the

bandwidth to 800 MHz.

We explored the performance of the algorithm in a variety of data resolutions,

changing the number of phase bins in the profile from 128 to 2048, and the number of

frequency channels from 8 to 512, both in powers of two. When using an insufficient

number of phase bins to resolve the profile, some harmonic power gets aliased into

the estimate of the profile’s noise level, which in turn suppresses the estimate of

the parameter errors. Since we expect these issues to be avoided in practice, and

because our results seemed independent of the number of profile bins once the profile

is resolved, we restrict the presentation of the Monte Carlo trials to those with profiles

having nbin = 2048.

For each sample in a given Monte Carlo trial, a random infinite-frequency phase

was drawn uniformly from the interval [-0.5, 0.5) and injected into the model. The

injected DM value was the nominal ephemeris value plus a perturbation drawn uni-

formly from the log10 interval of approximately [-5.0, -1.5], with equal probability

given to the sign of the perturbation. We chose this interval because it equally sam-

ples different scales of perturbations with a maximum that roughly corresponds to

∆DM
Ps

≈ 100 [10−4 cm−3 pc ms−1], and because we do not expect in most cases that

a DM will be determined to better than ∼10−5 cm−3 pc. For simplicity, at a given

SNR the RMS noise level remained constant as a function of frequency across the

band, but in some of the tests we added random amplitude patterns (an) to mimic

the effects of scintillation (not presented here, but see Figure 3.4 for an example).
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3.2.2 Results

Figures 3.8, 3.9, and 3.10, show results from the Monte Carlo trials in three SNR

regimes for the seven values of nchan. We used PSRCHIVE to measure the noise level

in the data, and the three SNR levels in our trials presented here were set to be near

the PSRCHIVE values of 20.0 (“Low”; yellow, dash-dot), 100.0 (“Medium”; purple,

dashed), and 1000.0 (“High”; gray, solid)6.

Figure 3.8 shows two statistics returned from the trials for the phase estimates

(left column, squares) and DM estimates (right column, diamonds) as a function of

nchan. The top row shows the mean of the distribution of the values

estimated value − injected value

calculated error
, (3.1)

and the bottom row shows the standard deviation of this distribution. If there are no

systematic differences and if the errors are calculated accurately, then this distribution

should be ∼ Normal(0, 1). There is no obvious evidence of bias as a function of nchan

or SNR, meaning the injected values are accurately recovered, within the error. Even

though all of the recovered normalized distributions were very well approximated by

a Normal distribution (down to very small SNRs), one can see that the errors are

underestimated when the channel-SNR becomes sufficiently low. However, even in

the Low SNR case with the largest number of channels, the errors are off by no more

than 20%.

Figure 3.9 shows how the absolute errors change with nchan. We have separated the

trials for clarity; each point represents the median of the error distribution, contained

within the 95% highest-density region. The uncertainty scales linearly with the SNR

for both parameters. There is no obvious dependence on the average TOA error with

6The SNRs of the M28A data presented in the previous section varied between ∼100 and ∼700.
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Fig. 3.8 – Monte Carlo results for examining bias and error calculation as a function
of nchan and SNR. Each trial consisted of 11,400 samples. The squares (left column)
show results in each of three SNR regimes for the phase estimates, and the diamonds
(right column) show the same for the DM estimates. The two statistics shown are the
normalized sample mean (top row) and standard deviation (bottom row). The error
bars are each one standard error of their respective statistic. The dotted lines in the
bottom row correspond to a 0%, 1%, and 5% underestimation of the errors. Additional
Monte Carlo trials were performed for a wider range of SNRs, which fill the gap between
the Medium and Low SNRs shown here, as well as perform even more poorly than the
Low SNR trial.
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nchan, but there is some increase in the DM error by a few percent as the number of

channels becomes small, independent of the SNR. This is expected after considering

Equation 2.22b because the effective frequency range of the data (the difference of

the center frequencies in the highest and lowest channels) decreases with the number

of channels as n −1
chan ; that is, the “lever arm” for the DM measurement lessens, giving

a greater measurement uncertainty.

The non-Gaussianity of the error distributions in Figure 3.9 is somewhat noticeable

in the Low SNR regime towards higher nchan, but it is manifested in the trend seen in

the lower half of Figure 3.8. The skewness towards small uncertainties becomes very

obvious at lower SNRs (not shown here). The underestimation of TOA errors at low

SNRs (particularly for profiles with large duty-cycles) has been documented before

(Hotan et al. 2005).

Lastly, there is a dependency of each error distribution’s variance on nchan. Beyond

some low channel-SNR, the variance appears constant, which has been verified for

the Middle SNR case. The variance of the error distribution is not a particularly

interesting quantity, so we will refrain from additional discussion, making only a note

that it seems to affect the value of the errors at the level of a few percent. After

replicating this series of Monte Carlo trials with a similar Gaussian model that has

no profile evolution (i.e. the same components with constant positions, widths, and

amplitudes), we find almost identical results, except that the absolute errors uniformly

decreased by ∼3%. From this we conclude that the effects from marginalizing over

profile evolution in each channel for this model were minimal.

It is important to remember that all phase and error estimates shown here are

referenced to νzero; if a different reference frequency were used, the results in Fig-

ures 3.8 and 3.9 would look different because of non-zero covariance between φ◦
ref
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Fig. 3.9 – The error distributions’ dependency on nchan is plotted for the three SNR
regimes. The plotted points show the distributions’ median values and 95% highest-
density regions. There is a slight skew in the error distribution for the Low SNR regime
that becomes conspicuous at even lower SNRs. Additional Very Low SNR Monte Carlo
trials not shown here have severely skewed error distributions.
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and DM. To verify if the calculated νzero is, in fact, the zero-covariance dedispersion

reference frequency, we show the sample correlation coefficient (the sample covariance

normalized by the sample standard deviations) in Figure 3.10 for the same three sets

of Monte Carlo trials. It is obvious that there is non-zero covariance in the Low SNR

regime.

One underlying issue that can explain this feature is that our analytic formulation

for νzero given in Equation 2.24 will not be precise for all data resolutions of arbitrary

SNR. This is verified for the low SNR case in Figure 3.11, which shows the discrepancy

between our calculated covariances and the covariances measured in additional Monte

Carlo samples. The Monte Carlo trials are the same as before, but are now fixed with

nchan = 512, while varying νref . The vertical dotted line shows the calculated νzero

for this SNR, which is significantly offset (∼30 MHz) from the interpolated zero-

crossing of the sample correlation coefficient curve. That the slopes of the functions

in Figure 3.11 are steepest near the zero-crossing implies that the determination of

the parameter uncertainties is sensitive to the determination of νzero.

3.3 Conclusions

We have presented a novel but simple routine for the simultaneous measurement of

TOAs and dispersion measures in folded pulsar data by using a frequency-dependent

model of the pulse profile. This algorithm is a straightforward extension of FFTFIT

from Taylor (1992), but it has some advantages over more standard techniques; these

include being able to directly characterize ISM effects (such as dispersion measure

changes, scintillation, and scattering) and profile evolution, while removing the need

for additional, undesired parameters in the timing model (i.e. JUMPs). Any arbitrary

model can be used, but the choice of model will affect the measured values.
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Fig. 3.10 – The samples’ normalized covariances are plotted to verify that νzero is
the zero-covariance reference frequency. The point estimates for the sample correla-
tion coefficients and their errors were determined by a resampling analysis of each full
Monte Carlo trial. The trend prevalent in the Low SNR regime is due to an inaccurate
determination of νzero (see text and Figure 3.11).
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Fig. 3.11 – The Low SNR correlation coefficient for Monte Carlo trials as a function
of νref for nchan = 512. The vertical dotted line shows the calculated value for νzero
(the average value is plotted, but there is effectively zero dispersion). The interpolated
value for the “true” νzero in the sample differs by ∼30 MHz. Note that the sample
correlation coefficient at νzero here agrees with that from Figure 3.10 for nchan = 512.
The equivalent curves for the higher SNR trials overlap almost exactly. The point
estimates of the sample correlation coefficients and their errors were determined in the
same way as Figure 3.10.



64

The demonstration of a simple Gaussian modeling scheme to make these mea-

surements in a 3-year, wideband dataset of the millisecond pulsar M28A shows that

we are able to obtain reliable measurements of the dispersion measure, as well as

improved TOA and DM precisions by up to a factor of four for the former and two

for the latter. The biggest improvements in the parameter precisions and in mitigat-

ing profile evolution were seen in the high signal-to-noise 1500 MHz data, which was

our best “wideband data” for demonstration purposes in the sense that it has the

largest fractional bandwidth (and therefore the most obvious effects from interstellar

dispersion, scattering, and profile evolution). Similar improvements in other pulsars

will depend on the mitigation of intrinsic and extrinsic profile evolution. It became

clear in our comparisons that there is a necessity for quantitative model selection

based on more robust two-dimensional portrait modeling, which potentially can lead

to the detection of a frequency-dependent DM, or other interesting signals.

The results from our Monte Carlo analyses has led us to the conclusion that a

large number of frequency channels is appropriate for applying this technique. A

larger number of channels will provide the highest precision DM measurements and

avoids averaging over profile evolution. The proper incorporation of discrete DM

measurements with their own heteroskedastic errors (besides the TOAs’) into the

determination of a timing model (eg. by using tempo) is not trivial, but a Bayesian

approach has been investigated in Lentati et al. (2013). Relatedly, measuring DMs

from non-simultaneous, but temporally proximate multi-frequency data can be an

intermediate improvement until larger bandwidths become readily available. This is

another avenue of future development, although it comes with the drawback of having

correlated TOAs.

One important caveat in these Monte Carlo tests is that the model fitted to the
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simulated data was the true model from which the data were generated. In practice,

a Gaussian-component model fitted to real data will not match perfectly (leaving

behind non-Gaussian residuals in all but the simplest or low SNR cases) and there

will be a much stronger dependence of the measured DM and TOA on the number

of channels and the amount of profile evolution. This is one area requiring further

testing, but it also suggests to err on the side of more frequency channels.

Although general, the algorithm will be most useful when applied to MSPs be-

cause of their sensitivities to small dispersion measure changes, as highlighted by

Equation 2.3, and because of the need to correct for their profile evolution in wide-

band data to obtain the highest possible timing precisions. For these reasons, we

believe this algorithm will provide a natural TOA and DM measurement procedure

for campaigns of MSP monitoring, like that of NANOGrav or other PTA experiments.



Chapter 4

Application of Wideband Timing

to NANOGrav MSPs

Note: The results from this chapter will be published as a complimentary analysis of the data
recently published by NANOGrav: “NANOGrav Nine-Year Data Set: I. Arrival Time Measurements
and Analysis of 37 Millisecond Pulsars”, Arzoumanian, Z. et al. (2015); arXiv:1505.07540.

http://adsabs.harvard.edu/abs/2015arXiv150507540A
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Abstract

In this chapter, we apply the methods from Chapters 2 and 3 (i.e., Pennucci et al.

2014) to a subset of 37 millisecond pulsars (MSPs) currently observed by the North

American Nanohertz Observatory for Gravitational Waves (NANOGrav). The future

of pulsar timing array experiments will include very broadband receiver systems, the

data from which will require novel analysis techniques. The current capabilities of

NANOGrav lie squarely between dated and mature technologies. NANOGrav makes

wideband (hundreds of MHz) observations in a number of frequency bands per epoch

per pulsar. While suboptimal for the ideal wideband timing approach, we can still use

our methods in tandem to the current, standard NANOGrav efforts and see how they

compare. Recently, NANOGrav submitted for publication a paper containing the

TOA and timing model data products obtained from the underlying profile data that

we analyze here (Arzoumanian et al. 2015a). Our analyses of this 9-year data set are

entirely parallel to those presented in Arzoumanian et al. (2015a), and so throughout

this chapter we refer to the current NANOGrav techniques and draw comparisons.

We address profile evolution by building Gaussian component model portraits for all

pulsars, and then make timing measurements, and perform a full Bayesian analysis

of the noise. We highlight both pitfalls and successes in the current iteration of our

wideband method: while Gaussian modeling is far from perfect, we obtain consistent

timing results in most cases, and even mitigate specific chromatic red noise residuals.

The results from this project will later be published as a NANOGrav paper, and the

present results will be analyzed in parallel with the Arzoumanian et al. (2015a) data

to place the most stringent limits on the stochastic gravitational wave background in

the coming months.
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4.1 Introduction

One of the primary motivations behind the work of Chapters 2 and 3 was to

improve the timing of millisecond pulsars (MSPs) for the sake of gravitational wave

detection. By “improve the timing”, we mean to ultimately improve the precisions of

the pulse times-of-arrival (TOAs) and the variable dispersion measure (DM), which

in turn will admit better estimates of the timing model parameters. These improve-

ments should, in principle, increase the sensitivity to gravitational waves, if not just

marginally. As discussed earlier in Chapter 2, these improvements are accomplished

by mitigating the effects of profile evolution from the interstellar medium (ISM) and

the pulsar itself.

A second, more pragmatic motivation for our developments is to simplify the data

sets; the current methods in NANOGrav yield a single TOA per frequency channel

per epoch, which constitutes an undesirable amount of TOAs (∼50–100 per pulsar

per epoch). Profile evolution is modeled as a time-constant set of ad hoc parame-

ters and the DM as a piece-wise constant function, both of which are included as

part of the timing model. Our methods measure a single TOA and a single DM

per receiver per epoch, where in the future we envision only a single receiver will

be necessary to sufficiently constrain the DM. Our pulse profile evolution model is

fixed in a two dimensional phase-frequency “pulse portrait” in a manner analogous

to how one dimensional standard template profiles are fixed for the generation of

channelized TOAs. Although a model for DM(t) will still be necessary as part of the

timing model, our DM measurements provide, ideally, anchor points for the model.

In the most banal scenario where either method — using channelized TOAs, or single

wideband TOAs and DMs — yields precisely the same timing results, the reduced

data volume of the wideband data significantly decreases the computational com-
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plexity of gravitational wave searches1, which scale approximately with the number

of TOAs squared (J. Ellis, private communication; Arzoumanian et al. 2014, and see

the forthcoming NANOGrav detection paper based on the 9-year data set.).

Of course, a reduced data volume in this case could be arrived at by appropriately

averaging the channelized TOA data, but a third objective of the wideband approach

is to provide astrophysically interesting parameters from segregating intrinsic and

extrinsic profile evolution (as opposed to, e.g., the “FD parameters” described in

§4.1.1), be they measurements of interstellar scattering manifested as pulse broaden-

ing, or the spectral dependencies of components. We will briefly discuss this topic in

§4.2.1. However, we note that some results based on this motivation have been or

will be published (Bilous et al. 2015; Pennucci et al. 2015, or see Chapter 6).

4.1.1 NANOGrav: The Nine-Year Data Set

A brief introduction to the North American Nanohertz Observatory for Gravita-

tional Waves (NANOGrav; GWs) as a pulsar timing array (PTA) collaboration is

given in §1.4.1. The data set we concern ourselves with here is a largely homogeneous

set of observations spanning from approximately 2005 to 2014, for the longest ob-

served pulsars. The data set builds on the 5-year data set analyzed in Demorest et al.

(2013), which presented the first NANOGrav limit on the stochastic background. The

TOAs and fitted timing models determined from the folded light curves (the “pro-

files”) of this extended data set, which we will refer to as “the 9-year data set”, was

recently submitted for publication (Arzoumanian et al. 2015a, hereafter A15). Gravi-

tational wave analyses of these data by NANOGrav will follow in the coming months

and will follow up on the limits presented in Demorest et al. (2013), Arzoumanian

1Since GWs affect all radio frequencies equally, the GW searches do not explicitly care about the
frequency of the TOAs; all TOAs get referenced to infinite frequency.
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et al. (2014), and Arzoumanian et al. (2015b). We direct the reader to Demorest

et al. (2013) and A15 for a detailed presentation of these data; here we will present

a brief overview of the observing program and the data set.

Pulsars & Observing Program

NANOGrav carries out its observing program with the 100-m Robert C. Byrd

Green Bank Telescope (GBT) of the National Radio Astronomy Observatory and

the 305-m William E. Gordon Telescope of the Arecibo Observatory (AO); any

NANOGrav pulsars within the declination range (0◦ < δ < 39◦) are observed at

Arecibo, with the rest covered by the fully-steerable GBT. At the time of writ-

ing, NANOGrav observes 49 MSPs: 28 at Arecibo and 23 at Green Bank; MSPs

J1713+07472 and B1937+213 are observed at both. Because GW limits from PTAs

are dominated by the best pulsars (see, for example, Demorest et al. 2013; Arzou-

manian et al. 2014), it is sensible to observe them with both telescopes; they also

provide precise consistency checks between the various observing setups at the two

telescopes (they are both observed in the three higher frequency bands). 37 of these

49 MSPs are presented in the 9-year data set, which is 20 more than in the 5-year

data set; the increase in MSPs is primarily a reflection of numerous successful sur-

veys directed at finding PTA-quality MSPs through either blind or directed searches

(Ransom et al. 2011; Ray et al. 2012; Boyles et al. 2013; Lynch et al. 2013; Stovall

et al. 2014; Lazarus et al. 2015). NANOGrav expects to continue to add MSPs into

the array at a rate ∼4 yr−1. According to Siemens et al. (2013), adding MSPs to

a PTA is the best way to increase sensitivity to a stochastic background after the

2J1713+0747 is the best long-term-timed MSP in the northern hemisphere and was the subject
of a recent NANOGrav timing group paper that presented 21-year timing results (Zhu et al. 2015).

3B1937+21 was the first millisecond pulsar discovered (Backer et al. 1982) and is a landmark in
pulsar astrophysics; it remains the fastest field MSP known (rotating ∼642 times a second), beaten
only by the MSP J1748−2446ad in the globular cluster Ter5a (rotating ∼716 times a second).
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lowest frequency GWs begin to dominate the residuals. It should be noted that a

significant quantity of archival data exists for a number of MSPs that will serve to

extend NANOGrav baselines by 5–15 years when integrated into the data set.

Basic parameters and observing spans for the 37 MSPs in the 9-year data set are

given in Table 4.1. The current observing program has a cadence of approximately

1 observation per pulsar per frequency band per 3–4 weeks4. Each observation is

approximately 20 min in duration, during which time all four polarization products

are recorded for full Stokes recovery. In addition to each source scan, a calibration

scan is taken, which consists of a short on-source observation while a noise diode is

pulsed at 25 MHz. The same noise diode is pulsed on and off of a flux calibrator

source (a quasar) approximately once a month. These sets of calibration scans allow

for full flux and polarization calibration of the data. The latter is more important for

high precision timing, as improper weighting of the polarization channels can induce

spurious profile shape changes, leading to bias in the TOAs (van Straten 2013). Note

that our work, however, only considers the calibrated total intensity measurements.

In total, NANOGrav averages on the order of ∼1-2 hr day−1 on each telescope5.

For each pulsar, measurements are made in two disparate frequency bands in

order to precisely measure the DM and remove the dispersive time delay relative to

an infinite frequency signal (see §2.1),

δtDM(ν) = K × DM × ν−2, (4.1)

for frequency ν and where K−1 ≡ 2.41 × 10−4 MHz−2 cm−3 pc sec−1 (Lorimer &

4This program is augmented by ∼weekly observations of some of the best pulsars at either
telescope in order to increase sensitivity to continuous wave sources.

5With limited trained personnel, this currently amounts to a bare minimum of ∼50 hr of time
per observer per year, including the author.
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Table 4.1. NANOGrav Pulsars

Source P Ṗ DM Pb Span
[ms] [10−20] [pc cm−3] [d] [yr]

J0023+0923 3.05 1.14 14.3 0.1 2.3
J0030+0451 4.87 1.02 4.3 - 8.8
J0340+4130 3.30 0.71 49.6 - 1.7
J0613−0200 3.06 0.96 38.8 1.2 8.6
J0645+5158 8.85 0.49 18.2 - 2.4
J0931−1902 4.64 0.41 41.5 - 0.6
J1012+5307 5.26 1.71 9.0 0.6 9.2
J1024−0719 5.16 1.86 6.5 - 4.0
J1455−3330 7.99 2.43 13.6 76.2 9.2
J1600−3053 3.60 0.95 52.3 14.3 6.0
J1614−2230 3.15 0.96 34.5 8.7 5.1
J1640+2224 3.16 0.28 18.5 175.5 8.9
J1643−1224 4.62 1.85 62.4 147.0 9.0
J1713+0747 4.57 0.85 16.0 67.8 8.8
J1738+0333 5.85 2.41 33.8 0.4 4.0
J1741+1351 3.75 3.02 24.2 16.3 4.2
J1744−1134 4.07 0.89 3.1 - 9.2
J1747−4036 1.65 1.32 153.0 - 1.7
J1832−0836 2.72 0.87 28.2 - 0.6
J1853+1303 4.09 0.87 30.6 115.7 5.6
B1855+09 5.36 1.78 13.3 12.3 8.9
J1903+0327 2.15 1.88 297.6 95.2 4.0
J1909−3744 2.95 1.40 10.4 1.5 9.1
J1910+1256 4.98 0.97 38.1 58.5 8.8
J1918−0642 7.65 2.57 26.6 10.9 9.0
J1923+2515 3.79 0.96 18.9 - 2.2
B1937+21 1.56 10.51 71.0 - 9.1
J1944+0907 5.19 1.73 24.3 - 5.7
J1949+3106 13.14 9.96 164.1 1.9 1.2
B1953+29 6.13 2.97 104.5 117.3 7.2
J2010−1323 5.22 0.48 22.2 - 4.1
J2017+0603 2.90 0.80 23.9 2.2 1.7
J2043+1711 2.38 0.52 20.7 1.5 2.3
J2145−0750 16.05 2.98 9.0 6.8 9.1
J2214+3000 3.12 1.47 22.6 0.4 2.1
J2302+4442 5.19 1.38 13.7 125.9 1.7
J2317+1439 3.45 0.24 21.9 2.5 8.9

Note. — Table adopted from Arzoumanian et al. (2015a).
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Kramer 2005) is called the dispersion constant. At Arecibo, multi-frequency observa-

tions on the same day are enabled by the agility of the receiver cabin at the Gregorian

focus. At the GBT, physical switching between receivers at the prime and Gregorian

foci necessitates that there is a gap of a few days between the low and high frequency

observations. The asynchronous GBT measurements will introduce stochastic timing

errors due to the intrinsically different DMs at the time of each observation; for a

characteristic separation of ∼3 days between the L-band and 820 MHz observations,

this effect is anticipated to be small (∼10 ns, Lam et al. 2015), and will be a non-issue

in the era of truly broadband instrumentation.

Table 4.2 lists the various receiver+backend combinations used, their range of

dates, and their frequency coverage. All pulsars are observed in the 1.5 GHz range

(“L-band”). At the GBT, pulsars are also observed with the 820 MHz receiver,

and at Arecibo pulsars are observed either with a higher or lower frequency receiver

(i.e., either at “S-band” (2 GHz), or with the 327/430 MHz receivers), depending on

their spectral dependence and/or ISM characteristics. The temporal and frequency

coverage for each pulsar is shown in Figure 4.1. Two pairs of backend data acquisition

systems were used to collect these data, with a few months of overlap during the

upgrade: the Astronomical Signal Processor (ASP, at Arecibo) and the Green Bank

ASP (GASP, at Green Bank), and the Puerto Rican Ultimate Pulsar Processing

Instrument (PUPPI, at Arecibo) and the Green Bank UPPI (GUPPI, at Green Bank).

ASP & GASP are essentially clones of one another, as are PUPPI & GUPPI, and

both were operated in a mode to record coherently dedispersed, folded profiles.

For the purposes of our analyses and comparisons, we used virtually the exact same

set of profiles as the ones from which channelized TOAs were measured and presented

in A15. The final data set considered are total intensity profiles averaged to have 20-
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Table 4.2. Observing Frequencies and Bandwidths

ASP/GASP PUPPI/GUPPI

Telescope Plot Frequency Usable Frequency Usable
Receiver Color Data Spana Rangeb Bandwidthc Data Spana Rangeb Bandwidthc

(MHz) (MHz) (MHz) (MHz)

Arecibo

327 red 2005.0−2012.0 315− 339 34 2012.2−2013.8 302 − 352 50
430 orange 2005.0−2012.3 422− 442 20 2012.2−2013.8 421 − 445 24

L-wide blue 2004.9−2012.3 1380 − 1444 64 2012.2−2013.8 1147 − 1765 603
S-wide purple 2004.9−2012.6 2316 − 2380 64 2012.2−2013.8 1700 − 2404d 460

GBT

Rcvr 800 green 2004.6−2011.0 822− 866 64 2010.2−2013.8 722 − 919 186
Rcvr1 2 blue 2004.6−2010.8 1386 − 1434 48 2010.2−2013.8 1151 − 1885 642

Note. — The “Plot Color” column serves as a legend for the figure data in this chapter and the appendix of
per-pulsar plots. Adopted from Arzoumanian et al. (2015a).

aDates of instrument use. Observation dates of individual pulsars vary; see Figure 4.1.

bMost common values; some observations differed. Some frequencies unusable due to radio frequency interference.

cNominal values after excluding narrow subbands with radio frequency interference.

dNon-contiguous usable bands at 1700 − 1880 and 2050 − 2404 MHz.
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30 min subintervals, 2048 phase bins, and variable resolution for frequency channels:

4 MHz for all ASP & GASP data, and 1.5625/1.5625/3.125/12.5/12.5/12.5 MHz

for data from the 327/430/Rcvr 800/Rcvr1 2/L-wide/S-wide receivers with PUPPI

& GUPPI. The data considered here are identical with respect to the removal of

radio frequency interference (RFI), but some minor differences exist in how some of

the L-band GUPPI data were polarization calibrated. Also, there will be negligible

differences in a few of the comparisons, since at the time of writing the timing models

for a few pulsars6 are being finalized for the public release of the 9-year data set from

A15. These discrepancies should have no effect on our results.

From ASP & GASP to PUPPI & GUPPI

PTA experiments are currently sensitivity-limited; e.g., any improvement in the

collecting area, the number of pulsars, receiver sensitivity, or the frequency coverage

should improve PTA sensitivity. As stated earlier, NANOGrav is a primary motiva-

tion for several surveys to find more pulsars. However, until large “mid-frequency”

arrays become the norm, we can expect7 that 100-meter-class dishes will continue

to be the workhorses for pulsar astronomy. Similarly, no significant improvement to

receiver sensitivities at our observing frequencies is anticipated.

The one avenue remaining is to expand frequency coverage, and the transition

from ASP & GASP to PUPPI & GUPPI represent a first stage of maximizing PTA

sensitivity. In the ASP & GASP era, the available processing power limited the ob-

servable instantaneous bandwidth, whereas in the PUPPI & GUPPI era, the receiver

bandwidth has become a limiting factor (see §1.5). With a ∼10× increase of usable

bandwidth in some cases, the median TOA uncertainty decreases by a factor of a few

6Specifically, J1909−3744, J1944+0907, and J1949+3106.
7(though at the time of writing the uncertain futures of both the GBT and AO imply that “hope”

may be a better word to use)
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2004 2006 2008 2010 2012 2014

Date [yr]

AO/430AO/430
AO/1400AO/1400 J0023+0923

AO/430AO/430
AO/1400AO/1400 J0030+0451

GBT/800
GBT/1400 J0340+4130

GBT/800GBT/800
GBT/1400GBT/1400 J0613−0200

GBT/800
GBT/1400 J0645+5158

GBT/800
GBT/1400 J0931−1902

GBT/800GBT/800
GBT/1400GBT/1400 J1012+5307

GBT/800GBT/800
GBT/1400GBT/1400 J1024−0719

GBT/800GBT/800
GBT/1400GBT/1400 J1455−3330

GBT/800GBT/800
GBT/1400GBT/1400 J1600−3053

GBT/800GBT/800
GBT/1400GBT/1400 J1614−2230

AO/430AO/430
AO/1400AO/1400 J1640+2224

GBT/800GBT/800
GBT/1400GBT/1400 J1643−1224

GBT/800GBT/800
AO/1400AO/1400
GBT/1400GBT/1400
AO/2100AO/2100

J1713+0747

AO/1400AO/1400
AO/2100AO/2100 J1738+0333

AO/430AO/430
AO/1400AO/1400 J1741+1351

GBT/800GBT/800
GBT/1400GBT/1400 J1744−1134

GBT/800
GBT/1400 J1747−4036

GBT/800
GBT/1400 J1832−0836

AO/430AO/430
AO/1400AO/1400 J1853+1303

AO/430AO/430
AO/1400AO/1400 B1855+09

AO/1400AO/1400
AO/2100AO/2100 J1903+0327

GBT/800GBT/800
GBT/1400GBT/1400 J1909−3744

AO/1400AO/1400
AO/2100AO/2100 J1910+1256

GBT/800GBT/800
GBT/1400GBT/1400 J1918−0642

AO/430AO/430
AO/1400AO/1400 J1923+2515

GBT/800GBT/800
AO/1400AO/1400
GBT/1400GBT/1400
AO/2100AO/2100

B1937+21

AO/430AO/430
AO/1400AO/1400 J1944+0907

AO/1400
AO/2100 J1949+3106

AO/430AO/430
AO/1400AO/1400 B1953+29

GBT/800GBT/800
GBT/1400GBT/1400 J2010−1323

AO/430
AO/1400
AO/2100AO/2100

J2017+0603

AO/430AO/430
AO/1400AO/1400 J2043+1711

GBT/800GBT/800
GBT/1400GBT/1400 J2145−0750

AO/1400AO/1400
AO/2100AO/2100 J2214+3000

GBT/800
GBT/1400 J2302+4442

AO/327AO/327
AO/430AO/430
AO/1400

J2317+1439

Fig. 4.1 – Observing epochs and frequencies for the pulsars in the NANOGrav 9-year
data set. Open symbols are observations with ASP & GASP, closed circles are PUPPI
& GUPPI. Figure from Arzoumanian et al. (2015a).
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(cf. Table 2 in both Demorest et al. (2013) and A15); a factor of ∼3 is expected from

the radiometer equation, but this number will be larger or smaller based on the spec-

trum of the pulsar (which will typically have an index around −1.5) and how large the

decorrelation bandwidth for diffractive interstellar scintillation (DISS) is with respect

to the bandwidth in question. Examples of the improvement in TOA uncertainty

between the two generations of backends can be seen in the timing residual plots at

the end of this chapter (§4.4; e.g., Figure 4.89).

As described in §1.5.1 and addressed in Chapter 2, observing a large bandwidth

comes with some challenges arising from the fact that one can lose significant timing

precision from averaging pulse profiles over more than several tens of MHz at these

frequencies. These problems arise from intrinsic pulse profile evolution, as well as

pulse broadening from the inhomogeneous ISM, DISS, and having to measure precisely

a variable DM. The current solution in the NANOGrav data sets involves channelizing

the band into profiles (with the resolutions given earlier) and measuring a TOA per

channel using a standard Fourier domain cross-correlation technique (Taylor 1992).

However, a single fixed template profile is used for each pulsar for each band, which

introduces systematic trends into the residuals as a function of frequency because of

the implicit assumption that the profile within a band is independent of frequency.

To account for the profile evolution, NANOGrav did the following. In the 5-year

analysis of the ASP & GASP data (Demorest et al. 2013), the profiles were aligned

by adding fixed (in time) phase offsets (“JUMPs”) between the sets of TOAs at a

given frequency. This already undesirable approach would have added almost an

order of magnitude more free parameters into the timing model for each pulsar in the

entire 9-year data set. Instead, A15 use a set of ad hoc parameters to account for the

residual structure that remains after fitting the dispersive ν−2 law to the channelized
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frequency TOAs. From A15,

∆tFD =
n

∑

i=1

ci log
( ν

1 GHz

)i

. (4.2)

We will refer to the coefficients ci that describe the excess Frequency Dependence as

“FD parameters”. FD parameters were included in the timing model if they passed

an F -test significance threshold of 0.0027; this criterion was used for all deterministic

timing model parameters. The number of FD parameters n needed for each pulsar

is given in Table 4.4, which will be discussed in the next section 4.2.2. Of the 37

pulsars, 7 required zero FD parameters, 14 required one, 11 required two, 3 required 3

(B1855+09, J1918−0642, & J2317+1439), 1 required 4 (J1713+0747), and 1 required

5 (B1937+21). To elucidate the effect of using a fixed template to make channelized

TOAs in each band, the end of this chapter includes a sequence of frequency residual

plots — the larger, well-defined systematics generally require more FD parameters to

characterize. These are Figures 4.8–4.44 in §4.4.

Because many of the NANOGrav MSPs are low DM pulsars, several of them

scintillate strongly (they suffer from DISS; see Figure 3.4 for a simulated example of

DISS). The ASP & GASP bandwidths were relatively small and so DISS often up-

or down-weighted all of the TOAs from a given epoch roughly equally. PUPPI &

GUPPI, however, cover enough bandwidth to see several scintles. What this means

is that, for a given epoch, some of the channelized TOAs will carry significantly more

weight than those that were measured from profiles with very low signal-to-noise ratios

(S/N), which will have have non-Gaussian uncertainties. These low S/N TOAs are

problematic for NANOGrav’s timing analysis because the validity of the least-squares

approach to fitting a timing model relies on the assumption of input measurements

with Gaussian uncertainties. This problem is treated quantitatively in Appendix B
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of A15, which gives an explicit probability distribution for the TOA uncertainties as

a function of S/N.

Currently, NANOGrav mitigates the problem by culling all TOAs that have

S/N < 8. This cutoff is drawn in the left subplot of Figure 4.2, which shows the

timing residuals from J1455−3330 normalized by their uncertainties as a function

TOA S/N. A S/N ∼ 8 corresponds to approximately where the distribution of nor-

malized residuals approaches a normal Gaussian. In the right subplot, the S/N cutoff

corresponds to where the reduced χ2 from the timing model fit to the TOAs dips

below ∼2, which equates to cutting 27% of the TOAs. Admittedly, J1455−3330 is an

extreme example of where DISS plays a significant role, and this 27% of the TOAs

carries much less than 27% of the weight of the data, but we’d like to emphasize that

our wideband methodology naturally accounts for DISS by appropriately weighting

all of the channels in the global fit for a TOA and DM, meaning that all of the in-

formation is conserved from the observation and only in cases of an extremely low

overall S/N will we have to worry about non-Gaussianities.

To summarize this section, the implementation of PUPPI & GUPPI and the pro-

liferation of backends like them, which are predecessors to truly “ultimate” pulsar

instruments, instigated the developments of our wideband methods introduced in

two earlier chapters. In what follows, we present the results from applying wideband

Gaussian component models to describe profile evolution in the NANOGrav 9-year

data set. In a sense, this can be viewed as a natural replacement for FD parameters,

JUMPs, S/N TOA cuts, and TOA averaging in the era of broadband pulsar instru-

mentation. The code that originated in the earlier chapters underwent significant

development for this project, and although the entire analysis pipeline itself is not

public, the most fundamental pieces of software are all published8. Because of the

8https://github.com/pennucci/PulsePortraiture

https://github.com/pennucci/PulsePortraiture
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Fig. 4.2 – J1455−3330 has 27% of its TOAs cut in A15 (TOAs with S/N < 8), primarily due to DISS. Our wideband timing
method obviates the need to cull any TOAs. Left: The horizontal dashed lines demark S/N bins with an equal number of
TOAs, and the side panel shows the reduced χ2 for these bins. Right: The reduced χ2 of the timing model fit as a function
of the fraction of TOAs that remain after applying an increasing S/N threshold. The red dashed line corresponds to S/N =
8, and the area of the squares is proportional to the WRMS from the timing model fit.
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number of pulsars, many of the “embarrassingly parallel” tasks were accomplished by

distributing jobs over a 19+1-node cluster, nimrod9.

4.1.2 Expectations

Although this work aimed to be the first major test of our developments so far, it

is important to keep in mind that until data from truly wideband and instantaneous

observations are available for PTAs (i.e., data with fractional bandwidth of order

unity or greater at gigahertz frequencies), it will be hard to assess the successes

and shortcomings of our methodology. In quantitative terms, if one considers the

frequency ranges in Table 4.2, the dispersive delays corresponding to 1×10−3 cm−3 pc

across each band (receiver) are: 0.72 µs (S-wide), 1.8 µs (L-wide), 1.9 µs (Rcvr1 2),

3.0 µs (Rcvr 800), 2.5 µs (430), and 12 µs (327). This is to be compared with the

delay between the band centers (here referenced to Rcvr1 2): −0.81 µs (S-wide),

4.3 µs (Rcvr 800), 20 µs (430), and 37 µs (327). It is obvious that the gaps between

the bands provide the majority of the “lever arm” by which one makes precise DM

measurements, and so we would be remiss if we had only utilized our in-band DM

measurements in our comparisons below (see §4.2.2). Similarly, the amount of profile

evolution occurring in these gaps will also be larger, and so complete band coverage

with a broadband receiver will allow the DM and profile evolution measurements to

be more easily disentangled (Hassall et al. 2012).

With these things in mind, we should only expect large improvements in the cases

of large DMs and significant profile evolution (see Chapter 3); results should otherwise

be expected to be roughly equivalent.

9Nimrod was “a mighty hunter before the Lord”.
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4.2 Application to NANOGrav MSPs

For each pulsar, the following general protocol was followed:

1. Several high S/N observations from each frequency band were quasi-coherently
averaged together (ppalign.py).

2. A number of Gaussian component models were fit to the average “portrait”,
which included varying the number of components, varying the way their pa-
rameters evolve, and (in some cases) including a fit for a constant scattering
timescale (ppgauss.py).

3. TOAs and DMs were measured for all observations and a preliminary timing
analysis was performed (pptoas.py, tempo10).

4. The results were assessed, models were iterated on or fine-tuned, a single model
was chosen, and a final set of TOAs and DMs were measured.

5. A noise analysis was performed on the TOAs (PAL211), and a final set of timing
model parameters and residuals was arrived at.

The next sections detail some of the steps in this protocol, including some of the

important and novel developments needed to incorporate the wideband DM measure-

ments. We then compare the results to those from the 9-year data set.

4.2.1 Portrait Modeling

In order to build a high S/N average portrait to which we could fit a reliable

Gaussian model, we devised a basic scheme to average the phase-frequency data. This

is especially important for the less bright pulsars and/or those which show amplitude

modulation with frequency from DISS. For each band, we first initially “incoherently”

stacked and averaged several of the highest S/N portraits; this is accomplished with

PSRCHIVE’s psradd routine, which we used with an option to align the data using

either the known timing model or a fitted phase offset. This first average portrait was

10http://tempo.sourceforge.net/
11https://github.com/jellis18/PAL2 (Ellis 2014).

http://tempo.sourceforge.net/
https://github.com/jellis18/PAL2
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then used to measure a phase and DM in each individual portrait so that they could

be “coherently” stacked with respect to the changing DM; the average was weighted

in each frequency channel by the channel’s S/N. The process was iterated a number

of times.

The high S/N average portraits were used as input data to fit for a Gaussian model

for profile evolution. The fit included three parameters for each independent Gaussian

component, one evolutionary parameter for each Gaussian parameter, a DC offset, a

scattering timescale12, and phase and DM parameters to join/concatenate/align the

average portraits from each frequency band. For the fit, the average portraits are

normalized to the profile maximum in each channel; removing the spectral shape13

reduces covariances between amplitude and width parameters in particular, but also

highlights the evolution of individual components (e.g., see Figures 4.158 & 4.159).

For each pulsar, a large number of models were tried (at least six). To begin

the fit, a 100–200 MHz chunk was identified that had significant signal and profile

detail, and was averaged to make a profile. This profile (specifying the model reference

frequency ν◦) was decomposed by hand in an interactive viewer to get initial Gaussian

parameters (location, width, and amplitude) for some number of components, nGauss.

The evolutionary parameters were initialized at zero (no evolution). One of two simple

functions was used to describe the evolution of each Gaussian parameter (X) with

frequency (ν), either a linear or power-law function:

X(ν|X◦,mX , ν◦) = X◦ + mX(ν − ν◦), (4.3)

12For four pulsars only: J1600−3053, J1643−1224, J1747−4036, & J1903+0327. Scattering was
either evident in their profiles or easily separated from fitting a larger number of components. The
scattering index was a fixed fit parameter, set to α = −4.0.

13To be exact, a slightly different function than the spectral shape was removed, since we used
the profile maximum.
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or

X(ν|X◦, αX , ν◦) = X◦

( ν

ν◦

)αX

, (4.4)

where the reference and evolutionary parameters for each component {X◦, mX , αX}

are fitted parameters. Only power-law functions were used for the component am-

plitudes. Since we normalized the portraits as mentioned, the power-law indices of

the components’ amplitudes are not spectral indices of flux density14. Power-law sep-

arations of components and growths in width have been observed and modeled in

canonical and millisecond pulsars alike (Thorsett 1991; Xilouris et al. 1996; Kramer

et al. 1999; Chen & Wang 2014; Hassall et al. 2012, and references therein.). These

references modeled the bulk features over at least one decade in frequency; the fre-

quency dependence of individual sub-components is not well studied in the literature

(§15.4 of Lyne & Graham-Smith 2012). Because we are not dealing with even a single

decade, a linear model is also warranted as a first-order approximation for evolution.

Furthermore, because we decompose the profiles into numerous Gaussian components

(which is necessary to characterize the data for precision timing), simple comparisons

between what has been previously reported and what we find are not meaningful.

In addition to the four classes of models that include permutations of linear and

power-law functions for the location and widths of components, we tried at least

two more classes for each pulsar. The easiest conceptual model for profile alignment

permits no drifting of the components’ locations, and a second one fixes one (or more)

components in location to be the “fiducial component” (Hassall et al. 2012). The

model residuals did not serve well to discriminate between models; when the models

weren’t obviously poor choices, the residuals were either contaminated by residual

14So long as all components’ spectral dependencies are dominated by the spectral index of the
average flux, one can approximately recover the components’ spectral indices simply by adding the
spectral index of the average flux, which would have been a nearly exact recovery if we had instead
normalized by the average flux in each channel.
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RFI and/or data acquisition artifacts (see §4.2.3), or all had approximately the same

χ2 for the same number of parameters. We relied on quasi-subjective model selection

criteria that involved assessing the size of a constant offset in DM as measured in

each frequency band (see §4.2.2) and the quality of the timing with respect to the

9-year results. Although a more robust model selection method is highly desirable,

we have postponed this aspect of the project until more mature general models are

developed and until automated methods exist to generate models (i.e., instead of by

hand).

In Table 4.3 we present an overview of the Gaussian model used for each pulsar.

The table specifies the number of Gaussian components, the number of fixed/fiducial

components, which evolutionary function was used for the locations and widths, and

the scattering index at 1 GHz, where applicable. In Figure 4.3, we show frequency

histograms for the values of the various evolutionary parameters for all Gaussian

components of the final models; the two shades of gray for the linear parameters serve

to discriminate between positive (lighter/upper) and negative (darker/lower) slopes.

All of the histograms of power-law indices have mean values consistent with zero

(no evolution): 0.01(2) for locations, -0.02(9) for width, and 0.10(8) for amplitudes,

and have standard deviations of 0.13, 1.2 and 1.4, respectively15. For the linear

slopes, the averages were similarly consistent with zero: 3(4) µrot MHz−1 and -

62(49) µrot MHz−1, with standard deviations of about 50 and 610 in the same units16.

A binomial test of the distributions (the “sign test”) yielded only one significant

two-tail p-value (of 3 × 10−4) when assuming that a parameter has equal chance of

being positive or negative. By this metric, there were a significantly larger number

of negative linear slopes in the width parameter (102) than there were positive ones

15Quantities in parentheses are 1-σ uncertainties on the least significant digit.
16We use the unit “rot” to denote a rotation, or cycle.



86

Table 4.3. Summary of Gaussian Models

PSR nGauss nFixed Loc. Evol. Wid. Evol. τ1GHz [µs]

J0023+0923 8 0 POW LIN -
J0030+0451 15 15 - LIN -
J0340+4130 5 0 LIN LIN -
J0613−0200 14 1 LIN LIN -
J0645+5158 11 11 - POW -
J0931−1902 7 7 - POW -
J1012+5307 19 19 - POW -
J1024−0719 13 1 LIN LIN -
J1455−3330 6 1 LIN LIN -
J1600−3053 3 3 - LIN 9.1(2)
J1614−2230 12 1 LIN POW -
J1640+2224 9 9 - POW -
J1643−1224 6 0 POW POW 20.3(4)
J1713+0747 10 0 POW POW -
J1738+0333 7 7 - LIN -
J1741+1351 8 8 - LIN -
J1744−1134 10 10 - LIN -
J1747−4036 6 6 - POW 41.6(6)
J1832−0836 8 8 - LIN -
J1853+1303 10 0 LIN POW -
B1855+09 11 11 - LIN -
J1903+0327 4 1 LIN LIN 329(4)
J1909−3744 6 6 - LIN -
J1910+1256 6 1 LIN POW -
J1918−0642 11 11 - LIN -
J1923+2515 8 4 LIN LIN -
B1937+21 12 0 POW POW -
J1944+0907 14 14 - POW -
J1949+3106 5 5 - POW -
B1953+29 8 8 - LIN -
J2010−1323 6 6 - POW -
J2017+0603 11 11 - POW -
J2043+1711 16 1 LIN LIN -
J2145−0750 12 0 LIN POW -
J2214+3000 10 1 LIN LIN -
J2302+4442 12 12 - POW -
J2317+1439 10 0 LIN POW -

Note. — A power-law function was always used for the component
amplitudes. In most cases, either one (fiducial), zero, or all components
were fixed in position. The assumed index to reference the scattering
timescale τ to 1 GHz was α = −4.0. Quantities in parentheses are 1-σ
uncertainties on the least significant digit.



87

(56). This observation has been documented since almost the discovery of pulsars:

low frequency components are, in general, intrinsically broader. It is “classically”

explained by an apparent radius-to-frequency mapping geometry (Komesaroff 1970;

Cordes 1978), but can also be explained by more modern stream/fan-beam geometries

(Dyks & Rudak 2015).

If our interpretation is correct, then it is curious that the next smallest p-value

(0.3) does not indicate a significant divide, even though it represents the same test in

the distribution of power-law indices of the width parameter, which has a similar total

number (77 positive, 90 negative). It is possible that if we filtered out only power-law

indices of the width parameter that were significantly positive or negative (i.e., with

respect to their measurement uncertainties), then we might find a significant division,

but the large covariances of the Gaussian parameters with each other discourage even

this simple analysis of the parameter uncertainties. Again, our evolutionary parame-

ters are hard to interpret physically because we are not examining the evolution over

even a single decade of frequency and because we are decomposing the complex MSP

profiles into many components.

At the end of this chapter, we include a series of plots that show, per pulsar, the

concatenated average portraits as aligned in the model fit, the average profiles from

each frequency band, the fitted Gaussian model, and the model residuals. See §4.4

for details about the plots.

Number of Gaussian Components

One aspect of model selection that we did examine was how to discriminate be-

tween models comprised of different numbers of Gaussian components. Specifically,

since in most cases the subjective number of “necessary” Gaussian components can
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Fig. 4.3 – Distributions of the various Gaussian component evolution parameters. Less than ∼1% of the values are absent
in the top-right two plots. The two shades for the linear slope parameters designate positive (lighter/upper) and negative
(darker/lower) values. All means are consistent with zero, but the distribution of the linear slope of width parameters has
significantly more negative values than positive values (p-value of 0.0003; see text) — this is expected from pulsar emission
models.
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differ by a few, we were interested in how the number of components affects the

TOA measurements. We enlisted a senior undergraduate student, Kevin Stahl, to

investigate this question. Kevin looked at several of the NANOGrav pulsars that had

various levels of overall brightness and profile complexity and made a variety of mod-

els for each. He started with the lowest reasonable number of Gaussian components

that could be mapped to the number of profile components and increased this number

until the residuals appeared essentially white. One issue with this analysis is that it is

difficult to assess the incremental addition of components because there will be large

covariances in the components’ parameters (e.g., there can be several configurations

of three Gaussian components that sum to the same profile component).

Still, the most important result we retained from his analyses was that, as ex-

pected, the TOA uncertainties decrease as one increases the number of Gaussians

— of course, the better the representation of the model to the data, the fewer re-

maining systematics. The important takeaway, however, is that in several cases we

found that beyond some number of Gaussian components, the improvement in the

TOA uncertainty was essentially negligible. Therefore, provided one does not care

about an underlying physical interpretation of the components and assuming a critical

number of components is reached, having additional or fewer components based on

subjective criteria probably has little effect on the precision of the timing. However,

because results vary significantly from pulsar to pulsar (unpredictably so), we erred

on the side of more components — especially in the cases of very complicated profile

shapes and evolution (e.g., J2043+1711, Figures 4.220 & 4.221). These results are

summarized in Figure 4.4, which shows the normalized mean of the TOA uncertainty

distribution as a function of nGauss for a subsample of pulsars that have between ∼1

and 7 “minimum” components.
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Fig. 4.4 – Analysis of the effect of changing the number of model components. The
final models used for all of the pulsars shown either lie in the plateaus of the curves, or
comprise more components than shown.

Brief Comments on Specific Pulsars

For the four pulsars from which we have made scattering measurements (J1600−3053,

J1643−1224, J1747−4036, & J1903+0327), our values are broadly in agreement with

what has been published or predicted17 (Levin in prep., and references therein.).

Within the uncertainties of the measurements and the unknown scattering indices —

which can easily differ between ∼ −5 and −3 (Lewandowski et al. 2015a) — there are

no gross inconsistencies. In the future, we aim to incorporate time-variable wideband

scattering measurements separate from the model, which assumes a constant value

based on the average portrait. In Chapter 6, we make simultaneous broadband mea-

surements of the scattering timescale and index, as well as the DM, all as a function

of time, of the Galactic Center magnetar, J1745−2900.

We tailored our modeling fits for J1713+0747 and B1937+21 because they are

both immensely bright (∼10 mJy at 1.5 GHz, which is 3-10 times brighter than the

17NE2001 Galactic Free Electron Density Model: http://www.nrl.navy.mil/rsd/RORF/ne2001/

http://www.nrl.navy.mil/rsd/RORF/ne2001/
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others) and are observed in three bands. As will be discussed, the wideband DMs

measured in each frequency band for all pulsars were usually offset from one another

by a constant. We tried to eliminate the offsets in these two pulsars by choosing to

fit the Gaussian model to one bright epoch’s multi-frequency data (as opposed to the

averaged portrait), so that we could fix the DM as a single parameter across all of

the bands, thereby lessening any covariance between the DM alignment parameters

and the evolution parameters. In both cases, this approach mitigated the DM offset

almost entirely, particularly between L-band and 820 MHz (Figure 4.5). In the future,

we can try this method for some of the other significantly bright pulsars.

J1923+2515 and B1953+29 proved to be especially difficult to model using our

fairly simple scheme. For J1923+2515, this was because of the specific way that

the non-brightest components in each frequency band could incorrectly align with

one another based on the position of the brightest component (Figure 4.206). For

B1953+29, the disappearance of all but one component in the low frequency band

caused an incorrect alignment of the two bright components (Figure 4.214). In both

cases, we used the method described above for J1713+0747 and B1937+21, as well as

fixing some other parameters by hand18, to get reasonable models (mostly assessed

by eye). For B1953+29, there are residual artifacts in the model because it can

be difficult to make components disappear completely, but in both cases we have

achieved comparable timing results (§4.2.3).

As a future development to aid in situations like this, instead of extrapolating

evolutionary parameters from a single reference profile, a smarter approach might be

to “bridge” two very disparate profiles and give better initial parameters.

18e.g., note in Table 4.3 that J1923+2515 is the only pulsar with more than one but fewer than
all components fixed.
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4.2.2 Wideband DM Measurements

The measurements of TOAs and DMs based on a portrait model is covered in

Chapter 2. This process was carried out without notable augmentation to the original

algorithm. In theory, if profile evolution has been properly modeled and segregated

from the dispersive ν−2 delay, then the DMs as measured in noncontiguous frequency

bands should agree. However, for almost all of our pulsars the wideband DMs mea-

sured in different bands displayed constant offsets with respect to one another. The

explanation for these offsets is small errors in the model that become apparent when

one measures the DM in different frequency bands: whereas the model was fit by

linking average portraits from the disparate bands, the measurement of the DM in

individual observations from a particular frequency band by fitting a ν−2 law will

absorb the modeling error, and this error will in general be a function of frequency.

There are two other effects that can cause the DM to be different in the disparate

bands. The first arises because the observations are taken at different times19, and

because we are sensitive to DM changes at the level of ∼10−4 cm−3 pc, we could in

principle see the DM change on short timescales. However, the systematic offsets that

we see are of the order 10−3 cm−3 pc and are hard to explain as intrinsically random-

walk DM changes, which are expected to be much smaller in magnitude (∼10−6 –

10−5 cm−3 pc) for low DM, weakly-scattered pulsars (Lam et al. 2015; Cordes et al.

2015). Similarly, a frequency dependent dispersion measure could possibly introduce a

near-constant offset between DMs measured in different frequency bands, but similar

quantitative arguments from Cordes et al. (2015) also rule this out.

Unfortunately, these DM offsets highlight the shortcomings of our modeling. In

order to obtain the best set of parameters from the noise modeling (see §4.2.3),

19Again, the separation is <1 hour at AO, and several days at the GBT.
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we measured and removed the constant offsets on a per-pulsar, per-receiver basis

(relative to the DMs measured in L-band)20. Their values are plotted in Figure 4.5.

Again, a simple interpretation for these numbers is the extent to which the model for

profile evolution is in error. From Figure 4.5, one can see that the RMS offset grows

between measurements made in the 430 MHz to S-wide receiver bands. For MSPs

with spin periods ∼3 ms, the RMS offsets in each band correspond to the same level

of modeling error in units of pulse phase bins (∼1–3). In other words, because our

modeling routine is limited by the phase resolution of the pulse profile, it can only

discriminate between profile evolution and a ν−2 law at the level of ∼2 phase bins.

Therefore, as referred to earlier, we are justified in having used the magnitude

of these offsets to discriminate between otherwise equivalent portrait models. Our

unique treatment of J1713+0747 and B1937+21 discussed above validate our inter-

pretation. In these cases, we confidently are able to segregate the dispersive delay

from the profile evolution21 and identify a fiducial alignment such that the DMs agree

between data from both L-band receivers, the 820 MHz receiver, and the S-wide

receiver (to within . 1 × 10−3 cm−3 pc ∼ 0.5 phase bin).

While acknowledging that we have not modeled profile evolution perfectly22, we

can ask the question of how much better do we do than not modeling profile evolution

at all. A rough answer to this question can be reached for each pulsar by comparing

the size of the DM offset(s) measured from our best model portraits to the equivalent

residual DM that is measured in the post-fit frequency residuals of the channelized

TOAs from A15 when no FD parameters are used (Figures 4.8–4.44). These “DM

offsets” are obtained by fitting a ν−2 dependence to each band’s average frequency

20In analogy to the constant phase offsets used in tempo, this parameter can be thought of as
“DMJUMP”.

21NB: there is always a “normal” covariance between profile evolution and the absolute DM.
22It is worthwhile to note that the FD parameters only compensate for unmodeled profile evolution

since they are coefficients for basis functions of the systematic trends in the frequency residuals.
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Fig. 4.5 – The measured DM offsets relative to L-band. These arise from imperfect
Gaussian modeling of profile evolution. Note the increase in RMS going from low to high
receiver bands, which implicates profile resolution as a limiting factor in the modeling.
However, the agreement in DMs of J1713+0747 and B1937+21, both of which show the
largest levels of profile evolution, validate a modified modeling approach. See text for
details.

residuals and are listed in Table 4.4, alongside the DM offset values from Figure 4.5.

22 out of the 37 pulsars showed improvement. Broken up into a dependency on

the number of FD parameters used in the 9-year data set to characterize the profile

evolution, we see that all but three pulsars requiring more than one FD parameter

(16 pulsars) showed improvement. Two of these pulsars require 2 FD parameters,

but the values of the DM offsets are comparable (i.e., the profile evolution is equally

accounted for). The third pulsar, J2317+1439, which required 3 FD parameters,

is unique in that it is the only pulsar with observations at 327 MHz. These data

alone are ∼4–5× more constraining of the DM than either the 430 MHz or L-band

data. However, the profile at L-band is significantly more detailed than at the lower
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Table 4.4. DM Offsets

PSR # FD Telescope DM Offset [10−3 cm−3 pc]
Param. Receiver Unmodeled Gaussian model

J0023+0923 1 430 5.75(3) -0.71(1)
J0030+0451 0 430 -0.18(1) 0.38(2)
J0340+4130 1 Rcvr 800 4.92(3) 1.89(3)
J0613−0200 2 Rcvr 800 3.597(17) 0.628(6)
J0645+5158 2 Rcvr 800 2.27(1) 1.39(3)
J0931−1902 0 Rcvr 800 0.83(4) -1.21(6)
J1012+5307 1 Rcvr 800 1.18(2) -1.13(1)
J1024−0719 2 Rcvr 800 -2.33(1) -0.96(1)
J1455−3330 1 Rcvr 800 0.77(2) -3.68(4)
J1600−3053 2 Rcvr 800 3.545(8) 1.339(4)
J1614−2230 1 Rcvr 800 2.482(9) -0.244(6)
J1640+2224 2 430 -0.404(6) -0.609(8)
J1643−1224 2 Rcvr 800 -1.541(26) 0.924(7)
J1713+0747 4 Rcvr 800 -3.042(8) 0.139(1)

Rcvr1 2 0.3120(77) 0.0688(8)
S-wide 2.839(10) -1.104(9)

J1738+0333 1 S-wide -1.53(8) -3.28(11)
J1741+1351 0 430 -0.28(0) 0.34(1)
J1744−1134 2 Rcvr 800 1.118(6) 1.793(5)
J1747−4036 1 Rcvr 800 5.02(2) -1.25(2)
J1832−0836 0 Rcvr 800 0.04(2) 0.24(2)
J1853+1303 0 430 -0.20(3) -0.87(4)
B1855+09 3 430 1.04(1) -0.06(1)
J1903+0327 2 S-wide -5.13(3) 0.13(4)
J1909−3744 1 Rcvr 800 -0.099(1) -0.024(7)
J1910+1256 1 S-wide 1.80(6) 3.55(5)
J1918−0642 3 Rcvr 800 -0.376(8) 0.207(8)
J1923+2515 1 430 -2.12(3) 10.29(4)
B1937+21 5 Rcvr 800 0.1215(119) 0.1337(2)

Rcvr1 2 0.0160(119) -0.0462(3)
S-wide 1.192(19) 0.585(1)

J1944+0907 2 430 5.96(4) 1.15(2)
J1949+3106 0 S-wide -1.50(42) -0.91(38)
B1953+29 2 430 16.69(5) 12.64(2)
J2010−1323 1 Rcvr 800 -1.910(9) -0.720(9)
J2017+0603 0 430 -0.06(3) 0.17(3)

S-wide 0.19(2) -0.41(3)
J2043+1711 1 430 -0.084(7) -0.837(9)
J2145−0750 2 Rcvr 800 5.03(3) 0.26(1)
J2214+3000 1 S-wide 5.28(9) 2.90(6)
J2302+4442 1 Rcvr 800 2.44(3) 3.46(4)
J2317+1439 3 327 -0.299(7) 2.083(5)

430 -0.22(0) 2.12(1)

Note. — Values of DM offsets from Figure 4.5 compared with
analogous DM offsets in the frequency residuals without profile
evolution modeling (Figures 4.8–4.44). Bold values are “improve-
ments”. Note the distribution of required FD parameters from
A15: 1 pulsar with 5, 1 with 4, 3 with 3, 11 with 2, 14 with
1, 7 with 0, for a total of 54 FD parameters. There are 43
“DMJUMPs”.
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frequencies (see Figure 4.228), and so this is where we referenced our model (ν◦ =

1300 MHz). Consequently, the evolution at the distant 327 and 430 MHz bands will

be poorly constrained. Note that in both cases the DM offsets are the same for the

327 and 430 MHz data. J2317+1439 was also the pulsar that showed the largest

improvement in the timing residuals after removing the offsets from the wideband

DMs, again indicating the influence of the 327 MHz data.

For the pulsars that required 1 FD parameter, 8 of 14 showed improvement, and

only 1 of the 11 pulsars with no “significant” pulsar evolution (0 FD parameters)

showed improvement — and not very significantly so. In a number of these cases

where no improvement was seen, the DM offset values are not very different23. These

results indicate that in a small number of cases we may have artificially introduced

profile evolution when there was none. The models for the two pulsars with the largest

offsets, J1923+2515 and B1953+29 (the latter of which shows “an improvement”),

we have already discussed earlier.

The wideband DM measurements are shown in the middle panels of the timing

summaries at the end of this chapter, (§4.4, between Figures 4.45 & 4.117); they

are colored by receiver, as with the other plots. Again, the offsets discussed above

have been removed. The wideband DMs measured from the ASP & GASP data are

included for completeness, but they are in general non-informative due to the small

bandwidths and have been plotted without error bars for clarity.

Wideband DMs & DMX

The current model for DM(t) used in the NANOGrav analyses is a piecewise

constant function (Demorest et al. 2013; Arzoumanian et al. 2015a). The width of

23The uncertainty measurements in Table 4.4 may not be entirely meaningful, since we don’t
address the goodness-of-fit.
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an epoch that determines the DM for each “piece” is usually set to be no bigger than

14 days, with a small number of exceptions when there were only single-frequency

data available (usually from the ASP or GASP era), but see A15 for details. In

A15, all of the channelized TOAs that fall within one of these DM epochs are fit for

a single DM; all such DMs are determined simultaneously with other timing model

parameters (including the FD parameters) in a generalized least-squares (GLS) fit

using tempo. This model is referred to as “DMX”.

As mentioned earlier, the frequency gaps between bands carry as much or signifi-

cantly more dispersive delay than within the bands themselves. This implies that we

must also make use of the measured delay between our wideband TOAs to measure

each epoch’s DM (i.e., we still need to use DMX). The difference is that, instead of

having channelized TOAs and FD parameters, we have only 2 or 3 TOAs per DMX

bin, which have, in principle, already accounted for profile evolution and measured

(in-band) DMs. In order to make full use of the same information, we also need to

incorporate our wideband DMs as data into the timing model fit. This was accom-

plished by augmenting tempo’s GLS χ2 calculation to also include input DMs for each

epoch24. Schematically, with reference to Equation 1.2,

χ2
total = χ2

TOA + χ2
DM, (4.5)

where

χ2
DM =

# DMs
∑

i

(DMi − (DM + DMXj)

σDM,i

)2

. (4.6)

Here, DM is the mean dispersion measure, DMXj are the differences from the mean,

and j indexes the epoch of the DMX bin in which DMi should fall (j ≤ i). The

24Thanks to P. Demorest.
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overall χ2
total is minimized accordingly25.

Because the input DMi provide a separate set of constraints on DM(t), the average

DM must also be fit in tempo. This is not usually the case when implementing DMX,

which fits for DM differences. Again, the overall profile evolution and average absolute

DM are covariant, so it is not meaningful to compare the values of DM. However, it

is useful to see how the fitted DMX values compare.

The comparisons between the DMX values from our wideband measurements and

A15 are shown in subplots as part of the timing comparison figures at the end of this

chapter (§4.4, between Figures 4.46 & 4.118). The same DMX epochs were used for

all measurements. There is a remarkable agreement in most pulsars, verifying in part

that our wideband TOAs are credible. That the DMX trends are much smoother

and are more precisely measured than the PUPPI & GUPPI wideband DMs again

highlights the importance of the dispersive delay between the bands.

In principle, instead of measuring in-band DMs and feeding them into the aug-

mented DMX fit with tempo, we could have performed a more analogous set of wide-

band DM measurements, pairing the low and high frequency portraits together and

measuring a single DM across both. This, however, would introduce correlations into

the phase (TOA) measurements and would not eliminate systematic residuals result-

ing from the fit of a single DM or inaccurate modeling. Since either approach should

yield nearly the same result, we proceeded as described above. We made this choice

because we have developed our methods for use with truly wideband receivers and

so we don’t find it necessary here to make additional developments to accommodate

the lack of simultaneous, wideband observations.

25As of June 2015, to enable this functionality in tempo (version 13.000) one must use the GLS flag
(“-G”) and have “DMDATA 1” in the ephemeris file. tempo will then make use of DM measurements
associated with each TOA specified by the TOA flags “--pp dm #” (the DM) and “--pp dme #”
(its 1-σ uncertainty), both of which are outputted by default by pptoas.py.
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4.2.3 Timing Results

We used the timing models from A15 as initial parameters for our timing analyses.

We fit the same astrometric, spin, binary, DMX, and “JUMP” parameters; the FD

parameters, of course, were removed from the fit. JUMP parameters are still required

to account for the unknown differential latencies between the various receiver setups

and the backend data acquisition system26. JUMPs are not needed between the

two pairs of backend instruments because of a novel method used to independently

measure the offsets, which are held fixed and added to the TOAs (Arzoumanian et al.

2015a).

A generalized least-squares (GLS) approach to the timing model fit is required

because simpler assumptions about the input data would be in error; TOAs can

be time-correlated and their uncertainties, aside from being inhomogeneous, may

inaccurately represent the noise in the timing residuals. It is critically important to

robustly characterize the noise for high precision timing experiments. The particular

noise analysis used here and in A15 is a version of what has been developed in recent

years specifically for the cause of PTA experiments (van Haasteren & Levin 2013;

Ellis et al. 2013; Ellis 2013; van Haasteren & Vallisneri 2014, 2015; Arzoumanian

et al. 2014; Ellis 2014). §5 and Appendix C of A15 give details of this noise modeling

scheme, an overview of which will be presented next, followed by our final timing

results.

26NB: These constant time offsets are covariant with the absolute DM measurement, but will be
unecessary when a single broadband receiver is used, or if we can independently measure the delays.
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Noise Analysis

TOAs that are uncorrelated in time and frequency may have inaccurate uncertain-

ties, which are nominally estimated from the template-matching process27. The noise

model accounts for additional sources of “white noise” by transforming the estimated

TOA uncertainties σ̂i,k as

σi,k = Ek (σ̂2
i,k + Q2

k)1/2, (4.7)

where i indexes the TOA and k indexes the receiver+backend setup. Ek and Qk are

called “EFAC” and “EQUAD”, respectively, in tempo. In the absence of EQUAD,

EFAC can be thought of in terms of the “usual” scaling by the reduced χ2 value.

In principle, EQUAD and EFAC can account for, e.g., systematics left over in the

template-matching procedure and/or small deviations from Gaussian statistics.

A second noise term used in A15 accounts for TOAs that are 100% correlated

in frequency, but completely uncorrelated in time, called “ECORR”. One physical

culprit for non-zero ECORR is intrinsic pulse phase jitter (Cordes & Shannon 2010).

Pulse phase jitter is a measure of how much individual pulses jump around in phase

due to processes at the neutron star (hence the frequency correlation) that are un-

correlated in time. Therefore, the only way to reduce intrinsic pulse phase jitter is to

integrate longer per TOA. We do not model ECORR in our wideband TOAs since

we only have one measurement per frequency band. Any source of noise that would

be modeled by ECORR in the channelized TOAs would be absorbed by EQUAD.

Finally, time-correlated signals in the residuals are modeled as a red noise Gaussian

27For the wideband TOAs, the template is the two-dimensional model portrait; for the channelized
TOAs, it is the band-constant model profile.
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process whose power spectrum P is a power-law,

P (f) = A2
red

( f

fyr

)γred
, (4.8)

where Ared [µs yr1/2] is the amplitude of the red noise, γred is its spectral index, and

fyr = 1 yr−1. Achromatic red noise can be a manifestation of intrinsic “spin noise”,

which can be thought of as how much the clock drifts over long timescales and will have

a fairly steep index (γred ∼ −5 (Shannon & Cordes 2010)). Spin noise is usually much

larger in young pulsars, canonical pulsars, and magnetars — all of which have larger

magnetic fields and longer periods. Spin noise ultimately eliminates the possibility

of including hundreds of bright, slow pulsars into a PTA, although investigations

on this front are of current interest to some. Chromatic red noise will arise in the

residuals as a result of inaccurate/incomplete modeling of ISM effects and will have a

shallower noise spectrum. For instance, a time-variable scattering timescale will cause

measurable changes in the shape of pulse broadening. Consequently, the dispersive

delay will be measured and removed inaccurately, leading to chromatic structure (for

instance, see the discussion of J1643−1224 that follows).

The estimation of the noise parameters is done by Markov Chain Monte Carlo

sampling of the joint posterior distribution, where the process is greatly reduced in

complexity by first analytically marginalizing over the timing model parameters. We

found that there are significant covariances between EFAC and EQUAD in partic-

ular, but retained the same protocol of using the maximum likelihood values in the

timing analysis. In addition to our EQUAD values absorbing ECORR, the EQUAD

values from A15 may be susceptible to contamination by unmitigated RFI in specific

channels or particular artifacts that arise from imperfect acquisition of the data28.

28PUPPI & GUPPI sample the time series data using interwoven samplers, which are not perfectly
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In principle, wideband TOAs should be less vulnerable to these effects, although this

claim has not yet been investigated.

Red Noise Comparison

For the above reasons, it is not meaningful to directly compare the two sets of

EFAC and EQUAD parameters. However, more important are the red noise param-

eters, which one expects to be similar. Here, we only consider the ten MSPs whose

Bayesian noise modeling favored inclusion of the red noise parameters in A15. The

red noise parameters for a pulsar were included in its timing model if the Bayes factor

exceeded one hundred29. Bayesian model selection is very computationally expensive

(compared to parameter estimation); at the time of writing we do not have Bayes

factors for our noise models, and so cannot assess the differences in significance of the

red noise. We will simply assume that the values we measure for these ten pulsars are

similarly significant, making note that their posterior probability distributions were

significantly peaked.

In the left subplot of Figure 4.6 we plot our spectral indices of the red noise,

γred, along with those from A15 and those from a recent publication by the European

Pulsar Timing Array (EPTA; Lentati et al. 2015b). The dashed and dotted lines are

the prediction from Shannon & Cordes (2010) for γred (= −5 ± 0.4) in the post-fit

residuals30 based on a collection of canonical and millisecond pulsars. As is noted in

“180◦” out of phase with one another, but are assumed to be. This results in an effectively different
sampling rate and causes aliasing of the signal back into the band. The “ghost” of the pulsar
signal is band-reversed and so it usually is smeared out by dedispersion and/or lies below the noise
level. However, for certain bright pulsars with the “wrong combination” of spin period and DM,
the artifact will bias TOAs from frequency channels near to where the ghost and primary signals
cross. This effect explains the outlier points in, e.g., Figure 4.24 and the diagonal signal seen in e.g.,
Figure 4.189.

29The Bayes factor here is the ratio of the total probability of observing the timing residuals
including the red noise model (marginalized over all possible parameters), to the total probability
of observing the residuals without the red noise model.

30By “post-fit” we mean after the deterministic timing model has been subtracted, where the
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A15, most of the pulsars (here six, instead of seven, out of ten) are inconsistent with

the prediction.

In the right subplot of Figure 4.6 we show the estimated RMS amplitude of the

post-fit timing noise in our data (σTN,2) as a function of the prediction from Shannon

& Cordes (2010) (σSC10
TN,2). The same subplot in Figure 3 of A15 is nearly identical

with respect to the ten MSPs with detected red noise. Hence, we conclude that we

measured the same amplitude of red noise in these ten MSPs31. The gray points in

the figure are the 95% upper limits on σTN,2 for the other 27 MSPs, many of which

lie below the line of equality. As is also concluded in A15, our red noise amplitudes

are inconsistent with the prediction of Shannon & Cordes (2010).

As explained in A15, many of the shallow values for γred may be a result of ISM ef-

fects or incomplete modeling of DM(t), as opposed to intrinsic timing instability. The

only notable differences in γred from our analyses are for J0613−0200, J1903+0327,

and B1937+21.

Working in reverse, B1937+21’s red noise index is marginally consistent with that

from A15, being slightly more negative. Looking at both sets of residuals and DMX

curves (i.e., Figure 4.97 and specifically the averaged, non-whitened residuals from

A15), we see that the wideband results are smoother at several epochs where there

are small discontinuities or high frequency trends in the A15 results. In particular,

we are pointing at the correlated changes in the DMX values and the residuals near

2011.8 and 2012.2, where the transition from ASP/GUPPI to PUPPI/GUPPI occurs.

The removal of these high frequency features could steepen the red noise, closer to

the value observed in an analysis of this pulsar that covered a time span 2.5 times

longer (Shannon & Cordes 2010).

relevant component to the discussion here is the long-term spin down parameter, Ṗ , which effectively
removes a quadratic.

31J1903+0327’s red noise is less constrained, but its maximum posterior amplitude is the same.
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Fig. 4.6 – Comparison of the red noise parameters. Left: The measured red noise power-law index from the power
spectrum of the post-fit residuals, γred. This parameter is shown for the ten pulsars that exceeded the Bayes factor criterion
(>100). The dots are from the noise analyses of the wideband TOAs, the diamonds are reproduced from the analyses of the
channelized TOAs from A15, and the squares are from Lentati et al. (2015b). The dashed and dotted lines are the prediction
from Shannon & Cordes (2010). Right: The measured and predicted values of the RMS amplitude of the post-fit red noise.
The points are colored the same as in the left subplot; the gray diamonds are the 95% upper limits for this quantity from
the other 27 pulsars. All points with error bars are shown with maximum a posteriori parameter values and 68% credible
intervals.
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Our value of γred for J1903+0327 agrees with that from A15, but is much less con-

strained. J1903+0327’s wideband residuals show much more high frequency structure

than in A15, although the overall amplitude appears to be somewhat less (and also

less constrained). J1903+0327 displays the largest amount of pulse broadening from

scattering (Figure 4.198) and is the highest DM pulsar in the sample (∼300 cm−3 pc).

These facts may combine with our profile evolution model (which included a constant

scattering timescale of ∼330 µs at 1 GHz) to introduce achromatic high frequency

features.

J0613−0200’s red noise index is the only significantly different value, now being

consistent with the predicted −5. We can only note that we see a smoother cubic-like

trend in our residuals over the full 9-year span than is shown in A15. We also note

that we have modeled its complex profile evolution well (Figures 4.162 & 4.163; its

DM offset relative to L-band is ∼1 phase bin).

J1643−1224: Variable Scattering or Chromatic DM?

One other pulsar warrants some discussion. J1643−1224 shows significant, shallow

red noise in both sets of analyses. However, whereas in A15 the red noise appears

highly chromatic, we see no such frequency dependence in the residuals (Figure 4.69).

The chromatic trends arise because the apparent DM in each band is different enough

so that when a single DM is measured across both bands with DMX, the correction to

infinite frequency of the channelized TOAs is sufficiently inaccurate to be evident in

the residuals. This explanation is supported by the strong annual correlations between

the DMX trend and the 820 MHz residuals from A15. The apparently chromatic DM

is manifested by pulse broadening from interstellar scattering and/or an intrinsically

frequency dependent dispersion measure, DM(ν). The effect of a constant scattering
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time or a constant departure from the usual frequency independent DM would be

absorbed in the FD parameters and/or the DMX values, but time variability of either

effect would induce chromatic trends. Cordes et al. (2015) predict that the form of

DM(ν) should change on a refractive timescale and J1643−1224 is known to have

previously exhibited unusual scattering behavior (Maitia et al. 2003), so either effect

may be at work.

The reason why the wideband TOAs do not show a chromatic dependence is

explained by the fact that there are only two points in each DMX bin; to minimize the

WRMS residual, DMX assigns the DM offset corresponding to a ν−2 law between the

points32. In comparison, the unmodeled chromatic effect (whatever it is) is revealed

in our wideband DM measurements, which vary significantly on timescales shorter

than a year and are, at times, anti-correlated between the DMs measured in either

band. In Figure 4.70, we see that the DMX values agree with those from A15 (with a

slight offset for epochs after 2013), implying that the large scale variations in the DM

— the overall linear trend from relative motions and the annual variations from the

line of sight oscillating over the inhomogeneous ISM — are being mitigated almost

identically. However, our TOAs are more accurate than the averaged TOAs from

A15. That is, the red noise trend is not annually, chromatically variable. This is

true because our “TOA averaging” happens at the time of the simultaneous TOA

and DM measurement as opposed to after an incorrect dispersive delay across both

bands is removed from the channelized TOAs. Another way to look at this is that

the apparent DM is different in each band, but is separately mitigated only in the

wideband measurements. We also note that our TOA residuals and DMX curves are

essentially unchanged if we disallow the wideband DMs from being considered in the

32Note, however, that this fit is done simultaneously between all DMX values as well as with the
other timing model parameters.
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timing model fit33 and we have verified that, in this case, the average wideband DM

values track the DMX values closely.

It is difficult to say which, if not both, effects are at work. Two initial observations

seem to implicate a frequency dependent DM over a variable scattering timescale.

First, the EFAC parameters for the channelized GUPPI TOAs are very close to 1.0

(within 10%), which is what you expect if the profile template matching is accurate;

i.e., pulse shape changes are not the culprit. Second, in the case of variable scattering

one naively expects the two wideband DM trends to always be correlated. Instead, we

see periods of anti-correlation, which can happen in the case of a frequency dependent

DM (Cordes et al. 2015). Neither of these observations is convincing, but we next

quantify the expected RMS of the wideband DMs based on predictions from Cordes

et al. (2015) for a frequency dependent DM.

Using our estimate for the scattering timescale at 1 GHz (∼20 µs, in agreement

with others, e.g., G. Jones, unpublished), the expected RMS difference in DMs mea-

sured at L-band and 820 MHz (σDM) is ∼ 1 − 3 × 10−3 cm−3 pc, which agrees well

with what is seen in the wideband DMs. Translating this into an RMS timing error

in the residuals, σt∞,δDM ∼ 3− 4 µs, which is not very different from the 2 µs WRMS

residual reported in A15. Furthermore, based on the distance estimate to J1643−1224

of 4.9 kpc (Toscano et al. 1999), we can derive a reasonable transverse velocity of the

pulsar across the line of sight through the ISM, VISS ∼ 240 km s−1 (§4.2.6 of Lorimer

& Kramer 2005). This allows us to estimate the timescale for refractive scintillation

(∆tRISS) over which time the form of DM(ν) will change (Cordes et al. 2015). For

J1643−1224, ∆tRISS ∼ month, which is in line with the timescale of the wideband

DM oscillations.

We conclude that a frequency dependent DM may be responsible for the chromatic

33i.e., “DMDATA 0”
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red noise in the residuals of J1643−1224 from A15 and the chromatic wideband

DMs. The former is mitigated by having measured the DM and TOA in each band

independently (leading, in fact, to the chromatic DMs). We should also note that

J1643−1224 is known to lie behind the HII region ζ-Ophiuchus, which is likely to

blame for all chromatic phenomenology seen here (Arzoumanian et al. 2015b). It

will be interesting to test these hypotheses in future iterations of the modeling and

measurements via simulations and supplementary observations.

If our interpretation of J1643−1224’s results is correct, a natural question to ask

is why a few other pulsars still show chromatic red noise features in their residuals

— particularly J1600−3053 and J1747−4036, which are singled out in A15. Both

sources are high DM pulsars (∼50 and ∼150 cm−3 pc, respectively) for which we

have included scattering as part of their model portraits (∼10 and 40 µs at 1 GHz,

respectively). In both cases, the chromatic trends are not nearly as pronounced (they

are essentially absent in the wideband analysis of J1747−4036), and the wideband

DMs are not as precisely measured as in J1643−1224. For J1600−3053, we can again

estimate σDM from our scattering measurement, which we find to be on the order

of ∼ 0.5 × 10−3 cm−3 pc, or roughly the size of the wideband DM uncertainties

for this pulsar. A similar story is told for J1747−4036, which may have σDM ∼

1×10−3 cm−3 pc, but its wideband DM uncertainties are also as large as this. Lastly,

J1903+0327 is the largest DM (∼300 cm−3 pc), most heavily scattered (∼330 µs

at 1 GHz) pulsar in the sample, but shows no prominent chromatic trends. This

may be a consequence of choosing S-band as the second frequency band in which to

observe this pulsar. However, the predicted level of σDM for this pulsar is still large,

∼ 5×10−3 cm−3 pc, corresponding to σt∞,δDM ∼ 4 µs. While we do see inconsistencies

in the wideband DMs at the level of several ×10−3 cm−3 pc, it is difficult to reconcile
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the observations with our expectations of DM(ν).

Timing Comparison

At the end of this chapter, in Figures 4.45–4.118 we show all timing summary and

comparison plots from our analyses on a per-pulsar basis. The timing summary plots

have panels containing our wideband residuals, “whitened” residuals (for pulsars with

red noise), wideband DM measurements, and DMX trends. For the red noise pulsars,

the residuals are “whitened” by subtracting the maximum likelihood realization of

the red noise. In the comparison figures, we plot our wideband residuals versus the

averaged residuals from A1534 in the left subplot, and our DMX values versus those

from A15 in the right subplot.

In general, there is reasonably good agreement across all pulsars. A few long-term-

timed benchmark pulsars are worth pointing out for some combination of being bright,

having red/white noise, having simple/complicated profile evolution, and/or hav-

ing a substantial trend in DM(t): J1713+0747, B1855+09, J1909−3744, B1937+21,

J2317+1439. Because of the large covariances between EFAC and EQUAD, we can-

not trust all of the timing results until a more scrupulous method for extracting the

best noise parameters is devised.

To consolidate the comparisons of the timing measurements and to highlight the

potential influence of the EFAC and EQUAD parameters, we made histograms of

the information contained in the comparison plots. Figure 4.7 demonstrates how, on

average, the wideband measurements and their uncertainties compare with their coun-

terparts from A15. The bottom row shows the histograms of the differences between

the wideband and channelized-TOA measurements, normalized by the square-root of

the quadrature sum of their uncertainties. The top row simply shows the histograms

34These will be the whitened residuals in both cases, where applicable.
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of the ratio of the uncertainties (wideband/A15) of the residuals and DMs from the

comparison plots.

For the overall agreement, the histogram of normalized residual differences has a

mean of (−4 ± 300) × 10−3 and a standard deviation of 0.5, and the histogram of

normalized DMX differences has a mean of (−6±90)×10−2 with a standard deviation

of ∼1. For the overall ratio of uncertainties, the histogram of TOA uncertainty ratios

has a mean of 1.4+0.1
−0.6 with a standard deviation of ∼2, and the histogram of DMX

uncertainty ratios has a mean of 1.5+0.6
−0.6 with a standard deviation of ∼1. The intervals

quoted here contain the 16–84 percentile range. Although we see that typically the

results agree and we do no better or worse in our measurements, there are some fat

tails in the distributions, particularly in the ratio of the uncertainties. We attribute

these to differences in the noise modeling.

With these caveats in mind, we next present comparisons of the WRMS timing

residuals and estimated timing model parameters. Table 4.5 contains the results from

our GLS timing model fits with tempo, which was augmented with “DMDATA” to

make use of the “DMJUMP”-corrected wideband DMs (see §4.2.2). The total number

of degrees of freedom (which includes both the number of wideband TOAs and DMs)

is given for each pulsar. Despite the noise modeling described earlier, all pulsars had

a reduced χ2 greater than 1.0. The reason for this is that the noise modeling does

not yet incorporate similar noise terms for the DM data points, and our wideband

DMs appear to have a larger amount of scatter than their nominal 1-σ uncertainties

allow.

We augmented tempo to include a parameter that acts analogously to EFAC35,

which we call “DMEFAC”36. This parameter was tuned iteratively until the reduced

35Compared to Equation 4.6, σDM,i → DMEFAC× σDM,i.
36Thanks to P. Demorest.



111

Fig. 4.7 – Histograms of the information contained in the comparison plots between
Figures 4.46 & 4.118. The bottom row contains the normalized differences between the
residuals and DMX values as measured here and in A15; the top row contains the ratio
of the uncertainties on these quantities (wideband/A15). See text for details.

χ2 value was within 0.01 of 1.0, as can be seen in the table. The DMEFACs are listed;

22 out of 37 are < 2, another 12 are < 4, and the remaining three are ∼6, 6, and

14. The pulsars with the most extreme DMEFACs, however, are all red noise pulsars.

Therefore, because DMEFAC was not adjusted based on the whitened residuals, these

cannot be seen as inaccuracies in our wideband DM uncertainty estimates. 9 non-red

noise pulsars have DMEFACs between 2.0 and 4.0. The DMEFAC parameters are

not incorporated into the timing summary figures (though the properly modeled noise

parameters are).
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The last two pairs of columns in Table 4.5 show the weighted root-mean-square

(WRMS) residual level, which is a typical figure of merit for assessing an MSP’s

quality. For our “whitened” WRMS residuals, we subtracted the maximum likelihood

realization of the red noise and then calculated the WRMS as

WRMS =

#resids
∑

i=1

(δti − δt

σi

)2
/#resids

∑

i=1

1

σ2
i

, (4.9)

where i indexes the residual δt, which has noise-modeled uncertainty σ, and the

average residual δt is itself a weighted average,

δt =

#resids
∑

i=1

δti
σ2
i

/#resids
∑

i=1

1

σ2
i

. (4.10)

Many pulsars show very comparable timing results (e.g., J0023+0923, J1614−2230,

J2145−0750, J2317+1439), differing by no more than a few to ∼10 percent. For

these pulsars, we can be fairly confident in our measurements. In other cases, it is

difficult to say whether or not the improvement (or worsening) of the timing residual

is due to our portrait modeling, wideband measurements, or if it is an artifact of the

noise modeling. The very large differences, particularly the large improvements (e.g.,

J1853+1303) must have origins in the noise parameters; there is no reason for the

profile modeling or the effective TOA averaging to influence the results at this level.

For this reason, we need to take these results, and the timing parameter results that

follow, with caution.

The only pulsar whose (white) WRMS residual got significantly worse (by almost

a factor of two) is J1923+2515, whose model was discussed in §4.2.1. The only pulsar

whose non-whitened residual grew significantly was J0613−0200, which is reflected in

the significantly steeper red noise index that we measured. The next two pulsars with
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worse WRMS values are J1455−3330 and J1741+1351, both at the level of ∼50%.

Of the four pulsars where we modeled the scattering, three of them showed

significant improvement in the timing residuals (whitened or not), and the fourth

(J1600−3053, which has the smallest scattering timescale of the four) remained at

the same WRMS level. Approximately 70% of the pulsars showed some or no im-

provement in the WRMS timing residual.

The last thing to consider is how the fitted timing model parameters differed.

Figures 4.119–4.155 show the difference in each fitted astrometric, spin, and binary

parameter, normalized by the uncertainty from A15, per pulsar (in faux “σ” units).

The size of the “error bar” corresponds to the ratio of the uncertainties, where > 1

means that our uncertainties are larger. These two quantities are given in the plot.

Each point is colored based on a 3-“σ” significance threshold: black points exceed

this threshold in both analyses, blue points fall below this threshold in both cases37,

red points are where a parameter is over the threshold only in the wideband analysis,

and green points are where a parameter is over the threshold only in the A15 analysis.

Almost across the board, the parameters do not differ by more than 2–3 “σ”.

In only a few cases there are there larger deviations: J1713+0747, J1744−1134 and

J2017+0603. The only parameters that appear red or green (i.e., that switch signifi-

cance) are timing model parameters that are marginally significant in the first place, or

require long timing baselines, or are highly non-linear: binary derivatives, long-term

binary parameters, parallax, proper motion, Shapiro delay. One of the apparently

“new” parallax measurements is probably artificial since we don’t have a reasonably

long baseline (J1832−0836 has only a 0.6 yr baseline). Similarly, J0931−1902 appears

to have “lost” the significance of its spin down parameter (F1), but this is probably

37In particular, parallax was kept in the A15 timing models, regardless of significance. The same
is true for proper motion, except that it wasn’t fit for either J0931−1902 or J1832−0836, both of
which have <1 yr of data.
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Table 4.5. Timing Results & Comparison

Full WRMS [µs] Whitened WRMS [µs]

PSR χ2 NDoF DMEFAC Wideband A15 Wideband A15

J0023+0923 414.04 413 1.40 0.354 0.320 - -
J0030+0451 227.99 227 1.68 0.715 0.723 0.078 0.212
J0340+4130 82.87 83 1.21 0.301 0.385 - -
J0613−0200 384.61 381 1.37 1.448 0.592 0.229 0.165
J0645+5158 96.80 96 1.26 0.043 0.052 - -
J0931−1902 29.01 29 1.23 0.281 0.381 - -
J1012+5307 679.17 674 1.11 0.709 1.197 0.254 0.355
J1024−0719 167.35 167 1.15 0.157 0.280 - -
J1455−3330 325.66 323 1.21 1.052 0.694 - -
J1600−3053 307.59 306 2.00 0.203 0.197 - -
J1614−2230 281.89 281 1.07 0.192 0.189 - -
J1640+2224 290.78 291 3.50 0.077 0.158 - -
J1643−1224 346.08 343 2.35 1.985 2.058 0.095 0.331
J1713+0747 926.50 923 3.70 0.147 0.116 - -
J1738+0333 198.38 198 1.43 0.257 0.308 - -
J1741+1351 107.72 107 1.70 0.159 0.103 - -
J1744−1134 455.79 455 3.00 0.264 0.334 - -
J1747−4036 67.47 67 2.53 0.353 0.531 - -
J1832−0836 29.94 30 1.23 0.084 0.121 - -
J1853+1303 105.15 105 1.25 0.040 0.235 - -
B1855+09 385.06 383 2.33 1.267 1.338 0.414 0.505
J1903+0327 90.30 90 2.20 1.401 1.949 0.041 0.327
J1909−3744 514.37 511 1.82 0.063 0.081 - -
J1910+1256 182.41 183 1.90 1.347 1.449 0.271 0.587
J1918−0642 528.21 526 1.23 0.318 0.340 - -
J1923+2515 50.45 50 3.45 0.496 0.266 - -
B1937+21 622.27 624 14.40 1.536 1.550 0.128 0.104
J1944+0907 117.03 116 1.97 1.148 2.440 0.413 0.332
J1949+3106 56.22 56 2.50 0.726 0.646 - -
B1953+29 102.26 102 6.40 5.971 4.149 0.443 0.531
J2010−1323 262.00 261 1.28 0.297 0.312 - -
J2017+0603 83.18 83 1.41 0.057 0.073 - -
J2043+1711 114.30 114 1.14 0.132 0.108 - -
J2145−0750 285.13 283 2.52 0.364 0.370 - -
J2214+3000 135.58 135 2.50 0.258 0.314 - -
J2302+4442 85.23 85 1.45 0.769 0.708 - -
J2317+1439 430.41 427 1.73 0.259 0.267 - -

Note. — The reduced χ2 values are all very near 1.0 due to the noise modeling
in combination with the listed DMEFAC parameter. The only large DMEFACs arise
in pulsars with red noise, which doesn’t reflect the proper DMEFAC. The columns
labeled A15 are from Table 3 of Arzoumanian et al. (2015a).
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a combination of the noise parameters over-inflating the uncertainties and its short

timing baseline (also 0.6 yr). The other “new” parallax measurements (J1640+2224,

J1741+1351, J1747−4036, with time spans of 8.9, 4.2, and 1.7 yr, respectively) may

be credible, but again, it will depend on how robust the noise parameters are.

4.3 Conclusion

In this chapter, we have further developed our wideband timing methods and ap-

plied them broadly to a sample of 37 relatively bright, well-timed MSPs monitored by

the North American Nanohertz Observatory for Gravitational Waves (NANOGrav).

Specifically, we performed an analogous timing analysis on the same underlying data

presented in Arzoumanian et al. (2015a) (A15). All TOAs and timing models used in

these analyses from A15 are available on the internet38. The analogous timing results

from our wideband analyses, as well as Gaussian models and numerous plots from

this chapter, are also available39.

To summarize the main results and findings from our analyses:

1. We made Gaussian component models for all pulsars to model profile evolution
with frequency, choosing between several combinations of evolutionary models.

2. Wideband timing measurements were made for the entire data set. Constant
DM offsets reflecting small modeling errors were measured and subtracted.

3. A comprehensive timing analysis was performed, including a full Bayesian noise
analysis. We augmented tempo to include our wideband DM measurements as
data for the DM(t) model.

4. We recover virtually identical red noise parameters in all but one or two pulsars,
which is a significant test to pass if these measurements are to be used in PTA
experiments.

38http://data.nanograv.org/
39http://www.astro.virginia.edu/~ttp4tx/nanograv/

http://data.nanograv.org/
http://www.astro.virginia.edu/~ttp4tx/nanograv/
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5. Our in-band DM measurements may help remove chromatic red noise trends
seen in the residuals of some pulsars and may indicate the importance of char-
acterizing a frequency dependent DM.

6. In most cases, we see the same or improved levels of WRMS timing residual, al-
though these quantities — as well as the fitted timing parameters — are subject
to further scrutiny based on a more judicious selection of noise parameters.

7. The differences in the fitted astrometric, spin, binary, and DMX parameters are
typically negligible, with the caveat mentioned above.

With respect to the first item, if one only cares about characterizing the data, Gaus-

sian models will perform reasonably well for pulsars with uncomplicated profile evolu-

tion that is easily represented by Gaussian functions, or in sufficiently bright pulsars

such that one can disentangle dispersive delays and still model profile evolution. The

Gaussian components can contain interesting information regarding intrinsic proper-

ties of the magnetosphere, but the focus will remain on simply characterizing the data

until truly broadband studies and receivers are the norm since much of the profile

evolution still occurs in the gaps between frequency bands.

Other modeling approaches (e.g., using Principle Component Analysis, wavelets,

interpolation, etc.) should also be explored. Our immediate goal is to simply extend

the family of evolutionary models used; in particular, to use a “Thorsett” model of a

power-law + constant (Thorsett 1991). Automated modeling algorithms are a more

distant goal but one possible approach is to use a technique called Reversible-Jump

Markov Chain Monte Carlo, which allows sampling between posteriors of different

dimensions. In this way, one could intelligently choose between different families of

Gaussian (or other) models with different numbers of components, etc.

An upcoming version of the PAL2 noise modeling software will include DMDATA

functionality. Along with the TOAs, the calculation of the likelihood will make use

of the in-band measured DMs, and model at least basic white noise parameters like
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DMEFAC and potentially “DMEQUAD”. A new “DMJUMP” parameter in tempo

would be a natural way to correct unmodeled profile evolution for the time being.

Eventually, we will integrate an algorithm to simultaneously measure the TOA, DM,

and scattering timescale, instead of having the latter parameter be a fixed component

of the model.

Some of our findings here can be validated with simulations of profile evolution

compounded with the other effects discussed: DISS (Cordes in prep.), DM(ν) (Cordes

et al. 2015), a variable scattering timescale, etc. In particular, we wish to know

whether or not we have successfully removed chromatic dependencies in the residuals

of some high DM pulsars, and perhaps lessened the significance of shallow red noise in

others. This latter question can be answered simply by calculating the Bayes factors

for our noise models.

It is apparent that we have additional developments to make in order to fully

supplant current techniques in the era of truly broadband receiver systems, but we

have demonstrated that our wideband methodology performs at least as well in many

cases, if not better. Although in principle the wideband method should never do

any worse than current methods, it is obvious that the next set of developments will

continue to naturally cater to the future of pulsar astronomy. This is in contrast to

what would have to be only additionally ad hoc methods if channelized TOAs and

frequency-independent profile templates continue to be used. For example, the num-

ber of FD parameters would grow significantly with increasing bandwidths, whereas

in the worst case our DMJUMP parameters are limited by the number of receivers

used. The simultaneous use of the full timing band from, e.g., 0.6–3 GHz would im-

prove the DM determination, which would in turn allow for more constraining DM(t)

models.
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Even in the absence of improved models or noise analyses, it will be an interesting

exercise to run our timing residuals through the same GW detection pipeline that

will soon analyze the A15 results. If nothing else, the problem will be much easier

due to the data set being a factor of ∼30 smaller, providing results hundreds of times

faster. The long term goal, however, is to optimize both the strategy and sensitivity

of PTA experiments.

4.4 Appendix: Per-Pulsar Plots

Here, we append plots relevant to the discussions in this chapter, but include them

for all pulsars. The color legend indicating the receiver from which a measurement was

made is originally in Table 4.2: red = 327 MHz, orange = 430 MHz, green = Rcvr 800,

blue = Rcvr1 2, blue (or dark blue, in frequency residual plots) = L-wide, purple = S-

wide. To recapitulate the plots and their primary contents:

• Figures 4.8–4.44 contain the post-fit frequency residuals. Constant offsets have
been removed so that all bands lie on the zero line. Each figure shows what
the average timing deviation is as a function of frequency from assuming a
constant profile shape in each separate band. Note that some profile evolution
gets absorbed by the joint fit (across bands) for a DM with DMX. When fit
together with FD parameters, these systematics flatten out. The size of the
“residual DM” as measured by a ν−2 law fit to the residuals in each band is a
fair metric by which we can asses the size of our DM offsets in Table 4.4 and
Figure 4.5. The number of FD parameters used in A15 to characterize these
trends are also given in the table. Note that the excessive scatter/outliers in
some pulsars is a result of either persistent, unzapped RFI, or a pulsar “ghost”
artifact signal from imperfect sampling of the raw data signal. Also note that
the two lowest frequency bands are compressed significantly, so their trends may
be suppressed graphically here.

• Every-other figure starting with Figure 4.45 and ending with Figure 4.117 con-
tains a timing summary plot. These are analogous to what is published in
A15. The topmost panel in each figure shows the wideband timing residuals
for all nine years 2005–2014, indicating when the switch in backends occurred.
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The bottommost panel shows the wideband DMX measurements. If the pulsar
has detected red noise, the second topmost panel shows the whitened residu-
als, which are explained in the text. The second bottommost panel shows the
mean-subtracted wideband (“in-band”) DM measurements on the same scale

as the DMX DMs. Because the wideband DMs from ASP & GASP are usually
completely uninformative, we have not plotted their error bars to reduce clutter.
Also note that the wideband DM uncertainties do not incorporate DMEFAC as
discussed in §4.2.3. All other uncertainties are plotted with the noise parameters
included.

• Every-other figure starting with Figure 4.46 and ending with Figure 4.118 con-
tains a timing comparison plot. The dotted lines in both subplots represent
equality. In the left subplot, “Standard Residual” means the averaged residuals
from fitting the channelized TOAs in A15; i.e., these are the data from the
middle panel of the analogous plot in A15. For pulsars with red noise, these
are the whitened residuals. Similarly, in the right subplot, “Standard DMX”
contains the corresponding DMX values from A15. Both axes on each subplot
have the same scale. All uncertainties are plotted with the noise parameters
included.

• Figures 4.119–4.155 contain plots that compare the timing model parameter
values between our analysis and A15. As mentioned in the text, the plotted
points are the difference between the values, normalized by the correspond-
ing A15 uncertainty (and so are in faux units of “σ”). The uncertainties on
the points are the ratio of our parameter uncertainties to those from A15.
These two numbers are displayed in the plot. The colors are related to a
significance threshold of 3-“σ”: black points exceed this threshold in both
analyses, blue points fall below this threshold in both cases40, red points are
where a parameter is over the threshold only in the wideband analysis, and
green points are where a parameter is over the threshold only in the A15
analysis. The astrometric parameters are: LAMBDA = ecliptic longitude,
BETA = ecliptic latitude, PMLAMBDA = proper motion in the LAMBDA
direction, PMBETA = proper motion in the BETA direction, PX = paral-
lax. The spin parameters are: F0 = spin frequency, F1 = spin-down fre-
quency. The binary parameters for a generic orbit41 are: A1 = size of the
projected semi-major axis, PB = orbital period, OM = longitude of perias-
tron, T0 = epoch of periastron passage, E = orbital eccentricity. The binary
parameters for a low-eccentricity orbit42 become: the Laplace-Lagrange pa-
rameters EPS1 = E sin(OM) and EPS2 = E cos(OM), TASC = epoch of the

40See footnote 37.
41e.g., The “BT” or “DD” models in tempo.
42e.g., The “ELL1” model in tempo.
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ascending node = T0−(OM×PB/2π). The binary evolution parameters are:
XDOT = derivative of A1, PBDOT = derivative of PB, OMDOT = deriva-
tive of OM, EPS1DOT = derivative of EPS1, EPS2DOT = derivative of EPS2.
The Shapiro delay parameters are: SINI = sin of the inclination of the orbit,
M2 = mass of the companion object.

• Every-other figure starting with Figure 4.156 and ending with Figure 4.228
contains concatenated data portraits from each band. In all cases except for the
four mentioned in §4.2.1, the phase-frequency portrait in the left panel consists
of quasi-coherently averaged data from several high S/N epochs. The receiver
band edges are provided in Table 4.2, but can also be seen in the panels on the
right. The other frequency gaps in the left panel are channels that have been
removed because they contained persistent RFI. The data were aligned based
on the fitted Gaussian model, which determines DMs and relative phase offsets
to align the data. The top-left sub-panel contains the average profile, summed
over the entire range of frequencies. The dotted line is the zero-baseline level
and the horizontal line below this is a scale of length 1 ms, with the innermost
thicker box being a scale of length 100 µs. The left-most sub-panel plots the
phase-average of each channel, where each channel has been normalized by the

peak value of that profile. Therefore, the “spectral index” γ at the top of this
sub-panel reflects something like how the overall duty-cycle/pulsed area changes
with frequency, not the flux density. The panels on the right contain the same
aligned data as in the left panel, but they are rescaled. The frequency bands
are separated and the channels zapped of RFI are not plotted. The size of
vertical space that a band occupies is proportional to the size of the dispersive
delay across the individual band relative to the total dispersive delay between
the bottom of all bands to the top of all bands. This scaling compensates for
the linear spacing in the left panel where the low frequency bands that carry
a lot of dispersive delay and profile evolution appear narrow. The top-right
sub-panel contains average profiles color-coded by the band from which they
were averaged. The color bar applies to all phase-frequency panels.

• Every-other figure starting with Figure 4.157 and ending with Figure 4.229
contains the fitted Gaussian component model and residuals. The left panel
shows the model constructed to span the same range as the left panel of the
corresponding portrait plot; the color bar is also the same. The residuals from
subtracting these two panels are in the right panel, which have their own color
bar. In a number of pulsars, you can see residual RFI and, in some cases,
data acquisition artifacts. Nominally, the wideband fitting method should be
relatively immune to these imperfections, whereas they can significantly bias
certain channelized TOAs.
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Fig. 4.8 – J0023+0923 Fig. 4.9 – J0030+0451

Fig. 4.10 – J0340+4130 Fig. 4.11 – J0613−0200

Fig. 4.12 – J0645+5158 Fig. 4.13 – J0931−1902
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Fig. 4.14 – J1012+5307 Fig. 4.15 – J1024−0719

Fig. 4.16 – J1455−3330 Fig. 4.17 – J1600−3053

Fig. 4.18 – J1614−2230 Fig. 4.19 – J1640+2224
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Fig. 4.20 – J1643−1224 Fig. 4.21 – J1713+0747

Fig. 4.22 – J1738+0333 Fig. 4.23 – J1741+1351

Fig. 4.24 – J1744−1134 Fig. 4.25 – J1747−4036
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Fig. 4.26 – J1832−0836 Fig. 4.27 – J1853+1303

Fig. 4.28 – B1855+09 Fig. 4.29 – J1903+0327

Fig. 4.30 – J1909−3744 Fig. 4.31 – J1910+1256
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Fig. 4.32 – J1918−0642 Fig. 4.33 – J1923+2515

Fig. 4.34 – B1937+21 Fig. 4.35 – J1944+0907

Fig. 4.36 – J1949+3106 Fig. 4.37 – B1953+29
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Fig. 4.38 – J2010−1323 Fig. 4.39 – J2017+0603

Fig. 4.40 – J2043+1711 Fig. 4.41 – J2145−0750

Fig. 4.42 – J2214+3000 Fig. 4.43 – J2302+4442
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Fig. 4.44 – J2317+1439
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Fig. 4.45 – Timing summary panels for J0023+0923.

Fig. 4.46 – Comparison subplots for J0023+0923.
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Fig. 4.47 – Timing summary panels for J0030+0451.

Fig. 4.48 – Comparison subplots for J0030+0451.
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Fig. 4.49 – Timing summary panels for J0340+4130.

Fig. 4.50 – Comparison subplots for J0340+4130.
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Fig. 4.51 – Timing summary panels for J0613−0200.

Fig. 4.52 – Comparison subplots for J0613−0200.
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Fig. 4.53 – Timing summary panels for J0645+5158.

Fig. 4.54 – Comparison subplots for J0645+5158.
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Fig. 4.55 – Timing summary panels for J0931−1902.

Fig. 4.56 – Comparison subplots for J0931−1902.
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Fig. 4.57 – Timing summary panels for J1012+5307.

Fig. 4.58 – Comparison subplots for J1012+5307.
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Fig. 4.59 – Timing summary panels for J1024−0719.

Fig. 4.60 – Comparison subplots for J1024−0719.
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Fig. 4.61 – Timing summary panels for J1455−3330.

Fig. 4.62 – Comparison subplots for J1455−3330.
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Fig. 4.63 – Timing summary panels for J1600−3053.

Fig. 4.64 – Comparison subplots for J1600−3053.
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Fig. 4.65 – Timing summary panels for J1614−2230.

Fig. 4.66 – Comparison subplots for J1614−2230.
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Fig. 4.67 – Timing summary panels for J1640+2224.

Fig. 4.68 – Comparison subplots for J1640+2224.
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Fig. 4.69 – Timing summary panels for J1643−1224.

Fig. 4.70 – Comparison subplots for J1643−1224.
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Fig. 4.71 – Timing summary panels for J1713+0747.

Fig. 4.72 – Comparison subplots for J1713+0747.
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Fig. 4.73 – Timing summary panels for J1738+0333.

Fig. 4.74 – Comparison subplots for J1738+0333.
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Fig. 4.75 – Timing summary panels for J1741+1351.

Fig. 4.76 – Comparison subplots for J1741+1351.
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Fig. 4.77 – Timing summary panels for J1744−1134.

Fig. 4.78 – Comparison subplots for J1744−1134.
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Fig. 4.79 – Timing summary panels for J1747−4036.

Fig. 4.80 – Comparison subplots for J1747−4036.
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Fig. 4.81 – Timing summary panels for J1832−0836.

Fig. 4.82 – Comparison subplots for J1832−0836.
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Fig. 4.83 – Timing summary panels for J1853+1303.

Fig. 4.84 – Comparison subplots for J1853+1303.
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Fig. 4.85 – Timing summary panels for B1855+09.

Fig. 4.86 – Comparison subplots for B1855+09.
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Fig. 4.87 – Timing summary panels for J1903+0327.

Fig. 4.88 – Comparison subplots for J1903+0327.
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Fig. 4.89 – Timing summary panels for J1909−3744.

Fig. 4.90 – Comparison subplots for J1909−3744.
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Fig. 4.91 – Timing summary panels for J1910+1256.

Fig. 4.92 – Comparison subplots for J1910+1256.
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Fig. 4.93 – Timing summary panels for J1918−0642.

Fig. 4.94 – Comparison subplots for J1918−0642.
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Fig. 4.95 – Timing summary panels for J1923+2515.

Fig. 4.96 – Comparison subplots for J1923+2515.
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Fig. 4.97 – Timing summary panels for B1937+21.

Fig. 4.98 – Comparison subplots for B1937+21.
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Fig. 4.99 – Timing summary panels for J1944+0907.

Fig. 4.100 – Comparison subplots for J1944+0907.
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Fig. 4.101 – Timing summary panels for J1949+3106.

Fig. 4.102 – Comparison subplots for J1949+3106.
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Fig. 4.103 – Timing summary panels for B1953+29.

Fig. 4.104 – Comparison subplots for B1953+29.
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Fig. 4.105 – Timing summary panels for J2010−1323.

Fig. 4.106 – Comparison subplots for J2010−1323.
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Fig. 4.107 – Timing summary panels for J2017+0603.

Fig. 4.108 – Comparison subplots for J2017+0603.
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Fig. 4.109 – Timing summary panels for J2043+1711.

Fig. 4.110 – Comparison subplots for J2043+1711.
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Fig. 4.111 – Timing summary panels for J2145−0750.

Fig. 4.112 – Comparison subplots for J2145−0750.
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Fig. 4.113 – Timing summary panels for J2214+3000.

Fig. 4.114 – Comparison subplots for J2214+3000.
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Fig. 4.115 – Timing summary panels for J2302+4442.

Fig. 4.116 – Comparison subplots for J2302+4442.
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Fig. 4.117 – Timing summary panels for J2317+1439.

Fig. 4.118 – Comparison subplots for J2317+1439.
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Fig. 4.119 – J0023+0923 Fig. 4.120 – J0030+0451

Fig. 4.121 – J0340+4130 Fig. 4.122 – J0613−0200

Fig. 4.123 – J0645+5158 Fig. 4.124 – J0931−1902
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Fig. 4.125 – J1012+5307 Fig. 4.126 – J1024−0719

Fig. 4.127 – J1455−3330 Fig. 4.128 – J1600−3053

Fig. 4.129 – J1614−2230 Fig. 4.130 – J1640+2224
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Fig. 4.131 – J1643−1224 Fig. 4.132 – J1713+0747

Fig. 4.133 – J1738+0333 Fig. 4.134 – J1741+1351

Fig. 4.135 – J1744−1134 Fig. 4.136 – J1747−4036
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Fig. 4.137 – J1832−0836 Fig. 4.138 – J1853+1303

Fig. 4.139 – B1855+09 Fig. 4.140 – J1903+0327

Fig. 4.141 – J1909−3744 Fig. 4.142 – J1910+1256
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Fig. 4.143 – J1918−0642 Fig. 4.144 – J1923+2515

Fig. 4.145 – B1937+21 Fig. 4.146 – J1944+0907

Fig. 4.147 – J1949+3106 Fig. 4.148 – B1953+29
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Fig. 4.149 – J2010−1323 Fig. 4.150 – J2017+0603

Fig. 4.151 – J2043+1711 Fig. 4.152 – J2145−0750

Fig. 4.153 – J2214+3000 Fig. 4.154 – J2302+4442
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Fig. 4.155 – J2317+1439
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Fig. 4.156 – Concatenated portrait data and average profiles for J0023+0923.
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Fig. 4.157 – Fitted Gaussian component model and residuals for J0023+0923.
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Fig. 4.158 – Concatenated portrait data and average profiles for J0030+0451.
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Fig. 4.159 – Fitted Gaussian component model and residuals for J0030+0451.
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Fig. 4.160 – Concatenated portrait data and average profiles for J0340+4130.
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Fig. 4.161 – Fitted Gaussian component model and residuals for J0340+4130.
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Fig. 4.162 – Concatenated portrait data and average profiles for J0613−0200.
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Fig. 4.163 – Fitted Gaussian component model and residuals for J0613−0200.
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Fig. 4.164 – Concatenated portrait data and average profiles for J0645+5158.
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Fig. 4.165 – Fitted Gaussian component model and residuals for J0645+5158.
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Fig. 4.166 – Concatenated portrait data and average profiles for J0931−1902.
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Fig. 4.167 – Fitted Gaussian component model and residuals for J0931−1902.
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Fig. 4.168 – Concatenated portrait data and average profiles for J1012+5307.
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Fig. 4.169 – Fitted Gaussian component model and residuals for J1012+5307.
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Fig. 4.170 – Concatenated portrait data and average profiles for J1024−0719.
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Fig. 4.171 – Fitted Gaussian component model and residuals for J1024−0719.
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Fig. 4.172 – Concatenated portrait data and average profiles for J1455−3330.
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Fig. 4.173 – Fitted Gaussian component model and residuals for J1455−3330.
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Fig. 4.174 – Concatenated portrait data and average profiles for J1600−3053.



191

Fig. 4.175 – Fitted Gaussian component model and residuals for J1600−3053.
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Fig. 4.176 – Concatenated portrait data and average profiles for J1614−2230.
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Fig. 4.177 – Fitted Gaussian component model and residuals for J1614−2230.
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Fig. 4.178 – Concatenated portrait data and average profiles for J1640+2224.
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Fig. 4.179 – Fitted Gaussian component model and residuals for J1640+2224.
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Fig. 4.180 – Concatenated portrait data and average profiles for J1643−1224.



197

Fig. 4.181 – Fitted Gaussian component model and residuals for J1643−1224.



198

Fig. 4.182 – Concatenated portrait data and average profiles for J1713+0747.
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Fig. 4.183 – Fitted Gaussian component model and residuals for J1713+0747.
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Fig. 4.184 – Concatenated portrait data and average profiles for J1738+0333.
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Fig. 4.185 – Fitted Gaussian component model and residuals for J1738+0333.
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Fig. 4.186 – Concatenated portrait data and average profiles for J1741+1351.
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Fig. 4.187 – Fitted Gaussian component model and residuals for J1741+1351.
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Fig. 4.188 – Concatenated portrait data and average profiles for J1744−1134.
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Fig. 4.189 – Fitted Gaussian component model and residuals for J1744−1134.
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Fig. 4.190 – Concatenated portrait data and average profiles for J1747−4036.
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Fig. 4.191 – Fitted Gaussian component model and residuals for J1747−4036.



208

Fig. 4.192 – Concatenated portrait data and average profiles for J1832−0836.
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Fig. 4.193 – Fitted Gaussian component model and residuals for J1832−0836.
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Fig. 4.194 – Concatenated portrait data and average profiles for J1853+1303.
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Fig. 4.195 – Fitted Gaussian component model and residuals for J1853+1303.
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Fig. 4.196 – Concatenated portrait data and average profiles for B1855+09.
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Fig. 4.197 – Fitted Gaussian component model and residuals for B1855+09.
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Fig. 4.198 – Concatenated portrait data and average profiles for J1903+0327.
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Fig. 4.199 – Fitted Gaussian component model and residuals for J1903+0327.
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Fig. 4.200 – Concatenated portrait data and average profiles for J1909−3744.
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Fig. 4.201 – Fitted Gaussian component model and residuals for J1909−3744.
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Fig. 4.202 – Concatenated portrait data and average profiles for J1910+1256.
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Fig. 4.203 – Fitted Gaussian component model and residuals for J1910+1256.
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Fig. 4.204 – Concatenated portrait data and average profiles for J1918−0642.
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Fig. 4.205 – Fitted Gaussian component model and residuals for J1918−0642.
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Fig. 4.206 – Concatenated portrait data and average profiles for J1923+2515.
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Fig. 4.207 – Fitted Gaussian component model and residuals for J1923+2515.
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Fig. 4.208 – Concatenated portrait data and average profiles for B1937+21.
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Fig. 4.209 – Fitted Gaussian component model and residuals for B1937+21.
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Fig. 4.210 – Concatenated portrait data and average profiles for J1944+0907.
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Fig. 4.211 – Fitted Gaussian component model and residuals for J1944+0907.
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Fig. 4.212 – Concatenated portrait data and average profiles for J1949+3106.
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Fig. 4.213 – Fitted Gaussian component model and residuals for J1949+3106.
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Fig. 4.214 – Concatenated portrait data and average profiles for B1953+29.



231

Fig. 4.215 – Fitted Gaussian component model and residuals for B1953+29.
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Fig. 4.216 – Concatenated portrait data and average profiles for J2010−1323.
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Fig. 4.217 – Fitted Gaussian component model and residuals for J2010−1323.
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Fig. 4.218 – Concatenated portrait data and average profiles for J2017+0603.
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Fig. 4.219 – Fitted Gaussian component model and residuals for J2017+0603.
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Fig. 4.220 – Concatenated portrait data and average profiles for J2043+1711.
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Fig. 4.221 – Fitted Gaussian component model and residuals for J2043+1711.
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Fig. 4.222 – Concatenated portrait data and average profiles for J2145−0750.
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Fig. 4.223 – Fitted Gaussian component model and residuals for J2145−0750.
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Fig. 4.224 – Concatenated portrait data and average profiles for J2214+3000.
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Fig. 4.225 – Fitted Gaussian component model and residuals for J2214+3000.
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Fig. 4.226 – Concatenated portrait data and average profiles for J2302+4442.
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Fig. 4.227 – Fitted Gaussian component model and residuals for J2302+4442.
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Fig. 4.228 – Concatenated portrait data and average profiles for J2317+1439.
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Fig. 4.229 – Fitted Gaussian component model and residuals for J2317+1439.



Chapter 5

Shapiro Delay

in NANOGrav MSPs

Note: The results from this chapter will be published in tandem with other binary MSP results
from the NANOGrav 9-year dataset, e.g. Fonseca et al. (in prep.).
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Abstract

In this chapter, we briefly describe current, on-going efforts in the North American

Nanohertz Observatory for Gravitational Waves (NANOGrav) to extract binary mil-

lisecond pulsar (MSP) parameters — in particular, those that characterize the Shapiro

delay. The Shapiro delay is a relativistic time delay that is a function of the depth

of the gravitational potential traversed and the observed geometry. As such, the

Shapiro delay is maximally realized in highly-inclined binary systems that have the

most massive companion stars. The exemplary Shapiro delay MSP is J1614−2230,

whose heavyweight neutron star was so precisely measured not only because of the

fortuitous combination of hosting a 0.5 M⊙ white dwarf companion and being inclined

at > 89◦, but also because of a directed set of observations (Demorest et al. 2010).

Here, we describe a set of similarly specialized observations that smartly sample the

orbits of NANOGrav MSPs that have unknown or not well determined Shapiro de-

lays. These observations are included in the recent NANOGrav data release paper

(Arzoumanian et al. 2015a). We demonstrate the importance of these particularly

placed TOAs with MSP J2043+1711, which has a newly measured Shapiro delay

thanks to our campaign. Besides the important astrophysical quantities that come

from the Shapiro delay measurements, NANOGrav requires the highest possible tim-

ing precision from its MSPs, which means that accurate determinations of the binary

models are a must.
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5.1 Introduction

In 1964, Irwin Shapiro posited a fourth test of General Relativity (GR)1, which

predicted the existence of the now eponymous delay (Shapiro 1964). The Shapiro

delay can be thought of as the excess travel time incurred by a speed-of-light signal

as a result of having to traverse a gravitational potential. It arises from the appar-

ently different proper times within the potential and not (so much) from geometric

path-length differences. In the original experiment, pulsed radio waves were bounced

off of Mercury and Venus when the Sun was both close and distant to the Earth–

planet line of sight, and the difference between the round-trip times was compared to

the theoretical predictions. Millisecond pulsar (MSP) binaries are natural extrasolar

places to observe this same effect because (1) pulsars produce regular pulsed radio

emission, (2) almost all pulsars that are in binaries are MSPs, (3) radio pulses are

most accurately timed from the MSP population of pulsars, (4) the gravitational po-

tential of MSP companions is sufficient to produce an observable delay, and (5) the

assumption of randomly oriented orbits implies a greater number of systems that are

more highly inclined, which is important for the measurement of the Shapiro delay

parameters, as we will see.

For non-relativistic binaries with small eccentricities — which is the case for all

pulsars studied here (the largest eccentricity being e < 2×10−4) — the Shapiro delay

∆SD takes the form,

∆SD = −2r ln(1 − s sinΦ), (5.1)

where r and s are the “range” and “shape” parameters, respectively, and Φ is the

orbital phase as measured from the ascending node (i.e., Φ = π/2 rad = 0.25 cycle)

1The first three “classical” tests explained the precession of Mercury, observed the deflection of
light by the Sun, and predicted gravitational redshift.
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corresponds to superior conjunction). As post-Keplerian parameters in GR, r and

s take on the physically meaningful values of r = mc T⊙ and s = sin i, where mc

is the companion’s mass in solar masses, T⊙ ≡ GM⊙ c−3 = 4.925 490 947 µs is the

solar mass in temporal units, and i ∈ [0, 90]◦ is the inclination of the binary’s orbital

plane relative to plane of the sky. The dashed line in Figure 5.1 shows the “full”

Shapiro delay signal amplitude for i = 89◦ and mc = 0.2 M⊙ as a function of orbital

phase. From Equation 5.1 we see that the Shapiro delay signal grows linearly with

the companion mass. A Fourier series expansion of Equation 5.1 with respect to Φ

shows that the coefficients of the first two harmonics of the orbital period dominate

in all but the most inclined cases. The number of measurable harmonics will be a

function of the available timing precision as well as i, but in the frequent case of

only two measurable harmonics, the Shapiro delay is completely covariant with the

measurement of the projected semi-major axis xp (= ap sin i, where ap is the semi-

major axis of the pulsar’s orbit) and the eccentricity e (Lange et al. 2001; Lorimer &

Kramer 2005; Freire & Wex 2010). This is evinced in Figure 5.1 by the solid lines,

which show the shape and amplitude of the Shapiro delay after Keplerian orbits

with i = 40, 60, 80, 85, 89◦ have been subtracted. For inclinations less than ∼ 80◦,

the residual structure is essentially sinusoidal when measurement uncertainties are

added. For randomly oriented orbits, the probability distribution of cos i is uniform

and so P(i > i′) = cos i′; for i′ = 80◦, P ≈ 17%.

The small number of MSPs binaries where the Shapiro delay can be well measured

provide three important measurements: i, mc, and the mass of the neutron star mp.

Following Lorimer & Kramer (2005), a rearrangement of Kepler’s Third Law gives
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Fig. 5.1 – The shape and amplitude of the Shapiro delay signal as a function of orbital
phase. The dashed line shows the “full” Shapiro delay (Equation 5.1) for i = 89◦ and
mc = 0.2 M⊙. The solid lines show the sum of the third and higher harmonics of
the Shapiro delay (i.e., “post-fit”, after the Keplerian orbit has been removed) also for
mc = 0.2 M⊙ and i = 40, 60, 80, 85, 89◦ . The measurement of the higher harmonics is the
only way to disentangle the Shapiro delay from usual Keplerian parameters. The gray
regions show the orbital coverage of our observations to constrain the Shapiro delay in
a subsample of NANOGrav MSPs, scaled to an orbital period of 2 days. The amplitude
units are normalized by a typical carbon-oxygen white dwarf companion mass; PTA-
quality MSPs usually yield better than ∼ 1 µs band-averaged TOA uncertainties with
typical NANOGrav observations (see Chapter 4).
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the binary mass function f in solar masses,

f(mp, mc) =
4π2x3

p

P 2
b T⊙

=
(mc sini)3

(mp + mc)2
, (5.2)

where Pb is the binary’s orbital period. The middle quantity is a function of two

normal observables, and so mp is determined uniquely when r and s are measurable.

If not, a minimum companion mass mc,min can be inferred by assuming a typical

pulsar mass (∼1.4 M⊙) and setting i = 90◦.

The values of mc and mp provide important constraints on the evolutionary his-

tories of binary MSPs (e.g., Tauris et al. 2011). There are only two dozen or so

well-measured neutron star masses2, making statistical inferences about the mass

distributions just now feasible (Özel et al. 2012). A collection of i measurements

would allow confirmation of the long-assumed P(cos i) ∝ 1. A bias in this distribu-

tion would arise from pulsars that more frequently beam perpendicular to or along

the axis of orbital angular momentum; either scenario would warrant an interesting

explanation.

Furthermore, neutron star masses provide a unique way to constrain the properties

of matter at supra-nuclear densities (Lattimer & Prakash 2005; Lattimer 2012). Our

earlier measurement of J1614−2230’s mass (1.97 ± 0.04 M⊙ at the time, which was

the most-massive neutron star known) limited significantly the available parameter

space for allowable neutron star matter equations-of-state (EoS; Demorest et al. 2010).

Namely, many of the “softer” and more exotic EoSs were ruled out (Figure 5.2).

Aside from the direct astrophysical benefits of measuring the Shapiro delay, it

is an important effect to characterize in order to minimize the timing residuals. In

2Jim Lattimer keeps a fairly up-to-date list of observed neutron star masses at http://

www.stellarcollapse.org/nsmasses, as does Paulo Freire at http://www3.mpifr-bonn.mpg.de/
staff/pfreire/NS_masses.html.

http://www.stellarcollapse.org/nsmasses
http://www.stellarcollapse.org/nsmasses
http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html
http://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html
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Fig. 5.2 – Neutron star equations of state. Our earlier measurement of J1614−2230’s
mass (red bar) ruled out a significant number of soft and exotic EoSs: blue curves
represent nucleons, pink curves describe nucleons and exotic matter, and green curves
are for strange quark matter. The other colored bars are mass measurements from other
MSPs or double neutron stars. The gray areas are disallowed regions of the parameter
space. Figure from Demorest et al. (2010).
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the remainder of this chapter, we describe a set of specialized observations that we

proposed and made for a subset of MSPs on behalf of the North American Nanohertz

Observatory for Gravitational Waves (NANOGrav) aimed at limiting or measuring

the Shapiro delay. These observations are included in the 9-year data release that

was just submitted by NANOGrav for publication (Arzoumanian et al. 2015a).

5.2 Orbital Campaigns

We proposed to supplement the ongoing, monthly timing observations in NANOGrav

(§4.1.1) with a one-off set of observations to intelligently sample the orbital phases of

several binary MSPs. The MSPs that were included in our subsample met any one

of these criteria: (1) were newly discovered or newly added to NANOGrav, (2) had

“poorly constrained” Shapiro delay parameters, and/or (3) were older MSPs that war-

ranted a new look due to the advent of GUPPI at the Green Bank Telescope (GBT)

and PUPPI at Arecibo (AO) (§4.1.1). Table 5.1 presents our list of Shapiro delay

campaign MSPs; we observed these pulsars with the same telescope and observing

configuration as in the normal NANOGrav timing observations.

We were granted ∼140 hr of observing time between the GBT and AO for these 12

pulsars. We scheduled our observations specifically to sample the orbit at the peaks

and troughs of the post-fit Shapiro delay signal curve for each pulsar; these are the

gray regions in Figure 5.1, shown scaled to an orbital period of 2 days. At the GBT,

we were only granted time on each pulsar to observe conjunction and the two large

troughs on either side of it, which are the most important orbital phases. All of the

observations were carried out between June 2012 and January 2014.

To get a sense of what is expected, Figure 5.3 shows the post-fit Shapiro delay

peak-to-trough amplitude as a function of i and mc. The WRMS timing levels for the
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Table 5.1. Shapiro Delay Campaign Pulsars

Source P Pb WRMS Telescope Notes/Reference
[ms] [d] [µs]

J0613−0200 3.06 1.2 0.229 GB Previously limited [1]
J1012+5307 5.26 0.6 0.254 GB Companion known; previously limited [2,3,4]
J1455−3330 7.99 76.2 1.052 GB No measurement [5]
J1600−3053 3.60 14.3 0.203 GB Weak detection [6]
J1643−1224 4.62 147.0 0.095 GB No measurement [5]
B1855+09 5.36 12.3 0.414 AO Known measurement [7,8]
J1918−0642 7.65 10.9 0.318 GB No measurement [5]
J2017+0603 2.90 2.2 0.057 AO New pulsar; unknown [9]
J2043+1711 2.38 1.5 0.132 AO New pulsar; weak measurement [10]
J2145−0750 16.05 6.8 0.364 GB Previous non-detection/limit [11]
J2302+4442 5.19 125.9 0.769 GB New pulsar; unknown; large mc,min ∼ 0.3 M⊙ [9]
J2317+1439 3.45 2.5 0.259 AO No measurement [5]

References. — [1] Hotan et al. (2006) [2] Callanan et al. (1998) [3] Lange et al. (2001) [4] Lazaridis
et al. (2009) [5] Demorest et al. (2013) [6] Verbiest et al. (2009) [7] Ryba & Taylor (1991) [8] Kaspi et al.
(1994) [9] Cognard et al. (2011) [10] Guillemot et al. (2012) [11] Löhmer et al. (2004a)

Note. — Demorest et al. (2013) is given as a reference for pulsars with no detected Shapiro delay if
they were included in the NANOGrav 5-year data release. “Measurement” here means both Shapiro delay
parameters are determined from timing observations. GB = Green Bank; AO = Arecibo. WRMS values
are the (whitened) wideband residual WRMS from Table 4.5; see important notes about the timing for
these pulsars in §4.2.3.
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best and worst pulsars in the subsample from Table 5.1 are shown as horizontal, red,

dotted lines. For randomly oriented orbits, there is a 50% a priori probability for a

pulsar to have i in the gray region (> 60◦). Based on this figure, we might expect

that the timing of many of the pulsars in the sample would be at least somewhat

informative; at the time of the observations, we predicted 1–3 new Shapiro delay

measurements.

Fig. 5.3 – Post-fit Shapiro delay amplitude from Figure 5.1. The horizontal, red dotted
lines are the WRMS timing residuals for the best and worst pulsars in our subsample.
For the basic assumption P(cos i) ∝ 1, a pulsar has an a priori probability of 50% to
lie in the gray region.

5.3 Observation Results

As a follow-up to the release of the 9-year NANOGrav timing results (Arzou-

manian et al. 2015a), we are carefully investigating the binary parameters for all of

NANOGrav’s binary MSPs. The wideband TOA dataset (Chapter 4) will be ana-

lyzed in parallel. The preliminary wideband timing results for the pulsars discussed
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here are as follows. The null results from the already long-term and well-timed MSPs

J1455−3330, J1643−1224, and J2317+1439 will likely stand. Although the same

can be said for J1012+5307, a more detailed analysis of its results that incorpo-

rates the known companion mass may yield more stringent limits. J2145−0750 and

J2302+4442 still elude detection. The timing models for J0613−0200, J1600−3053,

and J2017+0603 require Shapiro delay parameters3, but only for J1600−3053 are

their values somewhat constrained (J. Ellis, private communication). The masses

and inclination for B1855+09 have improved in precision since earlier measurements

(D. Nice, private communication). Finally, J1918−0642 and J2043+1711 comprise

new, definite measurements of both Shapiro delay parameters4 (E. Fonseca, private

communication).

The influence of the specialized orbital campaign observations for all of the lim-

its/detections is not obvious, but one example is enlightening. For J2043+1711, we

made reduced χ2 (χ2
red) maps of the cos i-mc parameter space, where a timing model

was fit to wideband TOAs from various subsets of observations. In each case, the

best-fit timing model was found with tempo (including Shapiro delay parameters),

and then all parameters were fixed, except for sin i and mc. These two parameters

were varied over a grid of 200 × 200, where χ2
red was evaluated for each coordinate

by tempo. In Figure 5.4 we show the results from including all observations (black),

removing the TOAs from the orbital campaign observations (red), removing just the

conjunction observations’ TOAs (blue), and from removing n random observations

(green), where n equals the number of TOAs from the conjunction observations5.

3As determined by an F -test; see §4.1.1.
4Note that the discovery paper reporting J2043+1711 made a significant detection of the ortho-

metric Shapiro delay amplitude h3, which implies a large i and the presence of higher harmonics
(Freire & Wex 2010; Guillemot et al. 2012).

5J2043+1711 was a new NANOGrav source at the start of our campaign; the number of wideband
campaign TOAs is ∼30% of the total (24/77), with half of those being TOAs obtained near superior
conjunction.
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The contours demarcate the locus of points that are ∆χ2
red = 1 from the minimum

χ2
red point. The top and side panels show the maximum likelihood curves for the

corresponding parameter (i.e., these are cuts through the parameter space at the

maximum likelihood point marked by an ×). The likelihood L was calculated from

the outputted tempo χ2 value as L ∼ exp(−0.5χ2).

Fig. 5.4 – Reduced χ2 maps for the Shapiro delay parameters of J2043+1711. The
contours delineate a change of one in the reduced χ2. The top and side panels plot
likelihood curves for the maximum likelihood points (indicated by ×). The influence
of the campaign observations, particularly the conjunction observations, is visible. The
same number of TOAs were used to determine the blue and green curves; the only
difference is that in the case of the green curves, the TOAs were randomly removed.

From the figure we can see that the TOAs obtained from the scheduled conjunction

observations (all of which were within 1% of superior conjunction) play a critical role

in constraining the Shapiro delay parameters, and especially the “shape” parameter.

When including all observations, the 68% confidence intervals are cos i = 0.113+0.030
−0.024,
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i = 83.493+1.389
−1.742, and mc = 0.170+0.012

−0.012. The maximum likelihood point corresponds

to a pulsar mass of the canonical value 1.35 M⊙, which is in agreement with the weak

constraints from Guillemot et al. (2012), but is less than their inference of a “heavy

neutron star” (> 1.7 M⊙) obtained when they leverage the Pb–mc relation of Tauris

& Savonije (1999) to constrain the possible values of mc. Furthermore, the WRMS

at the maximum likelihood when including all observations was 45% lower than when

excluding the campaign observations. Such a drastic improvement is surely a result

of the relatively highly inclined orbit (i > 80◦), the precise timing (J2043+1711 has a

median wideband TOA uncertainty of ∼200 ns), and a relatively short orbital period

of just 36 hr (our carefully chosen observations covered ∼30% of the orbit, equivalent

to widening the gray bars in Figure 5.1 by 50%), but the example remains instructive.

An analysis of the channelized TOA data set using all observations gives essentially

the same values for the maximum likelihood points and confidence intervals, but the

error ellipse is somewhat more inclined (J .Ellis, private communication). It is not

clear why our simple likelihood analysis of the wideband TOAs here should show less

covariance in the parameters.

5.4 Project Future

The robust determination of the Shapiro delay parameters in the NANOGrav 9-

year data set is still very much a work in progress between a number of people in

NANOGrav. The end goal here is to amass a set of robust limits and measurements,

no matter how imprecise, for all of the NANOGrav MSPs. The first step for our

“wideband” version of the 9-year data set is to ensure robust noise modeling (see

§4.2.3) and compare these sensitive non-linear binary parameters to those from the

standard TOA analyses. One other open question is how to best place prior proba-
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bility distributions on mc, sin i, and mp, to get robust inferences on these parameters

from a full Bayesian analysis. After these things are resolved, we will be able to

quickly infer the statistical consistency of the cos i distribution with the assumed flat

distribution.

As it turns out, our expectation of 1–3 new Shapiro delay detections from our MSP

subsample was on point. It is worthwhile to ensure that we have a fair amount of

coverage around the precise phase of conjunction, since this appears to be the best way

to meaningfully constrain the Shapiro delay, and especially in low inclination systems.

Measuring the parametric Shapiro delay amplitude (h3, Freire & Wex 2010) will

determine whether or not any of the remaining pulsars have Shapiro delay harmonics

in their residuals, leading to possible additional campaigns. The addition of new

Shapiro delay measurements is slow, since one is limited by the available timing

precision and the time it takes to cover an orbit. However, we have shown that

routine Shapiro delay campaigns are a straightforward way to obtain better timing

and quick scientific returns for any new MSPs that get added into the array.



Chapter 6

Simultaneous Multi-band Radio &

X-ray Observations of

the Galactic Center Magnetar

SGR 1745−2900

Note: This chapter comprises a paper of the same name that was accepted by The Astrophysi-

cal Journal on 8 June 2015, Pennucci et al. (2015, arXiv:1505.00836).

http://adsabs.harvard.edu/abs/2015arXiv150500836P
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6.1 Project Background: The NANOGrav PIRE

The NANOGrav PIRE program1 facilitated a travel program to “partner IPTA

institutions”, which I elected to participate in. After having attended two conferences

in Sardinia near the site of the nascent 64-m Sardinia Radio Telescope, I decided to

collaborate with Italian astronomers in the hopes of gaining insight into the first

steps of a brand new telescope, as well as work on my language skills. I was enabled

to spend three months at the Osservatorio Astronomico di Cagliari from January–

March 2014. Unfortunately, the telescope’s dual L/P-band receiver and wideband

backend were not yet fully functional, so nothing materialized from the prospect of

me exploring the new data with my wideband timing/modeling scheme. However, I

was given this interesting magnetar project to work on, which turned out to have a

host of unexpected results.

This chapter represents the end product from this PIRE exchange, and it happens

to fit quite nicely within the wideband context of this dissertation. J1745−2900

is a slow pulsar (a magnetar), whereas I had only considered MSPs up until this

point. All of the interesting ISM measurements in this chapter were made possible by

the broadband radio observations with GUPPI. The large scattering timescale, the

variable scattering index, and the potentially frequency-dependent dispersion measure

all required innovation and that I augment my modeling/timing codes.

Besides the sections on the X-ray reduction/spectral analysis (completed by P.

Esposito) and the discussion of the magnetar in context (written by N. Rea), the

work is entirely mine. The co-authors on the paper are: Andrea Possenti, Paolo

Esposito, Nanda Rea, Daryl Haggard, Frederick Baganoff, Marta Burgay, Francesco

Coti Zelati, GianLuca Israel, and Toney Minter.

1http://nanograv.org/pire/ (NSF PIRE Grant 0968296)

http://nanograv.org/pire/
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Abstract

We report on multi-frequency, wideband radio observations of the Galactic Center

magnetar (SGR 1745−2900) with the Green Bank Telescope for ∼100 days immedi-

ately following its initial X-ray outburst in April 2013. We made multiple simulta-

neous observations at 1.5, 2.0, and 8.9 GHz, allowing us to examine the magnetar’s

flux evolution, radio spectrum, and interstellar medium parameters (such as the dis-

persion measure (DM), the scattering timescale and its index). During two epochs,

we have simultaneous observations from the Chandra X-ray Observatory, which per-

mitted the absolute alignment of the radio and X-ray profiles. As with the two other

radio magnetars with published alignments, the radio profile lies within the broad

peak of the X-ray profile, preceding the X-ray profile maximum by ∼0.2 rotations.

We also find that the radio spectral index γ is significantly negative between ∼2 and

9 GHz; during the final ∼30 days of our observations γ ∼ −1.4, which is typical of

canonical pulsars. The radio flux has not decreased during this outburst, whereas the

long-term trends in the other radio magnetars show concomitant fading of the radio

and X-ray fluxes. Finally, our wideband measurements of the DMs taken in adjacent

frequency bands in tandem are stochastically inconsistent with one another. Based

on recent theoretical predictions, we consider the possibility that the dispersion mea-

sure is frequency-dependent. Despite having several properties in common with the

other radio magnetars, such as LX,qui/Lrot . 1, an increase in the radio flux during

the X-ray flux decay has not been observed thus far in other systems.
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6.2 Introduction

Magnetars are exotica among the exotic: whereas other pulsars are sustained by

their stored angular momentum, the primary energy source that powers this special

class of objects is likely the neutron star’s immense magnetic field (Mereghetti et al.

2015). The field strengths take on the highest values ever inferred, typically > 1012 G

and even up to ∼ 1015 G. According to the McGill Online Magnetar Catalog2 (Olausen

& Kaspi 2014), there are 28 known magnetars, of which only four have displayed

pulsed radio emission.

SGR 1745−2900 (J1745−2900, hereafter) is the most recent addition to the small

collection of magnetars with observed pulsed radio emission (the “radio magne-

tars”, to which we will refer by their PSR names: J1809−1943 (XTE 1810−197),

J1550−5418 (1E 1547.0−5408), & J1622−4950 (Camilo et al. 2006, 2007b; Levin

et al. 2010)). On 25 April 2013, one day after the XRT aboard the Swift satellite

detected flaring activity coincident with the Galactic Center (Degenaar et al. 2013),

a short X-ray burst was observed by Swift/BAT showing characteristics similar to

those usually observed from soft gamma-ray repeaters (Kennea et al. 2013c). Shortly

thereafter, observations from the NuSTAR satellite identified the source as a mag-

netar with a Ps = 3.76 s spin period, and its radio pulsations were subsequently

seen by the Effelsberg 100-m Telescope (Mori et al. 2013a,b; Eatough et al. 2013a).

J1745−2900 was soon physically associated with the Galactic Center, located only

∼2.5” away from Sagittarius A* (Sgr A*) with a neutral hydrogen column density

and dispersion measure (DM) consistent with being within ∼2 pc of the Milky Way’s

central black hole (Eatough et al. 2013b; Rea et al. 2013).

Early determinations of its spin-down Ṗs put J1745−2900 squarely within the

2http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html
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magnetar population, having an inferred magnetic field strength at the equator Bs ∼

3.2 × 1019 G
√

PsṖs ∼ 1.6 × 1014 G, a characteristic age τc ∼ Ps/(2Ṗs) ∼ 9 kyr,

and a spin-down luminosity of Ė = Lrot = 3.95 × 1046 erg s−1(P−3
s Ṗs) ∼ 4.9 ×

1033 erg s−1 (Rea et al. 2013). However, its estimated quiescent X-ray luminosity of

LX,qui < 1034 erg s−1 (Coti Zelati et al. 2015) may place J1745−2900 on the side of

LX,qui/Lrot < 1, opposite the “classic magnetars” but alongside the other three radio

magnetars, high-B pulsars, and radio pulsars with X-ray emission (Rea et al. 2012).

Given the unique environment in which J1745−2900 resides, the detection of its

radio pulses is somewhat surprising. Indeed, numerous surveys of the Galactic Center

region covering ∼1–20 GHz have failed to find a pulsar within the central parsec

(most recently, Johnston et al. 2006; Deneva et al. 2009; Macquart et al. 2010; Bates

et al. 2011; Siemion et al. 2013). The discovery of this single magnetar has led to

a windfall of implications for future discoveries (Chennamangalam & Lorimer 2014;

Dexter & O’Leary 2014; Macquart & Kanekar 2015). Because of its proximity to

the Galactic Center, J1745−2900 has the largest DM (1778 cm−3 pc) and rotation

measure (−6.696 × 104 rad m−2) of any known pulsar (Eatough et al. 2013b). The

predicted value for the scattering timescale at 1 GHz, based on empirical relationships

given its DM, is ∼ 1000 s (Krishnakumar et al. 2015; Lewandowski et al. 2015a),

meaning that J1745−2900 would be undetectable at frequencies less than ∼5 GHz.

The situation is exacerbated by the presence of an additional scattering screen in the

Galactic Center (Cordes & Lazio 1997). Normally, the prospect of detecting distant

radio pulsars above several GHz is bleak, since their average spectral index is ∼ -1.4

(Bates et al. 2013). However, because the other radio magnetars have flat/inverted

spectra, one might expect to detect J1745−2900’s unscattered pulse profile at high

frequencies. In the analyses that follow, we will reiterate the finding that J1745−2900
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has a significantly smaller scattering timescale than predicted (Spitler et al. 2014),

and will show that J1745−2900 was much brighter at lower frequencies, having a very

negative spectral index some 100 days after the onset of its outburst, even though

more recent observations by Torne et al. (2015) showed the spectral index has since

flattened.

In this paper, we analyze multi-frequency radio data over the first ∼100 days after

J1745−2900’s discovery, during which time there were two additional Swift/BAT-

detected bursts on 7 June 2013 and 5 August 2013 (Kennea et al. 2013a,b). For two

of our epochs, which bracket the third burst by ∼1 week on either side, we have

simultaneous Chandra observations. These observations allow us to find the absolute

alignment of the radio and X-ray profiles, and to look for correlated events. We

comment on the spin evolution and timing, and examine the profile stability, the

radio flux evolution, and the radio spectrum. Finally, we make global models of the

profile evolution across the low frequency bands in order to examine the temporal and

frequency dependencies of the scattering timescale and dispersion measure. We then

discuss characteristics of this source in comparison with other radio-loud magnetars.

6.3 Observations

6.3.1 Radio

We made early detections of J1745−2900 during fourteen observing epochs with

the 100-m Robert C. Byrd Green Bank Telescope (GBT) in three different frequency

bands with various overlap: 1.1–1.9 GHz (5 epochs), 1.6–2.4 GHz (7 epochs), and

8.5–9.3 GHz (11 epochs) (PI: A. Possenti). Because each observation covers a large

bandwidth, we refer to each set of data based on the IEEE radio band for which each
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of the receiver systems is named (“L-band”, “S-band”, or “X-band”, respectively),

instead of referring to specific (central) frequencies. Table 6.1 contains details of

the observations. In all cases, we observed using the Green Bank Ultimate Pulsar

Processing Instrument (GUPPI3, DuPlain et al. 2008) in “incoherent search mode”,

recording dual-polarization time-series data in 2048 frequency channels with a tem-

poral resolution of 0.65536 ms.

Each epoch’s data were folded with the pulsar software library dspsr4 using a

nominal ephemeris with a constant spin frequency (see §6.4.3) and the Chandra-

determined position αJ2000.0 = 17h45m40.s169, δJ2000.0 = 29◦00′29.′′84 (Rea et al.

2013). The data were initially folded into 1 min subintegrations, with 2048 profile

phase bins across 128 frequency channels. We adopted the published dispersion mea-

sure value of 1778 cm−3 pc for averaging frequency channels together (Eatough et al.

2013b). Persistent, narrow-band radio frequency interference (RFI) was excised au-

tomatically; any remaining significantly corrupted channels or subintegrations were

removed from the data by hand.

Calibration scans were taken for each observation using the local noise diode,

pulsed at 25 Hz while on source. We recorded on- and off-source scans of a standard

flux calibrator (QSO B1442+101) in each frequency band only during the final epoch

(MJD 56516). We have used this one set of flux calibration scans to calibrate the

whole data set. Standard programs from the PSRCHIVE5 pulsar software library

(Hotan et al. 2004; van Straten et al. 2012) were used to calibrate the absolute flux

density scale of the noise diode, which is then used to determine the magnetar’s flux

density6.

3www.safe.nrao.edu/wiki/bin/view/CICADA/NGNPP
4http://dspsr.sourceforge.net/
5http://psrchive.sourceforge.net/
6The PSRCHIVE calibration process produced unphysical results for the earliest S-band detec-

tion (MJD 56424); we have calibrated it by using an approximation based on the measured S-band

www.safe.nrao.edu/wiki/bin/view/CICADA/NGNPP
http://dspsr.sourceforge.net/
http://psrchive.sourceforge.net/
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Table 6.1. J1745−2900: Summary of GBT Observations

UTC MJD Bands Approx. Length
Epoch Observed [min]

2013-05-04 56416 X 20
2013-05-12 56424 S*,X 122,200
2013-05-13 56425 X 60
2013-05-14 56426 X 49
2013-05-17 56429 S,X 70,53
2013-05-23 56435 X 50
2013-05-30 56442 X 58
2013-06-21 56464 X 54
2013-07-14 56487 X 71
2013-07-15 56488 L,S 120,132
2013-07-27 56500 L,S,X 186,108,68
2013-07-28 56501 L,S* 133,117
2013-08-03 56507 L,S 112,75
2013-08-12 56516 L,S,X 120,60,56

Note. — The listed dates and MJDs for the epochs
are representative of the majority of the epoch, not the
start time; observations on the same day were taken in
tandem. The two boldfaced epochs are those for which
we have simultaneous observations with Chandra. The
lower half (400 MHz) of the two S-band observations
with an asterisk were corrupted and unusable. The
horizontal lines separate the epochs during which the
three observed types of X-band profile are seen (see
§6.4.2 and Figure 6.2).
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The combination of the large amount of observed scattering (§6.4.5), the pulsar’s

spectrum (§6.4.4, Figure 6.7), receiver roll-off, and the presence of gain variations

(see below) rendered significant portions of the ends of L-band useless. Namely, there

was no pulsed signal in the lower 300 MHz portion of L-band, which we masked from

further analysis, along with the top 50 MHz (which is part of the overlap with S-

band). In combination with the narrow-band RFI, this left less than ∼400 MHz of

clean, usable bandwidth. Similarly, at S-band we had to remove the lower ∼100 MHz

and the upper ∼25 MHz, and in total ∼625 MHz of usable band remained7. Only 3%

of the data was clipped from either end of X-band, with a total of 10% removed. We

took these seemingly draconian measures to offset the original data quality and to

ensure that the time- and frequency-averaged profiles were of reasonably high quality

(e.g., see Figure 6.1). This was enabled by the source’s relatively large flux density.

The data quality situation at X-band was still more complicated. As also noted

by Lynch et al. (2014) in their investigation of this magnetar, large gain variations

on timescales from a fraction of a pulse period to several seconds (visible in the time-

series data) are prevalent in X-band at the GBT, when pointed at the Galactic Center.

The variations did not (necessarily) integrate away over hour-long observations and

are representative of a stochastic red-noise process. We attribute these variations

to changes in atmospheric opacity (Lynch et al. 2014) and/or small pointing errors,

noting a strong resonance in the GBT X-band pointing very near 0.3 Hz8. The

gain variations would be manifested by the relatively small beam of X-band (∼1.4′,

system equivalent flux density and the radiometer equation (Lorimer & Kramer 2005, cf. §7.3.2,
Equation 7.12). The result is reasonable, given that the next S-band observation five days later has
a comparable flux density (see Figure 6.6).

7In two epochs, however, instrument problems left only half of S-band viable. See Table 6.1.
8Even though the average pointing errors at X-band are only on the order of sev-

eral arcseconds at mid-elevations and mild wind conditions, the power spectrum in eleva-
tion offset shows resonances overlapping with the magnetar’s spin frequency (0.27... Hz).
See http://www.gb.nrao.edu/~rmaddale/GBT/Commissioning/Pointing_Gregorian_HighFreq/

PntStabilityXBand.pdf for details.

http://www.gb.nrao.edu/~rmaddale/GBT/Commissioning/Pointing_Gregorian_HighFreq/PntStabilityXBand.pdf
http://www.gb.nrao.edu/~rmaddale/GBT/Commissioning/Pointing_Gregorian_HighFreq/PntStabilityXBand.pdf
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Fig. 6.1 – Examples of L- and S- band profiles averaged over all epochs. The profiles
are shown with 1024 phase bins for clarity. These data are aligned via a wideband
portrait model, as described in §6.4.5. In general, the un-averaged profiles were also of
good quality, with only minor systematics in the baseline. The total bandwidth covered
across these two bands is about 1 GHz, from ∼1.4 to 2.4 GHz; 25 MHz of data were
averaged for each of these profiles, with their center frequencies shown. The profiles
were very well described by a single scattered Gaussian component, and so we do not
over-plot the wideband model. The vertical dotted lines show examples of on-pulse
regions used for the flux density measurements. See §6.4.4 for details.
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compared to ∼6′ and ∼9′ for S- and L-band) oscillating over the crowded, bright

Galactic Center (the central parsec extends ∼0.4′, and the separation of J1745−2900

from Sgr A* is only ∼0.04′ (Rea et al. 2013)). Additionally, it is likely that the baseline

variations are much less prominent at low frequencies because they act as “zero-DM”

signals that get smeared out when the pulsar’s signal is dedispersed. Lynch et al.

(2014) also state that the effect may be a function of elevation, which fits with our

pointing-resonance hypothesis, since the influence of variable elements like the wind

will be a function of elevation. The persistence and variability of these variations can

be seen in Figure 6.2.

The analyses that follow utilized these folded profiles in a variety of reduced forms.

Unless otherwise noted, the reduced radio data have 2048 profile bins (∼7.2 ms per

bin), 32 frequency channels (25 MHz per channel), and 5 min subintegrations; in this

work, we only consider the total intensity profiles.

6.3.2 X-ray

During two of our radio epochs, MJD 56500 and MJD 56516, we obtained simul-

taneous observations of J1745−2900 with the Chandra X-ray Observatory (Obs. IDs

15041 & 15042; PI: D. Haggard). Table 6.2 contains details of the X-ray observations

(for further details see Coti Zelati et al. 2015). The field of the first observation is

shown in Figure 6.3; the second observation was essentially the same. In each obser-

vation, J1745−2900 was positioned on the back-illuminated chip S3 of the Advanced

CCD Imaging Spectrometer (ACIS, Garmire et al. 2003) instrument. The data were

reprocessed with the Chandra Interactive Analysis of Observations software package

(ciao, version 4.6, Fruscione et al. 2006) and the calibration files in the caldb release

4.5.9.
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Fig. 6.2 – Examples of time- and frequency-averaged X-band profiles. The profiles
are shown with 1024 phase bins for clarity. The baseline variations were removed on
a profile-to-profile basis by fitting a high degree polynomial (red dashed lines) to the
off-pulse region (outside the dotted lines) in order to make measurements of the flux
density (see §6.4.4). The on-pulse phase window varied in size between about 6 and
8%. The profile evolved monotonically from one “type” to the next (see §6.4.2 and
Table 6.1).
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Table 6.2. J1745−2900: Summary of Simultaneous Chandra Observations

Obs. ID Radio epoch Exposure time Net source RMS pulsed
[MJD] [ks] counts [103] fraction [%]

15041 56500 45.4 15.7 28.8 ± 1.5
15042 56516 45.7 14.4 28.9 ± 1.8

Note. — The 1σ uncertainties for the RMS pulsed fractions
were determined from Monte Carlo simulations (cf. Gotthelf et al.
(1999)). By another measure, the pulsed fractions — defined as the
difference between the profile maximum and minimum divided by
their sum — are ∼48%. The folded profiles are shown in Figure 6.5.

Fig. 6.3 – Chandra field of J1745−2900 for observation 15041. 1 ACIS pixel = 0.492′′.
The source counts were taken from the central-most encircled region (red circle). Back-
ground counts were extracted from the annulus between the outer two (yellow) circles,
excluding the area marked as “Sgr A*”. We account for pile-up as described in §6.3.2.
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In both observations, J1745−2900 was bright enough to cause pile-up in the ACIS

detector. A “pile-up map” created with the ciao tool pileup map confirmed that mild

pile-up was present. Exclusion of data near the center of the point-spread function

(PSF) from the analysis would have resulted in the loss of too many photons (63%

of the source counts were in the two central pixels). Moreover, the external part of

the PSF contained a substantial number of counts from Sgr A*. We thus decided to

proceed as follows.

We extracted the source counts from a circular region centred on J1745−2900

with a 1.5′′ radius (see Figure 6.3); this region includes the piled-up events. This area

covers ∼85% of the Chandra PSF (encircled energy fraction) at 4.5 keV. A larger

radius of 2–2.5′′ would let in more counts from Sgr A* and would only marginally

increase the encircled energy fraction. Because of the complex environment, the

background spectrum needed to be extracted close to the source. We used a thin

annulus (with radii of 2′′ and 4′′), excluding a bright area associated with Sgr A*.

The spectra, the ancillary response files and the spectral redistribution matrices were

created using specextract. Following Rea et al. (2013), we adopt a pure blackbody

for the spectral shape. We corrected the spectra using the pile-up model by Davis

(2001), as implemented in the modeling and fitting package sherpa (Freeman et al.

2001). The pile-up fraction, estimated by fitting the jdpileup model, is 3.7% for the

first observation, and 4.1% for the second. We did not attempt any correction of the

light curves; the pile-up fraction is modest and, in general, pile-up affects spectra more

than it does light curves and pulse profiles9. The spectral model fits were acceptable

only when the pile-up model component was included. A summary of the spectral

fits is given in Table 6.3.

9This is true unless the pulse profiles are strongly dependent on energy, which is not the case for
J1745−2900, though we refer the reader to Coti Zelati et al. (2015) for further details.
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Table 6.3. J1745−2900: Chandra Spectral Results

Obs. ID µa f a NH kT b Rb Observed fluxc Luminosityc χ2
red (dof)

[1023 cm−2] [keV] [km] [10−12 erg cm−2 s−1] [1035 erg s−1]

15041 0.50+0.31
−0.05 99.8% 1.26 ± 0.03 0.82 ± 0.01 2.34+0.13

−0.17 8.9 ± 1.2 3.2+0.4
−0.3 1.00 (288)

15042 0.48+0.25
−0.08 97.1% 1.23 ± 0.03 0.83 ± 0.01 2.16+0.13

−0.16 8.1+1.4
−1.1 2.8 ± 0.4 1.00 (287)

aParameters of the jdpileup sherpa pile-up model; µ is the grade-migration parameter and f is the fraction of
the PSF treated for pile-up, required to be in the range 85–100%. For details, see Davis (2001) and “The Chandra

ABC Guide to Pileup”.

bThe blackbody temperature and radius are calculated at infinity and assuming D = 8.3 kpc (Genzel et al. 2010),
which is assumed throughout this work.

cIn the 0.3–8 keV energy range; for the luminosity we again assumed D = 8.3 kpc.

Note. — The abundances used in the absorbed blackbody model are those of Anders & Grevesse (1989) and
photoelectric absorption cross-sections are from Balucinska-Church & McCammon (1992). See Coti Zelati et al.
(2015) for a complete treatment of these observations in the context of a long-term X-ray monitoring campaign.
Parameter uncertainties in the table are 1σ.
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6.4 Results

6.4.1 Transient Events

J1745−2900 is known to show narrow individual pulses (Spitler et al. 2014; Bower

et al. 2014; Lynch et al. 2014), similar to the radio magnetar J1622−4950 (Levin

et al. 2012). We performed a cursory analysis of J1745−2900’s individual pulses in

our X-band data, seeking only to find anomalous burst-like events in the radio data

that might be coincident or correlated with X-ray features or flares. For this, we

took two approaches. In the first case, we folded the raw data into single-rotation

integrations, approximately maintaining the original temporal resolution, averaging

over frequency, and summing the polarizations. These data were inspected visually.

In the second case, we analyzed the raw data with the Presto10 pulsar software

package. Here, we applied an RFI mask to the raw data with rfifind. We then made

a dedispersed11, frequency-averaged time-series with prepdata for each X-band epoch,

and searched for single pulses with the boxcar-convolution algorithm implemented in

single pulse search.py. We repeated this process on the unmasked raw data.

Single pulses were detected; indeed, one to several pulses are visible by eye during

almost every rotation. However, we saw no anomalously large single pulses or other

bursts. The distributions of estimated single pulse energies all peak at .1 times

the average profile energy and were inconsistent with power-law distributions. The

phases of the single pulse arrival times were consistent with occuring within the on-

pulse window, and the distributions of the resolved single pulse widths peaked near

3-4 samples ≈ 2 ms, in agreement with the X-band scattering timescales found by

10http://www.cv.nrao.edu/~sransom/presto/
11We used the Eatough et al. (2013b) DM of 1778 cm−3 pc, and compared the results to those

from times-series dedispersed at 0 cm−3 pc and twice the nominal DM in order to discriminate
between transient RFI and candidate pulses.

http://www.cv.nrao.edu/~sransom/presto/
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Bower et al. (2014).

Similarly, the (unfolded) X-ray light curves during the two simultaneous observa-

tions, binned from 0.5 to 5000 s, were featureless and constant. The χ2 probability of

constancy was high for both observations, regardless of the choice of binning (>30%

and frequently approaching 100%). Due to the uniformly poor quality of the X-band

data as previously described, we refrain from further analysis or discussion of this

aspect of J1745−2900 and direct the reader to the observations of its X-band single

pulses as observed with the Very Large Array and the GBT in Bower et al. (2014)

and Lynch et al. (2014), respectively.

6.4.2 Profile Variability

Figure 6.2 shows examples of the three general types of observed X-band profiles,

as well as corresponding examples of our baseline removal and on-pulse determination.

The transition between “Type 1”, with a single main component having a trailing-

side shoulder and a more quickly rising leading edge, and “Type 2”, with the main

component having a leading-side shoulder and a nub feature on the trailing side,

happens more than three weeks after the X-ray burst on MJD 56407 and more than

two weeks before the burst on MJD 56450. The “Type 1” shape was seen as early

as a week after the discovery (Eatough et al. 2013a) and published in Eatough et al.

(2013b). Similarly, the transition between “Type 2” and “Type 3”, which has a larger

two-peaked component, happened more than two weeks after the burst on MJD 56450

and more than three weeks before the burst on MJD 56509. For these reasons, we

do not associate the profile types (which are most likely not absolutely discretized)

with the observed X-ray bursts. Within a single observation, the profile shape did

not change between 5 min subintegrations.
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Lynch et al. (2014) also documented the time-variability of J1745−2900’s X-band

profile as seen with the GBT. As their first observation is coincident with our last ob-

servation, they have also seen the “Type 3” shape, which persists and evolves during

most of what they have labeled a “stable state”. This “stable state” is character-

ized by relatively smooth profile transitions, a gradual flux evolution, and a phase-

connected timing solution — all in contrast to what they call an “erratic state”,

which is onset sometime after MJD 56682. Later in their observations, during epochs

with MJDs 56794 and 56865 (both in the “erratic-state”), they see a profile resem-

bling what we have labeled “Type 1”. We note that we did not witness any of

the very sporadic profile variability seen in Lynch et al. (2014) associated with the

“erratic state” (e.g., the drastic profile changes seen in their last two observations,

separated by only eleven days), but rather we observed each of these three types only

for a single interval of time.

6.4.3 Timing

Between having bursts, glitches, unstable profiles, and timing noise, magnetars

are notoriously some of the hardest pulsars to time (cf. the original radio magnetar

J1809−1943 (Camilo et al. 2006), or see a recent review of magnetars in Mereghetti

(2013)). As is evident from the X-ray and radio timing in Coti Zelati et al. (2015),

Lynch et al. (2014), and Kaspi et al. (2014), obtaining a single phase-connected timing

solution for J1745−2900 is difficult, due to a significant level of timing noise. Here,

we measure an overall average spin-down for the purpose of summing the data in each

epoch.

Pulse times-of-arrival (TOAs) were measured by cross-correlating the time- and

frequency-averaged data profiles with smoothed, “noise-free” template profiles using
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standard PSRCHIVE routines. The templates are generated by arbitrarily aligning

and averaging all of the data for which the template is used. Single templates were

used for the L- and S-band data, but three separate templates were used for X-band,

depending on the profile observed, as discussed in §6.4.2. Arbitrary phase offsets

were fit between TOAs measured from all of the different templates as part of the

timing models. These phase offsets serve to align the template profiles, but do so

indiscriminately with respect to pulse broadening from interstellar scattering; this

has the effect of biasing DM estimates if one tries also to measure the dispersive

delay between TOAs of different frequencies. See §6.4.5 for our DM measurements

based on wideband modeling of the L- and S-band data.

Figure 6.4 shows the measured values of the spin frequency f as a function of time.

The average measured spin-down of ḟavg = −8.3(2) × 10−13 Hz s−1 was sufficient to

average the data in each epoch with negligible smearing for the flux measurements

(§6.4.4), and is a reasonable approximation for the overall trend in the spin evolu-

tion12. This average value also lies between the two ḟ values presented in Table 2 of

Kaspi et al. (2014) for the same range of dates.

Although we are not interested in a full timing solution for these data in this work,

we found corroborative results when following the suggestion in Kaspi et al. (2014)

that there is an abrupt change in ḟ around the time of the Swift/BAT-observed X-ray

burst on MJD 56450. Namely, while a single, predictive timing solution was not found,

our pre- and post-burst TOAs are described by two simple phase-coherent solutions

with parameters ḟpre = −5.005(1)× 10−13 Hz s−1, ḟpost = −9.4799(5)× 10−13 Hz s−1,

and f̈post = −2.696(6) × 10−20 Hz s−2. These values are in good agreement with

those in Coti Zelati et al. (2015), Kaspi et al. (2014), and Rea et al. (2013), although

12Quantities in parentheses represent the 1σ uncertainty on the last digit in the respective mea-
surement throughout the paper.
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Fig. 6.4 – Average spin evolution of J1745−2900. The three vertical dotted lines cor-
respond to the three X-ray bursts detected by Swift/BAT. The two vertical grey bars
cover our Chandra observations. Measurements from the two early S-band observa-
tions are not included, nor from the X-band epoch on MJD 56425, as they were very
significant outliers. The quoted uncertainty does not include the residual scatter.

we were not sensitive to f̈pre. We could only obtain a single phase-connected timing

solution for all of the TOAs by using five spin frequency derivatives, which is not a

predictive ephemeris.

Profile Alignment

In Figure 6.5, we present the absolute alignment between the Chandra 0.3–8 keV

X-ray profiles and the GBT radio profiles in L-, S-, and X-bands. We determined an

independent ephemeris for each of the two epochs from the radio data by fitting TOAs

from each day for only the spin frequency, fixing the spin-down parameter at the aver-

age value reported above. These TOAs were measured from the frequency-averaged

data with 5 min subintegration resolution. The phase-zero time was referenced to

the arrival of infinite-frequency radiation at the Solar System barycenter, which as-

sumes a constant dispersion measure of 1778 cm−3 pc between the two observations.

The X-ray photon arrival times were barycentered also using the sky position given
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in §6.3.1 and the JPL Planetary Ephemeris de-405. These events were folded into

pulse profiles with 64 phase bins using the corresponding epoch-specific ephemeris by

the prepfold program of Presto. The alignment based on folding using a single

ephemeris for both epochs — either the post-burst or the multiple frequency deriva-

tive ephemeris — yielded indistinguishable results. This is reasonable, since the RMS

timing residual from either of those ephemerides is on the level of individual bins.

On the other hand, it may be surprising that there seemed to be no interruption in

the “post-burst” ephemeris; the third detected X-ray burst occurred at the midpoint

between the two simultaneous radio/X-ray epochs.

We modeled each of the two X-ray profiles with four Gaussian components to

measure the relative offsets with respect to the radio profiles. The offsets and their

uncertainties were determined from Monte Carlo trials, where “offset” here refers to

the phase that maximizes a cross-correlation such as the one prescribed in Taylor

(1992). There was a small offset between the X-ray models, .0.02 rot. A difference

in DM would shift the relative phase between the X-ray profile and the S-band profile

(our fiducial profile) only by ∼3×10−4 rot per unit DM [cm−3 pc]. Even for the DM

difference of ∼17 cm−3 pc measured between these epochs (see §6.4.5 and Figure 6.8),

the phase difference is ∼0.005 rot. The remaining offset can be explained by a combi-

nation of the variability of the X-ray profile and timing noise, with the former being

dominant. After removing this difference, the offsets with respect to the radio profiles

do not change between the two days within the variance of the measurements. The

phase offset relative to the S-band profile is approximately 0.15(1) rot. The radio

magnetars J1809−1943 and J1550−5418 both also show rough alignment of pulsed

radio emission with their X-ray profiles (Camilo et al. 2007a; Halpern et al. 2008),

whereas no pulsed X-ray emission has been detected from J1622−4950 (Anderson
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Fig. 6.5 – Absolute phase alignment of J1745−2900’s radio and X-ray profiles determined separately on two days. Note that
the brightest radio profile is seen in S-band (see Figure 6.7). The profiles have 1024 and 64 phase bins, respectively, and are
shown as they would be observed at the Solar System barycenter for phase-zero MJDs 56499.98000761 and 56515.96999979,
referenced to infinite frequency. The assumed dispersion measure is 1778 cm−3 pc. During two later XMM-Newton obser-
vations (presented in Coti Zelati et al. (2015)), there is a peculiar, narrow feature seen in the otherwise broad X-ray profile
near the phase of radio emission as shown here (see text).
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et al. 2012).

The two double-peaked X-ray profiles appear essentially featureless. The RMS

pulsed fractions are given in Table 6.2. There are not sufficient data to decompose

the profiles into energy bands to look for meaningful spectral dependencies, although

we wish to point out a possible transient feature that appears in the XMM-Newton

data recently published by Coti Zelati et al. (2015). In the energy-dependent XMM-

Newton profiles of Figure 4 from Coti Zelati et al. (2015), there is a conspicuous

narrow feature on the leading edge of the double-humped X-ray profile that is close

to the phase of radio emission (within ∼0.05 rot). It appears most prominently around

phase 0.55 in the 0.3–3.5 keV profile of the third XMM-Newton observation (with Obs.

ID 0724210501). It is also seen in two of the other three energy-dependent profiles

(except for the highest energy 6.5–10.0 keV profile), contributing to the integrated

flux in the energy-averaged profile. A similar feature is seen at the same phase in

the first XMM-Newton observation (with Obs. ID 0724210201) to a lesser extent.

According to their table, these observations were separated by 23 days, with the

first occurring 19 days after the Chandra observations presented here (which are

also included in Coti Zelati et al. (2015)). The three Chandra observations and the

one XMM-Newton observation taken during these 23 days show no obvious feature,

despite covering the same range of energies, although Chandra recorded only between

10 and 50% of the counts as did by XMM-Newton. Therefore, without additional

observations, it remains only a peculiarity.

6.4.4 Radio Flux Density

From the radio data, we made measurements of J1745−2900’s flux density as a

function of time and frequency. We measured the mean flux densities in 50 MHz wide
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channels and used a weighted average of these measurements to obtain representative

flux densities for each band, per epoch.

For all of the L- and S-band profiles, we defined “on-pulse” regions as follows. A

model pulse profile for each frequency was determined from the wideband modeling

described in §6.4.5. We then found the smallest range of pulse phases that contained

99% of the integrated flux density of the model profile. Examples of the on-pulse

windows for the scattered L- and S-band profiles can be seen in Figure 6.1. The mean

flux density was calculated by averaging the observed flux density in the window and

scaling it by the duty cycle. The uncertainties were estimated by measuring the mean

noise level in the last quarter of each profile’s power spectrum13. We accounted for

systematics in the residual profile by adding the scaled, residual mean flux density

to the uncertainty in quadrature. These corrections were small, as the reduced χ2

values of the residuals were usually <1.5 and always <2.0.

The measurement of the X-band flux densities was complicated by the dynamic

baseline variations mentioned in §6.3.1, as well as the intrinsic variability of the

profile shape. We used polynomial functions to remove the baseline variations on a

profile-to-profile basis (e.g., see Figure 6.2). For these profiles, we first centered each

profile to be near phase 0.5 to avoid edge-effects of the polynomial fit from affecting

the on-pulse region. A high degree polynomial function was fit to the baseline of

each profile, where in the first iteration an on-pulse window with a duty cycle of

6% was blanked out from the fit to avoid initially over-estimating the noise14. The

level of the residual off-pulse noise was calculated, and then the on-pulse window was

13This is a robust method to estimate the off-pulse variance, assuming the profile is resolved (e.g.,
see Demorest 2007).

14None of the profiles had a smaller duty cycle than 6% and a polynomial of degree 15 was used;
this was the smallest degree polynomial that reasonably and automatically removed systematic
baseline trends from all of the profiles without having to also vary the degree of the polynomial on
a profile-to-profile basis.
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widened until the flux density at the edges of the on-pulse region dropped below the

noise level. The baseline polynomial was then refit to the original profile, but with

the new on-pulse window blanked out. The mean flux density and its uncertainty

were calculated in these baseline-removed, on-pulse windows as described for the

lower frequency data above, but a systematic error was added in quadrature to the

uncertainty that represented the mean flux density across the on-pulse phase window

removed by the polynomial fit. This tested method gives dependable, conservatively

estimated X-band flux densities.

Flux Evolution

The radio flux evolution of J1745−2900 is shown in Figure 6.6. The mean X-

band flux density increases rapidly in the first half of our observations, increasing

by at least a factor of ∼6 over fifty days, and then tapers off at the 1 mJy level.

The earliest reported measurement of J1745−2900’s X-band flux density was ∼0.2

mJy, taken with the Effelsberg 100-m Radio Telescope, consistent with our GBT

measurement two days later (Eatough et al. 2013a). Our data show a similar increase

in the low frequency flux densities. The S-band flux increases by about an order of

magnitude over ninety days, and in our last five observations covering about thirty

days, the average L- and S-band fluxes increase by a factor of two. Given the measured

scattering timescales for J1745−2900 (see §6.4.5) and the recently measured proper

motion of the pulsar, the timescale for refractive scintillation to be important is

much larger than the span of our observations (see Bower et al. (2015) for further

discussion).

Having picked up where we left off, Lynch et al. (2014) increased the cadence

of GBT X-band observations after MJD 56516 and found a similar, slow increase
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Fig. 6.6 – The early radio flux (bottom panel) and spectral (top panel) evolution of
J1745−2900 over 100 days from the observations in Table 6.1. The vertical demarcations
are the same as in Figure 6.4. Lynch et al. (2014) find a continuation of the slow, steady
increase in X-band flux for another six months, which is followed by what they call an
“erratic state”. The apparent excess average S-band flux density during MJD 56501
is explained by the fact that the lower half of the band was corrupted (see Table 6.1),
and the pulsar’s flux density apparently increases with frequency in this range (see
Figure 6.7). The average value of the spectral index γ is about −1.4; see text for
details.

of the flux, up to ∼3 mJy, over the next 170 days. As already mentioned, after

this “stable state” of slow, steady flux increase, the authors found that J1745−2900

entered an “erratic state”, characterized in part by a larger and highly variable X-

band flux, similar to what was seen in two other radio magnetars (Camilo et al. 2007a;

Levin et al. 2012). Superimposed on top of this radio flux evolution is a relatively

slow decay of the X-ray flux, compared to other magnetars (Rea et al. 2013; Kaspi

et al. 2014; Lynch et al. 2014; Coti Zelati et al. 2015). Between our two simultaneous

GBT/Chandra observations separated by ∼15 days, the radio flux increased by ∼60%

while the X-ray flux decreased by ∼10%. This trend (seen here and in Lynch et al.

(2014)) is opposite to those of the other radio magnetars, which show decreasing radio

and X-ray flux with time over the course of an outburst (Rea et al. 2012).
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Radio Spectral Index

Because we have essentially simultaneous observations15 of J1745−2900 in fre-

quency bands spaced by two octaves, we can measure the spectral index γ, where

Sν ∝ νγ for flux density Sν at frequency ν. The upper panel of Figure 6.6 shows

γ as measured between the average X-band flux density and the combined average

flux densities of the lower frequency band(s). The error bars were approximated by

varying the average fluxes within their measurement uncertainties. The decorrelation

bandwidth for diffractive scintillation is much smaller than even our native frequency

resolution and will not be a source of variability here.

There is no large, obvious stochasticity, as opposed to, for example, J1809−1943

(Lazaridis et al. 2008), but there may be a trend. Shannon & Johnston (2013) report

two early measurements of γ across the bands spanning 4.5–8.5 GHz and 16–20 GHz.

The first measurement on MJD 56413 is close to −1.0 in the high frequency band,

though it is closer to 0.0 in the lower frequencies, and the second on MJD 56443 is

∼ −1.0 across both bands, consistent with our measurements more than two weeks

prior. Our three later measurements indicate a significantly steeper spectrum. The

average value for γ of −1.4 is tantamount to the average spectral index for normal

pulsars across gigahertz frequencies as reported in Bates et al. (2013). Camilo et al.

(2007c) and Anderson et al. (2012) both make mention of a general steepening of

the spectral indices of J1809−1943 and J1622−4950, respectively, despite remaining

much flatter than what is seen in J1745−2900. However, (Lazaridis et al. 2008) finds

the opposite for J1809−1943 in later observations.

This finding apparently breaks the mold set by the other three radio magnetars,

which have essentially flat (or inverted) spectra (Camilo et al. 2006, 2008; Levin et al.

15In one case, the X-band observation was taken a day earlier; see Table 6.1.
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2010; Keith et al. 2011). However, no firm conclusions can be drawn from this handful

of measurements from early times in J1745−2900’s outburst, especially knowing that

the other radio magnetars also show a variable radio spectrum (Camilo et al. 2007c;

Lazaridis et al. 2008; Anderson et al. 2012). In fact, at the time of writing, the

findings of Torne et al. (2015) suggest that at much later times (a year after the

present observations), the radio spectrum of J1745−2900 between 2 and 200 GHz

was much flatter, with γ = −0.4(1).

Spectral Shape

One example of J1745−2900’s radio spectrum is shown in Figure 6.7; the spectra

from the other days are qualitatively similar. The spectrum shows a non-power-

law increase in flux between 1.4 and 2.4 GHz, with a possible peak near 2 GHz.

The inverted log-parabolic shape is reminiscent of what have been called “gigahertz-

peaked spectra” (GPS) pulsars (Kijak et al. 2011, 2013; Dembska et al. 2014, 2015),

although the GPS pulsars supposedly have a much broader spectral shape, over a dex

in frequency. For reference, we fit a log-parabola to the low frequency points, the

parameters of which are given in the figure.

It is difficult to explain the spectral shape we see in the lower frequencies. It

is conceivable that the dense, unique environment near J1745−2900 in the Galactic

Center significantly alters the spectral shape of radio emission between 1 and 10 GHz

(e.g., via free-free absorption, although the detection of Sgr A* at 330 MHz implies

a low free-free optical depth of .1 (Nord et al. 2004)), but it is difficult to draw any

conclusions without a dedicated set of observations.

Another possibility is that we have systematically under-estimated the flux: one

well known source of bias comes from under-estimating the flux at low frequencies due
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Fig. 6.7 – An example of J1745−2900’s radio spectrum from the brightest observed
epoch, MJD 56516. The markers are as in Figure 6.6; note that the flux densities agree
in the ∼100 MHz overlap between L- and S- band. A similar inverted parabolic shape
over log-frequency is seen during the other sets of (nearly) simultaneous observations,
which is reminiscent of the so-called GPS pulsars. The coefficients a, b, and c of the
fitted dashed parabola (log10(Sν) = ax2+ bx+ c, for x = log10(ν)) are given in the plot,
along with the spectral index γ, which for this plot was fitted between the peak of the
parabola and the X-band data.

to significant area in the scattering tails being lost in the calculation of the baseline

flux. However, even at 1.4 GHz the scattering timescale is ∼500 ms ≈ 0.13 rot (see

§6.4.5). In the worst case of a Kolmogorov scattering index (−4.4), the scattering

timescale at our lowest frequency is no more than ∼20% of a rotation. As mentioned

in Kijak et al. (2011) and treated graphically in Macquart et al. (2010), the pulsed

fraction drops by only ∼10% when the scattering timescale is half the pulse period.

Therefore, we can suggest that at worst we are underestimating the L-band flux

densities at the ∼10% level, but this still would imply a positive or approximately flat

spectral index between 1.4 and 2.4 GHz; the observed flux density drops precipitously

somewhere thereafter.

A more promising, albeit provisional possibility has been offered up by recent

modeling of the Shannon & Johnston (2013) observations. Lewandowski et al. (2015b)
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make a case study of J1745−2900 to demonstrate the possibility of thermal free-free

absorption as the explanation for the GPS. For J1745−2900, the authors suggest

a combination of an expanding ejecta and/or an external absorber to explain the

changing spectrum seen early after the initial outburst in Shannon & Johnston (2013).

The free-free absorbed model spectra offer a reasonable explanation for the lack of

low-frequency detections of J1745−2900 immediately after the initial outburst and

detections above 4 GHz; our two early S-band observations may support this idea.

Our spectra from three months later may also inform the story of an evolving or

endemic free-free absorbing medium in the environment of J1745−2900.

6.4.5 Wideband Portrait Model

As is evident from Figure 6.1, J1745−2900 has a highly scattered, simple profile

across a gigahertz bandwidth, from 1.4 to 2.4 GHz. For a nominal DM value of

1778 cm−3 pc, there is a delay of ∼0.66 rotations across this band, which is easily

measurable. All of the average L- and S-band profiles showed prominent scattering

tails from multipath propagation through the interstellar medium (ISM). The quality

of the data permitted us to make “wideband” measurements of both the DM and the

scattering timescale τ , as well as its power-law index α, on an epoch-to-epoch basis16.

For this, we used the methods and augmented software described in Pennucci

et al. (2014) to make a wideband “portrait”17 model for each of the five epochs where

we have both L- and S-band observations. For each of these epochs we combined

the data from the two low frequency bands in a fit for a global portrait model that

included a single scattered Gaussian component with profile evolution parameters, a

16The two earliest S-band observations were exceptions; corrupted data, low signal-to-noise ratios,
and the lack of L-band data resulted in uninformative measurements of the DM, τ , and α. This is
also the reason these observations were excluded from the average ḟ measurement in §6.4.3.

17We use the word “portrait” to mean the total intensity profile as a function of frequency.
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constant baseline term, a phase offset between the bands, DMs for each band, and the

scattering index α. The scattering timescale is defined in the usual way by assuming

a one-sided exponential pulse broadening function for the ISM, so that an observed

profile p(ϕ) is the convolution given by

p(ϕ) = g(ϕ) ∗ e−ϕPs
τ H(ϕ), (6.1)

where ϕ is the rotational phase, Ps is the spin period, H is the Heaviside step function

and g(ϕ) is the intrinsic total intensity profile shape. For a power-law spectrum

of density inhomogeneities in the ionized ISM τ is expected to have a power-law

dependence on frequency ν as

τ(ν) = τν◦
( ν

ν◦

)α
, (6.2)

with reference frequency ν◦. In all cases, the scattering timescale (133 ms at 2 GHz;

see below) dominates the smearing from the process of incoherent dedispersion (∼0.7 ms

(ν/2 GHz)−3), the smearing from an incorrect DM when averaging channels (∼25 µs

(δDM/cm−3 pc) (ν/2 GHz)−3), and the temporal resolution (1.8 ms for 2048 profile

bins), so we have not included those modifications of the pulse profile shape in the

model. However, deviation from the simple timing models discussed in §6.4.3 (e.g.,

see Figure 6.4) during any of these epochs could add profile smearing in the inte-

grated profiles (at the level of ∼tens of ms — a significant fraction of the scattering

timescale). We avoided this source of bias by iterating over the timing model to

remove the timing residual on a per-epoch basis.
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We model g with a frequency-dependent Gaussian function,

g(ν, ϕ) = A(ν) exp
(

− 4ln(2)
(ϕ− ϕg(ν))2

σ(ν)2
)

, (6.3)

which is parameterized by its location ϕg(ν), full-width-at-half-maximum (FWHM)

σ(ν), and amplitude A(ν).

As described in Pennucci et al. (2014), each of these parameters nominally has

an additional parameter describing its frequency dependence. However, because this

combined band has a fractional bandwidth of “only” ∼0.5, we assume ϕg(ν) = ϕ◦ is

a frequency-independent value. That is, we assume there is no drift intrinsic to the

one component across the band.

Furthermore, when allowing for a frequency-dependent σ, we found no significant

evolution, and so we chose also to fix the evolution σ(ν) = σ◦ to be a frequency-

independent fit parameter in our final portrait models. This choice was further justi-

fied by performing independent per-channel profile fits of a single, scattered Gaussian

component and examining the frequency evolution of σ. Also, there are X-band obser-

vations for three of these epochs, and in these cases the FWHM of the X-band profiles

(all of “Type 3”), when fitted with a single, unscattered Gaussian component, was

always within the scatter of those measured from the lower frequency observations.

These results are consistent with the weak (or lack of) frequency dependence of σ

found in Spitler et al. (2014).

We normalized the intensities of the data to be fit by the maximum profile value

in each frequency channel to remove the unusual spectral shape (see §6.4.4). This al-

lowed the Gaussian amplitude to be easily modeled by a power-law function for A(ν).

In all cases, the reduced χ2 of the fit was <1.1, and a second Gaussian component

was never justified by the residuals.



292

The combination of the quality of the X-band data, the variability of the profile,

and the expected value of τ at 8.9 GHz (.1 ms, comparable with our native time

resolution) was such that we did not attempt to incorporate this high frequency data

into our wideband profile model, nor did we measure the scattering timescale in either

the average profile or the single pulses. We refer the reader to Bower et al. (2014)

and Spitler et al. (2014) for high frequency scattering measurements of J1745−2900.

Pulse Width & Scattering Parameters

The results from our wideband models are shown in Figure 6.8. There was no

significant change in the measured FWHM of the unscattered profile, and our average

(frequency-independent) value of 91.9(4) ms = 0.0244(1) rot is also consistent with

what is reported in Spitler et al. (2014). The scattering timescale at 2 GHz, τ2GHz,

appears to increase by ∼10% over the four weeks, and the scattering index α deviates

from its average value, first to a Kolmogorov value near −4.4 (the dash-dotted line),

and then to a much shallower value near −3.0. Both of these results are somewhat

peculiar, but similar variations are also reported in Spitler et al. (2014), though they

do not discuss the temporal evolution of either quantity. That is, their published

values of τ from a variety of epochs and frequencies cannot be unified by a single

scattering timescale and index. In fact, their measurements of τ show more scatter

over the course of their observations than those presented here, which have some

overlap. When the authors combine all of their measurements, they find an average

value for α of −3.8(2).

We checked our measurements in two ways. First, we performed conventional

profile fits of a single, scattered Gaussian component to each individual frequency

channel, independent of any evolutionary constraint. The values of σ, τ , and α for
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Fig. 6.8 – Our wideband measurements from five epochs. The vertical demarcations
are the same as in Figure 6.4. The FWHM showed neither frequency nor temporal
dependence. The trend in the scattering timescale τ is less scattered and more precise
than the measurements presented in Spitler et al. (2014). The dash-dotted line in the
panel for the scattering index α marks the fiducial Kolmogorov value of −4.4, and the
dashed lines mark the Spitler et al. (2014) measurement of −3.8(2). The additional
markers in the bottom panel are the same as in Figure 6.6: the blue/down-pointing
triangles are L-band measurements, and the green/right-pointing triangles are S-band
measurements — the dots are their weighted average. The dashed lines here are the
Eatough et al. (2013b) DM of 1778(3) cm−3 pc. See the text for a discussion of the
DM measurements.

each epoch were consistent with what we found by applying the wideband modeling

method. In Figure 6.9, we show the measurements of τ measured in this way for
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the brightest observed epoch (MJD 56516) and over-plot the fitted power-law, which

has the most extreme α value of the five epochs. There was nothing unusual about

the data from this epoch in terms of RFI, data removal, calibration, or baseline

variations. Second, as a check for our average values, we summed all of the data

portraits together by coherently stacking the observations (having fit for a phase and

DM in each epoch), and fit a single wideband model to the averaged data (with the

same constraints as earlier). Using this method, we obtained similar average values:

σ = 0.0246(1) rot, τ2GHz = 133.0(5) ms, and α = −3.71(2), the latter of which is in

concert with the average α value from Spitler et al. (2014). Our extrapolated value of

τ1GHz = 1.74(3) s is only slightly at odds with their average value of τ1GHz = 1.3(2) s,

which is probably due to the temporal variability of τ . As others have noted (e.g.,

Bower et al. (2014)), the anticipated value for τ1GHz along this line of sight based on

empirical relationships, for a DM of 1778 cm−3 pc, is about 600× larger than what

is observed (Krishnakumar et al. 2015; Lewandowski et al. 2015a).

Bower et al. (2014) determined τ8.7GHz . 2 ms from interferometric measurements

of J1745−2900’s single pulses, implying that a value for α as shallow as −3 is not un-

believable. Furthermore, scattering measurements from two high-DM pulsars discov-

ered near the Galactic Center (both within 0.3◦ and having DMs 1100–1200 cm−3 pc)

implied α = −3.0(3) (Johnston et al. 2006). It is not uncommon for pulsars to have

α > −4, particularly along special lines-of-sight, and it is empirically suggested that

the highest DM pulsars may have an average scattering index significantly shallower

than −4 (Löhmer et al. 2001, 2004b; Lewandowski et al. 2015a). Note that observing

α 6= −4.4 does not necessarily imply a non-Kolmogorov spectrum of density inho-

mogeneities; rather, it could be that a non-thin-screen geometry may be responsible

(Cordes & Lazio 2001; Lewandowski et al. 2013).
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Fig. 6.9 – Independent per-channel measurements of the scattering timescale τ and
the fitted scattering index α for the brightest set of L- and S-band observations, on
MJD 56516; similar plots from the other four days have a significantly more negative
slope. The dashed lines represent our measurement, whereas the dotted lines show
our average value of α from wideband modeling and the fiducial Kolmogorov value of
−4.4, all with the same value of τ2GHz. Here, the measurement uncertainties have been
inflated by the reduced χ2 ∼ 2.

Dispersion Measures

The bottom panel in Figure 6.8 shows the best-fit DMs as determined by the

wideband models in the essentially simultaneous L-band and S-band observations

(blue/down-pointing and green/right-pointing triangles, respectively). The black

points are the weighted average of the two measurements; there is obviously some

variance about the nominal value of 1778(3) cm−3 pc, and our overall average value is

∼1781(1) cm−3 pc. Without exception, the measured L-band DMs are greater than

those measured in S-band. There is also only one epoch where the 1σ uncertainties

have any overlap; the RMS variance of the differences is ∼6 cm−3 pc. The absolute

DM differences cause residual dispersion on the order of .20 ms ∼ 10 bins (for 2048-

bin profiles) across the corresponding band, and so they present significant profile

deviations. To make sense of the discrepant DMs between the two frequency bands,
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we consider a number of possibilities.

First, the time-averaged data for each epoch showed few systematics with negli-

gible baseline variations, so we do not believe that data quality was an issue here.

Next, as is well known, the measured absolute DM will be affected by the choice

of profile alignment18. We can rule out any simple, constant profile evolution as the

source of the differing DMs because such a modification introduces a constant differ-

ence in the DMs; the changes in the measured DM should be the same independent

of the choice of alignment. Even if our assumption that there is no intrinsic drift

in the location of the (unscattered) profile component across the band is wrong, al-

lowing for a drifting component will still reproduce discrepant DMs; we have verified

this by allowing for frequency evolution in the location parameter of the Gaussian

component.

A second confounding element from our modeling could be the use of different

models for each epoch; if they are all systematically wrong in their alignments or

representation, they could be wrong differently. One way to check this is to simply

use one fixed model to remake the DM measurements. We used the average portrait

model discussed earlier and confirmed that the DMs remain similarly extreme, within

∼2 cm−3 pc, comparable with the measurement uncertainties. In fact, we tried a large

number of fixed and variable portrait models, but never obtained either consistent

DMs or DMs with a near constant offset. So, to the extent that τ and/or α are

measurably changing, we are justified in keeping them as free parameters for each

epoch’s model.

Similarly, the known profile variability that is seen in all of the radio magnetars

18For example, DMs are significantly biased when either assuming a constant profile shape in the
presence of scattering, or aligning scattered profiles by conventional methods because the convolution
of the ISM pulse broadening function with a profile of finite width introduces a delay that is a
function of the scattering timescale (i.e. frequency). This is partly why proper wideband modeling
is necessary.
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could also play a role when using either a fixed or variable portrait model. However,

besides the flux density, any underlying profile shape changes either with time or

frequency are masked by the large level of scattering. As mentioned, the FWHM

does not seem to change significantly in either time or frequency. Furthermore, the

three X-band observations taken during these epochs show no large profile changes,

and are all of the “Type 3” shape.

Next we can ask whether or not the slight asynchronicity could have any effect;

that is, could the DM change so significantly on ∼hour timescales? We will return to

this question below, but it is not an uncommon a priori assumption to expect that

the observed DM does not change between observations separated by . 4 hr.

One could also ask if the method by which we measure the DMs introduces a

systematic error, where the error may depend on the exact values of τ and α, or

even the spectral shape. To answer this, we performed a number of Monte Carlo

simulations. In the simulations, we used the models from MJDs 56500 and 56516,

which have the most extreme values for the difference between the DMs, and the most

extreme values for τ and α, respectively. For each trial, we made fake L- and S-band

observations by appropriately constructing the model for that band and scaling each

frequency channel’s amplitude to match the spectral shape. We then added random

frequency-dependent white noise to the model at the same level as measured from the

data portraits and finally dispersed the fake data with a DM of 1778 cm−3 pc. Visual

inspection verified that the fake data were faithfully rendered. We used the same

method to measure the DM (and phase), which is described in detail in Pennucci

et al. (2014). In summary, the measured DMs were always in accord and unbiased,

and the uncertainties were accurately estimated. We conclude that the measurement

method produces accurate DMs, independent of the model parameters, provided that
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the model for the data is accurate.

We assume in our measurements that the phase offsets (∆φ) incurred by finite-

frequency signals due to propagation through the ionized interstellar medium scale

as predicted by the usual cold-plasma dispersion law such that ∆φ ∝ DM
Ps

ν−2. This

is certainly the case to first-order even over large, low frequency bandwidths (Hassall

et al. 2012). However, to the extent that we understand the ISM to be inhomogeneous

— after all, we do observe pulse broadening — then it is anticipated that the simple

ν−2 dependence will be an insufficient description at some level for broadband DM

measurements. When an inhomogeneous medium causes multi-path propagation of

radio waves where the path depends on frequency, the sampled column density of

free electrons (the DM) will also be a function of frequency. Thus, we are left with

the intriguing possible explanation that the DM inconsistencies we are seeing are

the consequence of imposing a ν−2 dispersion law onto a frequency-dependent DM

(DM(ν)) due to an inhomogeneous ISM19.

To our knowledge, the most recent claim for having observed frequency-dependent

DMs was reported in Ahuja et al. (2007) for the slow, low DM pulsars B0329+54 and

B1642−03, although they observed lower DMs at lower frequencies. However, the

authors only made one set of simultaneous pairs of dual-frequency measurements

per pulsar. We argue that to confidently segregate the effects of profile evolution,

DM variations with time (DM(t)), DM(ν), and other potential confounding factors,

many epochs of simultaneous, wideband (large fractional bandwidth) observations of

a stable, preferably high DM pulsar need to be made. A similar recommendation was

recently made by Cordes et al. (2015) in their detailed study of frequency-dependent

DMs, which makes theoretical predictions for the characteristic timescales and sizes

19This is opposed to other supposed origins of DM(ν) relating to magnetospheric propagation
effects or magnetic sweepback, which would likely have different statistics from an ISM induced
DM(ν); see Hassall et al. (2012) or Ahuja et al. (2007) for an overview.
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of DM(ν) effects.

In their treatment of the problem, Cordes et al. (2015) predict the minimum scale

of DM variations about a mean value,

DMrms ∼ φ2
F/λre ∼ 3.84 × 10−8 cm−3 pc νGHz φ

2
F , (6.4)

where νGHz is the frequency in GHz and φF is the size of the phase perturbations over

the Fresnel scale, lF =
√

(cD)/(2πν), for the speed of light c and source distance D.

For J1745−2900, which is in the strong scattering regime, φF will be very large. We

estimate it from their prescription,

φF (ν) ≈ 9.6 rad
(ν/∆νd

100

)5/12

, (6.5)

where ∆νd is the scintillation bandwidth, which is readily estimated from our scatter-

ing measurements as ∼ 1.16/(2πτ(ν)). For 1.4 and 2.4 GHz, we find DMrms ∼ 10 and

5 cm−3 pc, respectively. These can be compared to the RMS DM values as measured

in L- and S-band of ∼ 9 and 7 cm−3 pc, respectively. The characteristic spatial size for

the DM differences near 2 GHz will be several Fresnel scales, which can be converted

to a characteristic time by using the recently measured proper motion of 236 km s−1

(Bower et al. 2015). For our range of frequencies, the characteristic timescale associ-

ated with the Fresnel scale size is ∼3 hr, comparable to the separation between the

observations on a given epoch. Therefore, it may be that the small temporal gap

between the observations contributes somewhat to the difference in the DMs, but we

certainly do expect that the DMs vary significantly on different days, separated by

many Fresnel timescales.

Finally, Cordes et al. (2015) make a prediction for the observed RMS difference
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between DMs at frequencies ν and ν ′,

σDM(ν, ν ′) ≈ 4.42 × 10−5 cm−3 pc Fβ(r)
( νφ2

F

1000

)

, (6.6)

where we have ignored a geometric factor of order unity and the function Fβ contains

the frequency dependence for r ≡ ν/ν ′, given the power-law index β for the wavenum-

ber spectrum of density inhomogeneities. For ν = 2.4 GHz and ν ′ = 1.4 GHz,

σDM ∼ 4 cm−3 pc, compared to our observed RMS difference of ∼6 cm−3 pc.

That the predicted and observed values are similar may be coincidence, but we

note the corroborating facts that J1745−2900 is the highest DM pulsar, is relatively

bright, highly scattered, has a simple, easily modeled profile, and does not show signif-

icant profile evolution or stochastic profile variability (at least in these observations).

Furthermore, we verified that our measurement method produces inconsistent (and

biased) DMs between the bands by introducing non-ν−2 phase delays into our fake

data simulations described earlier. After ruling out the other potential sources for the

inconsistent DMs, we suggest that J1745−2900 may have an observable frequency-

dependent dispersion measure.

A potential counter argument is that over many Fresnel timescales, one expects

the sign of the DM differences to change, such that the observed low frequency DM

becomes smaller than the high frequency DM. Between the small number and low

density of epochs, the potentially incorrect portrait model, and ISM uncertainties

(the predictions here are based on a thin-screen model with a Kolmogorov spectrum

of density perturbations, which is partly supported by the findings in Bower et al.

(2014)), it is conceivable that this observation is not inconsistent with a frequency-

dependent DM as described.

Determining whether or not a difference in DM as seen in two frequency bands
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is intrinsically a DM(ν) effect is complicated by the issues described above, and

with only five measurements we obviously cannot draw any definite or statistical

conclusions, but future studies could potentially disentangle the evolution of DM(t,ν),

the profile, and other ISM parameters. One strategy, as Cordes et al. (2015) note, is to

model the frequency dependence of the dispersive delays as something other than ν−2.

This should be done for many epochs, at least as long as the timescale for refractive

scintillation, over which time the specific frequency dependence of the average DM

remains stable. For J1745−2900, this timescale is potentially many years.

6.5 Summary & Discussion

In this paper we have presented multi-epoch, multi-frequency wideband GBT

observations of the Galactic Center radio magnetar J1745−2900 at 1.5, 2.0, and

8.9 GHz from the first ∼100 days after it was discovered. After its initial X-ray

burst on 25 April 2013, J1745−2900 underwent two additional bursts in the course

of our observations. For two epochs, during which time we collected data from three

radio bands, we also have simultaneous X-ray observations taken with Chandra. An

analysis of the radio data, as well as a joint analysis with the X-ray data, yielded a

few noteworthy results.

1. We found no anomalous radio bursts or giant-pulse-like individual pulses in any

of the X-band observations. Similarly, the smooth transitioning of the X-band

profile between three broad categories seems to have also been unperturbed by

the Swift-detected X-ray bursts.

2. Our simple radio timing analysis corroborates the findings of Kaspi et al. (2014),

which are also supported by Coti Zelati et al. (2015). We presented the absolute
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alignment of the three radio and 0.3-8 keV profiles. The near-alignment of

the radio components with the X-ray profile is similar to the two other radio

magnetars that have published alignments. We also make note of a possible

transient X-ray feature from Coti Zelati et al. (2015) because of its proximity

to the phase of radio emission located ∼ 0.2 in phase preceding the peak in the

X-ray profile.

3. The evolution of our early radio flux measurements, showing a relatively sta-

ble growth from around the time of the initial outburst, is consistent with the

continued GBT X-band observations presented in Lynch et al. (2014) and with

what they have called a “stable state”20. The combination of the gradual flux

evolution with the simple timing and profile variability results leads us to ex-

trapolate J1745−2900’s “stable state” back to the time of its initial burst.

4. The shape of J1745−2900’s low frequency radio spectrum is potentially positive

or flat, whereas it shows a “typical” spectral index of ∼ −1.4 between ∼2

and 9 GHz, at least during a brief period ∼100 days after its initial outburst,

around the times of two later X-ray bursts. This steep spectral index might

indicate a different magnetospheric configuration during these times, although

the evolving spectra may be a result of environmental factors and free-free

absorption (Lewandowski et al. 2015b). The possible variability of γ means

that dedicated observations covering several higher frequency bands need to be

carried out over many epochs to confirm this (cf. Torne et al. 2015).

5. We made wideband models of J1745−2900’s low frequency radio “portrait” to

measure the scattering timescale, scattering index, and the DM as a function of

20While our observations were taken over a shorter range of time (about a third), our cadence
of observations is comparable to theirs taken during the “erratic state”, the onset of which was
apparently unrelated to X-ray bursts.
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time. Our average measurements are consistent with what has been published

in Spitler et al. (2014), though the ISM parameters may be variable. Time-

variable scattering parameters would complicate the predicted sensitivities of

future pulsar surveys of the Galactic Center. Lastly, we make a suggestion

that our discrepant, nearly simultaneously determined DMs are a manifestation

of an ISM-induced frequency-dependent dispersion measure, and that future

observations could make a case study out of J1745−2900 to investigate DM(ν)

— provided the pulsar remains visible and stable.

J1745−2900 shares several (but not all) properties with the other three radio mag-

netars, J1809−1943, J1550−5418, and J1622−4950 (Camilo et al. 2006, 2007b; Levin

et al. 2010). Common properties of the pulsed radio emission from magnetars are:

a) a delay in the appearance of the radio emission after the X-ray outburst onset,

b) variable pulse profiles and radio flux on timescales from hours to days, c) a large

rotational (spin-down) luminosity with respect to the quiescent X-ray luminosity, d)

a decrease of the radio flux as the X-ray flux decays, and e) a flat radio spectrum

over a wide range of frequencies. J1745−2900 grossly shares the first three proper-

ties with the rest of its class. However, while in all other cases the radio flux was

observed to decay as the X-ray outburst was fading, the long-term radio and X-ray

flux evolution of J1745−2900 is at variance with this trend. The radio flux shows

a re-brightening hundreds of days after the outburst onset and the X-ray emission

is decaying very slowly, challenging current crustal cooling models Coti Zelati et al.

(2015). Furthermore, the recently published flux measurements by Torne et al. (2015)

taken one year after those presented here suggest that the 8.35 GHz flux remained

stable at the ∼3 mJy level over thirty days. Another interesting peculiarity of this

radio magnetar was the steep (and possibly free-free absorbed) radio spectrum seen in
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our observations, though the more recent observations in Torne et al. (2015) suggest

that the spectrum has since flattened.

Of particular interest is J1745−2900’s low quiescent luminosity compared to its

high rotational power (LX,qui/Lrot < 1; Rea et al. 2013). This peculiarity of the

four radio magnetars, which is at variance with canonical magnetars (for which the

fact that LX,qui/Lrot > 1 has always been used as proof of their magnetically dom-

inated emission (Mereghetti & Stella 1995; Thompson & Duncan 1995; Mereghetti

2008)), has been viewed as evidence for a similar mechanism powering the radio emis-

sion from magnetars and normal pulsars alike. In fact, while normal radio pulsars

have primarily dipolar-dominated magnetic fields (Bp), magnetars have a substan-

tial toroidal component (Bφ) that is present in both the internal and external fields.

This toroidal component is the main reason for their quiescent X-ray luminosities,

hot surface temperatures, flaring emission, and outburst activity (Thompson et al.

2002; Beloborodov 2009). For a fixed dipolar field, the internal toroidal field has no

significant effect on the luminosity unless Bφ > Bp, as is the case for most magnetars

(Viganò et al. 2013). Both radio magnetars and high-B radio pulsars have systemat-

ically lower toroidal fields and higher rotational energies than typical magnetars; this

is in agreement with the former being fainter in quiescence and having a softer X-ray

spectrum (a lower crustal toroidal field results in less heating produced by Joule dissi-

pation in the crust, Pons et al. 2009). As for the energy powering the radio emission,

simulations of high dipolar field pulsars that have a small toroidal component showed

that the particle acceleration and subsequent ignition of the cascade process could

proceed as it does in normal pulsars, successfully reaching the open-field line region

and generating pulsed radio emission (Medin & Lai 2010). On the other hand, for an

extremely strong toroidal component, it is expected that the particle cascades can-



305

not reach the open-field lines due to the powerful currents formed as a consequence

of the twisted magnetosphere. Radio magnetars might lie in between, having a high

enough rotational energy to power pair cascades as in normal pulsars, but also having

toroidal components lower than typical magnetars, resulting in lower quiescent X-ray

luminosities.

In the above picture, the possible radio flux increase, the steep spectrum, and the

slow cooling of the X-ray outburst might be explained by the presence of a strongly

twisted bundle, which can account for the radio emission and the additional heating

by particles slamming onto the surface. If the radio emission is generated by accel-

eration of particles only in this part of the magnetosphere, then the radio flux and

the X-ray flux might be unrelated. In particular, untwisting of the bundle during

the outburst decay might induce fewer currents blocking the pair cascade generation,

hence more radio emission from this region. However, these are only speculative,

plausible hypotheses. Proof of this scenario would need a longer monitoring of the

radio and X-ray emission, as well as detailed magnetohydrodynamical simulations of

particle acceleration and pair cascades in a strongly magnetized and twisted bundle.



Chapter 7

Summary

“Pulsars are cool. Seriously.” —Scott M. Ransom
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7.1 Summary & Future Studies

In this dissertation, we have demonstrated the utility of simple two-dimensional

phase-frequency model portraits to make time-of-arrival (TOA) and dispersion mea-

sure (DM) measurements in folded profile pulsar data. Pulse profile evolution obvi-

ously does not need to be modeled with Gaussian components — indeed, we have

seen some of the shortcomings of this approach — but modeling profile evolution

is unavoidable in the era of truly ultimate, wideband pulsar instruments. There are

many possible alternatives to Gaussian components, and others have already explored

much more sophisticated, Bayesian approaches to estimating profile evolution simul-

taneously with DM variations and the timing model (Lentati et al. 2015a).

One long term goal for the portrait modeling is to eventually make use of the full

polarization information we have from the NANOGrav data set. A study investi-

gating the components in the polarization profiles of the PPTA pulsars was recently

published, which may have paved the way for the other PTAs to follow suit (Dai

et al. 2015). Ultimately, if the model parameters can be informative for studies of the

pulsar magnetosphere, then that is what we should strive for.

The two cases in which we found evidence of something resembling a chromatic

DM, J1643−1224 and J1745−2900, certainly warrant further investigation. In any

event, the implication is that with a sufficiently good portrait model, a bright enough

pulsar, a wide enough band, and the flexibility to look for non-ν−2 dispersion, theoreti-

cal ISM effects may soon be able to be probed observationally. A grand demonstration

would be one in which DM(t,ν) is completely segregated from profile evolution and

perhaps other ISM effects. Our immediate next goal is to develop a streamlined way

to fit for any combination of the TOA, DM, scattering timescale, and scattering index

on a per-epoch basis. However, our methods as they stand should prove useful in a
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variety of systems that have, e.g., variable DM behavior on short timescales. One

such pulsar is the globular cluster binary MSP Ter5A, which shows irregular eclipses

and DM behavior (A. Bilous, private communication).

Additionally, we made some unintended contributions in our study of the Galactic

Center magnetar. Namely, our observations corroborate the models presented in

Lewandowski et al. (2015b) and imply that we have seen some free-free absorbing

material either in the ejecta from J1745−2900 or in its environment. We are preparing

to work with the authors to share data and scrutinize this matter further. It is

unfortunate that additional observations would likely be uninformative, unless the

magnetar has another X-ray burst.

Our preliminary results from our Shapiro delay investigations are currently being

followed up. Even just two additional pulsar masses with precisions of 0.1–0.2 M⊙

would constitute an ∼ 8% increase in the number of pulsar masses known.

Finally, our first wholesale implementation of the wideband protocol to the NANOGrav

9-year profile data set proved instructive. Indeed, it highlighted the shortcomings of

our Gaussian models and suggested that we take a different approach to modeling

the noise in our data. However, we were pleased to find that most of the red noise

parameters, as well as the overall timing residuals and dispersion measures, were all

in agreement. We believe we have at least paved the way for these wideband methods

to wholly supplant the channelized TOA approaches of the past. Our next critical

test, once we have obtained better noise parameters, is to determine gravitational

wave limits from our data set and compare them with others’.

With the advent of new technologies and telescopes (e.g., CHIME, FAST, meerKAT),

and the growing sizes and cooperation of PTA collaborations, the next decade of pul-

sar astronomy promises to hold long-awaited answers and unexpected surprises.
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