
4/22/2019 Thesis/Dissertation Cover and Approval Pages

https://seas.virginia.edu/forms/thesis-cover-approval.php 1/2

Improving Robustness of Machine Learning
Models using Domain Knowledge

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment
of the requirements for the degree

Doctor of Philosophy

by

Weilin Xu

May 2019

c� 2019 Weilin Xu

Abstract

Although machine learning techniques have achieved great success in many areas, such as computer

vision, natural language processing, and computer security, recent studies have shown that they are

not robust under attack. A motivated adversary is often able to craft input samples that force a

machine learning model to produce incorrect predictions, even if the target model achieves high

accuracy on normal test inputs. This raises great concern when machine learning models are deployed

for security-sensitive tasks.

This dissertation aims to improve the robustness of machine learning models by exploiting domain

knowledge. While domain knowledge has often been neglected due to the power of automatic

representation learning in the deep learning era, we find that domain knowledge goes beyond a

given dataset of a task and helps to (1) uncover weaknesses of machine learning models, (2) detect

adversarial examples and (3) improve the robustness of machine learning models.

First, we design an evolutionary algorithm-based framework, Genetic Evasion, to find evasive samples.

We embed domain knowledge into the mutation operator and the fitness function of the framework

and achieve 100% success rate in evading two state-of-the-art PDF malware classifiers. Unlike

previous methods, our technique uses genetic programming to directly generate evasive samples in

the problem space instead of the feature space, making it a practical attack that breaks the trust of

black-box machine learning models in a security application.

Second, we design an ensemble framework, Feature Squeezing, to detect adversarial examples against

deep neural network models using simple pre-processing. We employ domain knowledge on signal

processing that natural signals are often redundant for many perception tasks. Therefore, we can

squeeze the input features to reduce adversaries’ search space while preserving the accuracy on

normal inputs. We use various squeezers to pre-process an input example before it is fed into a

i

Abstract ii

model. The di↵erence between those predictions is often small for normal inputs due to redundancy,

while the di↵erence can be large for adversarial examples. We demonstrate that Feature Squeezing is

empirically e↵ective and inexpensive in detecting adversarial examples for image classification tasks

generated by many algorithms.

Third, we incorporate simple pre-processing with certifiable robust training and formal verification

to train provably-robust models. We formally analyze the impact of pre-processing on adversarial

strength and derive novel methods to improve model robustness. Our approach produces accurate

models with verified state-of-the-art robustness and advances the state-of-the-art of certifiable robust

training methods.

We demonstrate that domain knowledge helps us understand and improve the robustness of machine

learning models. Our results have motivated several subsequent works, and we hope this dissertation

will be a step towards implementing robust models under attack.

To my amazing wife Aihua Chen, Ph.T. (Putting Hubby Through).

iv

Acknowledgements

I have the incredible good fortune to work with Prof. David Evans and Prof. Yanjun Qi in the

past six years. They are the rare advisors who have the patience and ability to direct students to

explore a new research field without the pressure of publishing papers or worry of insu�cient fund. I

also have astoundingly supportive committees comprised of Prof. Homa Alemzadeh, Prof. Patrick

McDaniel, Prof. Vicente Ordóñez Román, Prof. Hongning Wang and Prof. Westley Weimer. I’m

grateful for their inspirational early feedback that helps to shape this dissertation. Also, I would like

to thank all the collaborators, especially Beilun Wang and Xiao Zhang for sharing their expertise in

mathematics.

I wouldn’t have an opportunity to pursue a Ph.D. degree without the guidance and encouragement

from my former mentors: Dr. Shuo Chen, Dr. David Fifield, Prof. Hua Zhang and Prof. Jianwei

Zhuge. I would also like to thank many pre-university teachers. I could have a rocky road to be a

first-generation college student and first-generation Ph.D. without their kindness and beyond-duty

support.

I would like to thank all the family members and relatives for their love. There is no doubt that

I have the best grandfather in the world, Rongxiang Xu, who homeschooled me in the early years

even though he only had two years in school himself. I feel lucky to have visionary cousins, Shaoxing

Xie and Zhaosen Xie who provided me a precious computer at the time when it was una↵ordable

to most families. I’m grateful to have an elder twin brother Guanglin Xu as a companion whom I

could always count on in the world adventure. Finally, my deepest gratitude goes to my beloved

wife, Aihua Chen, who sacrifices her career in China to my pursuit of scientific research.

v

Contents

Contents vi
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Motivating Examples . 1
1.2 Thesis . 3
1.3 Contributions . 4

2 Background 5
2.1 Machine Learning Classifiers . 5

2.1.1 Neural Networks . 6
2.2 Adversarial Machine Learning . 6

2.2.1 Generating Adversarial Examples . 7
2.2.2 Defensive Techniques . 11
2.2.3 Detecting Adversarial Examples . 12

3 Genetic Evasion 14
3.1 Introduction . 14
3.2 Overview . 17

3.2.1 Threat Model . 17
3.2.2 Finding Evasive Samples . 17

3.3 PDF Malware and Classifiers . 19
3.3.1 PDF Malware . 19
3.3.2 Target Classifiers . 20

3.4 Evading PDF Malware Classifiers . 22
3.4.1 PDF Parser and Repacker . 23
3.4.2 Genetic Operators . 23
3.4.3 Oracle . 24
3.4.4 Fitness Function . 25
3.4.5 Selection . 26
3.4.6 Trace Collection and Replay . 27

3.5 Experiment . 28
3.5.1 Dataset and Experiment Setup . 28

3.6 Results . 31
3.6.1 PDFrate . 32
3.6.2 Hidost . 37
3.6.3 Cross-Evasion E↵ects . 40
3.6.4 Execution Cost . 41

3.7 Discussion . 42
3.7.1 Defense . 42
3.7.2 Improving Automatic Evasion . 44

vi

Contents vii

3.8 Related Work . 44
3.9 Conclusions . 45
3.10 Impact . 46

4 Feature Squeezing 47
4.1 Introduction . 47
4.2 Feature Squeezing Methods . 50

4.2.1 Color Depth . 50
4.2.2 Spatial Smoothing . 52
4.2.3 Other Squeezing Methods . 54

4.3 Robustness . 54
4.3.1 Results . 57
4.3.2 Combining with Adversarial Training . 59

4.4 Detecting Adversarial Inputs . 61
4.4.1 Detection Method . 61
4.4.2 Experimental Setup . 63
4.4.3 Results . 64
4.4.4 Adversarial Adaptation . 68

4.5 Conclusion . 71

5 Provable Robustness 73
5.1 Introduction . 73
5.2 Provable Robustness Methods . 75

5.2.1 Formal Verification . 75
5.2.2 Robust Certification . 76
5.2.3 Comparison . 77

5.3 Adversarial Capability Measurement . 78
5.3.1 Definitions . 78
5.3.2 Bit Depth Reduction . 79

5.4 Robustness . 83
5.4.1 Adversarial Bound Transformation . 83
5.4.2 Robustness Regularization . 84
5.4.3 Verification . 86

5.5 Experiments . 88
5.5.1 Adversarial Bound Transformation . 89
5.5.2 Robustess Regularization . 90

5.6 Conclusion . 93

6 Conclusion 94
6.1 Summary . 94
6.2 Paths Forward . 95

Bibliography 96

List of Tables

3.1 Seed selection. 28
3.2 Comparison of network-based malware signatures. 29
3.3 Impact of PDFrate Features. 35
3.4 Most Altered Features Evading PDFrate . 36
3.5 Feature changes produced by longest Hidost mutation trace. 40

4.1 Summary of the target DNN models. 55
4.2 Evaluation of attacks. 56
4.3 Model accuracy with feature squeezing . 58
4.4 Detection rate for squeezing configurations on successful adversarial examples. . . 65
4.5 Summary results for the best joint detectors. 66
4.6 Comparison with MagNet. 68

5.1 Comparison between verification and certification. 77
5.2 Architecture of two ReLU-activated models used in the experiments. “Conv k w⇥h+s”

means 2D convolutional layer with k filters of size w⇥h using a stride of s in both
dimensions. “FC n” means a fully connected layer with n outputs. 88

5.3 Bit Depth Reduction combined with Interval Bound Propagation improves provable
robustness against `1 bounded adversary on 10,000 MNIST test images. 90

5.4 Bit Depth Reduction improves model robustness against `1 adversary on 10,000
CIFAR-10 test images, when combined with Interval Bound Propagation. We repeated
each experiment three times and report the result with the highest robustness accuracy.
The bold results are the best. 90

5.5 Bit Depth Reduction improves provable robustness against `1  0.1 adversary on
10,000 MNIST test examples. 92

viii

List of Figures

1.1 An object detection model wrongly recognizes adversarial patch as a car. 3

3.1 Generic classifier evasion method. 18
3.2 The physical and logical structure of a PDF file. 20
3.3 A PDF malware detection result given by the Cuckoo sandbox. The left side shows

the key API execution trace, the right is a screenshot captured from the virtual machine. 25
3.4 The length and e�cacy of mutation traces for evading PDFrate. 33
3.5 Accumulated evasions against PDFrate and Hidost, sorted by trace length. 33
3.6 The distribution of the original classification score of seeds. 34
3.7 The length and e�cacy of mutation traces for evading Hidost. 37
3.8 Time required to find evasive variants for 500 malware samples. 41

4.1 Feature-squeezing framework for detecting adversarial examples. The model is evaluated

on both the original input and the input after being pre-processed by feature squeezers. If the

di↵erence between the model’s prediction on a squeezed input and its prediction on the original input

exceeds a threshold level, the input is identified to be adversarial. 49
4.2 Image examples with bit depth reduction. The first column shows images from

MNIST, CIFAR-10 and ImageNet, respectively. Other columns show squeezed versions
at di↵erent color-bit depths, ranging from 8 (original) to 1. 50

4.3 Examples of adversarial attacks and feature squeezing methods extracted from the
MNIST dataset. The first column shows the original image and its squeezed versions,
while the other columns present the adversarial variants. All targeted attacks are
targeted-next. 50

4.4 Composing adversarial training with feature squeezing. The horizontal axis is the adversary’s

strength (✏), increasing to the right. The adversarial training uses ✏ = 0.3 for both FGSM are PGD.

Composing the 1-bit filter with the adversarial-trained model often performs the best. 60
4.5 Di↵erences in `1 distance between original and squeezed sample, for legitimate and

adversarial examples across three datasets. The `1 score has a range from 0.0 to 2.0 .
Each curve is fitted over 200 histogram bins each representing the `1 distance range of
0.01. Each sample is counted in the bin for the maximum `1 distance between the
original prediction and the output of the best joint-detection squeezing configuration
shown in Table 4.4. The curves for adversarial examples are for all adversarial examples,
including unsuccessful ones (so the separation for successful ones is even larger than
shown here). 62

4.6 Adversarial examples generated by the adaptive adversary. The images are randomly

sampled from the successful adversarial examples generated by the adaptive adversarial methods. No

successful adversarial examples were found for Targeted (LL) 3 or 8. The average `2 norms of the

successful adversarial examples are respectively 2.80, 4.14, 4.67 for the untargeted, targeted (next) and

targeted (ll) examples; while the corresponding values are 3.63, 5.48, 5.76 for the ensemble-adaptive

adversarial examples. The average `1 norm are 0.79, 0.89, 0.88 for the adaptive adversarial examples;

while the corresponding values are 0.89, 0.95 and 0.96 for the ensemble-adaptive adversarial examples. 70
4.7 Adaptive adversary success rates. 71

ix

List of Figures x

5.1 Simple pre-processing influences the adversary capability on input x. 78
5.2 Histogram of pixel values, respectively measured on 60,000 MNIST training images

and 50,000 CIFAR-10 training images. 80
5.3 Bit Depth Reduction a↵ects `1-norm bounded adversarial capability on MNIST. The

x-axis represents the number of bits and the y-axis represents the averaged `p-norm. 81
5.4 Bit Depth Reduction a↵ects `1-norm bounded adversarial capability on CIFAR-10. . 83
5.5 We specify an infeasible region in MILP formulation of the binary filter. 87
5.6 `1 regularization suppresses ||W ||1 at each layer. 92

Chapter 1

Introduction

Machine learning techniques have been widely used in many fields, such as perception and computer

security. Thanks to their capability of learning from data, machine learning models often outperform

hand-crafted systems designed by domain experts in those fields. For example, Convolutional Neural

Network (CNN)-based models [58] have dominated image classification tasks since AlexNet [54]

in 2012. These models do not use any hand-crafted features from the computer vision field, but

rely only on raw image pixels as input. As another example, a group of data scientists with no

experience in malware analysis won the Microsoft Malware Classification Challenge in 2015 [90].

Machine learning has become so e↵ective that it seems like a silver bullet obviating the need for any

domain knowledge.

However, it is important to realize that these results are for particular test datasets. Recent studies

have shown that machine learning models are not robust against adversaries. A motivated adversary

may be able to craft input that leads a target model to produce incorrect predictions.

1.1 Motivating Examples

The power of adversaries raises a huge concern when machine learning techniques are used in security-

sensitive tasks. Such attacking methods are feasible, and the resources are readily available for an

1

1.1 Motivating Examples 2

adversary to carry out these attacks in the real world.

Malware Detection. Malware is developed by motivated adversaries to control computer systems

without their owners’ consent, often causing financial losses to the target. Traditional anti-virus

software heavily relies on signatures to detect malware samples. As adversaries steadily learned

ways to bypass signature-based detection, researchers have advocated for using machine learning in

malware detection. Machine learning-based methods typically learn complex decision rules to detect

malware and achieve near-perfect accuracy in testing [100,104]. But machine learning is not immune

to adaptive adversaries. Researchers have demonstrated that an adversary can evade a machine

learning-based malware detector by injecting dummy bytes to interfere with feature extraction [105].

We demonstrate a general attack algorithm against machine learning models in Chapter 3, and show

its e↵ectiveness in evading PDF malware classifiers.

Face Recognition. Face recognition is a computer vision task that is often security-sensitive.

It is widely deployed for biometric identification and access control, while the operators assume

that it duplicates human vision to recognize people. Recently, deep learning has become the state-

of-the-art method for face recognition since it scales to huge datasets and achieves human-level

accuracy [87,93,108]. However, researchers have found that an attacker can fool a face recognition

model in the physical world by wearing glasses with a carefully designed frame [98].

Healthcare. Machine learning has drawn a lot of attention from researchers in the healthcare field

because of its huge potential for assisted diagnosis and resource allocation. Finlayson et al. pointed

out that motivated parties in the medical system can leverage adversarial examples to gain extra

benefits [34]. For example, while health insurance companies use machine learning models to evaluate

claims from healthcare providers, a provider may submit adversarial examples to get unexpected

approvals. In addition, as the administrative agencies have planned to use machine learning to assist

new medicine approval, a pharmaceutical company may use adversarial examples to influence the

administrative decision.

Autonomous Vehicles. Modern autonomous vehicles heavily rely on computer vision techniques

to perceive the surrounding environment and predict the movement of the nearby objects so that they

can plan a reasonable route to proceed. An accurate and robust object detection model is crucial

to an autonomous vehicle. A false negative, such as ignoring an obstacle, could result in a crash; a

1.2 Thesis 3

Figure 1.1: An object detection model wrongly recognizes adversarial patch as a car.

(a) Normal image. (b) Adversarial image.

false positive such as wrongly recognizing an obstacle that does not exist could result in a sudden

stop or denial-of-service. As shown in Figure 1.1, we have demonstrated that an adversary can fool a

state-of-the-art object detection model even if the scene image is captured through a complex video

sensing system [124].

1.2 Thesis

We argue that domain knowledge can be used to improve the robustness of machine learning mod-

els.

Intuitively, the robustness of a machine learning model is used to measure how well a model preserves

its correct prediction under attack. Given an input example x 2 X that is correctly classified by a

model g, we formally define g is ✏-robust on input x with a distance metric � i↵

8x0 2 X ,�(x,x0)  ✏) g(x) = g(x0) (1.1)

Domain knowledge is knowledge of a specific application field, such as vision and malware, in

contrast to the general knowledge of machine learning. Domain knowledge has often been neglected

in machine learning practices, because deep learning with its powerful automated representation

learning outperforms many previous domain-specific systems. However, machine learning models

often learn correlative features instead of causative factors in their decision rules. The gap between

1.3 Contributions 4

the ground-truth decision rules and the approximate ones learned by a machine learning model

inevitably creates opportunities for adversaries to fool machine learning models.

We show that we can use domain knowledge to (1) help understand the robustness of machine

learning models by finding evasive examples, (2) defend non-robust machine learning models by

detecting adversarial examples, (3) and improve the provable robustness of machine learning models

against restricted adversaries.

1.3 Contributions

This dissertation makes several contributions to understand and improve the robustness of machine

learning models:

1. The Genetic Evasion framework that embeds domain knowledge in genetic programming

to automatically find evasive examples against machine learning models [Chapter 3]. We

implemented an instance of the framework to attack PDF malware classifiers and evaded two

state-of-the-art models with 100% success rate. Our results reveal the surprising decision rules

that are learned by machine learning models and provide insights why those models are not

robust.

2. The Feature Squeezing framework that uses domain knowledge of signal processing to detect

adversarial examples against deep learning-based perception models [Chapter 4]. We designed an

ensemble framework to pre-process inputs with di↵erent squeezers and compare the discrepancy

between their predictions to detect adversarial examples. We evaluated two squeezers, bit depth

reduction and smoothing on several image classifiers against various attacking algorithms and

achieved state-of-the-art detection performance.

3. Provable robustness with simple pre-processing [Chapter 5]. We formally studied the impact of

bit depth reduction on adversarial capability and derived novel methods to train provably robust

models by either transforming input bounds or regularizing model weights. We incorporated

our method into formal verification and robust certification. The experimental results show

that our method trains accurate models with state-of-the-art verifiable robustness and improves

state-of-the-art robust certification methods.

Chapter 2

Background

This chapter briefly introduces machine learning and adversarial machine learning.

2.1 Machine Learning Classifiers

Machine learning learns from and makes predictions on data. A machine learning-based classifier

attempts to find a hypothesis function g that maps data points into di↵erent classes. For example, a

malware classification system would find a hypothesis function g that maps a data point (a piece of

malware sample) into either benign or malicious.

The e↵ort to train a machine learning system starts with feature extraction. As most machine learning

algorithms cannot operate on highly-structured data, the data samples are usually represented in a

specially-designed feature space. For example, a malware classifier may extract the file size and the

function call traces as features. Each feature is a dimension in the feature space; consequently, every

sample is represented as a vector. An extra step of feature selection may be performed to reduce the

number of features when the number of features is too large for the classification algorithm.

The machine learning algorithms we discuss in this dissertation are all supervised learning methods,

in which the training dataset comes with labels identifying the class of every training sample. The

hypothesis function g is trained to minimize the prediction error on the training set. This function

usually results in a low error rate on the operational data under the stationarity assumption that the

5

2.2 Adversarial Machine Learning 6

distribution over data points encountered in the future will be the same as the distribution over the

training set.

2.1.1 Neural Networks

An artificial neural network is a framework inspired by biological neural network structure that

enables di↵erent machine learning algorithms to process complex data together. Even though the

idea of neural networks and an e↵ective training algorithm, backpropagation, had been invented

many decades ago, it did not become popular until we had enormous training data and a↵ordable

computational power after 2010.

One major di↵erence between neural networks and other machine learning techniques is that

neural networks have the ability to learn feature representation automatically from training data.

Convolutional Neural Networks (CNNs), popularized by LeCun et al. [59], perform exceptionally

well on image classification [54]. A deep CNN can be written as a function g : X ! Y , where X

represents the input space and Y is the output space representing a categorical set. For a sample,

x 2 X, g(x) = fL(fL�1(. . . ((f1(x)))). Each fi represents a layer. The last output layer, fL, creates

the mapping from a hidden space to the output space (class labels) through a softmax function

that outputs a vector of real numbers in the range [0, 1] that sums to 1. We can treat the output

of the softmax function as the probability distribution of input x over C di↵erent possible output

classes.

A training set contains N labeled inputs where the ith input is denoted (xi, yi). When training a

deep model, parameters related to each layer are randomly initialized, and input samples, (xi, yi),

are fed through the network. The output of this network is a prediction, g(xi), associated with the

ith sample. To train the DNN, the di↵erence between the prediction output, g(xi), and its true label,

yi, usually modeled with a loss function J(g(xi), yi), is pushed backward into the network using a

backpropagation algorithm to update DNN parameters.

2.2 Adversarial Machine Learning

Adversarial machine learning is an interdisciplinary research field that concerns the robustness of

machine learning models under attack. We categorize existing work in this field into two groups:

2.2 Adversarial Machine Learning 7

poisoning attacks and evasion attacks. Poisoning attacks assume that an adversary can interfere

with the model training to some extent and aims to influence model behaviors. In contrast, evasion

attacks assume that an adversary only has access to a pre-trained model and intends to construct

input examples that lead to incorrect predictions that satisfy some adversarial goal. We focus on

evasion attacks in this dissertation.

2.2.1 Generating Adversarial Examples

An adversarial example is crafted by an adversary with the goal of producing an incorrect output

from a target classifier. Since ground truth, at least for image classification tasks, is based on human

perception which is hard to model or test, research in adversarial examples typically defines an

adversarial example as a misclassified sample x0 generated by perturbing a correctly-classified sample

x (the seed example) by some limited amount.

Adversarial examples can be targeted, in which case the adversary’s goal is for x0 to be classified as a

particular class t, or untargeted, in which case the adversary’s goal is just for x0 to be classified as

any class other than its correct class. More formally, given x 2 X and g(·), the goal of an targeted

adversary with target t 2 Y is to find an x0 2 X such that

g(x0) = t ^�(x,x0)  ✏ (2.1)

where �(x,x0) represents the di↵erence between input x and x0. An untargeted adversary seeks to

find an x0 2 X such that

g(x0) 6= g(x) ^�(x,x0)  ✏. (2.2)

The strength of the adversary, ✏, limits the permissible transformations. The distance metric, �(·),

and the adversarial strength threshold, ✏, are meant to model how close an adversarial example needs

to be to the original to “fool” a human observer.

Several techniques have been proposed to find adversarial examples. Szegedy et al. [107] first observed

that DNN models are vulnerable to adversarial perturbations and used the Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm to find adversarial examples. Their study also found

that adversarial perturbations generated from one DNN model can also force other DNN models to

produce incorrect outputs. Subsequent papers have explored other strategies to generate adversarial

2.2 Adversarial Machine Learning 8

manipulations, including using the linear assumption behind a model [36,76], saliency maps [83], and

evolutionary algorithms [77].

Equations (2.1) and (2.2) suggest two di↵erent parameters for categorizing methods for finding

adversarial examples: whether they are targeted or untargeted, and the choice of �(·), which is

typically an `p-norm distance metric. Popular adversarial methods use the following three norms for

�(·) (here z = x� x0):

• `1: ||z||1 = max
i

|zi|.

The `1 norm measures the maximum change in any dimension. This means an `1 attack is

limited by the maximum change it can make to each pixel, but can alter all the pixels in the

image by up to that amount.

• `2: ||z||2 =
rP

i
z2i .

The `2 norm corresponds to the Euclidean distance between x and x0. This distance can remain

small when small changes are applied to many pixels.

• `0: ||z||0 = # {i | zi 6= 0}.

For images, this measures the total number of pixels that may be altered between x and x0,

but does not limit the amount of perturbation of each of those pixels.

Next, we discuss the eleven attacking algorithms used in our experiments, grouped by the norm they

used for �(·).

Fast Gradient Sign Method: FGSM (`1, Untargeted).

Goodfellow et al. hypothesized that DNNs are vulnerable to adversarial perturbations because of

their linear nature [36]. They proposed the fast gradient sign method (FGSM) for e�ciently finding

adversarial examples. To control the cost of attacking, FGSM assumes that the attack strength

at every feature dimension is the same, essentially measuring the perturbation �(x,x0) using the

`1-norm. The strength of perturbation at every dimension is limited by the same constant parameter,

✏, which is also used as the amount of perturbation.

As an untargeted attack, the perturbation is calculated directly by using gradient vector of a loss

function:

✏ · sign(rxJ(g(x), y)) (2.3)

2.2 Adversarial Machine Learning 9

Here the loss function, J(·, ·), is the loss that have been used for training the specific DNN model,

and y is the correct label for x. Equation (2.3) essentially increases the loss J(·, ·) by perturbing the

input x based on a transformed gradient.

Basic Iterative Method: BIM (`1, Untargeted).

Kurakin et al. extended the FGSM method by applying it multiple times with small step size [55].

This method clips pixel values of intermediate results after each step to ensure that they are in an

✏-neighborhood of the original image x. For the mth iteration,

x0
m+1 = x0

m +Clipx,✏(↵ · sign(rxJ(g(x
0
m), y))) (2.4)

The clipping equation, Clipx,✏(z), performs per-pixel clipping on z so the result will be in the `1

✏-neighborhood of x [55].

DeepFool (`2, Untargeted).

Moosavi et al. used a `2 minimization-based formulation, termed DeepFool, to search for adversarial

examples [76]. DeepFool searches for the minimal perturbation to fool a classifier and uses concepts

from geometry to direct the search. For linear classifiers (whose decision boundaries are linear planes),

the region of the space describing a classifier’s output can be represented by a polyhedron (whose

plane faces are those boundary planes defined by the classifier). Then, DeepFool searches within

this polyhedron for the minimal perturbation that can change the classifiers decision. For general

non-linear classifiers, this algorithm uses an iterative linearization procedure to get an approximated

polyhedron.

Jacobian Saliency Map Approach: JSMA (`0, Targeted).

Papernot et al. [83] proposed the Jacobian-based saliency map approach (JSMA) to search for

adversarial examples by only modifying a limited number of input pixels in an image. As a targeted

attack, JSMA iteratively perturbs pixels in an input image that have high adversarial saliency scores.

The adversarial saliency map is calculated from the Jacobian (gradient) matrix rxg(x) of the DNN

model g(x) at the current input x. The (c, p)th component in Jacobian matrix rxg(x) describes the

derivative of output class c with respect to feature pixel p. The adversarial saliency score of each

pixel is calculated to reflect how this pixel will increase the output score of the target class t versus

2.2 Adversarial Machine Learning 10

changing the score of all other possible output classes. The process is repeated until classification

into the target class is achieved, or it reaches the maximum number of perturbed pixels. Essentially,

JSMA optimizes Equation (2.2) by measuring perturbation �(x,x0) through the `0-norm.

Carlini/Wagner Attacks (`2, `1 and `0, Targeted).

Carlini and Wagner introduced three new gradient-based attack algorithms that are more e↵ective

than all previously-known methods in terms of the adversarial success rates achieved with minimal

perturbation amounts [19]. They proposed three versions of attacks using `2, `1, and `0 norms.

The CW2 attack formalizes the task of generating adversarial examples as an optimization problem

with two terms as usual: the prediction objective and the distance term. However, it makes the

optimization easier to solve through several techniques. The first is using the logits-based objective

function instead of the softmax-cross-entropy loss that is commonly used in other optimization-based

attacks. This makes it robust against the defensive distillation method [86]. The second is converting

the target variable to the argtanh space to bypass the box-constraint on the input, making it more

flexible in taking advantage of modern optimization solvers, such as Adam. It also uses a binary

search algorithm to select a suitable coe�cient that performs a good trade-o↵ between the prediction

and the distance terms. These improvements enable the CW2 attack to find adversarial examples

with smaller perturbations than previous attacks.

The CW1 attack recognizes the fact that the `1 norm is hard to optimize and only the maximum

term is penalized. Thus, it revises the objective into limiting perturbations to be less than a threshold

⌧ (initially 1, decreasing in each iteration). The optimization reduces ⌧ iteratively until no solution

can be found. Consequently, the resulting solution has all the perturbations smaller than the specified

⌧ .

The basic idea of the CW0 attack is to iteratively use CW2 to find the least important features and

freeze them (so value will never be changed) until the `2 attack fails with too many features being

frozen. As a result, only those features with significant impact on the prediction are changed. This

is the opposite of JSMA, which iteratively selects the most important features and performs large

perturbations until it successfully fools the target classifier.

2.2 Adversarial Machine Learning 11

2.2.2 Defensive Techniques

Researchers have proposed several solutions to alleviate the impact of adversarial examples. We

group those works into three broad categories: adversarial training, gradient masking and input

pre-processing.

Adversarial Training. Adversarial training introduces discovered adversarial examples and the

corresponding ground truth labels to the training [36, 65, 107]. Ideally, the model will learn how

to restore the ground truth from the adversarial perturbations and perform robustly on the future

adversarial examples. This technique, however, su↵ers from the high cost to generate adversarial

examples and (at least) doubles the training cost of DNN models due to its iterative re-training

procedure. Its e↵ectiveness also depends on having a technique for e�ciently generating adversarial

examples similar to the one used by the adversary, which may not be the case in practice. As pointed

out by Papernot et al. [84], it is essential to include adversarial examples produced by all known

attacks in adversarial training, since this defensive training is non-adaptive. But, it is computationally

expensive to find adversarial inputs by most known techniques, and there is no way to be confident

the adversary is limited to techniques that are known to the trainer.

Madry et al. proposed a variation of adversarial training by enlarging the model capacity in the

re-training. Their adversarial training uses the adversarial examples generated by BIM attack with

random starts, named as the “PGD attack” [65]. The authors claimed that this method could provide

a security guarantee against any adversary based on the theory of robust optimization. The empirical

results showed that the PGD-based adversarial training significantly increases the robustness of an

MNIST model against many di↵erent attacks. However, the results on the CIFAR-10 dataset show

limited robustness.

Gradient Masking. By forcing DNN models to produce near-zero gradients, the “gradient masking”

defenses seek to reduce the sensitivity of DNN models to small changes in inputs. Gu et al. proposed

adding a gradient penalty term in the training objective. The penalty term is a summation of the

layer-by-layer Frobenius norm of the Jacobian matrix [39]. Although the trained model is more robust

against certain adversaries, the penalty significantly reduces the capacity of the model and sacrifices

accuracy on many tasks [84]. Papernot et al. introduced the strategy of “defensive distillation” to

harden DNN models [86]. A defensively distilled model is trained with the smoothed labels produced

by an existing trained DNN model. Then, to hide model’s gradient information from an adversary, the

2.2 Adversarial Machine Learning 12

distilled model replaces its last layer with a “harder” softmax function after training. Experimental

results showed that larger perturbations are required when using JSMA to evade distilled models.

However, two subsequent studies have found that defensive distillation failed to mitigate a variant

of JSMA with a division trick [17] and a black-box attack [82]. Papernot et al. concluded that

methods designed to conceal gradient information are bound to have limited success because of the

transferability of adversarial examples [84].

Input Pre-processing. A few recent studies for hardening deep learning try to reduce the model

sensitivity to small input changes by pre-processing the inputs, an approach we also use in Chapter 5.

Bhagoji et al. proposed to use dimensionality reduction techniques such as Principal Component

Analysis (PCA) as defense [10]. They first performed PCA on a clean dataset, then linearly projected

all the inputs to the PCA space and only preserved the top k principle axes. While we could expect

the reduced sensitivity with the PCA projection, the method corrupts the spatial structure of an

image, and the state-of-the-art CNN models are no longer applicable. Instead, Meng and Chen

proposed to train an autoencoder as an image filter to harden DNN models [72]. The encoder stage

of the autoencoder is essentially a non-linear dimensionality reduction. Its decoder stage restores

an input to its original spatial structure; therefore the target DNN model does not need to change.

Similar to the work we describe in Chapter 4, Osadchy et al. independently suggested using the

binary filter and the median smoothing filter to eliminate adversarial perturbations and proposed to

attack the defenses by increasing attackers’ perturbation strength [80].

2.2.3 Detecting Adversarial Examples

Multiple recent studies [33, 38, 73] focused on detecting adversarial examples. The strategies they

explore naturally fall into three groups: sample statistics, training a detector and prediction inconsis-

tency.

Sample Statistics. For detecting adversarial examples, Grosse et al. [38] proposed a statistical

test using maximum mean discrepancy and suggests the energy distance as the statistical distance

measure. Their method requires a large set of both adversarial and legitimate inputs and is not

capable of detecting individual adversarial examples, making it not useful in practice. Feinman et

al. proposed to use kernel density estimation [33] that measures the distance between an unknown

input and a group of legitimate inputs using their representations from some middle layers of a DNN

2.2 Adversarial Machine Learning 13

model. It is computationally expensive and can only detect adversarial examples lying far from the

manifolds of the legitimate population. Due to the intrinsically unperceptive nature of adversarial

examples, using sample statistics to separate adversarial examples from legitimate inputs seems

unlikely to be e↵ective. Experimental results from both Grosse et al. [38] and Feinman et al. [33]

showed that strategies relying on sample statistics gave inferior detection performance compared to

other detection methods.

Training a Detector. Similar to adversarial training, adversarial examples can be used to train a

detector. However, this strategy requires a large number of adversarial examples, therefore, being

expensive and prone to overfitting the adversarial attacks that generated examples for training the

detector. Metzen et al. proposed attaching a CNN-based detector as a branch o↵ a middle layer of

the original DNN model [73]. The detector outputs two classes and uses adversarial examples (as

one class) plus legitimate examples (as the other class) for training. The detector is trained while

freezing the weights of the original DNN, therefore does not sacrifice the classification accuracy on the

legitimate inputs. Grosse et al. demonstrated a detection method (previously proposed by Nguyen et

al. [77]) that adds a new “adversarial” class in the last layer of the DNN model [38]. The revised

model is trained with both legitimate and adversarial inputs, reducing the accuracy on legitimate

inputs due to the change to the model architecture.

Prediction Inconsistency. The basic idea of prediction inconsistency is to measure the disagree-

ment among several models in predicting an unknown input, since one adversarial example may not

fool every DNN model. Feinman et al. borrowed an idea from dropout [44] and designed a detection

technique they called Bayesian neural network uncertainty [33]. The authors used the “training”

mode of dropout layers to generate many predictions for an input at test time. They reported that

the disagreement among the predictions of sub-models is rare on legitimate inputs but common on

adversarial examples, thus can be used for detection. Meng and Chen independently proposed a

similar adversary detection method to ours that also uses the prediction vectors of the original and

the filtered images [72]. The biggest di↵erence between their work and our work in Chapter 4 is that

they trained an auto-encoder as the image filter, whereas we rely on “hard-coded” transformations.

As a result, our approach is less expensive in the training phase.

Chapter 3

Genetic Evasion1

Machine learning is widely used to develop classifiers for security tasks. However, the robustness of

these methods against motivated adversaries is uncertain. In this work, we propose a generic method

to evaluate the robustness of classifiers under attack. The key idea is to stochastically manipulate a

malicious sample to find a variant that preserves the malicious behavior but is classified as benign by

the classifier. We present a general approach to search for evasive variants and report on results from

experiments using our techniques against two PDF malware classifiers, PDFrate and Hidost. Our

method is able to automatically find evasive variants for both classifiers for all of the 500 malicious

seeds in our study. Our results suggest a general method for evaluating classifiers used in security

applications, and raise serious doubts about the e↵ectiveness of classifiers based on superficial features

in the presence of adversaries.

3.1 Introduction

Machine learning models are popular in security tasks such as malware detection, network intrusion

detection and spam detection. From the data scientists’ perspective, these models are e↵ective since

they achieve extremely high accuracy on test datasets. For example, Dahl et al. reported achieving

99.58% accuracy in classifying Win32 malware using an ensemble deep neural network with dynamic

1This chapter is based on the paper: Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers: A
Case Study on PDF Malware Classifiers. In Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016 [122]

14

3.1 Introduction 15

features [28]. Šrndic et al. achieved over 99.9% accuracy in a PDF malware classification task using

an SVM-RBF model with structural path features [104].

However, it is important to realize that these results are for particular test datasets. Unlike when

machine learning is used in other fields, security tasks involve adversaries responding to the classifier.

For example, attackers may try to generate new malware deliberately designed to evade existing

classifiers. This breaks the assumption of machine learning models that the training data and the

operational data share the same data distribution. As a result, it is important to be skeptical of

machine learning results in security contexts that do not consider attackers’ e↵orts to evade the

generated models.

The risk of evasion attacks against machine learning models under adversarial settings has been

discussed in the machine learning community, mainly focused on simple models for spam detection

(e.g., [29,64]). However, evasion attacks against malware classification can be much more complex in

terms of the classification algorithm and the feature extraction as well as the mutability of highly-

structured samples. Consequently, though evading malware classifiers has been partially explored

by classifier authors as well as security researchers, previous studies significantly under-estimate

the attackers’ ability to manipulate samples. For example, previous studies may mistakenly assume

the attackers can only insert new contents because removing existing contents would easily corrupt

maliciousness [11,66,104]. In addition, previous works are ad hoc and limited to particular target

classifiers or specific types of samples [66, 105]. Other than suggesting point solutions, they do

not provide methods to automatically evaluate the e↵ectiveness of a classifier against adaptive

adversaries.

We present a generic method to assess the robustness of a classifier by simulating attackers’ e↵orts to

evade the classifier. We do not assume the adversary has any detailed knowledge of the classifier or

the features it uses, or can use targeted expert knowledge to manually direct the search for an evasive

sample. Instead, drawing ideas from genetic programming (GP) [35, 52], we perform stochastic

manipulations and then evaluate the generated variants to select promising ones. By repeating this

procedure iteratively, we aim to generate evasive variants. A sophisticated attacker, of course, can do

manipulations that would not be found by a stochastic search, so we cannot claim that a classifier

that resists such an attack is necessarily robust. On the other hand, if the automated approach

finds evasive samples for a given classifier, it is a clear sign that the classifier is not robust against a

motivated adversary.

3.1 Introduction 16

We evaluated the proposed method on two PDF malware classifiers, and found that it could

automatically find evasive variants for all the 500 sample seeds selected from the Contagio PDF

malware archive [20]. The evasive variants exhibit the same malicious behaviors as the original

samples, but are su�ciently di↵erent in the classifier’s feature space to be classified as benign by the

machine learning-based models.

Our analysis of the discovered evasive variants reveals that both classifiers are vulnerable because

they employ non-robust features, which can be manipulated without disrupting the desired malicious

behavior. Superficial features may work well on test datasets, but if the features used to classify

malware are shallow artifacts of the training data rather than intrinsic properties of malicious content,

it is possible to find ways to preserve the malicious behavior while disrupting the features.

Contributions. Our primary contributions involve developing and evaluating a general method for

automatically finding variants that evade classifiers. In particular:

• We propose a general method to automatically find evasive variants for target classifiers. The

method does not rely on any specific classification algorithms or assume detailed knowledge of

feature extraction, but only needs the classification score feedback on generated variants and

rough knowledge of the likely features used by the classifier (Section 3.2).

• We implement a prototype system that automatically finds variants that can evade structural

feature-based PDF malware classifiers. This involves designing operators that perform stochas-

tic manipulations on PDF files, an oracle that determines if a generated variant preserves

maliciousness, a selection mechanism that promotes promising variants during the evolutionary

process, and a fitness function for each target classifier (Section 3.4).

• We evaluate the e↵ectiveness of our system in evading two recent PDF malware classifiers:

PDFrate [101] and Hidost [104], a classifier designed with the explicit goal of resisting evasion

attempts. Our system achieves 100% success rates in finding evasive variants against both

classifiers in an experiment with 500 malware sample seeds. An analysis of the discovered

evasive variants in the feature space of each classifier shows that many non-robust features

employed in the classification facilitate evasion attacks (Sections 3.5 and 3.6).

We provide background on machine learning classifiers in Section 3.2 and on PDF malware in

Section 3.3. Section 3.8 discusses related work on evasion attacks.

3.2 Overview 17

3.2 Overview

We propose an automated method to simulate an attacker attempting to find an evasive variant

for a desired malware sample which is detected by a target classifier. The attacker’s goal is to

find a malware variant that preserves the malicious behavior of the original sample, but that is

misclassified as benign by the target classifier. In addition to improving our understanding of how

classifiers work in the presence of adaptive adversaries, we hope our results will lead to strategies for

constructing classifiers that are more robust to adversaries, but in this work we focus on assessing

evadability.

3.2.1 Threat Model

We assume an attacker starts with a desired malicious sample that is (correctly) classified by a target

classifier as malicious, and wants to create a sample with the same malicious behavior, but that is

misclassified as benign. The attacker is capable of manipulating the malicious sample in many ways,

and is likely to have knowledge of samples that are (correctly) classified as benign.

We assume the attacker has black-box access to the target classifier, and can submit many variants

to that classifier. For each submitted variant, the attacker learns its classification score. The

classification score is a number (typically a real number between 0 and 1) that indicates the classifier’s

prediction of maliciousness, where values above some threshold (say 0.5) are considered malicious

and samples with lower classification scores are considered benign. We do not assume the attacker

has any internal information about the classifier, only that it can use it as a black-box that outputs

the classification score for an input sample. We assume the classifier operator does not adapt the

classifier to submitted variants (which must be the case if the attacker has o✏ine access to the

classifier).

3.2.2 Finding Evasive Samples

Our method uses genetic programming techniques to perform a directed search of the space of possible

samples to find ones that evade the classifier while retaining the desired malicious behavior.

3.2 Overview 18

Population
Initialization

Yes

No

Mutation Select
Variants

Malicious Sample

Population
Target

Classifier

Oracle

Fitness
Function

Evasive Variants
Found?

FailureMax Generation
Reached?

YesNo

Success

Benign Samples

Figure 3.1: Generic classifier evasion method.

Genetic programming (GP) is a type of evolutionary algorithm, originally developed for automatically

generating computer programs tailored to a particular task [35, 52]. It is essentially a stochastic

search method using computational analogs of biological mutation and crossover to generate variants,

and modeling Darwinian selection using a user-defined fitness function. Variants with higher fitness

are selected for continued evolution, and the process continues over multiple generations until a

variant with desired properties is found (or the search is terminated after exceeding a resource bound).

Genetic programming has been shown to be e↵ective in many tasks including fixing legacy software

bugs [57], software reverse engineering [42], and software re-engineering [92].

Method. Our procedure is illustrated in Figure 3.1. It starts with a seed sample that exhibits

malicious behavior, and is classified as malicious by the target classifier. Our method aims to find

an evasive sample that preserves the malicious behavior but is misclassified as benign by the target

classifier.

First, we initialize a population of variants by performing random manipulations on the malicious

seed. Then, each variant is evaluated by a target classifier as well as an oracle. The target classifier

is a black box that outputs a number that is a measure of predicted maliciousness of an input sample.

There is a prescribed threshold used to decide if it is malicious or benign. The oracle is used to

determine if a given sample exhibits particular malicious behavior. In most instantiations, the oracle

will involve expensive dynamic tests.

A variant that is classified as benign by the target classifier, but found to be malicious by the

oracle, is a successful evasive sample. If no evasive samples are found in the population, a subset

of the generated variants are selected for the next generation based on a fitness measure designed

to reflect progress towards finding an evasive sample. Since it is unlikely that the transformations

3.3 PDF Malware and Classifiers 19

will re-introduce malicious behaviors into a variant, corrupted variants that have lost the malicious

behavior are replaced with other variants or the original seed.

Next, the selected variants are randomly manipulated by mutation operators to produce next

generation of the population. The process continues until an evasive sample is found or a threshold

number of generations is reached.

To improve the e�ciency of the search, we collect traces of the mutation operations used and reuse

e↵ective traces. If a search ends up finding any evasive variants, the mutation traces on the evasive

variants will be stored as successful traces. Otherwise, the mutation trace of a variant with the

highest fitness score is stored. These traces are then applied to other malware seeds to generate

variants for their population initialization. Because of the structure of PDFs and the nature of the

mutation operators, the same sequence of mutations can often be applied e↵ectively to many initial

seeds.

3.3 PDF Malware and Classifiers

This section provides background on PDF malware and the two target PDF malware classifiers.

3.3.1 PDF Malware

The Portable Document Format (PDF) is a popular document format designed to enable consistent

content and layout in rendering and printing on di↵erent platforms. Although it was not openly

standardized until 2008 [5], and there are various non-standard extensions supported by di↵erent PDF

reader products, all PDF files roughly share the same basic structure depicted in Figure 3.2.

A PDF file consists of four parts: header, body, cross-reference table (CRT) and trailer. The header

contains the PDF magic number and a format version indicator. The body is a set of PDF objects

that comprise the content of the file, while the CRT indexes the objects in body. The trailer specifies

how to find the CRT and other special objects such as the root object. Thus, PDF readers typically

start reading a PDF from the end of the file for e�ciency.

The body is the most important to a PDF since it holds almost all the visible document data. It

contains eight basic types of objects, namely Booleans, numbers, strings, names, arrays, dictionaries,

3.3 PDF Malware and Classifiers 20

1 0 obj <<
 /Type /Catalog
 /Pages 2 0 R
 /OpenAction <<
 /S /JavaScript
 /JS alert('hello');
 >>
>> endobj

2 0 obj <<
 /Type /Pages
 /Kids [3 0 R]
 /Count 1
>> endobj

3 0 obj <<
 /Type /Page
 /Parent 2 0 R
 /MediaBox [0 0 128 546]
 /Resources ...
>> endobj

Header

Body

Cross-reference
table

Trailer

/Catalog

/JavaScript

alert(‘hello’);

/Type

/Type

/OpenAction

/Pages /Kids

/Pages

/Page

0

0

128

5461

...

/Count

/MediaBox

/Resources

/S

/JS

0

/Type
2 0 R

/Parent

Figure 3.2: The physical and logical structure of a PDF file.

streams and the null objects. The objects can be labeled with a pair of integer identifiers as indirect

objects so that they can be referenced by other objects. The inter-referencing objects form a tree-like

logical structure, as is shown in the right of Figure 3.2. This tree-like structure is ideally suited

to genetic programming techniques since it is easy to alter and move sub-trees to generate new

variants.

PDF malware is becoming increasing prevalent because PDF is a widely accepted document format

and victims are more willing to open PDFs than other files. According to a recent Internet security

threat report [25], PDF is in top 7 attachment types in spear-phishing emails in 2014. We expect

there will be continuing opportunities for PDF malware attacks because 128 new vulnerabilities in

Acrobat readers have been reported in CVE so far in 2015 (through 8 December), which is almost

three times the total number in 2014 [27].

PDF malware typically contains exploits in JavaScript objects or other objects that take advantage of

vulnerabilities of particular PDF readers (most commonly, Adobe Acrobat). PDF malware may also

carry other encoded payloads in stream objects which will be triggered after exploits [101].

3.3.2 Target Classifiers

Several projects have built PDF malware classifiers using machine learning techniques. Earlier

works, such as Wepawet [26] and PJScan [56], focused on the embedded malicious JavaScript in

3.3 PDF Malware and Classifiers 21

PDF malware. These tools consist of a JavaScript code extractor and a dynamic or static malicious

JavaScript classifier.

Since not all PDF malware involves embedded JavaScript, and PDF malware authors have found

many tricks for hiding JavaScript code [95], recent PDF malware classifiers have focused on structural

features of PDF files. In this work, we target state-of-the-art structural feature-based classifiers.

Structural feature-based classifiers assume that the malicious PDFs have di↵erent patterns in their

internal object structures than those found in benign PDFs. For example, the PDF Malware Slayer

tool uses the object keywords as features, where each feature corresponds to the occurrences of a

given keyword [67]. For our experiments, we selected PDFrate [100,101] and Hidost [104] as the target

classifiers. They are representatives of recent PDF malware classifiers, and Hidost was developed

with a particular goal of being resilient to evasion attacks. Both classifiers achieve extremely high

accuracy in malware detection on their testing datasets. The other reason for choosing these classifiers

as our targets is the availability of the open source implementations. Although our method only

requires black-box access to the classifier, having access to the internal feature space is beneficial for

understanding our results (Section 3.6).

PDFrate. PDFrate is a random forest classifier that uses an ensemble learning model consisting of

a large number of decision trees designed to reduce variance in predictions. With a random subset of

training data and a random subset of features, each decision tree is trained to minimize the prediction

error on its training subset. After training, the output score of PDFrate is the fraction of trees that

output “malicious”, ranging from 0 to 1. The threshold value is typically 0.5, although the PDFrate

authors claim that adjusting the threshold from 0.2 to 0.8 has little impact on accuracy because most

samples have scores very close to either 0 or 1.

Besides object keywords, PDFrate also employs the PDF metadata and several properties of objects

as the classification features. The PDF metadata includes the author, title, and creation date. The

object properties includes positions, counts, and lengths.

PDFrate was trained with a random subset of the Contagio dataset [20] with 5,000 benign and

5,000 malicious PDFs. The two parameters are respectively the number of trees (ntree = 1, 000)

and the number of features in each tree (mtry = 43). The feature set is a total of 202 integer,

floating point, and Boolean features, but only 135 of the features are described in the PDFrate

documentation.

3.4 Evading PDF Malware Classifiers 22

What we use in this work is an open-source re-implementation of PDFrate named Mimicus [103],

implemented by Nedim Šrndic and Pavel Laskov to mimic PDFrate for malware evasion experi-

ments [105]. Mimicus was trained with the 135 documented PDFrate features and the same training

set as PDFrate.2 Mimicus has been shown to have classification performance nearly equivalent to

PDFrate [105].

Hidost. Hidost is a support vector machine (SVM) classification model. SVM is an optimal margin

classifier that tries to find a small number of support vectors (data points) that separate all data

points of two classes with a hyperplane of a high-dimensional space. With kernel tricks, it can be

extended as a nonlinear classifier to fit more complex classification problems. Hidost uses a radial

basis function (RBF) kernel to map data points into an infinite dimensional space. At testing time,

the (positive or negative) distance of a data point to the hyper-plane is output as the prediction

result. A positive distance is interpreted as malicious, and negative as benign.

Hidost uses the structural paths of objects as classification features. For example, the structural

path of a typical Pages object is /Root/Pages. If that object appears in the PDF file, its feature

value is 1; if not, its feature value is 0. Since the number of possible structural paths of PDF

objects is infinite, Hidost uses 6,087 selected paths as features. The selected paths are those which

appeared in at least 1,000 of the files in a pool of 658,763 benign and malicious PDFs collected from

VirusTotal [113] and a Google search. The resulting model provided by the authors of Hidost was

trained using the randomly-sampled 5,000 malicious and 5,000 benign files. It is reported to be

robust against adversaries, where the number of false negatives on another 5,000 random malicious

files only increased from 28 to 30 under what the authors claim is the “strongest conceivable mimicry

attack” [104].

3.4 Evading PDF Malware Classifiers

The proposed method could be applied to any security classifier, although its e↵ectiveness depends

on being able to find good genetic programming operators to search the feature space e�ciently and

an appropriate fitness function to direct the search. In this section, we show how to instantiate our

design to find evasive PDF malware.

2The Mimicus authors were unable to locate one malicious file with the MD5 hash
35b621f1065b7c6ebebacb9a785b6d69 in Contagio.

3.4 Evading PDF Malware Classifiers 23

3.4.1 PDF Parser and Repacker

The first step is to parse the PDF file as a tree-like representation. We will also need to regenerate a

PDF file from the tree representation, after it has been manipulated to produce a new variant. For

this, we use pdfrw [70], a python-based open source library for parsing PDF files into the tree-like

structure and serializing that structure into an output PDF file.

It is important to note that pdfrw is not a perfect PDF parser and repacker, and a number of

PDF malware samples have been malformed intentionally to bypass or confuse PDF parsers used in

malware detectors (while still being processed by target PDF readers due to parser quirks). This

means we cannot test our method on PDF seed samples that cannot be parsed by pdfrw, or that no

longer exhibit malicious behavior when they are unpacked and packed using pdfrw.

To avoid losing too many samples because of PDF parsing issues, we modified pdfrw to loosen its

grammar checking. This significantly increased the success rate of repacking PDF malware samples.

The modified version of pdfrw is available at https://github.com/mzweilin/pdfrw.

In our modified pdfrw, we ignore several potentially corrupted, malformed, or misleading auxiliary

elements. The EOF marks in PDF raw bytes are ignored; instead, the parser reads in all bytes of a

file. The cross-reference tables are ignored; instead, it parses objects in the body directly without any

index. Stream length indicators are ignored; instead, the parser detects the stream length with the

endstream token. The unpaired keys or values are also ignored in parsing a dictionary. Ignoring these

auxiliary elements significantly decreases parsing e�ciency, thus, is only suitable for repacking seed

malware samples. All seeds are repacked with correct auxiliary elements for e�cient parsing later. In

addition, we added support for parsing empty objects, which do exist in the malware samples. The

dictionary data structure was modified to enable deep-copy in duplicating variants from seeds.

3.4.2 Genetic Operators

Since both of the classifiers we target employ the object structure of the PDF file as features,

we need to generate variants by manipulating the PDF files at that level. (If we were targeting

JavaScript-based classifiers instead, we would instead need to generate variants by manipulating the

embedded JavaScript code.) Due to the limited number of possible static features, we believe it is

reasonable to assume the attackers have the knowledge of the manipulation level.

https://github.com/mzweilin/pdfrw

3.4 Evading PDF Malware Classifiers 24

We use computational analogs of mutation in biological evolution to generate evasive PDF malware

variants. The mutation operator changes any object in a PDF file’s tree-like structure with low

probability. An object is mutated with probability given by the mutation rate, typically a number

smaller than 0.5. The mutation is either a deletion (the object is removed), an insertion (another

object is inserted after it), or a replacement (this object is replaced with some other object).

We choose among these options with uniform random probability. In the case of an insertion or

replacement, a second object is also chosen uniformly at random from a large pool of objects segmented

from benign PDFs. The external genome helps to generate a more diverse population.

The other well-known operator, crossover, commonly used in genetic algorithms, is not used in this

work. We found it was possible to achieve an 100% evasion rate only using the simple mutation

operations.

3.4.3 Oracle

We need an oracle to determine if a variant preserves the seed’s malicious behavior. There is no

perfectly accurate malware detection technique that works universally (indeed, if such a technique

existed our work would not be necessary). In this case we have one advantage that enables a

highly-accurate oracle for testing variants: we do not need an oracle that can test for arbitrary

malicious behavior, but instead only need to verify that a particular known malicious action is

performed by the variant.

To do this, we use the Cuckoo sandbox [40]. Cuckoo runs a submitted sample in a virtual machine

installed with a PDF reader and reports the behavior of the sample including network APIs called

and their parameters. Figure 3.3 shows an example of malware detection results from Cuckoo. The

malware sample opened in a virtual machine exploited a disclosed bu↵er overflow vulnerability

in Acrobat Readers (CVE-2007-5659). The injected shellcode downloads four additional pieces of

malware from Internet and executes them. Since the execution of Cuckoo was isolated from the

Internet to avoid spreading malware, the shellcode just received malformed executable files provided

by INetSim, a network service simulator [48]. However, the downloading and execution behaviors

detected by Cuckoo are enough to show that the shellcode has been executed. By comparing the

behavioral signature of the original PDF malware and the manipulated variant, we determine if

3.4 Evading PDF Malware Classifiers 25

Figure 3.3: A PDF malware detection result given by the Cuckoo sandbox. The left side shows the key API execution
trace, the right is a screenshot captured from the virtual machine.

the original malicious behavior is preserved. The details on how we select and compare behavioral

signatures are deferred to Section 3.5.1.

We only focus on the network behaviors of malware samples in this work. Although this setting

prevents our method from working on malware samples without network activity, we believe it is not

a real constraint in practice since malware authors could always develop a way to verify the desired

malicious behaviors.

Cuckoo sandbox works well as an oracle, but is computationally expensive. We experimented with

other possible oracles, including using Wepawet. Wepawet and similar detection techniques only

detect the malicious payloads, but do not verify that the payload is actually executed in a real PDF

reader. Because many of the genetic mutations will disrupt that execution, oracles that do not actually

dynamically observe the variant exhibiting the malicious behavior result in many false positives

(apparently evasive variants that would not actually work as malware). Hence, it is important to use

an oracle that confirms the malicious behavior is preserved through actual execution. This limits the

samples we can use in our experiments to ones for which we can produce the malicious behavior in

our oracle’s test environment (Section 3.5.1).

3.4.4 Fitness Function

A fitness function gives the fitness score of each generated variant. Higher scores are better. Given 0

as a threshold value, a variant with a positive fitness score is evasive: it is classified as benign and

3.4 Evading PDF Malware Classifiers 26

retains the malicious behavior.

In our case, the fitness function captures both the output of the oracle and the predicted result of the

target classifier. The oracle is modeled as a binary function: oracle(x) = 1 if x exhibits the malicious

signature; otherwise, oracle(x) = 0. In order to eliminate corrupted variants, we always assign the

lowest possible fitness score to variants with oracle(x) = 0.

Based on the di↵erent scoring methods used by the target classifiers, the fitness functions are defined

separately. PDFrate, as a random forest classifier, outputs a confidence value of maliciousness from 0

to 1, typically with a threshold of 0.5. Thus, we define its fitness function as

fitnesspdfrate(x) =

8
>><

>>:

0.5� pdfrate(x) oracle(x) = 1

LOW SCORE oracle(x) = 0

with evasive range of (0, 0.5].

The SVM model of Hidost outputs negative (positive) distance of a benign (malicious) sample to

hyperplane. Therefore, for Hidost the fitness function is defined as

fitnesshidost(x) =

8
>><

>>:

hidost(x)⇥ (�1) oracle(x) = 1

LOW SCORE oracle(x) = 0

with evasive range of (0,+1).

3.4.5 Selection

A selection process in GP can be as simple as always selecting variants with higher fitness scores in a

generation. However, it might happen that very few or even none of the variants in a generation

preserve the malicious behavior during the evolutionary process. If the malicious behavior is lost

from the population, it is very unlikely the GP will ever find an evasive sample that exhibits the

original malicious behavior.

In order to avoid degeneration in the population, we designed a replacement mechanism in addition to

the näıve selection process. The corrupted variants, which are judged by the oracle as non-malicious,

are assigned the lowest fitness score (LOW SCORE) and are replaced by either the original malicious

3.4 Evading PDF Malware Classifiers 27

PDF, the best variant found so far, or the best variant found in the previous generation. We choose

among these options with uniform random probability when corrupted variants occur, which ensures

that a fixed number of variants are retained in each generation.

3.4.6 Trace Collection and Replay

The most common way to initialize a population is duplicating the original seed and performing a

random mutation operation on each copy. Considering the potentially common properties across

evasive variants, we accelerate the search by reusing mutation traces that successfully led to evasive

or promising variants.

A mutation trace consists of a series of mutations defined by 3-tuple (mutation operator, target object

path, file id: source object path). For example,

(insert, /Root/Pages/Kids/1 , 1: /Root/Pages/Kids/4)

inserts an external Page object from a benign file 1 to the targeted PDF file. The three possible

mutation operators are defined in Section 3.4.2. Though the target object path has the same format

as the source object path, they are paths in di↵erent PDF files. The target object path refers to an

object in the variant, while the source object path points to an object in an external benign file with

the specified file id.

Mutation traces are added to two pools at the end of each GP search. If a GP search successfully

generates evasive variants, all of the corresponding mutation traces are added to the success trace

pool. Otherwise, a mutation trace that generates the variant with the highest fitness score is added

to the promising trace pool.

The traces in the two pools are replayed in the population initialization to produce some variants for

the first generation. If the number of usable traces is smaller than the population size, additional

variants are generated in the conventional way. If the number is larger than the population size, the

selection process described in Section 3.4.5 shrinks the population to the specified size.

3.5 Experiment 28

3.5 Experiment

We evaluate the e↵ectiveness of the proposed method by conducting experiments on the two target

PDF malware classifiers.

3.5.1 Dataset and Experiment Setup

We started with the 10,980 PDF malware samples in the Contagio archive [20], from which we

selected 500 suitable samples for evaluation. These samples are verified by the oracle as exhibiting

malicious behavior, are classified by both target classifiers as malicious, and can be correctly repacked

by pdfrw.

Malicious PDF Dataset. Table 3.1 summarizes the sample selection procedure.

First, we filtered out the samples that don’t have any network API calls by the shell code analysis of

Wepawet, leaving 9,688 out of 10,980 samples. This is not necessary for our method, but useful since

we use Wepawet to obtain additional information about the samples.

Second, the remaining samples were tested in the Cuckoo sandbox. According to the vulnerability

information of each sample provided by Wepawet, Adobe Acrobat Reader 8.1.1 is the most common

target PDF reader, except for CVE-2009-9837 which targets Foxit readers. Thus, these samples

were loaded with Acrobat Reader 8.1.1. However, not all network behaviors indicated by the static

analysis on shell code can be observed in Cuckoo even though we have selected a targeted PDF

reader due to the imperfect network simulation in virtual machines as well as the potential sandbox

detection features in malware. As a result, only 1,414 out of the 9,688 samples were observed to have

malicious network activities running on Acrobat Reader 8.1.1 inside the Cuckoo sandbox.

Table 3.1: Seed selection.

Description Number
PDF Malware samples in Contagio 10,980
Samples with network API calls detected by Wepawet 9,688
Samples with network activities observed by Cuckoo 1,414
Unique samples correctly repacked by pdfrw 1,384
True positives of PDFrate 1,378
True positives of Hidost 502
Intersection of TPs in PDFrate and Hidost 500

3.5 Experiment 29

Table 3.2: Comparison of network-based malware signatures.

Consistency
Source Description Example E↵ective Avg Min
API
traces

Combination of
HTTP URL
requests and host
queries

[http://stortfordaircadets.org.uk/flash/exe.php?x=pdf,
stortfordaircadets.org.uk]

500 0.95 0.50

API
traces

Hosts queried
through getaddrinfo()

[stortfordaircadets.org.uk] 497 0.95 0.50

Network
tra�c

Transport layer
destination IP
addresses

(udp: [192.168.57.2:53], tcp:
[192.168.57.2:80])

476 0.85 0.10

API
traces

URLs requested
through raw socket,
URLDownloadToFileW(),
InternetOpenUrlA()

[http://stortfordaircadets.org.uk/flash/exe.php?x=pdf] 473 0.95 0.50

Network
tra�c

DNS queries [stortfordaircadets.org.uk] 462 0.93 0.10

Network
tra�c

HTTP URL re-
quests

[http://stortfordaircadets.org.uk/flash/exe.php?x=pdf] 460 0.93 0.10

Next, the 1,414 samples were repacked by the modified pdfrw with less strict grammar checking, then

re-tested by Wepawet and Cuckoo. This resulted in 1,384 unique samples. Eleven of the samples

were corrupted during repacking and no longer behaved maliciously in Wepawet or Cuckoo. The

other 19 samples were found to be duplicates after being repacked. This is a clear sign that malware

authors have attempted to evade detection through parsing obfuscation.

Since our goal is to evaluate the e↵ectiveness of an evasion attack, we need to filter out the false

negative samples of the target classifiers. PDFrate correctly classified 1,378 out of the 1,384 samples

as malicious, while Hidost only correctly classified 502 of them. The intersection of the true positives

from both classifiers left a suitable evaluation set of 500 unique PDF malware samples.

According to results from Wepawet, these 500 malware samples exploit two di↵erent vulnerabilities

in Acrobat Readers: 333 of them exploit multiple bu↵er overflows reported in CVE-2007-5659, the

other 167 exploit a stack-based bu↵er overflow reported by CVE-2009-0927. Both vulnerabilities

can be exploited to execute arbitrary code. In summary, the payloads in the 500 samples access 255

di↵erent hosts to download additional malware from the Internet.

The selection process leaves us with 500 samples from the original 10,980 malware samples in the

Contagio archive. Although this selects less than 5% of the original samples, it does not have

implications for the success rate of a malware author attempting to find an evasive sample so long as

3.5 Experiment 30

the selection criteria have no biases which would impact our results. Many of the down-selects are

due to artifacts of the experiment, not reflective of what an actual malware producer would observe.

For example, the most significant reduction is because of the particular dynamic environment we

selected to verify the malicious behaviors. Malware authors can easily design an oracle that verifies

the presence of the particular malicious behaviors they intend to inflict.

Reliable Malware Signatures. Since the dynamic behavior of malware samples may vary across

executions, we need to select a reliable malware signature from a group of candidates. Even though

the malware is executing in the same virtual environment, its behavior may be e↵ected by the timing

of events, service failures, and other sources of non-determinism.

Focusing on the network behaviors of malware samples, we may extract various network behaviors

reported by Cuckoo as signatures, such as DNS queries, HTTP URL requests, and network destinations.

Cuckoo generates these reports from the network-related API execution traces and the captured

network tra�c. Table 3.2 compares the e↵ectiveness of six di↵erent types of signatures extracted

from Cuckoo reports.

We tested the 500 malware seeds in Cuckoo virtual machines, running each seed ten times. Our goal

is to determine which type of signature will have the best precision in capturing observed malicious

behavior, while being consistent across multiple executions of the same sample.

If a signature extracts any relevant behavior for a seed in any of the ten tests, we count the signature

e↵ective on the seed. Obviously, an ideal signature would be e↵ective on all 500 seeds. We also

measure the consistency of a signature over the 10 repeated tests. We designate the extracted

behavior observed most frequently over the ten tests as the reference signature for a seed. The

consistency on a seed is calculated as mode
10 (that is, the fraction of times the reference signature

occurred across the 10 trials).

The average and the minimum consistency of each type of signature over the ten executions for

each of the 500 seeds are listed in Table 3.2. In general, the signatures extracted from API traces

are more consistent than those extracted from network tra�c. We choose the union of the HTTP

URL requests and host queries extracted from API traces as the signature for our experiments. By

combining those two behavioral signatures, we obtain a signature that is e↵ective on all 500 malware

3.6 Results 31

seeds and has the highest average and minimum consistency.

Benign PDF Dataset. We collected a set of 179 benign PDF documents using a Google search

with filetype:pdf and no keywords. All files were confirmed to be benign by both VirusTotal [113]

and Wepawet [26]. We only included files smaller than 1 MB to avoid introducing unnecessary

computation costs manipulating extremely large PDF files. We picked the 3 benign samples with the

lowest scores (that is, most benign) to the target classifiers as the source of external objects in the

experiment. Our results show that just a few benign samples is su�cient for generating successful

evasion attacks.

GP Parameters. Several GP parameters are arbitrarily chosen without any parameter fine-tuning

other than one obvious constraint: we want the experiment to finish in a reasonable time. The

population size is 48 and the maximum generation is 20. The mutation rate is 0.1. The fitness stop

threshold is 0.0, which indicates that an evasive variant has been found.

Target Classifiers. Since we don’t want to abuse the online deployed malware classification systems

by submitting too many automatically generated malware variants, we always prefer locally executable

code. We used the Mimicus re-implementation of PDFrate and the Hidost classifier, configured and

trained as described in Section 3.3.2.

Machine. We used one typical desktop PC in the experiment (Intel Core i7-2600 CPU @ 3.40GHz

and 32GB of physical memory running 64-bit Ubuntu 14.04 Server). The Cuckoo sandbox consists of

16 virtual machine instances running Windows XP SP3 32 bit and Adobe Acrobat Reader 8.1.1. The

resources required to find evasive samples using our approach are readily available.

3.6 Results

The GP-based method achieves surprisingly good results in evading the two target classifiers. For

both of the classifiers, it is able to generate a variant that preserves the malicious behavior but is

classified as benign for all 500 seeds in our test set. Our code and data are available under an open

source license from http://www.evadeML.org

http://www.evadeML.org

3.6 Results 32

3.6.1 PDFrate

After approximately one week of execution, the algorithm found 72 e↵ective mutation traces that

generated 16,985 total evasive variants for the 500 malware seeds (34.0 evasive variants per seed in

average), achieving 100% evasion rate in attacking PDFrate.

Trace Analysis. All the mutation traces that generated evasive variants were re-executed on all of

the 500 seeds afterwards to investigate the e�cacy of each trace. E�cacy here measures for how

many of the malware seeds applying the given trace produces an evasive variant.

The length of each mutation trace and its e�cacy are illustrated in Figure 3.4. The traces are sorted

by trace ID, which reflects the order in which traces are found. From the figure we observe that the

method generally finds longer mutation traces as the evolution proceeds. Part of the reason for this

is the initial population for later seeds is generated using the collected traces. If those initial variants

are not evasive, subsequent mutations will be added to the original traces.

The e�cacy of each seed is not strongly correlated with its length. One mutation trace consisting of

a single operation that inserts a page object generated evasive variants for 155 malware seeds. There

was also mutation trace with 189 operations that was e↵ective for only two seeds.

The accumulated evasions sorted by the length of mutation traces are given by Figure 3.5 (for

comparison, the figure show results for Hidost as well, which we discuss later). The di�culty of

generating variants to evade PDFrate varies substantially over the seeds. It only took 15 short

mutation traces (none longer than 45 operations) to generate evasive variants for 400 of the 500 seeds.

Finding evasive variants for the other 100 seeds took 57 long mutation traces with lengths ranging

from 48 to 354.

In order to understand why it takes much longer traces to generate evasive variants for those 100

seeds, we examined the original classification scores of each seed. Figure 3.6 groups the seeds by

the minimum trace length required for generating evasive variants. The left side shows the original

classification score distribution in PDFrate. We found that the original seeds with lower classification

scores (<0.95) are mostly evadable by short traces. Thus, we believe some seeds require more

mutations to evade because they are originally more clearly malicious to the classifier. (This is more

obvious in Hidost as we discuss later.)

3.6 Results 33

Figure 3.4: The length and e�cacy of mutation traces for evading PDFrate.

Feature Analysis. To understand the evasion attacks, we examine the impact of the changes on

the feature space used by PDFrate.

We first look at the two simplest mutation traces in length of 1 that are e↵ective for 162 seeds:

(insert, /Root/Pages/Kids,

Figure 3.5: Accumulated evasions against PDFrate and Hidost, sorted by trace length.

3.6 Results 34

Figure 3.6: The distribution of the original classification score of seeds.

3:/Root/Pages/Kids/4/Kids/5/)

(replace, /Root/Type, 3:/Root/Pages/Kids/1/Kids/3)

Even though they are di↵erent operations, the common e↵ect of the two mutations is that they both

introduce new Page objects from external benign PDFs, resulting in significant changes in the feature

space of PDFrate.

Table 3.3 lists one example of feature changes by simply inserting several Page objects. The

classification score of the original seed is 0.998, approaching the maximum malicious score of 1.0.

After inserting the new Page objects, the classification score decreases to 0.43, which is below the

normal malware threshold of 0.5. The simple insert resulted in a large number of changes in the

feature space. The counters of some objects like pages, fonts and streams as well as the file size

directly increase due to the newly introduced objects. The object length statistics are decreased or

increased due to the change of the object population. Some other features on object positions are

also changed due to the relocation of objects at the raw byte level. All feature values are in the raw

formats because feature normalization is not required with random forests. Even though the feature

changes are so significant that PDFrate classifies the new variant as benign, the malicious behavior of

the original seed does not change at all. The change just added some pages to the PDF file.

One simple manipulation introduces many feature changes, but the impact of changing each feature

is not equivalent due to the varying importance of features in the classification. Though random

forest is a complex non-linear model that is di�cult to interpret, we estimate the impact of altering

each feature independently. Intuitively, changing a high impact feature should significantly a↵ect the

classification scores.

3.6 Results 35

Table 3.3: Impact of PDFrate Features.

Feature Original Evasive �score1 �score2 Impact
count font 0.0 70.0 0.114 0.392 0.506
count obj 11.0 230.0 0.067 0.110 0.177

count endobj 11.0 230.0 0.056 0.069 0.125
count box other 3.0 140.0 0.038 0.043 0.081
count endstream 4.0 74.0 0.011 0.054 0.065
pos box max 0.0 0.8 0.052 0.013 0.065
count stream 4.0 74.0 0.021 0.041 0.062
pos box avg 0.0 0.5 0.022 0.022 0.044
pos eof avg 1.0 1.0 0.000 0.032 0.032
pos eof min 1.0 1.0 -0.002 0.029 0.027
pos page max 0.0 0.8 0.003 0.018 0.021
pos eof max 1.0 1.0 0.002 0.016 0.018
pos page avg 0.0 0.5 0.002 0.010 0.012

size 36,028.0 503,739.0 -0.001 0.005 0.004
ratio size page 36,028.0 7,407.9 0.001 0.002 0.003
ratio size obj 3,275.3 2,190.2 0.000 0.002 0.002

ratio size stream 9,007.0 6,807.3 0.002 0.000 0.002
len obj avg 3,234.9 2,157.2 0.001 0.000 0.001
count page 1.0 68.0 -0.004 0.004 0.000
len obj max 27,455.0 34,314.0 0.000 0.000 0.000
len obj min 44.0 49.0 0.000 0.000 0.000

len stream avg 8,700.3 6,390.2 0.000 0.000 0.000
len stream max 27,392.0 34,246.0 0.000 0.000 0.000
pos page min 0.0 0.0 -0.002 0.000 -0.002
pos box min 0.0 0.0 -0.003 0.000 -0.003

The di↵erence in the feature space of PDFrate for a selected
seed sample (with score 0.998) and corresponding evasive
variant (with score 0.43). Original is the feature value of
the original seed malware sample; Evasive is the feature
value of the evasive variant. Features with the same value
for both samples are not included. �score1 is the original
score subtracting the score after that feature is changed to
Evasive value; �score2 is the evasive score subtracted by
the score after that feature is reset to the Original value.
Impact is �score1 +�score2.

For an original malware sample, if the feature is changed to a di↵erent value in evasive variants, the

classification score should decrease (indicating it appears more like benign samples to the classifier).

On the other hand, for an evasive variant, if the feature value is reset to the original value, the

classification score should increase (appears more like malicious samples to the classifier). Therefore,

we model the impacts with two factors. The decrease of the classification score of a malware seed when

a feature is changed to the evasive value is reported as �score1. The increase of the classification

score of an evasive variant when the feature is reset to the original value is reported as �score2. The

impact is the sum of the two scores. Table 3.3 lists the impact ranking of the a↵ected features, which

roughly matches with the feature importance ranking in PDFrate [100].

3.6 Results 36

Table 3.4: Most Altered Features Evading PDFrate

Counts Increased features Counts Decreased features
16,985 pos eof avg 14,234 pos page min
16,985 pos eof max 10,806 len obj min
16,985 pos eof min 10,728 count javascript
16,985 size 8,834 len stream min
16,975 count endstream 7,637 ratio size stream
16,975 count stream 4,742 createdate tz
16,941 count endobj 4,742 delta tz
16,941 count obj 4,250 ratio size page
16,862 len stream max 3,448 len stream avg
16,812 pos box max 3,137 pos page avg

The most critical feature change for this example is count font. The original malware sample does

not have any font objects as fonts are not needed for the exploit. The classifier learns that this

feature is important because most of the malware samples in the training set do not contain any font

objects as the malware authors are too lazy to insert any text, but it is unlikely that any benign

PDF file has no font objects. However, this is an artifact of the malware samples in the training set,

not an inherent property for malicious PDFs. It is trivial to add font objects to an existing PDF

malware sample to alter the value of this feature.

There are longer traces which contain at most 354 mutations and influence more features in PDFrate.

Table 3.4 lists the features that were most frequently increased and decreased across all 16,985 evasive

variants found. (The full list of all 68 mutable features of PDFrate found in evasion attacks is found

in Appendix ??.) The count is how many times the value of the feature is di↵erent for the evasive

variant found compared to the original seed. High counts imply these features are not robust and

should not be used in malware classification because they are easy to change without corrupting the

malicious properties for many malware seeds.

Most non-robust features are unsurprising, because a PDF malware author can always change

the visible contents (such as pages, text, images and metadata) in PDF malware samples without

corrupting the malicious payloads. The only surprising feature is count javascript. Since PDF

malware heavily relies on JavaScript to carry exploits and shell code, it seems surprising that it

is possible to decrease count javascript without disrupting the malicious behavior. However, the

count javascript feature is not an accurate count of the number of embedded JavaScript code pieces

in a PDF. It just extracts the number of JavaScript keywords, but these keywords are optional in

script execution. The targeted PDF reader will execute the JavaScript even without the /Javascript

keyword.

3.6 Results 37

Figure 3.7: The length and e�cacy of mutation traces for evading Hidost.

3.6.2 Hidost

The experiment of evading Hidost took around two days to execute. Although Hidost was designed

specifically to resist evasion attempts,3 our method achieves a 100% evasion rate, generating 2,859

evasive samples in total for 500 seeds (5.7 evasive samples per seed in average).

Trace Analysis. We analyze the e�cacy of each mutation trace which is examined in the same way

as for PDFrate. The length and e�cacy of each mutation trace are shown in Figure 3.7. In general,

it required shorter mutation traces to achieve 100% evasion rate in attacking Hidost than it did for

PDFrate.

We observed two major di↵erences compared to PDFrate. First, there is no increasing trace length

trend for newly found mutation traces, unlike for PDFrate where the trace length increases with

the trace ID. Second, the trace length is more correlated with the e�cacy: longer traces tend to

3Specifically, the Hidost authors claim, “The most aggressive evasion strategy we could conceive was successful
for only 0.025% of malicious examples tested against an o↵-the-shelf nonlinear SVM classifier with the RBF kernel
using the binary embedding. Currently, we do not have a rigorous mathematical explanation for such a surprising
robustness. Our intuition suggests that the main di�culty on attacker’s part lies in the fact that the input features
under his control, i.e., the structural elements of a PDF document, are only loosely related to the true features used by
a classifier. The space of true features is hidden behind a complex nonlinear transformation which is mathematically
hard to invert.” [104]

3.6 Results 38

be more e↵ective in generating evasive variants. Several short mutation traces with fewer than 5

mutations are only e↵ective on 1 or 2 malware seeds. In contrast, a long mutation trace containing

61 mutations is e↵ective on 334 malware seeds.

The accumulated number of evasions found sorted by the length of mutation traces is given in

Figure 3.5. The plot is closer to linear, suggesting that, in contrast to PDFrate, there is little

variation in the di�culty of finding evasive variants for di↵erent seeds. We believe the di↵erences

from PDFrate stem from the di↵erent feature set in Hidost. The mutation operations have more

direct influence on the structural path features in Hidost. For example, an object deletion operation

just deletes the corresponding path of a feature (along with those of its descendants). In contrast,

feature changes in PDFrate resulting from the same operation are less tangible. Besides decreasing

the counts of specific objects that we can expect, the other positional features may also change due to

the relocation of objects in repacking the modified variant. As a result, there are more inter-influences

among the mutation operations in evading PDFrate, and a larger number of mutations may be

required to reach the evasion threshold. The box plot of the original classification score in Hidost of

each seed shown in the right side of Figure 3.6 suggests that it usually requires more mutations to

find an evasive variant for seeds that appear to be more clearly malicious to the classifier.

Feature Analysis. The binary features used in Hidost are much easier to interpret than the variety

of features used by PDFrate.

We first look at the simplest mutation traces. There are 5 mutation traces in length 1, which are

only e↵ective on 1 or 2 malware seeds. They are:

(delete, /Root/OpenAction/JS/Length)

(delete, /Root/Names)

(delete, /Root/AcroForm/DR)

(replace, /Root/AcroForm/DR,

3: /Root/OpenAction/D/0/.../FontBBox/3)

(replace, /Root/AcroForm/DR,

3: /Root/Pages/Kids/3/.../DescendantFonts/0/DW)

The first three mutations each delete a node from the original malware seeds, changing the value of

the corresponding Hidost feature from 1 to 0. The first deleted object similar to the count javascript

feature in PDFrate. Both capture properties that frequently exist in malware samples but not in

3.6 Results 39

benign files. However, they are optional in malicious code execution. The other deleted objects are

artifacts in the training dataset that are not closely tied to malicious behavior. Although the last two

traces use replace operations, the important e↵ects of the replacements are to remove the features

extracted from the children objects of the original /Root/AcroForm/DR node.

Simply deleting some objects is not su�cient to evade Hidost (it is only e↵ective on 1 or 2 malware

seeds in our experiment), but additional mutations are enough to find evasive variants for all of the

seeds. The longest mutation trace contains 85 operations, which is e↵ective on 198 malware seeds

for generating evasive variants to bypass Hidost. Table 3.5 lists the all of feature changes observed

over the 198 malware seeds when executing that mutation trace. Unsurprisingly, several auxiliary

objects are added or deleted to fool Hidost. For example, several metadata objects are inserted.

Metadata widely exists in benign PDFs when users generate PDF documents with popular PDF

writers. On the other hand, it is rare in PDF malware because malware authors did not add metadata

in hand-crafting PDF exploits. However, this is just an artifact in the training dataset and not an

essential di↵erence between PDF documents and PDF malware. Inserting metadata into a PDF

malware sample increases the likelihood of the sample being considered benign by Hidost.

As seen from this example, trace length itself is not a good measure of evasion complexity. Although

the stochastic search process found an 85-operation trace to create these evasive variants, the trace

only impacts the 23 features (each corresponding to a node in the PDF file) showing in Table 3.5.

That is to say, there is a 23-operation trace that would be just as e↵ective (and probably shorter

traces since one mutation can impact many features), and the trace found by the search includes many

useless or redundant mutations. For the purposes of creating evasive malware, it is not important to

find the shortest e↵ective trace, although it would be possible to develop techniques to automatically

pare down a trace to its essential operations if desired. The yellow triangle plot in Figure 3.7 shows

the number of a↵ected features for each trace.

Although its authors claimed that Hidost was robust against evasion attacks involving just feature

addition, we found many evasive variants that only added features. Among the 2,859 evasive variants,

761 are pure feature addition attacks, 21 of them are pure feature deletion attacks, and the other

2,077 involved both feature addition and deletion. It is already unrealistic to assume attackers can

only insert features, and, as shown in the claims about non-evadability of Hidost, dangerous to

assume a technique cannot be evaded because particular manual techniques fail.

A complete list of mutated features in evading Hidost is given in Appendix ??. These non-robust

3.6 Results 40

Table 3.5: Feature changes produced by longest Hidost mutation trace.

Added Features Deleted Features
Threads AcroForm

ViewerPreferences/Direction Names/JavaScript/Names/S
Metadata AcroForm/DR/Encoding/PDFDocEncoding

Metadata/Length AcroForm/.../PDFDocEncoding/Di↵erences
Metadata/Subtype AcroForm/.../PDFDocEncoding/Type
Metadata/Type Pages/Rotate

OpenAction/Contents AcroForm/Fields
OpenAction/Contents/Filter AcroForm/DA
OpenAction/Contents/Length Outlines/Type

Pages/MediaBox Outlines
Outlines/Count

Pages/Resources/ProcSet
Pages/Resources

features should not be used in a malware classifier, as they can be easily changed while preserving

the original malicious properties.

3.6.3 Cross-Evasion E↵ects

Even though the classifiers are designed very di↵erently and trained with di↵erent training datasets,

we suspected they must share some properties in the same classification task. Therefore, we conducted

a cross-evasion experiment by feeding one classifier with the evasive variants found in evading the

other classifier.

For 388 of the malware seeds, the evasive variants found by evading Hidost are also e↵ective in

evading PDFrate. That is to say, without any access to PDFrate, a malware author with access to

Hidost could find evasive variants for 77.6% of the seeds. In contrast, the evasive variants found by

evading PDFrate are only e↵ective against Hidost for two of the malware seeds.

The significant di↵erence in the cross evasion e↵ects is due to the di↵erent feature sets in the two

classifiers. Indeed, the primary design goal for Hidost was to be less easily evaded than other classifiers

by using features based on structural properties. The evasive variants generated by the algorithm in

evading PDFrate do change the measured features significantly, however, they have little e↵ect on

the structural features used in Hidost. In the reverse direction, the evasive variants targeting Hidost

by directly altering structural features (necessary to evade Hidost), incidentally impact the features

used by PDFrate.

3.6 Results 41

PD
Fr
at
e

Hi
do
st

Hours

24 48 72 96 120 144

Oracle Mutation Classifier Others

Figure 3.8: Time required to find evasive variants for 500 malware samples.

3.6.4 Execution Cost

One drawback of evolutionary algorithms is that they provide no guarantees about generating good

results within a specific duration. For many problems, these methods can require a huge amount of

computing resources before a desired result is found. Further, failing to find the desired result may

be a sign that it doesn’t exist, or just that more computing resources are required. Our experiments

show that the resources required for this instantiation are very reasonable.

For each classifier target, the experiment was run in several rounds. The first round started with

empty trace pools, so the search for evasive variants relies solely on the stochastic search directed by

the fitness function. In later rounds, the successful and promising mutation traces found previously

were used to accelerate the search. All the failed jobs in a round were re-run in the next round with

the all mutation traces stored in previous rounds.

For PDFrate, it took four rounds to reach 100% evasion. The evasion rate on Hidost reached 100% in

the second round. Figure 3.8 shows the total time needed to find evasive variants for all 500 malware

seeds in evading the two classifiers. The duration for each job is not meaningful because it mainly

depends on the job sequence. Later jobs are usually much faster because they may benefit from

mutation traces found earlier, but the order of trying the seeds is arbitrary.

It took less than 6 days to achieve a 100% evasion rate on PDFrate. In other words, our method found

an evasive variant for each seed in 16 minutes on average running on a commodity desktop. Evasive

variants were found against Hidost three times faster, taking 5 minutes per seed in average.

3.7 Discussion 42

The main computation time is running the generated variants in the Cuckoo sandbox, which we use

as the oracle in our process. The machine with 16 virtual machines running in parallel is able to test

1,000 samples per hour. This could easily be accelerated by using more machines, since there are no

dependencies between the executions.

We also observed that the time spent on other tasks (including mutation) in attacking PDFrate takes

a larger proportion of the total duration than for Hidost (8.3% vs. 4.1%). This is because the benign

files used as external object genome are larger than those in attacking Hidost. Hence, it produced

larger variants, increasing the computational burden for parsing, manipulating, and repacking.

3.7 Discussion

In this section we discuss the potential defenses and future directions suggested by our results.

3.7.1 Defense

Beyond understanding the vulnerabilities of current classifiers, our ultimate goal is to improve the

robustness of classifiers under attack. Based on the evasive samples we generated, and the non-robust

features we found in Section 3.5, we consider several possible approaches.

Information Hiding and Randomization. One of the most direct solutions to protect classifiers

is hiding the classification scores from the users or adding random noise to the scores [8]. Another

proposed method is the multiple classifier system, in which the classification scores are somewhat

randomly picked from di↵erent models trained with disjoint features [12]. As our method heavily

relies on the classification scores of variants to calculate fitness scores that direct the evolution, the

lack of accurate score feedback makes the search for evasive variants much harder and may make our

approach infeasible.

However, the intrinsic non-robustness of superficial features should not be simply ignored. Considering

the potential cross-evasion e↵ects (Section 3.6.3), hiding or randomizing the information may not

help much against an adversary who can infer something about the types of features used by the

target classifier. Moreover, previous work has shown that accurately re-implementing a similar

3.7 Discussion 43

classifier with a surrogate training set is possible (indeed, this is what the authors of Mimicus did to

experiment with evadability of PDFrate [100,105]).

Adapting to Evasive Variants. Our experiments assume that adversary can test samples without

exposing them to the classifier operator. In an on-line scenario, the classifier may be able to adapt

to attempted variants. Note, however, that retraining is expensive and opens up the classifier to

alternate evasion strategies such as poisoning attacks.

Chinavle et al. proposed a method that would automatically retrain the classifier with pseudo labels

once evasive variants were detected by a mutual agreement measure on the ensemble model, which

had been shown e↵ective on a spam detection task [21]. However, adapting to users’ input without

true labels introduces a new risk of poisoning attacks.

Defeating Overfitting. The evadability of classifiers we demonstrate could be just an issue of

overfitting, in which case, well known machine learning practices should work to defeat overfitting.

For example, collecting a much larger dataset for training the model, or using model averaging to

lower the variance.

We don’t expect these conventional methods will help, however. It is impossible to collect a complete

dataset of future malware, and none of these techniques anticipate an adversary who is actively

attempting to evade the classifier.

Selecting Robust Features. We found many non-robust features from the two classifiers in the

evasion experiments. Obviously, they should be removed from the feature set as they can be easily

manipulated by the attacker without corrupting the malicious properties. The problem with the

features used by both Hidost and PDFrate, however, is that all of the features are likely non-robust.

The superficial features used by these classifiers do not have any intrinsic distinguishability between

benign and malicious PDFs, and it would be very surprising if superficial features were found that

could be used for robust classification. Instead, it seems necessary to use deeper features to build

classifiers that can resist evasion attempts by sophisticated adversaries. Such features will depend on

higher-level semantic analysis of the input file, in ways that are di�cult to change without disrupting

the malicious behavior.

3.8 Related Work 44

3.7.2 Improving Automatic Evasion

Our automatic evasion method provides a general method to evaluate the robustness of classifiers

for security tasks. Its ability to find evasive variants against a target classifier demonstrates clear

weaknesses, but if our method fails to find evasive variants against a particular classifier this is

certainly not enough to be confident that other techniques (including manual e↵ort) would not be

able to find evasive variants. Hence, it is valuable to improve the method to enable more e�cient

searching to target more challenging classifiers.

Parameter Tuning. In this work, we just arbitrarily choose the search parameters. Tuning

the parameters, or even trying dynamic mechanisms like parameter decay, could make the search

algorithm more e�cient.

Learnable GP. The current method we use to generate evasive variants is essentially a random

search algorithm. Hence, it often generates corrupted variants that lose the malicious behavior. A

probabilistic model would learn which mutations are more e↵ective for generating evasive variants to

direct the search more e�ciently.

Other Applications. Our case study focused on PDF malware, but we believe similar approaches

could be e↵ective against other machine-learning based malware classifiers. The main challenges in

applying our approach to a new domain are to develop suitable genetic mutation operations and find

an appropriate oracle.

3.8 Related Work

There have been several papers on evasion attacks against classifiers in the machine learning

community, mostly focused on spam detection with simple models (e.g., [21, 29, 64]. Chinavle et

al. argued that the adversarial problem is essentially concept drift, which is a well studied field in

machine learning that considers data distributions which change over time [21]. However, the concept

drift solutions assume the data distribution changes are not due to the classifier itself, not resulting

from an adversary intentionally adapting to it.

3.9 Conclusions 45

Evasion attacks against malware classifiers have been studied previously by Biggio et al. from the

angle of classification models [11] and by Šrndic et al. [104]. However, these studies assumed that

attackers can only insert new features and they conducted evasion experiments in the feature space

without generating actual evasive PDF malware. In fact, the experiments in our work show attackers

can also delete features while preserving maliciousness, and our experiments verified that the resulting

evasive variants preserved maliciousness through dynamic execution in a test environment.

Šrndic et al. demonstrated how PDFrate could be evaded by exploiting an implementation flaw in

the feature extraction [105]. Our method does not rely on any particular implementation flaw in a

target classifier. Instead, it exploits the weak spots in a classifier model’s feature space and employs

a stochastic method to manipulate samples in diverse ways.

Maiorca et al. proposed reverse-mimicry attacks against PDF malware classifiers [66]. In reverse-

mimicry, a benign sample is manipulated into a malicious one by inserting malicious payloads into

the structure. The attack is generic to a class of classifiers based on structural features. However,

the hand-crafted attack only works on malware with simple payloads. In contrast, our GP-based

method is automatic and does not have this limitation.

Evolutionary algorithms have also recently been used to fool deep learning-based computer vision

models [77]. In contrast, this work uses genetic programming, an important branch of evolutionary

algorithms for generating highly-structured data like computer programs.

3.9 Conclusions

Our experiments show how the traditional approach of building machine learning classifiers can

fail against determined adversaries. We argue that it is essential for designers of classifiers used in

security applications to consider how adversaries will adapt to those classifiers, and important for

the research community to develop better ways of predicting the actual e↵ectiveness of a classifier in

deployment.

3.10 Impact 46

3.10 Impact

Genetic Evasion, as the first practical and generic evasion attack against machine learning-based

malware classifiers, is often discussed and compared in academic papers [31, 49,85,96,125].

Our work has inspired more researchers to explore the security of machine learning models. For

example, Dang et al. proposed a hill climbing algorithm-based method to strengthen the evasion

attack [30]. Their improved method can evade a classifier that only gives binary feedback (malicious

or benign), which makes it more practical to evade real-world black-box models that are deployed

and hidden behind API calls. Wang et al. made a theoretical analysis on the robustness of machine

learning models and concluded that one necessary condition of a strong-robust classifier is that it

only uses relevant features [114].

Our work also draws more attention back to the malicious document problem. For example, Xu et

al. proposed PlatPal, a non-machine-learning-based PDF malware detector that relies on simple

heuristics about discrepant behaviors of malicious PDFs on diverse platforms [119]. Tong et al.

further investigated the robustness of the Hidost classifier and found that only a handful of features

are robust [111].

Chapter 4

Feature Squeezing1

Previous studies to defend against adversarial examples mostly focused on refining the DNN models,

but have either shown limited success or required expensive computation. We propose a new strategy,

feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature

squeezing reduces the search space available to an adversary by coalescing samples that correspond

to many di↵erent feature vectors in the original space into a single sample. By comparing a DNN

model’s prediction on the original input with that on squeezed inputs, feature squeezing detects

adversarial examples with high accuracy and few false positives. This chapter explores two feature

squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple

strategies are inexpensive and complementary to other defenses, and can be combined in a joint

detection framework to achieve high detection rates against state-of-the-art attacks.

4.1 Introduction

The goal of this chapter is to harden DNN systems against adversarial examples by detecting

adversarial inputs. Detecting an attempted attack may be as important as predicting correct outputs.

When running locally, a classifier that can detect adversarial inputs may alert its users or take fail-safe

actions (e.g., a fully autonomous drone returns to its base) when it spots adversarial inputs. For an

1This chapter is based on the paper: Weilin Xu, David Evans and Yanjun Qi. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2018 [123]

47

4.1 Introduction 48

on-line classifier whose model is being used (and possibly updated) through API calls from external

clients, the ability to detect adversarial examples may enable the operator to identify malicious

clients and exclude their inputs. Another reason that detecting adversarial examples is important is

because even with the strongest defenses, adversaries will occasionally be able to get lucky and find

an adversarial input. For asymmetrical security applications like malware detection, the adversary

may only need to find a single example that preserves the desired malicious behavior but is classified

as benign to launch a successful attack. This seems like a hopeless situation for an on-line classifier

operator, but the game changes if the operator can detect even unsuccessful attempts during an

adversary’s search process.

Most previous work on hardening DNN systems, including adversarial training and gradient masking

(details in Section 2.2.2), focused on modifying the DNN models themselves. In contrast, our work

focuses on finding simple and low-cost defensive strategies that alter the input samples but leave

the model unchanged. Section 2.2.3 describes a few other recent proposals for detecting adversarial

examples.

Our approach, which we call feature squeezing, is driven by the observation that the feature input

spaces are often unnecessarily large, and this vast input space provides extensive opportunities for

an adversary to construct adversarial examples. Our strategy is to reduce the degrees of freedom

available to an adversary by “squeezing” out unnecessary input features. The key idea is to compare

the model’s prediction on the original sample with its prediction on the sample after squeezing, as

depicted in Figure 4.1. If the original and squeezed inputs produce substantially di↵erent outputs

from the model, the input is likely to be adversarial. By comparing the di↵erence between predictions

with a selected threshold value, our system outputs the correct prediction for legitimate examples

and rejects adversarial inputs.

Although feature squeezing generalizes to other domains, here we focus on image classification.

Because it is the domain where adversarial examples have been most extensively studied. We explore

two simple methods for squeezing features of images: reducing the color depth of each pixel in an

image and using spatial smoothing to reduce the di↵erences among individual pixels. We demonstrate

that feature squeezing significantly enhances the robustness of a model by predicting correct labels of

non-adaptive adversarial examples, while preserving the accuracy on legitimate inputs (Section 4.3),

thus enabling an accurate detector for static adversarial examples (Section 4.4). Feature squeezing

appears to be both more accurate and general, and less expensive, than previous methods, though

4.1 Introduction 49

the robustness against adaptive adversary needs further investigation in the future work.

Contributions. Our key contribution is introducing and evaluating feature squeezing as a technique

for detecting adversarial examples. We show how the general detection framework (Figure 4.1)

can be instantiated to accurately detect adversarial examples generated by several state-of-the-art

methods. We study two instances of feature squeezing: reducing color bit depth (Section 4.2.1)

and both local and non-local spatial smoothing (Section 4.2.2). We report on experiments that

show feature squeezing helps DNN models predict correct classification on adversarial examples

generated by eleven di↵erent and state-of-the-art attacks mounted without knowledge of the defense

(Section 4.3). Feature squeezing is complementary to other adversarial defenses since it does not

change the underlying model, and can readily be composed with other defenses such as adversarial

training (Section 4.3.2).

Section 4.4 explains how we use feature squeezing for detecting static adversarial inputs, combining

multiple squeezers in a joint detection framework. Our experiments show that joint-detection

can successfully detect adversarial examples from eleven static attacks at the detection rates of

98% on MNIST and 85% on CIFAR-10 and ImageNet, with low (around 5%) false positive rates.

Although we cannot guarantee an adaptive attacker cannot succeed against a particular feature

squeezing configuration, our results show it is e↵ective against state-of-the-art static methods, and it

considerably complicates the task of an adaptive adversary even with full knowledge of the model and

defense (Section 4.4.4). In Chapter 5, we show that bit depth reduction improves provable robustness

of deep learning models.

Model

Model

Model

Squeezer
1

Squeezer
2

Prediction0

Prediction1

Prediction2

max &', &) > +

Yes

Input

,'

Adversarial

No

Legitimate
,'

&'

&)

Figure 4.1: Feature-squeezing framework for detecting adversarial examples. The model is evaluated on both the
original input and the input after being pre-processed by feature squeezers. If the di↵erence between the model’s
prediction on a squeezed input and its prediction on the original input exceeds a threshold level, the input is identified
to be adversarial.

4.2 Feature Squeezing Methods 50

Figure 4.2: Image examples with bit depth reduction.
The first column shows images from MNIST, CIFAR-
10 and ImageNet, respectively. Other columns show
squeezed versions at di↵erent color-bit depths, ranging
from 8 (original) to 1.

Original

Median
Smoothing

Binary
Filter

Legitimate FGSM BIM C/W Li C/W L2 C/W L0 JSMA

Figure 4.3: Examples of adversarial attacks and feature
squeezing methods extracted from the MNIST dataset. The
first column shows the original image and its squeezed
versions, while the other columns present the adversarial
variants. All targeted attacks are targeted-next.

4.2 Feature Squeezing Methods

Although the notion of feature squeezing is quite general, we focus on two simple types of squeezing:

reducing the color depth of images (Section 4.2.1), and using smoothing (both local and non-local) to

reduce the variation among pixels (Section 4.2.2). Section 4.3 looks at the impact of each squeezing

method on classifier accuracy and robustness against adversarial inputs. These results enable feature

squeezing to be used for detecting adversarial examples in Section 4.4.

4.2.1 Color Depth

A neural network, as a di↵erentiable model, assumes that the input space is continuous. However,

digital computers only support discrete representations as approximations of continuous natural data.

A standard digital image is represented by an array of pixels, each of which is usually represented as

a number that represents a specific color.

Common image representations use color bit depths that lead to irrelevant features, so we hypothesize

that reducing bit depth can reduce adversarial opportunity without harming classifier accuracy.

Two common representations, which we focus on here because of their use in our test datasets, are

8-bit grayscale and 24-bit color. A grayscale image provides 28 = 256 possible values for each pixel.

An 8-bit value represents the intensity of a pixel where 0 is black, 255 is white, and intermediate

numbers represent di↵erent shades of gray. The 8-bit scale can be extended to display color images

with separate red, green and blue color channels. This provides 24 bits for each pixel, representing

224 ⇡ 16 million di↵erent colors.

4.2 Feature Squeezing Methods 51

Squeezing Color Bits

While people usually prefer larger bit depth as it makes the displayed image closer to the natural

image, large color depths are often not necessary for interpreting images (for example, people have

no problem recognizing most black-and-white images). We investigate the bit depth squeezing with

three popular datasets for image classification: MNIST, CIFAR-10 and ImageNet.

Greyscale Images (MNIST). The MNIST dataset contains 70,000 images of hand-written digits

(0 to 9). Of these, 60,000 images are used as training data and the remaining 10,000 images are used

for testing. Each image is 28⇥ 28 pixels, and each pixel is encoded as 8-bit grayscale.

Figure 4.2 shows one example of class 0 in the MNIST dataset in the first row, with the original

8-bit grayscale images in the leftmost and the 1-bit monochrome images rightmost. The rightmost

images, generated by applying a binary filter with 0.5 as the cuto↵, appear nearly identical to the

original images on the far left. The processed images are still recognizable to humans, even though

the feature space is only 1/128th the size of the original 8-bit grayscale space.

Figure 4.3 hints at why reducing color depth can mitigate adversarial examples generated by multiple

attack techniques. The top row shows one original example of class 1 from the MNIST test set and

six di↵erent adversarial examples. The middle row shows those examples after reducing the bit depth

of each pixel into binary. To a human eye, the binary-filtered images look more like the correct class;

in our experiments, we find this is true for DNN classifiers also (Table 4.3 in Section 4.3).

Color Images (CIFAR-10 and ImageNet). We use two datasets of color images in this chapter:

the CIFAR-10 dataset with tiny images and the ImageNet dataset with high-resolution photographs.

The CIFAR-10 dataset contains 60,000 images, each with 32⇥32 pixels encoded with 24-bit color and

belonging to 10 di↵erent classes. The ImageNet dataset is provided by ImageNet Large Scale Visual

Recognition Challenge 2012 for the classification task, which contains 1.2 million training images and

the other 50,000 images for validation. The photographs in the ImageNet dataset are in di↵erent sizes

and hand-labeled with 1,000 classes. However, they are pre-processed to 224⇥224 pixels encoded

with 24-bit True Color for the target model MobileNet [46, 69] we use in this chapter.

The middle row and the bottom row of Figure 4.2 show that we can reduce the original 8-bit (per

RGB channel) images to fewer bits without significantly decreasing the image recognizability to

humans. It is di�cult to tell the di↵erence between the original images with 8-bit per channel color

4.2 Feature Squeezing Methods 52

and images using as few as 4 bits of color depth. Unlike what we observed in the MNIST datase,

however, bit depths lower than 4 do introduce some human-observable loss. This is because we lose

much more information in the color image even though we reduce to the same number of bits per

channel. For example, if we reduce the bits-per-channel from 8 bits to 1 bit, the resulting grayscale

space is 1/128 large as the original; the resulting RGB space is only 2�(24�3) = 1/2, 097, 152 of the

original size. Nevertheless, in Section 4.3.1 we find that squeezing to 4 bits is strong enough to

mitigate a lot of adversarial examples while preserving the accuracy on legitimate examples.

Implementation

We implement the bit depth reduction operation in Python with the NumPy library. The input and

output are in the same numerical scale [0, 1] so that we don’t need to change anything of the target

models. For reducing to i-bit depth (1  i  7), we first multiply the input value with 2i � 1 (minus

1 due to the zero value) then round to integers. Next we scale the integers back to [0, 1], divided

by 2i � 1. The information capacity of the representation is reduced from 8-bit to i-bit with the

integer-rounding operation.

4.2.2 Spatial Smoothing

Spatial smoothing (also known as blur) is a group of techniques widely used in image processing for

reducing image noise. Next, we describe the two types of spatial smoothing methods we used: local

smoothing and non-local smoothing.

Local Smoothing

Local smoothing methods make use of the nearby pixels to smooth each pixel. By selecting di↵erent

mechanisms in weighting the neighbouring pixels, a local smoothing method can be designed as

Gaussian smoothing, mean smoothing or the median smoothing method [94] we use. As we report in

Section 4.3.1, median smoothing (also known as median blur or median filter) is particularly e↵ective

in mitigating adversarial examples generated by `0 attacks.

The median filter runs a sliding window over each pixel of the image, where the center pixel is

replaced by the median value of the neighboring pixels within the window. It does not actually reduce

4.2 Feature Squeezing Methods 53

the number of pixels in the image, but spreads pixel values across nearby pixels. The median filter is

essentially squeezing features out of the sample by making adjacent pixels more similar.

The size of the window is a configurable parameter, ranging from 1 up to the image size. If it were set

to the image size, it would (modulo edge e↵ects) flatten the entire image to one color. A square shape

window is often used in median filtering, though there are other design choices. Several padding

methods can be employed for the pixels on the edge, since there are no real pixels to fill the window.

We choose reflect padding , in which we mirror the image along with the edge for calculating the

median value of a window when necessary.

Median smoothing is particularly e↵ective at removing sparsely-occurring black and white pixels in an

image (descriptively known as salt-and-pepper noise), whilst preserving edges of objects well.

Implementation. We use the median filter implemented in SciPy [94]. In a 2⇥ 2 sliding window,

the center pixel is always located in the lower right. When there are two equal-median values due to

the even number of pixels in a window, we (arbitrarily) use the greater value as the median.

Non-local Smoothing

Non-local smoothing is di↵erent from local smoothing because it smooths over similar pixels in a

much larger area instead of just nearby pixels. For a given image patch, non-local smoothing finds

several similar patches in a large area of the image and replaces the center patch with the average of

those similar patches. Assuming that the mean of the noise is zero, averaging the similar patches will

cancel out the noise while preserving the edges of an object. Similar with local smoothing, there

are several possible ways to weigh the similar patches in the averaging operation, such as Gaussian,

mean, and median. We use a variant of the Gaussian kernel because it is widely used and allows to

control the deviation from the mean. The parameters of a non-local smoothing method typically

include the search window size (a large area for searching similar patches), the patch size and the

filter strength (bandwidth of the Gaussian kernel). We will denote a filter as “non-local means (a-b-c)”

where “a” means the search window a⇥ a, “b” means the patch size b⇥ b and “c” means the filter

strength.

Implementation. We use the fast non-local means denoising method implemented in OpenCV [79].

It first converts a color image to the CIELAB colorspace, then separately denoises its L and AB

4.3 Robustness 54

components, then converts back to the RGB space.

4.2.3 Other Squeezing Methods

Our results in this chapter are limited to these simple squeezing methods, which are surprisingly

e↵ective on our test datasets. However, we believe many other squeezing methods are possible, and

continued experimentation will be worthwhile to find the most e↵ective squeezing methods.

One possible area to explore includes lossy compression techniques. Kurakin et al. explored the

e↵ectiveness of the JPEG format in mitigating the adversarial examples [55]. Their experiment shows

that a very low JPEG quality (e.g. 10 out of 100) is able to destruct the adversarial perturbations

generated by FGSM with ✏=16 (at scale of [0,255]) for at most 30% of the successful adversarial

examples. However, they didn’t evaluate the potential loss on the accuracy of legitimate inputs.

Another possible direction is dimension reduction. For example, Turk and Pentland’s early work

pointed out that many pixels are irrelevant features in the face recognition tasks, and the face

images can be projected to a feature space named eigenfaces [112]. Even though image samples

represented in the eigenface-space loose the spatial information a CNN model needs, the image

restoration through eigenfaces may be a useful technique to mitigate adversarial perturbations in a

face recognition task.

4.3 Robustness

The previous section suggested that images, as used in classification tasks, contain many irrelevant

features that can be squeezed without reducing recognizability. For feature squeezing to be e↵ective

in detecting adversarial examples (Figure 4.1), it must satisfy two properties: (1) on adversarial

examples, the squeezing reverses the e↵ects of the adversarial perturbations; and (2) on legitimate

examples, the squeezing does not significantly impact a classifier’s predictions. This section evaluates

the how well di↵erent feature squeezing methods achieve these properties.

Threat model. In evaluating robustness, we assume a powerful adversary who has full access to a

trained target model, but no ability to influence that model. For now, we assume the adversary is

4.3 Robustness 55

Table 4.1: Summary of the target DNN models.

Dataset Model Top-1
Accuracy

Top-1 Mean
Confidence

Top-5
Accuracy

MNIST 7-Layer CNN [15] 99.43% 99.39% -
CIFAR-10 DenseNet [47, 68] 94.84% 92.15% -
ImageNet MobileNet [46, 69] 68.36% 75.48% 88.25%

not aware of feature squeezing being performed on the operator’s side. The adversary tries to find

inputs that are misclassified by the model using white-box attack techniques.

Although we analyze the robustness of standalone feature squeezers here, we do not propose using a

standalone squeezer as a defense because an adversary may take advantage of feature squeezing in

attacking a DNN model. For example, when facing binary squeezing, an adversary can construct an

image by setting all pixel intensity values to be near 0.5. This image is entirely gray to human eyes.

By setting pixel values to either 0.49 or 0.51 it can result in an arbitrary 1-bit filtered image after

squeezing, either entirely white or black. Such an attack can easily be detected by our detection

framework (Section 4.4), however. Section 4.4.4 considers how adversaries can adapt to our detection

framework.

Target Models. We use three popular datasets for the image classification task: MNIST, CIFAR-10,

and ImageNet. For each dataset, we set up a pre-trained model with the state-of-the-art performance.

Table 4.1 summarizes the prediction performance of each model and its DNN architecture. Our

MNIST model (a seven-layer CNN [15]) and CIFAR-10 model (a DenseNet [47, 68] model) both

achieve prediction performance competitive with state-of-the-art results [9]. For the ImageNet dataset,

we use a MobileNet model [46, 69] because MobileNets are more widely used on mobile phones and

their small and e�cient design make it easier to conduct experiments. The accuracy achieved by this

model (88.25% top-5 accuracy), is below what can be achieved with a larger model such as Inception

v3 [23,106] (93.03% top-5 accuracy).

Attacks. We evaluate feature squeezing on all of the attacks described in Section 2.2.2 and

summarized in Table 4.2. For each targeted attack, we try two di↵erent targets: the Next class

(t = L+ 1 mod #classes), and the least-likely class (LL), t = min (ŷ). Here t is the target class, L

is the index of the ground-truth class and ŷ is the prediction vector of an input image. This gives

eleven total attacks: the three untargeted attacks (FGSM, BIM and DeepFool), and two versions

each of the four targeted attacks (JSMA, CW1, CW2, and CW0). We use the implementations of

4.3 Robustness 56

Table 4.2: Evaluation of attacks.

Configration
Cost (s)

Success
Rate

Prediction
Confidence

Distortion
Attack Mode `1 `2 `0

M
N
IS
T

`1

FGSM 0.002 46% 93.89% 0.302 5.905 0.560
BIM 0.01 91% 99.62% 0.302 4.758 0.513

CW1
Next 51.2 100% 99.99% 0.251 4.091 0.491
LL 50.0 100% 99.98% 0.278 4.620 0.506

`2 CW2
Next 0.3 99% 99.23% 0.656 2.866 0.440
LL 0.4 100% 99.99% 0.734 3.218 0.436

`0

CW0
Next 68.8 100% 99.99% 0.996 4.538 0.047
LL 74.5 100% 99.99% 0.996 5.106 0.060

JSMA
Next 0.8 71% 74.52% 1.000 4.328 0.047
LL 1.0 48% 74.80% 1.000 4.565 0.053

C
IF
A
R
-1
0

`1

FGSM 0.02 85% 84.85% 0.016 0.863 0.997
BIM 0.2 92% 95.29% 0.008 0.368 0.993

CW1
Next 225 100% 98.22% 0.012 0.446 0.990
LL 225 100% 97.79% 0.014 0.527 0.995

`2

DeepFool 0.4 98% 73.45% 0.028 0.235 0.995

CW2
Next 10.4 100% 97.90% 0.034 0.288 0.768
LL 12.0 100% 97.35% 0.042 0.358 0.855

`0

CW0
Next 367 100% 98.19% 0.650 2.103 0.019
LL 426 100% 97.60% 0.712 2.530 0.024

JSMA
Next 8.4 100% 43.29% 0.896 4.954 0.079
LL 13.6 98% 39.75% 0.904 5.488 0.098

Im
ag
eN

et

`1

FGSM 0.02 99% 63.99% 0.008 3.009 0.994
BIM 0.2 100% 99.71% 0.004 1.406 0.984

CW1
Next 211 99% 90.33% 0.006 1.312 0.850
LL 269 99% 81.42% 0.010 1.909 0.952

`2

DeepFool 60.2 89% 79.59% 0.027 0.726 0.984

CW2
Next 20.6 90% 76.25% 0.019 0.666 0.323
LL 29.1 97% 76.03% 0.031 1.027 0.543

`0 CW0
Next 608 100% 91.78% 0.898 6.825 0.003
LL 979 100% 80.67% 0.920 9.082 0.005

Results are for 100 seed images for each the DNN models described
in Table 4.1. The cost of an attack generating adversarial examples
is measured in seconds per sample. The `0 distortion is normalized
by the number of pixels (e.g., 0.560 means 56% of all pixels in the
image are modified).

FGSM, BIM and JSMA provided by the Cleverhans library [81]. For DeepFool and the three CW

attacks, we use the implementations from the original authors [15, 75]. Our models and code for

our attacks, defenses, and tests are available at https://evadeML.org/zoo. We use a PC equipped

with an i7-6850K 3.60GHz CPU, 64GiB system memory, and a GeForce GTX 1080 to conduct the

experiments.

For the seed images, we select the first 100 correctly predicted examples in the test (or validation) set

from each dataset for all the attack methods, since some attacks are too expensive to run on all the

https://evadeML.org/zoo

4.3 Robustness 57

seeds. We adjust the applicable parameters of each attack to generate high-confidence adversarial

examples, otherwise they would be easily rejected. This is because the three DNN models we

use achieve high confidence of the top-1 predictions on legitimate examples (see Table 4.1; mean

confidence is over 99% for MNIST, 92% for CIFAR-10, and 75% for ImageNet). In addition, all the

pixel values in the generated adversarial images are clipped and squeezed to 8-bit-per-channel pixels

so that the resulting inputs are within the possible space of images.

Table 4.2 reports results from our evaluation of the eleven attacks on three datasets. The success

rate captures the probability an adversary achieves their goal. For untargeted attacks, the reported

success rate is 1� accuracy ; for targeted attacks, it is only considered a success if the model predicts

the targeted class. Most of the attacks are very e↵ective in generating high-confidence adversarial

examples against three DNN models. The CW attacks often produce smaller distortions than other

attacks using the same norm objective, but are much more expensive to generate. On the other hand,

FGSM, DeepFool, and JSMA often produce low-confidence adversarial examples. We exclude the

DeepFool attack from the MNIST dataset because it generates images that appear unrecognizable to

humans.2 We do not have JSMA results for ImageNet because our 64GiB test machine runs out of

memory.

4.3.1 Results

Table 4.3 summarizes the e↵ectiveness of di↵erent feature squeezers on classification accuracy in our

experiments.

Color Depth Reduction. The resolution of a specific bit depth is defined as the number of

possible values for each pixel. For example, the resolution of 8-bit color depth is 256. Reducing the

bit depth lowers the resolution and diminishes the opportunity an adversary has to find e↵ective

perturbations.

MNIST. The last column of Table 4.3 shows the binary filter (1-bit depth reduction) barely reduces

the accuracy on the legitimate examples of MNIST (from 99.43% to 99.33% on the test set). The

binary filter is e↵ective on all the `2 and `1 attacks. For example, it improves the accuracy on CW1

adversarial examples from 0% to 100%. The binary filter works well even for large `1 distortions.

2We believe this is because the linear boundary assumption doesn’t hold for the particular MNIST model and
DeepFool fails to approximate the minimal perturbation.

4.3 Robustness 58

Table 4.3: Model accuracy with feature squeezing

Dataset
Squeezer `1 Attacks `2 Attacks `0 Attacks

All
Attacks Legitimate

Name Parameters FGSM BIM
CW1 Deep-

Fool
CW2 CW0 JSMA

Next LL Next LL Next LL Next LL

MNIST

None 54% 9% 0% 0% - 0% 0% 0% 0% 27% 40% 13.00% 99.43%
Bit Depth 1-bit 92% 87% 100% 100% - 83% 66% 0% 0% 50% 49% 62.70% 99.33%

Median Smoothing
2x2 61% 16% 70% 55% - 51% 35% 39% 36% 62% 56% 48.10% 99.28%
3x3 59% 14% 43% 46% - 51% 53% 67% 59% 82% 79% 55.30% 98.95%

CIFAR-10

None 15% 8% 0% 0% 2% 0% 0% 0% 0% 0% 0% 2.27% 94.84%

Bit Depth
5-bit 17% 13% 12% 19% 40% 40% 47% 0% 0% 21% 17% 20.55% 94.55%
4-bit 21% 29% 69% 74% 72% 84% 84% 7% 10% 23% 20% 44.82% 93.11%

Median Smoothing 2x2 38% 56% 84% 86% 83% 87% 83% 88% 85% 84% 76% 77.27% 89.29%
Non-local Means 11-3-4 27% 46% 80% 84% 76% 84% 88% 11% 11% 44% 32% 53.00% 91.18%

ImageNet

None 1% 0% 0% 0% 11% 10% 3% 0% 0% - - 2.78% 69.70%

Bit Depth
4-bit 5% 4% 66% 79% 44% 84% 82% 38% 67% - - 52.11% 68.00%
5-bit 2% 0% 33% 60% 21% 68% 66% 7% 18% - - 30.56% 69.40%

Median Smoothing
2x2 22% 28% 75% 81% 72% 81% 84% 85% 85% - - 68.11% 65.40%
3x3 33% 41% 73% 76% 66% 77% 79% 81% 79% - - 67.22% 62.10%

Non-local Means 11-3-4 10% 25% 77% 82% 57% 87% 86% 43% 47% - - 57.11% 65.40%

No results are shown for DeepFool on MNIST because of the adversarial examples it generates appear unrecognizable

to humans; no results are shown for JSMA on ImageNet because it requires more memory than available to run. We

do not apply the non-local smoothing on MNIST images because it is di�cult to find similar patches on such images

for smoothing a center patch.

This is because the binary filter squeezes each pixel into 0 or 1 using a cuto↵ 0.5 in the [0, 1) scale.

This means maliciously perturbing a pixel’s value by ±0.30 does not change the squeezed value of

pixels whose original values fall into [0, .20) and [.80, 1). In contrast, bit depth reduction is not

e↵ective against `0 attacks (JSMA and CW0) since these attacks make large changes to a few pixels

that are not reversed by the bit depth squeezer. However, as we will show later, the spatial smoothing

squeezers are often e↵ective against `0 attacks.

CIFAR-10 and ImageNet. Because the DNN models for CIFAR-10 and ImageNet are more sensitive

to perturbations, adversarial examples at very low `2 and `1 distortions can be found. Table 4.3

includes the results of 4-bit depth and 5-bit depth filters in mitigating the adversaries for CIFAR-10

and ImageNet. In testing, the 5-bit depth filter increases the accuracy on adversarial inputs for

several of the attacks (for example, increasing accuracy from 0% to 40% for the CW2 Next class

targeted attack), while almost perfectly preserving the accuracy on legitimate data (94.55% compared

with 94.84%). The more aggressive 4-bit depth filter is more robust against adversaries (e.g., accuracy

on CW2 increases to 84%), but reduces the accuracy on legitimate inputs from 94.84% to 93.11%.

We do not believe these results are good enough for use as a stand-alone defense (even ignoring the

risk of adversarial adaptation), but they provide some insight why the method is e↵ective as used in

our detection framework.

Median Smoothing. The adversarial perturbations produced by the `0 attacks (JSMA and CW0)

are similar to salt-and-pepper noise, though it is introduced intentionally instead of randomly. Note

4.3 Robustness 59

that the adversarial strength of an `0 adversary limits the number of pixels that can be manipulated,

so it is not surprising that maximizing the amount of change to each modified pixel is typically most

useful to the adversary. This is why the smoothing squeezers are more e↵ective against these attacks

than the color depth squeezers.

MNIST. We evaluate two window sizes on the MNIST dataset in Table 4.3. Median smoothing is

the best squeezer for all of the `0 attacks (CW0 and JSMA). The median filter with 2⇥ 2 window

size performs slightly worse on adversarial examples than the one with 3⇥ 3 window, but it almost

perfectly preserves the performance on the legitimate examples (decreasing accuracy from 99.43% to

99.28%).

CIFAR-10 and ImageNet. The experiment confirms the intuition that median smoothing can

e↵ectively eliminate the `0-limited perturbations. Without squeezing, the `0 attacks are e↵ective on

CIFAR-10, resulting in 0% accuracy for the original model (”None” row in Table 4.3). However, with

a 2⇥ 2 median filter, the accuracy increases to over 75% for all the four `0 type attacks. We observe

similar results on ImageNet, where the accuracy increases from 0% to 85% for the CW0 attacks after

median smoothing.

Non-local Smoothing. Non-local smoothing has comparable performance in increasing the accuracy

on adversarial examples other than the `0 type. On the other hand, it has little impact on the

accuracy on legitimate examples. For example, the 2⇥ 2 median filter decreases the accuracy on the

CIFAR-10 model from 94.84% to 89.29% while the model with non-local smoothing still achieves

91.18%.

4.3.2 Combining with Adversarial Training

Since our approach modifies inputs rather than the model, it can easily be composed with any defense

technique that operates on the model. The most successful previous defense against adversarial

examples is adversarial training (Section 2.2.2). To evaluate the e↵ectiveness of composing feature

squeezing with adversarial training, we combined it with two di↵erent adversarial training methods:

the FGSM-based version implemented in Cleverhans [81] and the PGD-based version implemented

by Madry et al. [65]. We evaluated the accuracy on all 10,000 MNIST testing images and compared

4.3 Robustness 60

.8685

.9783

.9536

.9238

.8852

.9917

.9862
.9743

.9484

.9055

0.85

0.90

0.95

1.00

0 0.1 0.2 0.3 0.4

A
cc

ur
ac

y

Adversary Strength (ɛ for FGSM)

Adversarial Training

Binary Filter

Composed

(a) FGSM attacks.

.9912

.9376

.9050
.8760

.9727

.9593
.9850

.9706 .9479
.9421

0.85

0.90

0.95

1.00

0 0.1 0.2 0.3 0.4

A
cc

ur
ac

y

Adversary Strength (ɛ of PGD)

Adversarial Training

Binary Filter

Composed

0.148 (for ε=0.4)

(b) PGD attacks.

Figure 4.4: Composing adversarial training with feature squeezing. The horizontal axis is the adversary’s strength (✏),
increasing to the right. The adversarial training uses ✏ = 0.3 for both FGSM are PGD. Composing the 1-bit filter with
the adversarial-trained model often performs the best.

the three di↵erent configurations: 1. the base model with a binary filter; 2. the adversarial-trained

model; 3. the adversarial-trained model with a binary filter.

Figure 4.4a shows that bit-depth reduction by itself often outperforms the adversarial training

methods, and the composition is nearly always the most e↵ective. For FGSM, binary filter feature

squeezing outperforms adversarial training for ✏ values ranging from 0.1 to 0.3. This is the best

case for adversarial training since the adversarially-trained model is learning from the same exact

adversarial method (training is done with FGSM examples generated at ✏ = 0.3) as the one used to

produce adversarial examples in the test. Nevertheless, feature squeezing outperforms it, even at

4.4 Detecting Adversarial Inputs 61

✏ = 0.3 (93.03% accuracy on adversarial examples compared to 92.38%).

PGD-based adversarial training [65] does better, outperforming the simple binary filter feature

squeezing for ✏ = 0.2 and 0.3 but slightly reducing accuracy on legitimate (✏ = 0) examples, as

shown in Figure 4.4b. Composing both methods typically leads to the highest accuracy or the one

comparable to the best single approach. For example, both methods encounter significant drop on

accuracy when ✏ = 0.4: 87.60% with the binary filter and 14.84% with adversarial training. However,

the composed method still achieves 94.21%.

Feature squeezing is far less expensive than adversarial training. It is almost cost-free, as we simply

insert a binary filter before the pre-trained MNIST model. On the other hand, adversarial training is

very expensive as it requires both generating adversarial examples and retraining the classifier for

many epochs. When its cost is not prohibitive, though, adversarial training is still beneficial since it

can be combined with feature squeezing.

4.4 Detecting Adversarial Inputs

The results from Section 4.3 show that feature squeezing is capable of obtaining accurate model

predictions for many adversarial examples with little reduction in accuracy for legitimate examples.

This enables detection of adversarial inputs using the framework introduced in Figure 4.1. The basic

idea is to compare the model’s prediction on the original sample with the same model’s prediction on

the sample after squeezing. The model’s predictions for a legitimate example and its squeezed version

should be similar. On the contrary, if the original and squeezed examples result in dramatically

di↵erent predictions, the input is likely to be adversarial. Figure 4.5 confirms this intuition visually

by comparing the `1 distances between the predictions for squeezed and non-squeezed examples

for legitimate and adversarial examples, and Table 4.4 shows the results of our experiments. The

following subsections provide more details on our detection method, experimental setup, and discuss

the results. Section 4.4.4 considers how adversaries may adapt to our defense.

4.4.1 Detection Method

A prediction vector generated by a DNN classifier normally represents the probability distribution

how likely an input sample is to belong to each possible class. Hence, comparing the model’s original

4.4 Detecting Adversarial Inputs 62

0

200

400

600

800

0.0 0.4 0.8 1.2 1.6 2.0

N
um

be
r o

f E
xa

m
pl

es

Legitimate

Adversarial

(a) MNIST examples.

0

200

400

0.0 0.4 0.8 1.2 1.6 2.0

Legitimate

Adversarial

(b) CIFAR-10 examples.

0
20
40
60
80
100
120
140

0.0 0.4 0.8 1.2 1.6 2.0

Legitimate

Adversarial

(c) ImageNet examples.

Figure 4.5: Di↵erences in `1 distance between original and squeezed sample, for legitimate and adversarial examples
across three datasets. The `1 score has a range from 0.0 to 2.0 . Each curve is fitted over 200 histogram bins each
representing the `1 distance range of 0.01. Each sample is counted in the bin for the maximum `1 distance between
the original prediction and the output of the best joint-detection squeezing configuration shown in Table 4.4. The
curves for adversarial examples are for all adversarial examples, including unsuccessful ones (so the separation for
successful ones is even larger than shown here).

prediction with the prediction on the squeezed sample involves comparing two probability distribution

vectors. There are many possible ways to compare the probability distributions, such as the `1 norm,

the `2 norm and K-L divergence [13]. For this work, we select the `1 norm3 as a natural measure of

the di↵erence between the original prediction vector and the squeezed prediction:

score(x,xsqueezed) = kg(x)� g(xsqueezed)k1 (4.1)

Here g(x) is the output vector of a DNN model produced by the softmax layer whose ith entry

describes the probability how likely input x is in the ith class. The `1 score has a range from 0 to

2 for the prediction vectors. Higher scores mean there are greater di↵erences between the original

prediction and the squeezed prediction. The maximum value of 2 is reached when each prediction

vector consists of a 1 and all zeros, but with di↵erent classes as the 1. Based on the accuracy results

in Section 4.3, we expect the score to be small for legitimate inputs and large for adversarial examples.

The e↵ectiveness of detection depends on selecting a threshold value that accurately distinguishes

between legitimate and adversarial inputs.

Even though we can select an e↵ective feature squeezer for a specific type of adversarial method, an

operator typically does not know the exact attack method that would be used in practice. Hence, we

combine multiple feature squeezers for detection by outputting the maximum distance:

scorejoint = max
⇣
score(x,xsq1), score(x,xsq2), . . .

⌘
(4.2)

We chose the max operator based on the assumption that di↵erent squeezers will be e↵ective for

3This turned out to work well, but it is certainly worth exploring in future work if other metrics can work better.

4.4 Detecting Adversarial Inputs 63

di↵erent types of perturbations, and that the e↵ective squeezer can be identified through the highest

`1 score. On the other hand, this may increase the false positive rate because the max operator also

selects the most destructive squeezer on legitimate inputs. We found that using max is enough to

allow a reasonable trade-o↵ in the empirical results, but it may be worthwhile to investigate better

ways to combine the squeezers in future work.

Figure 4.5 shows the histogram of scorejoint for both legitimate (blue) and adversarial examples

(red) on the three datasets. The peak for legitimate examples is always near 0, and the peak for

adversarial examples is always near 2. Picking a threshold value between the two peaks is a balance

between high detection rates and acceptable false positive rates.

4.4.2 Experimental Setup

We report on experiments using all attacks from Section 4.3 with the three types of squeezers in

di↵erent configurations.

Datasets. To get a balanced dataset for detection, we select the same number of legitimate examples

from the test (or validation) set of each dataset. For each of the attacks in Section 4.3, we use the 100

adversarial examples generated for each attack in the robustness experiments. This results in 2,000

total examples for MNIST (of which 1,000 are legitimate examples, and 1,000 are adversarial), 2,200

examples for CIFAR-10 and 1,800 examples for ImageNet. We randomly split each detection dataset

into two groups: one-half for training the detector and the remainder for validation. Note that some

of the adversarial examples are failed adversarial examples which do not confuse the original model,

so the number of successful adversarial examples varies slightly across the attacks.

Squeezers. We first evaluate how well each squeezing configuration does against adversarial examples

generated by each attack method. Then, we consider the realistic scenario where the defender does

not know that attack method used by the adversary and needs to select a configuration that works

well against a distribution of possible attacks.

Training. The training phase of our detector is simply selecting an optimal threshold of scorejoint .

One typical practice is to find the one that maximizes the training accuracy. Since the actual expected

distribution of samples is not balanced and mostly benign, however, a detector with high accuracy

4.4 Detecting Adversarial Inputs 64

but a high false positve rate would be useless for many security-sensitive tasks. Therefore, we instead

select a threshold that targets a false positive rate below 5% by choosing a threshold that is exceeded

by no more than 5% of legitimate samples. Note that the training threshold is set using only the

legitimate examples, so does not depend on the adversarial examples. Consequently, our method is

inexpensive in the training phase compared with other methods like sample statistics or training

a detector as we introduce in Section 2.2.3, but could be more expensive than training a detector

during inference due to the squeezing operations and the multiple inputs.

Validation. Next, we use the chosen threshold value to measure the detection rate on three groups:

successful adversarial examples (SAEs), failed adversarial examples (FAEs), and legitimate examples

(for false positive rate). Except when noted explicitly, “detection rate” means the detection rate

on successful adversarial examples. It is important to distinguish failed adversarial examples from

legitimate examples here since detecting failed adversarial examples is useful for detecting attacks

early, whereas an alarm on a legitimate example is always undesirable and is counted as a false

positive.

4.4.3 Results

Table 4.4 shows the detection rates for successful adversarial examples for each attack method with a

variety of configurations. For each dataset, we first list the detection rate for several detectors built

upon single squeezers. For each squeezing method, we tried several parameters and compare the

performance for each dataset. The “Best Attack-Specific Single Squeezer” row gives the detection

rate for the best single squeezer against a particular attack. This represents the (unrealistically

optimistic) case where the model operator knows the attack type and selects a single squeezer for

detection that may be di↵erent for each attack. Below this, we show the best result of joint detection

(to be discussed later) with multiple squeezers where the same configuration must be used for all

attacks.

The best bit depth reduction for MNIST is squeezing the color bits to one, which achieves at least

97.87% detection for all the `1 and `2 attacks and 100% detection rate for seven of the attacks. It is

not as e↵ective on CW0 attacks, however, since these attacks are making large changes to a small

number of pixels. On the contrary, the 3⇥ 3 median smoothing is the most e↵ective on detecting the

`0 attacks with detection rates above 88%. This matches the observation from Table 4.3 that they

4.4 Detecting Adversarial Inputs 65

Table 4.4: Detection rate for squeezing configurations on successful adversarial examples.

Configuration `1 Attacks `2 Attacks `0 Attacks Overall
Detection

RateSqueezer Parameters Threshold FGSM BIM
CW1 Deep

Fool
CW2 CW0 JSMA

Next LL Next LL Next LL Next LL
M

N
IS

T
Bit Depth

1-bit 0.0005 1.000 0.979 1.000 1.000 - 1.000 1.000 0.556 0.563 1.000 1.000 0.903
2-bit 0.0002 0.615 0.064 0.615 0.755 - 0.963 0.958 0.378 0.396 0.969 1.000 0.656

Median Smoothing
2x2 0.0029 0.731 0.277 1.000 1.000 - 0.944 1.000 0.822 0.938 0.938 1.000 0.868
3x3 0.0390 0.385 0.106 0.808 0.830 - 0.815 0.958 0.889 1.000 0.969 1.000 0.781

Best Attack-Specific Single Squeezer - 1.000 0.979 1.000 1.000 - 1.000 1.000 0.889 1.000 1.000 1.000 -
Best Joint Detection (1-bit, 2x2) 0.0029 1.000 0.979 1.000 1.000 - 1.000 1.000 0.911 0.938 1.000 1.000 0.982

C
IF

A
R
-1
0

Bit Depth

1-bit 1.9997 0.063 0.075 0.000 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.013
2-bit 1.9967 0.083 0.175 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.022
3-bit 1.7822 0.125 0.250 0.755 0.977 0.170 0.787 0.939 0.365 0.214 0.000 0.000 0.409
4-bit 0.7930 0.125 0.150 0.811 0.886 0.642 0.936 0.980 0.192 0.179 0.041 0.000 0.446
5-bit 0.3301 0.000 0.050 0.377 0.636 0.509 0.809 0.878 0.096 0.018 0.041 0.038 0.309

Median Smoothing
2x2 1.1296 0.188 0.550 0.981 1.000 0.717 0.979 1.000 0.981 1.000 0.837 0.885 0.836
3x3 1.9431 0.042 0.250 0.660 0.932 0.038 0.681 0.918 0.750 0.929 0.041 0.077 0.486

Non-local Mean

11-3-2 0.2770 0.125 0.400 0.830 0.955 0.717 0.915 0.939 0.077 0.054 0.265 0.154 0.484
11-3-4 0.7537 0.167 0.525 0.868 0.977 0.679 0.936 1.000 0.250 0.232 0.245 0.269 0.551
13-3-2 0.2910 0.125 0.375 0.849 0.977 0.717 0.915 0.939 0.077 0.054 0.286 0.173 0.490
13-3-4 0.8290 0.167 0.525 0.887 0.977 0.642 0.936 1.000 0.269 0.232 0.224 0.250 0.547

Best Attack-Specific Single Squeezer - 0.188 0.550 0.981 1.000 0.717 0.979 1.000 0.981 1.000 0.837 0.885 -
Best Joint Detection (5-bit, 2x2, 13-3-2) 1.1402 0.208 0.550 0.981 1.000 0.774 1.000 1.000 0.981 1.000 0.837 0.885 0.845

Im
a
g
eN

et

Bit Depth

1-bit 1.9942 0.151 0.444 0.042 0.021 0.048 0.064 0.000 0.000 0.000 - - 0.083
2-bit 1.9512 0.132 0.511 0.500 0.354 0.286 0.170 0.306 0.218 0.191 - - 0.293
3-bit 1.4417 0.132 0.556 0.979 1.000 0.476 0.787 1.000 0.836 1.000 - - 0.751
4-bit 0.7996 0.038 0.089 0.813 1.000 0.381 0.915 1.000 0.727 1.000 - - 0.664
5-bit 0.3528 0.057 0.022 0.688 0.958 0.310 0.957 1.000 0.473 1.000 - - 0.606

Median Smoothing
2x2 1.1472 0.358 0.422 0.958 1.000 0.714 0.894 1.000 0.982 1.000 - - 0.816
3x3 1.6615 0.264 0.444 0.917 0.979 0.500 0.723 0.980 0.909 1.000 - - 0.749

Non-local Mean

11-3-2 0.7107 0.113 0.156 0.813 0.979 0.357 0.936 0.980 0.418 0.830 - - 0.618
11-3-4 1.0387 0.208 0.467 0.958 1.000 0.548 0.936 1.000 0.673 0.957 - - 0.747
13-3-2 0.7535 0.113 0.156 0.813 0.979 0.357 0.936 0.980 0.418 0.851 - - 0.620
13-3-4 1.0504 0.226 0.444 0.958 1.000 0.548 0.936 1.000 0.709 0.957 - - 0.751

Best Attack-Specific Single Squeezer - 0.358 0.556 0.979 1.000 0.714 0.957 1.000 0.982 1.000 - - -
Best Joint Detection (5-bit, 2x2, 11-3-4) 1.2128 0.434 0.644 0.979 1.000 0.786 0.915 1.000 0.982 1.000 - - 0.859

have di↵erent strengths for improving the model accuracy. For MNIST, there is at least one squeezer

that provides good (> 91%) detection results for all of the attacks.

For CIFAR-10, 2⇥ 2 median smoothing is the best single squeezer for detecting every attack except

DeepFool, which is best detected by non-local means. This is consistent with the robustness results

in Table 4.3. For the ImageNet dataset, we find several di↵erent squeezers are similarly e↵ective on

each attack type. For example, the CW2-LL attack can be detected 100% of the time with several

bit depth filters, 2⇥ 2 median smoothing, and some of the non-local mean filters.

The third column in the table gives the distance threshold setting needed to satisfy the maximum

false positive rate of 5% in the training dataset. These threshold values provide some insight into

how well a particular squeezer distinguishes between adversarial and legitimate examples. For the

binary filter on MNIST, a tiny threshold value of 0.0005 was su�cient to produce a false positive

rate below 5%, which means the squeezing has negligible impact on the legitimate examples: 95%

of the legitimate examples have the `1-based distance score below 0.0005. On the other hand, the

best median smoothing filter (2 ⇥ 2) on MNIST needs a larger threshold value 0.0029 to achieve

a similar false positive rate, which means it is slightly more destructive than the binary filter on

4.4 Detecting Adversarial Inputs 66

Table 4.5: Summary results for the best joint detectors.

Dataset Detector Threshold
Detection
(SAEs)

Detection
(FAEs)

FPR
ROC-AUC
(Excluding

FAEs)

MNIST
Bit Depth (1-bit),
Median (2⇥ 2)

0.0029 98.15% 20.00% 3.98% 99.44%

CIFAR-10
Bit Depth (5-bit),
Median (2⇥ 2),
Non-local Means (13-3-2)

1.1402 84.53% 22.22% 4.93% 95.74%

ImageNet
Bit Depth (5-bit),
Median (2⇥ 2),
Non-local Means (11-3-4)

1.2128 85.94% 25.00% 8.33% 94.24%

SAE: successful adversarial example. FAE: failed adversarial example.

the legitimate examples. The more aggressive median smoothing with 3⇥ 3 window results in an

even higher threshold 0.039, because the legitimate examples could get over-squeezed to the target

classifier. A lower threshold is always preferred for detection since it means the detector is more

sensitive to adversarial examples.

For some of the attacks, none of the feature squeezing methods work well enough for the color datasets.

The worst cases, surprisingly, are for FGSM and BIM, two of the earlier adversarial methods. The

best single-squeezer-detection only recognizes 18.75% of the successful FGSM examples and 55%

of BIM examples on the CIFAR-10 dataset, while the detection rates are 35.85% and 55.56% on

ImageNet. We suspect the reason the tested squeezers are less e↵ective against these attacks is

because they make larger perturbations than the more advanced attacks (especially the CW attacks),

and the feature squeezers we use are well suited to mitigating small perturbations. Understanding

why these detection rates are so much lower than the others, and developing feature squeezing

methods that work well against these attacks is an important avenue for future research.

Joint-Detection with Multiple Squeezers.

By comparing the last two rows of each dataset in Table 4.4, we see that joint-detection often

outperforms the best detector with a single squeezer. For example, the best single-squeezer-detection

detects 97.87% of the CW2-Next examples for CIFAR-10, while joint detection detects 100%.

The main reason to use multiple squeezers, however, is because this is necessary to detect unknown

attacks. Since the model operator is unlikely to know what attack adversaries may use, it is important

to be able to set up the detection system to work well against any attack. For each data set, we try

several combinations of the three squeezers with di↵erent parameters and find out the configuration

that has the best detection results across all the adversarial methods (shown as the “Best Joint

4.4 Detecting Adversarial Inputs 67

Detection” in Table 4.4, and summarized in Table 4.5). For MNIST, the best combination was

the 1-bit depth squeezer with 2 ⇥ 2 median smoothing (98.15% detection), combining the best

parameters for each type of squeezer. For the color image datasets, di↵erent combinations were found

to outperform combining the best squeezers of each type. The best joint detection configuration for

ImageNet (85.94% detection) includes the 5-bit depth squeezer, even though the 3-bit depth squeezer

was better as a single squeezer.

Since the joint detector needs to maintain the 5% false positive rate requirement, it has a higher

threshold than the individual squeezers. This means in some cases its detection rate for a particular

attack will be worse than the best single squeezer achieves. However, comparing the “Best Attack-

Specific Single Squeezer” and “Best Joint Detection” rows in Table 4.4 reveals that the joint detection

is usually competitive with the best single squeezers over all the attacks. For MNIST, the biggest

drop is for detection rate for CW0 (LL) attacks drops from 100% to 93%; for CIFAR-10, the joint

squeezer always outperforms the best single squeezer; for ImageNet, the detection rate drops for

CW2 (Next) (95% to 91%). For simplicity, we use a single threshold across all of the squeezers in a

joint detector; we expect there are better ways to combine multiple squeezers that would use di↵erent

thresholds for each of the squeezers to avoid this detection reduction, and plan to study this in future

work.

We report ROC-AUC scores in Table 4.5 excluding the failed adversarial examples from consideration,

since it is not clear what the correct output should be for a failed adversarial example. Our joint-

detector achieves around 95% ROC-AUC score on CIFAR-10 and ImageNet. The ROC-AUC of

the detector is as high as 99.44% for MNIST. The false positive rates on legitimate examples are

all near 5%, which is expected considering how we select a threshold value in the training phase.

The detection rate for the best configuration on successful adversarial examples exceeds 98% for

MNIST using a 1-bit filter and a 2⇥ 2 median filter and near 85% for the other two datasets using a

combination of three types feature squeezing methods with di↵erent parameters. The detection rates

for failed adversarial examples are much lower than those for successful adversarial examples, but

much higher than the false positive rate for legitimate examples. This is unsurprising since FAEs

are attempted adversarial examples, but since they are not successful the prediction outputs for the

unsqueezed and squeezed inputs are more similar.

We compare our results with MagNet [72] in Table 4.6. We configured the MagNet detectors on

two datasets following the description in their paper and reported the detection performance with

4.4 Detecting Adversarial Inputs 68

Table 4.6: Comparison with MagNet.

Dataset Method AEs SAEs

MNIST
Feature Squeezing 69.08% 78.75%

MagNet 91.77% 95.61%

CIFAR-10
Feature Squeezing 60.87% 61.88%

MagNet 50.36% 50.46%

False positive rate for both is 0.40% on MNIST, 1.28% on CIFAR-10.

our target models and the detection dataset. In order to fairly compare the detection rates, we

adjusted the threshold values of our detectors accordingly on the two datasets to produce the false

positive rates matching the MagNet results: 0.40% for MNIST and 1.28% for CIFAR-10. MagNet

achieves higher detection rates on MNIST (91.77% over 69.08%), while our method outperformed

on CIFAR-10 (60.87% over 50.36%). The detection rates excluding failed adversarial examples

were similar. MagNet’s detection rates on our adversarial examples for MNIST are impressive, and

superior to what the best feature squeezing configuration achieves. However, this advantage does

not apply to CIFAR-10. Further, it is more expensive to use MagNet because it requires training

an autoencoder on a whole dataset. In addition, the MagNet pipeline is end-to-end di↵erentiable,

making it vulnerable to trivial white-box adversary.

4.4.4 Adversarial Adaptation

So far, we have only considered static adversaries who do not adapt to attack our feature squeezing

method directly. Now, we consider adaptive adversaries who have full knowledge of the defense. To

be successful against our detection framework, an adversary needs to find an input where the original

classifier produces the wrong output and the `1 score between the model’s predictions on squeezed

and original inputs is below the detection threshold. This is a much harder problem than just finding

an adversarial example, as is supported by our experimental results.

He et al. [43] recently proposed an adaptive attack which can successfully find adversarial examples

that defeat one configuration of a feature squeezing defense.4 The approach finds adversarial examples

that both confuse the original model and have a scorejoint lower than a pre-selected threshold for

squeezed inputs. Their approach adapts the CW2 attack by adding a penalty term for the `1 prediction

distance. It requires that all the feature squeezing operators are di↵erentiable so that it is possible

4This work was done following initial public reports on the work in our papers [120,121]; we shared details of our
approach and code with the authors of [43], and much appreciate their sharing their implementation with us to enable
the experiments reported here.

4.4 Detecting Adversarial Inputs 69

to compute the gradient of the loss function in the optimization process. For the non-di↵erentiable

feature squeezers such as the bit depth reduction, their approach requires restarting the algorithm

several times with random initialization and hoping it finds an example that is resilient against the

non-di↵erentiable squeezers. This means the attack is non-deterministic and more time-consuming

in face of non-di↵rentiable components [43]. The attack takes roughly 20 seconds on each MNIST

sample, which is around 60 times slower than the original CW2 attack.

We only evaluate their adaptive attack on the MNIST dataset, because we currently don’t have a

Tensorflow implementation of the non-local means filter used on CIFAR-10 and ImageNet.5 We

adapted their attacking code to our MNIST model and the joint-detector we report in Table 4.5.

In addition to the untargeted attack He et al. tested, we also tested the two targeted attacks mentioned

earlier in Section 4.3. We used the same parameters as He et al. [43] in generating the adaptive

adversarial examples except that we change the target threshold value to 0.0029 that is used by the

detector in this chapter.6 The seed examples are the same 100 images used in Section 4.3. With

the exact threshold we use in this chapter as the target value, the success rate of the untargeted

attack is 68% (compared with 100% success rate in He et al.’s report [43]). The success rates of

the targeted attacks are even lower: 44% for the targeted-next attack and 24% for the targeted-ll

attack. We believe these lower adversarial success rates are due to using a di↵erent MNIST model

(representative of a state-of-the-art model) and our detector has a much smaller threshold value

(0.0029) compared to the one they used (over 0.3076).

However, the success rates reported in the adaptive attack do not provide a useful measure of

robustness because the discussed adaptive adversary is allowed to modify any pixel arbitrarily. Given

unlimited perturbation bounds, one could always force a model to misclassify an example into any

class, but often by producing images that are unrecognizable or obviously suspicious to humans.

Figure 4.6 shows typical examples produced by the adaptive attack. In order to understand the

robustness of our detector in a more realistic setting, we clipped the perturbations with di↵erent ✏

values ranging from 0 to 1. Figure 4.7 shows the adversary success rates as the adversary’s strength

✏ increases to the right. At 0.3, the ✏ value considered a reasonable limit on what is a permissible

adversarial example by many papers [65], the adversary’s success rate is 0% for both of the target

attacks and 1% for the untargeted attack.

5He et al. reported results for CIFAR-10 with only bit depth reduction and median smoothing [43]. These results
were similar to the results they reported on MNIST.

6He et al.’s target detector was based on an earlier version of this work that used 0.3076 as threshold and uses a
slightly di↵erent max function in combining multiple squeezers.

4.4 Detecting Adversarial Inputs 70

Untargeted

Adaptive Adversarial Examples Ensemble-adaptive Adversarial Examples

Targeted
(Next)

Targeted
(LL)

Untargeted

Adaptive Adversarial Examples Ensemble-adaptive Adversarial Examples

Targeted
(Next)

Targeted
(LL)

Untargeted

Adaptive Adversarial Examples Ensemble-adaptive Adversarial Examples

Targeted
(Next)

Targeted
(LL)

Figure 4.6: Adversarial examples generated by the adaptive adversary. The images are randomly sampled from the
successful adversarial examples generated by the adaptive adversarial methods. No successful adversarial examples
were found for Targeted (LL) 3 or 8. The average `2 norms of the successful adversarial examples are respectively
2.80, 4.14, 4.67 for the untargeted, targeted (next) and targeted (ll) examples; while the corresponding values are 3.63,
5.48, 5.76 for the ensemble-adaptive adversarial examples. The average `1 norm are 0.79, 0.89, 0.88 for the adaptive
adversarial examples; while the corresponding values are 0.89, 0.95 and 0.96 for the ensemble-adaptive adversarial
examples.

Countermeasures. One obvious strategy to combat adaptive adversaries is to introduce randomness

in the squeezing method. This is very di↵erent from attempts to obfuscate models, which have

been shown vulnerable to transfer attacks. Instead, we can use cryptographic randomness to make

the deployed framework unpredictable, since the adversary’s search requires knowledge of the exact

squeezing operation. The defender has many opportunities to use randomness in selecting squeezing

parameters. For example, instead of using a fixed 0.5 threshold for the 1-bit filter, using 0.5±rand(0.1)

(which could be done with a di↵erent random value for each pixel), or selecting random regions for

the median smoothing instead of a fixed 2⇥ 2 region).

We conducted an experiment in which the cuto↵ value of the binary filter follows a normal distribution

with 0.5 mean and standard deviation 0.0625. The success rates (with no limit on perturbation

magnitude) decrease from (68%, 44%, 24%) to (17.0± 2.4%, 16.2± 2.6%, 7.6± 2.2%) (respectively for

untargeted, targeted to next class, and targeted to least likely; measured over 10 executions).

An adversary may attempt to adapt to the randomness by attacking an ensemble of random squeezers.

4.5 Conclusion 71

0.68

0.060.01

0.44

0.01

0.24

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
dv

er
sa

ry
’s

 S
uc

ce
ss

 R
at

e

Clipped ε

Targeted
(Next)

Targeted (LL)

Untargeted

Figure 4.7: Adaptive adversary success rates.

We consider an ensemble-adaptive adversary that considers three thresholds of the binary filter

together: 0.4, 0.5 and 0.6. The success rates increase to (46.5 ± 2.1%, 34.5 ± 3.5%, 28.5 ± 2.1%)

measured over 10 executions. However, the perturbations became even larger, resulting in many

unrecognizable and suspicious-looking images (shown in the right part of Figure 4.6).

4.5 Conclusion

The e↵ectiveness of feature squeezing seems surprising since it is so simple and inexpensive compared

to other proposed defenses. Developing a theory of adversarial examples remains an illusive goal,

but our intuition is that the e↵ectiveness of squeezing stems from how it reduces the search space of

possible perturbations available to an adversary.

Although we have so far only experimented with image classification models, the feature-squeezing

approach could be used in many domains where deep learning is used. For example, Carlini

et al. demonstrated that lowering the sampling rate helps to defend against the adversarial voice

commands [16]. Hosseini et al. proposed that correcting the spelling on inputs before they are provided

to a character-based toxic text detection system can defend against adversarial examples [45].

As discussed in Section 4.4.4, feature squeezing is not immune to adversarial adaptation, but it

substantially changes the challenge an adversary faces. Our general detection framework opens a

4.5 Conclusion 72

new research direction in defending against adversarial examples and understanding the limits of

deep neural networks in adversarial contexts.

Impact. Our Feature Squeezing framework, as one of the earliest adversarial detection work, is

often discussed and compared in other research papers [6, 41, 43, 61, 63, 71,74, 89, 97, 99, 102,109,127].

Several survey papers cited Feature Squeezing as an e↵ective and representative work [22, 62, 91].

In addition, Feature Squeezing has been implemented by others in several open-source adversarial

machine learning toolboxes, making it more accessible to general users [2, 78].

Chapter 5

Provable Robustness

The robustness of neural network models against adversarial examples is a challenging problem.

Simple and inexpensive pre-processing methods have been found to be an e↵ective defense against

adversarial examples empirically in Chapter 4 and other studies, but provide no guarantee of

robustness against more sophisticated adversaries.

5.1 Introduction

Simple pre-processing methods have drawn a lot of attention in the research community as a

promising method to defend deep neural networks against adversaries. Several studies have used

simple pre-processing to thwart adversarial examples, such as bit depth reduction [123], thermometer

encoding [14], defensive quantization [61], random resizing and croping [118], smoothing [123] and

quilting [41].

However, subsequent studies have pointed out that pre-processing-based methods are often vulnerable

to adaptive attacks [7, 18,43]. Hence, it is unclear if simple pre-processing can be used to provide a

strong defense, or merely can thwart some fixed attacks.

The goal of this chapter is to develop a theoretical basis for the impact of simple pre-processing on

model robustness.

73

5.1 Introduction 74

Provable robustness is a research direction to disrupt the arms race. Researchers have extended

formal methods to verify the robustness properties of neural networks [50,110,115], so that we can

precede an adversary in finding the weaknesses of a model. Although formal methods can verify

robustness against restricted adversaries, they do not suggest any approach to improve it. Therefore,

researchers have used robust optimization to improve the certifiable robustness by minimizing some

over-approximation of prediction errors [37, 51,88].

In this chapter, we combine the idea of simple pre-processing with provable robustness methods and

develop novel techniques to train provably robust models incorporating simple pre-processing. We

focus on the simple pre-processing of bit depth reduction on image classification tasks in this work and

find that it not only helps train accurate and robust models but also improves the state-of-the-art

certifiable defense.

Our work is distinct from other provable robustness work on randomized simple pre-processing [24,

126]. Since randomized simple pre-processing behaves di↵erently every time, those works generate

probabilistic robustness proofs. In contrast, we use deterministic simple pre-processing and provide

sound robustness guarantees.

The contributions of this chapter include:

• We propose a framework to train robust machine learning models by incorporating simple

pre-processing with provable robust methods. We feed many inputs to a simple pre-processing

function and measure the adversarial capability in several `p-norms and `0-“norm” (Section 5.3).

If we observe any reduced adversarial capability after pre-processing, we propagate the interval

bound of inputs through the pre-processing function as the starting point to train robust

certificates (Section 5.4.1). If we observe reduced adversarial capability in the `p-norm, we

train a robust model simply by regularizing the dual `q-norm of weights (Section 5.4.2).

• We validate our framework with experimental results on MNIST and CIFAR-10 datasets. The

trained models are examined by an exact verifier to prove the robustness on many test examples.

(Section 5.2.1). We assume an adversary bounded by `1 distance and choose bit depth reduction

as a simple pre-processing functions. We show that the weight regularization method alone

produces accurate MNIST models with state-of-the-art verified robustness (Section 5.5.2). We

also show that the transformed adversarial bound improves the results of the state-of-the-art

certification method on MNIST and CIFAR-10 (Section 5.5.1).

5.2 Provable Robustness Methods 75

5.2 Provable Robustness Methods

Researchers have proposed several techniques to gain provable robustness since the empirical results

su↵er from endless arms race with adversaries. We categorize existing works into two groups: (1)

verification, which employs formal methods to exactly model the robustness properties of neural

networks and uses o↵-the-shelf solvers to verify the properties; (2) and certification, which relies on a

di↵erentiable over-approximation of the model output.

5.2.1 Formal Verification

The formal verification of a system contains two steps. First, we use a modeling language to create

the desired specifications of a system. Second, we use a solver to either prove the specifications are

satisfied or to find a counterexample.

Regarding the robustness of neural network, we can use various modeling languages, such as

Satisfiability Modulo Theories (SMT) [50] or Mixed Integer Linear Programming (MILP) [110] to

describe the desired properties. Typically, we assume there is an adversarial example within the

adversarial norm ball of a normal example that would make the neural network predict a di↵erent

class. We then use a solver to search such an adversarial example. If the solver reports that such an

adversarial example does not exist, it proves that the model is robust with respect to the input. If it

finds a counter example, it proves the model is not robust. Next, we elaborate on the MILP-based

method which is used in this work.

MILP. Tjeng et al. has shown that MILP is a powerful modeling language for neural network robust-

ness [110]. MILP is a useful extension to Linear Programming (LP) that also allows integer variables.

We can encode a neural network and the robustness property as MILP formulas. The formulation of

linear layers such as the fully connected layer and the convolutional layer is straightforward in LP.

To incorporate non-linear operations, such as the ReLU activation and the max function, we need to

introduce integer variables in the formulation.

MILP Solver. The MILP problem is known to be NP-complete. However, there are many

established heuristics that help to solve most MILP instances that are found in typical problems

e�ciently [4]. Given a very hard MILP problem, we can first perform some presolve methods to simplify

5.2 Provable Robustness Methods 76

the formulas by removing unnecessary constraints and variables. Second, we can use LP relaxation

and branch-and-bound to convert the problem into many solvable LP sub-problems organized in a

search tree. Third, we can use cutting planes to recognize the infeasible zones and reduce the search

e↵ort on each sub-problem.

We note that MILP solving in this context is di↵erent from the traditional optimization scenarios.

Our goal is to prove that there is no feasible solution as an adversarial example that satisfies all

constraints. We stop the search as soon as we find one incumbent solution, regardless of whether it

is optimal.

MILP solving is sound and complete in theory. However, it occasionally returns incorrect results

in practice due to the inexact floating point representation in modern computers. There are some

heuristics to avoid numerical errors, but the soundness of MILP solvers is in general not guaranteed [1].

Verifying an adversarial example reported by the solver is easy. However, it will be di�cult (NP-

complete) to check the correctness if the solver says that the model is robust and it can not find any

adversarial example. We have encountered concrete examples where the verification was unsound,

and perform weight pruning in Section 5.5 as the remedy.

5.2.2 Robust Certification

Certification is the other method to prove the robustness of neural networks. It is sound but

incomplete. The basic idea of certification is to give an over-approximation of a neural network’s

output assuming some bounded adversary. We can safely conclude that one model is robust against

a bounded adversary with respect to an input example if the over-approximation is still a correct

prediction. Unlike verification methods, it is easy to verify an input is invulnerable given a robust

certificate, typically with some e�cient matrix multiplication operations.

Researchers have proposed several certification methods using semi-definite relaxation [88], convex

outer approximation [51] or interval bound propagation (IBP) [37]. Since these certificates are

di↵erentiable, it is straightforward to develop a robust training method by adding the certification

term in the loss function. As a result, we can train a robust model that will be able to issue

robust certificates to many inputs, though we have to sacrifice some model capacity due to the

over-approximation in generating certificates.

5.2 Provable Robustness Methods 77

Table 5.1: Comparison between verification and certification.

Verification Certification

Core Technique Formal methods Robust optimization
Preserve Model Capacity 3 7

Computational Cost Expensive Cheaper
Verifiable Result 7 3

Enable Robust Training 7 3

Soundness 3 3
Practical Soundness Not guaranteed 3

Completeness 3 7
Practical Completeness Not guaranteed 7

Examples
Reluplex [50],
MIPVerify [110]

Raghunathan et al. [88],
Wong and Kolter [51],

IBP [37]

5.2.3 Comparison

Even though verification and certification have the same goal of proving the robustness of neural

network models, they are distinct from each other in many ways. Table 5.1 summarizes the di↵erences

of the two techniques.

The verification-based methods have two advantages over certification in theory. First, they are

sound and complete because of the exact modeling languages. Second, they do not have to sacrifice

model capacity and can work with pre-trained models.

However, the theoretical advantages of verification are often not easily achievable in practice. First,

the soundness is not guaranteed if floating point numbers are used in the model. We may use fixed

precision numbers to make up the soundness, but the solving could be slower in several orders of

magnitude. Second, completeness is not guaranteed due to the nature of NP-complete problems. We

should expect that verification could take unreasonably long time occasionally, which makes it not

complete in practice. As a result, we typically need to limit the model capacity to make verification

a↵ordable.

In contrast, certification-based methods are preferred for most practical use. First, they are sound,

and the result is easily verifiable, which enables the issuance of robust certificates. Second, even

though they are incomplete in theory, we can adapt them into robust training methods to improve

the completeness as well as the model’s actual robustness. The practical completeness of certification

could be even better than that of verification-based methods on large scale models.

5.3 Adversarial Capability Measurement 78

!ℓ#$%(')

)!"# 	(')

!+,(')

,(')

'·
,-(')

!.,(')

·'/
!.,

-('/)

!+,
-('/)!0,

-('/)

Figure 5.1: Simple pre-processing influences the adversary capability on input x.

In our experiments, we combine the two techniques to train and verify robust neural network models.

We use certification methods to train a robust model first. While it may e�ciently certify the

robustness of many input examples, we also employ verification methods to verify the uncertified

cases to tighten the robustness error bounds further.

5.3 Adversarial Capability Measurement

We consider an adversary whose strength is bounded by the `1-norm and investigate how pre-

processing influences adversarial capability, which we define next.

5.3.1 Definitions

We illustrate how we define and measure adversarial capability in this section.

Let X ✓ Rd be the considered d-dimensional input space. For any x 2 X and ✏ > 0, we use

B`p✏(x) = {x0 2 X : kx0 � xkp  ✏} to denote the `p-norm ball around x with radius ✏ in X .

Let’s assume an adversary bounded by `1  ✏, i.e. the adversarial strength is ✏ in `1-norm. As

illustrated in the left part of Figure 5.1, given a seed example x, we can get an adversarial norm

ball B`1✏(x) centered at x. Since data points usually have interval bounds, such as the common

interval [0, 1] constraint for image pixels, we denote the feasible set of the adversarial norm ball as

A(x), which we define as adversarial capability.

5.3 Adversarial Capability Measurement 79

Note that adversarial strength can be arbitrarily large, but the adversarial capability is bounded

by a domain. For example, an `1 adversary with adversarial strength ✏ = 3 should have the same

adversarial capability as one with ✏ = 1 because the adversarial perturbations will be truncated to fit

[0, 1].

Even though A(x) is a subset of an `1-norm ball, we have other `p-norm balls that cover A(x). We

measure adversarial capability in `p-norm as the minimal radius rAp (x) of an `p-norm ball centered at

x that covers A(x), such that rAp (x) = min{s > 0 : A(x) ✓ B`ps(x)}. We measure the adversarial

capability in di↵erent `p-norms for p in {0, 1, 2,1}1.

As in the right part of Figure 5.1, given a pre-processing function fpre : X ! X , we transform x

into x̃ and the corresponding feasible set A(x) into Ã(x). We measure the adversarial capability

after simple pre-processing as the minimal radius rÃp (x̃) of an `p-norm ball centered at x̃ that covers

Ã(x).

We further extend the concept of adversarial capability on a single example to a whole dataset. We

first compute the minimal radius rAp (x) for each example, then average the minimal radiuses to

obtain the adversarial capability expectation over the dataset. The adversarial capability expectation

after a pre-processing function is calculated in the same way. This provides an intuitive measure of

the size of the e↵ective search space available to a strength-bounded adversary.

5.3.2 Bit Depth Reduction

Bit depth reduction is a simple pre-processing method we introduce in Chapter 4. Instead of using

bit depth reduction in an ensemble framework for detecting adversarial examples, we aim to improve

the provable robustness of a model in this chapter.

Bit depth reduction borrows the idea of uniform quantization from the signal processing field to

further quantize digital signals with fewer bits. The intuition is that when a signal is encoded with

fewer bits, a tiny perturbation is less likely to a↵ect the signal value; therefore the neural network

output is not changed either.

An image pixel is typically encoded with 8 bits, which implies it is susceptible to tiny perturbations

on input. Using bit depth reduction, we can encode the pixel values with fewer bits to make a

1We abuse the `p-norm definition here because `0 is not a norm.

5.3 Adversarial Capability Measurement 80

(a) MNIST (b) CIFAR-10

Figure 5.2: Histogram of pixel values, respectively measured on 60,000 MNIST training images and 50,000 CIFAR-10
training images.

model less sensitive to tiny input perturbations. Intuitively, it should be useful to defend against `1

bounded adversaries.

Formally, a pixel value x in the range of [0, 1] can be quantized into b bits while maintaining the

same scale using the formula in Equation 5.1.

fbdr(x, b) =
min(

⌅
x⇥ 2b

⇧
, 2b � 1)

2b � 1
(5.1)

We measure the expected adversarial capability after Bit Depth Reduction on all training examples

of two datasets: MNIST and CIFAR-10. The metrics we use are `1-norm, `1-norm, `2-norm and

`0-“norm”.

MNIST. MNIST is a handwritten digit dataset consisting of 70,000 8-bit-encoded gray-scale images

in size of 28⇥ 28 [60]. Each pixel is encoded as an 8-bit unsigned integer number ranging from 0

to 255: 0 as black, 255 as white, and the shades of gray between them. We present the pixel value

distribution of the 60,000 training examples in Figure 5.2a. We find that the pixel value distribution

of MNIST images is highly skewed: most pixels are 0 representing the black background while a few

are close to 255 representing white strokes, and hardly any are in the range of [1,255].

We consider `1 adversary bounded by 0.1, 0.2, 0.3 and 0.4 while scaling the value of image pixels into

a range of [0, 1] We want to understand the influence of bit depth reduction on adversarial capability.

5.3 Adversarial Capability Measurement 81

0.1

0.2
0.3

0.4

0.0

0.2

0.4

0.6

0.8

1.0

12345678

(a) `1-norm.

0.1

0.2

0.3
0.4

0

200

400

600

800

12345678

(b) `0-norm.

0.1

0.2

0.3

0.4

0

100

200

300

12345678

(c) `1-norm.

0.1

0.2

0.3

0.4

0

3

6

9

12

12345678

(d) `2-norm.

Figure 5.3: Bit Depth Reduction a↵ects `1-norm bounded adversarial capability on MNIST. The x-axis represents the
number of bits and the y-axis represents the averaged `p-norm.

Figure 5.3 summarizes the average adversarial capability measured in various `p-norms on 60,000

training images after Bit Depth Reduction.

The `1-norm in Figure 5.3a with 8 bits represents the original adversarial strength, respectively 0.1,

0.2, 0.3 and 0.4. As we reduce to fewer bits, the average `1-norm increases. If we make an extreme

case by reducing to one bit (binary filter), the average `1-norm increases significantly to 1 since

an adversary is now able to flip the bits for 0 to 1 or vice versa. This means Bit Depth Reduction

potentially increases the adversarial capability, which contradicts the previous empirical study that it

is e↵ective on defending against `1 adversary [123].

The other `p measurements in Figure 5.3 help to explain the counterintuitive result. We found a clear

trend that reducing to fewer bits decreases the adversarial capability in terms of `0 and `1.

The `0 case is quite intuitive. Take the binary filter and the `1  0.1 adversary as an example. A

binary filter converts pixel values that are not smaller than 0.5 to 0, and all others to 1. For the

original pixel values lower than 0.4, an `1  0.1 adversary would not be able to alter the pixels to

reach the binary filter threshold 0.5. Thus, all pixel values smaller than 0.4 will stick to 0 after the

binary filter regardless of adversarial perturbations. The pixel values larger than 0.6 are similarly

5.3 Adversarial Capability Measurement 82

frozen to 1. As a result, an adversary can only perturb pixels in the range of (0.4, 0.6]. Only 2.05%

of pixels in the MNIST training dataset are in the (0.4, 0.6] range. This accounts for the reason

why the average `0 adversarial capability drops from 784 to 15.8. A similar result holds even if we

increase the `1 adversary strength to 0.4, because the MNIST pixel value distribution is so strongly

polarized, as in Figure 5.2a.

The `1 and `2 are related to the `0 case. The adversary-immutable pixels in the `0 case would not

contribute to either `1 or `2. However, the remaining adversary-mutable pixels are not negligible,

especially for `2-norm. An adversary can perturb those pixels from 0 to 1 or vice versa after the

binary filter, which means the magnitude of adversarial perturbation is magnified from {0.1, 0.2,

0.3, 0.4} to 1. As a result, the average `2-norm after the binary filter is not always smaller than the

original one, but still has an advantage in some cases.

The reduced adversarial capability in terms of `0, `1 and `2 after Bit Depth Reduction indicates that

Bit Depth Reduction should help to defend against `1 adversaries on the MNIST dataset, which we

explore further in Section 5.4.

CIFAR-10. CIFAR-10 is a dataset consisting of 60,000 colored images in size of 32⇥ 32 [53]. Each

pixel is encoded with three unsigned 8-bit integers, respectively representing the red, green and blue

(RGB) channels. The distribution of the uint8 numbers is drastically di↵erent from that of MNIST, as

is depicted in Figure 5.2b. The natural image signal generally follows a normal distribution, except

that it has two peaks on both edges due to the limited dynamic range of sensing devices: extremely

bright signals are truncated to 255, while nearly dark signals are truncated to 0.

We assume `1 adversaries respectively bounded by 2/255, 4/255 and 8/255 and report the average

adversarial capability after Bit Depth Reduction on 50,000 training images in Figure 5.4.

We found that Bit Depth Reduction magnifies the adversarial capability in terms of `1, `1 and `2

for CIFAR-10. This is very di↵erent from what we observe on MNIST, because the CIFAR-10 pixel

values in all channels follow the normal distribution. The adversarial norm ball of each pixel often

(though not always) crosses the step function thresholds of bit depth reduction, resulting in amplified

magnitudes.

However, the adversarial capability in terms of `0 is significantly reduced. This is because there are

a significant number of pixels whose adversarial norm ball stays on one level of the step function

5.4 Robustness 83

2/255

4/255

8/255

0.01

0.02

0.03

0.06

0.13

0.25

0.50

1.00
12345678

(a) `1-norm.

2/255

4/255
8/255

64

256

1024

12345678

(b) `0-norm.

2/255

4/255

8/255

0

50

100

150

200

250

12345678

(c) `1-norm.

2/255

4/255

8/255

0
2
4
6
8
10
12
14
16

12345678

(d) `2-norm.

Figure 5.4: Bit Depth Reduction a↵ects `1-norm bounded adversarial capability on CIFAR-10.

of bit depth reduction. These adversary-immutable pixels give us a chance to improve the model

robustness using bit depth reduction, which we explore in Section 5.5.1.

5.4 Robustness

We explore how to train a robust classifier by incorporating simple pre-processing with provable

robustness methods. As we have demonstrated in Section 5.3, Bit Depth Reduction can significantly

decrease the adversarial capability measured in some `p-norm while a di↵erent norm bounds the

original adversarial strength. This suggests that Bit Depth Reduction may convert a bounded

adversary problem to a hopefully much easier problem bounded by other `p-norms.

5.4.1 Adversarial Bound Transformation

We propose a general approach to make use of simple pre-processing in training robust models by

propagating the transformed interval bounds of input.

5.4 Robustness 84

As we have demonstrated in Section 5.3, simple pre-processing often suppresses the `0-norm of

adversarial capability, which means many pixels are immutable to an adversary after pre-processing.

For example, for an `1-norm adversary bounded by 0.1, the original adversarial interval of a pixel

value 0.2 is [0.1, 0.3]. After pre-processing with a binary filter, the adversarial interval becomes

[0.0,0.0].

The shorter length of the adversarial interval is a clear sign that pre-processing reduces adversarial

capability. We can easily exploit such an advantage with many bound propagation-based techniques.

Some robust certification methods propagate the adversarial intervals of input layer by layer to

over-approximate the output bounds. With shorter intervals on the first layer, the output bounds

tighten accordingly. As a result, the over-approximation takes less model capacity for robustness

certification.

Assume one input x is bounded by [l,u], the output B̃(x) of a monotonic pre-processing function

fpre(x) is strictly bounded by:

[inf{B̃(x)}, sup{B̃(x)}] = [fpre(l), fpre(u)] (5.2)

In this way, we can combine pre-processing with other bound propagation-based robust training

methods, such as Interval Bound Propagation (IBP) [37].

5.4.2 Robustness Regularization

We introduce an alternate method to make use of pre-processing in training robust models by

regularizing the model weights. The method works if one pre-processing function significantly reduces

the adversarial capability measured in `1, `2 or `1.

Assume we have a linear model g(x) parameterized with weights W and biases b:

g(x) = WTx+ b (5.3)

5.4 Robustness 85

Given one adversarial example x0 = x+ � in which � is bounded by some `p norm, the prediction of

such an adversarial example is denoted as

g(x0) = WT (x+ �) + b

= (WTx+ b) +WT �

= g(x) +WT �

(5.4)

The adversarial power comes from WT �, which is the di↵erence between the prediction of a normal

input and the prediction of a bounded adversarial example. According to Hölder’s inequality [3], the

adversarial power is upper bounded by the product of a pair of dual norms:

WT � =< W, � >

 ||W ||q||�||p,
(5.5)

where `p-norm and `q-norm are dual such that 1
p + 1

q = 1.

Since ||�||p is explicit for a given adversary, the adversarial capability is directly upper bounded by

||W ||q. When p is in {1, 2,1}, we can construct a dual ||W ||q and suppress the adversary impact

using proper weight regularization.

This analysis is based on linear assumptions about the target model. However, we found empirically

that it also applies to ReLU activated neural network models. We believe this is because a deep

neural network model often has near-linear behavior in the local region, which is the case when we

consider tiny adversarial perturbations for a given input [36].

`1-Robust Training. We instantiate the `p-robust training framework on p = 1 and derive a robust

training approach.

As we concluded in Section 5.3.2, Bit Depth Reduction e↵ectively suppresses `1-norm for a given `1

bounded adversary on the MNIST dataset. If we can train a model that is robust against `1-norm

bounded adversaries, the model with Bit Depth Reduction should also be robust against `1-norm

adversaries. To reduce the capability of such a converted `1-norm adversary, we need to minimize

||W ||1 when training the model.

The derived approach is consistent with our intuition. We know that `1-norm usually implies sparse

5.4 Robustness 86

perturbations, which is also the case of the converted `1-norm bounded adversary that we depict

in Figure 5.3c. The best opportunity of an `1-norm adversary arises if the most substantial weight

magnifies the perturbation of large magnitudes. Therefore, depressing ||W ||1 adversely a↵ects the

power of an `1-norm bounded adversary.

`1 Regularization. Even though reducing ||W ||1 is a straightforward approach to enhance the

`1 robustness, performing `1 regularization directly is not e↵ective, because the gradient of `1

oscillates among di↵erent components in the training phase.

We design an `1 regularization term in Equation 5.6:

loss1(W) = ↵||W ||2 + �||min(0, |W |� �||Ŵ ||1)||2 (5.6)

Our `1 regularization term has three hyper-parameters: ↵, � and �. ↵ is the coe�cient of the base

`2 regularization, while � is the coe�cient of the extra penalization for large components. � is a real

number selected from an interval of [0, 1]. The smaller �, the more components of W are penalized.

We choose to build upon `2 instead of `1 because it depresses the `1-norm more e↵ectively. The

large components in W also have large gradient values in `2-norm, so receive heavier penalization

than small components in the backward pass.

5.4.3 Verification

We use formal verification to confirm the robustness of our models. We incorporate pre-processing

into the MILP verification framework we introduce in Section 5.2.1.

Formulate Binary Filter in MILP. We illustrate how we formulate the binary filter, a special

case of bit depth reduction when b = 1 into MILP. The formulation of bit depth reduction with more

bits is similar.

We derive the definition of the binary filter from Equation 5.1:

5.4 Robustness 87

1

0
127/255

128/255

(0.5 − &)

(0.5 + &)

Infeasible
Region

Figure 5.5: We specify an infeasible region in MILP formulation of the binary filter.

fbin(x) = fbdr(x, 1) =
min(

⌅
x⇥ 21

⇧
, 21 � 1)

21 � 1

=

8
>><

>>:

0 if 0  x < 0.5

1 if 0.5  x  1

(5.7)

The big-M method is often used to encode piece-wise linear functions as MILP formulation. However,

fbin(x) in Equation 5.7 is an upper semi-continuous function with a breakpoint at 0.5. Thus, it

cannot be directly encoded. We introduce an extra variable ⌧ in the MILP formulation of y = fbin(x)

to resolve the issue as shown in Figure 5.5.

l · !1 x1  (0.5� ⌧) · !1

(0.5 + ⌧) · !2 x2  u · !2

!1,!2 2 {0, 1}

!1 + !2 = 1

x1 + x2 = x

y = !2

(5.8)

Our formulation contains two mutually exclusive binary variables !1 and !2, respectively representing

the zero output and the one output of fbin(x). The lower bound l and upper bound u of input help

to determine if we can encode the function as constant so that the resulting MILP is easier to solve.

For example, if l is larger than (0.5� ⌧), !1 must be 0, then !2 must be 1 and the output would be

constant 1. Similarly, u < (0.5 + ⌧) would cause a constant output 0.

The formula has to split if l < (0.5 � ⌧) and u > (0.5 + ⌧). We introduce ⌧ , a tiny real number

5.5 Experiments 88

Table 5.2: Architecture of two ReLU-activated models used in the experiments. “Conv k w⇥h+s” means 2D
convolutional layer with k filters of size w⇥h using a stride of s in both dimensions. “FC n” means a fully connected
layer with n outputs.

Adversarial Bound
Transformation

Robustness
Regularization

Layers

Conv 16 4⇥4+2 Conv 16 4⇥4+2
Conv 32 4⇥4+1 Conv 32 4⇥4+2

FC 100 FC 100
FC 10 FC 10

Padding VALID SAME

Trainable
Params

MNIST 330K 166K
CIFAR-10 471K -

that creates an infeasible open interval (0.5� ⌧, 0.5 + ⌧), because fbin(x) is not continuous at input

0.5. Considering the uint8 input data type of pixel values, there’s a gap (
127

255
,
128

255
) near 0.5 that

we can safely assume infeasible. Any real number in (0,
128

255
� 0.5) is appropriate to handle this

non-continuous point. In practice, we let ⌧ = 0.001 as it is large enough that it would not be rounded

o↵ as zero.

5.5 Experiments

We use two methods from Section 5.4 to train robust models and verify their robustness. We evaluate

the adversarial bound transformation method that combines bit depth reduction with certifiable

defense in Section 5.5.1 and evaluate the robustness regularization method in Section 5.5.2. We

report test accuracy and verified robust accuracy for each model. The verified robust accuracy is the

percentage of testing examples that are verified as robust against an assumed adversary.

5.5 Experiments 89

5.5.1 Adversarial Bound Transformation

We incorporate Bit Depth Reduction with Interval Bound Propagation [37] by propagating the

adversarial interval bounds through the Bit Depth Reduction layer to train robust models.

Model Architecture. We use the “small” model architecture proposed in IBP [37], described in

the first column of Table 5.2.

Training Procedure. We use the training procedures proposed in IBP [37] respectively for MNIST

and CIFAR-10. However, since we could not replicate the results reported in their paper, we create a

baseline using their open source code instead.2 To avoid the numeric issue in MILP solving that we

introduce in Section 5.2.1, we prune the trained weights of MNIST models whose absolute value is

lower than 0.01.

Verification Procedure on MNIST. We use MIPVerify to examine the uncertified inputs in the

MNIST experiment. The binary filter is encoded in a MILP manner as in Section 5.4.3. As a result,

we can encode everything, including the model, the restricted adversary and the binary filter as a

MILP problem. We set an objective to minimize the `1-norm of the adversarial perturbation and use

the o↵-the-shelf Gurobi solver. We use Interval Arithmetic (IA), the most e�cient way, to propagate

the input bounds layer by layer and the solver times out in 100 seconds. We test all the 10,000

MNIST test images and report the verified robust accuracy, which is the percentage of examples for

which we verify the infeasibility of the assumed adversary.

MNIST Result. We assume an `1 adversary bounded by 0.1, 0.2, 0.3 and 0.4. For each setup, we

add a binary filter to the model architecture and retrain the model from scratch using the identical

procedure.

From Table 5.3 we see that adding the binary filter always improves both the accuracy and verified

robustness. Take the ✏ = 0.1 case as an example. The verified robust accuracy increases from 96.51%

to 96.91% and the test accuracy increases from 98.26% to 98.32%. The mean verification cost is also

reduced from 0.56 seconds to 0.43 seconds.

CIFAR-10 Result. We assume `1 adversary bounded by 2/255, 4/255 and 8/255. We successively

2The authors of IBP stated that they were not allowed to open source all the code they used in their paper at
https://github.com/deepmind/interval-bound-propagation/issues/1

https://github.com/deepmind/interval-bound-propagation/issues/1

5.5 Experiments 90

Table 5.3: Bit Depth Reduction combined with Interval Bound Propagation improves provable robustness against `1
bounded adversary on 10,000 MNIST test images.

✏ bin(x)
Test

Accuracy

Verified
Robust
Accuracy

Mean
Verification
Time (sec)

0.1
98.26% 96.51% 0.56

X 98.32% 96.91% 0.43

0.2
96.43% 91.75% 0.52

X 96.74% 92.48% 0.48

0.3
96.43% 86.80% 0.64

X 96.74% 88.46% 0.65

0.4
96.43% 77.14% 0.98

X 96.74% 80.06% 1.12

Table 5.4: Bit Depth Reduction improves model robustness against `1 adversary on 10,000 CIFAR-10 test images,
when combined with Interval Bound Propagation. We repeated each experiment three times and report the result with
the highest robustness accuracy. The bold results are the best.

✏ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit 1-bit

2/255
TestAcc 47.74% 49.41% 50.15% 48.98% 49.82% 47.55% 47.23% 42.65%
RobAcc 21.27% 21.75% 25.89% 21.52% 23.04% 20.37% 21.53% 19.74%

4/255
TestAcc 47.26% 49.60% 46.64% 48.92% 47.46% 48.02% 45.84% 43.68%
RobAcc 23.09% 23.46% 20.56% 20.60% 19.87% 19.50% 19.94% 19.65%

8/255
TestAcc 42.25% 44.00% 44.50% 43.40% 45.20% 44.50% 43.55% 41.67%
RobAcc 17.75% 19.19% 18.71% 17.11% 20.76% 17.35% 17.79% 19.12%

TesAcc: test accuracy. RobAcc: verified robust accuracy.

reduce the number of encoding bits of input and train a new model from scratch for each ✏. We

repeat each experiment three times and report the result with the best robustness. We don’t use

MIPVerify to examine the uncertified inputs, because it is substantially more expensive than verifying

the MNIST models. We report the test accuracy and verified robust accuracy in Table 5.4.

We see that adding bit depth reduction achieves better test accuracy and verified robust accuracy.

Take ✏ = 2/255 as an instance, if we squeeze the input into 6 bits, the test accuracy increases from

47.74% to 50.15% and the verified robust accuracy increases from 21.27% to 25.89%.

5.5.2 Robustess Regularization

As we have observed in Section 5.3.2, Bit Depth Reduction converts the `1-norm bounded adversary

problem into an easier `1-norm problem on MNIST.3 We use the method we derive in Section 5.4.2 to

3We don’t consider the CIFAR-10 dataset in this experiment, because the `1 adversarial capability is not decreased
with Bit Depth Reduction as shown in Figure 5.4c.

5.5 Experiments 91

train a robust model using Bit Depth Reduction, assuming an adversary bounded by `1  0.1.

Model Architecture. We use the same CNN architecture as in Wong et al. [51]. The model has

two convolutional layers and two fully connected layers, as is illustrated in the second column of

Table 5.2. Though the major di↵erence from the model in the first column is the 2⇥ 2 stride in the

second convolutional layer instead of 1⇥ 1, the model we use in this experiment only has half the

number of the trainable parameters, resulting in smaller model capacity.

Training Procedure. We use an Adam optimizer with a learning rate of 0.0001 to minimize the

cross-entropy loss in 200 epochs, with a batch size of 32. We configure the hyper-parameters of the

`1 regularizer in Equation 5.6 as ↵ = 0.0004, � = 0.004 and � = 0.2. Besides, we perform weight

pruning and ReLU pruning on all models to make the verification more e�cient [117]. First, all the

trained weights whose absolute values are not larger than 0.001 are set to 0. Second, if one ReLU

unit has consistent behavior on more than 90% input examples, it is frozen to that behavior, either

rectified or zero.

Verification Procedure. We use the open source MIPVerify [110] framework to verify the robustness

of models against the assumed `1  0.1 adversary. The verification procedure is identical to that in

Section 5.5.1, except that we perform up to three rounds with di↵erent tightening methods. The

unverified inputs in previous rounds will be revisited in later rounds using less e�cient methods until

they are verified or the third round times out. The first round uses Interval Arithmetic (IA), the

most e�cient method, to propagate the input bounds layer by layer and the solver times out in

100 seconds. The second round uses Linear Programming (LP), a relaxation of MILP to propagate

tighter bounds at each layer and the solver times out in 300 seconds. The third round uses the most

time-consuming MILP at each layer to get the (hopefully) tightest bounds and the solver times out

in one hour. We interrupt the experiment after one round or two if the average time consumption

exceeds 100 seconds for each example.

Result. First, we compare three models in the experiment: a baseline model without any adver-

sarial training or robust training techniques (Vanilla Training); the baseline model with a binary

filter (VT+fbin); and the baseline model with a binary filter and `1 regularization (VT+fbin+`1

Reg.).

4The exact verification result of Wong et al. [51] is from Tjeng et al. [110].

5.5 Experiments 92

Baseline

+Bin(x)

+Bin(x)
+ℓ" Reg.

0
0.2
0.4
0.6
0.8
1

Conv_1 Conv_2 Dense_1 Dense_2

Figure 5.6: `1 regularization suppresses ||W ||1 at each layer.

Table 5.5: Bit Depth Reduction improves provable robustness against `1  0.1 adversary on 10,000 MNIST test
examples.

Method
Test

Accuracy

Verified
Robust
Accuracy

Mean
Verification
Time (sec)

Vanilla Training (VT) 99.37% 0.00% 100.00
VT+fbin 99.16% 70.43% 31.60
VT+fbin+`1 Reg. 99.22% 96.94% 16.27

Wong et al. [51, 110]4 98.11% 95.62% 3.52*
ReLU-Stable [117] 98.68% 94.33% 0.49*

* The verification cost was measured on di↵erent machines and reported by Xiao et al. [117].

We show the e↵ectiveness of the `1 regularization in Figure 5.6. It is clear that the `1 norm is

significantly decreased with our `1 regularization compared with the counterparts.

We report the verified robustness results in Table 5.5. First, we find that the baseline model has an

extremely high accuracy of 99.37% on normal inputs, but we couldn’t verify if any input example is

robust against the assumed adversary given the time constraint.

If we add a binary filter to the model architecture and retrain a new model using the same procedure,

we can verify that 70.43% of test images are robust against the assumed adversary, while the accuracy

of the new model +fbin(x) is similar to the baseline.

We further test the `1-robust training we derive in Section 5.4.2. In addition to the binary filter, we

add the `1 regularizer in the training procedure. The result in the third row of Table 5.5 shows that

this method produces a model that is both accurate and robust. The accuracy of 99.22% on normal

test inputs is comparable to the baseline of 99.37%. In addition, we can verify that 96.94% of the

test inputs are robust against the assumed adversary. The average verification time also decreases

substantially from 31.6 seconds to 16.3 seconds.

We also compare with two models reported in other papers [110, 117] in Table 5.5. Our model

outperforms theirs in both test accuracy and verified robust accuracy, while we share the same model

5.6 Conclusion 93

architecture. Their reported verification cost is lower than ours though, which is not a surprise

because their methods explicitly use expensive training methods to reduce the verification cost while

our method only uses simple pre-processing and the inexpensive `1 regularization.

In summary, we confirm that a simple binary filter combined with the `1 regularization results in

an accurate MNIST model with impressive provable robustness, even without expensive adversarial

training.

5.6 Conclusion

We formally analyze the implication of simple pre-processing on adversarial capability and incorporate

bit depth reduction with formal verification and robust certification methods in a novel way to train

provably robust models against restricted adversaries. The experimental results confirm the intuition

that simple pre-processing reduces the search space available to an adversary, so improving the model

robustness, even against adaptive adversaries.

Although we have only experimented on image classification datasets with bit depth reduction, we

believe other pre-processing should have similar properties in the domains where deep learning is used.

Our work opens a new research direction in defending against adversary by combining inexpensive

simple pre-processing with formal methods and robust certification.

Chapter 6

Conclusion

This chapter begins with a summary of the thesis work and closes with final remarks.

6.1 Summary

Our work shows that using domain knowledge is an important step towards robust machine learning

systems.

First, we developed Genetic Evasion, a general framework to automatically find weaknesses of

machine learning models. We embedded domain knowledge of PDF documents into the framework

and attacked two state-of-the-art machine learning-based PDF malware classifiers with 100% success.

Our practical attacking method broke the trust of black-box machine learning models in the malware

detection field and highlighted the importance of using domain knowledge in examining the robustness

of machine learning models.

Second, we proposed Feature Squeezing, a generic framework to detect adversarial examples against

deep learning models for perception tasks. Based on the domain knowledge that natural signals

are often redundant, we designed an ensemble framework which pre-processes inputs with di↵erent

squeezers and measures the distance between the model’s predictions on input with di↵erent pre-

processing to detect adversarial examples. We showed that Feature Squeezing is empirically e↵ective

94

6.2 Paths Forward 95

and inexpensive in detecting adversarial examples generated by various attacking algorithms, compared

with previous methods that do not exploit domain knowledge.

Third, we incorporated simple pre-processing with provable robustness methods to improve the

robustness of machine learning models. We investigated the implications of Bit Depth Reduction on

adversarial capability and accordingly developed novel methods to train more robust models by either

transforming the input bounds or regularizing the model weights. Our approach successfully trained

accurate and robust models without expensive adversarial training and advanced the state-of-the-art

of robust certification methods.

6.2 Paths Forward

Our work presents solid evidence about the weaknesses of machine learning models and proposes

practical solutions to defend non-robust models and improve provable robustness. The results

improves understanding of the robustness properties of machine learning models and enhance the

confidence in deploying machine learning for security-sensitive tasks.

There remain many problems to solve before we can attain robust machine learning models. Even if

we utilize formal methods in our robustness studies, the result comes with several limitations for

important tasks. First, it is di�cult to scale the provable robustness techniques to large datasets

or large models that are widely used in the real world. Second, strict proofs of model robustness

need to consider the whole input space rather than specific examples from a dataset, or at least be

e�cient enough to use at inference time. Third, the `p-norms are insu�cient to model the power of

adversaries accurately [32, 116].

The root cause of machine learning models lack of robustness is that correlation does not imply

causation—machine learning models often do not learn causal factors in their decision rules. The gap

between the ground-truth decision rules and the approximate ones learned by a machine learning

model inevitably creates opportunities for adversaries. Domain knowledge should play a vital role in

training robust models that learn causal factors in the future.

Bibliography

[1] Gurobi Guidelines for Numerical Issues. http://files.gurobi.com/Numerics.pdf, 2017.

[2] AdvBox by Baidu X-Lab. https://github.com/baidu/AdvBox, 2018.

[3] Hölder’s Inequality. https://en.wikipedia.org/wiki/Hlder%27s_inequality, 2018.

[4] MIP - A Primer on the Basics. http://www.gurobi.com/resources/getting-started/

mip-basics, 2019.

[5] Adobe, Inc. PDF Reference and Adobe Extensions to the PDF Specification. http://www.

adobe.com/devnet/pdf/pdf_reference.html.

[6] Hassan Ali, Hammad Tariq, Muhammad Abdullah Hanif, Faiq Khalid, Semeen Rehman,
Rehan Ahmed, and Muhammad Shafique. QuSecNets: Quantization-based Defense Mech-
anism for Securing Deep Neural Network against Adversarial Attacks. arXiv preprint
arXiv:1811.01437, 2018.

[7] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients Give a False
Sense of Security: Circumventing Defenses to Adversarial Examples. In 35th International
Conference on Machine Learning (ICML), 2018.

[8] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can
Machine Learning Be Secure? In 1st ACM Symposium on Information, Computer and
Communications Security (AsiaCCS), 2006.

[9] Rodrigo Benenson. Classification Datasets Results. http://rodrigob.github.io/are_we_
there_yet/build/classification_datasets_results.html.

[10] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. Enhancing Robustness of Machine
Learning Systems via Data Transformations. arXiv preprint 1704.02654, 2017.

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion Attacks against Machine Learning at Test Time. In
6th European Machine Learning and Data Mining Conference (ECML/PKDD), 2013.

[12] Battista Biggio, Giorgio Fumera, and Fabio Roli. Multiple Classifier Systems for Adversarial
Classification Tasks. In Multiple Classifier Systems. Springer, 2009.

[13] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[14] Jacob Buckman, Aurko Roy, Colin Ra↵el, and Ian Goodfellow. Thermometer Encoding:
One Hot Way to Resist Adversarial Examples. In 6th International Conference on Learning
Representations (ICLR), 2018.

96

http://files.gurobi.com/Numerics.pdf
https://github.com/baidu/AdvBox
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Bibliography 97

[15] Nicholas Carlini. Robust Evasion Attacks against Neural Network to Find Adversarial
Examples. https://github.com/carlini/nn_robust_attacks/.

[16] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr, Clay
Shields, David Wagner, and Wenchao Zhou. Hidden Voice Commands. In 25th USENIX
Security Symposium (USENIX), 2016.

[17] Nicholas Carlini and David Wagner. Defensive Distillation is not Robust to Adversarial
Examples. arXiv preprint 1607.04311, 2016.

[18] Nicholas Carlini and David Wagner. Adversarial Examples Are not Easily Detected: Bypass-
ing Ten Detection Methods. In 10th ACM Workshop on Artificial Intelligence and Security
(AISec), 2017.

[19] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks.
In 38th IEEE Symposium on Security and Privacy (Oakland), 2017.

[20] Stephan Chenette. Malicious Documents Archive for Signature Testing and Re-
search - Contagio Malware Dump. http://contagiodump.blogspot.de/2010/08/

malicious-documents-archive-for.html.

[21] Deepak Chinavle, Pranam Kolari, Tim Oates, and Tim Finin. Ensembles in Adversarial
Classification for Spam. In 18th ACM Conference on Information and Knowledge Management
(CIKM), 2009.

[22] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin, Brian T
Do, Gregory P Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz, Michael M Ho↵-
man, et al. Opportunities and Obstacles for Deep Learning in Biology and Medicine. Journal
of The Royal Society Interface, 15(141):20170387, 2018.

[23] Francois Chollet. Keras Implementation of Inception v3. https://github.com/fchollet/

deep-learning-models.

[24] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified Adversarial Robustness via
Randomized Smoothing. arXiv preprint arXiv:1902.02918, 2019.

[25] Symantec Corporation. Symantec Internet Security Threat Report. Technical report, Syman-
tec Corporation, 2015.

[26] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and Analysis of Drive-By-
Download Attacks and Malicious JavaScript Code. In 19th International World Wide Web
Conference (WWW), 2010.

[27] CVE Details. Adobe Acrobat Reader — CVE Security Vulnerabilities, Versions and Detailed
Reports. http://www.cvedetails.com/product/497.

[28] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-Scale Malware Classification
Using Random Projections and Neural Networks. In 38th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013.

[29] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adversarial Classification.
In 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 2004.

[30] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading Classifiers by Morphing in the Dark.
In 24th ACM Conference on Computer and Communications Security (CCS), 2017.

https://github.com/carlini/nn_robust_attacks/
http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
http://contagiodump.blogspot.de/2010/08/malicious-documents-archive-for.html
https://github.com/fchollet/deep-learning-models
https://github.com/fchollet/deep-learning-models
http://www.cvedetails.com/product/497

Bibliography 98

[31] Saeed Ehteshamifar, Antonio Barresi, Thomas R Gross, and Michael Pradel. Easy to
Fool? Testing the Anti-evasion Capabilities of PDF Malware Scanners. arXiv preprint
arXiv:1901.05674, 2019.

[32] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry.
A Rotation and A Translation Su�ce: Fooling CNNs with Simple Transformations. arXiv
preprint arXiv:1712.02779, 2017.

[33] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting
Adversarial Samples from Artifacts. arXiv preprint 1703.00410, 2017.

[34] Samuel G Finlayson, John D Bowers, Joichi Ito, Jonathan L Zittrain, Andrew L Beam, and
Isaac S Kohane. Adversarial Attacks on Medical Machine Learning. Science, 363(6433):1287–
1289, 2019.

[35] Stephanie Forrest. Genetic Algorithms: Principles of Natural Selection Applied to Computa-
tion. Science, 261(5123), 1993.

[36] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Ad-
versarial Examples. In 3rd International Conference on Learning Representations (ICLR),
2015.

[37] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. On the E↵ectiveness of Interval
Bound Propagation for Training Verifiably Robust Models. arXiv preprint arXiv:1810.12715,
2018.

[38] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick Mc-
Daniel. On the (Statistical) Detection of Adversarial Examples. arXiv preprint 1702.06280,
2017.

[39] Shixiang Gu and Luca Rigazio. Towards Deep Neural Network Architectures Robust to
Adversarial Examples. arXiv preprint 1412.5068, 2014.

[40] Claudio Guarnieri, Alessandro Tanasi, Jurriaan Bremer, and Mark Schloesser. Cuckoo
Sandbox: A Malware Analysis System. http://www.cuckoosandbox.org/.

[41] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering
Adversarial Images using Input Transformations. In 6th International Conference on Learning
Representations (ICLR), 2018.

[42] Mark Harman, William B Langdon, and Westley Weimer. Genetic Programming for Reverse
Engineering. In 20th IEEE Working Conference on Reverse Engineering (WCRE), 2013.

[43] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial Exam-
ple Defenses: Ensembles of Weak Defenses are not Strong. In 11th USENIX Workshop on
O↵ensive Technologies (WOOT), 2017.

[44] Geo↵rey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving Neural Networks by Preventing Co-adaptation of Feature De-
tectors. arXiv preprint 1207.0580, 2012.

[45] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. Deceiving
Google’s Perspective API Built for Detecting Toxic Comments. arXiv preprint 1702.08138,
2017.

http://www.cuckoosandbox.org/

Bibliography 99

[46] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient Convolutional Neural
Networks for Mobile Vision Applications. arXiv preprint 1704.04861, 2017.

[47] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. Densely Con-
nected Convolutional Networks. In 30th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[48] Thomas Hungenberg and Matthias Eckert. INetSim: Internet Services Simulation Suite.
http://www.inetsim.org/.

[49] Alex Kantchelian, JD Tygar, and Anthony Joseph. Evasion and Hardening of Tree Ensemble
Classifiers. In 33rd International Conference on Machine Learning (ICML), 2016.

[50] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An E�cient SMT Solver for Verifying Deep Neural Networks. In International Conference
on Computer Aided Verification, 2017.

[51] J Zico Kolter and Eric Wong. Provable Defenses against Adversarial Examples via the Convex
Outer Adversarial Polytope. In 35th International Conference on Machine Learning (ICML),
2018.

[52] John R Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection, volume 1. MIT press, 1992.

[53] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis,
University of Toronto, 4 2009.

[54] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In 26th Advances in Neural Information Processing Systems
(NeurIPS), 2012.

[55] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial Examples in the Physical
World. In International Conference on Learning Representations (ICLR) Workshop, 2017.

[56] Pavel Laskov and Nedim Šrndić. Static Detection of Malicious JavaScript-Bearing PDF
Documents. In 27th ACM Annual Computer Security Applications Conference (ACSAC),
2011.

[57] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. GenProg: A
Generic Method for Automatic Software Repair. IEEE Transactions on Software Engineering,
2012.

[58] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation Applied to Handwritten ZIP
Code Recognition. Neural computation, 1989.

[59] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha↵ner. Gradient-based Learning
Applied to Document Recognition. Proceedings of the IEEE, 1998.

[60] Yann Lecun, Corinna Cortes, and Christopher JC Burges. The MNIST Database of Hand-
written Digits. http://yann.lecun.com/exdb/mnist, 2009.

[61] Ji Lin, Chuang Gan, and Song Han. Defensive Quantization: When E�ciency Meets Robust-
ness. In 7th International Conference on Learning Representations (ICLR), 2019.

http://www.inetsim.org/

Bibliography 100

[62] Tao Liu, Zihao Liu, Qi Liu, and Wujie Wen. Enhancing the Robustness of Deep Neural
Networks from “Smart” Compression. In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2018.

[63] Zihao Liu, Qi Liu, Tao Liu, Yanzhi Wang, and Wujie Wen. Feature Distillation: DNN-
Oriented JPEG Compression Against Adversarial Examples. arXiv preprint arXiv:1803.05787,
2018.

[64] Daniel Lowd and Christopher Meek. Adversarial learning. In 11th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), 2005.

[65] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks. In 6th International
Conference on Learning Representations (ICLR), 2018.

[66] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Looking at the Bag Is Not Enough to
Find the Bomb: An Evasion of Structural Methods for Malicious PDF Files Detection. In
8th ACM Symposium on Information, Computer and Communications Security (AsiaCCS),
2013.

[67] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A Pattern Recognition System for
Malicious PDF Files Detection. In 8th International Conference on Machine Learning and
Data Mining in Pattern Recognition (MLDM). 2012.

[68] Somshubra Majumdar. DenseNet Implementation in Keras. https://github.com/titu1994/
DenseNet/.

[69] Somshubra Majumdar. Keras Implementation of Mobile Networks. https://github.com/

titu1994/MobileNetworks/.

[70] Patrick Maupin. PDFRW: A Pure Python Library That Reads and Writes PDFs. https:

//github.com/pmaupin/pdfrw.

[71] François Menet, Paul Berthier, José M Fernandez, and Michel Gagnon. Spartan Networks:
Self-Feature-Squeezing Neural Networks for increased robustness in adversarial settings. arXiv
preprint arXiv:1812.06815, 2018.

[72] Dongyu Meng and Hao Chen. MagNet: a Two-Pronged Defense against Adversarial Examples.
In ACM Conference on Computer and Communications Security (CCS), 2017.

[73] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischo↵. On Detecting
Adversarial Perturbations. arXiv preprint 1702.04267, 2017.

[74] João Monteiro, Zahid Akhtar, and Tiago H Falk. Generalizable Adversarial Examples Detec-
tion Based on Bi-model Decision Mismatch. arXiv preprint arXiv:1802.07770, 2018.

[75] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Univer-
sal Adversarial Perturbations. https://github.com/LTS4/universal/.

[76] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: a Simple
and Accurate Method to Fool Deep Neural Networks. In 29th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[77] Anh Nguyen, Jason Yosinski, and Je↵ Clune. Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images. In 28th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

https://github.com/titu1994/DenseNet/
https://github.com/titu1994/DenseNet/
https://github.com/titu1994/MobileNetworks/
https://github.com/titu1994/MobileNetworks/
https://github.com/pmaupin/pdfrw
https://github.com/pmaupin/pdfrw
https://github.com/LTS4/universal/

Bibliography 101

[78] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Ambrish Rawat, Martin Wistuba,
Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and
Ben Edwards. Adversarial Robustness Toolbox v0.6.0. CoRR, 1807.01069, 2018.

[79] OpenCV-Python Tutorials. Image Denoising. https://docs.opencv.org/3.2.0/d5/d69/

tutorial_py_non_local_means.html, 2017.

[80] Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr Dunkelman, and Daniel
Pérez-Cabo. No Bot Expects the DeepCAPTCHA! IEEE Transactions on Information
Forensics and Security, 2017.

[81] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick McDaniel.
Cleverhans v1.0.0: an Adversarial Machine Learning Library. arXiv preprint 1610.00768,
2016.

[82] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and
Ananthram Swami. Practical Black-Box Attacks against Deep Learning Systems using
Adversarial Examples. In 12th ACM Asia Conference on Computer and Communications
Security (AsiaCCS), 2017.

[83] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and
Ananthram Swami. The Limitations of Deep Learning in Adversarial Settings. In 1st IEEE
European Symposium on Security and Privacy(EuroS&P), 2016.

[84] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. SoK: Towards
the Science of Security and Privacy in Machine Learning. In 3rd IEEE European Symposium
on Security and Privacy (EuroS&P), 2018.

[85] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman. SoK: Security
and Privacy in Machine Learning. In 3rd IEEE European Symposium on Security and Privacy
(EuroS&P), 2018.

[86] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a Defense to Adversarial Perturbations against Deep Neural Networks. In 37th IEEE
Symposium on Security and Privacy (Oakland), 2016.

[87] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep Face Recognition. In
British Machine Vision Conference, 2015.

[88] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified Defenses against Ad-
versarial Examples. In 6th International Conference on Learning Representations (ICLR),
2018.

[89] Adnan Siraj Rakin, Zhezhi He, Boqing Gong, and Deliang Fan. Blind Pre-Processing: A
Robust Defense Method Against Adversarial Examples. arXiv preprint arXiv:1802.01549,
2018.

[90] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi. Mi-
crosoft Malware Classification Challenge. arXiv preprint arXiv:1802.10135, 2018.

[91] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and
interpretability of deep neural networks by regularizing their input gradients. In 32nd AAAI
Conference on Artificial Intelligence (AAAI), 2018.

[92] Conor Ryan. Automatic Re-Engineering of Software Using Genetic Programming, volume 2.
Springer Science & Business Media, 2012.

https://docs.opencv.org/3.2.0/d5/d69/tutorial_py_non_local_means.html
https://docs.opencv.org/3.2.0/d5/d69/tutorial_py_non_local_means.html

Bibliography 102

[93] Florian Schro↵, Dmitry Kalenichenko, and James Philbin. Facenet: A Unified Embedding for
Face Recognition and Clustering. In 28th IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[94] SciPy. Median Filter (scipy.ndimage.median filter). https://docs.scipy.org/doc/scipy/

reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_

filter, 2017.

[95] Karthik Selvaraj and Nino Fred Gutierrez. The Rise of PDF Malware. https://www.

symantec.com/content/en/us/enterprise/media/security_response/whitepapers/

the_rise_of_pdf_malware.pdf, March 2010.

[96] Tegjyot Singh Sethi and Mehmed Kantardzic. Data Driven Exploratory Attacks on Black Box
Classifiers in Adversarial Domains. Neurocomputing, 289:129–143, 2018.

[97] Kumar Sharad, Giorgia Azzurra Marson, Hien Thi Thu Truong, and Ghassan Karame.
Mix’n’Squeeze: Thwarting Adaptive Adversarial Samples Using Randomized Squeezing.
arXiv preprint arXiv:1812.04293, 2018.

[98] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Accessorize to
a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. In 23rd ACM
Conference on Computer and Communications Security (CCS), 2016.

[99] Yash Sharma and Pin-Yu Chen. Bypassing Feature Squeezing by Increasing Adversary
Strength. arXiv preprint arXiv:1803.09868, 2018.

[100] Charles Smutz and Angelos Stavrou. Malicious PDF Detection Using Metadata and Struc-
tural Features. In 28th ACM Annual Computer Security Applications Conference (ACSAC),
2012.

[101] Charles Smutz and Angelos Stavrou. Malicious PDF Detection Using Metadata and Struc-
tural Features. Technical report, 2012.

[102] Sibo Song, Yueru Chen, Ngai-Man Cheung, and C-C Jay Kuo. Defense Against Adversarial
Attacks with Saak Transform. arXiv preprint arXiv:1808.01785, 2018.

[103] Nedim Šrndic and Pavel Laskov. Mimicus: A Library for Adversarial Classifier Evasion.
https://github.com/srndic/mimicus.

[104] Nedim Šrndic and Pavel Laskov. Detection of Malicious Pdf Files Based on Hierarchical
Document Structure. In 20th Network and Distributed System Security Symposium (NDSS),
2013.

[105] Nedim Šrndic and Pavel Laskov. Practical Evasion of a Learning-Based Classifier: A Case
Study. In 35th IEEE Symposium on Security and Privacy (Oakland), 2014.

[106] Christian Szegedy, Vincent Vanhoucke, Sergey Io↵e, Jon Shlens, and Zbigniew Wojna. Re-
thinking the Inception Architecture for Computer Vision. In 29th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[107] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing Properties of Neural Networks. In 2nd International
Conference on Learning Representations (ICLR), 2014.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf
https://github.com/srndic/mimicus

Bibliography 103

[108] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the
Gap to Human-level Performance in Face Verification. In 27th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[109] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks Meet Interpretability:
Attribute-steered Detection of Adversarial Samples. In 32nd Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[110] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Networks with
Mixed Integer Programming. In 7th International Conference on Learning Representations
(ICLR), 2019.

[111] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, and Yevgeniy Vorobeychik. A Framework
for Validating Models of Evasion Attacks on Machine Learning, with Application to PDF
Malware Detection. arXiv preprint arXiv:1708.08327, 2017.

[112] Matthew A Turk and Alex P Pentland. Face Recognition using Eigenfaces. In 4th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 1991.

[113] VirusTotal. Free Online Virus, Malware and URL Scanner. https://www.virustotal.com/.

[114] Beilun Wang, Ji Gao, and Yanjun Qi. A Theoretical Framework for Robustness of (Deep)
Classifiers Under Adversarial Noise. In International Conference on Learning Representations
(ICLR) Workshop, 2017.

[115] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In 27th USENIX Security Symposium
(USENIX), 2018.

[116] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
Transformed Adversarial Examples. In 6th International Conference on Learning Representa-
tions (ICLR), 2018.

[117] Kai Y Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry. Training
for faster adversarial robustness verification via inducing relu stability. In 7th International
Conference on Learning Representations (ICLR), 2019.

[118] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating Adversarial
E↵ects through Randomization. In 6th International Conference on Learning Representations
(ICLR), 2018.

[119] Meng Xu and Taesoo Kim. PlatPal: Detecting Malicious Documents with Platform Diversity.
In 26th USENIX Security Symposium (USENIX), 2017.

[120] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: Detecting Adversarial Examples
in Deep Neural Networks. arXiv preprint 1704.01155, 2017.

[121] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing Mitigates and Detects Car-
lini/Wagner Adversarial Examples. arXiv preprint 1705.10686, 2017.

[122] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers. In 23rd Network
and Distributed System Security Symposium (NDSS), 2016.

[123] Weilin Xu, Yanjun Qi, and David Evans. Feature Squeezing: Detecting Adversarial Examples
in Deep Neural Networks. In 25th Network and Distributed System Security Symposium
(NDSS), 2018.

https://www.virustotal.com/

Bibliography 104

[124] Weilin Xu, Zhenyu Zhong, and Yunhan Jia. Defcon CAAD 2018: Magic Tricks for Self-driving
Cars. https://speakerdeck.com/mzweilin/magic-tricks-for-self-driving-cars,
2018.

[125] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and
defenses for deep learning. IEEE Transactions on Neural Networks and Learning Systems,
2019.

[126] Yuchen Zhang and Percy Liang. Defending against Whitebox Adversarial Attacks via Ran-
domized Discretization. In 22nd International Conference on Artificial Intelligence and
Statistics(AISTATS), 2019.

[127] Fei Zuo, Lannan Luo, and Qiang Zeng. Countermeasures Against L0 Adversarial Examples
Using Image Processing and Siamese Networks. arXiv preprint arXiv:1812.09638, 2018.

https://speakerdeck.com/mzweilin/magic-tricks-for-self-driving-cars

	Contents
	List of Tables
	List of Figures

	Introduction
	Motivating Examples
	Thesis
	Contributions

	Background
	Machine Learning Classifiers
	Neural Networks

	Adversarial Machine Learning
	Generating Adversarial Examples
	Defensive Techniques
	Detecting Adversarial Examples

	Genetic Evasion
	Introduction
	Overview
	Threat Model
	Finding Evasive Samples

	PDF Malware and Classifiers
	PDF Malware
	Target Classifiers

	Evading PDF Malware Classifiers
	PDF Parser and Repacker
	Genetic Operators
	Oracle
	Fitness Function
	Selection
	Trace Collection and Replay

	Experiment
	Dataset and Experiment Setup

	Results
	PDFrate
	Hidost
	Cross-Evasion Effects
	Execution Cost

	Discussion
	Defense
	Improving Automatic Evasion

	Related Work
	Conclusions
	Impact

	Feature Squeezing
	Introduction
	Feature Squeezing Methods
	Color Depth
	Spatial Smoothing
	Other Squeezing Methods

	Robustness
	Results
	Combining with Adversarial Training

	Detecting Adversarial Inputs
	Detection Method
	Experimental Setup
	Results
	Adversarial Adaptation

	Conclusion

	Provable Robustness
	Introduction
	Provable Robustness Methods
	Formal Verification
	Robust Certification
	Comparison

	Adversarial Capability Measurement
	Definitions
	Bit Depth Reduction

	Robustness
	Adversarial Bound Transformation
	Robustness Regularization
	Verification

	Experiments
	Adversarial Bound Transformation
	Robustess Regularization

	Conclusion

	Conclusion
	Summary
	Paths Forward

	Bibliography

