Computational and Chemical Proteomic Strategies for Deconvoluting Inhibitor and Drug

Mode of Action

Adam Louis Borne

Vail, Colorado

B. Sc. Cell and Molecular Biology, University of South Florida, 2016

A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy

Department of Pharmacology

University of Virginia

August 2021

Abstract

The analysis of proteomes using mass spectrometry has enabled the direct measure of the abundance for thousands of protein gene products from a single sample. Small molecule covalent probes can survey the activity of these proteins and through competition assays identify their ligands. This activity-based protein profiling (ABPP) provides the means to probe and potentially drug protein targets that may be otherwise inaccessible. Given that the development of new covalent probes enables the study of different subsections of the proteome, advances in proteomic and computational strategies are needed to optimize coverage and utility of probe modified proteomes.

This dissertation uses three different chemical proteomics strategies to 1) identify the targets of an inhibitor, 2) profile tyrosines across the proteome and 3) screen fragment electrophiles across the proteome. In addition, we present a computational tool kit built for the analysis of chemical proteomics datasets. **Chapter 1** provides background on proteomics with mass spectrometry, ABPP, and the relevant computational strategies. In **Chapter 2** we identify that repurposed serotonin receptor antagonist ritanserin, is cytotoxic in small cell and non-small cell lung cancer cell lines. Based on this finding we used a kinase specific chemical probe to identify c-Raf as an important ritanserin target in these cell lines. **Chapter 3** details the development of SuTEx probes as an *in vitro* and live cell tyrosine selective probe. We use this probe to identify tyrosines that readily react with the SuTEx scaffold and monitor changes in phosphorylation state of tyrosines. **Chapter 4** presents a computational platform for analysis of probe modified site-specific mass spectrometry datasets. Using this platform, we profile several probes, competitive ABPP data, and perform an *in silico* screen of covalent fragment electrophiles. **Chapter 5** summarizes the findings and discusses future direction for these strategies.

Acknowledgements

I would like to thank all the members of my lab that I worked with on the projects presented. The field of Chemical Biology requires a multi-disciplinary team, since most member of the lab were graduate students everyone was learning what they contribute as the projects developed. Dr. Jeffery Brulet and I worked on several projects together and he was one of the hardest workers I have ever met. Dr. Caroline Franks and Dr. Mark Ross taught me activity-based protein profiling and mass spectrometry when I first joined the lab. Kun Yuan, Anthony Ciancone, Andy Heindel and Dr. Rebecca McCloud were always a reliable resources and great coworkers. Heindel was the second Pharmacology PhD candidate in the Hsu lab and provided much-needed perspective on being part of two departments. I joined the lab of Dr. Ku-Lung (Ken) Hsu because of his enthusiasm for his work which never waned even when times were difficult. He always made time for his students and helped many graduate students find their eventual post-doctoral positions.

My parents have both been supportive of me throughout this process and have always tried their best to help me through some of the tougher moments. My father would always be there to lend a helping hand and my mom would be there to listen to me complain about whatever ailed me. My grandparents always told me they were proud of me, and I fear my discomfort with compliments meant they never understood how much it meant to me. All three of my siblings were always there to help me; playing video games with Aaron or going to Disney with Tess and Spencer no matter what the occasion they always brought some joy and levity to tougher times. In addition, I need to give a special thanks to my Aunt Lynette, Uncle Rob and Uncle Steven for being so supportive during my candidacy.

Table of Contents	
-------------------	--

Abstractii
Acknowledgementsiv
Chapter 1: Introduction1
1.1 Tandem Mass Spectrometry and Proteomics1
1.1.1. Tandem Mass Spectrometry1
1.1.2. Liquid Chromatography and Shotgun Proteomics3
1.1.3. Proteomics Database Searching4
1.2 Design of Activity-Based Probes5
1.3 Activity Based Protein Profiling7
1.3.1. ABPP Techniques7
1.3.2. Competitive ABPP8
1.3.3. Surveying Serine Hydrolases with ABPP11
1.3.4. Surveying Kinases Inhibitors with ABPP12
1.3.5. Broad Activity Based Probes13
1.4 Applications of ABPP in Drug Development14
1.4.1. The Undrugged Proteome14
1.4.2. The Case for Covalent Inhibitors16
1.5 Sulfur-Fluoride Exchange (SuFEx) Chemistry18
1.6 Computational Strategies for ABPP19
1.7 Challenges in ABP Development21
Chapter 2: Chemoproteomic Discovery of a Ritanserin-Targeted Kinase Network Mediating Apoptotic Cell Death of Lung Tumor Cells
2.1 Abstract
2.2 Introduction
2.3 Materials and Methods25
2.4 Results
2.4.1. Ritanserin Shows Serotonin-Independent Cytotoxic Activity in Lung Tumor Cells33
2.4.2. Ritanserin Activates Apoptotic Cell Death of Broad Lung Tumor Cell Types
2.4.3. Chemoproteomic Kinome Profiling of Ritanserin Action in Lung Tumor Cell Proteomes
2.4.4. Chemoproteomic Profiling Reveals c-RAF as a Principal Target of Ritanserin in SCLC Proteomes

2.4.5.	Ritanserin Block c-RAF But Not B-RAF Activation of MEK Signaling in Live (Cells 39
2.5 Disc	ussion	
2.6 Auth	or Contributions and Pipeline Development	41
2.7 Tabl	es and Figures	
Chapter 3	. Global targeting of functional tyrosines using sulfur triazole exchang	e chemistry
3.1 Abst	ract	57
3.2 Intro	oduction	58
3.3 Mat	erials and Methods	60
3.4 Resu	llts	72
3.4.1	Design and synthesis of sulfonyl-triazole probes	72
3.4.2	Chemical proteomic evaluation of SuTEx chemistry	73
3.4.3	Discovery of hyper-reactive tyrosines in human proteomes	75
3.4.4	Tuning the triazole LG for tyrosine chemoselectivity	76
3.4.5	Triazole LG enhances phenol reactivity of probes	79
3.4.6	Chemoproteomic profiling of phosphotyrosine activation	80
3.5 Disc	ussion	83
3.6 Auth	nor Contributions and Pipeline Development	
3.7 Tabl	es and Figures	
Cha	apter 4. Development of Computational Methods for Chemical Probe	Mass
Spectrome	etry Data	124
4.1 ADS	ract	124
4.2 IIIIro	orisis and Mathada	125 126
	errais and Methous	120
4.4.1.	Development of CPASS-MS	134
4.4.2.	Analysis of ATP-acyl phosphate data	
4.4.3.	HHS-465 and HHS-475 live cell lysine coverage	
4.4.4.	Competitive ABPP using CPASS-MS	
4.4.5.	Domain enrichment comparison of hyperreactive and liganded sites	
4.4.6.	Nucleophilicity and depth of SuTEx liganded sites	142
4.4.7.	In silico screen of SuTEx ligands	144
4.4.8	Workflows for analysis in CPASS-MS	145

vi

4.5 Discussion	146
4.6 Author Contributions and Pipeline Development	
4.7 Figures	
Chapter 5: Discussion	
5.1 Summary and Significance	
5.2 Future Directions	
5.2.1. ATP-acyl phosphate and Ritanserin	
5.2.2. Development of SuTEx Chemical Platform	
5.2.3. Advancing Computational Tools for ABPP	
Appendices	
Appendix A: Semi-quantitative Profiling of SuTEx Sites with Deuterat	ted Desthiobiotin
A.1 Introduction	
A.2 Materials and Methods	
A.3 Results	
A.4 Discussion	
A.5 Author Contributions	
A.6 Figures	
Appendix B: Monitoring of DUSP6 Dephosphorylation of ERK1 with S	SuTEx Probes 190
B.1 Introduction	
B.2 Materials and Methods	
B.3 Results	
B.4 Discussion	
B.5 Author Contributions	
B.6 Figures	
Appendix C: Investigation of SHMT1 Inhibition by SuTEx ligands	
C.1 Introduction	
C.2 Materials and Methods	
C.3 Results	
C.4 Discussion	
C.5 Author Contributions	
C.6 Figures	

Appendix D: Chapter 4 Tables	
Works Cited	

Chapter 1: Introduction

1.1 Tandem Mass Spectrometry and Proteomics

1.1.1. Tandem Mass Spectrometry

Mass Spectrometry (MS) is any technique that identifies the mass to charge (m/z)of a molecule through ionization, subjecting the ion to a magnetic field and detecting the effect on the ion or magnetic field¹. Ionized molecules can be separated using a quadrupole mass filter which selects ions based on their m/z by subjecting them to an electromagnetic field destabilizes other ions. In a mass spectrometry instrument, this quadrupole will isolate ions from a complex mixture to perform focused quantitation of the ion or inject the ion into a collision chamber to break the precursor ion into fragment ions^{1,2}. Tandem MS analyzes a complex mixture of ions, identifies the m/z of the precursor ion, selects specific ions from initial analysis, fragments the selected ions and analyzes the fragment ions². This technique produces a MS1 spectra of all the precursor ions as well as an MS2 spectra of all the fragment ions for each selected precursor. Fragmentation can be accomplished in many ways but the most common is Collision Induced Dissociation (CID) where ions are accelerated into inert gas ions (He, N_2)^{3,4}. The common variant of this technique is Higherenergy C-trap Dissociation (HCD) which will collide the ions in ion trap to produce more fragmentation⁵. Mass analyzers can be used to quantify the abundance of the precursor and fragment ions relative to other ions being analyzed in the complex mixture¹.

When performing tandem MS the spectra can be acquired spatially by aligning a linear ion detector for MS1 spectra followed by a collision chamber then another linear ion detector for the MS2 spectra². Temporal separation requires that ions be continuously

injected into the mass spectrometer long enough for both scans to be conducted. The precursor ions are first injected directly into detector to create the MS1 spectra and then the MS2 is generated by selecting ions from the MS1 in the continuously inject ion stream isolating them, inducing fragmentation, and injecting the fragments into the same ion detector (Fig. 1.1)^{1,6}.

Figure 1.1. Temporally separated tandem MS using collision induced dissociation (CID) and the resulting spectra. The MS1 scan is complete scan of all charged precursor ions within the m/z window. Integrating these scans over time, the relative ion abundance can be measured. The MS2 spectra consists of the fragment ions produced by selecting a single precursor inducing and performing CID³.

This technique is particularly useful when identifying complex molecules as the fragment ions can be used to determine which component of a molecule are attached to each other¹. As ionization techniques made Nobel prize winning advances larger biomolecules could be effectively analyzed using tandem MS which included the analysis of peptides derived from proteins digested with proteolytic enzymes such as trypsin^{2,7}. The

MS1 spectra can be used to measure relative abundance of a complex mixture of peptides and under specific collision conditions these peptides can be broken across the peptide backbone to produce MS2 spectra containing ions representing the different possible peptide bifurcations (b and y ions)⁵. These ions combined with other predictable fragment ions can be used to determine the peptide sequence.

1.1.2. Liquid Chromatography and Shotgun Proteomics

In a complex sample of unknown peptides, the highly abundant ions will suppress other ions. Liquid chromatography mass spectrometry (LC-MS) increases peptide coverage of samples by separating the complex mixture across a gradient such that a small numbers of peptides are injected into the instrument at a time⁸. Various methods exist for separating peptides across a gradient but the most common is reverse phase chromatography where peptides are loaded onto a hydrophobic stationary phase and slowly eluted off across a gradient of increasingly organic solvent⁸. This enables the evaluation of a peptide mixture over a long period of time and improvements in flow rates that has further improved coverage as decreased flow rate will produce discrete peaks that will have a higher relative abundance at a specific time in the gradient^{8,9}. Combining LC and MS enables shotgun proteomics where an entire proteome is analyzed across a long gradient¹⁰. This technique will produce thousands of MS2 spectra from single sample that can be matched to theoretical spectra and assigned to a protein using database search algorithms^{10,11}. These techniques have been expanded upon to identify up to 10,000 proteins in a single analysis¹².

1.1.3. Proteomics Database Searching

The ability to identify large numbers of peptides from proteins was made possible by the human genome project. A complete genome for a species enables the alignment of proteins from open reading frames¹³. A major challenge in shotgun proteomics is matching the large number usable spectra to peptides¹⁴. To address this several approaches to database search algorithm have been developed. Descriptive search algorithms (SEQUEST) do this by comparing theoretical spectra to a particular spectrum^{11,15,16}. Interpretive strategies (Byonic) depend on predicted features of a fragmented peptide to narrow the search space before performing comparisons¹⁷. Stochastic search algorithms will build a model for peptide spectra matching based on many previously matched spectra^{16,17}.

While database searching is the most common approach to matching spectra to peptides in mass, *de novo* sequencing is still used and frequently needed to identify certain peptides¹⁸. A database search algorithm is unlikely to identify peptides created from splicing events or unique proteolytic activity inside the cell. Assigning a peptide to a protein can pose an additional challenge as many peptides are not unique to protein of interest^{15,16}. The most likely protein for a peptide that belong to several proteins is usually determined by selecting the protein with the most other peptides found in the sample^{15,16}.

Figure 1.2. Three core components of an Activity-based probe (ABP) and their role.

Any compound that can be used to study a biological system could be described as a chemical probe. Activity-based probes (ABPs) report on a protein's activity through the use of a covalent small molecule that modifies proteins of interest^{19–21}. These probes are made up of a warhead, linker and reporter tag (Fig. 1.2¹⁹. The warhead used can determine the specificity and targets of the probe. The flourophosphanates (FP) and the adenosine triphosphate (ATP)-acyl phosphate covalently modify catalytic serines of serine hydrolases and ATP hydrolyzing proteins respectively^{22–24}. In addition, covalent moieties (azetidine, acrylamide, or vinylsulfones) can be added to known inhibitors to potentially create a specific warhead²⁵.

Broadly reactive warheads like the NHS-esters that target lysines or iodoacetamide which targets cysteines can be used in profiling reactivity across a proteome^{26–29} as well as report on post-translational modifications (PTM, expanded in chapters 3 and 4)^{27,30}.

The linker is frequently designed to limit its impact on the probe's warhead with an alkyl or polyethylene glycol (PEG) group³¹. The linker length can be optimized to prevent the handle from effecting the warhead's activity or to increase affinity for a protein³¹. This is accomplished by installing a chemical moiety on the linker that can function as directing element. These can be known ligands for the target of interest, developed through structure activity relationship (SAR) optimization, or a combination of these options³². If using a more complicated moiety it is important to balance membrane permeability with the size of the probe if the goal is to study the target in a live cells³².

The handle enables most uses of an ABP as it provides the ability to either visualize or enrich probe modified protein. The alkyne group is an extremely reliable and versatile handle when combined with copper(I)-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) click-chemistry^{33,34}. This bioorthogonal reaction efficiently forms a triazole ring from azido group and the alkyne connecting the two components³³. Flourescent tags can be attached to the azido group, clicked onto a probe and used to visualize the probe when subjected to the absorption wavelength of the fluorophore³³. Enrichment can be achieved by attaching biotin or desthiobiotin to the azido group and enriching the probe using avidin or streptavidin²¹. The biotin avidin interaction is particularly strong and require strong denaturing conditions to elute the probe modified peptide. Replacing the component with dethio- or strept- alternatives weaken this interaction to the point they can be eluted with organic solvents^{35,36}. Alternative enrichment tags include TEV-sequence biotin, which can be eluted through the cleacage of enrichment tag with TEV-protease²⁷. While versatile the alkyne handle requires click-chemistry for use. In cases where the small profile of the handle is not needed, a handle that is simply the fluorescent or enrichment tag may be preferable²⁹. Removing this step can produce task specific probe but could result in a loss of membrane permeability.

1.3 Activity Based Protein Profiling

1.3.1. ABPP Techniques

Using this basic framework one can build an ABP that will covalently modify proteins of interest and be used in a variety of biological assays. Activity based protein profiling uses ABPs to interrogate the activity of proteins in biology systems^{19,21}. The most direct use is the visualization of targets separated by sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE)³⁶⁻³⁸. SDS-PAGE separates proteins by mass and charge as different size proteins will migrate through the cross-linked acrylamide matrix when subjected to a constant electrical field. SDS is used the charge the proteins to ensure they move towards one pole of the electrical field. This method combined with a family specific warhead and a fluorescent handle (clicked or prebuilt) can visualize and provide a relative abundance for the ABPs targets^{22,36}. If using a broad probe, a protein can be visualized this way if it is overexpressed such that signal of the overexpressed protein can be discerned from a mock overexpression³⁶. This provides a way to survey one to a family of proteins in a single gel lane. A higher throughput but lower coverage technique is to use a probe with purified protein in anisotropy based screen³⁹. This is usually used for competitive ABPP discussed in section 1.3.2.

Fluorescence Microscopy is the fixing cells or tissues to a glass slide and subjecting

the slide to specific wavelengths of light that excite fluorophores in the sample. Most flourophores are introduced to the sample through use of fluorophore conjugated antibodies that recognize a specific epitope on a protein or group of proteins⁴⁰. When paired with fluorescent microscopy an ABP with protein specific warhead and a clicked fluorescent tag can be used to visualize subcellular location⁴¹. Further, when using the acidic organelle specific 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP) directing element with a cathepsin specific warhead a family of proteins can be visualized in a specific organelle. An ABP with a fluorophosphonate (FP) warhead and a TAMRA fluorescent tag have been used to identify serine hydrolase activity hotspots in fluorescent microscopy of tissue samples⁴¹.

Pairing ABPP with tandem LC-MS (as described in section 1.1) the targets of any ABP warhead linker combination can be determined through use of an enrichment tag^{36–38}. There are two major ways to identify the targets of an ABP. The first is to treat to a live cell or proteome, enrich the proteins on beads (i.e. biotin-avidin chromatography), digest the proteins and analyze the digested peptides^{37,42}. This approach is like shotgun proteomics in that all peptide from the target proteins will be in the sample. Digesting the proteins prior to enrichment followed by eluting the probe modified peptide produces a sample where only the probe modified peptides are enriched in the sample^{27,36}. This site-specific proteome profiling is major focus of all chapters and elaborated on in section 1.6.

1.3.2. Competitive ABPP

The major advantage of the ABP is the ability to be competed out by potential ligands in a dose-dependent manner^{19,24,36}. Treating a cell lysate with a non-covalent or covalent compound followed by treatment with an ABP will report on the inhibition of the proteins targeted by the probe. It is possible to perform competitive ABPP with live cell compound treatment, but is very difficult unless using a covalent ligand or a membrane permeable ABP²⁴. This methodology has been used to identify inhibitors for serine hydrolases, kinases, transcription factors and much more^{37,43,44}. It can also be used to identify previously unknown targets for drugs at all steps of the drug discovery pipeline^{45,46}.

High-throughput screening with ABPs can be accomplished using an anisotropybased screen with a purified protein³⁹. This is done by treating the proteins with a compound library followed by the ABP with a fluorescent tag. The ABP will rotate in the solution and will be slowed by the additional mass of the protein, if the compound blocks probe labeling the rate of spinning remain high⁴⁷. Moving down in throughput from thousands of molecules to hundreds gel-based screening can conducted by pre-treating cells or a lysate with an inhibitor then the ABP and performing SDS-PAGE, as described in section 1.3.1. This will lead to decreased gel band signal intensity for a protein inhibited by the compound^{36–38}. The trade-off for lower throughput is the ability to use a family specific probe to test a probe across a protein family in a single gel lane.

LC-MS based competitive ABPP is lowest throughput version but is the best way to take advantage of a broad ABP as it can quantify thousands of proteins across the proteome^{26,30}. Pre-treatment with a compound followed by ABPP LC-MS, as described in section 1.3.1, will lead to decreased MS1 signal intensity for peptides that belong to the protein targets of the compound when compared to a vehicle control. If performing site-specific proteome profiling the site of protein-probe can be detected providing information on the compound binding site³⁶.

The major throttle for LC-MS competitive ABPP is the time needed to run a sufficiently long chromatographic gradient to get the proteome coverage needed. In addition, running lysates separated temporally means the relative abundance of the peptides are subject to the conditions of the run. There are several ways to address these issues, but the best is to analyze several compounds at same the same time. This is accomplished using multi-plexing where the m/z of ions produced by peptides are systematically changed through incorporation of isotopes into the amino acid itself or a reporter tag^{48–50}. Multiplexing at the MS1 level can be done by growing cell in media containing isotopically unique versions of essential amino acid such as lysine or arginine. The stable isotope labeling of amino acids in cell culture (SILAC) can use different levels of carbon or nitrogen replacement to create light (no replacement), medium (partial replacement) and heavy (complete replacement) channels⁴⁸. Mixing the proteomes from cells grown in these different isotopically labeled amino acids will produce MS1 ions that all can discerned from each other using high-resolution MS. Recently this type of multi-plexing has been integrated into the design of a chemical probe by using isotopically unique version of a chemical probe on different samples⁵¹.

The other techniques modify the peptides with different mass tags usually though addition to the N-terminus of the peptide generated by proteolytic digestion by trypsin. Tandem mass tags (TMT)⁴⁹ and isobaric tags for relative and absolute quantitation (iTRAQ)⁵⁰ both modify the N-terminus of peptides but produce isotopically unique ions upon fragmentation of modified peptide. The different tags all have the same mass but have distributed isotopic carbons or nitrogen differently across each tag. Just as the peptide produces predictable ions through fragmentation the tag is fragmented at a particular bond that produces different ions in a MS2 scan based on how many of the isotopic carbons and nitrogens were on each part of the fragment. Mixing proteomes treated with different tags one can analyze the abundance of up to 16 treatments simultaneously⁴⁹. Combining this multi-plexing strategy with a competitive ABPP has recently enabled a 265-molecule screen across a large portion of the proteome²⁹.

1.3.3. Surveying Serine Hydrolases with ABPP

Serine hydrolases are a group of hydrolyzing proteins that feature a conserved serine in the active site needed for catalytic activity. The roles of serine hydrolases include hydrolysis of lipids, esters, thioesters, amides, and peptides^{52,53}. Given the broad array of hydrolysis targets it is unsurprising that they have been implicated in several diseases including cancer, inflammation and cardiovascular disease^{52,53}. The FP warhead previously discussed (section 1.3.1) specifically labels this group of proteins and is one of the foundational family specific warheads for the development of ABPP²².

A combination of gel and LC-MS based ABPP was used to identify inhibitors for the serine hydrolase Diacylglycerol Lipase β (DAGL β)³⁷. This enzyme mediates the production of 2-arachidonoylglycerol (2-AG) which regulated inflammation and is a major cannabinoid receptor agonist. Inhibition has been shown to mitigate lipopolysaccharide induced inflammatory pain⁵⁴. The same approach was used to identify inhibitors of α/β -Hydrolase Domain Containing 6 (ABHD6) which hydrolyzes 2-AG³⁸. The inhibitors identified in both cases featured the 1,2 ,3-triazole urea which was key to the development of new probes discussed in Chapter 4.

1.3.4. Surveying Kinases Inhibitors with ABPP

Kinases are an important class of proteins that catalyze the addition of a phosphate from a molecule of (ATP) to another molecule⁵⁵. They usually add the phosphate to a hydroxyl on a tyrosine, serine, threonine, sugar or lipid headgroup. These kinases are incredibly important to a functioning cell and when acting abnormally can lead to various disease states⁴⁵. Cancer treatments frequently target kinases as they are often the location of oncogenic (cancer driving) mutations⁵⁶. Given their importance several methods for surveying kinase inhibitors have been developed to identify their targets.

One approach uses kinases inhibitors immobilized on Sepharose beads to enrich kinases from a lysate^{57,58}. The kinases from a lysate will interact with the inhibitors and non-interacting proteins can be removed by washing the beads. Then the proteins can be proteolytically digested on or off bead and analyzed by LC-MS/MS. The beads can be tailored to system of interest by immobilizing inhibitors that have higher affinities to the expected targets⁵⁹. A different approach immobilizes the inhibitor of interest onto a bead, but this can only be done if the inhibitor is amenable to the coupling chemistry used to create the beads⁶⁰. All versions can be performed competitively by treating the lysate with

an inhibitor of interest then subjecting the lysate to the immobilized inhibitors^{57–60}. The targets are identified by the loss of peptide signal from proteins that were competed by the inhibitor treatment when compared to a vehicle or analog control. This technique dramatically increases kinase coverage when analyzed with LC-MS/MS but does not provide site-specific information^{57,59,60}.

The comparable ABP based technique, that is used in Chapters 2 and 5, replaces the beads with an ATP-acyl phosphate probe. This probe catalytically modified a lysine in the binding pocket of kinase²⁴. This ABP can be competed out by pretreating the lysate with an inhibitor molecule to perform a competitive ABPP experiment³⁶. The probe modified proteins or digested peptides are enriched with desthiobiotin-avidin enrichment described in Section 1.2 and analyzed by LC-MS. The targets are determined by loss of overall peptide signal or loss of probe modified peptide signal. The latter option provides site-specific data which have previous been used to describe the catalytic pocket of the lipid kinase diacylglycerol kinase α (DGK α)³⁶.

1.3.5. Broad Activity Based Probes

Broad or global ABPs include a warhead that hit a larger number of protein targets^{27,30}. This include photoreactive warheads like diazirine and benzophenones which modify any nearby amino acid when subjected to ultraviolet light⁶¹. Both warheads can be provided specificity by integrating them into larger molecule or adding directing agent to a linker. Several of these warheads have amino acid specificity such are NHS-ester and iodoacetamide probes for modifying lysine and cysteine, respectively^{29,62}.

These warheads can be used to perform competitive ABPP across the proteome and when using site-specific profiling they can annotate the location of competition^{36,62}. In addition, they can be used to determine hyper-reactive and ligandable amino acids across the proteome^{27,29}. Hyper-reactive amino acids are identified comparing a lower and higher concentrations of an ABP. A site on the protein that reacts as readily with the lower concentration as it does with the higher concentration is considered hyper-reactive. These hyper-reactive sites likely reflect a combination of protein-ABP affinity, site accessibility, and amino acid reactivity. Ligandable amino acids are those inhibited by pretreating a lysate with a covalent compound. A ligandable site has the proper compound-protein affinity, accessibility, and reactivity to be targeted by a covalent pharmacophore. Identifying how ligand structural changes effect ligandability can provide a map of sites that can be access with different chemical moeities²⁷. Hyper-reactivity and ligandability are discussed further in Chapters 3 and 4.

1.4 Applications of ABPP in Drug Development

1.4.1. The Undrugged Proteome

The human proteome contains at least 20,000 different proteins and it is estimated that only 3 percent of those proteins are targeted by a clinical drug. Only a further 7 percent have ligands with an IC50 less than 50 nM. The remaining 90 percent (~18,000 proteins) do not have known ligands capable of modulating a protein at biologically relevant doses. Among the proteins inhibited there is bias towards G-protein coupled receptors (GPCRs), ion channels, and kinases⁶³. These three groups make up 44 percent of all clinical targets

with other enzymes making up an additional 31 percent^{63,64}. This bias toward these targets is driven in part by their relevance in various disease state and by the tools available to assay these protein classes. One such tool, biochemical assays can be used with modern instrumentation to screen hundreds of thousands of compounds against a purified protein target⁶⁵. This approach requires some way to measure the proteins activity or binding of compound to the protein. Enzymes can be screened relatively easily when the protein catalyzes a product that can be detected. Protein targets that do not catalyze a detectable target must depend on some form of chemical or protein probe that can report out the relevant change in activity or binding. This first step to finding an inhibitor, often fail to produce useful ligands as the lead compound may not show the same activity in a more complex biological system^{32,66}.

Phenotypic assays start with a biological system and screen molecules for changes in the behavior of the system. This technique can reach similar throughput as biochemical techniques depending on the complexity of the system needed to elicit the phenotype and method of measuring the change in behavior⁶⁷. The phenotypic screen can suggest the protein targeted relevant to the change in behavior through a knock-down or out of a potential target to recover the phenotype. While powerful the phenotypic screen is rarely able to identify the relevant off-targets that may be contributing to the phenotype⁶⁷. This may seem like a minor issue but more expansive targets coverage has illustrated that many clinical compounds work in part or completely through off-target effects^{60,68}.

The ability to interrogate as much of the proteome as possible is important in both understanding drug effects as well as bringing better treatments to the clinic³². We are

scratching the surface of what can be done with these techniques but there is still a need to bring new approaches to the table to expedite and enable the targeting of this undrugged proteome.

1.4.2. The Case for Covalent Inhibitors

The ABPP techniques previously discussed are optimal for identifying and discovering new covalent inhibitors. In addition, discovery of new ABP warheads introduce the possibility of generating new covalent pharmacophores for drug development⁶⁹. While not nearly as common as their non-covalent counterparts, covalent inhibitors are receiving renewed interest²⁵. Covalent small molecule inhibitors will bind to a protein of interest based on affinity and modifies the protein. The FDA has approved 13 covalent inhibitors in the past decade to make 32 total approved covalent inhibitors^{45,70}. The covalent modification can be reversible or irreversible, but an irreversible covalent inhibitor will inhibit the protein until it is turned over by the cell²⁵. This increased inhibition time may lower the effective dosage needed to get the response desire, depending on the rate of turnover of the target in the cell. In addition, the inhibitor does not need to directly compete with a substrate to influence activity on the protein as the addition of a properly positioned adduct could destabilize the protein or allosterically modulate the proteins activity^{25,71}. This has the potential to provide new inhibitor modalities and lowering needed dose.

A covalent inhibitor once it has modified a protein cannot be used again so while it may not need the affinity to compete out an endogenous substrate it does need the specificity to ensure it is delivered to its target⁷². This can be aided using liposomal delivery systems or through understanding the mechanics of a covalent pharmacophore to decrease its reactivity to forcibly rely on affinity to provide sufficient residence time for a covalent reaction^{72,73}. The covalent molecule also has the possibility of producing increased toxicity as many inhibitors feature a leaving group generated as by product of a substitution reaction⁷⁴. The only way to address this concern is understand the toxicity of covalent inhibitor leaving groups. These concerns however have not kept irreversible covalent inhibitors from seeing use in the clinic⁷⁰.

In cancer, carfilzomib is a second generation proteosome inhibitor with highly specific irreversible covalent modification of a catalytic threonine on 20S subunit^{70,75}. The proteosome degrades unfolded an ubiquitinated proteins and if inhibited these species accumulate and lead the death of fast dividing cells⁷⁵. Epithelial growth factor receptor (EGFR) is a receptor tyrosine kinase that regulates cell growth and is frequently mutated in lung and breast cancer⁷⁶. Currently there are four FDA approved drugs that irreversibly modify this protein (Afatinib, Dacomitinib, Neratinib, and Osimertinib)⁷⁰. Burton's tyrosine kinase is a non-receptor tyrosine kinase important in the proliferation of lymphomas and currently has three FDA approved covalent irreversible inhibitors (Acalabrutinib, Ibrutinib, and Zanubrutinib)⁷⁰.

The K-Ras G12C has long been considered a primary target in various cancers has been historically difficult to drug⁷⁷. It functions through binding to key kinases when bound to guanosine triphosphate (GTP) activating them and this signal is removed by hydrolysis of the GTP to guanosine diphospohate (GDP). The G12C mutation increase the time K- Ras is bound to GTP and increases binding to downstream kinases⁷⁷. Sotorasib (AMG510) is a recent FDA approved irreversible covalent inhibitors that locks the protein in a GDP bound state^{78,79}. It does this by binding to a cryptic grove on K-Ras and does not compete with GTP or GDP for the catalytic site⁷⁸. This inhibitor serves as a good example of a new modality for targeting a difficult protein using a non-competitive covalent inhibitor.

Covalent molecules also provide solutions to the rise of acquired bacterial antibiotic resistance. The β -lactam class of antibiotics inhibit penicillin binding proteins (PBPs) and prevent the final step to the creation of the bacterial cell wall⁸⁰. The most common resistance mechanism is the production of β -lactamase which metabolizes the β -lactam ring in the antibiotic. Avabactum inhibits the β -lactamase through a covalent mechanism and can be used to restore the efficiency of the β -lactam⁸⁰.

1.5 Sulfur-Fluoride Exchange (SuFEx) Chemistry

A promising new warhead for the development of ABPs and inhibitors, the Sulfur (VI) fluoride exchange (SuFEx) chemistry powered warhead has been shown to react with tyrosine, lysine, threonine and serine^{81–84}. The sulfonyl fluorides are very stable in biological systems given their resistance to reduction and thermostability when compared to other sulfur-halide bonds⁸¹. In addition, the sulfonyl-fluoride core needs to be stabilized in order to react, meaning it will not react without a microenvironment suitable for the substitution reaction. Important for use with site-specific mass spectrometry, it does not have side-reactions meaning it will form a single adduct on these unique amino acids⁸¹. This dramatically narrows the possible changes in m/z on a probe modified peptide making

the resulting precursor ion predictable.

Based on these features SuFEx ABPs are already being used to study reactivity of previously difficult to assay amino acids such as tyrosine. Using XO-44, a kinase specific inhibitor, as directing agent SuFEx ABPs have been able to profile kinases in live cells⁸⁵. Competitive ABPP experiments using the XO-44 enabled live cell profiling of dasatinib kinase targets.

SuFEx is poised to be a new warhead for accessing previously undrugged targets since they can react with serine, threonine and tyrosine and can be directed to a collection of targets^{81–83,85}. Though they are unlikely to be the scaffold for the creation of new covalent inhibitors as it features a fluoride that is toxic to cells as discussed in section 1.4.3⁷⁴. This chemistry is a key component to the development of SuTEx molecules discussed in Chapter 3.

1.6 Computational Strategies for ABPP

Computational tools for ABPP are usually taken from tools initially designed for other proteomics applications. Skyline a key component for the analysis throughout this this dissertation is designed for targeted proteomics but boasts features useful in quality control and ion quantification⁸⁶. The major place where computational techniques needed are in an ABPP workflow peptide identification, quantification of peptide or proteins abundance, target prioritization and identifying new bioactive covalent molecules.

As previously mentioned, a database search algorithm is a key step in most proteomics analysis pipeline (section 1.1.3)^{15,16}. When performing analysis of digested

peptides in a ABPP experiments the use of a basic search algorithm like SEQUEST is appropriate as the sample includes several tryptic peptides form the same protein¹¹. This is not the case with site-specific ABPP as the identity of site is dependent on one to three peptides for identification. The same is true when dealing with PTMs and they can be identified with a standard search, but dedicated PTM search algorithms have been shown to outperform standard searches in both accuracy and coverage⁸⁷. In addition, the use of synthetic standards databases enables direct comparisons to spectra belonging to the PTMed peptide of interest⁸⁸. Another tool can use the MS1 spectra to develop custom databases of peptide elution time and precursor ion features that when compared to new analysis increase confidence in peptide spectra matches⁸⁹. The same approaches could be applied to probe modified peptide spectra.

There are few computational tools dedicated to prioritizing of targets from ABPP experiments and even fewer take advantage of site-specific nature of ABPs. One recent example integrates genetic pathogenicity scores with combined annotation dependent depletion (CADD) scoring to prioritize targets from ABPP experiments⁹⁰. A common technique for prioritizing of targets and characterizing ABPs is the use of gene ontology enrichment analysis^{27,29,91}. This identifies over or underrepresented molecular function, cellular compartment or biological process annotations among the targets identified but this technique is primarily built around changes in mRNA sequence levels. The third technique usually involves interaction mapping of targets to find proteins that are central to a system or connected to important proteins or metabolites⁹².

Virtual screening has been used to identify new covalent molecules through

covalent docking screening. These work by simulating the binding of a ligand to a 3D protein structure and compare the lowest energy conformations acquired. This approach can be facilitated by dedicated covalent docking programs. As an example, DOCKTITE identifies electrophilic warheads and docks the compounds with a focus on the electrophilic warhead and nucleophilic side chain interaction⁹³. This technique was used to identify an irreversible inhibitor for FMS-like Tyrosine Kinase 3 (FLT3)⁹⁴. AutoDock assigns the region near the site of attachment as gaussian well for the atom on the ligand that forms the covalent bond. This technique is used in Chapter 4 for ligand screening⁹⁵. These approaches require that the site of modification be known which as discussed can be identified with ABPP.

1.7 Challenges in ABP Development

The development of new ABPs depends on mass spectrometry and computational tools to identify the targets of the probe. Current techniques vary among groups using these techniques and most approaches only use proteins identification information. Most techniques are built for the analysis of mRNA-seq or total protein mass spectrometry analysis techniques. Several of the methods discussed in Section 1.3 identify the amino acid modified and depending on traditional analysis approaches neglects the additional information in the identification and prioritization of protein targets. Combined the computational techniques used for ABP-MS experiments vary across the field, limit their utility and do not take full advantage of the information is the resulting spectral datasets. The work presented in this thesis provide ways to address these limitations.

In Chapter 2, a toolkit was developed to integrate quality control metrics as well as handle challenging singlets generated by complete competition in ABPP studies. Chapter 3 includes software to identify the specific amino acid modified, enables quantification of specific sites and introduces tools that uses domain annotation to analyze site. In addition, this Chapter introduces a first in class tyrosine selective broad probe for use with proteome profiling. Chapter 4 combines all this work to create a reproducible platform for the analysis of known and novel probes. Further, this Chapter introduces a number of analysis techniques that use more information gained form site-specific mass spectrometry and uses the technique to perform competitive ABPP guided docking. The work presented aim to advance ABPP through the generation of new computational tools as well as new ABPs.

Chapter 2: Chemoproteomic Discovery of a Ritanserin-Targeted Kinase Network Mediating Apoptotic Cell Death of Lung Tumor Cells

Adapted from: Sean T. Campbell[‡], Caroline E. Franks[‡], Adam L. Borne[‡], Myungsun Shin, Liuzhi Zhang, and Ku-Lung Hsu. Molecular Pharmacology 94, 1246-1255 (2018). [‡] These authors contributed equally.

2.1 Abstract

Ritanserin was tested in the clinic as a serotonin receptor inverse agonist but recently emerged as a novel kinase inhibitor with potential applications in cancer. Here, we discovered that ritanserin induced apoptotic cell death of non-small cell and small cell lung cancer (NSCLC, SCLC) cells via a serotonin-independent mechanism. We used quantitative chemical proteomics to reveal a ritanserin-dependent kinase network that includes key mediators of lipid (DGKa, PI4KB) and protein signaling (FER, RAF), metabolism (EF2K, E2AK4), and DNA damage response (TLK2) to broadly kill lung tumor cell types. While ritanserin exhibits polypharmacology in NSCLC proteomes, this compound shows unexpected specificity for c-RAF in the SCLC subtype with negligible activity against other kinases mediating MAPK signaling. We show ritanserin blocks c-RAF but not B-RAF activation of established oncogenic signaling pathways in live cells, providing evidence in support of c-RAF as a key target mediating its anticancer activity. Given the role of c-RAF activation in RAS-mutated cancers resistant to clinical B-RAF inhibitors, our findings may have implications in overcoming resistance mechanisms associated with c-RAF biology. The unique target landscape, combined with acceptable safety profiles in humans, provides new opportunities for repositioning ritanserin in cancer.

2.2 Introduction

Ritanserin is a serotonin (5-hydroxytryptamine, 5-HT) receptor inverse agonist with specificity for the 5-HT2 subtype⁹⁶. As a drug candidate, ritanserin was tested for treatment of several neuropsychiatric disorders but never received approval for clinical use⁹⁷. The oral bioavailability and lack of adverse side effects in humans have since prompted studies to explore ritanserin for clinical applications beyond serotonin signaling⁹⁸. Comparison of ritanserin with existing lipid kinase inhibitors revealed structural similarities that led to its discovery as an inhibitor of diacylglycerol kinase-alpha $(DGK\alpha)^{98,99}$ (Figure 2.1.a). We recently used quantitative chemical proteomics to discover ritanserin as an active-site inhibitor of DGKα and the non-receptor tyrosine protein kinase FER^{36,100}. While distinct in substrate preference, DGK α^{101} and FER¹⁰²are kinases related by their role in coupling receptor activation with intracellular signaling important for cell survival and proliferation. Thus, ritanserin is capable of perturbing cellular signaling through serotonin-independent mechanisms. We and others have proposed that ritanserin may have potential applications in oncology by disrupting regulatory pathways through its largely unexplored action against the kinase superfamily.

In this study, we set out to define the target spectrum of ritanserin in order to better understand its mode of action in tumor cells. Previous reports demonstrated that ritanserin is cytotoxic against glioblastoma and melanoma through putative downstream targets of DGK α including mTOR¹⁰³, HIF-1a¹⁰³, and GGTase I¹⁰⁴. We hypothesize that ritanserin's cellular activity is mediated through blockade of kinase networks to explain its broad action against diverse tumor cell types. An advantage of multi-targeted strategies is to minimize the potential for development of resistance mechanisms⁶⁸. We conducted cell viability assays to determine the impact of ritanserin treatments on survival of different lung cancer subtypes. We used quantitative chemoproteomics to determine the kinase targets of ritanserin in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) proteomes. Our findings reveal that ritanserin shows novel activity against c-RAF in SCLC proteomes. The lack of activity against other kinases involved in MAPK signaling suggests that ritanserin mediates its cellular activity in SCLC cells at least in part through blockade of c-RAF.

2.3 Materials and Methods

Materials. pDONR223-DGKK was a gift from William Hahn & David Root (Addgene plasmid # 23487). pCSF107mT-GATEWAY-3'-FLAG was a gift from Todd Stukenberg (Addgene plasmid # 67619). pCSF107mT-DGKK-FLAG construct was generated by recombination of the Addgene plasmids using the Gateway cloning system (Invitrogen). Desthiobiotin ATP acyl phosphate nucleotide probe was obtained from ThermoFisher Scientific (PI88311). Ritanserin and ketanserin tartrate were purchased from Tocris Bioscience. WST-1 reagent kits were purchased from Cayman Chemical. Trypan Blue was purchased from ThermoFisher Scientific. CaspaseGlo Assay kits were purchased from Promega. PMA was purchased from Cayman Chemicals.

WST-1 Cell Proliferation Assays. Tumor cells were plated in transparent tissue-culture treated 96-well plates at a density of 100,000 cells/mL (A549, H1650) or 200,000 cells/mL

(H82) in a volume of 100 μ L per well. Cells were treated with dimethyl sulfoxide (DMSO) vehicle or inhibitors dissolved in DMSO at the indicated concentrations (final DMSO concentration of 0.5%). Cells were allowed to grow for indicated times at 37 °C under 5% CO2, equal parts of WST-1 developer reagent and electron mediator solution were mixed, and 10 μ L of the resulting solution ('WST-1 reagent') were added to each well. Plates were shaken in an orbital shaker for 60 s and then returned to the incubator for two hrs. Plates were again shaken followed measurement of absorbance at 450 nm. Data were normalized to DMSO- treated wells and significance values determined with one-way ANOVA.

Cell Counts. Tumor cells were plated in 60 mm plates at a density of 100,000 cells/mL (A549, H1650) or 200,000 cells/mL (H82) at a volume of 3.5 mL/plate. Cells were treated with inhibitors at the indicated concentrations (final DMSO concentration of 0.5%) for 48 hrs at 37 °C, adherent cells were washed and detached with trypsin, and all cells were collected and concentrated by spinning at 400 x g for 3 min followed by aspiration of media. Cells were resuspended in 10 nM Trypan Blue and 10 μ L of this solution was counted via a hemocytometer. Dead cells were excluded from all counts. Data were normalized to DMSO-treated wells and significance values determined with one-way ANOVA.

Caspase Glo Assays. Assays were performed as directed by the manufacturer (Promega). Briefly, tumor cells were plated in black tissue culture treated transparent-bottom 96 well plates at a density of 200,000 cells/mL (A549, H1650) or 400,000 cells/mL (H82) in a

volume of 50 μ L/well. Cells were treated with inhibitors at the indicated concentrations (final DMSO oncentration of 0.5%) for 24 hrs. Afterwards, 50 μ L of the prepared CaspaseGlo reagent was added to each well. The reaction was allowed to proceed for 1 hr, at which point the cells were shaken in an orbital shaker at 500 rpm for 60 s and then luminescence was read for each well. Data were normalized to DMSO-treated wells and significance values determined with one-way ANOVA.

Sample preparation for quantitative LC-MS analysis using ATP acyl phosphates. Proteomes were diluted to 2 mg/mL in kinase buffer. The light and heavy proteomes (0.5 mg, 250 µL total reaction volume) were pre-treated with vehicle or compound, respectively (5 µL, DMSO (light) or 50X stock in DMSO (heavy)), mixed gently, and incubated at 25 °C for 30 min. Desthiobiotin ATP acyl phosphate nucleotide probe (0.5 mM in ddH2O) was then added to each sample (5 μ L, 10 μ M final), mixed gently, and allowed to incubate at 25 °C for 30 min. After incubation, matched light and heavy proteomes were transferred and mixed in a 1:1 ratio in a two-dram vial containing 4:1:3 MeOH/CHCl3/H2O (2 mL MeOH, 500 µL CHCl3, 1.5 mL H2O) for extraction of proteins to remove excess probe, quickly vortexed, and centrifuged at 1,400 x g for 3 min to pellet protein. Organic and aqueous layers were removed using a Pasteur pipette, and the protein pellet was transferred to a screw-top tube in 600 µL MeOH. A second extraction was performed by adding CHCl3 (150 μ L) and H2O (600 μ L) to each sample, vortexed, and centrifuged at 1,400 x g for 3 min to pellet protein. Organic and aqueous layers were removed by pipetting, MeOH added to pellet (600 μ L) and pellets were re-suspended by sonication (3 x 1 sec pulse, 20%)

amplitude) for a final extraction. Samples were then centrifuged at $17,000 \times g$ for 5 min to pellet protein and MeOH was removed by pipetting. The pellets were re-suspended in 10 M urea/25 mM ammonium bicarbonate (500 mL), brought to a final volume of 1 mL with 25 mM ammonium bicarbonate, reduced with 10 mM DTT for 15 min at 65 °C, allowed to cool, and then alkylated with 40 mM iodoacetamide for 30 min at 25°C in the dark. To desalt the samples, each was transferred to a two-dram glass vial, and to the vial 4:1:2 MeOH/CHCl3/H2O (2 mL MeOH, 500 µL CHCl3, 1 mL H2O) was added. The vials were vortexed quickly, spun at 1,400 x g for 3 min to pellet protein, and aqueous and organic layers were removed using a Pasteur pipette. The resulting protein pellet was transferred to a screw-top tube in 600 µL MeOH, and then CHCl3 (150 µL) and H2O (600 µL) were added to extract protein a second time. The samples were vortexed quickly, centrifuged at 1,400 x g to pellet protein, and the aqueous and organic layers were removed by pipetting. Resulting protein pellet was suspended in MeOH (600 µL) via sonication (3 x 1 sec pulse, 20% amplitude), centrifuged at 17,000 x g for 5 min to pellet protein, and MeOH removed by pipetting. Protein pellets were then re-suspended in 25 mM ammonium bicarbonate (500 μ L) and digested with 7.5 μ g Trypsin/Lys-C (Promega, 15 μ L, 0.5 μ g/ μ L) for 3 h at 37 °C. Avidin-agarose beads (Thermo Scientific Pierce, 100 µL aliquot per sample) were washed three times by adding 10 mL DPBS, centrifuged at 1,400 x g for 1 min, and decanting. This wash step was repeated for a total of 3 times. Digested protein samples were mixed with washed avidin beads (100 μ L) and brought to a volume of 5.5 mL with DPBS in a 15 mL conical and rotated for 1 h to enrich samples for the covalent desthiobiotin modification. The beads were washed with 25 mM ammonium bicarbonate
(3X with 10 mL, centrifuge at 1,400 x g for 3 min, decant) and then H2O (3X with 10 mL, centrifuge at 1,400 x g for 3 min, decant). Washed beads were then transferred to a lowbind microfuge tube, centrifuged at 1,400 x g for 3 min, allowed to rest for 1 min to settle beads, and then excess H2O was removed carefully using a gel-loading pipette tip. To elute peptides, 100 μ L of elution buffer (50% acetonitrile, ACN; 0.1% formic acid) was added to each sample and incubated for 3 min. Beads were spun down at 1,400 x g for 3 min, allowed to rest for 1 min to settle beads, and then 75 μ L of peptide-containing supernatant was removed carefully using a gel-loading pipette tip and transferred to a new low bind centrifuge tube. This step was repeated two more times with 75 μ L of elution buffer and all eluent were collected into the same centrifuge tube (~225 μ L total). Peptides were dried on a speed vacuum, resulting peptide samples acidified in 5% (v/v) formic acid, and stored at -80 °C until analysis.

LC-MS/MS analysis of SILAC samples. The peptide samples were analyzed by liquid chromatography-mass spectrometry. An integrated autosampler-LC (Ultimate 3000 RSLC nanoSystem, Dionex) was used to load the peptides onto a trap column (Nano- Trap, Thermo Scientific, 2 cm, 5 μ m C18) and washed for 2 minutes with 1% B (80% ACN, 1% formic acid). The peptides were eluted from the trap column and through a homemade nanocapillary analytical column (20 cm, 5 μ m C18 packed in 360 μ m o.d. x 75 μ m i.d. fused silica), with an integrated electrospray tip, using a 180 min 1-95% reverse-phase LC gradient (A: 0.1% formic acid; B: 80% ACN, 0.1% formic acid) with the following parameters: 0-2 min 1% B, 400 nL/min; 2-144 min to 95% B, 300 nL/min; 144.1-180 min

1% B, 400 nL/min. The eluting peptides were electrosprayed into an Orbitrap Q Exactive Plus mass spectrometer (Thermo Scientific), which was operated with a top 10 datadependent acquisition method that consisted of one full MS1 scan (375 - 1,500 m/z) followed by 10 MS2 scans of the most abundant ions recorded in the MS1 scan. Data analysis was accomplished using the IP2 (Integrated Proteomics Applications) software package, in which RawConverter was used to generate searchable MS1 and MS2 data from the .raw file followed by using the ProLuCID algorithm (publicly available at http://fields.scripps.edu/downloads.php) to search the data against a modified human protein database (UniProt human protein databaseangiotensin I and vasoactive intestinal peptide standards; 40,660 proteins) with the following parameters: static carbamidomethyl modification of cysteine (+57.0142 Da), differential modifications of oxidized methionine (+15.9949 Da) and desthiobiotin- labeled lysine residues (+196.1212 Da), added masses of the SILAC "heavy"-labeled amino acids (+10.0083 Da for R, +8.0142 Da for K), and trypsin enzyme specificity with 2 missed cleavages. The resulting MS2 spectra matches were assembled into protein identifications and filtered using DTASelect 2.0 using the -mass, --modstat, and --trypstat options with a 1% peptide FDR. mzIdent files corresponding to searches were generated in IP2-Integrated Proteomics Pipeline, mzXML spectra data was extracted from the raw file using RawConverter and uploaded into Skyline-daily¹⁰⁵ to determine SILAC ratios (SR) of light/heavy (vehicle/compound treated) peptides. Peptides used for analysis were assessed for quality in Skyline by the following criteria: isotope dot-product (iDOTP) ≥ 0.8 , ratio dot-product (rDOTP) ≥ 0.8 , and singletons defined by L/H ratios > 20 were set to 20. Dot-product values are measures of similarity between the precursor peak area and expected isotope distribution (iDOTP) and between the light and heavy peak area (rDOTP) as calculated in Skyline and described by Schilling et al¹⁰⁴. Probe-modified peptides that met these criteria were manually inspected and integrated. Peptide ratios reported were normalized to DMSO/DMSO peptide ratios to account for potential variations in mixing and sample preparations.

Transient Transfection. Recombinant B-RAF and c-RAF proteins were produced by transient transfection of HEK293T cells. HEK293T cells were plated at a concentration of 1 x 10^6 cells per 10 cm plate and grown to ~70% confluence. A polyethyleneimine (PEI) stock solution was prepared (1mg/mL, pH 7.4) and filter sterilized. Serum-free DMEM (600 µL) was mixed gently with 2.6 µg DNA and 20 µL of sterile PEI (1 mg/mL, pH 7.4) in a sterile microfuge tube. Mixtures were incubated for 30 min at 25 °C. The mixture was then added drop-wise to each 10 cm plate, rocked back and forth to mix, and placed back in the incubator. Cell pellets were harvested after two full days of growth, snap- frozen in liquid N2, and stored at -80°C until use. c-RAF plasmid (pCSF107mT-cRAF-FLAG) was generated by recombination of the Addgene plasmids using the Gateway cloning system (Invitrogen).

Phospho-MEK assay of RAF activity. Recombinant RAF- HEK293T cells were pretreated with DMSO vehicle or inhibitors at the indicated concentrations for 1 hr, followed by addition of PMA (20 ng/mL) for an additional 20 min at 37 °C. Cells were harvested for western blots and phospho-MEK detected using rabbit anti-phospho-MEK

antibody (S217/S221; Cell Signaling Technology) followed by goat anti-rabbit Dylight 550 secondary antibody (Thermo Scientific) for fluorescence detection. Western blot measurement of MEK (rabbit anti-MEK1/2, Cell Signaling Technology) was included to evaluate protein loading between samples.

Computational Methods. Data for A549 and H82 cell lines were searched with IP2 and manually validated using the methods previously described (Chapter 2.3). Data for desthiobiotin-tagged ATP acyl-phosphate probes and ATP competitive peptides were compared and clustered. Ritanserin and ketanserin inhibition profiles were compared using SILAC ratios and normalized to DMSO. The kinase profiles were displayed as a heatmap and clustered with hierarchical clustering using R package d3heatmaps (https://blog.rstudio.org/2015/06/24/d3heatmap/).

Lipid kinase phylogenetic tree. Phylogenetic tree of human lipid kinases was generated using MUSCLE multiple sequence alignment¹⁰⁶ of annotated lipid kinases and a least squared distance method for determining evolutionary distance. Calculations were conducted using the EMBOSS software suite¹⁰⁷.

Statistical analysis and determination of IC50 values. For all cell viability measurements, results were normalized to values obtained from DMSO treated cells. For CaspaseGlo assays, raw luminescence values are reported. All significance values for Cell Viability and CaspaseGlo assays were calculated with one-way ANOVA and Dunnett's

multiple comparison test (post-hoc analysis). IC50 values were calculated using a fourparameter logistic model of the response curve. All data are shown as mean + S.E.M. All statistical analyses were performed using GraphPad Prism.

2.4 Results

2.4.1. Ritanserin Shows Serotonin-Independent Cytotoxic Activity in Lung Tumor Cells

We chose H1650 and A549 as our non-small cell lung cancer (NSCLC) cell models to evaluate sensitivity of cells with different genetic backgrounds to ritanserin exposure. H1650 cells express EGFR receptors containing activating mutations in the kinase domain (exon 19 deletion E746-A750) of this receptor tyrosine kinase. A549 cells express wildtype EGFR but harbor mutant KRAS (G12S). We also included H82 cells in our studies to evaluate ritanserin activity in small cell lung cancer (SCLC). The mutational backgrounds of cell lines used in this study are listed in Table 4.1. Ketanserin (Boroda et al., 2017; Franks et al., 2017) was used alongside ritanserin to control for potential 5-H2 receptor (5-HTR) inverse agonist activity and other nonspecific pharmacological effects in our cell biology (Fig. 2.1.a).

Cells were treated with varying ritanserin concentrations (5 – 50 μ M) and cell viability measured using established WST-1 metabolic assays¹⁰⁸. We observed concentration-dependent decreases in viability in cells exposed to ritanserin but not ketanserin treatments (Fig. 2.1.b and 2.2.a). At a moderate concentration of ritanserin (25 μ M), we observed >70% blockade of cell proliferation across all NSCLC and SCLC lines tested (Fig. 2.1.a). At lower concentrations (5 μ M), ritanserin showed enhanced

cytotoxicity against the SCLC H82 (~50% cell death) cells compared with NSCLC cells (~5-15% cell death for A549 and H1650 cells, Fig 2.1.b). Cell killing with ritanserin was rapid with >50% of cell death occurring after 1 day and near-maximal cytotoxicity after 2 days of treatment in all cell lines tested (25μ M dose, Fig. 2.1.c). The lack of activity using ketanserin under the same treatment conditions supports a serotonin- independent mechanism of cytotoxicity for ritanserin (Fig. 2.1.b and c, Fig. 2.1.a). In contrast to the pan-kinase inhibitor staurosporine, which showed general cytotoxicity across all cells tested (Fig. 2.1.c and 2.2.b), ritanserin demonstrated negligible cell killing against noncancerous primary cells at high concentrations (25μ M, Figure 4.2B).

We performed a separate cell biology assay comparing the effects of serotonin, ritanserin and ketanserin treatments on global protein kinase-C (PKC) and -A (PKA) activity in A549 and H82 cells (Fig. 2.3.a). PKC and PKA are downstream mediators of serotonin receptors (5-HTR) and global changes in substrate phosphorylation profiles of either enzyme would allow evaluation of compound activity on 5-HTR signaling. We observed negligible changes in PKC and PKA substrate phosphorylation between cell treatment conditions (serotonin, 10 μ M; ritanserin and ketanserin, 25 μ M; Fig. 2.2.b). In contrast, treatment with PMA, a known PKC activator, resulted in moderate increases in PKC substrate phosphorylation, which matches previous reports using this same assay⁹⁹. The consistent lack of 5-HTR activity with equivalent doses of ritanserin and ketanserin further supports that ritanserin effects observed in cellular assays are serotonin independent. Collectively, our results show that ritanserin is not generally cytotoxic but displays potent cell killing of NSCLC and SCLC cells tested.

2.4.2. Ritanserin Activates Apoptotic Cell Death of Broad Lung Tumor Cell Types

Since changes in cell metabolism can occur from non-lethal perturbations¹⁰⁸, we also used live cell counts to further support cytotoxicity of lung cancer cells using ritanserin. Akin to results from cell viability assays, we observed substantial cell killing across all lung cancer cell lines exposed to ritanserin but not ketanserin (Fig. 2.4.a). We observed potent cell killing ($\sim 70\%$) even at the lower dose tested (10 μ M, Fig. 2.4.a). Next, we measured caspase activity in treated cells to determine whether ritanserin mediates cell killing through activation of apoptosis. Cells treated with ritanserin showed statistically significant (P < 0.05) enhanced caspase 3/7 activity after 24 hours compared with vehicle controls (Fig. 2.4.b). Caspase activation by ritanserin was specific because ketanserin treatments under the same experimental conditions did not induce these effects (Fig. 2.4.b). We compared ritanserin effects directly with staurosporine, which served as a positive control based on previous reports of activating apoptosis in treated lung cancer cells^{109,110}. In both H1650 and H82 cells, we observed comparable activation of caspase 3/7 activity compared with staurosporine (Fig. 2.4.b). While ritanserin treatment of A549 cells resulted in a lower degree of activation, the increase in caspase 3/7 activity was statistically significant compared with vehicle treated cells (P = 0.01, Figure 2.4.b). In summary, our cell viability and caspase activation data support ritanserin-mediated activation of apoptotic cell death in lung cancer cells that differ in mutation status (EGFR, KRAS) and subtype (NSCLC vs SCLC).

2.4.3. Chemoproteomic Kinome Profiling of Ritanserin Action in Lung Tumor Cell Proteomes

Based on previous chemical proteomic analyses 36,100 , we hypothesized that ritanserin is functioning as a kinase inhibitor to mediate cytotoxicity in our lung cancer cell studies. Since A549 and H1650 displayed similar sensitivities to ritanserin in our cell viability assays, we selected A549 and H82 for chemical proteomic evaluation of ritanserin targets in NSCLC and SCLC proteomes, respectively. We used desthiobiotin- tagged, ATP acyl-phosphates^{24,111,112} to measure selectivity of compounds against native kinases detected in lung cancer proteomes. ATP acyl-phosphate probes permit global profiling of kinase activities by covalent attachment of reporter tags to conserved lysines in the ATP binding site of protein/lipid kinases as well as other ATP-binding proteins^{24,36,100,111,112}. For these studies, NSCLC and SCLC cells were cultured in media containing isotopically light and heavy amino acids to enable quantitative chemical proteomics^{38,113,114} by stable isotope labeling with amino acids in cell culture (SILAC, Fig. 2.5). Light and heavy cell proteomes were treated with DMSO vehicle or compound, respectively, prior to addition of ATP acyl phosphate to label active site lysines. After probe labeling, light and heavy proteomes were combined, digested with trypsin protease, and desthiobiotin-modified peptides enriched by avidin affinity chromatography and analyzed by LC-MS/MS to identify and quantify isotopically tagged active-site peptides from native kinases as previously described^{36,100} and depicted in Figure 4.5.

Using our quantitative chemical proteomics assay, we compared kinase activity profiles between A549 and H82 cell proteomes. Kinases included in our comparisons showed potent competition with free ATP (SILAC ratios (SR) > 5, Fig. 2.6.a). The latter criterion was important to distinguish specific probe binding at ATP-binding sites versus

non-specific labeling of surface lysines. We detected ~120 unique probe-modified peptides from ~110 distinct kinases. Using ATP competition profiles, we separated kinases into groups detected in both proteomes (shared) or detected in either A549 (NSCLC) or H82 samples (SCLC, Fig. 2.6.a). Specifically, we observed probe-dependent detection of several kinases (AKT1/2/3 and IKKA) in A549 proteomes that are associated with PI3K/AKT signaling¹¹⁵ (Fig. 2.6.a). These findings are consistent with enhanced PI3K/AKT signaling in NSCLC subtypes containing KRAS mutations¹¹⁶. Finally, we detected native DGKa activity in A549 proteomes (Figure 2.7 shows MS1 data for DGKa peptide), which may indicate a potential role for DAG and PA metabolism/signaling in these NSCLC cells. A similar analysis of SCLC kinase profiles revealed enrichment of kinases involved in RAF signaling (A-RAF, B-RAF, and c-RAF¹¹⁷ as well as DNA damage response (ATR, CHK2, PRKDC, and TLK2¹¹⁸; Fig. 2.6.a). These findings support previous reports that c-RAF is one of several proto-oncogenes that are highly expressed in SCLC cells and tumor tissues¹¹⁹. Collectively, our kinase profiling studies establish a global map of kinase activities detected in A549 and H82 proteomes, including discovery of kinases that appear enriched in NSCLC compared with SCLC subtypes.

2.4.4. Chemoproteomic Profiling Reveals c-RAF as a Principal Target of Ritanserin in SCLC Proteomes

Next, we used our competitive ATP probe assay to determine the kinase targets of ritanserin in A549 and H82 proteomes (Fig. 2.6.b). Ketanserin was included in our LC-MS studies to discern ritanserin-specific from general non-specific activity of 5-HTR inverse agonists against the kinome. We chose to test inhibitor concentrations (100 μ M)

10-fold higher than required for potent cell killing (10 μ M, Fig. 2.4.a) to account for potential shifts in potency of reversible inhibitors due to irreversible labeling kinetics of the ATP acyl phosphate probe¹¹¹. Kinase targets of ritanserin were defined as those active-site peptides that showed SILAC ratios > 4. As expected based on previous findings³⁶, we detected potent inhibition of FER and DGK α in A549 proteomes with ritanserin treatments (FER, SR = 9; DGK α , SR = 6; Figure 2.7). We identified an additional lipid kinase target, PI4KB in A549 proteomes, which is involved in modulating lipid-mediated PI3K/AKT signaling in tumor cells¹²⁰. In addition to signaling, ritanserin treatment perturbed kinases implicated in glycolysis (EF2K¹²¹), amino acid metabolism (E2AK4¹²²), and DNA damage response (TLK2¹²³).

In contrast to polypharmacology observed in A549 proteomes, we identified c-RAF as the primary target of ritanserin in H82 proteomes (Fig. 2.6.b and c; Fig. 2.8 shows MS1 and MS2 data for c-RAF peptide). Ketanserin treatments did not perturb activity of key kinases involved in metabolism and signaling (Fig. 2.6.c). Since c-RAF is a key regulator of the mitogen-activated protein kinase (MAPK) pathway, we also measured activity of ritanserin against other MAPK targets in H82 SCLC proteomes including B-RAF, MAPK (ERK1 and ERK2), and MAP2K (MEK1 and MEK2) kinases. We show that ritanserin shows selective perturbation of c-RAF compared with other MAPK mediators in H82 proteomes (Figure 2.9.a). Collectively, our findings reveal, for the first time, a ritanserin-targeted lipid/protein kinase network involved in signaling, metabolism, and stress responses that help explain its broad anti- proliferative activity in lung tumor cells. In addition, we demonstrate that ritanserin shows selective blockade of c-RAF when

compared with other MAPK kinases in H82 SCLC proteomes.

2.4.5. Ritanserin Block c-RAF But Not B-RAF Activation of MEK Signaling in Live Cells

Our chemoproteomic studies identified c-RAF as a potential target mediating ritanserin anti-tumor activity. Here, we sought to test whether ritanserin blocked c-RAF signaling pathways relevant for its anti-tumor activity. RAFs are part of the mitogen-activated protein kinase (MAPK) pathway involved in regulation of cellular responses to external signals^{124–126}. Growth factors and mitogens trigger activation of receptor tyrosine kinases (RTKs) that mediate guanosine triphosphate (GTP) loading of the RAS GTPase¹²⁷. GTP-loaded RAS activate RAFs (A-RAF, B-RAF, and c-RAF) via recruitment to the cell membrane. Activated RAFs phosphorylate and activate MEK (MEK1 and MEK2), which phosphorylates and activates ERK (ERK1 and ERK2) as part of a signaling cascade to modulate cell proliferation, differentiation, apoptosis, and migration in cancer¹²⁸.

To directly measure c-RAF-mediated MEK phosphorylation in live cells, we overexpressed recombinant c-RAF in HEK293T cells, activated cells with PMA¹²⁹, and measured the resulting levels of phosphorylated MEK1/2 (phospho-MEK) by western blots (Fig. 2.9.b). We also overexpressed recombinant B-RAF to directly compare specificity of ritanserin activity against the various RAF isoforms. Both c-RAF and B-RAF overexpression resulted in substantially enhanced phospho-MEK levels compared with non-overexpressed (mock) counterparts (Fig. 2.9.b). Pretreatment of cells with ritanserin (50 μ M) resulted in substantial blockade of recombinant c-RAF but not B-RAF signaling activity as judged by reductions in phospho-MEK levels (Fig. 2.9.b). Ketanserin did not

produce the same effects as ritanserin, which supports ritanserin-specific effects in our assay. The RAF inhibitor sorafenib¹³⁰ was used as a positive control to demonstrate blockade of both recombinant c- RAF- and B-RAF- mediated increases in phospho-MEK levels. Taken together, our results demonstrate ritanserin specifically blocks c-RAF activity in MAPK signaling pathways known to be important for tumor cell biology¹²⁸.

2.5 Discussion

Here, we provide evidence that ritanserin functions as a lipid and protein kinase inhibitor with broad action against diverse lung cancer types that is serotonin- independent. Using quantitative chemical proteomics, we discovered that ritanserin targets a kinase network in A549 proteomes (Fig. 2.6.b), which suggests polypharmacology as a likely mode of action in A549 and potentially other NSCLC cells (including H1650). Despite promiscuous activity in the kinome, ritanserin was not cytotoxic in noncancerous primary cells (Fig. 2.2.b), which is likely due to differences in cell metabolism and signaling between tumor and noncancerous cells as previously reported for ritanserin in glioblastoma¹⁰³; further investigations are needed to determine whether ritanserin can specifically kill lung tumor cells in vivo.

A surprising finding from our studies was the identification of c-RAF as the primary target for ritanserin in H82 SCLC proteomes (Fig. 2.6 and 2.9). Recent studies demonstrated that loss of c-RAF activity resulted in tumor regression of aggressive K- RAS driven cancers with reduced systemic toxicity because canonical MAPK signaling is unaffected¹¹⁷. Our chemoproteomic (Fig. 2.6) and cell biology (Fig. 2.9) studies show

ritanserin specificity for blockade of c-RAF versus B-RAF activity. Thus, our findings position ritanserin as a novel scaffold for future medicinal chemistry efforts to develop potent and selective c-RAF inhibitors. The utility of targeting c-RAF in the clinic extends beyond studies of lung cancers. For example, clinical efficacy of B-RAF inhibitors in RAS-mutated cancers is limited by resistance through paradoxical activation (164-166). Drugs that selectively block B-RAF drive B-RAF binding to c-RAF in a RAS dependent manner, c-RAF activation, and consequent elevations in MEK and ERK signaling. Future studies are needed to determine whether ritanserin can be used to overcome resistance mechanisms associated with c- RAF activation.

We recognize our selectivity profiling studies have been performed in lysates and development of new activity-based probes for live cell profiling will be critical to fully understand the mechanism of action of ritanserin in future studies. Nonetheless, we identify a novel anticancer activity for ritanserin along with clinically relevant kinase targets like c-RAF that, coupled with its safety profiles in humans, should prove valuable for potential drug repurposing in cancer.

2.6 Author Contributions and Pipeline Development

Campbell, Franks, Borne and Hsu designed, conducted, performed data analysis and wrote components of the resulting paper. The cell viability experiments were conducted by Campbell, kinome profiling experiments were conducted by Franks and Borne, and western blot assays were conducted by Borne and Campbell. See figure legends for more details. This early version of ABPP computational analysis was a R shiny application developed to analyze the sites of modification. After searching with IP2 software the results were quantified using skyline, which also provided idotp and rdotp information. The application integrated the byonic and skyline information to identify sites of modification. The ATP and inhibitor competition studies created situation where peptides had not signal from the heavy lysate producing singlets. These singlets require further investigation as they can be the result of improper peak picking by skyline or a bad PSM. The software would initially cluster hierarchically all non-singlet data and provide a selectable list of singlets identified in the study. This enabled the user to verify the singlet and integrate the site into the heatmap.

Additionally, the R shiny application included quality control (QC) comparisons between replicates. This enabled the identification of experimental errors created preparing the lysate for and the acquisition of MS data. These QC included correlation plot of SR across different replicates, boxplots of site SRs for single sites, and a boxplot of DMSO treated lysates. These tools combined with the heatmap generation comprised the earliest version of the computational pipeline known as HsuLabAnalysis.

2.7 Tables and Figures

Figure 2.1. Ritanserin shows cytotoxic activity in lung tumor cells. (A) Ritanserin is a 5-HT2 receptor (5-HT2R) inverse agonist with known activity against lipid (DGK α) and protein (FER) kinases. Ketanserin is a 5-HT2 R inverse agonist that lacks DGK α /FER inhibitory activity and serves as a negative control. (B) Cell viability dose-response curves for NSCLC (A549, H1650) and SCLC (H82) tumor cells treated with ritanserin or ketanserin at the indicated concentrations for 2 days. (C) Time course of cell viability in tumor cells treated with 25 μ M ritanserin, 25 μ M ketanserin, or 1 μ M staurosporine for 4 days. Staurosporine is a pan-kinase inhibitor and included as a positive control of tumor cell death. All experiments were performed in triplicate and data are from two independent

biological replicates performed on separate days (n = 6). Statistical significance was calculated with respect to ketanserin treatment. Data are shown as mean + S.E.M. *P \leq 0.05, **P \leq 0.01, *** P \leq .001, and ****P \leq 0.0001. Work conducted by Campbell.

Figure 2.2. Ritanserin activity in lung tumor cells. (A) Lung cancer cell viability (%) at 1 and 4 days after treatment with compounds at the indicated concentrations as determined by the WST-1 metabolic assay. (B) Time course of cell metabolic activity (WST-1 assay) of primary bone marrow derived macrophages (BMDMs) treated with 1 μ M staurosporine, 25 μ M ritanserin, or 25 μ M ketanserin. All experiments were performed in triplicate and

data are from two independent biological replicates performed on separate days (n = 6). Statistical significance was determined by comparison with ketanserin treatment (negative control) at the same concentration and treatment time. Cell viability shown is normalized to vehicle treated samples. Data are shown as mean +

S.E.M. * $P \le 0.05$, ** $P \le 0.01$, *** $P \le .001$, and **** $P \le 0.0001$. Work conducted by Campbell.

Figure 2.3. Ritanserin and ketanserin show negligible effects on 5-HTR signaling. (A) Schematic showing G-protein coupled receptor (GPCR) 5-HTR signaling. Activation of different members of the 5- HTR family leads to activation of Gq or Gs/i G-proteins, resulting in enhanced phospholipase C (PLC)- mediated diacylglycerol (DAG) activity or

changes in adenylate cyclase-mediated cyclic adenosine monophosphate (cAMP) signaling, respectively. DAG and cAMP activate protein kinase-C (PKC) or -A (PKA), respectively, and their activity (as measured by substrate phosphorylation) can be used to monitor potential 5-HTR signaling activity. (B) A549 or H82 cells were treated with DMSO vehicle, PMA (100 ng/ μ L), serotonin (Sero, 10 μ M), ritanserin (Rit, 25 μ M), or ketanserin (Ket, 25 μ M) to determine effects of each compound on global PKC and PKA activity. We observed negligible changes in 5-HTR signaling activity across all conditions tested, except for a mild increase in PKC substrate phosphorylation using PMA as expected (PKC activator; positive control). Protein kinase substrate phosphorylation assays were performed as previously described⁹⁹. Work conducted by Borne.

Figure 2.4. Ritanserin treatments activate apoptosis in NSCLC and SCLC tumor cells. (A) Cell viability as measured by Trypan blue cell counts after treatment with staurosporine (Staur), ketanserin (Ket), or ritanserin (Rit) at the indicated concentrations for 2 days. Cell counts were normalized to vehicle control (DMSO). Statistical significance was calculated by comparison with 10 μ M ketanserin treatment. (B) Activation of apoptosis was determined by commercial CaspaseGlo 3/7 assay (see ESI for additional details). Cells were incubated with compounds at the concentrations given and allowed to grow for 1 day, at which point caspase activity was measured. Statistical significance was calculated by

comparison with vehicle control. All experiments were performed in triplicate and data are from two independent biological replicates performed on separate days (n = 6). Data are shown as mean + S.E.M. *P \leq 0.05, **P \leq 0.01, *** P \leq .001, and ****P \leq 0.0001. Work conducted by Campbell.

Figure 2.5. Quantitative chemoproteomics to define the target spectrum of ritanserin in tumor cell proteomes. Proteomes from lung tumor cells cultured in SILAC media are treated differentially with DMSO vehicle (light) or compound (heavy). Next, ATP acyl phosphate probe is added to both light and heavy proteomes to label active kinase via covalent modification of conserved lysines in kinase active sites. Proteomes are digested to tryptic peptides using proteases. Active-site probe-labeled peptides are enriched by avidin affinity chromatography and quantified by LC-MS/MS. SILAC (light/heavy) ratios are used to evaluate compound activity at individual kinase active sites. No inhibition

results in a SILAC ratio of ~1 while competition at respective kinase active sites blocks probe labeling and enrichment resulting in SILAC ratios >>1 to identify targets of small molecule inhibitors. Figure created by Franks and Hsu.

Figure 2.6. Target landscape of ritanserin in lung cancer kinomes. (A) Heatmap showing average log2 SILAC ratios of ATP competition at kinase active-sites detected in A549 and H82 cell proteomes. (B) Kinome tree showing proteins with SILAC ratios > 4 when treated

with ritanserin. The size of the circle is proportional to SILAC ratio measured. Background image for protein kinase tree used by permission of Cell Signaling Technology (http://www.cellsignal.com). The lipid kinase tree was generated in-house using least-squared distances of MUSCLE aligned sequences. (C) Heatmap showing log2 SILAC ratios for kinases inactivated by ritanserin but not ketanserin that have a minimum DMSO:ritanserin SILAC ratio > 4. All experiments were measured 2-3 times (technical replicates in LC- MS) using data from 2-3 independent biological replicates performed on separate days (n = 6-9). All values shown are normalized to DMSO control. Data acquired and analysis by Franks and Borne; figure created by Borne.

Native DGKa active-site peptide

Figure 2.7. Detection and inhibition of native DGK α in A549 proteomes. MS1-extracted ion chromatograms of the probe labeled active-site peptide of DGK α . Pre-treatment of heavy A549 proteomes with ritanserin (100 µM) or ATP (1 mM) resulted in inhibition of DGK α active-site peptide probe labeling (ritanserin SR = 6; ATP SR > 20). All experiments were measured 3 times (technical replicates in LC-MS) using data from 3 independent biological replicates performed on separate days (n = 9). Peak images are a representative image from an individual injection. Data acquired by Franks.

Figure 2.8. Native c-RAF active-site peptide detected in H82 proteomes. (A) MS1extracted ion chromatograms of the probe labeled active-site peptide for c-RAF identified in H82 proteomes. Pre- treatment of heavy H82 proteomes with ritanserin (100 μ M) results in blockade of c-RAF active-site probe labeling (SR > 6). Pre-treatment with ketanserin (100 μ M) results in no inhibition (SR = 1). (B) MS2 spectra of probe-modified peptide corresponding to the active-site of c-RAF. Major b- and y-ion fragments derived from

neutral losses of the precursor (M) are shown in red in the spectrum. All experiments were measured 2-3 times (technical replicates in LC-MS) using data from 2 independent biological replicates performed on separate days (n = 6). A and B are representative images from a single measurement. Work conducted by Franks.

Figure 2.9. Activity of ritanserin against kinases involved in MAPK signaling. (A) Activity of ritanserin against native kinases involved in MAPK signaling as evaluated by quantitative chemoproteomics described in Fig. 4 and 5. The results show that in H82 SCLC proteomes, ritanserin shows selective blockade of c-RAF when compared with other MAPK kinases detected. Ketanserin show negligible activity, which supports serotonin-independent and ritanserin-specific effects. (B) Live cell activity assay to validate c-RAF

as a target of ritanserin. RAF kinases (c-RAF and B-RAF) phosphorylate MEK and phosphorylated MEK (phospho-MEK (S217/S221), ~40 kDa) can be used to measure RAF activity in live cells by western blot (anti-phospho-MEK antibody). Recombinant c-RAF and B-RAF were overexpressed in HEK293T cells, recombinant RAF-HEK293T cells pretreated with DMSO vehicle or inhibitors (50 µM), followed by activation of cells with PMA (20 ng/mL, 20 min). Cells were lysed and proteomes subjected to western blots to measure endogenous phospho-MEK. Overexpression of c- RAF and B-RAF resulted in enhanced phospho-MEK levels. Pretreatment with the pan- RAF inhibitor sorafenib blocked c-RAF- and B- RAF-mediated enhancement of phospho-MEK. In contrast, ritanserin showed inhibition of c-RAF but not B-RAF in overexpressing cells. Ketanserin was largely inactive in this assay. Blots shown are representative of 2 independent biological replicates (n = 2). Protein loading was comparable between sample conditions as evidenced by equivalent MEK levels measured (anti-MEK blot). Work conducted by Borne.

Table 2.1. Tumor cell line mutations.

Cell line	Subtype	Mutation
A549	NSCLC	KRAS (G12S)
H1650	NSCLC	EGFR (E746_A750del)

H82	SCLC	RB1

Chapter 3. Global targeting of functional tyrosines using sulfur triazole exchange chemistry

Adapted from: Heung Sik Hahm[‡], Emmanuel K. Toroitich[‡], Adam L. Borne[‡], Jeffrey W. Brulet[‡], Adam H. Libby, Kun Yuan, Timothy B. Ware, Rebecca L. McCloud, AnthonyM. Ciancone, and Ku-Lung Hsu. Nature Chemical Biology 16 150-159 (2020). [‡] These authors contributed equally.

3.1 Abstract

Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g. cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate, for the first time, more than 10,000 tyrosine sites in lysates and live cells. We discover tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein-protein interaction, and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome.

3.2 Introduction

Chemical proteomics is a powerful technology for ascribing function to the vast number of uncharacterized proteins in the human proteome^{19,131}. This proteomic method employs probes designed with reactive groups that exploit accessibility and reactivity of binding sites to covalently label active proteins with reporter tags for function assignment and inhibitor development¹³². Selective probes resulting from competitive screening efforts serve as enabling, and often first-in-class, tools for uncovering biochemical and cellular functions of proteins (e.g. serine hydrolases⁵³, proteases¹³³, kinases²⁴, phosphatases¹³⁴, and glycosidases¹³⁵) and their roles in contributing to human physiology and disease. The basic and translational opportunities afforded by chemical proteomics has prompted exploration of new biocompatible chemistries for broader exploration of the proteome.

Covalent probes used for chemical proteomics range from highly chemoselective fluorophosphonates for catalytic serines²² to general thiol alkylating agents and aminereactive esters of cysteines¹³⁶ and lysines²⁷, respectively. The ability to globally measure protein functional states and selectively perturb proteins of interest has substantially augmented our basic understanding of protein function in cell and animal models^{19,132}. Exploration of new redox-based oxaziridine chemistry, for example, identified a conserved hyper-reactive methionine residue (M169) in redox regulation of mammalian enolase¹³⁷. Hydrazine probes revealed a novel N-terminal glyoxylyl post-translational modification on the poorly characterized protein SCRN3¹³⁸. More recent exploration of photoaffinity probes facilitate global evaluation of reversible small molecule-protein interactions to expand the scope of proteins available for chemical proteomic profiling¹³⁹. Sulfonyl-fluorides¹⁴⁰ (-SO2F) and fluorosulfates^{141,142} (-OSO2F) have emerged as a promising scaffold for covalent probe development because of the wide range of amino acids (e.g. serine^{143,144}, tyrosine¹⁴⁵, lysine⁸⁵, histidine¹⁴⁶) and diverse protein targets (proteases^{143,144}, kinases⁸⁵, GPCRs¹⁴⁷) available for sulfur-fluoride exchange chemistry (SuFEx80). Reactivity of SuFEx is driven largely through stabilization of the fluorine leaving group (LG) at protein sites during covalent reaction¹⁴⁸. The sensitivity of SuFEx to protein microenvironments allows, for example, the ability to target orthogonal nucleophilic residues in the same nucleotide-binding site of decapping enzymes¹⁴⁹. The broad reactivity and context-dependent activation of SuFEx present opportunities for modulating the sulfur electrophile to target novel, and potentially functional, sites of proteins^{82,85,148,150}. The reliance on fluorine, while key for activating SuFEx chemistry, is limiting in terms of LG modifications to modify reactivity, specificity, and binding affinity at protein sites across the proteome.

Here, we introduce sulfur-triazole exchange chemistry (dubbed SuTEx) for development of phenol-reactive probes that can be tuned for tyrosine chemoselectivity in proteomes (>10,000 distinct sites in ~3,700 proteins) through modifications to the triazole LG. We use these probes to discover a subset of tyrosines with enhanced reactivity that are localized to functional protein domains and to apply SuTEx for global phosphotyrosine profiling of pervanadate-activated cells. Our findings illustrate the broad potential for deploying SuTEx to globally investigate tyrosine reactivity, function, and post-translational modification state in proteomes and live cells.

3.3 Materials and Methods

HPLC assay for profiling solution reactivity and stability of sulfonyl probes. The following reagents were prepared and kept at 0 °C prior to use: 0.1 M solution of caffeine in acetonitrile (ACN), 1.0 M solution of n-butylamine, p-cresol, tetramethylguanidine (TMG), acetic acid in ACN, and 10 mM solution of the probes in a mixture of DMF-ACN (v/v=10:90) are made.

(i) p-Cresol reactivity against a probe mixture: A solution of p-cresol (16.5 µmol, 3.3 eq) was premixed with 1.1, 2.2, or 3.3 eq of TMG. To initiate the reaction, the p- cresol/TMG solution was added to a sulfonyl probe mixture of HHS-475/HHS-482/HHS- SF-1 (500 µL, 5 µmol, 1.0 eq each) and the reaction was kept at 0 °C. The reaction progress was monitored by taking out a 50.0 µL aliquot of the reaction mixture at various time points followed by addition of a 10 µL quenching solution of acetic acid (0.5 M final, 5.0 µmol) and the internal caffeine standard (0.05 M final, 0.5 µmol). Sample (1.0 µL) was injected and analyzed by reverse-phase HPLC on a Shimadzu 1100 Series spectrometer with UV detection at 254 nm. Reaction progress was evaluated by monitoring consumption of sulfonyl probes because all probes generate a shared p-cresol and n-butylamine product. Chromatographic separation was performed using a Phenomenex Kinetex C18 column (2.6 μm, 50 mm x 4.6 mm). Mobile phases A and B were composed of H2O (with 0.1% AcOH) and CH3CN (with 0.1% AcOH), respectively. Using a constant flow rate of 0.8 mL/min, the gradient was as follows: 0-0.5 min, 15% B; 0.5-6.5 min 15-85% B (linear gradient); 6.5-7 min 85-100% B (linear gradient); 7- 8.5 min 100% B; 8.5-9 min 100-15% B (linear gradient); 9-9.8 min 15% B.

(ii) n-Butylamine reactivity against a probe mixture: Reactivity of sulfonyl probes against n-butylamine (3.3 eq) was performed as described above except the amount of TMG was fixed at 3.3 eq.

(iii) Probe reactivity against a p-cresol/n-butylamine mixture: A solution of n- Butylamine (50.0 μ L, 50.0 μ mol, 5.0 eq), p-cresol (10.0 μ L, 10.0 μ mol, 1.0 eq), and TMG (5.0 μ L, 5 μ mol, 0.5 eq) were prepared. Probe reaction was initiated by addition of this solution to HHS-475, HHS-482, or HHS-SF-1 (10 μ mol, 1.0 eq) at 0 °C. Reaction progress was monitored as described above. A control experiment was also performed where equal amounts of n-butylamine (1.0 eq) and p-cresol (1.0 eq) were mixed.

(iv) Probe stability studies: Each probe was dissolved in DMSO or a solution of DMF:ACN:PBS (4:6:1 (v/v)) at the following concentrations: 20 mM of HHS-475, 20 mM HHS-SF-1, and 10 mM of HHS-482 in a final volume of 50 μ L. The internal caffeine standard (0.5 μ mol) was spiked into each probe sample. Probe stability was monitored at room temperature by taking 1.0 μ L of sample at three time points (0, 24, and 48 hours) and analyzing probe degradation by HPLC as described above.

Cell culture. Cell lines were cultured at 37 °C with 5% CO2 with manufacturer recommended media supplemented with 10% fetal bovine serum (FBS, U.S. Source, Omega Scientific) and 1% L-glutamine (Fisher Scientific): HEK293T: DMEM; DM93, A549, Jurkat, H82: RPMI. Cells were harvested for experimental use when they reached ~90% confluency. The media was aspirated, cells washed with cold PBS (2X) and scraped from plates. The cells were pelleted by centrifugation at 400 × g for 5 min, snap-frozen

using liquid nitrogen and stored at -80 °C until further use.

SILAC cell culture. SILAC HEK293T cells were cultured at 37 °C with 5% CO2 in either 'light' or 'heavy' media consisting of DMEM (Fisher Scientific) supplemented with 10% Scientific), dialyzed FBS (Omega 1% L-glutamine (Fisher Scientific), penicillin/streptomycin, and isotopically-labeled amino acids. Light media was supplemented with 100 µg/mL L- arginine and 100 µg/mL L-lysine. Heavy media was supplemented with 100 µg/mL [13C 15N] L-arginine and 100 µg/mL [13C 15N] L-lysine. The cells were grown for 6 passages before use in proteomics experiments. Cells were washed with PBS (2X), harvested, snap-frozen using liquid nitrogen and stored at -80 °C until further use.

Transient Transfection. Recombinant protein production by transient transfection of HEK293T cells was performed as previously described125. The following plasmid constructs (human proteins) were purchased from GenScript: pcDNA3.1-GSTP1-FLAG, pcDNA3.1-DPP3-FLAG, pcDNA3.1-PGAM1-FLAG, pcDNA3.1-EDC3-FLAG. Site-directed mutagenesis of wild- type constructs was used to generate mutant plasmids: pcDNA3.1-GSTP1 (Y8F)-FLAG, pcDNA3.1-DPP3 (Y417F)-FLAG, pcDNA3.1-PGAM1 (Y92F)-FLAG, pcDNA3.1-EDC3 (Y475F)-FLAG.

Pervanadate Activation. Pervanadate (100 mM) was prepared as previously described116 by mixing 100 μL of sodium orthovanadate (100 mM Na3VO4, New England BioLabs

#P0758S) with 1 μ L of hydrogen peroxide (H2O2, 30% v/v in water) on ice. The mixture was incubated on ice for 15 min followed by immediate addition to cells (1:1000, 100 μ M final) and incubation for 30 min at 37 °C with 5% CO2 for general inhibition of protein tyrosine phosphatases. After pervanadate treatment, cells were washed twice with cold PBS followed by harvest. Cell pellets were resuspended in PBS supplemented with protease and phosphatase inhibitor mini tablets (Thermo Scientific #A32959) and then lysed by sonication (3 x 1 sec pulse, 20% amplitude). For CTNND1 western blot studies, cell pellets were lysed in NP40 Cell Lysis Buffer (Invitrogen #FNN0021) supplemented with protease/phosphatase inhibitor tablets. Cell lysates were separated via centrifugation at 100,000 x g for 45 min at 4 °C for western blot or chemical proteomic studies. Note: pervanadate treatments are performed on live cells but SuTEx probe labeling occurs in proteomes in vitro.

Western blot analysis. Western blot analysis of recombinant protein expression was performed as previously described125. For analysis of tyrosine phosphorylation, the protocol used was the same except the nitrocellulose blot was blocked with 3% BSA instead of 5% milk in TBS-T. The following antibodies were purchased from Cell Signaling Technology (CST) for phosphotyrosine studies: Phospho-tyrosine (pY): P-Tyr-100 biotinylated, CST #9417S; pPKM: Phospho-PKM (Y105) Rabbit Ab, CST #3827S; PKM: PKM Rabbit Ab, CST #3198S; pSTAT3: Phospho-STAT3 (Y705) Rabbit mAb, CST #9145S; STAT3: STAT3 Mouse mAb, CST #9139S; pCTNND1: Phospho-Catenin δ -1 (Tyr228) Rabbit Ab, CST #2911; CTNND1: Catenin δ -1 Rabbit Ab, CST #4989; GAPDH: GAPDH Rabbit mAb, CST #2118S. The following secondary antibodies were used for fluorescence detection: Goat Anti-Rabbit IgG DyLight 550 Conjugated, Thermo Scientific, #84541; Goat Anti- Mouse IgG DyLight 650 Conjugated, Invitrogen, #84545; Streptavidin DyLight 550 Conjugated, Thermo Scientific, #84542.

Gel-based chemical proteomic assay. Cell pellets were lysed in PBS by sonication and fractionated (100,000 × g, 45 min, 4 °C) to generate soluble and membrane fractions. Protein concentrations were determined using the Bio-Rad DC protein assay and adjusted to 1 mg/mL in PBS. Proteome samples (49 μ L aliquots) were treated with sulfonyl-triazole or -fluoride probes at the indicated concentrations (1 μ L, 50x stock in DMSO) for 1 hr at room temperature. Probe-labeled samples were conjugated by copper-catalyzed azide-alkyne cycloaddition (CuAAC) to rhodamine-azide (1 μ L of 1.25 mM stock; final concentration of 25 μ M) using tris(2- carboxyethyl)phosphine (TCEP; 1 μ L of fresh 50 mM stock in water; final concentration of 1 mM), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 3 μ L of a 1.7 mM 4:1 t-butanol/DMSO stock, final concentration of 1 mM). Samples were reacted for 1 hr at room temperature, quenched with 17 μ L of 4X SDS-PAGE loading buffer and beta-mercaptoethanol (β ME), and quenched samples (30 μ L) analyzed by SDS-PAGE gel and in-gel fluorescence scanning.

Live cell evaluation of sulfonyl-triazole probes. Cells grown to ~90% confluency in 10 cm plates were treated with DMSO vehicle or sulfonyl-triazole probe (10 μ L of 1000X
DMSO stock) in serum-free media for the indicated concentrations and times at 37 °C with 5% CO2. After treatment, cells were washed with cold PBS twice before harvesting and preparation for gel-based chemical proteomic evaluation as described above. For LC-MS studies, protein concentrations were normalized to 2.3 mg/mL and 432 μ L (for 1 mg final protein amount) were used for sample preparation as detailed below.

Preparation of proteomes for LC-MS/MS analysis. Proteomes were diluted to 2.3 mg/ mL in PBS and sample aliquots (432 µL) were treated with sulfonyl-triazole or -fluoride probes at the indicated concentrations (5 µL, 100X stock in DMSO), mixed gently and incubated for 1 h at room temperature. Probe-modified proteomes were subjected to CuAAC conjugation to desthiobiotin-PEG3-azide (10 µL of 10 mM stock in DMSO; final concentration of 200 µM) using TCEP (10 µL of fresh 50 mM stock in water; 1 mM final concentration), TBTA ligand (33 µL of a 1.7 mM 4:1 t-butanol/DMSO stock, 100 µM final concentration), and CuSO4 (10 µL of 50 mM stock, 1 mM final concentration). Samples were mixed by vortexing and then incubated for 1 h at room temperature. Excess reagents were removed by chloroform-methanol extraction as previously described³⁶. Protein pellets were re-suspended in 500 µL of 6M urea/25 mM ammonium bicarbonate followed by DTT reduction and IAA alkylation as previously described³⁶. Excess reagents were removed by chloroform/methanol extraction as described above, and the protein pellet was resuspended in 500 µL of 25 mM ammonium bicarbonate and then digested to peptides using trypsin/Lys-C (7.5 μ g in 15 μ L of ammonium bicarbonate, sequencing grade from Promega) was added to the mixture and incubated for 3 hrs at 37 °C. Probe-modified peptides were enriched by avidin affinity chromatography, eluted, and prepared for LC-MS analysis as previously described³⁶.

Preparation of SILAC proteomes for LC-MS/MS analysis. Heavy and light proteomes (432 μ L of each) were diluted to 2.3 mg/mL in PBS. For 10:1 comparisons, heavy and light proteomes were treated with 250 μ M and 25 μ M of HHS465, respectively (5 μ L, 100x stock in DMSO). In a control 1:1 comparison experiment both heavy and light proteome were treated with 25 μ M of HHS465. Samples were mixed gently and incubated for 1 h at room temperature. Light and heavy samples were separately conjugated to desthiobiotin-PEG3-azide as described above. Light and heavy samples were mixed peptides were prepared for LC-MS/MS analysis as described above.

LC-MS/MS analysis of samples. Nano-electrospray ionization-liquid chromatographymass spectrometry analyses (LC- MS/MS) were performed using an Ultimate 3000 RSLC nanoSystem-Orbitrap Q Exactive Plus mass spectrometer (Thermo Scientific) as previously described125 except LC conditions were modified to use the following gradient (A: 0.1% formic acid/H2O; B: 80% ACN, 0.1% formic acid in H2O): 0-1:48 min 1% B, 400 nL/min; 1:48 – 2:00 min 1% B, 300 nL/min; 2-90 min 16% B; 90-146 25% B; 146-147 min 95% B; 147-153 min 95% B; 153-154 min 1% B; 154.0-154.1 min 1% B, 400 nL/min; 154.1-180 min 1% B, 400 nL/min. A top 10 data-dependent acquisition MS method was used. LC-MS/MS data analysis. Identification of peptides and proteins from tandem mass spectrometry analyses was accomplished using the ByonicTM software package (Protein Metrics Inc.¹⁷). Data were searched against a modified human protein database (UniProt human protein database, angiotensin I and vasoactive intestinal peptide standards; 40,660 proteins) with the following parameters: up to 3 missed cleavages to account for a lysine probe modification, 10 ppm precursor mass tolerance, 20 ppm fragment mass tolerance, too high (narrow) "precursor isotope off by x", precursor and charge assignment computed from MS1, maximum of 1 precursor per MS2, 0.01 smoothing width, 1% protein false discovery rate, variable (common) methionine oxidation (+15.9949 Da) and fixed cysteine carbamidomethylation (+57.021464 Da). Sulfonyl-probe modifications of tyrosine, lysine, and other amino acids were included as a variable (common) modification of +635.27374 Da. Search results were imported into R and filtered for fully tryptic peptides (except Nand C-terminally modified), a Byonic score of >300 (unless otherwise specified), and a precursor mass error between -5 ppm and +5 ppm. A Byonic score of 300 was applied for a more inclusive initial evaluation of the search results and thereby consider more possible probe-modified sites. We manually verified the MS1 and MS2 spectra corresponding to the highest-scoring tyrosine- and lysine (internal or non-C terminal)-modified sequences (~50-100 peptides). The next most frequently matched and high-scored probe-modified amino acid residues were C-terminal lysines or arginines, which were determined to be false positive matches based on manual analysis of MS2 spectra (top ~50 highest Byonic scored-matches). These findings are consistent with the observation from previous studies

with other probes^{27,36} that trypsin does not cleave after a modified lysine or arginine. Distinct peptides containing probe-modified amino acid residues (termed sites) were determined by identifying all unique razor protein and site combinations across all of the proteomes tested.

Analysis and comparison of sulfonyl probe modified amino acid sites. To compare amino acid residues modified by sulfonyl probes, protein and peptide identifications were accomplished as described above with variable (common) modification of +635.27374 Da on the following amino acid residues: cysteine, aspartic acid, glutamic acid, histidine, lysine, methionine, asparagine, glutamine, arginine, serine, threonine, tryptophan, and tyrosine. For these amino acid comparisons, carbamidomethylation (+57.021464 Da) of cysteines was searched as a variable/common modification to allow for the potential of probe modification on cysteines. Comparisons of probe-modified sites across all probes and cell lines tested were performed using the R package ggplot2 (https://ggplot2.tidyverse.org/). Venn diagrams for comparisons were generated using the VennDiagram R package¹⁵¹. For amino acid comparisons, a Byonic score cutoff of 600 was used to minimize false positive identifications of modified residues, which were confirmed by manual evaluation to be incorrect assignments.

Domain enrichment analysis. Probe-modified sites were compared to ProRule domain annotations (available on PROSITE, release 20.85127, http://prosite.expasy.org/) using the annotated human UniProt proteome (https://www.uniprot.org/) as a database for

identifying amino acid sequences that match ProRule domains. A probe-modified site that is within a ProRule domain is considered a "hit" and is counted as enrichment of a domain by the sulfonyl probe. Several sites within the same ProRule domain annotation are a considered a single hit. If a site had several annotations each one was considered a hit; for example, a modified site within the proton acceptor region of a kinase domain would be annotated as a hit for ProRules PRU10027 and PRU00159, respectively. The database count is determined by the number of non-overlapping occurrences of the domain such that calmodulin would account for 4 EF-hand domains (PRU00448). We find the probability of the domains P(D) in the reference UniProt human database to determine how frequently they exist in nature:

$$P(D) = n(D)/N$$

Where n(D) is the number of domain occurrences in the database and N is the total number of domains in the reference database. The p-values were calculated using a binomial test previously reported for GO statistical overrepresentation test 128.

$$P = \sum_{k=1}^{K} {\binom{K}{k}} P(D)^{k} (1 - P(D))^{K-k}$$

Binomial Test

Where K is number of domain annotation hits in the experimental data (sulforyl probe). The p-value was then corrected for a 1% false discovery rate (FDR) using Benjamini- Hochberg correction for multiple hypothesis testing. From these statistical analyses, ProRule domains that show statistically significant overrepresentation (Q value < 0.01) are used to generate bar graphs and pie charts shown in figures. Note that a -log (Q

value) is used so that positive values are shown for simplicity. In order to verify that the binomial approximation to hypergeometric probability we ensured sum of all n(D) was less than 5 percent of N and verified that using a hypergeometric test did not alter the enriched domains. The enriched domains were grouped according to their function into four categories; nucleotide binding, enzyme, protein-protein interaction and undefined based on gene ontology molecular function annotation of the respective ProRule domain. Pie charts and bar graphs were generated using the ggplot2 package in R.

Classification of protein domains. The distinction between protein-protein interaction (PPI) and nucleotide binding domains was determined by whether the interacting partner of the domain is annotated as a peptide or a nucleotide sequence. The SH2 domain (PRU00191) which interacts with proteins featuring phosphorylated tyrosines is classified as a PPI domain, and a Homeobox DNA- binding domain (PRU00108) is classified as a nucleotide binding domain. An enzyme domain is the protein subunit that has been shown to catalyze the conversion of a substrate to a product. The Ribonuclease H domain (PRU00408) functions as an endonuclease which will interact with RNA but is classified as an enzyme domain because of its nuclease activity. We applied gene ontology (GO) molecular function annotations associated with the ProRule domains that inherit the annotation for catalytic activity (GO:0003824) to determine if proteins belong to the enzyme domain group. For example, the term Ribonuclease H domain (PRU00408) has the GO annotation for endonuclease activity (GO:0004519) which has catalytic activity (GO:0003824) in its ancestor chart and is therefore classified as an enzyme.

DrugBank analysis. Proteins labeled by sulfonyl probes in live cells were compared against protein targets of FDA approved and all drugs in the DrugBank databases¹⁵² (version 5.1.1).

Phosphosite Plus analysis. Probe-labeled sites were searched for in the PhosphoSitePlus database¹⁵³ either unfiltered or filtered by a high-throughput reference score of 10 or greater where specified.

Nucleophilicity data analysis (SILAC). Peptide and protein identification was accomplished using Byonic as previously described above. SILAC samples were searched with added masses for heavy-labeled amino acids (+10.0083 Da for R, +8.0142 Da for K) and converted into mzXML (from raw data file) and mzid (exported from Byonic) format for export into Skyline-daily¹⁵⁴ to determine SILAC ratios (SR) of light/heavy peptides as previously described³⁶. SILAC ratios from peptides with the same probe-modified site were averaged. The SILAC ratios were then plotted using the ggplot2 package in R. Nucleophilicity was defined as follows: hyper- reactive, SR <2; mild reactivity, 2 < SR <5; low reactivity, SR >5.

GSTP1 biochemical substrate assay. Recombinant GSTP1-HEK293T soluble cell proteomes were diluted to 1 mg/ml in assay buffer (100 mM NaH2PO4, pH 7.0). GSH stock solution (250 mM in water) was diluted to 4 mM in assay buffer and 25 μ L of diluted

GSH solution was added to each sample. A substrate stock solution of 75 mM 1-bromo-2,4-dinitrobenzene (DBNB) in ethanol was diluted to 2 mM in assay buffer. Samples (25 μ L) were aliquoted into a 96 well plate and spun briefly via centrifuge. 50 μ l of 2 mM BDNB was added to each well and the reaction was monitored in kinetic mode by measuring absorbance at 340 nm for 10 min on a BMG Labtech CLARIOstar plate reader.

DPP3 biochemical substrate assay. Substrate assays were performed on recombinant DPP3-HEK293T soluble proteomes diluted to 1 mg/mL in assay. DPP3 sample (10 μ L) was diluted to 85 μ L with assay buffer and transferred to a black 96-well plate. A stock solution of DPP3 substrate (Arg-Arg β - naphthylamide trihydrochloride, 0.5 mM; Sigma-Aldrich) was diluted to 100 μ M in assay buffer. Substrate solution (5 μ L) was added to each sample. Samples were mixed briefly by shaking and reaction monitored in kinetic mode by measuring fluorescence at 450 nm for 10 min on a BMG Labtech CLARIOstar plate reader.

3.4 Results

3.4.1 Design and synthesis of sulfonyl-triazole probes

We reasoned that triazoles could serve as a suitable replacement for the fluorine LG used to promote SuFEx80. Previous studies demonstrated that triazoles activate ureas for covalent protein modification with a significant advantage of tunability¹⁵⁵, which is not possible with fluorine as a LG by comparison. We envisioned that a sulfonyl-triazole scaffold would permit evaluation, and potentially control, of reactivity and specificity of the sulfur electrophile through structural modifications to the triazole LG (Fig. 3.1.a). Our

hybrid probe strategy is further bolstered by the broad functional group tolerance of 1,2,3and 1,2,4-triazoles as a LG for development of covalent serine hydrolase inhibitors^{155,156}.

3.4.2 Chemical proteomic evaluation of SuTEx chemistry

We established a chemical proteomic method to assess the reactivity of HHS-465 with amino acid residues in proteomes. HEK293T cell proteomes were treated with HHS-465 (100 μ M, 1 hr, 25 °C) followed by copper-catalyzed azide-alkyne cycloaddition (CuAAC) coupling with a desthiobiotin-azide tag. Proteomes were digested with trypsin protease and desthiobiotin-modified peptides enriched by avidin affinity chromatography, released, and analyzed by high-resolution liquid chromatography-mass spectrometry (LC-MS, Fig. 3.1.c). Probe-modified peptide-spectrum matches (PSMs) that met our quality control confidence criteria of >300 Byonic score 106 and < 5 ppm mass accuracy were selected for further manual evaluation (see Methods for additional details).

We predicted, based on our proposed reaction mechanism, that amino acid residues modified by HHS-465 would be identified by differential modification with a sulfonyldesthiobiotin adduct that is the product of SuTEx reaction (Fig. 3.1.c). We synthesized and included a 1,2,4-triazole counterpart, HHS-475, for testing to demonstrate SuTEx as a common mechanism among triazole regioisomers (Fig. 3.1.b and Fig. 3.3). Initial evaluation of our data assigned >60% of HHS-465- and HHS-475- labeled peptides as uniquely modified tyrosines (Fig. 3.4). Evaluation of MS2 spectra showed confident identification of all major y-ions and a large fraction of b-ions, including fragment ions (y and b) that allowed identification of the tyrosine site of HHS- 465 and HHS-475 binding (mass adduct of 635.2737 Da, Fig. 3.1.d and Fig. 3.5-3.7). The remaining probe-modified peptides were assigned largely to lysines, which after removal of incorrect search algorithm matches to C-terminal modified peptides represented a minor fraction of total modified residues (<25%; Fig. 3.4, 3.8, and 3.9). We evaluated additional human cell proteomes to determine the number and type of tyrosines amenable to SuTEx reaction. On average, we reliably identified >2,800 tyrosines per data set and in aggregate, ~8,000 tyrosine sites from ~3,000 proteins with diverse enzymatic and non- catalytic functions across 5 cell proteomes evaluated with HHS-465- and -475 (Fig. 3.10.a and b). A large fraction of HHS-465/475-modified sites were also annotated as phosphorylation sites as reported in the PhosphoSitePlus database¹⁵³ (Fig. 3.10.c).

We next tested whether SuTEx probes exhibit sufficient stability and cell permeability to permit global tyrosine profiling in living systems. We observed robust proteome labeling that was concentration- and time-dependent in fluorescence gel-based analyses of proteomes from HEK293T cells treated with HHS-465 or HHS-475 (Fig. 3.11 and 3.12). Using a saturating probe labeling condition (100 μ M, 2 hr, 37 °C) for our live cell studies, we consistently measured ~3,500 distinct tyrosine sites (corresponding to ~1,700 proteins), in total, across membrane and soluble fractions in each cell line tested (HEK293T, Jurkat). For comparison, recent reports using sulfonyl-fluorides showed probe modifications of ~70-130 protein targets in live cell studies^{85,148}. HHS-465- and HHS-475-labeled proteins from live cell profiling were largely absent from the DrugBank database¹⁵² (77%, Fig. 3.10.d). Evaluation of probe-enriched domains (Q-values < 0.01) from the non-DrugBank protein (non-DBP) group revealed highly enriched functions that include

proteins involved in RNA recognition (RRM domain¹⁵⁷) and protein-protein interactions (PCI/PINT and SH3 domains¹⁵⁸, Fig. 3.10.d). By comparison, the DrugBank protein group (DBP) was largely overrepresented with domains found in enzymes (kinases and redox enzymes, Fig. 3.10.d).

3.4.3 Discovery of hyper-reactive tyrosines in human proteomes

Previous studies identified a subset of hyper-reactive cysteine and lysine residues that specify function and are susceptible to binding with electrophilic ligands30, 36. Whether tyrosines differ in intrinsic reactivity and the functional implications of heightened nucleophilicity remain largely underexplored on a proteome-wide scale. Here, we used HHS-465 and quantitative chemical proteomics to evaluate tyrosine reactivity directly in human cell proteomes derived from isotopically light and heavy amino acidlabeled HEK293T cells (i.e. stable isotope labeling with amino acids in cell culture; SILAC¹¹²). We measured concentration-dependent HHS-465 labeling where nucleophilic tyrosines are expected to exhibit comparable labeling intensity at low and high concentrations of HHS-465 while less nucleophilic tyrosines show concentrationdependent increases in probe labeling. We treated HEK293T proteomes with high versus low concentrations of HHS-465 (250 versus 25 µM; 10:1 comparison) for 1 hr (25 °C) and then analyzed samples by quantitative LC-MS (Fig. 3.13). Tyrosine nucleophilicity was segregated into low, medium, and high groups based on their respective SILAC ratios (SR >5, 2 < SR <5, SR < 2, respectively; Fig. 3.14.a). We also verified in a control experiment (25 vs 25 μ M) that SR values were ~1 in a 1:1 comparison (Fig. 3.15).

3.4.4 Tuning the triazole LG for tyrosine chemoselectivity

A key advantage of SuTEx technology is the capacity for modifying the triazole LG to tune chemoselectivity of resulting probes. Here, we tested whether we could enhance the selectivity of HHS-465/475 for tyrosine modification through addition of functional groups to the triazole (Fig. 3.16.a). To globally evaluate probe reactivity and selectivity in parallel, we compared the total number of probe-modified sites (Y and K combined) as a function of the ratio of modified tyrosines to lysines (Y/K ratio), respectively, for each SuTEx analog. First, we synthesized a sulfonyl-fluoride counterpart to HHS-465/475, termed HHS-SF-1 (Fig. 3.16a), to directly compare fluoro- and triazole-LGs with respect to proteome specificity and reactivity. HHS-SF-1 exhibited a ~4-fold reduction in the total number of modified sites and lower selectivity for tyrosine compared with HHS-465 and HHS-475 (Y/K of 2.3 versus 2.5 and 2.8, respectively; Fig. 3.16.a and Fig. 3.17).

In light of the improved tyrosine selectivity of HHS-475, we synthesized and evaluated a series of 1,2,4-triazole analogs bearing different substituents at the R2 position (Fig. 3.1.a and 3.16.a). Addition of a phenyl group improved both tyrosine selectivity (Y/K = 3.5) and overall proteome reactivity of the resulting HHS-481 probe (~4,000 total sites; Fig. 3.16.a). Modification of the phenyl-triazole resulted in further alterations in proteome activity of SuTEx probes. Addition of a para-fluoro substituent (HHS-483) resulted in comparable reactivity and slightly lowered tyrosine selectivity compared with HHS-481 (Fig. 3.16.a). In contrast, the para-methoxy probe HHS-482 showed the highest tyrosine selectivity (Y/K ratio of ~5) while maintaining good overall proteome reactivity (~3,000)

probe-modified sites, HHS-482; Fig. 3.16.a). Evaluation of HHS-482 reactivity against other amino acids revealed high tyrosine selectivity with ~75% of probe-modified residues assigned to tyrosines (Fig. 3.16.b).

Comparison of tyrosine sites modified by HHS-SF-1 and HHS-482 revealed high overlap (>90%) indicating that substitution of fluorine for a triazole LG did not result in loss of tyrosine coverage (Fig. 3.16.c). In contrast, LG modifications to 1,2,4-SuTEx probes furnished analogs that each expanded tyrosine coverage via detection of uniquemodified sites (HHS-475, 391 sites; HHS-482, 112 sites; HHS-483, 433 sites; HHS-481, 445 sites; Fig. 3.16.d). In summary, our studies highlight a key difference between sulfonyl-fluoride compared with -triazole chemistry; the latter reaction dramatically enhances overall reactivity and through LG modifications can be tuned for enhanced tyrosine chemoselectivity and coverage in proteomes (Fig. 3.16.b and d).

In total, we quantified ~2,400 tyrosine residues from >1,100 proteins in soluble proteomes from HEK293T cells that showed consistent SILAC ratios across replicate experiments (n = 4, Fig. 3.14.a). The majority of quantified tyrosines showed concentration- dependent increases in HHS-465 labeling, which is indicative of low intrinsic nucleophilicity (Fig. 3.14.a). Similar to cysteines and lysine residues, a subset of tyrosines (~5%, 127 sites in total; Fig. 3.14.a) demonstrated enhanced nucleophilicity (i.e. hyper- reactivity30, 36) as evidenced by SR < 2 for 10:1 conditions (Fig. 3.14.a). The majority of proteins contained a single hyper-reactive tyrosine among several tyrosines quantified (Fig. 3.18). Reactive tyrosines (SR < 5) were enriched in domains of enzymes while tyrosines with lower reactivity (SR > 5) were localized at small molecule binding sites (Fig. 3.14.b). Comparison of tyrosine reactivity and evidence of phosphorylation revealed a marked inverse correlation. Specifically, tyrosines with low reactivity (SR > 5) were significantly overrepresented for phosphotyrosine sites compared with medium- and hyper-reactive groups (SR < 5, Fig. 3.14.c).

We verified our tyrosine reactivity annotations by comparing SuTEx probe labeling of recombinant wild-type (WT) and tyrosine-to-phenylalanine mutants of human proteins with tyrosine sites identified as high (Y8, GSTP1; Y475, EDC3), low/medium (Y417, DPP3), or low hyper-reactivity (Y92, PGAM1). Proteins like glutathione S- transferase Pi (GSTP1) with a single hyper-reactive tyrosine, among several modified tyrosines, showed robust HHS-475 labeling that was largely abolished in recombinant Y8F mutant (Fig. 2.14d). Mutation of the hyper-reactive tyrosine in the Yjef-N domain of enhancer of mRNA decapping protein 3 (EDC3) also resulted in near-complete loss of probe labeling (Y475F, Fig. 3.14.d). In contrast, mutation of a tyrosine with low nucleophilicity in PGAM1 resulted in negligible alterations in probe labeling (Y92F, Fig. 2.14d). A notable exception was dipeptidyl peptidase 3 (DPP3), which contains a single modified tyrosine (Y417) that, despite a low/medium nucleophilicity ratio (SR ~6), showed near-complete blockade of probe labeling in corresponding tyrosine mutants (Y417F, Fig. 3.14.d).

Finally, we confirmed the catalytic role of GSTP1 tyrosine 8, located in the GSH binding site (G-site), by mutating this residue (Y8F) and demonstrating abolished biochemical activity (Fig. 3.19.a and b, 3.20). In comparison, recombinant DPP3 WT- and Y417F mutant-overexpressed cell lysates showed comparable catalytic activity in a peptidase substrate assay, supporting a non-catalytic role for Y417 (Fig. 3.20.c and d, 3.21).

Future studies will focus on testing whether the moderate reactivity of the non- catalytic Y417 (Fig. 2.14.d) can be exploited for DPP3 inhibitor development.

3.4.5 Triazole LG enhances phenol reactivity of probes

Next, we compared solution reactivity of sulfonyl probes to evaluate whether the enhanced tyrosine reactivity of SuTEx is a function of the LG or protein microenvironment. We established an HPLC assay to test reactivity of SuTEx and SuFEx probes with nucleophiles that model side chain groups of tyrosine (p-cresol) and lysine (n-butylamine). We synthesized the predicted products from p-cresol (KY-2-48) and n- butylamine (KY-2-42) reaction with sulfonyl probes to establish HPLC conditions for monitoring this covalent reaction in solution (Fig. 3.22). We incubated p-cresol with a mixture of all three sulfonyl probes and monitored time-dependent reaction by depletion of respective SuTEx (HHS-475, HHS-482) and SuFEx (HHS-SF-1) probe signal. Our probe competition studies were performed with increasing tetramethylguanidine (TMG112) base to compare probe reactivity as a function of increasing phenol nucleophilicity. We also measured stability and found that all three sulfonyl probes showed negligible hydrolysis in aqueous and organic solvents even after incubation for 48 hours at room temperature (Fig. 3.23).

At lower TMG (1.1 equivalents), HHS-475 (peak 3) was the most reactive probe as evidenced by consumption by 30 minutes while unreacted HHS-SF-1 (peak 4) and HHS-482 (peak 7) was still detectable (Fig. 3.24.a). The difference in reactivity between SuTEx and SuFEx was apparent at higher TMG (2.2 equivalents) conditions. Both SuTEx probes (HHS-475 and HHS-482) were consumed by 10 minutes while HHS-SF-1 was still detectable even after 90 minutes of reaction (Fig. 3.24.a); depletion of HHS-SF-1 signal was only observed at the highest TMG tested (3.3 equivalents, Fig. 3.24.a and Fig. 2.25). We also verified a similar trend in reactivity when p-cresol was incubated with individual sulfonyl probes. The reactivity of all three sulfonyl probes for n-butylamine was substantially reduced compared with p-cresol even at high TMG (3.3 equivalents) conditions (Fig. 3.24.b). Reaction of HHS-475 with n-butylamine required 6 hours to complete and HHS-482 and HHS-SF-1 were not consumed even after 24 hours (Fig. 3.24.b and Fig. 3.25). To investigate selectivity further, we incubated sulfonyl probes with

n-butylamine and p-cresol mixed in a 5:1 ratio and demonstrated minimal n-butylaminecompared with p-cresol-probe adduct formation for HHS-475 as well as HHS-482 and HHS-SF-1 (Fig. 3.26).

Collectively, we show the triazole LG enhances intrinsic reactivity of sulfonyl probes for phenol without compromising stability in solvents commonly used for biological experiments (i.e. DMSO). While our solution findings agree with the enhanced reactivity of SuTEx compared with SuFEx observed by proteomics, the differences in tyrosine chemoselectivity between HHS-482 and HHS-475 are likely a function of the protein microenvironment and a feature of probe reactivity that has been reported for other electrophiles¹⁵⁹.

3.4.6 Chemoproteomic profiling of phosphotyrosine activation

Considering the overlap of SuTEx-modified tyrosines with reported phosphotyrosine sites (pY, Fig 3.2.c), we investigated whether we could apply this methodology for a "chemical" phosphoproteomics approach. We hypothesized that tyrosine accessibility by SuTEx probes would be inversely correlated with modification status and could be used to identify changes in pY sites (Fig. 3.27). Given the low abundance of phospho-tyrosine (1%) compared with -serine (88%) and -threonine (11%) detected in cell¹⁶⁰ and tissue proteomes¹⁶¹, we activated global phosphorylation using cell permeable tyrosine phosphatase inhibitors to increase pY signals for our LC-MS studies. Previous live cell studies demonstrated the high efficiency of pervanadate for global inhibition of tyrosine phosphatase activity116. We treated live A549 cells with pervanadate at varying concentrations (0 – 500 μ M) and time (0 – 30 min) and measured global changes in tyrosine phosphorylation by western blot using a pY-specific antibody (P-Tyr-100117). We observed robust increases in global tyrosine phosphorylation as judged by a massive increase in pY-antibody signals that appeared to saturate at 100 μ M and 30 min of pervanadate treatment (Fig. 3.28 and 3.29).

Proteomes from cells treated with our pervanadate activation conditions (100 μ M, 30 min) were labeled with HHS-475 or HHS-482 (100 μ M, 30 min) followed by CuAAC with desthiobiotin and quantitative LC-MS to evaluate how phosphorylation status affected SuTEx probe labeling. Pervanadate blockade of tyrosine phosphatases should activate endogenous phosphorylation and compete for SuTEx probe labeling at phosphorylated-but not unmodified-tyrosine sites that can be differentiated by SILAC ratios of vehicle-(light) versus pervanadate (heavy)-treated cells (Fig. 3.27 and Fig. 3.30.a). We detected in total ~2,200 probe-modified tyrosine sites across ~1,000 proteins using both HHS-475 and HHS-482 that were further separated into pervanadate-sensitive (PerS, SR > 2) and -

insensitive groups (PerI, SR < 2, Fig. 3.30b and Fig. 3.31). In support of our hypothesis, the probe-modified tyrosines found in the PerS group appeared to be enriched for annotated phosphotyrosine sites (HTP >10 in PhosphoSitePlus, Fig. 3.30.c and Supplementary Fig. 3.31) and represented only a small fraction of all unique HHS- 475- and HHS-482- modified tyrosines detected by chemical proteomics (~3%, 67 sites). The overall median SR of all probe-modified tyrosines was ~1 for both HHS-475 and HHS-482 datasets, which supports tyrosine phosphorylation as a rare post-translational event and the ability of our platform to capture subtle changes in the tyrosine phosphoproteome.

To further validate our chemical phosphoproteomics strategy, we tested whether tyrosine sites identified as pervanadate sensitive were also directly phosphorylated under the same treatment conditions. For our studies, we chose several proteins from the PerS group based on a high phosphotyrosine annotation score (HTP >100, PhosphoSitePlus) and evidence for a role in signaling in human cancer cells like A549. We identified signal transducer and activator of transcription 3 (STAT3) as a target protein with reduced SuTEx probe labeling at Y705 (SR = 2.3, Fig. 3.30.d) that corresponded with enhanced phosphorylation at this site upon pervanadate activation (Fig. 3.30.e). Our data are in agreement with previous findings reporting STAT3 Y705 as a phosphorylation site for activation by tyrosine kinases in human non-small cell lung cancer lines including A549¹⁶². We validated another tyrosine kinase-targeted site (Y228) on catenin δ -1 (CTNND1119) and showed blockade of SuTEx probe labeling (SR = 3.3, Fig. 2.30d) coincided with direct phosphorylation at this tyrosine site by western blot analysis (Fig. 3.30.e).

In contrast, we identified Y105 as a pervanadate insensitive site (SR = 1.1, Fig.

3.30.d) on pyruvate kinase (PKM) that showed negligible changes in phosphorylation at this tyrosine upon pervanadate activation (Fig. 3.30.e). Our proteomic findings support previous reports of substantial basal levels of phosphorylated-Y105 on PKM in A549 cells¹⁶³, which could explain why pervanadate activation did not further enhance pY levels. As a control, we showed that SuTEx probe treatment of pervanadate-activated cell proteomes did not result in non-specific displacement of phosphates from tyrosines (Fig. 3.32). In summary, we applied SuTEx technology as a chemical strategy that exploits probe labeling as a site-specific readout of changes in pY levels upon global activation of the phosphoproteome.

3.5 Discussion

We describe sulfur-triazole exchange chemistry for development of covalent probes that are compatible with biological systems, easily accessible via modern synthetic chemistry, and can be adapted for diverse chemical proteomic applications. We demonstrate, on a proteomic scale, that addition of a triazole LG introduces key capabilities to the sulfur electrophile including tunability for protein reaction, robust cellular activity, and capacity for directing amino acid selectivity. Compared with more widely used sulfonyl-fluorides, the triazole LG dramatically enhanced overall reactivity of sulfonyl probes in solution (Fig. 3.24) that can, through modest structural modifications, be optimized for high tyrosine chemoselectivity in proteomes (Fig. 3.16.a and b). Key to success is a general synthetic strategy for introducing a common mass spectrometry-stable enrichment tag (Fig. 3.1.d) and incorporating diverse triazole LGs to enable global

structure-activity relationship (SAR) studies of SuTEx probes directly in lysates and live cells (Fig. 3.10).

We exploit these features of SuTEx for functional studies of >10,000 unique tyrosine sites from ~3,700 protein targets detected in human cell proteomes. While previous chemical proteomic studies have shown promise for functional tyrosine profiling^{145,148,150,164}, the broad coverage of SuTEx permitted global tyrosine quantitation with unprecedented depth and breadth. A striking discovery from our studies was high enrichment of tyrosine sites in nucleotide-binding domains from in vitro and in situ probelabeling experiments using HHS-465 and HHS-475 (Fig. 3.10.b and d). We identified prominent labeling of tyrosines localized in RNA-recognition motifs (RRMs) of serine/arginine-rich protein splice factors (SRSF1-12, ~70% coverage of members by SuTEx) involved in regulation of mRNA splicing, export, and translation121. Several probe-labeled tyrosines including Y13 of SRSF3 RRM have been shown through structural studies to directly mediate RNA binding122. Combined with prominent in situ labeling at domains mediating protein-protein interactions (e.g. PCI/PINT and SH3¹⁵⁸), SuTEx offers a valuable resource for developing chemical probes against proteins that have been historically challenging to target with small molecules (Fig. 3.10.d).

Our functional profiling studies led to the discovery of intrinsically nucleophilic tyrosines that are enriched in enzyme sites but also prominent in domains mediating protein-small molecule and protein-protein interactions (SR < 5, Fig. 3.14.b). The rare nature of hyper-reactive tyrosines (~5% of all quantified sites) are in agreement with previous chemical proteomic studies that identified minor subsets of cysteine and lysine

residues that demonstrate enhanced reactivity^{27,136}. We demonstrated that hyper-reactive residues like Y8 of GSTP1 are key for catalytic function and mutation of this site (Y8F) abolished biochemical activity (Fig. 3.19.a and b). We also identified a non-catalytic tyrosine near the zinc-binding region of DPP3 (Y417) that exhibited moderate nucleophilicity (SR ~6) and may offer future opportunities for developing site-selective ligands (Fig. 3.14.d and Fig. 3.19.d). We find it noteworthy that several arginines (R548 and R572, Fig. 3.19.c) are in close proximity to Y417 and these positively-charged residues may play a role in perturbing the pKa of neighboring tyrosine residues as previously reported for alanine racemase¹⁶⁵. In contrast with GSTP1 and DPP3 enzymes, the discovery of a hyper-reactive tyrosine (Y475, Fig. 3.14.d) in the Yjef-N domain of the scaffolding protein EDC3 is intriguing given the role of this domain in assembly of cytoplasmic RNA– protein (RNP) granules known as P-bodies involved in post- transcriptional regulation¹⁶⁶. Future studies will test whether the hyper-reactive nature of the Y475 site can be exploited for developing ligands to modulate EDC3 function.

We applied SuTEx for development of a chemical phosphoproteomics platform to identify and quantitatively measure tyrosine sites whose probe modification status is competed by activation of phosphorylation. As proof of concept, we studied global changes in the tyrosine phosphoproteome under pervanadate activation of A549 cells to identify pervanadate-sensitive (PerS) sites that represented putative phosphotyrosines (Fig. 3.30 and Fig. 3.31). Across >2,000 quantified sites, we identified a small subset of PerS sites (67 sites), which is in agreement with the low frequency of tyrosine phosphorylation (1%) compared with more abundant phospho-serines and -threonines^{160,161}. We verified that

SuTEx probe labeling is anticorrelated with phosphorylation at Y705 and Y228 of STAT3 and CTNND1, respectively (Fig. 3.30.d and e). Both sites are highly annotated phosphotyrosines and reported substrates for tyrosine kinases in cancer cell signaling^{167,168}. In contrast, the pervanadate-insensitive Y105 site of PKM did not show changes in phosphotyrosine signals with pervanadate activation and further supports the ability of SuTEx to differentiate probe labeling of tyrosines based on phosphorylation state (Fig. 3.30.d and e). Future studies will focus on further refinement, e.g. improvements to LC-MS method and use of SuTEx probe cocktails, to expand the number and type of phosphotyrosine sites quantified.

In summary, we deployed SuTEx for development of a quantitative chemical proteomics platform to globally profile tyrosine nucleophilicity and post-translational modification state in human cell proteomes. We believe our current findings serve as a blueprint for design of activity-based probes that can be synthetically modulated to meet the proteomic demands of chemical biology applications. Expansion of our chemical phosphoproteomics to other activation paradigms should afford additional opportunities for studying and potentially targeting tyrosine post-translational modifications in future studies (Fig. 3.10.c). The latter effort will be expedited by conversion of SuTEx probes into inhibitors or ligands to reveal the inventory of tyrosine (and potentially phospho-tyrosine) sites that are "druggable" in proteomes.

3.6 Author Contributions and Pipeline Development

Hahm., Toroitich, Borne, Brulet and Hsu conceived of the project, designed

experiments and analyzed data. Hahm and Toroitich performed mass spectrometry experiments and data analysis. Borne wrote software and performed bioinformatics analysis. Hahm, Brulet and Yuan synthesized compounds. Brulet expressed proteins, conducted inhibition studies and performed biochemical assays. Toroitich and Brulet conducted cellular studies. Libby assisted with compound design, synthesis and characterization. Ware, Ciancone and McCloud performed site-directed mutagenesis and assisted with cloning and expression of proteins. Hahm, Toroitich, Borne, Brulet and Hsu wrote the manuscript.

The R shiny application used in Chapter 2 could not be used to analyze the global proteome profiling experimental data given the amount of time manual verification would take for 10,000 sites. A collection of script written in R and python were developed to address the large amount of data and provide the highest confidence site identification. These scripts used same byonic and skyline quality control features as well as quantify the SR for sites seen in hyperreactivity and pY studies. The resulting lists were used to identify sites that were significantly changed that could then be manually verified in both studies.

Additionally, individual scripts were developed to perform nucleophilic amino acid comparisons, drug bank comparison, domain enrichment analysis, venn-diagram comparisons and phosphosite plus database comparison. The multi-layered analysis seen in Fig. 3.10.d was done by stitching together two different python scripts and an R visualization script. These tools solely existed as scripts that could be run from the command line but were limited to the analysis of SuTEx probes. This was due to the code base being built around the adduct formed by SuTEx modification of amino acids.

3.7 Tables and Figures

Figure 3.1. Development of sulfur-triazole exchange (SuTEx) chemistry for chemical proteomics. a) Sulfonyl-triazoles are a hybrid of sulfonyl-fluoride and triazole-ureas for developing covalent probes with reactivity that can be modulated through the triazole leaving group (LG). b) Chemical structures of 1,2,3- and 1,2,4-sulfonyl triazoles HHS- 465 and HHS-475, respectively. c) Proposed reaction mechanism of sulfur-triazole exchange (SuTEx) chemistry and LC-MS/MS workflow to identify proteins and corresponding binding sites from SuTEx reaction. See Methods for additional details. d) MS2 spectrum annotation of an HHS-475-modified tyrosine site (Y92) found in PGAM1. Covalent

reaction with HHS-465 and HHS-475 adds +635.2737 Da to the modified amino acid (Y92 from PGAM1 shown as a representative example) and supports the proposed SuTEx reaction mechanism. Data shown are representative of two experiments (n=2 biologically independent experiments). Scheme created by Hsu; data acquired by Hahm and Toroitich; spectra annotated by Hahm.

Figure 3.2. Synthetic scheme showing general strategy for developing alkyne-modified sulfonyl-triazole probes. Scheme created by Hsu.

Figure 3.3. Crystal structures of HHS-465 and HHS-475. Crystal structure generated by Libby and D. Dickie.

Figure 3.4. Bar plot showing distribution of HHS-465 and HHS-475-modified sites (high confidence sites; Byonic score > 600) against nucleophilic amino acid residues detected in proteomes. Data shown are representative of two experiments (n=2 biologically

independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne.

Figure 3.5. MS2 annotation of the PGAM1 (Y92) HHS-475-modified tryptic peptide. Left panel: Modified sequence and fragment ion notation of HY*GGLTGLNK (residue 91-100) peptide from PGAM1. Covalent reaction of HHS-475 with Y92 results in a modified tyrosine (Y*) with the addition of +635.2737 Da. Fragmentation of the desthiobiotin-

containing tag is also shown. Right panel: predicted MS2 b- and y-fragment ions from collision-induced dissociation (CID) as determined using Protein Prospector software (http://prospector.ucsf.edu/prospector/mshome.htm). Bottom panel: annotation

of the MS2 spectrum for the HHS-475-modified PGAM1 Y92 tryptic peptide including fragment ions containing the probe binding site (modified tyrosine). Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; spectra annotated by Hahm.

Figure 3.6. MS2 annotation of the GSTP1 (Y8) HHS-475-modified tryptic peptide. Left panel: Modified sequence and fragment ion annotation of PPYTVVY*FPVR (residue 2-12) peptide from PGAM1. Covalent reaction of HHS-475 with Y8 results in a modified tyrosine (Y*) with the addition of +635.2737 Da. Fragmentation of the desthiobiotin-containing tag is also shown. Right panel: predicted MS2 b- and y-fragment ions from CID as determined using Protein Prospector software. Bottom panel: annotation of the MS2 spectrum for the HHS-475-modified GSTP1 Y8 tryptic peptide including fragment ions

containing the probe binding site (modified tyrosine). Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; spectra annotated by Hahm.

Figure 3.7. MS2 annotation of the DPP3 (Y417) HHS-475-modified tryptic peptide. Left panel: Modified sequence and fragment ion notation of NVSLGNVLAVAY*ATQR (residue 406-421) peptide from DPP3. Covalent reaction of HHS-475 with Y417 results in

a modified tyrosine (Y*) with the addition of +635.2737 Da. Fragmentation of the desthiobiotin-containing tag is also shown. Right panel: predicted MS2 b- and y-fragment ions from CID as determined using Protein Prospector software. Bottom panel: annotation of the MS2 spectrum for HHS-475-modified DPP3 Y417 tryptic peptide including fragment ions containing the probe binding site (modified tyrosine). Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; spectra annotated by Hahm.

Figure 3.8. MS2 annotation of the GAPDH (K194) HHS-475-modified tryptic peptide. Left panel: Modified sequence and fragment ion notation of TVDGPSGK*LWR (residue 187-197) peptide from GAPDH. Covalent reaction of HHS-475 with K194 results in a modified lysine (K*) with the addition of +635.2737 Da. Fragmentation of the desthiobiotin-containing tag is also shown. Right panel: predicted MS2 b- and y-fragment ions from CID as determined using Protein Prospector software. Bottom panel: annotation of the MS2 spectrum for HHS-475-modified GAPDH K194 tryptic peptide including

fragment ions containing the probe binding site (modified lysine). Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; spectra annotated by Hahm.

Figure 3.9. MS2 annotation of the PFKP (K688) HHS-475-modified tryptic peptide. Left panel: Modified sequence and fragment ion notation of NFGTK*ISAR (residue 684- 692)

peptide from PFKP. Covalent reaction of HHS-475 with K688 results in a modified lysine (K*) with the addition of +635.2737 Da. Fragmentation of the desthiobiotin- containing tag is also shown. Right panel: predicted MS2 b- and y-fragment ions from CID as determined using Protein Prospector software. Bottom panel: annotation of the MS2 spectrum for the HHS-475-modified PFKP K688 tryptic peptide including fragment ions containing the probe binding site (modified lysine). Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; spectra annotated by Hahm.

Figure 3.10. Functional tyrosine profiling in proteomes and live cells. a) Comparison of HHS-465- and HHS-475-tyrosine modified sites identified from human cell proteomes (HEK293T, A549, DM93, H82, and Jurkat cells) treated with SuTEx probes (100 μ M, 1 hr, 25 °C). b) Distribution of protein domain groups that are significantly overrepresented

using probe-modified tyrosine sites from in situ chemical proteomic studies. Enriched domain annotations are those with a Q-value < 0.01 after Benjamini–Hochberg correction of a two-sided binomial test (see Methods for details). c) Top panel: Overlap between in situ HHS-465- and HHS-475-modified tyrosine sites that are also phosphorylation sites (number of phosphotyrosine high throughput annotation on PhosphoSitePlus (HTP score); HTP >1). Bottom panel: coverage of phospho-tyrosine sites (HTP >10) that were detected by in situ chemical proteomics of HEK293T and Jurkat cells (HHS-465 and - 475). d) Top panel: Comparison of HHS-465 and HHS-475 in situ probe-modified proteins with DrugBank proteins (DBP group). The Non-DBP group consists of proteins that did not match a DrugBank entry. Bottom panel: probe-enriched domains from DBP and non-DBP groups. Enriched domain annotations are those with a Q-value < 0.01 after Benjamini–Hochberg correction of a two-sided binomial test. All data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne.

Figure 3.13. Quantitative chemical proteomics for profiling tyrosine reactivity. Experimental workflow for quantitative chemical proteomics to measure intrinsic tyrosine nucleophilicity (i.e. reactivity). HEK293T cells were cultured in SILAC media supplemented with either "light" 12C, 14N-labeled lysine and arginine (denoted in red) or "heavy" 13C, 15N-labeled lysine and arginine (denoted in blue). Heavy and light HEK293T proteomes were treated with 250 (high [probe]) or 25 μ M (low [probe]) HHS-465, respectively (10:1 comparison). The resulting SILAC ratios (SR) were quantified using the area under the curve of MS1 extracted ion chromatograms. Hyper-reactive tyrosines are expected to show equivalent probe labeling intensity at high and low [probe] (left MS1, SR~1) while less nucleophilic tyrosines show concentration dependent probe labeling (right MS1, SR >>1). A separate experiment where heavy and light proteomes are treated with equivalent [probe] (1:1 comparison) is used as a control for potential false quantifications. Peptide sequencing and validation of the site of probe binding are determined using MS2 (fragmentation) spectra (bottom panel). Scheme generated by Hsu.

Figure 3.14. SuTEx-enabled discovery of intrinsically nucleophilic tyrosines in human cell proteomes. HEK293T SILAC heavy and light soluble proteomes were treated with 250 or 25 μ M HHS-465 (10:1 comparison), respectively. The resulting SILAC ratios (SR) were quantified using the area under the curve of MS1 extracted ion chromatograms (EIC) to determine tyrosine nucleophilicity. a) A waterfall plot of nucleophilicity ratio (median SR values) as a function or probe-modified tyrosine sites to quantitate tyrosine reactivity across the proteome. A MS1 EIC is shown for SR values that represent each nucleophilicity group (low-black, medium-grey, and high-red). b) Distribution of protein domain groups that contain tyrosines quantified as low (SR >5) or medium/high (SR <5) reactivity.

Domain annotations shown were significantly enriched (Q-value < 0.01 after Benjamini– Hochberg correction of a two-sided binomial test) with HHS-465. c) Bar plot depicting tyrosines with medium to high nucleophilicity are less likely to be phosphorylated (HTP >10, PhosphoSitePlus) compared with less reactive tyrosines. d) Proteins containing a hyper-reactive tyrosine (GSTP1 Y8, EDC3 Y475) or single probe-modified tyrosine (DPP3 Y417) can be site-specifically labeled with SuTEx probes (50 μ M, 30 min, 37 °C). Recombinant wild-type (WT) protein or corresponding tyrosine (Y)-to-phenylalanine (F) mutant HEK293T proteomes were treated with HHS- 475 (GSTP1, DPP3, PGAM1) or HHS-465 (EDC3) and analyzed by gel-based chemical proteomics. Proteins that contain less nucleophilic tyrosines (PGAM1 Y92) are labeled at multiple sites and show negligible differences in probe labeling between WT and tyrosine mutant. Western blots show equivalent expression of recombinant WT and mutant proteins. All data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne.

Figure 3.15. Quantitative analysis of tyrosine reactivity. Quantitative comparison of tyrosine nucleophilicity between sites detected in human GSTP1 (Y8), DPP3 (Y417), PGAM1 (Y92), and EDC3 (Y475). Heavy and light MS1 extracted ion chromatograms were used to calculate the SILAC ratio (SR) for 10:1 and 1:1 probe (HHS-465) comparisons. Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne.

Figure 3.16. Tuning SuTEx probes for tyrosine chemoselectivity in cell proteomes. HEK293T soluble proteomes were treated with SuFEx and SuTEx probes. a) Global reactivity [total number of tyrosine (Y) and lysine (K) sites] and specificity (Y/K ratio) of probe-labeled sites from LC-MS chemical proteomic experiments. A bar graph depiction of reactivity and selectivity data can be found in Fig. 2.17b) Bar plot showing distribution of HHS-482-modified sites (high confidence sites; Byonic score > 600) against nucleophilic amino acid residues detected in proteomes. c) High overlap of tyrosinemodified sites from proteomes treated with sulfonyl-triazoles (HHS-482) compared with fluorides (HHS-SF-1). d) Comparison of probe-modified tyrosine sites from LC-MS chemical proteomic studies using 1,2,4-sulfonyl-triazoles. Each 1,2,4-sulfonyl-triazole

probe was able to modify unique tyrosine sites to increase overall tyrosine coverage. All data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne and Hsu.

Figure 3.17. Bar plot depiction of global tyrosine reactivity and selectivity of SuTEx and SuFEx probes shown in Fig 3.16.a. Data acquired by Hahm and Toroitich; Analysis conducted by Borne and Hsu.

Figure 3.18. Bar plot of the number of hyper-reactive (high nucleophilicity) and quantified tyrosines per protein that contained at least a single hyper-reactive tyrosine. Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne and Hsu.

Figure 3.19. SuTEx probes target reactive catalytic and non-catalytic tyrosines of enzymes. A) Crystal structure of human GSTP1 (grey, PDB accession code 6GSS) shows tyrosine 8 (Y8) is located in the GSH binding site. B) Loss of biochemical activity in GSTP1 Y8F mutant supports tyrosine 8 as a catalytic residue. Biochemical activity of recombinant GSTP1-HEK293T proteomes (1 mg/mL) was assessed using a substrate assay measuring GSTP1-catalyzed conjugation of GSH to BDNB (10 min, 37 °C). See Fig. 3.20 for additional details. Data are shown as mean + s.e.m,; n=7 biologically independent experiments. C) Crystal structure of human DPP3 (grey, PDB accession code 3FVY)

showing location of residues involved in zinc metal binding (H450, H455, E508), the catalytic glutamate (E451), and a non-catalytic tyrosine 417 (Y417) identified by SuTEx. Positively-charged arginines (R548, R572) are found in close proximity to Y417. D) Recombinant DPP3- and Y417F mutant-HEK293T soluble proteomes (1 mg/mL) showed comparable activity in a peptidase substrate assay supporting Y417 as a non-catalytic tyrosine. Data are show as mean + s.e.m,; n=4 biologically independent experiments. Work conducted by Brulet.

Figure 3.20. GSTP1 biochemical substrate assay. GSTP1 catalytic activity was evaluated by monitoring transfer of glutathione (GSH) to 1-bromo-2,4-dinitrobenzene (BDNB), which produces a dinitrophenyl thioether that can be detected spectrophotometrically by measuring absorbance at 340 nm. Scheme generated by Brulet and Hsu.

Figure 3.21. Substrate assay for evaluating DPP3 tyrosine 417 mutant. A) Crystal structure of human DPP3 (grey, PDB accession code 3FVY) showing location of residues involved in zinc metal binding (H450, H455, E508), the catalytic glutamate (E451), and a non-catalytic tyrosine 417 (Y417) identified by SuTEx. Positively-charged arginines (R548, R572) are found in close proximity to Y417. B) DPP3 cleaves Arg-Arg β - naphthylamide substrate to release the colored naphthylamide product that can be detected spectrophotometrically by measuring fluorescence at 450 nm. Work conducted by Hsu.

KY-2-42

KY-2-48

0

n-butylamine adduct KY-2-42 (9)

∵s. O Ň

Ĥ

HHS-475

Overlay of HPLC traces from individual reaction components (1 mg/mL)

2 3 7 8 0 1 4 5 9 6 (Retention time, min)

UV Absorbance

Figure 3.22. Overlay of individual HPLC traces at 1 mg/mL concentrations to show chromatographic resolution of reaction components: caffeine (sky blue), HHS-475 (red), HHS-SF-1 (blue), KY-2-42 (orange, n-butylamine-probe adduct), HHS-482 (pink), KY-2-48 (green, p-cresol-probe adduct). Caffeine was spiked into each sample as an internal standard to control for run-to-run variations in HPLC analysis (UV detection at 254 nm) of SuTEx and SuFEx reactions. Data shown are representative of two independent experiments (n=2). Work conducted by Hahm and Yuan.

Figure 3.23. Stability of sulfonyl probes in DMSO and aqueous/solvent mixtures. DMSO solutions of HHS-475 (20 mM), HHS-SF-1 (20 mM), and HHS-482 (10 mM) were prepared and HPLC analysis of these probes measured at the indicated time points. Negligible degradation, as judged by reduction of probe signal, was observed after 24- and 48-hours incubation in DMSO or DMF:ACN:PBS (4:6:1, (v/v)) at room temperature. See Supplementary Methods for additional details of the stability assay. DMSO: dimethyl sulfoxide, DMF: dimethylformamide, ACN: acetonitrile, PBS: phosphate-buffered saline. Data shown are representative of three independent experiments (n=3). Work conducted by Hahm and Yuan.

Figure 3.24. Triazole LG enhances phenol reactivity of sulfonyl probes in solution. a) A mixture of HHS-475 (peak 3), HHS-SF-1 (peak 4), and HHS-482 (peak 7) was incubated with p-cresol in the presence of increasing amounts of tetramethylguanidine (TMG) base and time dependent covalent reaction monitored by reduction of respective probe signal. Formation of the common p-cresol-probe adduct (peak 8) was confirmed by retention time that matched our synthetic standard KY-2-48 (Fig. 2.22). Colored arrows denote the time points when each respective probe was consumed, and the asterisks denote time points corresponding to substantial but not complete probe depletion. b) Reduced reactivity of n-butylamine against sulfonyl probes under high TMG conditions (3.3 equivalents). Formation of the n-butylamine-probe adduct (peak 9) was validated by retention time that

matched our KY-2-42 synthetic standard (Fig. 2.22). See Methods for additional details. Data shown are representative of three independent experiments (n=3). Work conducted by Hahm and Yuan.

Figure 3.25. Comparison of SuTEx and SuFEx reactivity against nucleophiles in solution.

Time-dependent reactions between p-cresol or n-butylamine with a mixture of HHS-475 (peak 3), HHS-SF-1 (peak 4), and HHS-482 (peak 7) under increasing amounts of TMG base. Formation of the corresponding p-cresol-probe (peak 8) or n-butylamine-probe products (peak 9) was confirmed by retention times that matched the synthetic standards KY-2-48 and KY-2-42, respectively (Fig. 2.22). Std: internal standard, Caffeine, LG: leaving group of HHS-482 (3-(4-methoxy phenyl)-1,2,4-triazole) from covalent reaction, TMG: tetramethylguanidine. Data shown are representative of three independent experiments (n=3). Work conducted by Hahm and Yuan.

Figure 3.26. Chemoselectivity of sulfonyl probes against p-cresol and n-butylamine in solution. Reaction of individual sulfonyl probes against a mixture of n-butylamine and p-cresol mixture. Condition A shows the traces of a mixture of n-butylamine and p- cresol of 5:1 ratio under catalytic TMG (0.5 equivalents). Condition B entails the reaction of the

sulfonyl probes with a mixture of equivalent amounts of n-butylamine and p-cresol under catalytic amount of TMG (0.5 equivalents). Red arrows show formation of p- cresol-probe product (peak 8) and blue arrows show formation of n-butylamine-probe product (peak 9) under respective reaction conditions. Std: internal standard, caffeine, LG: leaving group of HHS-482 (3-(4-methoxy phenyl)-1,2,4-triazole) from covalent reaction, TMG: tetramethylguanidine. Data shown are representative of three independent experiments (n=3). Work conducted by Hahm and Yuan.

Figure 3.27. Schematic of a SuTEx platform for global tyrosine phosphoproteomic studies. Activation of tyrosine phosphorylation (pY) using a general tyrosine phosphatase inhibitor (pervanadate) will reduce availability of tyrosines (Y) for SuTEx probe labeling, which can be readout by quantitative chemical proteomics (SILAC). Scheme generated by Hsu.

Figure 3.28. Concentration-dependent activation of global tyrosine phosphorylation. A549 cells were treated with vehicle (PBS) or pervanadate at the indicated concentrations for 30 min followed by cell lysis in PBS + protease and phosphatase inhibitors. Activation of global tyrosine phosphorylation was assessed by western blot analysis with a phosphotyrosine monoclonal antibody (P-Tyr-100). Equivalent protein loading was confirmed using an antibody against GAPDH. Data shown are representative of two experiments (n=2 biologically independent experiments). Work conducted by Hahm.

Time-course for pervanadate treatment (100 µM)

Figure 3.29. Time-dependent activation of global tyrosine phosphorylation. A549 cells were treated with vehicle (PBS) or pervanadate (100 μ M) and lysed in PBS + protease and phosphatase inhibitors at the indicated time points. Global tyrosine phosphorylation activation measured by western blot analysis using a phospho-tyrosine monoclonal antibody (P-Tyr-100). Equivalent protein loading was confirmed using an antibody against GAPDH. Data shown are representative of two experiments (n=2 biologically independent experiments). Work conducted by Hahm.

Figure 3.30. Chemical phosphotyrosine-proteomics by SuTEx. a) Western blot analysis confirming activation of global tyrosine phosphorylation (detected via a phospho-tyrosine monoclonal antibody, P-Tyr-100) with pervanadate treatment conditions of A549 cells (100 μ M, 30 min) used for chemical proteomic studies. b) Plot of HHS-475-modified tyrosine sites (represented by individual circles) as a function of SILAC ratios (SR, light (PBS)/heavy (pervanadate or PER)). Size of circles reflect the HTP score (PhosphoSitePlus). Tyrosine sites were further segregated into pervanadate-insensitive (PerI) and -sensitive (PerS) groups based on SR <2 or >2, respectively. Soluble proteomes from pervanadate activated-A549 cells were labeled with HHS-475 (100 μ M) for 30 min at 37 °C. c) Bar plot showing trend towards increased number of phosphotyrosine annotations (HTP >10) on tyrosine sites with enhanced pervanadate sensitivity. Validation

that blockade of HHS-475 labeling (d) of individual tyrosine sites on STAT3 (Y705), CTNND1 (Y228), and PKM (Y105) coincides with increased phosphorylation at respective sites with pervanadate activation (e). Equivalent protein loading was confirmed by western blot analysis of non-phosphorylated protein counterparts. See Methods for additional details of pervanadate activation and phosphotyrosine western blot procedures. All data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne; Gel work conducted by Hahm and Toroitich.

Figure 3.31. Chemical phosphotyrosine-proteomics by HHS-482. (A) Plot of HHS-482modified tyrosine sites (represented by individual circles) as a function of SILAC ratios (SR, light (PBS)/heavy (pervanadate or PER)). Size of circles reflect the number of phosphotyrosine high throughput annotations on PhosphoSitePlus (HTP score). Tyrosine sites were further segregated into pervanadate-insensitive (black circles) and -sensitive (red circles) groups based on SR <2 or >2, respectively. Soluble proteomes from pervanadate activated-A549 cells were labeled with HHS-482 (100 µM) for 30 min at 37°C. (B) Bar plot showing trend towards increased phosphotyrosine annotation (HTP >10) in tyrosine sites with enhanced pervanadate sensitivity. (C) Validation that blockade of HHS-482 labeling of individual tyrosine sites on STAT3 (Y705), CTNND1 (Y228), and PKM (Y105) coincides with increased phosphorylation at respective sites with pervanadate activation (see Fig 7F). See Table S1 for SR values of tyrosines sites detected by chemical proteomics. Data shown are representative of two experiments (n=2 biologically independent experiments). Data acquired by Hahm and Toroitich; Analysis conducted by Borne; Gel work conducted by Hahm and Toroitich.

Figure 3.32. SuTEx probe treatment of proteomes from pervanadate-treated cells does not displace phospho-tyrosines. A549 cells were treated with vehicle (PBS) or pervanadate (100 μ M, 30 min) followed by lysis in PBS + protease and phosphatase inhibitors. Proteomes from pervanadate-treated cells were treated with either HHS-482 or HHS-475 (100 μ M of SuTEx probe) for 30 min at 37 °C followed by western blot analysis of individual tyrosine sites on STAT3 (Y705) and PKM (Y105). Treatment with either HHS-482 or HHS-475 did not affect phosphotyrosine signals indicating that SuTEx probes do not non-specifically displace phosphates from tyrosines. See Methods for additional details of western blot analyses. Data shown are representative of two experiments (n=2 biologically independent experiments). Work conducted by Hahm.

Chapter 4. Development of Computational Methods for Chemical Probe Mass Spectrometry Data

CPASS was developed and applied to datasets ultimately published in: Jeffrey W. Brulet, Adam L. Borne, Kun Yuan, Adam H. Libby and Ku-Lung Hsu Journal of the American Chemical Society, 142(18), pp.8270-8280.

4.1 Abstract

Performing effective site-specific activity-based protein profiling (ABPP) depends on the ability to confidently identify and quantify sites of probe modification and the availability of computational tools to interpret the results. Tools built using the amino acid level specificity of this approach have the potential to reveal new insights about the probe and probe targets. Chemical Probe Analysis Suite for Site-specific Mass Spectrometry (CPASS-MS) is versatile toolkit built in the galaxy framework to provide confidence in targets identified and analyze the targets based on the information gained by discerning the site of modification. Using this approach we show the specificity of ATP-acyl phosphate for the kinase domain, profile SuTEx lysine reactivity, illustrate the ability to change the proteome reactivity of SuTEx ligands, and screen SuTEx fragment electrophiles *in silico*.

4.2 Introduction

The ABPP techniques presented thus far have been used to identify targets of a known inhibitor, profile a global tyrosine probe across several proteomes, and monitor phosphotyrosine abundance. This work combined with work other on ABPP experimental strategies continue to expand the capabilities of chemical biology techniques^{21,26,27}. Fragment electrophile competitive ABPP is another technique used to screen covalent small molecules to identify their targets across a proteome^{27,28}. This technique enables the discovery of important ligands for difficult to access target as well as provide new modalities to study well known targets²¹.

The analysis of the such data is complex even when compared to other ABPP strategies as it is usually paired with various multi-plexing techniques (SILAC, TMT) to semi-quantitatively compare peptide abundances^{26,29,36}. This dataset does not rely on various tryptic peptides to identify a protein. Instead, it uses a probe modified MS2 or MS3 spectra from a few peptides to identify the site modified^{19,29}. Gaining deeper insights into this type of data requires the optimization of coverage while minimizing false positives to produce reliable and verbose datasets.

Once the sites have been identified and quantified they can be used with a series of computational tools to identify important features in the data^{27,91,164}. Tools like gene ontology and gene set enrichment have been used to find important protein groups targeted by the ABPs or fragment electrophiles^{91,169}. Yet, these tools do not take advantage of the additional insights gained by knowing the site of modification. Recently a few tools have become available that do^{90,170}, but this is far from exhausting the potential of being able to

survey specific sites. Thus, to gain deeper insights new tools are needed that are built to harness the site-specific information gained using a chemical probe.

Collectively these issues represent a need in the chemical biology field for tools that can address the challenges of site-specific proteome profiling while leveraging it to make discoveries. To this end we created Chemical Probe Analysis Suite for Site-specific Mass Spectrometry (CPASS-MS) a galaxy¹⁷¹ integrated tool kit for identifying probe modified sites and taking advantage of site-specific data (Fig. 4.1). Here we use this analysis suite to profile the ATP-acyl phosphate probe, profile the lysine reactivity of SuTEx probes, perform competitive ABPP experiments with SuTEx fragment electrophiles and conduct an *in silico* SuTEx fragment electrophile screen. The versatile nature of the toolkit provides the methods to perform all these tasks within as single framework as well as develop workflows to reproducible perform the analysis.

4.3 Materials and Methods

SILAC cell culture. SILAC cells were cultured at 37 °C with 5% CO2 in either 'light' or 'heavy' media supplemented with 10% dialyzed fetal bovine serum (Omega Scientific), 1% L-glutamine (Fisher Scientific), and isotopically labeled amino acids. Light media was supplemented with 100 μ g ml–1 L-arginine and 100 μ g ml–1 L-lysine. Heavy media was supplemented with 100 μ g ml–1 [13C 15N] L-arginine and 100 μ g ml–1 [13C 15N] L-lysine. Labelled amino acids were incorporated for at least five passages before utilizing SILAC cells for experiments. Media was aspirated and cells washed with cold PBS (2X) before scraping from plates. Cells were transferred to microfuge tubes and pelleted by

centrifugation at 500 x g for 5 min, and snap-frozen using liquid N2 and stored -80 °C until further use.

Gel-based chemical proteomic assay. Cell pellets were lysed in PBS and fractionated (100,000 x g, 45 min, 4 °C) to generate soluble and membrane fractions. Protein concentrations were determined using Bio-Rad DC protein assay and adjusted to 1 mgml-1 in PBS. Proteome samples (49 μ L aliquots) were treated with DMSO vehicle or indicated concentration of SuTEx fragment (1 μ L, 50X stock in DMSO) for 30 min at 37 °C. Samples were then treated with HHS-482 probe (1 μ L, 2.5 mM stock in DMSO) for 30 min at 37 °C. Probe labeled samples were conjugated to rhodamine-azide (1 μ L, 1.25 mM stock; final concentration of 25 μ M) by copper-catalyzed azide-alkyne cycloadditions (CuAAC) for 1 hr at room temperature followed by SDS-PAGE and in-gel fluorescence scanning as previously described¹⁷².

Live cell evaluation of sulfonyl-triazole fragments. Cells grown to ~90% confluency in 10 cm plates were treated with DMSO vehicle or SuTEx fragment (10 μ l of 1,000X stock) in serum-free media for the indicated concentrations and times at 37 °C with 5% CO2. After treatment, cells were washed with cold PBS twice before collection and preparation for gel-based chemical proteomic evaluation as described above. For LC–MS studies, protein concentrations were normalized to 2.3 mg ml–1 and 432 μ l (for 1 mg final protein amount) were used for sample preparation as detailed below.

Preparation of SILAC proteomes for liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Heavy and light proteomes (432 µl of each) were diluted to 2.3 mg ml–1 in PBS and sample aliquots (432 µl) were treated with SuTEx fragment at the indicated concentrations (5 µl, 100X stock in DMSO), mixed gently and incubated for 30 min at 37 °C. Samples were then treated with HHS-482 (5 µL, 5 mM stock in DMSO) for 30 min at 37 °C. Probe-modified proteomes were conjugated to desthiobiotin-PEG3-azide followed by enrichment of probe-modified peptides for nanoelectrospray ionization– LC–MS/MS analyses as previously described¹⁷².

Software Design. The production server of CPASS-MS is built on a CentOS operating system. CPASS-MS uses SciPy, Statsmodels, Pandas and xlrd external python packages as well as the plyr, dplyr, readr, stringr, reticulate, ggplot2, htmlwidgets, d3heatmaps and cdgsr external R libraries.

Data Format. CPASS-MS accepts Byonic XLSX files as well as MZID files generated by other search software¹⁷. Additionally, skyline output can be used to incorporate Isotope Dot Products (IDOTP), Ratio Dot Products (RDOTP), as well as metabolic labeling ratio calculations⁸⁶. Spectral files are provided as targeted Mascot Generic Format (MGF) files produced by Byonic searches. CPASS-MS works with Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and Tandem Mass Tag (TMT) quantification methods^{48,49}.

Processing of Search Results into Probe Modified Sites. In order to access the rest of

the tools C peptide spectra matches (PSMs) are converted to sites. Since several peptides can be created from oxidation events, missed cleavages (particularly for lysine probes), and post-translational modifications (PTMs) a single probe modified amino acid on a protein can produce various peptides¹⁶. These various peptides are combined into sites to create the most complete representation of the quantitative value (SILAC ratio, or reporter ion abundance) for each probe modified amino acid. All probe modified peptides provided to CPASS-MS are converted to a UniprotID_Residue (i.e. P9999_10) format to represent the site. The specified quantitative value for each site will be determined by taking the median of all peptides that represent that site.

This tool allows for the use of specific filters from the various data sources. Some basic thresholds can be applied for all searches, this includes parts-per million (ppm) error of precursor ions, requiring specific cleavage, minimum and maximum peptide length, and uses the Byonic Score to filter based on quality of PSM¹⁷. If skyline is used it can also include filtering by IDOTP, and RDOTP (SILAC only)¹⁰⁵.

CPASS-MS can use the provided spectral information to ensure that spectra contain specific diagnostic adducts. Probes during High-Energy Induced Dissociation (HCD) are fragmented in predictable ways. This frequently produces highly abundant ions that can be used to ensure the peptide of interest is probe modified. Additionally, these ions are frequently ignored by the search algorithms. Using this as a filter can provide confidence when looking at peptides that produce few fragment ions (like shorter peptides) that have lower database search scores¹⁵. Diagnostic adducts are unique to the probe, and the process of Copper-Catalyzed Click Chemistry produces a 240.1704 ion that can be used with any

probe enriched using this technique (ion d2 Fig. 3.1.a, 3.5-3.9).

Replicates are specified using a format file that matches the search result mzid to an experimental design. The resulting data is in a tabular format usable by the rest of the tools in CPASS-MS and it includes the probe modified site, median or mean quantitative value across replicates, standard deviation, standard error, gene name, the treatment condition, all peptides attributed to the site, all scans that represent the site as well as the best scoring peptide spectra match for each peptide.

Basic Filtering of CPASS-MS Formatted Data and Cross Treatment Thresholds. CPASS-MS formatted data can then further be filtered by the treatment conditions, or the quantitative value. One treatment's quantitative value can be used to filter any number of the other treatments (i.e. In SILAC data a Light Probe treated, Heavy No Probe treated control can be filtered for a SILAC Ratio greater than 5 and the other treatments can be filtered by sites that meet this threshold in this control)³⁶. This tool can also be used to separate treatment conditions into their own CPASS-MS formatted file.

Domain Enrichment Analysis. Since the CPASS-MS works with specific sites of modification it enables the identification of domains that are labeled. Identification of enriched domain is done as described in chapter 3, but CPASS-MS includes the ability to adjust the Q-value cutoff used to make the graph as well as use a hypergeometric test as well as a binomial test. This option was included as it is a more stringent option that more accurately represents the underlying distribution:

$$P = \frac{\binom{n(D)}{k}\binom{N-n(D)}{n-k}}{\binom{N}{n}}$$

Hypergeometric test

where n(D) is the number of domain occurrences in the database, N is the total number of domains in the reference database, k is the number of a specific domain in the dataset, and n is the total number of domains annotated in the dataset. P-values are corrected for a 1% false discovery rate using Benjmani-Hochberg correction for multiple comparisons. CPASS-MS will also produce a bar graph, a complete list of domain annotations, and the statistical test results.

Subcellular Location Decision Tree Analysis. Since chemical probes must penetrate cellular barriers to access certain proteins for modification CPASS-MS uses a decision tree algorithm to identify the most accessible subcellular location for the protein modification (Fig. 3.2). A protein that can be detected in various compartments would receive allocation assignment matching the most accessible location. For example, MAPK1 has been shown to translocate from the plasma membrane through the cytosol to the nucleus¹⁷³. MAPK1 would be considered a plasma membrane protein using this subcellular location analysis algorithm. Membranes of organelles are grouped into respective organelles because a molecule can interact with membrane proteins without necessarily passing through membranes. A protein is excluded from the analysis if it does not have a CCGO annotation. The tool produces a bar graph with y-axis of annotated compartment in dataset as a percent of database entries and as a percent of overall dataset entries with the fill of each bar

representing the other, a count file, and a complete list of proteins with all CCGO terms and final designations.

pKa Analysis of Probe Modified Sites. The propka runner tool in CPASS-MS can analyze the pKa and Buried percent of a structure modified sites using propka¹⁷⁴. The pka grapher combines this data with a CPASS-MS formatted file compares pKas of modified aimino acid to pKas of unmodified amino acids of the same species (i.e. SuTEx probes modify tyrosine thus it will be compared to other tyrosine). The statistical significance is determined using a Welch t-test as there are unequal sample sizes and the variance is unequal. It also compares Buried percent with statistical significance determined using a Wilcoxon rank-sum test. This method can be applied to a single protein structure or a group of structures. Note that not all proteins labeled will a have a crystal structure that can be used for this analysis. This tool will produce bar plot comparing the two groups for buried percent and propka, it will also produce a Manhattan plot of sites, and the propka output for every protein structure provided. Running a single file will produce a more detailed propka report for the structure. The get best structure tool can be used to aid in identifying optimal crystal structures but should be manually validated for site structure amino acid position matching and potential mutations that would produce changes in protein activity.

Post-Translation Modification Database Comparisons. Various probes will label amino acids that are also sites of PTMs (i.e. SuTEx modifies tyrosine, where phosphorylation occurs). This tool will compare the sites to the Phosphosite Plus¹⁵³ databases for

phosphorylation, ubiquitination, acetylation and methylation. Since several of these PTMs are on lysine tool can be rerun using different PTMs. The tool will produce a list of all sites that have the post-translational modification and pie chart showing what percent of sites have the PTM chosen.

DrugBank Database Comparison. Chemical probes are used to develop high throughput screening and activity-based screening approaches for targets that have been previously difficult to access. This tool aims to understand the current ligand and inhibitor landscape of the probe modified proteins by comparing the dataset to the DrugBank Databases¹⁵². This tool will provide the database entry information as well as provide a pie chart of the proteins with FDA approved and non-FDA approved ligands from DrugBank.

Interactive Heatmap Generator. This tool will generate a HTML and a static image heatmap for all the various treatments in the datasets. This tool has a hard maximum of 10.0 and will only show sites seen in all treatments. The heatmaps is clustered on the y and x axis using hierarchical clustering.

MEME File Formatter. Using a CPASS-MS formatted file a MEME formatted fasta file can be generated for the amino acid sequences flanking the probe modified sites¹⁷⁵. The length of the sequences is specified by the user.

Site Specific Docking Screen. The tool takes a list of compounds and their SMILES

string¹⁷⁶ and converts them into 3D structures using open babel. The compounds are then docked to a user provide protein structure using AutoDock Vina¹⁷⁷. The docking region is determined by the probe modified site provided by the user. The tool returns an excel with the binding affinity of all conformations for all structures docked and a zip file containing all the conformations for the compounds provided. These can be used with molecular visualization software (i.e. PyMOL¹⁷⁸) for further investigation.

4.4 Results

4.4.1. Development of CPASS-MS

To take advantage of the site-specific features and perform reproducible analysis of probe modified mass spectrometry data we developed CPASS-MS (Fig. 4.1). It is written in R and Python and integrated into the Galaxy framework for data management and use of built-in workflows¹⁷¹. The software integrates peptide spectra matching (PSM) software results with skyline quality controls to identify probe modified sites and quantifies those sites using SILAC and TMT labeling strategies. This processing step produces a CPASS-MS formatted dataset that can be used with all tools in the analysis suite.

The tools include an integrated enrichment analysis tools for gene ontology and MEME motif analysis. In addition, there are custom tools to determine amino acid specificity and perform a domain enrichment analysis. These tools are designed for sitespecific mass spectrometry datasets generated using chemical biology techniques. To investigate the component of the cell a probe or ligand reaches a subcellular location analysis for live cell treatments was developed that categorize protein targets based on their most accessible subcellular compartment. The integration of propka tool performs pKa and depth calculations for structural data that is then compared to probe modified site data for identification of unique microenvironments of probe labeled peptides. When performing competitive ABPP experiments the quantitative values can be used to generate a clustered interactive heatmap for identification of patterns in inhibitor profiles. Finally, there is an integrated AutoDock Vina docking tool that screens series of compounds against a 3D protein structure with the docking region defined by the probe modified site of interest.

4.4.2. Analysis of ATP-acyl phosphate data

Results from previous studies have used a list of kinase sites aggregated from previously annotated MS2 spectra to filter results for only kinases. To identify sites independent of these lists we searched a selection of previously published datasets (Table 4.1) using byonic software as described in chapter 3 but using a lysine variable modification of $(+196.1212 \text{ Da})^{36,179}$. Next sites are identified using CPASS-MS processing. This resulted in 89 high confidence ATP-acyl phosphate modified sites that had ATP competition SILAC Ratio (SR) > 5 across 83 proteins (Table 4.2).

Using this reanalyzed data, we performed a domain enrichment analysis (Q-value < 0.01) on the ATP competitive sites and found the protein kinase domain (PRU00159) to be the most enriched domain (Fig 4.3.a) with 24 sites from 23 proteins of a possible 512 annotated kinase domains. The kinase domain of CDK5 was labeled on both lysine 33 and 128. The only other enriched domain was the Stathim-like domain (SLD, PRU00998) with 3 sites from 3 proteins of a possible 5 annotated (Table 4.3)¹⁸⁰. We performed

ubiquitination, methylation, and acetylation PTM database comparison (Fig. 4.3.b-d) and found that the sites were frequently ubiquitinated with 55 site and rarely methylated having only 1 site. Acetylation was in the middle with 25 sites.

4.4.3. HHS-465 and HHS-475 live cell lysine coverage

It was previously shown that lysine was the second most likely amino acid modified by HHS-465 and HHS-475 (Figure 3.4). We analyzed the live cell datasets from Chapter 3 changing our byonic search parameters to identify lysine sites by setting a variable modification of (+635.27374) on both tyrosine and lysine. Byonic frequently improperly annotated a c-terminal lysine modification on a peptide that had a tyrosine modified site so peptides that had an c-term lysine modification and a tyrosine modification in the same sequence was removed in R prior to use in CPASS-MS. We then performed CPASS-MS processing manually and identified ~4,100 distinct lysine sites (corresponding to ~1,200 proteins), in total, across membrane and soluble fractions in all cell lines tested (HEK293T and Jurkat, Table 4.4). HHS-465 had the most unique targets with ~40% of the targets being unique compared to ~20% for HHS-475 (Fig 4.4.a).

Domain enrichment analysis (Q-values < 0.01) of all sites found that RNA recognition motif (RRM, PRU00176) and thioredoxin domain (PRU00691) were highly enriched (Fig. 4.4.b, Table 4.5). Upon performing the drug bank comparison, we found 67% of HHS-465 and HHS-475 live cell lysine labeled proteins were absent from the DrugBank database (Table 4.6, Fig. 4.4.c) compared to 77% of the live cell profiled tyrosine sites (Fig. 3.10.d)¹⁵². Evaluation of probe-enriched domains from the DrugBank
protein group (DBP) was largely overrepresented with domains found in enzymes (thioredoxin and kinases, Table 4.8, Fig. 4.4.c)^{85,181}. By comparison, the non-DrugBank protein (non-DBP) group revealed highly enriched domains including the nucleotide binding RRM and protein-protein interactions domains (PCI¹⁸² and DZF¹⁸³ domains, PRU01185 and PRU01040, Table 4.7). These results largely matched the results seen in the tyrosine profiling of the same live cell data (Fig. 3.10.d).

The probe modified lysines could overlap with sites of ubiquitination, methylation, acetylation as well as other less annotated PTMs. To investigate this, we compared the live cell probe modified sites to respective Phosphosite plus database using the database comparison tool. We found that ~66% of the sites have been previously annotated as sites of ubiquitination (Fig. 4.5.a), few sites were previously annotated as methylation sites (Fig. 4.5.b), and ~33% of sites were sites of acetylation (Fig. 4.5.c). It has not previously been shown that the HHS-465 and HSS-475 probes are able to access all subcellular locations thus we analyzed the live cell sites to get a breakdown of proteins with modified lysines across different subcellular compartments. As expected, we identified proteins in all cellular compartment with ~13% of the proteins that could be modified in the mitochondria were modified. The most frequent subcellular location for the probe to modify was the cytoplasm as ~60% of the proteins that were modified were found in the cytoplasm (Fig. 4.5.d), Table 4.8).

4.4.4. Competitive ABPP using CPASS-MS

The common SuTEx electrophile core was structurally elaborated with diverse small molecule binding elements on both the adduct group (AG) and LG to create library

members with an average molecular weight of 336 Da (Fig 4.6). Fragments were created with structural elements bearing differing electron-withdrawing (EWG) or -donating (EDG) properties to test substituent effects on thr SuTEx reaction mechanism. Functional groups that are EWG by both resonance and polar interactions (cyano) as well as substituents (fluoro) with opposing effects from resonance (EDG) and polar (EWG) components were represented in our library¹⁸⁴. We also included alkyl groups (cyclopropyl) for direct comparison with any substituents. Competitive ABPP was used to investigate AG/LG effects on SuTEx fragment reactivity in complex proteomes (Fig. 4.7). In brief, isotopically light and heavy soluble proteomes from DM93 melanoma cells cultured by stable isotopic labeling by amino acids in cell culture (SILAC144) media were used for quantitative liquid chromatography-mass spectrometry (LC-MS) studies. Light and heavy DM93 proteomes were treated with dimethyl sulfoxide (DMSO) vehicle or SuTEx fragment (50 µM, 30 min, 37 °C), respectively, followed by labeling with the tyrosine-reactive probe HHS-482¹⁷² (50 µM, 30 min, 37 °C) and copper- catalyzed azidealkyne cycloaddition (CuAAC) conjugation of a desthiobiotin-azide enrichment tag. Proteomes were digested with trypsin protease, HHS-482-modified peptides were enriched by avidin chromatography and analyzed by high-resolution LC-MS/MS. Analysis of the dataset was performed as described in section 3.3.

To evaluate substituent effects on proteome activity, we compared reactivity profiles of each respective SuTEx fragment across >1500 total distinct HHS-482 modified tyrosine sites from >650 detected proteins and in a heatmap from the interactive heatmap tool (Fig. 4.8). Fragments were screened across independent biological replicates (n = 2-3)

and high-quality tyrosine site annotations were identified by detection in at least a single biological replicate from each fragment dataset, probe-specific enrichment (HHS-482 probe/DMSO SILAC ratio (SR >5), and quality control confidence criteria of Byonic score > 300 106, 1% protein false discovery rate (FDR), and <5 ppm mass accuracy in order to minimize the potential for false positives. Database search results were filtered, converted to sites and quantified using skyline and CPASS-MS processing. SILAC ratios (SR) from competitive studies (Light – DMSO/Heavy- fragment) were used to identify fragment-competed tyrosine residues as sites showing >75% reduction in enrichment by HHS-482 compared with DMSO vehicle control (i.e. liganded tyrosines, SR >4; Fig. 4.9.a and b). In total, we identified 305 liganded tyrosines on 213 distinct proteins, which corresponded to ~30% and ~44% of total quantified tyrosines and proteins, respectively (Fig. 4.10.a); these percentages are comparable with ligandability measures reported for cysteines¹⁸⁵.

Liganded tyrosines showed clear structure-activity relationships (SAR) with the SuTEx fragment library (Fig. 4.9.a). Comparison of JWB150, JWB152, and JWB146 uncovered relative trends in proteomic reactivity that suggest EWGs on the AG as a common feature of SuTEx fragments with higher liganded tyrosine frequencies (Fig. 4.9.a and c). These data suggest that in addition to driving reactivity, structural modifications on the AG can contribute to binding events that enhance fragment-tyrosine interactions of compounds sharing a common LG. The differences in reactivity profiles of JWB198 and JWB202, which are differentiated by AG structure on a common LG scaffold, further support recognition as a contributor of SuTEx fragments including JWB142 and JWB146 with a

reduced liganded tyrosine frequency while retaining high activity (SR >6) against tyrosine competed sites on YWHAE 148 (Y49) and PLD3 149 (Y437), respectively (Fig. 4.9.a and c). Finally, we discovered that the cyclopropyl-AG-modified fragment JWB131 was largely unreactive against the proteome (Fig. 4.9.a). The liganded sites had a relatively high previously drugged percent at 50% of targets having a known ligand (4.10.b).

Next, to compare the subcellular accessibility of the lignands we treated SILAC DM93 cells with JWB152 or JWB198 to determine whether these SuTEx fragments could ligand Y8 of endogenous GSTP1 in living systems (50 μ M compound, 1.5 h, 37 °C). Cells were pretreated with DMSO vehicle or SuTEx fragments followed by cell lysis, HHS-482 labeling of proteomes, and quantitative chemical proteomics (Fig. 4.7). Database search results were filtered, converted to sites and quantified using skyline and CPASS-MS processing. Using the subcellular location tool, we found that JWB152 and JWB198 showed comparable ability to modify proteins found in intracellular compartments including the cytosol and nuclear lumen (Fig. 4.11).

In summary, our chemical proteomic studies highlight the advantage of modifying the AG and LG on SuTEx fragments for tuning reactivity and selectivity at tyrosine sites on proteins (Fig. 4.8 and 4.9.a). In contrast with previous efforts to develop globally reactive probes61, our current efforts identified SuTEx fragments with reduced proteome reactivity while retaining high efficiency for competing at tyrosine sites on select proteins (JWB202, and JWB198; Fig. 4.10.a and 4.9). In addition, we verified that the fragment electrophiles have the capacity to reach every subcellular compartment of live cells (Fig. 4.11).

4.4.5. Domain enrichment comparison of hyperreactive and liganded sites

Given that different probes and covalent libraries can access new targets for study and investigation we wanted to investigate the different domain enrichment profiles between another broad probe study and SuTEx. We took the Cravatt group's published hyper-reactivity results obtained by treating SILAC MDA-MB-231 proteomes with sulfotetrafluorophenyl (STP)-alkyne at 1 mM heavy and 0.1 mM light followed by coppercatalyzed azide-alkyne cycloaddition (CuAAC) conjugation of a TEV-cleavable biotin enrichment tag. Proteins were enriched by avidin chromatography digested on bead with trypsin protease, STP-alkyne-modified peptides were eluted using TEV protease and analyzed by high-resolution LC-MS/MS²⁷. Using the ratios and sites provided by the study we performed a domain enrichment for lysines with a SR < 2.0 when treated with the two difference probe concentrations. This probe produces a different adduct +464.2491 or +470.26331, for light and heavy versions respectively²⁷ which can be compared to the other probe data using CPASS-MS. We then compared these results to the domain enrichment of hyper-reactive HHS-465 sites described in 3.4.3. While the hyper-reactive STP-alkyne sites enriched tRNA binding WHEP-TRS domain (PRU00531)¹⁸⁶ by modifying both possible domains in the database the SuTEx probe did not label this domain (Table 4.11-12, Fig. 4.12.a). In contrast the HHS-465 SuTEx hyper-reactivite sites enriched the structural Intermediate filament (IF) rod and Calponin-homology (CH) domains (PRU01188, PRU00044)^{187,188}. The only shared enriched domain was the RRM domain (PRU00176, Table 4.12, Fig. 4.12.a).

Next, we performed on a domain enrichment for the liganded sites identified by screening ~30 activated ester fragment electrophiles. In brief, the light lysate was treated with DMSO while the heavy was treated with 50-100 uM fragment electrophile followed by 100 uM STP-alkyne treatment²⁷. All other steps were performed as was done for the hyper-reactivity data. Liganded sites were determined using the ratios and sites from the publication²⁷. Activated ester liganded sites enriched the membrane curvature mediating reticulon domain (PRU00170) and the SAM-dependent methyltransferase TRM10-type domain (PRU01012, Table 4.13, Fig. 4.12.b). In addition, the activated ester frequently liganded rare domain as all five of the top domains had less than 10 annotations in the human proteome (Table 4.13). 1,2,4 SuTEx liganded tyrosine sites were enriched for functional domains involved in nucleotide binding (PRU00267, PRU1059), protein-protein interactions (PRU00191, PRU00386), enzymatic reactions (PRU00691, PRU00277), and metal binding (PRU01163, PRU00472, Fig. 4.12.b, Table 4.14).

These data support the importance of molecular recognition for both molecular probes as well as fragment electrophiles. Further, it supports the use of the domain enrichment tool for identifying functionally unique protein components targeted by a covalent molecule.

4.4.6. Nucleophilicity and depth of SuTEx liganded sites

Knowing the exact amino acid modified on a protein enables the comparison of liganded to non-liganded amino acids of the same species (i.e. tyrosine). Using 3D structure information, we can predict both the pKa and depth of all amino acids of a species using propka¹⁷⁴. Using the get best structure tool followed by manual verification we were able to identify 89 structures that featured the liganded amino acid and lacked mutations known to induce conformational or activity changes. All ligands were removed from the structures, and then were analyzed with the pKa analysis tool. We found the liganded sites had a significantly significant decrease in pKa and buried percent (p-value = 0.014, 0.049 respectively, Fig. 4.13a-b, Table 4.15) when compared to other tyrosines on the same structures.

To better understand these features we wanted look specifically at DPP3 and GSTP1 both of which have been shown to lose activity in response to 1,2,4 SuTEx fragment electrophile treatment. DPP3 was not liganded in the initial screen¹⁸⁹ but a ligand was found with a IC50 of 17 μ M¹⁸⁹ and showed mild inhibition at Y417 by mass spectrometry. We found the Y417 had both the features identified by the global propka analysis as it is found at the surface of the protein (0% buried, Table 4.15) with one of the lower pKas quantified (10.75, Fig. 4.13.c). This is likely due to the 3 nearby lysines and arginines identified by propka as contributing to the shift in pKa (Fig. 4.14.d)¹⁷⁴. GSTP1 was liganded at Y7 but it does not show the features identified by the propka analysis. GSTP1 Y7 was one of the highest pKas (14.37) with maximum buried percent (100%, Figure 4.13.c-d, Table 4.15).

Collectively these results suggest that while these general trends might be interesting, they are not an effective threshold for excluding proteins from further consideration. As both proteins were inhibited by nucleophiles despite having opposing features.

4.4.7. In silico screen of SuTEx ligands

DPP3 and GSTP1 being inhibited by fragment electrophiles with greater specificity than the parent 1,2,4 triazole HHS-475 suggested that binding affinity of the ligands may play a role in determining effective ligands for a target of interest. Given the low proteome reactivity of these fragment electrophiles (Fig. 4.9.a and c) increased residence time at the site of binding through increased reactivity may enable covalent modification of a specific site. To look at affinity of molecules we screened all the ligands in the 1,2,4 SuTEx library using both the docking tool and gel based ABPP. We then compared the predicted binding affinity to loss of band intensity upon pre-treatment with a fragment (Fig. 4.14). In brief, HEK293T cell lysates were pre-treated with 100µM inhibitor for 30 minutes at 37° C followed by 50µM of HHS-482, a tyrosine selective 1,2,4-sulforyl triazole probe, for 30 minutes. Samples underwent copper catalyzed azide-alkyne cycloaddition (CuAAC) with rhodamine azide and were resolved by SDS- PAGE (Fig 4.14). Gels were visualized and the total lane fluorescent intensity was normalized to DMSO and compared (Fig. 4.15-4.24, Table 4.16 and 4.17). Inhibitors that decreased lane intensity compared by greater than 30% were removed as they were likely to be broadly reacting molecules. The loss of band intensity and the AutoDock (see Materials and Methods, Table 4.16) calculated binding affinities were z-transformed and compared using a simple linear model in R. Correlation and p-value were calculated using a Pearson's product-moment correlation test.

The GSTP1 affinities showed a statistically significant correlation with the loss of gel band intensity (correlation = 0.40, p-value = 0.0096) while DPP3 screening showed no correlation (correlation = -0.02, p-value = 0.90, Fig. 4.25, Table 4.17). This suggests that

only certain sites can use affinity for predicting inhibition and combined with the results from the propka analysis of these structures it seems the approach performed better on with liganded sites that are buried with increased pKa.

4.4.8 Workflows for analysis in CPASS-MS

One of the major advantages of CPASS-MS on galaxy framework is ability to create workflows for reproducible analysis of datasets¹⁷¹. To this end we generated 3 custom pipelines to reproduce the analysis performed. To perform general profiling of the ATP acyl phosphate probe the process SILAC Probe Data tool was used to integrate the byonic and skyline results. The Filter Data tool performed the ATP cutoff (SR > 5) and the results were analyzed Get Domain Info tool and compared to the 3 PTM databases to produce Fig. 4.3 (Fig. 4.26.a). Another general profiling approach was used to analyze the SuTEx lysine data (Fig. 4.26.b). Since this data was label-free there was no quantification, and the initial dataset was manually CPASS-MS formatted. Get Domain info was run on all sites to produce Fig. 4.4.b while Drug Bank tool was used to produce part of Fig. 4.4.c and split the targets into DBP and non-DBP. The two group were rerun with Get Domain Info to produce the rest of the figure.

A pipeline for the analysis of competitive ABPP data was generated to reproducibly analyze new ligands (Fig. 4.27). After Process SILAC Probe Data a global heatmap was generated using the Heatmap Generator as seen in Fig. 4.8. Once Filtered a liganded only heatmap was generated as seen in Fig. 4.9.a. The Drug Bank Comparison tool and Get Domain Info tool were used to produce Fig. 4.10.b and 4.12.b respectively. As mentioned previously the Get Best Structure tool was used identify structures of liganded protein but these structures were manually verified prior to use downstream. The structure data was manually downloaded and analyzed using the pKa Single/Multi File tools for use in the pKa graphing tool which produce the majority of Fig. 4.13 (a,b,c,e, and f).

These pipelines can be used regardless of the chemical probe used in the study as various parameters can be changed to address differences in the adduct produced from probe modification of amino acids (see Materials and Methods). There are other tools not directly integrated into the pipelines, but all of the tools can use information from the other tools to inform their use (i.e. AutoDock runner uses a Site to define binding region).

4.5 Discussion

The development of CPASS-MS has produced a tool kit with site-specific mass spectrometry at its core. Using approaches like diagnostic adduct and site identification the initial processing can turn a complex list of peptides, quantitative values and spectral data into an accessible format that can tie into various other tools. The custom tools either use the site modified (domain enrichment, pKa grapher, database comparisons, autodock runner and heatmap generator) or are built around the unique way covalent molecules interact with live cells (subcellular location). These tools can provide insight into various forms of ABPP data in reproducible and standardized manner using the workflows as shown. In addition, the plug and play nature of the tools and the CPASS-MS formatted data can be used to integrate new tools into ABPP data analysis workflows.

Using this workflow, we show that the ATP-acyl phosphate is very specific for

protein kinase domains (Fig. 4.3.a). While expected based off the probe design there has always been a lingering question about the possibility of large off-target effects caused by reactivity of the warhead or the various other ATP binding proteins. This result suggest that the catalytic activity of a kinase dramatically increases its chance to be labeled by this probe. The analysis of the different PTMs on lysine likely does not suggest that the ATP acyl phosphate enriches ubiquitinated sites as it is dependent on the frequency of each PTM in cellular system¹⁹⁰. The primary utility of this analysis is ability to identify where a probe might be able to report on a PTM or ligand a PTM site that may be important for activity^{27,189}. This also applies to the PTM analysis of SuTEx lysine sites.

The investigation into the SuTEx lysine sites did not show a great deal of variation when compared to the tyrosine profiling in Section 3.3 but did enrich a couple undrugged domains that were unique to the lysine data namely the DZF the WH1 domains (Fig. 4.4.b)^{183,191}. Thus, if a target features one of these domains targeting a lysine with SuTEx molecule may be an effective strategy. In addition, we were able to show that HHS-465 and HHS-475 are not modifying just cytosolic proteins in live cells (Fig. 4.5.d) which can inform the decision to use a SuTEx warhead in designing an ABP that needs to reach certain targets (see Section 1.2). We also found that the choice of warhead, even among the broad options, enrich different domains at lower doses (hyper-reactivity) or when developing a small covalent inhibitor library (ligandability, Fig. 4.12).

Using CPASS-MS with competitive ABPP of SuTEx derived fragment electrophiles showed the ability to "tune" the warhead using SAR as probe with different adduct and leaving groups showed massive differences in proteome reactivity. This tuning reveals the possibility of using less reactive SuTEx molecules for the liganding or probing of more a specific target or groups of targets. Doing so would require the use of directing elements and medicinal chemistry style elaboration to design molecules for specific targets but our current understanding of how the EDG and EWGs effect the warhead activity suggest that such targeting can be accomplished⁷². In addition, we have shown that the fragment electrophiles can reach any subcellular location in live cells. Another key step in understanding the utility of SuTEx chemistry in probe design and drug discovery.

Finally, we have taken steps to create a predictive model of liganding sites with fragment electrophiles. The revelation that *in silico* docking some probe modified sites with fragment electrophiles can be predictive of inhibition measured using gel-based screening can dramatically increase the throughput for screening of such targets (Fig. 4.24). Further, while far from conclusive the ligandability, pKa and depth analysis suggest that a previously liganded, less nucleophilic target buried in the protein are more accurately predicted using this approach. It follows that docking would only work on a target that require high affinity binding of less reactive fragment to require increase probe site interaction time to perform the covalent reaction⁹³.

4.6 Author Contributions and Pipeline Development

Analysis of previously published ATP acyl phosphate data was conducted by Borne and S. Brodowski. The reanalysis of the lysine data was conducted by Borne. The ligandability studies were conducted by Brulet and analyzed by Brulet and Borne. These results were published in Brulet et al. 2021. Analysis of SuTEx lysine data and Cravatt published STP-alkyne data was performed by Borne. Analysis of depth, pKa, docking and subcellular location was performed by Borne. Gel screening was conducted by Brulet, Borne, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

This final version of the CPASS-MS was reworked to function with any probe and was rebuilt to work with galaxy platform by Borne and S. Brodowski. This enabled the integration of other bioinformatics tools and workflows to conduct reproducible analysis of probe data. The toolkit was combined with new tools for competitive ABPP, subcellular location, site targeted docking, and global propka analysis tools. The reworked pipeline and all tools developed for the analysis of site-specific mass spectrometry make up CPASS-MS.

4.7 Figures

Figure 4.1. Overview of CPASS-MS. Scheme designed by Borne.

Figure 4.2. Subcellular location decision tree. Uses cell compart gene ontology annotations to determine the most accessible compartment. The subcellular compartments used for analyses are as follows: PM: Plasma Membrane, C: Cytosol, SK: Cytoskeleton, M: Mitochondria, N: Nucleus, V: Vesicle, ER: Endoplasmic Reticulum, G: Golgi Apparatus, ML2: Multiple Organelles, MINT: Mitochondrial Lumen, NINT: Nuclear Lumen, VINT: Vesicle Lumen, ERINT: Endoplasmic Reticulum Lumen, GINT: Golgi Apparatus Lumen, ML4: Multiple Organelle Lumens. Corner table shows all final designation for the human Swiss-Prot database using this decision tree. Missing protein had no usable cell compartment annotations. Scheme developed by Borne.

Figure 4.3. Analysis of ATP sensitive sites identified using the ATP-acyl phosphate and CPASS-MS. (A) Enriched domain annotations of ATP sensitive sites (SR > 5) as determined by Q < 0.01 after Benjamini–Hochberg correction of a two-sided binomial test. (B-D) Overlap between ATP sensitive sites that are also ubiquitination (B), methylation (C) and acetylation (D) sites in HEK293T, A549 and H82 cell lines. Original data published in Franks et al. 2017 and Campbell et al. 2018. Analysis conducted by S. Brodowski and Borne.

Figure 4.4. Profile of live cell SuTEx lysine sites (A) Comparison of HHS-465- and HHS-475-lysine-modified sites identified from in situ treatments. (B) Probe enriched domains for all lysine-modified sites detected in situ. (C) Left, comparison of HHS-465 and HHS-

475 in situ probe-modified proteins with DrugBank proteins (DBP group). The non-DBP group consists of proteins that did not match a DrugBank entry. Right, probe-enriched domains from DBP and non-DBP groups. Enriched domain annotations for (B) and (C) are those with a Q < 0.01 after Benjamini–Hochberg correction of a two-sided binomial test. All data shown are representative of two experiments (HEK293T and Jurkat treated with SuTEx probes (100 µM, 2 h, 37 °C, n=2 biologically independent experiments). Data published in Hahm et al. 2020. Analysis performed by Borne.

Figure 4.5. PTMs and subcellular location of lysine-modified sites. (A-C) Overlap between HHS-465 and HHS-475 modified lysine sites that are also ubiquitination (A), acetylation (B) and methylation (C) sites. (D) The number of SuTEx lysine-modified proteins compared with the number of proteins from the Swiss-Prot database for each subcellular compartment (x-axis) using SLA are shown (Proteins in Database, y-axis). The color bars depicts the percentage of SuTEx lysine-modified proteins from each subcellular compared with all liganded proteins quantified in datasets. All data shown

are representative of two experiments (HEK293T and Jurkat treated with SuTEx probes (100 μ M, 2 h, 37 °C, n = 2 biologically independent experiments). Analysis performed by Borne.

Figure 4.6. Chemical structures of a SuTEx fragment library displaying adduct- and leaving-group diversity. Compound synthesized by Bruletm published in Brulet et al. 2021.

Figure 4.7. Quantitative chemical proteomics for evaluating proteome-wide activity of SuTEx fragments. Experimental workflow for quantitative chemical proteomics evaluate fragment reactivity and specificity in proteomes. DM93 cells were cultured in SILAC media supplemented with either "light" 12C, 14N-labeled lysine and arginine (denoted in red) or "heavy" 13C, 15N-labeled lysine and arginine (denoted in blue). Heavy and light DM93 proteomes were treated with DMSO vehicle or SuTEx fragment (50 μ M, 37 °C, 30 min) followed by HHS-482 probe labeling using the same reaction conditions. The resulting SILAC ratios (SR) were quantified using the area under the curve of MS1 extracted ion chromatograms. Non-liganded tyrosines are expected to show equivalent probe labeling intensity in vehicle and fragment treated conditions (left MS1, SR~1). Fragment-competed tyrosines (i.e. liganded tyrosine) are identified by sites showing substantial reduction in enrichment by HHS-482 compared with DMSO vehicle control (right MS1, SR >>1). Scheme generated by Brulet and Hsu.

Figure 4.8. Fragment-based ligand discovery using SuTEx (all tyrosine sites). Heat map showing SILAC ratios (SR) of all quantified tyrosines in chemical proteomic studies configured for evaluating ligand competition. Fragments and liganded tyrosine sites are organized by hierarchical clustering. Data shown are representative of n = 2-3 biologically independent experiments. Data acquired by Brulet and analyzed by Borne.

Figure 4.9. Fragment-based ligand discovery using SuTEx. (A) Heat map showing SILAC ratios (SR) of representative tyrosines competed by fragments and organized by hierarchical clustering. Fragment competition at tyrosine sites was quantified using the area under the curve of MS1 extracted ion chromatograms (EIC) from HHS-482-labeled peptides in DMSO (light, red) versus fragment-treated (heavy, blue) DM93 soluble proteomes. Competitive chemical proteomic studies were performed as shown in Figure S3. Tyrosine sites shown are liganded (SR > 4) by at least 2 fragments with the number of liganded sites and proteins listed for each molecule. The y-axis lists the protein name and

quantified tyrosine site. (B) Representative MS1 EICs of tyrosine sites from quantitative LC-MS chemical proteomics: nonliganded (blue, SR < 2), partially liganded (orange, $2 \le$ SR \le 4), and liganded (yellow, SR > 4). (C) Reactivity of fragments was assessed by comparing the fraction of tyrosine sites competed: nonliganded (blue, SR < 2), partially liganded (orange, $2 \le$ SR \le 4), and liganded (yellow, SR > 4). All data shown are representative of n = 2–3 biologically independent experiments. Data acquired by Brulet and analyzed by Borne.

Figure 4.10. Analysis of tyrosines and proteins liganded by SuTEx fragments. (A) Distribution of liganded and nonliganded tyrosine sites and proteins from chemical

proteomic analyses of DM93 soluble proteomes. Data are shown for quantified tyrosines (top) and proteins (bottom) that were liganded (SR > 4) by at least 1 fragment. (B) Distribution of liganded proteins (SR > 4) found in DrugBank (DBP group) compared with proteins that did not match a DrugBank entry (non-DBP). All data shown are representative of n = 2-3 biologically independent experiments. Data acquired by Brulet and Analyzed by Borne.

Figure 4.11. Subcellular location analysis of liganded proteins from DM93 live cell chemical proteomics. Proteins containing a liganded tyrosine site (SR>2) were grouped based on subcellular location using a subcellular location analysis (SLA) algorithm. Data shown are from DM93 cells treated with JWB152 (left panel) or JWB198 (right panel) SuTEx fragment at 50 μ M for 30 min. The number of liganded proteins compared with the

number of proteins from the Swiss-Prot database for each subcellular compartment (x-axis) using SLA analyses are shown (Proteins in Database,y-axis). The colored bars depict the percentage of liganded proteins from each subcellular compartment compared with all liganded proteins quantified in datasets. See Methods section for detailed explanation of SLA algorithm. All data shown are representative of n = 2 biologically independent experiments. Data acquired by Brulet and Analyzed by Borne.

Figure 4.12. Domain enrichment of hyper-reactive and liganded sites between studies. (A) Top, domain enrichment of hyper-reactive STP-alkyne (0.1 mM vs. 1mM, MDA-MB-231,

Ramos and Jurkat) lysine sites. Bottom domain enrichment of hyper-reactive HHS-465 (250 uM vs 25 uM, HEK293T) tyrosine sites. Enriched domain annotations as determined by Q < 0.01 after Benjamini–Hochberg correction of a two-sided binomial test. (B) Top, domain enrichment of activated ester liganded sites (50-100 uM, HEK293T) lysine sites. Bottom, domain enrichment of liganded SuTEx 1,2,4 fragment electrophiles (50 uM, DM93) tyrosine sites Enriched domain annotations as determined by Q < 0.05 after Benjamini–Hochberg correction of a two-sided binomial test²⁷. Data acquired by Brulet and Hacker et al. 2017; Analyzed by Borne.

Figure 4.13. pKa and depth analysis of SuTEx modified targets. (A) pKa comparison of SuTEx fragment electrophile liganded tyrosine and non-liganded tyrosines from the same 3D structures. P-value is determined using a Welch t-test, error bars represent standard

deviation. (B) Buried percent comparison of SuTEx fragment electrophile liganded tyrosine and non-liganded tyrosines from the same 3D structures. P-value is determined using a Wilcoxon rank-sum test, error bars represent standard deviation. List of all 89 structures used in table 4.15. (C) pKa of labeled but not liganded Y417 compared to other tyrosines on DPP3. (D) Labeled Y417 and nearby positively charged amino acid predicted to alter pKa by propka analysis (PDB ID: 3FLY). (E) pKa of liganded Y7 compared to other tyrosines on GSTP1. (E) Buried percent of liganded Y7 compared to other tyrosines on GSTP1 (PDB ID: 5GSS). Work conducted by Borne.

Figure 4.14. Schematic for comparison of *in silico* and gel-based ABPP screen of 1, 2, 4 SuTEx fragment electrophiles. Fragments will be docked using CPASS-MS AutoDock screen tool and ranked using mean binding affinity of conformations identified. Lysate s expressing the target protein are pre-treated with SuTEx fragment before probe labeling with

HHS-482. Cell lysates undergo click chemistry and are resolved by SDS-PAGE, before visualization using a rhodamine. Scheme generated by Borne and Brulet.

Figure 4.15. competitive ABPP gel results of HEK293T cells expressing recombinant GSTP1 treated with SuTEx fragments JWB101-JWB127. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.16. competitive ABPP gel results of HEK293T cells expressing recombinant GSTP1 treated with SuTEx fragments JWB131-JWB157. .Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.17. competitive ABPP gel results of HEK293T cells expressing recombinant GSTP1 treated with SuTEx fragments JWB161-JWB187. . Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.18. competitive ABPP gel results of HEK293T cells expressing recombinant GSTP1 treated with SuTEx fragments JWB191-JWB217. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.19. competitive ABPP gel results of HEK293T cells expressing recombinant GSTP1 treated with SuTEx fragments JWB221-JWB243. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.20. competitive ABPP gel results of HEK293T cells expressing recombinant DPP3 treated with SuTEx fragments JWB101-JWB127. Gel screening was conducted by Brulet , R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.21. competitive ABPP gel results of HEK293T cells expressing recombinant DPP3 treated with SuTEx fragments JWB131-JWB157. Gel screening was conducted by Brulet , R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.22. competitive ABPP gel results of HEK293T cells expressing recombinant DPP3 treated with SuTEx fragments JWB161-JWB187. Gel screening was conducted by Brulet , R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.23. competitive ABPP gel results of HEK293T cells expressing recombinant DPP3 treated with SuTEx fragments JWB191-JWB217. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.24. competitive ABPP gel results of HEK293T cells expressing recombinant DPP3 treated with SuTEx fragments JWB221-JWB243. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure 4.25. Comparison of gel and *in silico* screen. Comparison of z-transformed AutoDock and mock normalized gel band intensities. Docking was performed on structure within 15 Angstroms cube centered on GSTP1 Y7 (Y8 with n-terminal methionine in structure) or DPP3 Y417. Blue line represents simple linear model with grey area representing standard error for the model. Correlation and p-value were calculated using a Pearson's product-moment correlation test. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Docking and analysis of gel screening conducted by Borne.

Figure 4.26. Galaxy workflows for global profiling analysis. (A) Workflow for ATP-acyl phosphate analysis. (B) Workflow for HHS-465 and HHS-475 lysine analysis. Figure

numbers denotes where the figure was used. Workflows created by Borne.

Figure 4.27. Galaxy workflows for competitive ABPP of SuTEx fragment electrophiles. Figure numbers denotes where the figure was used, options for all tools not shown. Workflow created by Borne.

Chapter 5: Discussion

5.1 Summary and Significance

Chapter 2 largely focused on using a known probe to identify previously unknown targets of Ritanserin for the potential repurposing of that compound in cancer. Previously work suggested this compound had the potential to go from a 5'-HT receptor antagonist to a cancer therapeutic. This was supported by the discovery that it inhibited DGK α which is key regulator of signaling pathways that regulate growth, survival and metabolism^{103,104}. The study in Chapter 2 provided evidence that more targets (c-Raf in particular) play a role in the cytotoxic effect of Ritanserin in SCLC and NSCLC cell lines. This finding combined with other work using similar approaches has revealed that targeted cancer therapeutics may work best through polypharmacology which is reinforced by the increased use dualtherapies in the treatment of various cancers 60,68 . This also illustrates how the use of an ABP and ABPP can be used to better understand the mechanism of action for kinase inhibitors. This ATP-acyl phosphate, used in this study, has been used to identify offtargets for various clinical and pre-clinical kinase inhibitors²⁴. This study adds to the effort to understand mechanisms of action for these molecules by showing that Ritanserin can be added to list of inhibitors that have several relevant kinase targets.

Chapter 3 focuses on the development of a new chemical probe that can perform broad profiling of tyrosine across the proteome. The development of SuTEx chemistry for use as a small molecule covalent probe is a step forward in the development of molecular probing methods for more of the human proteome (Section 1.4). It is the broadest tyrosine selective probe identified to date and many of the targets identified are in the undrugged proteome. Using this new probe, we were able to draw the first map of SuTEx chemistry hyper-reactive tyrosine sites across the proteome which serves as strong starting point for identifying targets amenable to selective probing and eventual inhibition. Further, we show that the SuTEx molecule has the potential to study phophotyrosine sites across the proteome. Given this PTMs rarity and importance in eukaryotic cell signaling, this probe could be used to improve our understanding of cell signaling¹⁶².

Chapter 4 focuses on developing computational strategies to work with ABPP. This is accomplished by building a platform to improve confidence in site identification as well as leverage the information gained through site-specific MS. Using this platform, we performed a domain enrichment analysis of ATP-acyl phosphate targets and profiled the lysine reactivity of SuTEx probes. The analysis of a small library of fragment electrophiles synthesized in the Hsu lab revealed that SuTEx ligands can be tuned to have lower proteome reactivity. These datasets provide the first map of SuTEx liganded tyrosine sites across the proteome. Further, we were able to use this map to inform an *in silico* docking screen of SuTEx fragment electrophiles. The major contribution of this work is the ability to perform all these tasks in a pipeline that can be used to advance the use of any covalent chemical probe.

This work combined, advances ABPP strategies by contributing to the tools available and applying those tools to biological systems. Similar work has been used to contribute to drug discovery and the creation of clinical tools⁶⁹. While still in the early stages this work has the potential to contribute to the treatment of various human diseases.

5.2 Future Directions

5.2.1. ATP-acyl phosphate and Ritanserin

The ATP-acyl phosphate has already been used in large scale inhibitor profiling and will likely continue to be used to survey protein kinases inhibitors. An interesting application of this probe is using it to define ATP binding pockets on proteins that lack a crystal structure. The probe modified several lysine sites that were sensitive to ATP competition in several domains suggesting these regions are involved in ATP binding^{23,36}. Using CPASS-MS to perform an unfiltered screen of targets has the potential to identify more opportunities to perform this type of analysis. Within the targets identified here 16 target that do not have structure in PDB. Combining this information with structures of homologs and mutagenesis could provide key insights into the activity and catalytic mechanisms of kinases as was done with DGK α^{36} . In addition, improved probe modified site identification (section 5.2.3) could produce more coverage and targets.

In our group, ritanserin has already been broken into fragments and screened across the kinome^{36,100}. We have also combined one of the fragments with SuTEx chemistry and found many kinases are labeled¹⁹². The results of those studies combined with information presented here suggest ritanserin has some level of binding affinity for several kinases. While on its own it does not bind as many targets as staurosporine or XO-44 it could be elaborated to increase its reach¹¹¹. This late-stage functionalization using RF-01 fragment as directing element has proven a good starting point for the development of live cell kinase probe. Future studies could take advantage of the proteome reactivity changes caused by changing the adduct group seen in Chapter 4 (Fig. 4.9) to increase specificity for targets that have increased affinity for ABP.

5.2.2. Development of SuTEx Chemical Platform

The ability to tune the reactivity of the SuTEx warhead by appending different EWG and EDG provides a path to create family specific probes and higher affinity ligands. Combined with the information of a domain enrichment analysis directing elements can be selected to create a protein family targeting probe. As an example, combining the probe with a nucleotide like molecule could better enrich RRMs. This may come with the loss of membrane permeability but will still be useful to increase the coverage of these domains *in vitro*. This can be combined with covalent inhibitor screening of live cells can be used to find inhibitors for this generally undrugged class of proteins. This molecule could as be used to target P-glycoproteins (P-gp) which are highly expressed in cancer cells to pump out toxins produced by chemotherapeutics increasing resistance to drug induced cell death^{193,194}. There are efforts to develop covalent nucleotide-based inhibitors for this target and a less reactive SuTEx warhead could aid in the development of these inhibitors.

The other major direction for the platform is increased chemical diversity in fragment electrophiles to expand the map and target profile of SuTEx ligands. Thus far only 6 1,2,4 triazole fragments have been screened across a proteome and all of them using limited synthetic chemistry methods. The screening 1,2,3 ligands could identify new targets on lysine as HHS-465 had the greatest lysine reactivity among the original probes (Fig. 3.6.a and 4.4.a). The LC-MS screening of more fragments that include more complex elaboration of the leaving and staying groups combined with the CPASS-MS platform

would enable the identification of structure activity relationships across the proteome.

5.2.3. Advancing Computational Tools for ABPP

CPASS-MS is a useful staging ground for the integration and development of new tools but operates after the acquisition of data and identification of peptide spectra matches. As mentioned in the introduction database search algorithms built with PTMs in mind can outperform standard methods⁸⁷. Through the work presented we have identified unique features of probe modified peptides that could be the basis of dedicated site-specific ABPP database search algorithm. Such an algorithm could be built using these ions or built based on the validated PSMs from previous studies.

Recently, an onboard search algorithm was used to identify peptides from MS2 spectra while the ion is still being injected which is then reanalyzed using an MS3 with different fragmentation conditions to better quantify TMT reporter ions²⁹. This is an extension of MS/MS/MS techniques that perform an MS3 scan of an ion based on the presence of a few fragment ions in an MS2 spectra. Either approach could be used to increase the probability that spectra collected can identified by the database search algorithm. Thus, both approaches have the potential to increase SuTEx proteome coverage.

Despite the limited scope of the tools, targets and ligands used the covalent docking screening with SuTEx ligands has shown some promise. Addressing the limited tools can be done by performing the analysis with different docking approaches and comparing them (i.e. DOCKTITE⁹³). The second can be done though a focused approach to validating the docking screen where a larger library is screened *in silico* then molecules are selected from across the predicted binding affinities for validation by gel. In addition, any information

gained from the screening of additional ligands can help in the identification of features that make target sites amenable to docking and liganding.

Appendices

Appendix A: Semi-quantitative Profiling of SuTEx Sites with Deuterated Desthiobiotin A.1 Introduction

The use of SILAC limits the ability to use certain cell lines as not all cell lines can grow in limited culture media. In addition, working with mice requires large amounts of isotopically labelled food to generate a SILAC mouse line. There are several techniques that have aimed to address this such as TMT and iTRAQ which create labeling through covalently modifying the free anime produced by trypsin digestion with mass tag. This study aims to use the desthiobiotin that is attached to the alkyne handle of an ABP to create a mass tag on the probe. This was done by replace eight hydrogens with deuterium in the PEG chain to change the mass of the probe modified by eight Daltons.

A.2 Materials and Methods

SILAC cell culture. DM93 SILAC cells were cultured at 37 °C with 5% CO2 in either 'light' or 'heavy' media supplemented with 10% dialyzed fetal bovine serum (Omega Scientific), 1% L-glutamine (Fisher Scientific), and isotopically labeled amino acids. Light media was supplemented with 100 μ g ml–1 L-arginine and 100 μ g ml–1 L-lysine. Heavy media was supplemented with 100 μ g ml–1 [13C 15N] L-arginine and 100 μ g ml–1 [13C 15N] L-lysine. Labelled amino acids were incorporated for at least five passages before utilizing SILAC cells for experiments. Media was aspirated and cells washed with cold

PBS (2X) before scraping from plates. Cells were transferred to microfuge tubes and pelleted by centrifugation at 500 x g for 5 min, and snap-frozen using liquid N2 and stored -80 $^{\circ}$ C until further use.

Preparation of SILAC proteomes for liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Heavy and light proteomes (432 µl of each) were diluted to 2.3 mg ml–1 in PBS and sample aliquots (432 µl) were treated with HHS-482 (5 µL, 10mM stock in DMSO) for 1hr at 37 °C. Probe-modified proteomes were conjugated to desthiobiotin-PEG3-azide followed by enrichment of probe-modified peptides for nanoelectrospray ionization– LC–MS/MS analyses as previously described¹⁷².

Preparation of d0/d8 proteomes for liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Separate light proteomes (432 μ l of each) were diluted to 2.3 mg ml–1 in PBS and sample aliquots (432 μ l) Samples were treated with HHS-482 (5 μ L, 10mM stock in DMSO) for 1 hr at 37 °C. Probe-modified proteomes were conjugated to d0-desthiobiotin-PEG3-azide or d8-desthiobiotin-PEG3-azide followed by enrichment of probe-modified peptides for nano-electrospray ionization– LC–MS/MS analyses as previously described¹⁷².

LC-MS/MS analysis of samples. Acquisition of spectral data was performed as previously described.

Analysis of LC-MS/MS Spectral Data. Analysis of spectral data performed using Byonic¹⁷, Skyline⁸⁶ and CPASS-MS as previously described.

A.3 Results

In order to directly compare the ability of the d0/d8 strategy to quantify site to SILAC, SILAC light and heavy DM93 cell lysates or 2 separate light lysates were treated with 100 uM HHS-475. The SILAC lysates had d0-Desthiobiotin attached via copper catalyzed click chemistry. While the 2 separate light lysates were treated with either d0 or d8-desthiobiotin prepared and analyzed by LC-MS/MS. The resulting MS1 spectra should have d0/d8 and SILAC ratios at ~1 (Fig. Ap.A.1).

The resulting ratios for SILAC were largely consistent but the d0/d8 was shifted up (Fig. Ap.A.2.a). While the means of both samples were near one (SILAC: 1.02, d0/d8: 1.11) there were several sites that reported higher ratios resulting in high standard deviation (Fig. Ap.A.2.b). This shift is not a reflection of the preparation but rather the difficulty in applying the same computational threshold and peak picking for peptide co-eluting versus those that elute at earlier due to the increased acidity of the deuterium on the PEG linker (Fig. Ap.A.3.a-b).

A.4 Discussion

The use of deuterated desthiobiotin has the potential to replace SILAC when it is difficult to use. The computational strategy could be improved to deal with increased ratios resulting from changes in chromatography or deuterium could be replaced with heavy carbon. This second strategy has already been used to perform such an analysis in E. Coli using iodoacetamide alkyne. In addition, the use of TMT in tandem with probe modified peptides has largely been used to perform multi-plexing for up to 16 probe modified lysates. While there is a benefit of having the mass tag on the probe it removes the additional step in mass spectrometry prep. The obvious next steps have been performed in other publications.

A.5 Author Contributions

The d0/d8 desthiobiotin was synthesized by A. Libby. All other work was performed by Borne.

Figure Ap.A.1: (A) Chemical structures of d0 and d8 desthiobiotin with deuterium located on the PEG linker. (B) Schematic of a SuTEx d0/d8 platform. DM93 cells were cultured in SILAC media supplemented with "light" 12C, 14N-labeled lysine and arginine. Heavy and light DM93 lysates were treated with HHS-475 probe. Then the d0 or d8 desthiobiotin was clicked on to the proteins using copper catalyzed click chemistry. The resulting d0/d8

ratios were quantified using the area under the curve of MS1 extracted ion chromatograms. Resulting ratios are expected to be 1. Schematic generated by Borne.

Figure Ap.A.2: (A) Histogram of SILAC and d0/d8 ratios. (B) Box and whisker plot of d0/d8 and SILAC ratios data acquired in DM93 lysates. All work conducted by Borne.

Figure Ap.A.3: EICs for SILAC and d0d8 for RAN Y158 (A) and TXNL1 Y123 (B)

showing differences in retention time for d8 and d0 that is not seen with heavy SILAC. All work conducted by Borne.

Appendix B: Monitoring of DUSP6 Dephosphorylation of ERK1 with SuTEx Probes B.1 Introduction

The data presented in chapter 3 suggested that SuTEx molecules could be used to measure the level of phosphotyrosine (pY) as in response to treatment in tyrosine phosphatase inhibitor pervanadate several previously annotated pY sites saw decrease abundance. The sites were termed pervanadate sensitive and correlated with increases in pY levels as measures by phospho-blot¹⁷². It had not yet been shown that the decreased abundance as of probe modified peptide was a direct product of pY blocking probe modification. This study aimed to use approach to determine the targets of phosphatases by treating a lysate with phosphatase and identifying the sites that had increased probe labeling. In order to work with a well annotated pY site and a phosphatase we designed a study to show that Dual Specificity Protein Phosphatase 6 (DUSP6) dephosphorylation of Extracellular signal-regulated kinase 2 (ERK2) Y187 could be measured using SuTEx probes and MS.

B.2 Materials and Methods

SILAC cell culture. DM93 SILAC cells were cultured at 37 °C with 5% CO2 in either 'light' or 'heavy' media supplemented with 10% dialyzed fetal bovine serum (Omega Scientific), 1% L-glutamine (Fisher Scientific), and isotopically labeled amino acids. Light media was supplemented with 100 μg ml–1 L-arginine and 100 μg ml–1 L-lysine. Heavy

media was supplemented with 100 μ g ml-1 [13C 15N] L-arginine and 100 μ g ml-1 [13C 15N] L-lysine. Labelled amino acids were incorporated for at least five passages before utilizing SILAC cells for experiments. Media was aspirated and cells washed with cold PBS (2X) before scraping from plates. Cells were transferred to microfuge tubes and pelleted by centrifugation at 500 x g for 5 min, and snap-frozen using liquid N2 and stored -80 °C until further use.

Gel-based chemical proteomic assay. Cell pellets were lysed in PBS and fractionated (100,000 x g, 45 min, 4 °C) to generate soluble and membrane fractions. Protein concentrations were determined using Bio-Rad DC protein assay and adjusted to 1 mgml-1 in PBS. Proteome samples (49 μ L aliquots) were treated with DMSO vehicle or indicated concentration of caping molecule (1 μ L, 50X stock in DMSO) for 30 min at 37 °C. Samples were then treated with HHS-482 probe (1 μ L, 2.5 mM stock in DMSO) for 30 min at 37 °C. Probe labeled samples were conjugated to rhodamine-azide (1 μ L, 1.25 mM stock; final concentration of 25 μ M) by copper-catalyzed azide-alkyne cycloadditions (CuAAC) for 1 hr at room temperature followed by SDS-PAGE and in-gel fluorescence scanning as previously described¹⁷².

Preparation of SILAC proteomes for liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. Heavy and light proteomes (432 μ l of each) were diluted to 2.3 mg ml–1 in PBS with protease and phosphatase inhibitor (432 μ l). The capped samples were then treated with JWB-150 (5 μ L, 10mM stock in DMSO). The heavy samples were then treated with 10 uL of 5 mg/mL (20 ug/mL final) DUSP6 for 30 minutes. Samples were treated with HHS-482 or HHS-475 as indicated (5 μ L, 10mM stock in DMSO) for 30 min at 37 °C. Probe-modified proteomes were conjugated to desthiobiotin-PEG3-azide followed by enrichment of probe-modified peptides for nano-electrospray ionization– LC–MS/MS analyses as previously described¹⁷².

LC-MS/MS analysis of samples. Acquisition of spectral data was performed as previously described.

Analysis of LC-MS/MS Spectral Data. Analysis of spectral data performed using Byonic¹⁷, Skyline⁸⁶ and CPASS-MS as previously described.

B.3 Results

Testing the ability to detect DUSP6 mediated changes in pY 187 on ERK2 was done by taking SILAC heavy and light cells lysing them and treating the light cells with DUSP6. This was followed by the 100 uM HHS-482 treatment, addition of destiobiotin, enrichment, elution and analysis by LC-MS. The expectation would be that sites of DUSP6 dephosphorylation would have an increase light to heavy ratio (Fig Ap.B.1.a). We validated the loss of ERK2 Y187 with by taking a portion of the lysate and performing a western blot for pY187 and overall ERK (Fig. Ap.B.1.b). Despite the decrease in pY as measured by gel we saw no change in the SILAC ratio for ERK2 187 site (Fig. Ap.B.1.bc). In order to remove more free tyrosine from the system prior to treatment with DUSP6 we attempted to generate a capping molecule that would remove covalently modify the free tyrosine leaving only the phosphorylated version. Initially we created two non-clickable HHS-482 analogs that replaced the alkyne handle with an alkene (ALB-001) and an alkane (ALB-002). We compared these analogs to the most reactive molecule identified in chapter 4, JWB-150 in a gel based competitive screen as previously described. Despite ALB-001/2 being direct analogs JWB-150 showed the greatest level of inhibition by gel (Fig. Ap.B.2).

Using 100 uM JWB-150 as a capping agent we performed the same LC-MS assay as previously described but with 1 hr 37 °C capping step prior to DUSP6 treatment (Fig. Ap.B.3.a). We used the phosphobotting assay to show that we could still see dephosphorylation of ERK2 Y187 by DUSP6 in the presence of JWB-150 and HHS-482 (Fig. Ap.B.3.b). Once again we saw no change in the SILAC ratio for ERK 187 using both HHS-482 and HHS-475 as probes (Fig. Ap.B.3.c).

B.4 Discussion

These results suggest that the probe is not able to measure the abundance of ERK2 Y187 despite being able to report the probe modified site by MS. The first possible explanation for this is that the portion pY to free tyrosine is very low despite being in B-RAF driven melanoma cell line. The B-RAF V600E mutation would increase the amount phosphorylated ERK through the increased MAPK signaling activity¹²⁶. The capping agent was attempted to remove some of the free tyrosine from the lysate through covalent modification with non-clickable SuTEx probe. Despite this change there was no detectable change in probe modified ERK2 Y187 after DUSP6 dephosphorylation.

There are several possible explanations for the lack of change in SILAC ratio. First, despite capping there is still mostly free tyrosine on ERK Y187. Larger concentrations of cap are likely to cause additional issues as it has 200 uM combined SuTEx electrophile pushes the limit of solubility in PBS, thus lower protein concentrations should be used to attempt to lower overall free tyrosine. Second, pervanadate sensitivity reflects changes in protein or peptide availability from sources other than phosphorylation. The two proteins shown as pervanadate sensitive STAT3 and CTNND1 are both transcription factors that associate with DNA when activated by phosphorylation^{167,168}. Given that the previous assay does not include a resuspension step the protein could be lost in the membrane fraction. This can be rectified by performing the same experiment with a resuspension step.

B.5 Author Contributions

ALB-001/2 was synthesized by A. Libby. All data was generated and analyzed by Borne.

B.6 Figures

Figure Ap.B.1: (A) Schematic of a SuTEx platform for monitoring DUSP6 phosphotyrosine sites. DM93 cells were cultured in SILAC media supplemented with either "light" 12C, 14N-labeled lysine and arginine (denoted in red) or "heavy" 13C, 15N-labeled lysine and arginine (denoted in blue). Heavy and light DM93 proteomes were treated with PBS vehicle or DUSP6 20 ug/mL, 37 °C, 30 min) followed by HHS-482 probe labeling using the same reaction conditions. The resulting SILAC ratios (SR) were quantified using the area under the curve of MS1 extracted ion chromatograms. Dephosphorylated tyrosines are expected to show increased probe labeling intensity in the light (left MS1, SR~1). (B) Validation of ERK2 dephosphorylation by DUSP6 using western blot for p-ERK2 and overall ERK. (C) MS1 EICs of ERK2 Y187 tyrosine sites from quantitative LC-MS chemical proteomics. Data shown are representative of n = 2

Figure Ap.B.2: Competitive capping molecule screen. Lysates were treated with indicated

concentration of cap followed by HHS-482. Rhodamine was appended using coppercatalyzed click chemistry and lysates run on SDS-PAGE gel. All work conducted by Borne.

Figure Ap.B.3: (A) Schematic of a SuTEx platform for monitoring DUSP6 phosphotyrosine sites with cappuing. DM93 cells were cultured in SILAC media supplemented with either "light" 12C, 14N-labeled lysine and arginine (denoted in red) or "heavy" 13C, 15N-labeled lysine and arginine (denoted in blue). Heavy and light DM93 proteomes were treated withJWB-150 (100uM, 1hr at 37 °C) then PBS vehicle or DUSP6 (20 ug/mL, 37 °C, 30 min) followed by HHS-482 probe labeling using the same reaction conditions. The resulting SILAC ratios (SR) were quantified using the area under the curve of MS1 extracted ion chromatograms. Dephosphorylated tyrosines are expected to show

increased probe labeling intensity in the light (left MS1, SR~1). (B) Validation of ERK2 dephosphorylation by DUSP6 in the presence of JWB-150, HHS-482 and the combination using western blot for p-ERK2 and overall ERK. (C) MS1 EICs of ERK2 Y187 tyrosine sites from quantitative LC-MS chemical proteomics using HHS-482 and HHS-475. Data shown are representative of n = 2 biologically independent experiments. Data acquired and analyzed by Borne.

Appendix C: Investigation of SHMT1 Inhibition by SuTEx ligands

C.1 Introduction

In addition to gel-based screening SuTEx ligands against DPP3 and GSTP1 discussed in chapter 4 Serine Hydroxymethyltransferase 1 (SHMT1) was also screened. The same docking comparison was also performed, and four molecules were selected for MS screening.

C.2 Materials and Methods

SILAC cell culture. DM93 SILAC cells were cultured at 37 °C with 5% CO2 in either 'light' or 'heavy' media supplemented with 10% dialyzed fetal bovine serum (Omega Scientific), 1% L-glutamine (Fisher Scientific), and isotopically labeled amino acids. Light media was supplemented with 100 μ g ml–1 L-arginine and 100 μ g ml–1 L-lysine. Heavy media was supplemented with 100 μ g ml–1 [13C 15N] L-arginine and 100 μ g ml–1 [13C 15N] L-lysine. Labelled amino acids were incorporated for at least five passages before utilizing SILAC cells for experiments. Media was aspirated and cells washed with cold

PBS (2X) before scraping from plates. Cells were transferred to microfuge tubes and pelleted by centrifugation at 500 x g for 5 min, and snap-frozen using liquid N2 and stored -80 $^{\circ}$ C until further use.

Preparation of SILAC proteomes for liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis. Heavy and light proteomes (432 µl of each) were diluted to 2.3 mg ml–1 in PBS and sample aliquots (432 µl) were treated with SuTEx fragment at the indicated concentrations (5 µl, 100X stock in DMSO), mixed gently and incubated for 30 min at 37 °C. Samples were then treated with HHS-482 (5 µL, 10mM stock in DMSO) for 30 min at 37 °C. Probe-modified proteomes were conjugated to desthiobiotin-PEG3-azide followed by enrichment of probe-modified peptides for nanoelectrospray ionization– LC–MS/MS analyses as previously described¹⁷².

C.3 Results

To look at affinity of molecules we screened all the ligands in the 1,2,4 SuTEx library using both the docking tool and gel based ABPP. We then compared the predicted binding affinity to loss of band intensity upon pre-treatment with a fragment. In brief, HEK293T cell lysates were pre-treated with 100µM inhibitor for 30 minutes at 37° C followed by 50µM of HHS-482, a tyrosine selective 1,2,4-sulfonyl triazole probe, for 30 minutes. Samples underwent copper catalyzed azide-alkyne cycloaddition (CuAAC) with rhodamine azide and were resolved by SDS- PAGE. Gels were visualized and the total lane fluorescent intensity was normalized to DMSO and compared (Fig. Ap.C.1- Ap.C.5.

Inhibitors that decreased lane intensity compared by greater than 30% were removed as they were likely to be broadly reacting molecules. The loss of band intensity and the AutoDock (see Materials and Methods, Table 4.16) calculated binding affinities were ztransformed and compared using a simple linear model in R. Correlation and p-value were calculated using a Pearson's product-moment correlation test. A strong correlation was seen between docking results and gel data (0.6, Fig. A).

JWB-101, 112, 147 and 157 were selected for further validation by MS competitive ABPP as described in Chapter 4. We quantified 1,385 sites from 700 proteins (Fig. Ap.C.7). Among which only a few had SRs greater than 2 and even less with ratios greater than 4 (Fig.Ap.C.7). This is likely due to the filtering out of generally reactive molecules in the gel-based screening (Section 4.6) resulting in the selection of less reactive electrophiles. This low reactivity is also reflected in gel-based dose response experiments (Fig.Ap.C.8). In addition, we were unable to detect SHMT1 Y34 among the 1,385 sites quantified making the LC-MS data unable to provide inhibition information for the target screened by gel.

C.4 Discussion

While the gel-based screening showed promise but the inability to determine compound activity against SHMT1 means the docking results could not be verified by MS. The SHMT1 study is incomplete and could be attempted in another cell line with higher endogenous levels of SHMT1 or overexpressing the protein. In addition, the results could be used to expand the chemoproteomic profiling dataset used to determine important proteome structure activity relationships¹⁹².

C.5 Author Contributions

Gel screening was conducted by Brulet, Borne, R. Rumana, and K. Isbell. Everything else conducted by Borne.

C.6 Figures

Figure Ap.C.1: competitive ABPP gel results of HEK293T cells expressing recombinant SHMT1 treated with SuTEx fragments JWB101-JWB127. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure Ap.C.2: competitive ABPP gel results of HEK293T cells expressing recombinant SHMT1 treated with SuTEx fragments JWB131-JWB157. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure Ap.C.3: competitive ABPP gel results of HEK293T cells expressing recombinant SHMT1 treated with SuTEx fragments JWB161-JWB187. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure Ap.C.4: competitive ABPP gel results of HEK293T cells expressing recombinant SHMT1 treated with SuTEx fragments JWB191-JWB243. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure Ap.C.5: competitive ABPP gel results of HEK293T cells expressing recombinant SHMT1 treated with SuTEx fragments JWB221-JWB243. Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Analysis of gel screening conducted by Borne.

Figure Ap.C.6: Comparison of gel and *in silico* screen. Comparison of z-transformed AutoDock and mock normalized gel band intensities. Docking was performed on structure within 15 Angstroms cube centered on SHMT1 Y34. Blue line represents simple linear model with grey area representing standard error for the model. Correlation and p-value were calculated using a Pearson's product-moment correlation test (PDB: 6FL5). Gel screening was conducted by Brulet, R. Rumana, and K. Isbell. Docking and analysis of gel screening conducted by Borne.

Figure Ap.C.7: Fragment-based ligand discovery using SuTEx (all tyrosine sites). Heat map showing SILAC ratios (SR) of all quantified tyrosines in chemical proteomic studies configured for evaluating ligand competition. Fragments and liganded tyrosine sites are organized by hierarchical clustering. Data shown are representative of n = 3 biologically independent experiments. Data acquired and analyzed by Borne.

Figure Ap.C.8: Figure 4.9. Fragment-based ligand discovery using SuTEx. (A) Heat map
showing SILAC ratios (SR) of representative tyrosines competed by fragments and organized by hierarchical clustering. Fragment competition at tyrosine sites was quantified using the area under the curve of MS1 extracted ion chromatograms (EIC) from HHS-482-labeled peptides in DMSO (light, red) versus fragment-treated (heavy, blue) DM93 soluble proteomes. Competitive chemical proteomic studies were performed as shown in Figure S3. Tyrosine sites shown are liganded (SR > 4) by at least 2 fragments with the number of liganded sites and proteins listed for each molecule. The y-axis lists the protein name and quantified tyrosine site. (B) Chemical structures of JWB-101/112/147 and 157. (C) Reactivity of fragments was assessed by comparing the fraction of tyrosine sites competed: nonliganded (blue, SR < 2), partially liganded (orange, $2 \le SR \le 4$), and liganded (yellow, SR > 4). All data shown are representative of n = 3 biologically independent experiments. Data acquired and analyzed by Borne.

Figure Ap.C.9: Competitive dose-response gels for SHMT1. HEK293T cells were transfected with a Mock control of SHMT1 overexpression plasmid. Lysates were treated with DMSO, or concentration of fragment electrophile shown. All work done by Borne.

Appendix D: Chapter 4 Tables

Raw File	Source	Treatment
20161101_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 21.mzXML	Franks et al. 2017	НЕК АТР
20161101_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_21.mzXML	Franks et al. 2017	HEK DMSO
20161102_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 21.mzXML	Franks et al. 2017	НЕК АТР
20161102_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_21.mzXML	Franks et al. 2017	HEK DMSO
20161109_CEF_SILAC_DGKZ_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 21.mzXML	Franks et al. 2017	НЕК АТР
20161109_CEF_SILAC_DGKZ_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 22.mzXML	Franks et al. 2017	НЕК АТР
20161109_CEF_SILAC_DGKZ_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_21.mzXML	Franks et al. 2017	HEK DMSO
20161109_CEF_SILAC_DGKZ_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_22.mzXML	Franks et al. 2017	HEK DMSO
20161117_CEF_SILAC_DGKI_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 21.mzXML	Franks et al. 2017	НЕК АТР
20161117_CEF_SILAC_DGKI_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_21.mzXML	Franks et al. 2017	HEK DMSO
20170118_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 21.mzXML	Franks et al. 2017	НЕК АТР
20170118_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HATP_LYSC_3hr_ 22.mzXML	Franks et al. 2017	НЕК АТР
20170118_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_21.mzXML	Franks et al. 2017	HEK DMSO
20170118_CEF_SILAC_DGKA_HEK293T_S_LDMSO_HDMSO_LYSC_3h r_22.mzXML	Franks et al. 2017	HEK DMSO
20170227_CEF_SILAC_HEK293T_DGKE_M_LDMSO_HATP_LYSC_3hr _21.mzXML	Franks et al. 2017	HEK ATP
20170227_CEF_SILAC_HEK293T_DGKE_M_LDMSO_HDMSO_LYSC_3 hr_21.mzXML	Franks et al. 2017	HEK DMSO
20170419_CEF_A549_S_LDMSO_HATP_LYSC_3hr_21.raw	Campbell et al. 2018	A549 ATP
20170419_CEF_A549_S_LDMSO_HATP_LYSC_3hr_22.raw	Campbell et al. 2018	A549 ATP
20170419_CEF_A549_S_LDMSO_HDMSO_LYSC_3hr_21.raw	Campbell et al. 2018	A549 DMSO
20170419_CEF_A549_S_LDMSO_HDMSO_LYSC_3hr_22.raw	Campbell et al. 2018	A549 DMSO
20170610_CEF_SILAC_H82_S_LDMSO_HATP_LYSC_3hr_BR4_21.raw	Campbell et al. 2018	H82 ATP
20170610_CEF_SILAC_H82_S_LDMSO_HATP_LYSC_3hr_BR4_22.raw	Campbell et al. 2018	H82 ATP
20170610_CEF_SILAC_H82_S_LDMSO_HDMSO_LYSC_3hr_BR4_21.r aw	Campbell et al. 2018	H82 DMSO

Table 4.1. Datafiles used in ATP-acyl phosphate analysis.

20170610_CEF_SILAC_H82_S_LDMSO_HDMSO_LYSC_3hr_BR4_22.r aw	Campbell et al. 2018	H82 DMSO
20170612_CEF_SILAC_A549_S_LDMSO_HATP_LYSC_3hr_BR3_21.ra w	Campbell et al. 2018	A549 DMSO
20170612_CEF_SILAC_A549_S_LDMSO_HDMSO_LYSC_3hr_BR3_21 _170612120000.raw	Campbell et al. 2018	A549 ATP

Table 4.2. ATP sensitive sites (SR >5)

Site	Gene_ID	Uniprot_ID	QuantitativeValue	Treatment
000418_238	EF2K	000418	20	H82ATP
O08560_5	DGKZ	O08560	20	HEK293TATP
075912_553	DGKI	075912	20	HEK293TATP
095835_734	LATS1	O95835	20	HEK293TATP
P15735_364	PHKG2	P15735	20	HEK293TATP
P22102_219	PUR2	P22102	20	HEK293TATP
P23919_19	KTHY	P23919	20	A549ATP
P23919_19	KTHY	P23919	20	HEK293TATP
P36507_196	MP2K2	P36507	20	A549ATP
P36507_196	MP2K2	P36507	20	HEK293TATP
P45985_231	MP2K4	P45985	20	A549ATP
P45985_231	MP2K4	P45985	20	HEK293TATP
P46734_93	MP2K3	P46734	20	HEK293TATP
P51812_81	KS6A3	P51812	20	HEK293TATP
P52564_82	MP2K6	P52564	20	A549ATP
P54646_45	AAPK2	P54646	20	HEK293TATP
P54819_28	KAD2	P54819	20	HEK293TATP
P55072_336	TERA	P55072	20	A549ATP
Q02750_192	MP2K1	Q02750	20	A549ATP
Q02750_192	MP2K1	Q02750	20	HEK293TATP
Q12905_228	ILF2	Q12905	20	HEK293TATP
Q12931_324	TRAP1	Q12931	20	HEK293TATP
Q13131_56	AAPK1	Q13131	20	HEK293TATP
Q13574_662	DGKZ	Q13574	20	HEK293TATP
Q15418_75	KS6A1	Q15418	20	HEK293TATP
Q2M389_868	WASH7	Q2M389	20	HEK293TATP
Q8IZ83_564	A16A1	Q8IZ83	20	A549ATP
Q99759_491	M3K3	Q99759	20	A549ATP
Q99986_5	VRK1	Q99986	20	HEK293TATP
Q9BTW9_299	TBCD	Q9BTW9	20	HEK293TATP
Q9UK32_86	KS6A6	Q9UK32	20	HEK293TATP
Q9Y2U5_485	M3K2	Q9Y2U5	20	A549ATP
014965_143	AURKA	O14965	19.44132	HEK293TATP
Q96GD4_87	AURKB	Q96GD4	19.44132	HEK293TATP
Q9UQB9_53	AURKC	Q9UQB9	19.44132	HEK293TATP
P22102_219	PUR2	P22102	18.8114	H82ATP
P55072_336	TERA	P55072	18.30731	HEK293TATP
095835_734	LATS1	095835	18.0738	A549ATP

Q99759 491	МЗКЗ	Q99759	17.68801	НЕК293ТАТР
 Q9Y2U5 485	M3K2	Q9Y2U5	17.68801	НЕК293ТАТР
Q8IZ83 564	A16A1	Q8IZ83	17.28536	HEK293TATP
P43155 245	CACP	P43155	16.94135	H82ATP
 P23368 156	MAOM	P23368	16.61946	H82ATP
 P12268_208	IMDH2	P12268	16.56918	H82ATP
 P07900_585	HS90A	P07900	16.19542	A549ATP
Q99759_491	M3K3	Q99759	16.08953	H82ATP
Q9Y2U5_485	M3K2	Q9Y2U5	16.08953	H82ATP
P78527_3753	PRKDC	P78527	15.97752	H82ATP
P23919_19	КТНҮ	P23919	15.94403	H82ATP
Q96J92_328	WNK4	Q96J92	15.70905	HEK293TATP
Q9H4A3_375	WNK1	Q9H4A3	15.70905	HEK293TATP
Q9Y3S1_349	WNK2	Q9Y3S1	15.70905	HEK293TATP
P23743_547	DGKA	P23743	15.69557	HEK293TATP
P51556_3	DGKA	P51556	15.69557	HEK293TATP
P54819_28	KAD2	P54819	15.44264	H82ATP
P55072_336	TERA	P55072	15.02316	H82ATP
P52564_82	MP2K6	P52564	14.61583	H82ATP
P36959_325	GMPR1	P36959	13.85757	HEK293TATP
Q9P2T1_325	GMPR2	Q9P2T1	13.85757	HEK293TATP
075385_140	ULK1	075385	13.7045	HEK293TATP
P23368_156	MAOM	P23368	13.45212	HEK293TATP
Q13418_341	ILK	Q13418	13.32629	HEK293TATP
P53396_836	ACLY	P53396	12.94504	HEK293TATP
P23526_188	SAHH	P23526	12.90413	HEK293TATP
Q14166_419	TTL12	Q14166	12.82891	HEK293TATP
P60891_194	PRPS1	P60891	12.39342	HEK293TATP
P54819_28	KAD2	P54819	12.30128	A549ATP
P46734_93	MP2K3	P46734	12.1995	A549ATP
Q00535_128	CDK5	Q00535	12.02202	HEK293TATP
P78527_3753	PRKDC	P78527	11.98977	HEK293TATP
P55072_236	TERA	P55072	11.64623	HEK293TATP
P23368_156	MAOM	P23368	11.42615	A549ATP
P40306_101	PSB10	P40306	10.87086	A549ATP
Q15126_22	PMVK	Q15126	10.81531	HEK293TATP
P36507_196	MP2K2	P36507	10.7826	H82ATP
Q02750_192	MP2K1	Q02750	10.7826	H82ATP
P30837_383	AL1B1	P30837	10.58033	A549ATP
Q00535_128	CDK5	Q00535	9.641793	A549ATP
P52564_82	MP2K6	P52564	8.925375	HEK293TATP
Q00535_33	CDK5	Q00535	8.785498	HEK293TATP
P30837_383	AL1B1	P30837	8.718923	HEK293TATP
Q00535_128	CDK5	Q00535	8.691988	H82ATP
P54646_45	AAPK2	P54646	8.648296	A549ATP
Q13131_56	AAPK1	Q13131	8.648296	A549ATP
Q9BTW9_299	TBCD	Q9BTW9	8.519497	A549ATP
Q00535_33	CDK5	Q00535	8.497057	A549ATP

094804_159	STK10	094804	8.054743	HEK293TATP
P42345_2166	MTOR	P42345	7.530975	A549ATP
Q9NVE7_171	PANK4	Q9NVE7	6.890847	HEK293TATP
Q00535_33	CDK5	Q00535	6.788359	H82ATP
P23528_144	COF1	P23528	6.629744	A549ATP
P22102_219	PUR2	P22102	6.574142	A549ATP
P60709_328	ACTB	P60709	6.536011	A549ATP
P62736_330	ACTA	P62736	6.536011	A549ATP
P63261_328	ACTG	P63261	6.536011	A549ATP
P63267_329	ACTH	P63267	6.536011	A549ATP
P68032_330	ACTC	P68032	6.536011	A549ATP
P68133_330	ACTS	P68133	6.536011	A549ATP
Q562R1_329	ACTBL	Q562R1	6.536011	A549ATP
P16949_53	STMN1	P16949	6.282388	HEK293TATP
Q93045_87	STMN2	Q93045	6.282388	HEK293TATP
Q9H169_97	STMN4	Q9H169	6.282388	HEK293TATP
Q6P2I7_38	EBLN2	Q6P2I7	6.045202	HEK293TATP
P51812_81	KS6A3	P51812	6.01306	H82ATP
Q15418_75	KS6A1	Q15418	6.01306	H82ATP
Q9UK32_86	KS6A6	Q9UK32	6.01306	H82ATP
Q9HB71_146	СҮВР	Q9HB71	5.82521	H82ATP
Q6L8Q7_377	PDE12	Q6L8Q7	5.810859	HEK293TATP
P48643_176	ТСРЕ	P48643	5.669828	HEK293TATP
Q8TBX8_101	PI42C	Q8TBX8	5.616329	HEK293TATP
P12268_422	IMDH2	P12268	5.594532	H82ATP
Q8N4P3_97	MESH1	Q8N4P3	5.566254	HEK293TATP
P60709_113	АСТВ	P60709	5.513931	A549ATP
P63261_113	ACTG	P63261	5.513931	A549ATP
000479_18	HMGN4	000479	5.489477	HEK293TATP
P05204_18	HMGN2	P05204	5.489477	HEK293TATP
P04083_166	ANXA1	P04083	5.416856	A549ATP
P50502_153	F10A1	P50502	5.33632	HEK293TATP
Q8IZP2_149	ST134	Q8IZP2	5.33632	HEK293TATP
Q8NFI4_153	F10A5	Q8NFI4	5.33632	HEK293TATP
P62937_155	PPIA	P62937	5.201141	H82ATP
015530_465	PDPK1	015530	5.160405	A549ATP
P07737_116	PROF1	P07737	5.138126	HEK293TATP
Q15208_118	STK38	Q15208	5.094903	HEK293TATP
P60709_113	АСТВ	P60709	5.08162	НЕК293ТАТР
P63261_113	ACTG	P63261	5.08162	HEK293TATP
Q13574_1025	DGKZ	Q13574	5.029271	HEK293TATP

 Table 4.3. Domain enrichment of ATP sensitive sites.

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q-Value
-------------------	--------------------	-----------------------	-----------------------	---------	-------------	-------------------------

PRU00159	24	512	0.01684377	2.80E-34	Protein kinase domain	3.08E-33
PRU00998	3	5	0.00016449	3.16E-08	Stathmin-like (SLD) domain	1.74E-07
PRU01175	1	3	9.87E-05	0.003547	HD domain	0.0130051
PRU01040	1	5	0.00016449	0.005905	DZF domain	0.0155792
PRU00501	1	6	0.00019739	0.007081	Alpha-type protein kinase	0.0155792
PRU00781	1	9	0.00029608	0.010604	Phosphatidylinositol phosphate kinase (PIPK) domain	0.0194405
PRU00599	1	12	0.00039478	0.014114	ADF-H domain	0.0219315
PRU00568	1	14	0.00046057	0.016448	TTL domain	0.0219315
PRU00547	1	17	0.00055927	0.019938	CS domain	0.0219315
PRU00269	1	17	0.00055927	0.019938	PI3K/PI4K domain	0.0219315
PRU00156	1	24	0.00078955	0.028035	PPlase cyclophilin-type domain	0.0280346

Table 4.4. Identified HHS-465 and HHS-475 lysine sites.

Combined Lysine Sites	465 Sites	475 Sites
P60709_50	P10809_31	P10809_387
P60709_61	P10809_58	P13010_265
P60709_113	P10809_72	P09429_30
P60709_191	P10809_75	Q9BWD1_235
P60709_213	P10809_89	P10809_133
P60709_284	P10809_91	P10809_269
P60709_291	P10809_125	P10809_473
P60709_315	P10809_130	PODMV8_108
P60709_326	P10809_156	P0DMV8_159
P60709_328	P10809_202	PODMV8_328
P10809_31	P10809_205	P0DMV8_345
P10809_58	P10809_233	P63261_61
P10809_72	P10809_236	P63261_113
P10809_75	P10809_249	P63261_326
P10809_82	P10809_269	P13639_337
P10809_89	P10809_292	P09874_249
P10809_87	P10809_352	P22626_59
P10809_91	P10809_359	P68104_146
P10809_96	P10809_387	P68104_172
P10809_125	P10809_389	P68104_215
P10809_130	P10809_473	P68104_273

D40000 400	DC0104 44	D44442 450
P10800 15C	PC8104_41	P11142_159
P10809_156	P68104_44	AUAU24RB53_8
P10809_160	P68104_146	AUAU24RB53_298
P10809_180	P68104_219	Q00839_265
P10809_191	P68104_255	Q00839_635
P10809_196	P68104_273	P62805_92
P10809_202	P68104_392	P38646_206
P10809_205	P68104_395	P06748_54
P10809_233	P68104_408	P06748_248
P10809_236	P68104_439	P06748_250
P10809_249	P68104_444	P06748_257
P10809_250	P68104_450	P06748_273
P10809_269	P68104_453	P61978_405
P10809_292	P68104_457	P61978_456
P10809_301	PODMV8_77	P14625_561
P10809_310	PODMV8_88	P68363_96
P10809_352	PODMV8_102	P58876_109
P10809_359	P0DMV8_108	P19338_333
P10809_361	P0DMV8_159	P19338_513
P10809_364	P0DMV8_251	P06733_281
P10809_387	PODMV8_328	P17844_470
P10809_389	PODMV8_345	P06576_432
P10809_396	PODMV8_348	P13010_291
P10809_469	PODMV8_524	P12956_189
P10809_473	P0DMV8_569	P43243_798
P10809_481	P0DMV8_597	P14866_418
P07437_19	P11142_108	P78527_1407
P07437_58	P11142_159	P52272_381
P07437_122	P11142_187	P40926_165
P07437_154	P11142_251	P63241_39
P07437_216	P11142_328	P63241_67
P07437_252	P11142_345	P05141_23
P07437_297	P11142_524	Q14103_129
P07437_324	P11142_539	Q14103_197
P07437_336	P09874_23	P62937_28
P07437_350	P09874_97	P62937_31
P07437_379	P09874_108	P62937_49
P68363 40	P09874 196	000571 581
P68363 60	P09874 192	D6RBZ0 102
P68363 96	P09874 249	Q92945 291
 P68363 112	P09874 621	Q92945 646
 P68363 163	P09874 683	Q12931 560
 P68363 280	P08238 107	P34897 409
 P68363 304	P08238 624	 P34897 469
 P68363 311	P08238 685	 P13797 52
 P68363 326	P60709 50	P15880 257
P68363 336	P60709 61	P26641 147
P68363 352	P60709 113	P54819 93
		· · · · · · · · · · · · · · · · · · ·

P68363_370	P60709_326	Q07955_38
P68363_394	P60709_328	P62826_60
P68363_401	P62807_12	P18621_49
P08238_53	P62807_109	P62277_43
P08238_107	P62807_121	P00558_75
P08238_180	P61978_52	Q07020_119
P08238_186	P61978_60	P24534_185
P08238_204	P61978_103	P31930_134
P08238_275	P61978_219	P61604_80
P08238_284	P61978_405	P50502_17
P08238_286	P61978_422	P30042_141
P08238_350	P61978_456	A0A024RBE8_233
P08238_399	P06748_27	P05198_141
P08238_406	P06748_32	Q99459_466
P08238_435	P06748_54	015347_30
P08238_477	P06748_141	P60900_102
P08238_481	P06748_223	Q13242_36
P08238_526	P06748_230	P30041_209
P08238_550	P06748_236	P26583_30
P08238_577	P06748_239	P61221_431
P08238_607	P06748_248	P83881_27
P08238_624	P06748_250	P48444_38
P08238_641	P06748_257	Q9BZJ0_224
P08238_646	P06748_263	Q9NVS9_100
P68104_41	P06748_267	Q9HC36_237
P68104_44	P06748_273	Q96P70_865
P68104_146	Q00839_265	Q10570_99
P68104_179	Q00839_464	015318_49
P68104_215	Q00839_516	Q86U86_416
P68104_219	Q00839_551	P35914_179
P68104_255	Q00839_565	Q96M27_253
P68104_273	Q00839_626	075431_206
P68104_386	Q00839_635	Q9BRT2_69
P68104_392	P06733_54	Q562M3_30
P68104_395	P06733_71	P10809_72
P68104_408	P06733_81	P10809_389
P68104_439	P06733_80	P60709_61
P68104_444	P06733_193	P60709_113
P68104_450	P06733_281	P60709_326
P68104_453	P06733_326	P68104_255
P68104_457	P62805_92	Q5CAQ5_561
P11142_108	P22626_17	P78527_963
P11142_112	P22626_59	P52272_388
P11142_137	P22626_104	Q6FHZ0_165
P11142_159	P22626_173	P40227_377
P11142_187	P13639_283	P62906_91
P11142_246	P13639_337	014979_180
D44442 254	D12620 115	P48047 84

P11142_257	P13639_439	Q9Y3U8_62
P11142_319	P08670_129	Q969Q0_27
P11142_328	P08670_439	P84090_84
P11142_345	A0A024RB53_8	P08238_53
P11142_348	A0A024RB53_52	P08238_69
P11142_497	A0A024RB53_87	P08238_107
P11142_507	A0A024RB53_298	P08238_180
P11142_512	P38646_138	P08238_186
P11142_524	P38646_206	P08238_204
P11142_526	P38646_288	P08238_275
P11142_539	P38646_368	P08238_284
P11142_601	P38646_377	P08238_354
P48735 45	P38646 394	P08238 399
 P48735_48	 P38646_468	P08238 402
P48735 69	P38646 653	 P08238 406
P48735 80	P68363 60	 P08238 410
 P48735 106	 P68363_96	 P08238_428
P48735 130	P68363_370	P08238_435
P48735 133	Q08211 14	P08238 477
P48735 155	Q08211 146	P08238 531
P48735 166	P19338 324	P08238 550
P48735 180	P19338 333	P08238 557
P48735 193	P19338 398	P08238 565
P48735 199	P19338 513	P08238 574
P48735 272	P14866 97	P08238 577
P48735 275	P14866 418	P08238 607
P48735 280	P36578 364	P08238 623
P48735 282	P23246 279	P08238 624
 P48735 384	P23246 330	 P08238 641
 P48735 413	 P23246 338	 P08238 646
 P48735 426	 P23246 421	 P08238_685
 P08133_75	 P23246_472	 P68104_5
P08133 81	Q5CAQ5 561	P68104 41
P08133 102	Q5CAQ5 671	 P68104 44
P08133 299	Q5CAQ5 682	 P68104 179
P08133_314	P52272_381	P68104_180
P08133_315	P52272_388	P68104_219
P08133_354	P52272_698	P68104_386
P08133_370	P43243_798	P68104_392
P08133_377	P17844_391	P68104_395
P08133_406	P17844_470	P68104_408
P08133_418	Q6FI13_120	P68104_439
P08133_442	P62937_28	P68104_444
P08133_446	P62937_31	P68104_450
P08133_478	P62937_44	P68104_453
P08133_613	P62937_49	P68104_457
P04406_107	P62937_76	P06733_28
P04406 117	P62937 82	P06733 54

P04406_139	P62937_125	P06733_60
P04406_145	P40926_78	P06733_64
P04406_194	P40926_91	P06733_71
P04406_215	P40926_301	P06733_80
P04406_219	P40926_307	P06733_81
P04406_227	P40926_314	P06733_89
P04406_254	P04075_13	P06733_92
P04406_263	P04075_28	P06733_105
P04406_271	P04075_111	P06733_193
P06733_54	P04075_322	P06733_197
P06733_64	P14618_66	P06733_199
P06733_71	P14618_206	P06733_202
P06733_80	P39023_312	P06733_221
P06733_81	Q5VU21_300	P06733_228
P06733_89	Q5VU21_306	P06733_233
P06733_92	P06576_133	P06733_256
P06733_193	P06576_480	P06733_326
P06733_197	P63241_27	P06733_330
P06733_199	P63241_39	P06733_335
P06733_202	P63241_67	P06733_358
P06733_221	P63241_68	P06733_420
P06733_233	P63241_85	P06733_434
P06733_256	P11021_185	P11142_25
P06733_281	P60842_54	P11142_108
P06733_326	P60842_193	P11142_112
P06733_330	P62979_48	P11142_137
P06733_335	P62979_107	P11142_187
P06733_358	P62979_152	P11142_251
P06733_420	Q00610_246	P11142_319
P06733_434	Q00610_637	P11142_328
P06576_124	Q00610_1441	P11142_345
P06576_133	P07910_89	P11142_348
P06576_161	P07910_157	P11142_497
P06576_159	P11940_78	P11142_507
P06576_259	P11940_104	P11142_512
P06576_350	P11940_312	P11142_524
P06576_351	P11940_361	P11142_526
P06576_480	P50990_16	P11142_535
P06576_485	P50990_20	P11142_539
P06576_522	P50990_400	P11142_583
P19338_223	D6RBZ0_83	P0DMV8_77
P19338_288	D6RBZ0_87	PODMV8_88
P19338_294	D6RBZ0_102	P0DMV8_102
P19338_295	D6RBZ0_215	P0DMV8_112
P19338_324	D6RBZ0_232	P0DMV8_246
P19338_333	Q15233_203	P0DMV8_251
P19338_348	Q15233_249	P0DMV8_257
010220 270	015233 371	P0DMV8 319

P19338_377	Q15233_467	P0DMV8_348
P19338_382	Q12906_342	P0DMV8_451
P19338_398	P62241_157	P0DMV8_497
P19338_403	P62241_170	P0DMV8_500
P19338_410	P27824_170	P0DMV8_512
P19338_424	P48643_160	P0DMV8_524
P19338_429	P48643_170	P0DMV8_526
P19338_477	P48643_483	P0DMV8_539
P19338_513	A0A024RDF4_114	P0DMV8_550
P19338_521	A0A024RDF4_129	P0DMV8_569
P19338_523	A0A024RDF4_178	P0DMV8_597
P19338_545	A0A024RDF4_182	P68363_60
P19338_572	A0A024RDF4_197	P68363_112
P19338_577	A0A024RDF4_242	P68363_326
P19338_624	A0A024RDF4_243	P68363_336
P19338_646	A0A024RDF4_251	P68363_370
P38646_76	P78527_1407	P07900_414
P38646_135	P78527_2683	P07900_418
P38646_138	P49327_436	P07900_443
P38646_159	P49327_673	P07900_458
P38646_175	P09429_29	P07900_478
P38646_187	P09429_30	P07900_485
P38646_206	P09429_59	P07900_489
P38646_234	P09429_88	P07900_539
P38646_288	P09429_114	P07900_546
P38646_300	P09429_128	P07900_559
P38646_394	Q6NXR8_34	P07900_576
P38646_467	P51991_73	P07900_585
P38646_625	P62753_14	P07900_631
P38646_646	P12268_511	P13639_42
P38646_653	Q06830_109	P13639_252
P09429_29	Q06830_178	P13639_259
P09429_30	P63244_183	P13639_283
P09429_55	P62277_27	P13639_318
P09429_59	P62277_39	P13639_391
P09429_88	P62277_43	P13639_426
P09429_114	P05141_23	P13639_445
P09429_127	P05141_147	P13639_439
P09429_128	P00338_14	P13639_512
P09429_157	Q07021_104	P13639_594
P09429_165	P42704_750	P13639_605
P09429_167	P62826_60	P13639_629
P09429_172	P26641_220	P13639_648
P09429_177	P15880_257	P13639_845
P14866_97	P15880_263	P60709_50
P14866_229	075390_76	P60709_328
P14866_269	075390_103	P07437_58
P14866 493	075390_382	P07437_216

P14866_533	075390_459	P07437_324
P14625_95	P07737_38	P07437_336
P14625_269	P07737_54	P04075_13
P14625_340	P07737_108	P04075_14
P14625 404	P30101 129	P04075 28
P14625_458	P26599_428	P04075_42
P14625_534	P26373_209	P04075_87
P14625_547	P12277_304	P04075_99
P14625_561	P38159_22	P04075_111
P14625_593	P38159_63	P04075_200
P14625_597	P62906_91	P04075_294
P14625_630	P62906_92	P04075_312
P14625_633	P62906_106	P04075_318
P14625_663	P62081_49	P04075_322
P14625_671	P49368_248	P04075_330
P14625_682	P49368_381	P04075_342
P13010_265	P54819_93	P00338_14
P13010_291	P62280_144	P00338_59
P13010_307	P23396_197	P00338_76
P13010_532	P62847_83	P00338_81
P13010_534	Q07666_175	P00338_90
P13010_544	Q07666_432	P00338_118
P13010_648	P34897_181	P00338_126
P13010_660	P34897_409	P00338_149
P13010_703	P34897_469	P00338_222
P34897_103	P34897_474	P00338_318
P34897_181	P23528_144	P04406_61
P34897_200	Q99832_292	P04406_107
P34897_269	Q92945_627	P04406_145
P34897_297	Q92945_628	P04406_194
P34897_302	Q92945_653	P04406_215
P34897_356	000571_335	P04406_219
P34897_409	P63104_49	P04406_227
P34897_459	014979_180	P04406_259
P34897_464	014979_302	P04406_263
P34897_469	P42167_346	P19338_79
P34897_474	P17987_484	P19338_110
P40926_74	P17987_494	P19338_223
P40926_78	P78371_46	P19338_228
P40926_91	P18621_49	P19338_288
P40926_157	P30050_40	P19338_324
P40926_165	P30050_130	P19338_370
P40926_185	P14174_78	P19338_382
P40926_203	Q7KZF4_116	P19338_398
P40926_215	Q13283_357	P19338_429
P40926_239	Q13283_413	P19338_577
P40926_297	Q07020_119	P19338_624
P40926 301	P25398 93	P49327 436

P40926 307	P25398 116	P49327 673
P40926 314	015371 53	P49327 1116
P40926_324	P39748 267	P49327 1151
P40926_329	P26368 462	P49327 1878
P62807_6	002543_11	P18669_39
P62807 12	P35579 910	P18669 100
P62807 17	P24534 176	P18669 106
P62807 21	P24534_185	P18669 113
P62807_1	P31948_252	P18669_157
P62807_109	P31948_434	P18669_176
P62807 117	P31948 513	P18669 251
P62807 121	P22392 100	P14618_62
P00338 14	P52292_100	P14618_66
P00338_76	015347_30	P14618 115
P00338_81	P18669 106	P14618_135
P00338 222	P46783_139	P14618 141
P00338 243	P11177_336	P14618 186
P00338_318	P04181_405	P14618_206
P25705 123	P43487 111	P14618_200
P25705_126	015029_64	P07195_7
P25705_161	P38919 198	P07195_7
P25705_167	013151_176	P07195_119
P25705_107	004837 122	P07195_156
P25705_205	09UMS4 179	P07195_308
P25705_227	096PK6 593	P07195_310
P25705_506	09Y2W1 481	P07195_318
P25705 531	09Y2W1 876	P07195 319
P61978 52	P83731 12	P12277 101
P61978 60	Q9Y265 453	 P12277 265
 P61978 163	P07814 513	 P12277 298
P61978 179	P07814 512	P12277 304
 P61978_219	 A0A024RBE8_233	 P12277_313
P61978 405	Q12931 382	P62258 50
P61978_456	Q12931_560	P62258_73
A0A024RB53_8	Q12849_242	P62258_69
A0A024RB53_52	P61254_136	P62258_118
A0A024RB53_78	P62857_16	P62258_215
A0A024RB53_87	Q96AE4_248	P31948_13
A0A024RB53_105	Q99459_219	P31948_50
A0A024RB53_106	P00558_75	P31948_63
A0A024RB53_166	P84098_190	P31948_73
A0A024RB53_179	P62851_52	P31948_109
A0A024RB53_298	P62851_66	P31948_123
B4DLR3_193	P26583_29	P31948_169
B4DLR3_197	P26583_30	P31948_252
B4DLR3_224	P26583_147	P31948_434
P40102 422	P63173 9	P31948 453
B4DLR3_423	1031/3_3	_

		1
B4DLR3_510	075947_85	P31948_486
B4DLR3_524	075947_109	P31948_513
B4DLR3_585	P52597_224	P62937_44
B4DLR3_594	Q92804_306	P62937_76
B4DLR3_633	P62333_206	P62937_82
B4DLR3_773	Q13242_36	P62937_91
P62937_28	Q02790_163	P62937_125
P62937_31	Q02790_222	P62937_131
P62937_44	Q04760_88	P62937_151
P62937_49	P05198_141	P62937_155
P62937_76	P14927_96	P60842_54
P62937_82	P50502_118	P60842_68
P62937_91	P23526_389	P60842_174
P62937_118	P30405_91	P60842_193
P62937_125	P30041_209	P60842_226
P62937_131	Q9BWD1_235	P60842_291
P62937_133	P30084_128	P60842_369
P10412_46	P55786_222	P07737_38
P10412_52	P55786_853	P07737_54
P10412_63	P00367_480	P07737_70
P10412_64	P62899_70	P07737_105
P10412_85	Q9H583_1675	P07737_108
P10412_90	Q8NBS9_140	P07737_116
P10412_97	P20674_72	P07737_126
P10412_106	P50213_77	Q06830_16
P10412_110	P30040_99	Q06830_27
P10412_117	Q9Y262_403	Q06830_35
P10412_119	Q9NY12_94	Q06830_67
P10412_127	P08559_385	Q06830_93
P10412_136	094925_164	Q06830_109
P10412_148	E5KS55_205	Q06830_136
P10412_156	P30042_141	Q06830_185
P10412_168	075521_92	Q06830_178
P10412_186	Q5SY16_670	Q06830_190
P10412_197	P61221_169	Q06830_192
P10412_213	P61221_191	Q06830_197
P06748_27	P61221_431	P60174_92
P06748_32	Q96I24_525	P60174_106
P06748_54	015318_49	P60174_122
P06748_141	Q13526_63	P60174_193
P06748_154	P17858_677	P60174_212
P06748_155	Q9BZJ0_224	P60174_225
P06748_202	Q9HB71_178	P60174_231
P06748_212	P41227_148	P60174_275
P06748_215	Q01813_688	P00558_11
P06748_223	Q9HC36_237	P00558_30
P06748_229	Q9NSE4_500	P00558_41
P06748_230	P10606_57	P00558_91

P06748 236	P08758 309	P00558 131
P06748 239	010570 99	P00558 133
P06748 248	08N5C6_852	P00558 141
P06748_250	099986 98	P00558_156
P06748_257	P07954 292	P00558_191
P06748_257	P50570 598	P00558_199
P06748_273	P32322 307	P00558_264
P00558_41	000231 417	P00558_279
P00558 75	015459 419	P00558_291
P00558_75	P55084 72	P00558_231
P00558_31	P17980 125	P63104 9
P00558_139	B4D716_890	P63104_11
P00558 141	003701 195	P63104_49
P00558_156	0911183 306	P63104_45
P00558 191	P08237_678	P63104_00
P00558 199	09UDR5 584	P63104 120
P00558 267	015460 57	P63104_128
P00558 279	01/671 718	P6310/ 152
P00558 291	0777F7 10/	P63104_138
P00558_231	002218 970	OGIRN1 210
P62805 0	Q02218_970	D22528 10
P62805_5	Q31017_323	P23528_19
P62805_13	C9NVS9 100	P23528_22
P23396_18	014258 320	P23528_30
P23396_10	08N5F7 305	P23528_45
P23396_108	P54709 182	P23528_43
P23396_132	095071 28	P23528_32
P23396 197	013085 323	P23528_114
P23396 201	093034 492	P23528 127
P23396 202	014181_232	P23528 132
A0A024RDF4 72	P35914 179	P23528 144
A0A024RDF4 110	P38432 496	P22314 627
A0A024RDF4 114	 Q9BSJ2 426	 P22314 802
A0A024RDF4 119	Q14203 397	P22314 806
 A0A024RDF4 129	Q8WVM8 515	P53396 948
A0A024RDF4 158	Q86U86_416	P53396_962
	Q8IZX4 1610	P53396 1077
A0A024RDF4 176	000186_197	 P14625_95
A0A024RDF4 182	P08133_314	 P14625_458
A0A024RDF4 178	014727 142	P09429 55
A0A024RDF4 231	Q9BRT2_69	P09429_59
A0A024RDF4 237	P10809_96	 P09429_88
	P10809_469	P09429_114
 A0A024RDF4_243	 P0DMV8_539	P09429_128
 A0A024RDF4_251	 P68104_215	P09429_146
	Q00839_543	P09429_147
 P05141_23	P08238_284	P09429_150
P05141 33	P61978 102	P09429 154
_		-

P05141 43	P61978 179	P09429 157
P05141_63	P58876_12	P09429 165
P05141_92	P58876_109	P09429_167
P05141_147	P58876_117	P09429 177
P05141_166	P58876_121	P34932 185
P05141_100	P06748 202	P34932_105
P05141_272	P07437_58	P34932_300
002878 5	P06733 92	P34932_430
002878_8	P06733_330	P266/1 132
002878_26	P00733_330	P26641_132
002878_20	P386/6 159	P26641_220
002878_41	D68262 226	P26641_277
002878_77	P08303_330	P20041_401
002878_100	P32272_072	022012 74
002878_100	P23240_314	032012_74
002878_220	P12930_382	032012_125
02878_237	P13010_203	Q32Q12_169
P31946_13	P43243_146	Q32Q12_240
P31946_51	P40926_185	Q32Q12_264
P31940_122	P1/844_230	Q32Q12_208
P31946_160	Q5CAQ5_663	Q9HB71_134
P62826_38	G3V4C1_89	Q9HB/1_19/
P62826_60	G3V4C1_144	Q02790_88
P62826_/1	P48643_261	Q02790_222
P62826_134	P48643_439	P62826_/1
P62826_142	Q8NC51_321	P62826_127
P02820_152	Q8NC51_327	P02820_134
P02820_139	Q15233_198	P02820_142
P04075_13	Q13233_233	P02820_133
P04075_14	006820 02	P03241_27
P04075_28	Q00830_93	P03241_08
P04075_42	P03141_92	P00918_59
P04075_87	P02277_78	P00918_45
P04075_99	P20041_277	P00918_70
P04075_111	P20041_434	P00918_107
P04075_200	06P209 1840	P00918_230
P07737 38	P62826 142	P35579_102
P07737_38	075200 42	P35579_102
P07737_7	092945 203	P35579 910
P07737_70	Q92943_203	P35579_910
P07727 105	00538_518	P25570 1477
P07737 108	014979 142	P13797 126
P07737 116	F8\/V04 51	P13797 582
P07737 126	P46782 191	P29401 232
P07737 127	P17987 515	P29401 319
B28806_81	P49411 286	P11586 10
B2RB06_179	P24534 147	P11586_262
B2RB06 185	09N7I8 465	P11586 878
22	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

B2RB06_192	015347_29	Q15366_23
B2RB06_202	Q9NYF8_842	Q15366_185
B2RB06_206	Q9NYF8_891	P11940_104
B2RB06_271	P25205_177	P11940_196
P07900_414	P25205_194	P11940_299
P07900_631	000264_105	P11940_512
P07900_632	P25786_115	P49321_530
P13639_15	P62851_94	P49321_636
P13639_283	P46781_30	P49321_643
P13639_337	P49792_983	P49321_652
P13639_445	Q9Y265_201	Q01105_132
P13639_439	P41091_275	Q01105_150
P13639_498	A8KAP3_64	Q01105_167
P13639_512	P10599_94	Q01105_172
P13639_598	075821_172	P14174_78
P13639_605	P60866_8	P24534_74
P39023_39	P12236_23	P24534_129
P39023_103	P63167_36	P24534_133
P39023_294	P41252_410	P24534_139
P39023_300	P41252_844	P24534_176
P39023_312	Q00341_883	P25205_177
P39023_366	O60832_80	P61221_126
Q00610_96	P54577_310	P61221_191
Q00610_246	Q9HAV7_100	P50990_138
Q00610_367	P50570_206	P50990_400
Q00610_619	095470_155	P06744_142
Q00610_637	Q8N183_108	P06744_234
Q00610_737	Q8TCG1_252	P06744_366
Q00610_1441	A2NX49_323	P06744_447
P14618_62	Q9Y4W2_540	P06744_454
P14618_66	Q5SRE5_51	P23526_20
P14618_115	Q14C86_1035	P23526_389
P14618_247	075899_196	075369_2342
P14618_261	P04075_14	F5GWF6_46
P14618_305	Q14103_129	P27348_9
P22626_17	Q5U071_30	P27348_49
P22626_22	V9HW62_88	P27348_158
P22626_59	P08238_64	P27348_212
P22626_104	P08238_69	Q9Y490_685
P22626_112	P08238_180	Q9Y490_1314
P22626_113	P08238_186	Q9Y490_1544
P22626_173	P08238_204	Q9Y490_1947
P62277_27	P08238_275	Q9Y490_2133
P62277_39	P08238_286	Q99832_292
P62277_43	P08238_347	Q99832_366
P62277_78	P08238_350	Q16576_21
P62277_93	P08238_354	Q16576_119
P23528 19	P08238 399	Q92598 275

P23528_30	P08238_402	P09211_55
P23528_44	P08238_406	P09211_128
P23528_45	P08238_410	P09211_191
P23528_73	P08238_411	P40925_110
P23528_92	P08238_428	P40925_220
P23528_112	P08238_435	P40925_236
P23528_114	P08238_477	P40925_298
P23528_127	P08238_481	Q14247_144
P23528_144	P08238_491	P27694_489
P12268_109	P08238_526	Q96AE4_248
P12268_450	P08238_531	Q96AE4_591
P12268_511	P08238_538	P50991_126
P62847_32	P08238_552	P22234_30
P62847_43	P08238_550	P22234_47
P62847_46	P08238_557	P22234_226
P62847_68	P08238_559	P22234_235
P62847_83	P08238_565	P22234_304
P62847_129	P08238_568	P52209_154
P13796_88	P08238_573	P12268_450
P13796_294	P08238_574	P55209_87
P13796_579	P08238_577	P55209_271
P62258_69	P08238_607	P31939_266
P62258_215	P08238_623	075131_208
P49411_79	P08238_641	P31946_11
P49411_88	P08238_646	P31946_70
P49411_91	P08238_649	P31946_160
P49411_234	P68104_5	P31946_214
P49411_238	P68104_172	P43487_150
P49411_286	P68104_179	P43487_179
P49411_342	P68104_180	P43487_190
P49411_361	P68104_244	Q14974_376
P49411_447	P68104_330	P50395_103
Q12906_454	P68104_386	P50395_269
P00505_59	P68104_460	P62979_6
P00505_82	P06733_28	P62979_11
P00505_90	P06733_60	P62979_48
P00505_159	P06733_64	P32119_16
P00505_309	P06733_89	P32119_26
P00505_338	P06733_105	P32119_92
P00505_363	P06733_197	P32119_177
P27824_118	P06733_199	P18206_352
P27824_127	P06733_202	P18206_366
P27824_170	P06733_221	P68371_58
P27824_182	P06733_228	014980_686
P27824_398	P06733_233	014980_693
P27824_515	P06733_239	Q00610_246
P62424_11	P06733_256	P09874_621
P62424_20	P06733_335	043719_26

P62424_34	P06733_358	O43719_303
 P62424_97	P06733_420	 P08758_101
P62424_125	P0DMV8_25	P55060_848
P62424_212	P0DMV8_112	043175_394
P62424_217	P0DMV8_128	P48643_170
P62424_255	P0DMV8_190	P48643_226
P12956_189	P0DMV8_246	P48643_275
P12956_287	P0DMV8_257	P10599_94
P12956_463	P0DMV8_319	P54577_310
P12956_516	P0DMV8_325	P54577_319
P12956_526	PODMV8_451	P49773_21
P12956_553	P0DMV8_497	P49773_82
P12956_570	P0DMV8_500	075347_21
P12956_575	P0DMV8_507	P06493_20
P12956_582	PODMV8_512	P06493_33
P12956_596	PODMV8_526	P20618_164
P50990_16	P0DMV8_550	000299_119
P50990_20	P0DMV8_573	O00299_183
P50990_138	PODMV8_589	P62633_103
P50990_225	PODMV8_628	Q9NTK5_294
P50990_260	P11142_25	P55786_712
P50990_326	P11142_88	P08133_75
P50990_400	P11142_112	P31689_37
P51991_29	P11142_137	P06454_21
P51991_36	P11142_246	095373_429
P51991_73	P11142_257	P38606_580
P51991_134	P11142_319	Q07866_384
P51991_199	P11142_348	Q9BRA2_35
P48643_170	P11142_361	P35580_1869
P48643_259	P11142_423	P15170_490
P48643_261	P11142_497	P07814_693
P48643_265	P11142_500	P07814_861
P48643_439	P11142_512	P07814_951
P48643_483	P11142_526	P04080_39
P62081_49	P11142_535	P04080_44
P62081_58	P11142_583	P04080_78
P62081_142	P11142_601	Q14166_510
P62081_155	P07900_74	P15121_12
P62081_160	P07900_84	P15121_22
P62081_178	P07900_209	P84077_142
P62081_179	P07900_414	Q86VP6_586
P62906_47	P07900_418	P50502_14
P62906_92	P07900_436	P50502_118
P62906_91	P07900_443	Q15181_233
P62906_95	P07900_458	Q04760_88
P62906_106	P07900_478	Q04760_157
P62906_118	P07900_485	Q9NVS9_186
P62906 130	P07900 489	O9Y617 116

P62241_128	P07900_513	Q9Y617_127
P62241_139	P07900_534	Q9Y617_323
P62241_157	P07900_539	P41250_82
P62241_170	P07900_546	P41250_108
P62701_94	P07900_559	P05455_37
P62701_211	P07900_576	075083_256
P62701_230	P07900_585	P06737_29
P62701_233	P07900_631	P06737_295
P52566_114	P07900_632	P06737_819
P52566_124	P07900_657	Q9Y266_315
P52566_135	P07900_693	Q99497_130
P52566_138	P19338_15	Q99497_182
P52566_175	P19338_71	P30520_164
P52566_196	P19338_79	P30520_173
Q06830_16	P19338_80	P30520_203
Q06830_93	P19338_87	Q14C86_87
Q06830_109	P19338_95	Q14C86_1035
Q06830_178	P19338_96	P37837_269
P26583_29	P19338_102	P37837_307
P26583_30	P19338_109	P12004_80
P26583_59	P19338_110	P13693_89
P26583_127	P19338_116	P13693_93
P26583_128	P19338_124	P13693_100
P26583_147	P19338_125	P13693_112
P26583_167	P19338_132	Q13765_113
P26583_173	P19338_223	Q13765_142
P61604_28	P19338_228	P46108_189
P61604_40	P19338_282	P40227_129
P61604_80	P19338_288	P40227_251
P11940_78	P19338_294	P40227_424
P11940_104	P19338_318	Q13526_63
P11940_157	P19338_348	Q16543_276
P11940_196	P19338_370	A0A087X1X7_483
P11940_312	P19338_382	P33993_89
P11940_348	P19338_403	Q13564_381
P11940_361	P19338_410	P63167_36
Q3ZCM7_122	P19338_424	P22102_156
Q3ZCM7_154	P19338_429	P22102_350
P26038_64	P19338_477	O60271_714
P26038_151	P19338_523	P14735_364
P26038_253	P19338_545	P23381_27
P26038_254	P19338_572	P09960_573
P26038_391	P19338_577	076003_151
P26038_400	P19338_624	076003_294
P26038_538	P19338_646	Q9BTE3_61
P15880_211	P13639_15	B2RDE1_13
P15880_212	P13639_42	B2RDE1_215
P15880_257	P13639_235	B2RDE1_228

P15880_263	P13639_252	Q15185_48
P15880_275	P13639_259	P61956_33
Q96KK5_37	P13639_272	P61956_45
Q96KK5_120	P13639_275	Q8WUM4_23
Q96KK5_126	P13639_314	Q8WUM4_501
P40939_60	P13639_318	Q06203_349
P40939_214	P13639_328	Q06203_371
P40939_255	P13639_333	Q09028_212
P40939_259	P13639_391	P33316_155
P40939_289	P13639_407	P10768_186
P40939_295	P13639_426	P10768_200
P40939_303	P13639_512	P15311_254
P40939_415	P13639_571	P68032_70
P40939_460	P13639_594	P0DN79_269
P40939_728	P13639_598	P26583_147
P27797_41	P13639_605	014929_15
P27797_48	P13639_619	P31150_269
P27797_62	P13639_629	Q9UHD1_198
P27797_151	P13639_648	P26640_903
P27797_153	P13639_676	A6NHG4_33
P78371_46	P13639_845	Q92688_101
P78371_154	P04075_42	Q9Y237_75
P78371_248	P04075_87	P39687_101
P78371_272	P04075_99	Q9UHB9_277
P78371_441	P04075_108	095721_191
P68371_58	P04075_140	Q9UJU6_164
P24752_66	P04075_153	Q15029_64
P24752_174	P04075_200	Q8TCG1_252
P24752_190	P04075_294	Q9Y2L1_107
P24752_230	P04075_330	Q7Z4S6_1058
P24752_251	P04075_342	Q9Y696_130
P23246_314	P68363_112	P41252_410
P23246_338	P68363_163	P41252_844
P23246_421	P68363_304	P52701_537
P23246_518	P68363_394	Q9Y3F4_104
P52272_145	P00338_59	Q8NCW5_144
P52272_388	P00338_76	P68036_73
P52272_651	P00338_81	P68036_96
P52272_698	P00338_118	Q99615_41
075947_5	P00338_126	014737_66
075947_63	P00338_155	Q96AC1_55
075947_85	P00338_224	Q13617_728
075947_109	P00338_222	Q8IV38_265
075947_117	P00338_228	Q99729_101
075947_144	P00338_232	P17858_677
075947_149	P00338_243	Q96G03_586
P61247_27	P49327_235	Q93034_492
P61247 34	P49327 786	A5PL36_1161

P61247_144	P49327_787	Q9UKK9_218
P61247_222	P49327_1116	Q96HC4_127
P61247_240	P49327_1142	Q9HC38_305
P61247_249	P49327_1151	P52565_178
075390_76	P49327_1158	P49720_77
075390_103	P49327_1239	P23588_223
075390_382	P49327_1591	O94903_47
P62851_14	P49327_1866	P25325_164
P62851_20	P49327_1878	P41236_67
P62851_25	P49327_1911	P18754_335
P62851_52	P07437_19	P49643_65
P62851_57	P07437_216	Q9BRX5_207
P62851_60	P07437_324	Q7Z4Q2_46
P62851_66	P07437_336	075886_376
P62851_94	P07437_379	Q16204_81
P62851_98	P60709_191	Q96KB5_121
Q13423_394	P07195_7	P13984_154
Q13423_1059	P07195_60	P46459_586
P62979_6	P07195_77	Q12802_1765
P62979_11	P07195_82	Q5TBB1_25
P62979_48	P07195_119	Q5TBB1_259
P62979_63	P07195_156	Q13045_39
P62979_107	P07195_244	Q6P996_680
P62979_152	P07195_308	P17987_515
000299_119	P07195_310	Q9NR45_61
Q08211_14	P07195_318	P30101_129
Q08211_236	P07195_319	Q9UHY7_111
Q08211_235	P04406_61	Q9Y6G9_310
Q08211_943	P04406_107	P40763_177
P40227_10	P04406_145	P40424_74
P40227_388	P04406_186	043242_315
P40227_426	P04406_194	P78417_110
P40227_424	P04406_215	P78417_143
Q99729_82	P04406_219	Q9HC35_228
Q99729_86	P04406_227	Q9BPX3_924
Q99729_101	P04406_259	043847_325
Q99729_118	P04406_263	Q00534_26
Q99729_149	P04406_271	Q01469_61
Q99729_153	P14618_62	Q9BXJ9_262
Q99729_210	P14618_115	P08237_678
Q99729_214	P14618_125	Q01813_688
Q99729_215	P14618_135	Q96C23_101
Q99729_223	P14618_141	E5RJR5_130
Q99729_232	P14618_162	Q13616_759
Q01813_139	P14618_166	Q9HAV4_1147
Q01813_688	P14618_186	Q7Z4V5_39
P63244_12	P14618_188	Q9UIA9_395
P63244_185	P14618_261	P25786_115

P63244 264	P14618 305	P33992 396
P63244_271	P14618_336	013325 218
P36578 29	P14618_367	013404_87
P36578_25	006830_16	09NOW7 130
P36578_368	006830_27	09BS12_87
P36578_374	006830_27	096CW1 400
P36578_375	006830_67	P12081_22
P36578_380	006830_68	014185 1469
P36578_399	006830_03	09111X3 435
P36578_412	006830_158	000013 329
P09874_23	006830_185	P14324 295
P09874_196	006830 190	P61758 114
P09874_120	006830 192	09P260_633
08NC51 39	006830_197	Q91200_035
08NC51_39	P60842_68	P35219 192
08NC51_220	P60842_146	08TDX7 281
08NC51 321	P60842_174	P43490 189
08NC51_327	P60842_174	09UB00 73
P07954 94	P60842_220	075821 71
P07954_115	P60842_291	013257 200
P07954 292	P60842_309	Q96EK6 166
P07954_470	P60842_369	P31153 303
P07954 477	P00558 11	P60981 19
P78527 310	P00558 30	P17980 125
P78527 1407	P00558 41	Q9UQ13 134
P78527 2683	P00558 91	P35221 178
P78527 2829	P00558 97	043447 153
P78527_3260	P00558_106	Q9NVG8_287
P62913_38	P00558_131	P48739_104
P62913_52	P00558_139	P61970_55
P62913_67	P00558_141	P09972_111
Q16891_270	P00558_156	Q16763_63
Q16891_282	P00558_191	Q14181_232
Q16891_315	P00558_199	Q5VYK3_1456
Q16891_427	P00558_264	Q9GZN8_105
Q16891_436	P00558_267	P51617_397
Q16891_640	P00558_279	P40426_77
Q99832_67	P00558_291	P57737_103
Q99832_109	P00558_323	Q12874_92
Q99832_157	P00558_361	P61077_128
Q99832_292	P09429_12	Q7L5N1_102
Q99832_463	P09429_55	P20700_123
P07814_512	P09429_65	Q99961_171
P07814_788	P09429_82	Q86V21_633
P07814_841	P09429_150	Q9NXF7_167
P07814_861	P09429_154	Q96F45_180
P07814_951	P09429_157	Q96F45_607
P84243 5	P09429 165	Q9UBF2 313

P84243_19	P09429_167	Q53FA7_257
P84243_24	P09429_172	Q15126_69
P84243_57	P09429_177	Q9NXR1_263
P84243_65	P31948_13	P08238_491
P84243_123	P31948_50	P08238_568
Q99798_144	P31948_63	P13639_272
Q99798_409	P31948_73	P13639_275
Q99798_605	P31948_109	P13639_333
Q99798_730	P31948_123	P13639_571
Q92688_101	P31948_169	P60709_191
P06744_366	P31948_207	P60709_213
P06744_454	P31948_227	P07900_74
P35579_30	P31948_317	P07900_513
P35579_29	P31948_347	P04075_140
P35579_910	P31948_364	P04075_153
P35579_1129	P31948_381	P00338_155
P35579_1445	P31948_442	P00338_224
P35579_1862	P31948_486	P00338_243
P16401_35	P26641_132	P04406_186
P16401_49	P26641_147	P14618_256
P16401_132	P26641_212	P14618_367
P16401_133	P26641_219	P19338_95
P16401_140	P26641_227	P19338_348
P16401_168	P26641_228	P19338_410
P16401_188	P26641_249	P49327_235
P16401_209	P26641_253	P49327_1142
P16401_214	P26641_401	P49327_1523
P17987_484	P18669_39	P49327_1591
P17987_494	P18669_100	P18669_241
P17987_515	P18669_113	P31948_347
P55809_176	P18669_157	P00558_97
P55809_185	P18669_176	P00558_267
P55809_296	P18669_225	P60174_179
P55809_418	P18669_228	Q06830_68
P55809_421	P18669_241	Q13263_296
P55809_481	P18669_251	P62258_123
P25205_177	P23528_19	P62258_125
Q68D11_798	P23528_30	P62258_142
Q04837_81	P23528_44	Q6IBN1_405
Q04837_103	P23528_45	P22314_671
Q04837_113	P23528_73	P09429_44
Q04837_122	P23528_78	P14625_663
P31948_50	P23528_92	Q02790_163
P31948_123	P23528_112	P34932_754
P31948_252	P23528_114	A0A024R895_59
P31948_434	P23528_121	A0A024R895_62
P31948_486	P23528_127	A0A024R895_119
P31948_513	P23528_132	A0A024R895_137

P27348_9	P23528_152	A0A024R895_154
P27348_49	P62937_91	A0A024R895_159
P42677_16	P62937_118	Q32Q12_196
P60842_54	P62937_131	P11586_543
P60842_146	P62937_133	P11586_553
P60842_174	P62937_151	P35579_30
P60842_193	P62937_155	P29401_16
P60842_291	P34932_53	P50990_260
P60842_369	P34932_185	Q15366_322
P46782_191	P34932_332	P46821_2240
P46782_201	P34932_388	P78371_46
P27635_82	P34932_430	P61221_121
P27635_121	P34932_437	Q92598_430
P27635_145	P34932_668	P09211_189
P27635_170	P34932_679	P27694_410
P27635_188	P34932_754	Q14974_867
P60866_8	P34932_766	P08758_97
P21796_20	P60174_43	P22234_116
P21796_109	P60174_92	P62979_63
P21796_201	P60174_106	P55786_293
P21796_236	P60174_122	P10599_39
P46783_139	P60174_179	P20618_184
075083_90	P60174_193	Q96FW1_59
075083_104	P60174_212	P37802_17
075083_223	P60174_225	P05455_229
075083_256	P60174_231	P52209_147
P48047_54	P60174_275	Q14204_692
P48047_70	P63104_9	P50502_5
P48047_73	P63104_11	P08133_377
P48047_162	P63104_68	Q9H0B6_369
P00367_183	P63104_115	P31689_221
P00367_258	P63104_120	B4DZJ6_890
P00367_365	P63104_138	P12004_168
P00367_480	P63104_139	Q13526_82
P18669_106	P63104_158	E9PAV3_1976
P18669_176	P63104_212	E9PAV3_2005
P62917_93	Q32Q12_74	P26639_222
P62917_144	Q32Q12_81	P11021_185
P62917_155	Q32Q12_125	P39748_200
P26641_277	Q32Q12_189	Q04760_44
P07195_7	Q32Q12_196	Q04760_140
P07195_156	Q32Q12_264	076003_253
P38159_22	Q32Q12_275	B2RDE1_76
P38159_63	Q32Q12_268	Q15185_91
P38159_86	P61978_163	P15311_427
P38159_150	P12277_101	Q969T7_98
P38159_217	P12277_242	O43865_487
B3KX96 29	P12277_267	P38646_653

B3KX96_39	P12277_298	015347_112
B3KX96_42	P12277_307	015347_145
B3KX96_89	P12277_313	P16152_148
B3KX96_144	P62826_38	095433_212
B3KX96_163	P62826_71	Q14683_146
043390_114	P62826_99	Q01469_55
Q9Y277_15	P62826_134	Q9Y5A7_128
Q9Y277_20	P62826_159	000231_252
Q9Y277_109	Q13263_188	P19623_96
Q99714_99	Q13263_296	Q8WVJ2_147
Q99714_104	Q13263_319	P47813_56
043837_96	Q13263_377	Q9BUJ2_731
043837_146	Q13263_469	Q9Y312_131
043837_354	Q13263_774	P51580_32
A0A0D9SF54_969	Q13263_779	P32321_131
A0A0D9SF54_1560	P07737_70	014617_684
A0A0D9SF54_2411	P07737_105	Q9BSH5_15
Q86V81_81	P07737_116	Q9Y3Z3_312
Q86V81_86	P07737_126	Q6ZMR3_155
Q86V81_156	P62258_50	Q07002_158
Q86V81_164	P62258_69	Q5TCZ1_321
Q13838_384	P62258_73	075330_589
Q00325_209	P62258_118	Q96ST8_588
Q00325_214	P62258_123	Q13206_768
Q00325_234	P62258_142	Q16352_215
Q00325_247	P62258_153	P08238_481
P55084_72	P62258_215	P08238_526
P55084_181	P35579_30	P08238_573
P55084_188	P35579_29	P0DMV8_25
P55084_272	P35579_63	P0DMV8_325
Q02543_11	P35579_102	P0DMV8_507
P20700_261	P35579_355	P07900_436
P20700_457	P35579_1240	P07900_560
P20618_164	P35579_1445	P07900_632
P20618_184	P35579_1477	P13639_15
P05388_77	P35579_1802	P13639_235
P05388_106	P35579_1862	P13639_572
P05388_264	P22314_627	P19338_96
Q12931_369	P22314_671	P19338_102
Q12931_382	P22314_802	P19338_282
Q12931_560	P22314_806	P19338_318
P62753_14	P22314_838	P19338_477
P62753_64	P00918_24	P19338_523
P62753_203	P00918_39	P49327_1993
P62753_211	P00918_45	P18669_228
P46781_30	P00918_76	Q13263_319
P46781_91	P00918_167	Q13263_774
P/6781 121	002790 88	P53396 469

P46781_139	Q02790_108	P53396_732
P46781_155	Q02790_254	P60842_146
B4DRW8_907	Q02790_287	P62937_118
P31146_233	Q02790_390	P62937_133
Q9BWD1_180	P11586_10	P12277_242
Q9BWD1_235	P11586_66	P34932_679
P69905_17	P11586_246	P23528_73
P69905_41	P11586_245	P23528_152
Q92945_627	P11586_262	Q9HB71_178
Q92945_628	P11586_543	P11940_78
Q92945_653	P11586_878	Q32Q12_275
B4DIZ3_66	P06744_12	P61221_64
B4DIZ3_213	P06744_142	075131_523
Q9Y262_101	P06744_234	P50395_112
Q9Y262_393	P06744_252	P50395_137
Q9Y262_403	P06744_366	P63241_85
Q9Y262_549	P06744_447	F5GWF6_272
P63241_27	P06744_454	P06744_252
P63241_34	P06744_523	P27348_68
P63241_39	P06744_524	Q14974_73
P63241_67	P53396_469	P17812_109
P63241_68	P53396_468	Q92945_281
P61221_126	P53396_471	P22234_36
P61221_169	P53396_732	P43487_76
P61221_191	P53396_780	P68371_379
P61221_431	P53396_948	Q14204_748
P08575_641	P53396_962	P55786_853
P08575_664	P53396_968	Q01105_72
P08575_780	P53396_1077	Q01105_75
P08575_1145	P54577_146	Q86VP6_577
P08575_1149	P54577_247	A0A024RB53_15
P50213_77	P54577_319	P22102_852
P50213_116	P54577_334	P05455_105
Q14697_472	P54577_348	P05455_185
P08865_89	P54577_391	075347_52
P08865_212	P54577_474	P40227_426
P09211_55	P29401_232	P84085_36
P09211_128	P29401_260	A0A0S2Z4I4_13
P09211_189	P29401_254	A0A0S2Z4I4_76
P17844_91	P29401_319	A0A0S2Z4I4_215
P17844_284	Q92598_185	A0A0S2Z4I4_228
P17844_391	Q92598_221	P62987_6
P27694_458	Q92598_272	P62987_11
P13073_53	Q92598_275	P62987_48
P13073_60	Q92598_430	P37802_153
Q2TU64_78	Q92598_772	Q53GN4_256
Q2TU64_248	Q92598_790	P63167_5
0071164 407	A0A0248895 59	P63167 9

Q71UI9_116	A0A024R895_119	P52292_459
P41252_410	A0A024R895_137	Q9BTE3_37
P41252_844	A0A024R895_154	P09936_123
P31943_349	A0A024R895_159	P61160_217
Q92608_437	A0A024R895_164	Q9Y266_93
Q92608_1474	A0A024R895_176	Q9UNS2_418
P61254_136	P55786_279	Q15181_253
P26599_410	P55786_712	Q13085_323
P26599_428	P55786_753	094966_993
P12236_23	P55786_821	P07954_292
P12236_147	P10809_87	015347_161
P12236_166	Q16576_21	Q15813_463
P83731_12	Q16576_119	P52565_141
P83731_27	Q16576_155	P41236_61
P83731_119	Q9HB71_19	P0DN79_83
P83731_144	Q9HB71_41	094903_49
P49458_41	Q9HB71_134	P35244_33
P49458_52	Q9HB71_197	000154_168
Q96EY1_152	P50990_138	Q9UQE7_743
Q96EY1_299	P50990_459	Q96DG6_159
P07237_271	P11940_196	Q8TEX9_801
P07237_328	P11940_299	Q9BV20_259
Q9NZ45_55	P63241_121	Q96A72_50
Q9NZ45_68	P13797_52	Q13625_773
P26368_462	P13797_452	Q13033_755
Q9HB71_178	P13797_545	Q9NRV9_140
Q9HB71_197	P13797_582	P55263_224
P45880_247	P32119_16	P40425_84
P67809_64	P32119_26	Q969Q4_31
P67809_92	P32119_92	P48507_90
P67809_170	P32119_135	Q9Y678_313
Q9P0L0_52	P32119_177	Q6ZU80_659
Q9P0L0_125	000299_119	Q93045_87
Q9P0L0_205	000299_183	P08238_350
Q9P0L0_211	Q15366_23	P08238_552
P29401_319	Q15366_31	P68104_378
P62841_58	Q15366_115	P11142_257
P62841_65	Q15366_185	P07900_558
P62841_108	Q15366_309	P07437_379
P84098_146	Q15366_322	P19338_80
P84098_153	P40925_107	P19338_87
P84098_190	P40925_110	P19338_109
075521_92	P40925_205	P19338_116
Q9BXW7_69	P40925_214	P19338_124
Q9BXW7_279	P40925_220	P19338_294
P31930_111	P40925_236	P19338_572
Q14152_694	P40925_298	P04406_251
A0A0S2Z5H3 158	P14625_404	Q13263_337

P30519_168	P14625_458	Q13263_377
P30519_199	P14625_561	P14618_125
Q6P2Q9_1840	P14625_663	P60842_309
Q92841_547	P27348_9	P34932_766
P22234_47	P27348_49	P23528_121
P00813_23	P27348_68	P35579_299
P00813_273	P27348_115	P35579_1793
P42704_103	P27348_212	P11940_324
P42704_1332	P43487_50	Q92598_185
P49257_87	P43487_68	P06744_524
P49257_346	P43487_150	P31939_199
P35637_316	P43487_179	F5GWF6_248
P31040_182	P43487_190	P23526_46
P31040_335	P15121_12	Q9Y490_841
P31040_538	P15121_173	P08758_70
P26373_118	P15121_179	P54577_391
P26373_145	P15121_222	P09874_196
P26373_200	015347_112	P49773_83
P26373_209	015347_126	P15170_72
P16403_119	015347_145	P55209_197
P16403_168	P18206_170	P15121_173
P16403_172	P18206_276	014744_227
P16403_181	P18206_352	Q7Z6Z7_1147
P32969_21	P18206_366	Q8TCG1_647
P32969_28	P18206_464	P14735_303
Q15233_249	Q15181_41	Q13098_349
Q15233_371	Q15181_199	A0A0S2Z4I4_212
P30042_141	Q15181_233	Q09028_102
P62899_6	Q15181_253	Q06203_442
P62899_55	P15170_72	014737_98
P62899_70	P15170_103	P09936_15
P46778_120	P15170_138	Q15056_80
094925_164	P15170_208	A8KAP3_64
P09622_430	P15170_247	Q9C0C9_132
043143_760	P15170_254	075832_30
P18621_49	P15170_490	O60610_133
P18621_55	043175_21	P28340_278
P18621_96	043175_289	075150_943
P18621_169	043175_351	P78417_198
P11586_245	043175_394	P62333_206
P11586_262	P09211_55	Q9H4A4_162
Q01082_842	P09211_128	P19623_135
Q01082_1354	P09211_191	Q13085_1564
Q9NSE4_241	P09211_209	O43592_634
Q9NSE4_500	P22234_30	Q12802_1773
P39748_200	P22234_36	Q92973_81
P39748_267	P22234_47	P53004_253
013151 99	P22234 110	09111X3 379

Q13151_176	P22234_116	Q8N4J0_163
 P15153_133	P22234_226	Q9NZW5_388
P61313 83	P22234 235	 Q7L1Q6 255
 Q2VIR3_275	 P08133_75	 E7ETY4_391
Q9UMS4 179	P08133 377	P22061 206
Q9UMS4 244	Q9Y617 116	Q7Z6K5 101
P35606 336	Q9Y617 127	014776 820
P68032_70	P84077_142	B4DWT1_114
Q92804 277	P62979 6	095817 460
Q92804_306	 P62979_11	 Q8IZX4_1610
Q9P2J5_464	P62979_63	P16949_53
Q9P2J5_719	P24534_60	P62837_128
Q9UDR5_584	P24534_64	Q2M2Z5_39
P18124_48	P24534_74	P19525_385
P18124_88	P24534_129	A0PK00_55
P47914_79	P24534_132	P10809_31
P47914_82	P24534_133	P10809_75
P47914_149	P30520_157	P10809_87
Q9BZJ0_224	P30520_164	P10809_89
Q9Y4L1_537	P30520_173	P10809_91
043242_76	P30520_403	P10809_96
043242_315	P30520_419	P10809_125
Q4G176_421	P06737_29	P10809_130
P39019_23	P06737_295	P10809_196
P39019_29	P06737_804	P10809_202
P39019_143	P06737_819	P10809_233
P22307_438	P30041_56	P10809_236
P22307_534	P30041_63	P10809_249
015372_269	P30041_97	P10809_250
015372_274	P09960_127	P10809_292
Q96AE4_248	P09960_573	P10809_301
P63167_36	Q92945_473	P10809_310
Q969G3_123	P09936_4	P10809_352
P60953_133	P09936_65	P10809_359
P32322_215	P09936_71	P10809_364
P32322_307	P09936_123	P10809_369
P55265_494	P09936_221	P10809_396
P55265_1115	Q99832_109	P68363_163
Q07021_91	Q99832_157	P68363_304
Q07021_104	Q99832_172	P68363_311
Q07021_123	P08758_97	P68363_394
P36542_39	P08758_101	P68363_401
P36542_115	P08758_290	P07437_122
P30084_128	P08758_301	P07437_252
P50914_85	P23526_20	P60709_291
P50914_164	P23526_43	P11142_246
P50914_165	P46821_1176	P11142_325
P50914 171	P48643 265	P11142 531

P30101_129	P68371_58	P38646_135
P30101_218	P68371_379	P38646_175
P30050_40	P27694_458	P38646_187
P30050_130	P27694_588	P38646_288
P50995_255	P50502_14	P38646_300
P50995_282	P50502_17	P38646_314
P04843_413	P50502_153	P38646_345
P31939_14	P50502_160	P38646_394
Q9BPW8_51	P50502_353	P38646_467
Q9BPW8_56	P50502_360	P38646_625
Q9BPW8_80	Q9Y266_93	P38646_675
P62263_63	Q9Y266_123	P38646_671
P62263_86	Q9Y266_160	P68104_443
P27695_125	Q9Y266_297	P08133_314
Q9Y265_453	Q9Y266_315	P08133_354
P04083_90	P22102_598	P08133_370
Q15366_31	P31939_199	P08133_406
Q15366_185	P31939_266	P08133_478
Q15366_322	P31939_389	P08133_613
P61353_27	P05455_37	P08238_286
P30048_149	P05455_105	P14625_137
P06239_130	P05455_229	P14625_168
P52597_224	P05455_276	P14625_404
Q14566_256	P05455_280	P14625_467
Q09028_212	P05455_344	P14625_534
A4D1M6_176	P05455_352	P14625_630
A4D1M6_185	P61221_64	P14625_671
Q7KZF4_515	P61221_121	P14625_682
P62280_30	P61221_478	P14625_683
P62280_45	043719_56	P40926_78
P62280_144	043719_303	P40926_91
Q13310_104	P49321_530	P40926_105
Q13310_361	P49321_626	P40926_185
Q9NSD9_560	P49321_636	P40926_203
P30040_99	P49321_643	P40926_239
P25398_93	P49321_652	P40926_301
P25398_116	075131_149	P40926_324
P25787_92	075131_167	P40926_329
Q9UII2_49	075131_208	P40926_335
Q9UII2_72	P26583_59	P05141_33
Q9UII2_82	P26583_114	P05141_43
Q9UII2_83	P26583_128	P05141_63
Q9UII2_100	Q09028_102	P05141_92
P62249_60	Q09028_212	P05141_147
P35268_52	Q04760_44	P05141_166
P35268_69	Q04760_140	P05141_199
P33993_89	Q04760_157	P05141_245
P21912 126	P50991 55	P05141 272

P21912_261	P50991_126	P19338_286
P42766_71	P50991_213	P19338_377
P42766_79	P50991_288	P19338_384
P42766_118	P50991_319	P19338_424
P46779_127	P17812_557	P19338_521
Q12905_186	P49773_21	P19338_545
Q12905_328	P49773_30	P19338_646
P09972_13	P49773_83	P48735_45
P09972_111	P49773_82	P48735_48
P14174_78	P49368_138	P48735_127
A8K1X9_274	P55209_271	P48735_130
P10515_362	A6NHG4_21	P48735_155
P10515_368	A6NHG4_33	P48735_166
P10515_386	A6NHG4_87	P48735_180
P14324_295	 P04080_39	P48735_193
095202_284	P04080_44	P48735_272
015347_30	P04080_78	P48735_275
 Q9NX58_50	Q9Y265_372	P48735_280
 P62942_53	 P29692_117	 P48735_360
015382_156	P07814_861	 P48735_384
015382 377	P07814 951	A0A024RB53 87
Q9H2W6 216	P10599 39	A0A024RB53 105
P62750_7	000410_437	
 P62750_14	000410_705	
P62750 26	A0A024R321 373	P25705 126
 P62750_36	Q9NTK5_248	 P25705_161
 P14927 96	Q9NTK5 253	P25705 230
043719_303	Q9NTK5_294	P25705_427
Q05D08_174	Q9NTK5_326	P25705_531
Q05D08_188	Q8TCG1_647	P09429_7
P14868_9	Q8TCG1_783	P09429_68
P11310_175	O14980_686	P09429_172
P11310_212	Q99497_130	P09429_180
P11310_271	Q99497_182	P14866_97
Q8N183_58	P40227_10	P14866_493
Q8N183_108	076003_92	B4DLR3_193
P50991_21	076003_151	B4DLR3_197
P50991_55	076003_253	B4DLR3_475
P50991_489	076003_294	B4DLR3_502
P62888_44	Q14204_748	B4DLR3_510
Q14204_1649	Q14204_754	B4DLR3_524
Q9UJV9_416	Q14204_1649	
P56192_860	Q14204_4204	B4DLR3_573
Q14683_146	Q14103_197	
Q14683_766	P52565_105	B4DLR3_629
Q00688_170	P52565_127	
075643_1294	P52565_141	
075643_1603	 P52565_167	 P12268_109

Q9NYF8_842	P52565_178	P12268_436
Q9NYF8_891	P06493_20	P12268_511
P83111_199	P06493_33	P06576_124
P83111_231	Q13098_183	P06576_133
P17858_677	P13693_19	P06576_159
Q9GZR7_808	P13693_89	P06576_264
PODMV8_108	P13693_93	P06576_350
P0DMV8_159	P13693_112	P06576_351
Q13601_264	P62942_53	P06576_485
P62191_24	P41250_108	P06576_522
P62191_217	P41250_219	P34897_181
Q10570_99	P41250_501	P34897_297
Q92621_1150	P68036_9	P34897_302
Q9NTJ3_170	P68036_73	P34897_474
Q13247_143	P68036_96	P62805_9
P53007_97	P68036_146	P62805_13
015318_49	P31946_11	P62807_6
P09012_60	P31946_70	P62807_12
 P09012_80	P31946_214	 P62807_17
P09012_114	Q14C86_233	P62807_21
P83881 22	015067 25	P62807 47
 P83881 27	 P52209 147	 P62807 86
 P33991 549	 P52209 154	 P62807 109
 P62333 206	Q15365 115	 P62807 117
 Q9HC36_237	P30086 47	 P62807 121
P37108 55	P30086 80	P10412 52
P62873 209	Q96P70 865	P10412 63
Q8N163 97	Q96FW1 59	P10412 81
P03928 45	Q92688 99	 P10412 85
P03928 49	Q92688 101	P10412 90
Q15046 492	E7EVH7 481	P10412 97
P16402 123	E7EVH7 556	P10412 106
000231 252	 Q9Y696_130	 P10412 110
 P38919 198	Q9Y696 194	P10412 117
P31689 37	Q9Y696 199	P10412 119
 P69849_170	 P31153_234	 P10412_122
 P69849_927	 P31153_303	 P10412_127
016778 35	09UHD1 38	P10412 148
P62269 91	09UHD1 101	P10412 153
P62269 150	09UHD1 198	P10412 180
P62861 1	A0A0S2Z4I4_76	P10412_186
P62861 51	A0A0S2Z4I4 100	P10412 190
Q02790 163	A0A0S2Z4I4 212	P10412 195
09HAV7 186	A0A0S2Z4I4 215	P10412 197
015459 419	A0A0S2Z4I4_228	P10412 200
Q14554 219	P21333 2417	P10412 210
099613_643	P21333 2513	P10412 213
000612 712	P15311 3	P27824 99

P29144_1216	P15311_60	P27824_118
Q04760_88	P15311_254	P27824_127
P46777_242	P15311_344	P27824_170
P20674_72	P33991_549	P27824_182
P55884_209	Q8WUM4_339	P27824_199
P55884_529	Q8WUM4_486	P27824_210
095470_155	Q8WUM4_501	P27824_398
P49207_36	Q8WUM4_627	P27824_515
Q92930_58	P55060_848	P22626_17
Q96I99_338	Q9Y3F4_104	P22626_104
Q1KMD3_626	Q9Y3F4_122	P22626_113
P63173_9	Q9Y3F4_246	P22626_151
P63173_67	P31689_37	P22626_173
P40429_114	P31689_221	Q02878_5
Q96F07_1234	P33316_155	Q02878_8
Q9P2R7_205	P33316_179	Q02878_20
H0Y2W2_200	P12004_77	Q02878_66
H0Y2W2_481	P12004_80	Q02878_77
H0Y2W2_554	P12004_168	Q02878_79
Q15067_260	Q9UNS2_254	Q02878_100
Q9Y2W1_711	Q9UNS2_418	P06748_27
P05198_141	P35580_865	P06748_154
075746_406	P35580_1869	P06748_193
Q9H9P8_104	P39748_200	P06748_202
Q9UBQ0_30	075347_21	P06748_206
Q9UJZ1_233	075347_36	P06748_212
P12235_23	075347_51	P06748_215
Q00013_329	P10768_186	P06748_223
P56381_37	P10768_200	P06748_229
P61981_69	P61981_69	P06748_230
P48556_324	P61981_88	P06748_233
Q92522_146	P27797_62	P06748_236
D3DTY9_112	Q9Y490_685	P06748_239
P30405_67	Q9Y490_2133	P06748_263
P30405_91	Q9BRA2_35	A0A024RDF4_110
Q9BSJ2_426	P50395_103	A0A024RDF4_114
P30626_68	P50395_142	A0A024RDF4_129
095453_335	P50395_253	A0A024RDF4_158
Q96G03_586	P50395_269	A0A024RDF4_161
Q96IX5_16	Q15185_7	A0A024RDF4_176
Q8NBS9_140	Q15185_48	A0A024RDF4_178
Q96AG4_73	Q15185_91	A0A024RDF4_182
Q96AG4_138	P11766_120	A0A024RDF4_197
P10606_57	P11766_357	A0A024RDF4_231
P14735_364	P11766_366	A0A024RDF4_238
Q8N5C6_852	P39687_86	A0A024RDF4_243
Q9Y3U8_62	P39687_99	A0A024RDF4_251
	D20007 404	D26502 44

P22695_21	P46109_265	P26583_55	
P22695_42	P78371_154	P26583_114	
P41227_148	Q14566_256	P26583_128	
Q02218_970	Q14974_376	P26583_150	
Q01844_644	Q14974_859	P26583_154	
Q96CS3_167	Q14974_867	P26583_157	
Q13283_357	043143_143	P26583_167	
P52565_141	043143_760	P13010_195	
P62834_128	Q06203_442	P13010_532	
Q86SR1_379	Q9Y450_657	P13010_603	
014979_302	P61956_11	P13010_660	
P46776_94	P61956_33	P13010_702	
P49406_129	P61956_45	P61604_28	
095347_177	075436_116	P61604_56	
Q86U86_416	Q01469_40	Q12906_214	
Q13526_63	Q01469_55	Q12906_389	
Q9NYU2_596	Q01469_61	Q12906_454	
Q96CW1_400	Q93034_455	Q12906_742	
Q7Z4V5_39	Q9BTE3_61	P49411_88	
Q96PK6_135	Q9BTE3_328	P49411_91	
P28331_467	Q16543_154	P49411_286	
P31937_297	Q16543_273	P49411_342	
Q5SRE5_51	Q16543_276	P61978_52	
014737_98	P27695_125	P61978_60	
Q01469_61	P08243_379	P61978_166	
O60832_80	075832_30	P62424_20	
P62857_10	Q13765_142	P62424_21	
P62857_16	Q01813_139	P62424_97	
P23368_26	Q14697_472	P62424_121	
Q13243_60	P37802_17	P62424_125	
Q93034_492	P37802_153	P62424_150	
P22830_118	Q00341_494	P62424_255	
Q9BTE3_61	000151_192	P23246_338	
P48444_38	Q9NRX4_48	P62847_32	
Q53HG1_102	Q9NRX4_87	P62847_43	
Q9NVP1_645	Q99615_32	P62847_46	
Q9H1K4_82	P14735_303	P62847_83	
C7DJS2_60	P14735_364	P62847_84	
Q99986_98	P55072_754	P62847_88	
P25789_210	P35606_199	P62847_129	
P35580_1869	Q96G03_586	P78527_700	
Q8TDX7_281	P61158_317	P78527_2366	
P62316_118	095757_185	P78527_2683	
Q96CT7_40	Q9BTT0_101	P78527_2829	
	P27827 260	P78527 3260	
Q99460_146	F37837_209		
Q99460_146 P62304_12	Q7Z6Z7_1147	P78527_3550	
Q99460_146 P62304_12 P30044_86	Q7Z6Z7_1147 Q53GN4_256	P78527_3550 P13639_598	
P09496_242 P63167_9 P26038_162 P27708_964 Q9NTJ3_170 P26038_253 Q96H79_185 Q9NTJ3_607 P26038_254 Q8TC61_252 P18754_335 P26038_262 Q91773_140 P26038_313 Q00059_5 Q955 Q9H773_140 P26038_391 E5K555_205 Q9H773_140 P26038_538 Q8RU5_165 P68032_70 P11940_167 P62829_113 P31150_253 P11940_361 P60228 P00491_265 Q00610_637 Q9UN0_10 P31150_269 P11940_361 P60228 P00491_265 Q00610_637 Q9UN0_166 Q9Y6Y8_931 Q00610_637 Q9PX5_85 P49591_12 Q00610_637 Q9233_621 P0DN79_269 P50990_20 Q9NT3_456 P23381_47 P62701_233 Q49664_233 P09551_15 B2RB06_192 P23284_89 O14737_66 B2RB06_205 Q9NV201_12 O14737_98 B2RB06_212 Q9UA7_110 B2RB06_212 Q9UA55_130 <t< th=""><th>P16615 400</th><th>Q86VP6 586</th><th>P26038 151</th></t<>	P16615 400	Q86VP6 586	P26038 151
---	-----------------	----------------	----------------
P27708_964 Q9NTJ3_170 P26038_253 Q96H79_185 Q9NTJ3_607 P26038_254 Q8TGG1_252 P18754_335 P26038_262 P15170_247 P49588_366 P26038_313 Q00059_95 P49588_766 P26038_391 ESKS55_205 Q9H773_140 P26038_400 P53999_101 P11021_447 P26038_400 P53999_101 P11021_447 P26038_400 P53999_101 P31150_253 P11940_348 C9IVQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_637 Q9UFN0_166 Q9Y6V8_931 Q00610_637 Q9P2X5_85 P49591_12 Q00610_637 Q9DS01_16 Q9USN_15 B2R806_81 Q49664_233 P09651_15 B2R806_81 P44103_23 P09651_15 B2R806_212 Q9UX01_12 O14737_66 B2R806_212 Q9UX25_169 Q9UHY_111 B2R806_81 Q9US9_100 Q00013_329 P30048_217 O14656_76 Q9UHY_918 P60866_8 <t< td=""><td> P09496_242</td><td> P63167_9</td><td> P26038_162</td></t<>	 P09496_242	 P63167_9	 P26038_162
Q96H79_185 Q9NTJ_607 P26038_254 Q8TCG1_252 P18754_335 P26038_262 P15170_247 P49588_366 P26038_313 Q00059_95 P49588_766 P26038_301 ESK555_205 Q9H773_140 P26038_538 Q0RBU5_165 P68032_70 P11940_167 P62829_113 P31150_253 P11940_361 P60228_82 P00491_265 Q00610_637 Q9PX5_85 P49591_12 Q00610_637 Q9PX5_85 P49591_12 Q00610_637 P22033_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_47 P62701_233 Q49644_233 P09651_15 B2RB06_81 P84103_23 P09651_15 B2RB06_212 Q9UQ35_169 Q9UH7_110 B2RB06_205 Q8NV83_169 Q9UH7_111 B2RB06_201 Q9UQ35_169 Q9UH7_111 B2RB06_30 Q9UA35_169 Q9UH7_111 B2RB06_30 Q9UA35_172 Q14320_305 P60866_8 Q99309_841 Q0013_275 P48047_54	P27708_964	Q9NTJ3_170	P26038_253
Q8TCG1_252 P18754_335 P26038_262 P15170_247 P49588_366 P26038_313 Q00059_95 P49588_766 P26038_391 ESK555_205 Q9H773_140 P26038_400 P5399_101 P11021_447 P26038_538 Q8NBU5_165 P68032_70 P11940_348 C9JVQ0_10 P31150_253 P11940_348 C9JVQ0_10 P31150_269 P1940_361 P60228_82 P00491_265 Q00610_637 Q9UFN0_166 Q9Y6Y8_931 Q00610_637 Q9Z35_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_27 P2779_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P0951_15 B2RB06_81 P84103_23 P0951_350 B2RB06_205 Q9NZ01_12 O14737_66 B2RB06_205 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_81 Q9NX59_100 Q00013_329 P30048_149 Q14056_76 Q9UHY9_18 P60866_81	Q96H79_185	Q9NTJ3_607	P26038_254
P15170_247 P49588_366 P26038_313 Q00059_95 P49588_766 P26038_391 E5K555_205 Q9H773_140 P26038_400 P33999_101 P11021_447 P26038_400 P53999_101 P11021_447 P26038_538 Q8NBU5_165 P68032_70 P11940_167 P62829_113 P31150_253 P11940_361 P60228_82 P00491_265 Q00610_637 Q9UFN0_166 Q9Y6Y8_931 Q00610_637 Q9DFX5_85 P49591_12 Q00610_637 P22033_621 P0DN79_269 P5090_20 Q9NT15_456 P23381_47 P62701_233 Q49664_233 P09651_15 B2R806_81 P84103_23 P09651_350 B2R806_192 P23284_89 014737_66 B2R806_206 Q9N201_12 014737_98 B2R806_206 Q9N203_169 Q9UHY7_111 B2R806_83 Q9N59_100 Q00013_329 P30048_217 Q14655_76 Q9UHY_918 P60866_8 Q9936_372 Q14320_305 P60866_46 <tr< td=""><td> Q8TCG1 252</td><td>P18754 335</td><td> P26038_262</td></tr<>	 Q8TCG1 252	P18754 335	 P26038_262
Qu0059 P49588 766 P26038_391 E5KS55_205 Q9H773_140 P26038_400 P53999_101 P11021_447 P26038_538 Q8NBU5_165 P68032_70 P11940_167 P6229_113 P31150_253 P11940_348 C9IVQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_619 Q9P2K5_85 P49591_12 Q00610_637 P22033_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q49664_233 P09651_15 B2R806_81 P84103_23 P09651_350 B2R806_192 P23284_89 O14737_98 B2R806_205 Q8IVB3_54 Q9UHYT_106 B2R806_205 Q8IVB3_54 Q9UHYT_111 B2R806_301 Q14008_1859 Q9H859_210 P30048_217 O14656_76 Q9UHY9_18 P60866_8 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UH89_277 P48047_60 <	P15170 247	P49588 366	 P26038_313
ESKSS5_205 Q9H773_140 P26038_400 P53999_101 P11021_447 P26038_538 Q8NBU5_165 P68032_70 P11940_167 P62829_113 P31150_253 P11940_348 C9IVQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_619 Q9PLK5_85 P49591_12 Q06610_637 P22033_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_15 B2R806_81 P84103_23 P09651_350 B2R806_212 Q9UQ35_169 Q9UH7_106 B2R806_206 Q9WQ3_169 Q9UH7_111 B2R806_301 Q14008_1859 Q9H859_210 P30048_217 Q1408_1859 Q9H8X9_262 P60866_8 Q9903_237_75 P48047_54 Q93009_841 Q00193_37 P48047_70 Q14964_63 Q9Y237_75 P48047_73 Q9H082_83 Q5T8B1_259 P48047_70 Q14964_63 <td>Q00059 95</td> <td>P49588 766</td> <td>P26038 391</td>	Q00059 95	P49588 766	P26038 391
P53999 P101 P11021447 P26038 F38 Q8NBU5_165 P68032_70 P11940_167 P62829_113 P31150_253 P11940_348 C9IVQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_619 Q9PKN5_66 Q3Y6Y8_931 Q00610_637 Q9PX5_85 P49591_12 Q00610_637 Q9PX5_85 P49591_12 Q00610_637 P22033_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q4964_233 P09651_350 B2R806_81 P84103_23 P09651_350 B2R806_192 P23284_89 O14737_66 B2R806_206 Q9NZ01_12 O14737_98 B2R806_206 Q9NZ01_12 O14737_98 B2R806_205 Q8NK9_54 Q9UHY7_111 B2R806_205 Q8NK93_54 Q9UHY7_111 B2R806_630 Q9NV59_100 Q00013_329 P3048_217 O14656_76 Q9UHV9_18 P6086	E5KS55 205	Q9H773 140	P26038 400
Q8NBUS_165 P68032_70 P11940_167 P62829_113 P31150_253 P11940_348 C9JVQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_619 Q9FN0_166 Q9Y6Y8_931 Q00610_637 Q9P2K5_85 P49591_12 Q00610_637 Q9N1J5_456 P23381_27 P27097_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_15 B2RB06_81 P84103_23 P09651_350 B2RB06_192 P23284_89 O14737_66 B2RB06_206 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_201 Q9NX9_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_80 Q99536_372 Q14320_305 P60866_30 O9910_198 Q9BX9_262 P60866_44 Q9H006_641 Q15691_148 P60866_44 Q9H008_641 Q15691_148 P60866_44 Q9N09_841 O00193_75 P48047_54	P53999 101	 P11021 447	 P26038 538
P62829 113 P31150_253 P11940_348 C9JVQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_619 Q9UFN0_166 Q9Y6Y8_931 Q00610_637 Q9UFN0_156 P23381_27 P2797_62 P50502_118 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_350 B2RB06_81 P84103_23 P09651_350 B2RB06_192 P23284_89 O14737_66 B2RB06_206 Q9UQ35_169 Q9UHY7_106 B2RB06_212 Q9UQ35_169 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_80 Q99039_41 O00193_75 P48047_70 Q14964_63 Q9277_75 P48047_70 Q14964_63 Q9277_7 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7277_104 P46940_939 P62906_95 <td>Q8NBU5 165</td> <td>P68032 70</td> <td>P11940 167</td>	Q8NBU5 165	P68032 70	P11940 167
C9/VQ0_10 P31150_269 P11940_361 P60228_82 P00491_265 Q00610_367 Q9UFN0_166 Q9Y6Y8_931 Q00610_619 Q9P2K5_85 P49591_12 Q00610_637 P22033_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_15 B2RB06_81 P84103_23 P09651_350 B2RB06_206 Q9NZ01_12 O14737_66 B2RB06_212 Q9U205_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_80 Q99909_841 O00193_75 P48047_54 P35754_20 Q9UHV9_277 P48047_54 P35754_20 Q9UH86_217 P48047_70 Q14964_63 Q97237_75 P48047_162 Q9NU1_230 O43765_137 P62906_95	P62829 113	P31150 253	 P11940 348
PG0228 P00491_265 Q00610_367 Q9UFN0_166 Q9Y6Y8_931 Q00610_619 Q9P2K5_85 P49591_12 Q00610_637 P22033_621 P0DN79_269 P50990_20 Q9NTJ5_456 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_15 B2RB06_81 P84103_23 P09651_350 B2RB06_206 Q9NZ01_12 O14737_66 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_80 Q99036_372 Q14320_305 P60866_40 Q99008_41 O00193_75 P48047_54 P35754_20 Q9UH89_277 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_95 P51572_204 Q13526_82 P62906_130	 C9JVQ0 10	P31150 269	 P11940 361
Querko Querko<	P60228 82	 P00491 265	 Q00610_367
Description Description Q9P2K5_85 P49591_12 Q00610_637 P22033_621 PDDN79_269 P50990_20 Q9NT15_456 P23381_27 P27797_62 P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_15 B2RB06_81 P84103_23 P09651_350 B2RB06_192 P23284_89 O14737_66 B2RB06_206 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NV59_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UH89_277 P48047_70 Q14964_63 Q97237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F_104	Q9UFN0 166	Q9Y6Y8 931	Q00610 619
	Q9P2K5 85	P49591 12	Q00610 637
	P22033 621	P0DN79 269	 P50990 20
P50502_118 P23381_47 P62701_233 Q496E4_233 P09651_15 B2RB06_81 P84103_23 P09651_350 B2RB06_192 P23284_89 O14737_66 B2RB06_206 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NV59_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P3573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU11_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_130 Q43705_137 P62906_130 Q43705_137 Q91300_75 O00154_157 P62906_130 <tr< td=""><td>Q9NTJ5 456</td><td>P23381 27</td><td>P27797 62</td></tr<>	Q9NTJ5 456	P23381 27	P27797 62
Description Description Q496E4_233 P09651_15 B2RB06_81 P84103_23 P09651_350 B2RB06_192 P23284_89 O14737_66 B2RB06_206 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NV59_100 Q00013_329 P30048_217 O14655_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P3573_1303 Q9H386_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU11_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_106 Q9H300_75 O00154_157 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_101 P30044_209<	P50502 118	P23381 47	P62701 233
PR4103_23 P09651_350 B2RB06_192 P23284_89 O14737_66 B2RB06_206 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UH89_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU11_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6F181_48 P23396_108 Q8WU39_111 Q6F181_297 P23396_108 <tr< td=""><td>O496E4_233</td><td>P09651 15</td><td>B2RB06 81</td></tr<>	O496E4_233	P09651 15	B2RB06 81
P23284_89 O14737_66 B2RB06_206 Q9NZ01_12 O14737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NV59_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UH89_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6F181_48 P23396_108 Q8WU39_111 Q6F181_297 P23396_108 Q8WU39_111 Q6F181_297 P23396_108 <tr< td=""><td>P84103 23</td><td>P09651 350</td><td>B2RB06 192</td></tr<>	P84103 23	P09651 350	B2RB06 192
District District District Q9NZ01_12 014737_98 B2RB06_212 Q9UQ35_169 Q9UHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H8S9_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 014656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 000193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35751_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_108 Q8WU39_111 Q6FI81_297 P23396_108 Q8WU39_111 Q6FI81_297 P23396_108 Q8WU39_111 Q6FI81_297 P23396_108	P23284 89	014737 66	B2RB06_206
QJUQ35_169 QJUHY7_106 B2RB06_295 Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35754_20 Q9UHB9_277 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_299 <	09NZ01_12	014737_98	B2RB06_212
Reference Reference Reference Q8IYB3_54 Q9UHY7_111 B2RB06_301 Q14008_1859 Q9H859_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 O14656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UH89_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_299 <tr< td=""><td>090035 169</td><td>09UHY7 106</td><td>B2RB06 295</td></tr<>	090035 169	09UHY7 106	B2RB06 295
Q14008_1859 Q9H8S9_210 P30048_149 Q9NVS9_100 Q00013_329 P30048_149 Q9NVS9_100 Q00013_329 P30048_217 014656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_30 P09110_198 Q9BXJ9_262 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 Q43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320	08IYB3 54	09UHY7 111	B2RB06_301
Qatitoo_roo Qonot_roo Qonot_roo Qonot_roo Q9NVS9_100 Q00013_329 P30048_217 014656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_40 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 Q00193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU12_230 Q43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 Q00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 Q43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 Q9HAN9_56 C7DIS2_60 Q8NC	014008 1859	09H859_210	P30048_149
Question Question Procession 014656_76 Q9UHV9_18 P60866_8 Q99536_372 Q14320_305 P60866_30 P09110_198 Q9BXJ9_262 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q9309_841 O00193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9NU1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_320 Q9HAN9_56 C7DI52_60 Q8NC51_321	09NVS9 100	000013 329	P30048_217
Quescifie Quescifie Possibility Quescifie Quescifie Quescifie Quescifie Quescifie Quescifie Quescifie Quescifie	014656 76	09UHV9 18	P60866_8
PO9110_198 Q9BXJ9_262 P60866_44 Q9H0D6_641 Q15691_148 P60866_46 Q93009_841 O00193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_162 Q9H082_83 Q5TBB1_259 P48047_162 Q9NU11_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_320 Q9HAN9_56 C7DI52_60 Q8NC51_321	099536 372	014320_305	P60866_30
ODEC_DEC_DEC_DEC_DEC_DEC_DEC_DEC_DEC_DEC_	P09110 198	09BX19_262	P60866_44
Q3009_841 Q00193_75 P48047_54 P35754_20 Q9UHB9_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_73 Q9NU1_230 Q43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 Q00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 Q43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_321	O9H0D6 641	015691 148	P60866_46
P35754_20 Q9UHB9_277 P48047_60 P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_73 Q9H082_83 Q5TBB1_259 P48047_162 Q9NUI1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_321	093009 841	000193 75	P48047 54
P35573_1303 Q9H3K6_47 P48047_70 Q14964_63 Q9Y237_75 P48047_73 Q9H082_83 Q5TBB1_259 P48047_162 Q9NUI1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_321	P35754 20	Q9UHB9 277	P48047 60
Q14964_63 Q9Y237_75 P48047_73 Q9H082_83 Q5TBB1_259 P48047_162 Q9NUI1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_107 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_320 Q9HAN9_56 C7DI52_60 O8NC51_321	 P35573 1303	Q9H3K6 47	 P48047_70
Q9H082_83 Q5TBB1_259 P48047_162 Q9NUI1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_321	Q14964 63	Q9Y237 75	P48047 73
Q9NUI1_230 O43765_137 P62906_56 Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_130 Q43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_229 P19784_103 P52701_1013 Q8NC51_321	Q9H082 83	Q5TBB1 259	 P48047 162
Q7Z7F7_104 P46940_939 P62906_95 P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_118 Q8N5K1_81 O00154_168 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 O9HAN9_56 C7DI52_60 O8NC51_321	 Q9NUI1_230	043765_137	 P62906_56
P51572_204 Q13526_82 P62906_106 Q9H300_75 O00154_157 P62906_118 Q8N5K1_81 O00154_168 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_229 P19784_103 P52701_1013 Q8NC51_321	 Q7Z7F7 104	P46940 939	 P62906 95
Q9H300_75 O00154_157 P62906_118 Q8N5K1_81 O00154_168 P62906_130 O43707_108 Q6Fl81_48 P23396_108 Q8WU39_111 Q6Fl81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_321 O9HAN9_56 C7DIS2_60 O8NC51_321	P51572 204	Q13526 82	P62906 106
Q8N5K1_81 O00154_168 P62906_130 O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_321 O9HAN9_56 C7DI52_60 O8NC51_321	Q9H300 75	000154 157	 P62906 118
O43707_108 Q6FI81_48 P23396_108 Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 O9HAN9_56 C7DI52_60 O8NC51_321	Q8N5K1 81	000154 168	P62906 130
Q8WU39_111 Q6FI81_297 P23396_197 P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 O9HAN9_56 C7DI52_60 O8NC51_321	043707 108	Q6FI81 48	P23396 108
P61769_111 O43592_634 P23396_201 P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 O9HAN9_56 C7DI52_60 O8NC51_321	Q8WU39 111	Q6FI81 297	P23396 197
P30041_209 Q7L1Q6_223 Q8NC51_102 P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 O9HAN9_56 C7DIS2_60 O8NC51_321	P61769 111	O43592 634	P23396 201
P17980_125 P48444_38 Q8NC51_140 P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 Q9HAN9_56 C7DIS2_60 Q8NC51_321	P30041 209	Q7L1Q6 223	Q8NC51 102
P00846_51 P13984_154 Q8NC51_299 P19784_103 P52701_1013 Q8NC51_320 Q9HAN9_56 C7DIS2_60 Q8NC51_321	P17980 125	P48444 38	Q8NC51 140
P19784_103 P52701_1013 Q8NC51_320 O9HAN9_56 C7DIS2_60 O8NC51_321	P00846 51	P13984 154	Q8NC51 299
O9HAN9 56 C7DIS2 60 O8NC51 321	P19784 103	P52701 1013	Q8NC51 320
	09HAN9 56	C7DJS2 60	08NC51 321

P08574_315	Q99729_101	Q8NC51_327
 P08574_325	 Q9P289_233	 P0C0S8_6
095071_28	 P26640_243	P0C0S8_37
O60884_226	Q04917_69	P0C0S8_96
P39687 101	Q32MZ4 593	P0C0S8 120
 Q9BSH5_15	Q13085_2127	P0C0S8_126
P08708_72	Q9UKK9_210	P62277_27
Q99623_89	Q9UKK9_218	P62277_34
P14678_50	014744_227	P62277_39
Q5JTV8_556	P26639_273	P62277_100
Q6DD88_375	P26639_319	P62277_130
014950_151	P40763_177	075947_5
014950_164	P15927_231	075947_63
P55786_222	P53990_38	075947_85
P55327_137	P53990_48	075947_109
Q9H0A0_823	075937_127	075947_117
P78406_154	075937_168	075947_149
P49189_366	Q9NR45_61	P12956_249
P08559_385	Q7Z4V5_39	P12956_287
Q15555_165	Q15003_424	P12956_317
000186_197	Q9BZZ5_51	P12956_338
P46459_586	Q9BZZ5_84	P12956_463
Q9HBD4_835	P46459_586	P12956_468
095831_593	Q8NEV1_102	P12956_516
Q9UNF1_311	Q13310_361	P12956_553
P49720_77	P53611_34	P12956_570
P47985_168	P50995_255	P12956_575
Q15052_722	Q9NY27_84	P62081_49
Q15029_244	Q13404_87	P62081_86
Q06203_442	Q16658_43	P62081_155
Q9UJA5_145	P47813_56	P62081_160
P52815_142	P47813_94	P62081_179
Q13435_570	Q5VW32_141	P11021_122
043447_153	P09972_111	P11021_125
000182_88	Q93009_841	P11021_340
Q14161_135	P33993_89	P11021_370
P49841_292	P35244_33	P11021_447
075347_51	Q92621_1150	Q3ZCM7_122
075323_53	Q14683_146	A0A0D9SF54_1314
Q15031_79	Q15029_244	A0A0D9SF54_1635
Q9BUT1_48	Q9NYL9_13	P07737_127
Q9H4G4_53	043865_487	P09622_146
Q03001_1114	P49189_366	P09622_155
060814_121	Q14008_1761	P09622_159
Q93079_6	Q14008_1859	P09622_166
P15927_231	Q96C23_101	P09622_430
P12814_89	014929_364	P39023_294
Q6IPU0 241	095163_1042	P39023_300

Q9Y520_1160	P51580_32	P61247_34
Q6UXB8_80	Q13616_759	P61247_46
P36551_404	Q69YN2_505	P61247_219
Q8WXX5_107	O00232_368	P61247_240
Q01130_36	P62633_103	P61247_249
Q8WYP5_2050	Q8NFC6_81	P27635_82
Q9UBF2_313	Q9C0B1_216	P27635_141
P10599_94	000231_252	P27635_145
P98171_460	P62191_217	P27635_170
Q9Y512_248	043847_325	P14618_247
Q56VL3_41	P78417_198	P04406_117
043488_242	015541_126	P35579_821
Q96C36_47	Q96AC1_55	P35579_1129
Q9UKM9_146	P49458_52	P35579_1249
075489_260	P35611_406	P35579_1775
P57737_103	Q9UBQ0_73	P35579_1862
Q14103_111	P16152_148	Q13423_70
Q5K651_1495	094776_341	Q13423_394
P05408_166	P61970_55	Q13423_1059
Q9BQE5_54	Q02750_84	P52272_145
Q6ZQQ6_2341	P53621_1028	P13796_456
Q13011_327	P51151_112	P13796_579
Q9UPV0_936	P22061_206	Q14152_68
P60709_336	P22061_219	Q14152_632
P04406_61	Q15056_80	P21796_109
P04406_251	P48739_50	P21796_252
P04406_259	P16949_53	Q9P0L0_52
P08238_69	095149_144	Q9P0L0_161
P08238_402	043242_315	Q9P0L0_180
P08238_410	Q8TB03_84	Q9P0L0_205
P08238_428	Q9NVE7_590	Q9P0L0_211
P08238_531	S4R435_252	P46778_120
P08238_538	Q7Z4S6_1058	075390_76
P08238_557	P20073_199	075390_103
P08238_568	Q99961_171	075390_352
P08238_623	P00390_401	075390_459
P08238_649	P56192_860	P30042_233
P00338_59	P63279_49	P42766_43
P00338_126	P32321_78	P42766_74
P00338_155	P14324_295	P42766_79
P00338_224	Q9UNH7_291	P42766_118
P00338_228	P61077_8	P36578_364
P06733_28	Q96PU8_91	P36578_368
P06733_60	P47756_95	P36578_374
P14618_89	Q9NXG2_56	P36578_375
P14618_135	Q04446_39	P36578_399
P14618_141	P25325_164	P36578_412
	045705 400	D2CE70 411

1	1	1
P13796_76	P60983_119	P36578_423
P13796_82	015355_367	P45880_120
P13796_92	Q7KZ85_381	P45880_247
P13796_97	043447_153	Q08211_235
P13796_297	P12081_22	Q08211_943
P13796_444	A0AVT1_168	P78371_272
P13796_449	P62304_12	P51991_118
P13796_456	P19623_135	P51991_134
P13796_468	A0A024RA19_251	P51991_199
P13796_472	Q9BUT1_48	O43390_584
P13796_542	Q9H1E3_9	P07954_115
P04075_312	Q9UPN3_6160	P07954_122
P04075_318	P06454_21	P07954_263
P04075_330	Q16763_63	P07954_470
P07900_418	095347_177	P07954_473
P07900_443	Q8N8S7_22	P07954_477
P07900_489	P49840_355	Q02543_11
 P07900_539	Q13573_456	 P67809_64
 P07900_585	 P61088_92	 P67809_81
 P00558_11	P49593_334	P67809_92
P00558 15	P63208 130	 P67809_93
 P00558_30	 O95456_65	 P67809_170
 P00558_48	Q16531_897	Q02218_561
 P00558_56	 Q8NFH4_114	Q02218_970
 P00558 133	 000160 194	 P62241 157
 P00558 146	 P61758 114	 P62241 170
 P00558_192	 P49643_65	Q16891_211
 P00558_353	Q7Z6K5_101	Q16891_270
 P00558_361	 Q6P4I2_55	Q16891_314
 P35579_403	 Q9HAV4_1147	Q16891_344
P35579_909	A6NDG6_72	Q16891_427
P35579_1024	 P49720_77	Q13838_156
P35579_1212	Q9Y2T4_91	Q13838_163
 P35579_1240	P35754_20	Q13838_188
 P35579_1249	 Q6ZMR3_155	P62979_107
 P35579_1775	 075794_168	P62979_152
P35579_1793	Q9Y2A7_16	P62851_10
 P35579_1806	 Q9UNF1_311	 P62851_14
 P35579_1918	015144_295	P62851_20
P68104 5	Q4VCS5 596	P62851 18
 P29401_232	000244_25	P62851_25
P06744 142	Q92925 312	P62851 37
 P06744 234	P60520 24	 P62851 52
 P06744 447	Q9Y678 313	 P62851 66
Q06830 35	 P19784 103	 P62851 98
Q06830 67	P61024 11	Q99714 99
Q06830 68	Q9UJX3 435	Q99714 105
Q06830 168	P23588 223	075521 51
_		

Q06830_185	P62837_8	075521_62
Q06830_190	Q5W0Q7_56	075521_92
Q06830_192	Q709C8_2092	075521_335
Q06830_197	Q96H79_185	Q96EY1_152
075083_95	P57737_103	P09874_653
075083_182	P15924_2317	Q04837_81
075083_569	Q6ZSG2_124	Q04837_103
P07195_82	Q13126_241	Q04837_122
P07195_319	Q9NXR1_263	Q9Y277_115
P13639_318	Q2VJ45_324	P41252_382
P62826_99	014950_164	P51659_184
P62826_127	Q13206_768	P51659_415
P11142_535	Q9NQ75_589	Q4G176_563
P11142_583	P08238_53	P42677_16
P09429_12	P06733_422	P61313_83
P09429_43	P13639_239	Q7KZF4_497
P09429_65	P13639_322	Q7KZF4_513
P09429_82	P13639_330	P31040_182
P09429_90	P13639_438	P31040_335
P09429_154	P13639_572	P31040_538
P09429_180	P0DMV8_100	P31040_608
P50990_466	PODMV8_415	Q92945_627
P09211_116	P04406_5	Q92945_653
P63104_9	P04406_66	P27694_458
P63104_11	P04406_86	P27695_125
P63104_49	P04406_139	P52566_114
P63104_68	P04406_251	P52566_124
P63104_120	P04406_254	P52566_135
P63104_138	P11142_507	P52566_138
P63104_158	P07900_204	P26373_118
P63104_212	P07900_208	P26373_200
P26038_262	P07900_314	P26373_209
P26038_306	P07900_419	P50213_116
P26038_313	P19338_62	Q01082_1878
P53396_732	P19338_70	P62917_144
P53396_978	P19338_297	P46783_31
P26641_132	P19338_437	P46783_139
P26641_227	P19338_589	P31689_59
P26641_434	P19338_708	P31689_66
Q01518_63	P49327_1993	P84243_5
Q01518_298	P60709_284	P84243_19
P52566_25	P00558_48	P84243_24
P52566_33	P00558_133	P84243_80
P52566_63	P00558_146	P84243_123
P52566_96	Q32Q12_240	P49257_346
P52566_197	P26641_208	P36542_39
P18669_39	P09429_43	P36542_43
P18669 100	P09429 127	P36542 46

P18669_113	P09429_180	P36542_49
P18669_228	P62826_127	P36542_64
P18669_241	P62826_141	P36542_115
P18669_251	P62826_152	Q9NX63_45
P50991_126	P63104_75	P61254_41
P62937_151	P23528_95	P61254_134
P62937_155	P31948_210	P61254_136
Q02790_222	P31948_250	P50914_85
P31146_20	P31948_337	P50914_128
P31146_207	P31948_453	P50914_141
P31146_449	P22314_68	P50914_142
P23528_22	P22314_604	P50914_164
P23528_78	P22314_884	P50914_165
P23528_121	P62258_78	P50914_171
Q01082_2269	P53396_64	P47914_82
Q32Q12_125	P29401_310	P47914_84
Q32Q12_240	P29401_497	P47914_149
Q32Q12_264	P00918_80	P16401_132
P31939_266	Q02790_250	P16401_140
P22234_116	P11586_553	P16401_149
P22234_226	P61978_411	P16401_178
P22234_304	P34932_353	P16401_188
P62258_123	P34932_356	P16401_192
P00813_170	P34932_477	P16401_194
P31948_63	P34932_719	P16401_209
P31948_73	Q59HH3_192	P55084_181
P31948_109	Q59HH3_285	P55084_188
P31948_169	Q59HH3_488	P55084_253
P31948_207	Q59HH3_888	P07814_788
P31948_250	Q13263_275	P07814_841
P31948_337	Q13263_337	P40939_129
P31948_347	Q9HB71_212	P40939_214
P31948_364	P35579_1441	P40939_255
P41250_82	Q92598_316	P40939_295
P41250_219	043175_58	P40939_411
P41250_646	043175_384	P40939_631
Q99832_153	P54577_231	P31943_173
Q01813_736	P54577_412	P31943_349
014818_115	Q15365_23	Q99729_70
P50395_253	Q15365_31	Q99729_153
P50395_269	P50990_466	Q99729_149
Q86VP6_577	P55786_293	Q99729_210
Q86VP6_586	Q9Y617_333	Q99729_215
P10768_64	P14625_597	P08865_89
P10768_186	P14625_682	P07910_29
P10768_200	P32119_10	P07910_42
P34932_185	P32119_34	P46782_191
P34932_332	P09211_189	P46782_201

P34932 674	P22234 80	P04843 517
P34932 719	P23526 46	P04843 579
P40925 110	Q04760 151	P20700 261
P40925 236	P0CG47 48	P62269 91
O9HB71 134	P0CG47_87	P62269 150
P46940 368	P0CG47 200	Q9NTJ3 170
 075369 2342	 P0CG47 215	B4DRW8 456
 B1AK87 83	 P09936 15	– P26599 428
 P31153 303	P09936 78	 P61513 28
 P78417_11	 P10599_8	 P83731_12
P78417_136	P10599_96	P83731_113
P78417_143	Q92945_281	P83731_119
P78417 198	015347 161	P83731 139
 P78417_220	Q9NTK5_79	 P62753_14
 P27348_68	015318_61	P62753_203
P49368_248	P24534_66	Q15233_203
Q14141_353	P41250_204	Q15233_249
Q14141_379	P49321_637	P43243_478
P60900_102	Q9BRA2_78	P46777_242
P48643_226	Q9BRA2_89	P48643_282
A0A0D9SF54_39	075369_373	P48643_439
A0A0D9SF54_602	P26583_127	P12236_147
A0A0D9SF54_1314	D3DPU2_327	P12236_166
A0A0D9SF54_1635	P21333_771	Q9Y265_453
P68032_86	015067_279	P62899_70
P52209_147	P55209_87	P62829_113
P26583_3	Q9Y490_1544	P62829_123
P26583_114	P27694_489	P15880_71
P26583_172	P15311_64	P40227_261
000154_286	P68036_82	P40227_388
P25789_64	P68036_145	Q96HS1_144
Q06323_13	P13693_100	Q00325_234
Q06323_190	P30086_132	P04083_90
075533_1086	095433_212	P04083_245
Q92688_99	095433_328	P26368_462
P12814_157	Q9BWD1_180	P50991_55
P12814_682	P50502_5	P50991_489
Q14974_376	P07814_841	P08575_448
P21333_865	P30520_163	P08575_1149
P21333_1538	P37837_277	095202_150
P60174_92	P26639_222	Q8WWV3_102
P60174_225	P61088_24	P38919_60
P60174_231	A0A0S2Z4I4_13	P38919_152
P49736_216	Q96AE4_400	P38919_198
Q9Y617_116	P63167_5	Q99798_409
Q9UL46_180	P61956_42	Q99798_520
O95433_189	Q9H4A4_162	Q9BPW8_51
P26639 279	Q07866 384	Q9BPW8 56

P49773_21	014737_63	Q9BPW8_80
P49773_83	075347_52	Q92841_269
P23526_389	075832_221	Q92841_547
Q96P70_865	Q8WUM4_11	P55809_271
Q92598_185	095757_788	P55809_296
P33316_155	043143_17	P55809_421
P27707_88	P37802_171	Q92900_318
P15170_103	D6RBW1_220	P84098_146
P24534_139	Q15691_174	P84098_190
P24534_176	Q9UBT2_86	Q92608_145
P24534_185	P60953_133	Q92608_1474
Q9Y490_875	075937_105	P39019_29
Q9Y490_2133	Q06203_372	P39019_122
Q99426_188	Q9BRX5_207	P39019_143
P49321_530	P09651_8	P13073_60
P49321_636	P30566_295	Q9NQC3_1174
P49321_652	P52907_226	Q9Y3U8_16
P49321_657	P52907_273	Q86V81_134
P30566_295	Q9NZZ3_100	Q86V81_156
P50570_629	P61158_240	Q86V81_161
Q13907_180	095347_187	Q13151_99
P61221_478	O60841_1195	Q13151_176
P62942_45	P14324_123	043837_354
Q8NCW5_144	P16949_100	P11310_279
Q8NCW5_148	P62633_85	P62750_7
P31946_11	P19623_96	P62750_14
P31946_77	P36507_88	P62750_23
P51784_766	P53004_147	P62750_26
Q8N163_791	060271_655	Q9P2J5_464
060234_35	Q14185_1469	P25398_116
060234_119	P25789_64	P62280_144
P67936_13	Q9NRN7_74	Q12931_369
P67936_76	Q9BZD4_275	Q12931_432
P67936_113	Q9H074_337	Q9Y4W6_508
P67936_116	P52272_145	P16403_119
P67936_212	Q9Y2L1_107	P16403_172
A0A024R5M9_1610	Q92905_194	P16403_191
Q16181_349	P46063_70	P16403_207
Q16181_368	Q9H444_17	P16403_211
Q7L5N1_102	P30626_68	094925_164
Q7Z6Z7_1147	P63279_74	P00505_82
Q9NTK5_79	Q9UBU8_240	P00505_309
Q12874_92	P52888_220	P00505_363
P09960_573	Q96A72_50	A0A087X2I1_220
P60520_24	Q99471_47	P00367_365
Q709C8_2356	095817_460	P00367_480
P18754_335	Q15631_219	015372_269
P52907_278	P55327_137	015372_274

Q04446 39	Q9HBG6 392	Q9H936 80
Q16576 119	P55160 14	Q9H936 83
Q07866 314	P63151 95	P53007 97
P53621 607	P57076 7	Q96FJ2 5
 P55160 326	 P21675 1591	Q8WU39_70
Q99497 130	Q8WXH0 6754	Q8WU39 111
Q9H9T3 414	Q8NE71 545	P51572 149
014929 364	P51532 835	Q9H9P8 104
Q15181 41	Q86VS8 324	P63173 52
A8K8F0_290	Q9UHX1_267	Q2TU64_21
P05455_37	Q02878_29	P32969_28
P05455_185	Q12849_337	P55072_663
P31150 253	Q7Z4S6 963	Q13310 361
P39687 99	Q2M2Z5 39	075533 1086
 Q01469_34	 O43502_328	 P56192_860
 P50502_17	Q6ZU80_659	P16615_120
 P51532 835	Q96DT5 3875	P16615 510
Q15428 57	Q14765 88	P39748 267
Q9BXJ9 262	P08238 273	P83111 199
P68036 73	 P68104 64	 P83111 231
 P68036_96	 P13639_638	P35232 202
094903 47	 P04406 84	P25685 37
 Q9NRX4_87	 P11142_597	Q15046_88
Q92888_214	P19338_521	Q92499_702
P49593_334	P19338_610	Q9Y262_393
Q14019_98	P14618_230	Q9Y262_549
O60306_1045	P07737_127	P55265_494
P32321_78	P29401_314	P55265_591
P32321_131	P32119_67	P31146_233
P06400_791	A0A024R895_62	P13995_50
Q9Y678_313	P63241_34	P62191_24
P09651_350	P22102_156	P62191_217
095865_51	P22102_249	P46781_30
P52565_178	P22102_852	P46781_91
015355_367	P54577_346	075431_95
Q8N1F7_387	P35579_1129	Q9NZ45_55
P25788_174	P35579_1132	P42704_103
B7Z738_456	P50990_225	P42704_760
P50851_251	P31939_137	P37108_32
V5YQL4_1126	P31939_357	P37108_38
075821_172	P0CG47_11	Q92930_58
Q9UHY7_111	P0CG47_63	A8K228_45
Q9Y2L1_107	P0CG47_124	Q7Z7H5_172
Q00839_814	P0CG47_163	Q7L014_793
Q04760_157	P27694_167	P35268_16
076003_294	P05455_204	Q15067_260
Q07666_214	P05455_208	P23284_89
	1	1

Q15185_48	P05455_397	P17987_494
Q9NZZ3_51	Q99832_153	P17987_538
Q6ZMR3_155	P09936_131	P16402_111
Q14847_17	P09936_157	P16402_123
Q16763_63	Q9Y266_53	P16402_169
Q5VU61_187	Q9Y266_96	P16402_209
Q5VU61_203	P21333_865	015382_111
Q01844_404	P21333_1538	015382_377
Q86U86_553	Q9NTK5_394	Q99613_332
P63208_130	Q92945_448	P22830_133
Q00535_237	P15170_238	P60953_131
Q14258_320	P43487_76	P60953_133
Q6ZUM4_426	P40227_251	Q93084_120
P43487_179	Q9UHD1_190	P13667_528
Q15813_451	P49321_657	Q5SRE5_51
095260_64	P61221_126	P62841_65
Q92785_207	P78371_248	Q14008_1859
Q7KZ85_381	Q14103_178	P61221_169
Q9NY27_84	Q14103_243	Q15269_127
043847_325	Q14103_255	Q92804_277
Q96ST2_666	Q09028_215	Q15084_150
P14921_138	Q96AE4_233	Q86U86_553
Q9Y2Z0_41	Q15181_228	Q86U86_1025
Q86VS8_324	Q15181_282	Q16778_35
014776_820	B4DPD5_96	Q92621_66
Q6S8J3_1036	P31689_24	P41227_148
P13984_236	P31689_32	P46940_1558
014497_1230	P62942_45	Q9NYU2_596
P23588_223	P62942_48	Q9NYU2_1208
Q86V21_633	P68036_64	P03928_45
P53990_48	P50570_562	P03928_49
Q13094_38	P37837_307	P49748_276
Q3LXA3_487	P49588_625	P62873_209
P50552_21	P39687_111	P27708_964
Q96KB5_50	E7EVH7_486	Q14151_437
O60563_33	Q9UBT2_409	Q99832_153
Q9UN37_356	P78417_136	Q99832_231
P48426_140	P78417_220	Q96RE9_435
Q13362_418	P37802_79	P26641_249
P26640_903	000267_143	P53597_308
P07951_149	000267_199	Q9UII2_49
P08238_354	P61088_10	Q9UII2_72
P06733_228	Q00013_299	Q9UII2_82
P14618_136	Q9Y2L1_627	Q9UII2_83
P14618_256	Q9Y2L1_654	O60884_39
P00558_382	B4DQ80_34	P30050_40
V9HWJ7_76	B4DQ80_146	P30050_41
	B4D080 149	013283 /13

V9HWJ7_88	B4DQ80_162	Q15555_165
 V9HWJ7_92		 P30405_67
V9HWJ7_294	095347_320	P30405_183
V9HWJ7_444	P62316_71	P56378_49
V9HWJ7_449	P20618_184	P11387_148
V9HWJ7_456	P25789_210	P18621_46
V9HWJ7_468	P51858_19	P18621_169
V9HWJ7_472	Q13451_155	Q9NY12_94
V9HWJ7_542	Q9UBQ0_30	C7DJS2_60
V9HWJ7_579	Q6P1N4_368	095831_593
P04075_140	Q96KB5_50	Q8N183_108
P07900_576	P16949_43	Q96IX5_16
P35579_1802	P16949_80	P30038_487
P29401_260	P08243_385	014949_82
P09429_7	Q9UHV9_136	P49406_205
P09429_50	Q9BXJ9_312	Q9BX67_287
P26641_401	P35080_116	Q9BX67_283
P63104_74	Q15056_120	Q9Y487_240
P63104_75	Q562M3_30	095573_58
P52566_40	Q53GN4_104	095573_706
P52566_47	Q53GN4_182	060762_136
D3DPU2_63	Q96A72_16	P56381_37
P22314_671	Q9H3P7_117	P56381_44
P00813_164	P14314_438	Q6UB98_868
P00813_225	Q8N6H7_359	Q6UB98_1105
000299_183	Q99714_99	Q9NSE4_241
P22234_235	P61077_128	H0Y2W2_80
043143_132	Q7L1Q6_255	H0Y2W2_200
P31948_388	P62993_76	H0Y2W2_481
P34932_430	P48637_172	Q00059_186
P31939_199	Q13257_200	Q9Y2W1_711
P49588_766	H0YC42_137	P62857_10
P48643_232	Q8WUA2_82	P62857_16
P60174_106	A0A0F7NGI8_537	Q7Z7F7_104
P60174_212	P09884_829	Q6DD88_375
P26583_43	Q96DG6_227	Q01844_404
000154_168	Q12965_196	P30101_218
P27348_85	O43707_108	P30101_332
P63241_85	Q9UJA5_145	P22033_621
O60610_786	P23284_89	Q96A72_16
P22102_156	Q9GZM8_262	Q6UB99_1345
P49368_78	Q05209_65	Q6UB99_1531
Q96G03_565	Q96ST8_588	Q6UB99_1621
P62942_35	P60981_19	B4DVV3_332
Q96A72_50	Q8WWS9_693	Q9UJS0_408
A0A024RDF4_197	Q9Y6K9_309	P10606_57
Q14980_715	P78316_334	Q03701_195
014980 1624	P60709 213	060306 1045

P40121_137	P60709_291	P62861_1
 P40121_341	P60709_315	 P62861_18
014744_343	P10809_82	P09110_198
 P52907_268	P10809_133	P55327_137
P24534_133	P10809_160	P10515_368
Q15027_302	P10809_180	075964_54
P06400_427	P10809_191	Q9Y512_248
P49589_49	P10809_196	Q14964_63
P14550_127	P10809_250	Q9H082_83
D4YW74_2318	P10809_301	P55160_326
Q8NFH4_114	P10809_310	P52815_142
Q99459_219	P10809_361	P09012_80
Q16543_154	P10809_364	Q9UQ35_169
Q9UNS2_418	P10809_396	P33992_196
P41567_56	P10809_481	Q8NBU5_165
Q96SN8_865	P07437_122	Q9Y2R9_63
P23743_260	P07437_154	Q14571_1662
075351_363	P07437_252	Q96EY7_517
P37802_17	P07437_297	Q9H845_456
Q99996_2015	P07437_350	Q9UJX3_306
Q7RTS9_312	P68363_40	C9JVQ0_16
P04406_84	P68363_280	Q5JTV8_556
P08238_64	P68363_311	095347_177
P08238_552	P68363_326	P30049_165
P08238_559	P68363_352	P18124_48
P08238_565	P68363_401	Q96AG4_138
P08238_573	P48735_45	075190_60
P08238_574	P48735_48	P49711_405
P08238_685	P48735_69	Q8WXF1_257
P14618_125	P48735_80	P35754_20
P14618_206	P48735_106	Q99623_89
P14618_224	P48735_130	000186_197
P14618_336	P48735_133	P49841_292
P14618_504	P48735_155	Q93079_6
P00558_97	P48735_166	Q96DI7_275
P00558_106	P48735_180	Q8NI27_158
P00558_264	P48735_193	014874_233
P00558_297	P48735_199	Q9Y2X7_135
P00558_388	P48735_272	Q9H300_75
P07900_74	P48735_275	Q15031_79
P07900_84	P48735_280	Q9UJZ1_222
P07900_208	P48735_282	P17252_35
P07900_436	P48735_384	075821_172
P07900_458	P48735_413	P08754_67
P07900_513	P48735_426	Q9HBD4_835
P07900_534	P08133_81	000182_88
P07900_546	P08133_102	015320_500
P07900 559	P08133 299	Q00839 215

V9HWJ7_97	P08133_315	Q96PK6_167
V9HWJ7_132	P08133_354	Q9UIF9_748
V9HWJ7_297	P08133_370	Q8NBS9_407
V9HWJ7_328	P08133_406	Q9UNL2_103
P04075_153	P08133_418	Q9UJA5_145
P04075_342	P08133_442	Q709C8_2092
P35579_79	P08133_446	Q9C0D2_389
P35579_299	P08133_478	Q8TDB6_593
P35579_637	P08133_613	075347_51
P35579_682	P04406_117	Q14651_94
P35579_860	P06576_124	Q8NB50_475
P35579_938	P06576_161	Q9H4G4_53
P35579_1132	P06576_159	O60814_121
P35579_1404	P06576_259	P53990_48
P35579_1441	P06576_350	B4DZB4_636
P35579_1477	P06576_351	Q9BSJ2_426
P35579_1716	P06576_485	043488_242
P35579_1754	P06576_522	Q02880_1327
Q06830_27	P19338_295	P84090_41
P13639_239	P19338_377	Q9Y520_1160
P13639_272	P38646_76	P98171_460
P13639_275	P38646_135	P04844_311
P13639_594	P38646_175	Q9Y655_32
P13639_629	P38646_187	P62913_67
P07195_308	P38646_234	Q86XL3_447
P29401_254	P38646_300	Q9UPV0_936
P06744_252	P38646_467	O60488_49
P09429_146	P38646_625	Q9Y6N5_260
P09211_191	P38646_646	P48426_140
P62826_37	P14866_229	Q6ZQQ6_2341
P11142_451	P14866_269	Q07021_123
075083_362	P14866_493	O60508_380
P26038_35	P14866_533	075489_260
P50990_459	P14625_95	P08574_325
P52566_102	P14625_269	H3BUE4_21
P52566_110	P14625_340	Q09161_342
P18669_138	P14625_534	P05408_166
P18669_225	P14625_547	P05114_42
P31948_32	P14625_593	Q13011_327
P31948_210	P14625_630	Q52LJ0_256
P31948_317	P14625_633	Q03001_1114
P31948_453	P14625_671	Q9Y3A2_114
P26641_212	P13010_291	Q4LE39_647
P23528_132	P13010_307	O43283_498
P31146_439	P13010_532	P30044_142
Q01082_1312	P13010_534	Q9H3S7_600
Q01082_1878	P13010_544	Q96LB3_197
Q01082_1991	P13010_648	Q9BXT5_1381

Q01082_2054	P13010_660	A0A024R856_2276
D3DPU2_71	P13010_703	Q7Z333_1290
D3DPU2_81	P34897_103	Q9UIG0_576
D3DPU2_287	P34897_200	Q2KHM9_377
D3DPU2_298	P34897_269	E5RHP9_40
D3DPU2_304	P34897_297	P10809_469
P62258_50	P34897_302	P07437_154
P62258_73	P34897_356	P11142_451
P62258_142	P34897_459	P38646_368
P00813_232	P34897_464	P38646_612
P00813_323	P40926_74	Q5VTE0_41
P00813_331	P40926_157	Q5VTE0_44
P53396_64	P40926_165	Q5VTE0_179
P53396_968	P40926_203	Q5VTE0_215
000299_131	P40926_215	Q5VTE0_255
000299_192	P40926_239	Q5VTE0_273
P31939_66	P40926_297	Q5VTE0_392
Q32Q12_189	P40926_324	Q5VTE0_408
Q32Q12_196	P40926_329	Q5VTE0_439
Q32Q12_268	P62807_6	Q5VTE0_444
P40227_199	P62807_17	Q5VTE0_450
P40227_430	P62807_21	Q5VTE0_453
P15121_173	P62807_47	Q5VTE0_457
P22234_110	P62807_117	P08133_9
P22234_286	P25705_123	P08133_315
P26583_65	P25705_126	P14625_269
P26583_90	P25705_161	P48735_106
P26583_139	P25705_167	P25705_132
P41250_99	P25705_230	P25705_167
P41250_108	P25705_305	P25705_539
P34932_53	P25705_427	P62807_13
P34932_679	P25705_506	P06576_259
P34932_754	P25705_531	Q02878_87
P34932_766	A0A024RB53_78	Q02878_237
P10768_10	A0A024RB53_105	P06748_32
P14324_123	A0A024RB53_106	B4DLR3_224
P14324_413	A0A024RB53_166	P34897_103
P50395_103	A0A024RB53_179	A0A024RDF4_237
P50395_142	B4DLR3_193	P10412_136
P50395_221	B4DLR3_197	P23396_132
P11586_10	B4DLR3_224	P23396_202
P11586_66	B4DLR3_423	P22626_112
P11586_543	B4DLR3_475	P11940_157
P11586_553	B4DLR3_510	P11940_312
075369_681	B4DLR3_524	P13010_334
075369_1979	B4DLR3_585	B3KTT6_72
P60174_122	B4DLR3_594	B3KTT6_85
A0A0D95E54 613	B4DLR3 633	B3KTT6 189

A0A0D9SF54_1573	B4DLR3_773	B3KTT6_196
A0A0D9SF54_2063	P10412_46	B3KTT6_210
Q9BWD1_136	P10412_52	B3KTT6_299
P52209_154	P10412_63	B3KTT6_305
P52209_375	P10412_64	P62701_230
Q92688_110	P10412_85	P39023_366
B1AK87_211	P10412_90	P13796_294
B1AK87_223	P10412_97	P13796_449
B1AK87_240	P10412_106	P78527_3603
P61158_317	P10412_110	P78527_4019
Q14141_327	P10412_117	P13639_438
Q14141_351	P10412_119	P27797_153
Q14141_400	P10412_127	P27797_207
P54578_49	P10412_136	P27797_209
P54578_214	P10412_148	Q13813_1334
000154_157	P10412_156	Q13813_1650
P15311_3	P10412_168	P09622_277
P49368_21	P10412_186	D3DQ69_203
P49368_222	P10412_197	D3DQ69_341
P49368_381	P10412_213	D3DQ69_362
P32119_10	P06748_154	D3DQ69_363
P32119_26	P06748_155	Q93077_6
P32119_177	P06748_212	Q93077_37
P21333_1071	P06748_215	Q93077_120
P21333_1294	P06748_229	Q93077_126
P21333_2513	P62805_9	Q14152_278
P00491_265	P62805_13	P35579_992
P27348_11	P23396_18	Q04837_113
Q9Y490_685	P23396_90	O43390_120
Q9Y490_1933	P23396_108	P62081_147
P23526_20	P23396_132	P26373_210
060610_771	P23396_201	Q99798_605
Q06323_35	A0A024RDF4_72	Q99798_730
P41091_275	A0A024RDF4_110	P50213_77
P25789_239	A0A024RDF4_119	P21796_201
P09972_42	A0A024RDF4_158	P00558_15
P13010_603	A0A024RDF4_161	P40939_415
Q13263_469	A0A024RDF4_176	P00367_258
P50570_206	A0A024RDF4_231	P35637_312
P50570_562	A0A024RDF4_237	Q3ZCM7_154
P33992_196	A0A024RDF4_238	P00505_73
Q9BRA2_35	A0A024RDF4_255	P00505_94
Q15366_23	P05141_33	P55084_44
P63167_5	P05141_43	Q02543_136
Q9Y617_323	P05141_63	075521_177
Q9Y266_53	P05141_166	P47914_87
Q9Y266_93	P05141_245	P47914_134
097266 268	P05141 272	P09874 87

P52272_672	Q02878_5	Q99729_223
P24534_60	Q02878_8	Q99729_330
P24534_74	Q02878_26	Q16891_122
P24534_132	Q02878_41	Q16891_306
Q13098_183	Q02878_77	P62241_37
Q04917_69	Q02878_87	P62241_128
Q9Y696_199	Q02878_100	043837_199
P39748_80	Q02878_210	P36578_348
P68036_9	Q02878_237	P36578_390
P68036_146	P31946_13	P50914_79
Q9UI08_21	P31946_51	P50914_177
Q9UI08_22	P31946_122	P46779_127
Q9UI08_70	P31946_160	P13073_53
Q01105_167	P07737_91	P13073_65
P12004_80	B2RB06_81	P46777_220
P52907_97	B2RB06_179	P16401_27
P52907_103	B2RB06_185	P16401_35
P52907_273	B2RB06_192	P16401_133
P67936_100	B2RB06_202	P16401_161
Q13303_274	B2RB06_206	P16401_172
P25787_53	B2RB06_271	P16401_217
Q96AE4_591	P13639_498	P15880_275
Q8N163_839	P39023_39	Q01082_1981
P17252_197	P39023_103	P30101_226
P17252_209	P39023_294	P84098_196
B3KTT6_85	P39023_300	P61513_87
P06493_33	P39023_366	Q9Y262_403
Q16181_239	Q00610_96	Q9Y262_558
Q16181_326	Q00610_367	P24539_233
Q16181_333	Q00610_619	Q00325_209
B7Z217_1013	Q00610_737	Q00325_214
Q5TBB1_145	P14618_247	A0A0S2Z5H3_471
P29692_117	P22626_22	Q08257_116
P40121_300	P22626_112	P69905_17
P54577_146	P22626_113	P11310_175
P31946_70	P62277_93	P62750_18
P26639_273	P12268_109	P62263_86
076003_151	P12268_450	P62263_106
P50502_14	P62847_32	P49207_62
P50502_153	P62847_43	Q9Y4W6_785
Q01469_55	P62847_46	Q9NY12_140
Q9UBT2_447	P62847_68	P25787_92
Q00013_299	P62847_129	P78406_131
P09651_8	P13796_88	P78406_154
P09651_15	P13796_294	P07237_328
P63279_18	P13796_579	Q9NX63_86
P63279_49	P49411_79	P49458_52
P63279 76	P49411 88	Q9H1K4 79

	l	
Q99879_109	P49411_91	Q9H1K4_82
Q99879_117	P49411_234	P14314_83
Q99879_121	P49411_238	P08621_138
043175_289	P49411_342	P07910_94
043175_394	P49411_361	Q99832_77
P52565_105	P49411_447	P62841_58
Q92945_281	Q12906_454	P62841_72
Q9Y450_657	P00505_59	015372_221
P39687_110	P00505_82	P40227_199
P39687_111	P00505_90	Q00688_96
094776_492	P00505_159	Q00688_170
P48739_50	P00505_309	Q2TU64_248
Q9BTE3_328	P00505_338	P50995_495
Q02750_84	P00505_363	P62913_38
075396_38	P27824_118	Q9UII2_100
P49591_12	P27824_127	Q86U86_225
Q93034_455	P27824_182	P14735_896
075347_52	P27824_398	Q4GUF2_45
Q9UHY7_106	P27824_515	Q4GUF2_49
B4DW52_56	P62424_11	Q7L2H7_177
Q9NZZ3_100	P62424_20	P61026_136
P55786_712	P62424_34	Q6NZ52_92
P36507_88	P62424_97	P11387_669
Q13177_136	P62424_125	P24752_230
Q13177_246	P62424_212	P24752_266
Q9UQE7_143	P62424_217	P26196_482
P13693_89	P62424_255	O60841_393
Q14008_1761	P12956_189	P28062_133
Q15365_115	P12956_287	Q8IYB8_404
A0AVT1_168	P12956_463	B4DEB0_290
F6WQW2_227	P12956_516	Q8NFH4_114
F6WQW2_256	P12956_526	Q8N0V3_70
Q9C0B1_216	P12956_553	P18077_66
Q9H444_17	P12956_570	Q13505_190
000232_368	P12956_575	Q96RE9_491
 P08758_309	P12956_596	014832_120
Q9HC35_228	P50990_260	P30044_86
 Q9UBQ0_73	P50990_326	Q9HAV7_100
 Q16775_229	P51991_29	076021_116
 095149 144	P51991 36	Q13442 132
 Q9NR45 61	 P51991 134	 P47813 104
Q8WVM8 515	P51991 199	Q9HAN9 56
043865 487	P48643 259	Q9NVP1 542
Q14019 93	P62081 58	Q8WVM8_515
A6NDG6 72	P62081 142	014979 142
08WXF1 257	P62081 155	08WXF1 380
P11021 185	P62081 160	014161 135
A0A0\$27417_21	P62081 178	014617 189

Q9Y2X7_135	P62081_179	P49840_355
Q13085_323	P62906_47	Q6UB35_880
A8MWD9_10	P62906_95	P22307_453
Q15056_80	P62906_118	Q15031_81
P13929_60	P62906_130	P01130_830
H3BVE0_79	P62241_128	Q8WZ42_3065
Q5THR3_563	P62241_139	Q8WZ42_29371
Q5W0Q7_56	P62701_94	Q13129_618
Q9HBG6_392	P62701_211	075489_259
Q14790_250	P62701_230	Q99996_2015
Q9BZH6_223	P62701_233	Q6ZN06_297
Q96ST8_588	P52566_114	Q8N532_316
Q02224_1444	P52566_124	Q10713_478
P08238_347	P52566_135	P55786_222
P14618_166	P52566_138	Q96PK6_593
P07900_204	P52566_175	Q8WXH0_4586
P07900_485	P52566_196	P26440_146
P35579_102	P26583_167	Q15024_178
P35579_186	P26583_173	P27701_263
P35579_560	P61604_28	Q3L8U1_2507
P35579_1081	P61604_40	P22695_21
P35579_1193	P61604_80	P13984_236
P35579_1234	P11940_157	P36957_145
P06744_423	P11940_348	P12814_89
P06744_523	Q3ZCM7_122	P47985_168
P09429_112	Q3ZCM7_154	A0A0A6YYL4_103
P13639_259	P26038_64	Q86WX3_110
P26038_263	P26038_151	P10809_481
P26038_448	P26038_253	P25705_305
075083_7	P26038_254	A0A0S2Z377_81
075083_480	P26038_391	A0A0S2Z377_265
P31948_13	P26038_400	A0A0S2Z377_314
P31948_162	P26038_538	A0A0S2Z377_354
P31948_429	P15880_211	A0A0S2Z377_370
P31948_523	P15880_212	A0A0S2Z377_406
P26641_249	P15880_275	A0A0S2Z377_442
D3DPU2_327	Q96KK5_37	A0A0S2Z377_478
043143_384	Q96KK5_120	A0A0S2Z377_607
P31939_137	Q96KK5_126	A0A024RB53_78
P49588_625	P40939_60	P14625_532
P60174_193	P40939_214	P14625_633
B1AK87_66	P40939_255	B4DLR3_561
075369_142	P40939_259	P13010_566
075369_838	P40939_289	P61978_219
P34932_356	P40939_295	P14866_269
P46940_1445	P40939_303	Q00610_96
060610_377	P40939_415	Q02878_247
P52209 51	P40939_460	P06748 141

P61158_240	P40939_728	P06748_155
 P33316_179	 P27797_41	 P40926_307
P15170_208	P27797_48	P62424_11
 P15170_490	P27797_151	P62424_217
P11766 366	P27797 153	P05141 96
 P27348_139	 P78371_272	 P23396_148
P15311_60	P78371_441	P39023_66
Q15366_115	P24752_66	P61247_56
P49915 182	P24752 174	P36578 405
 P26639_222	 P24752_190	 P26583_3
P07814_513	P24752_230	P63244_271
P31946_214	P24752_251	Q9UQ80_158
P25787 70	P23246 518	P78527 2746
 A0A0S2Z4I4 76	 P52272 651	Q5VU21 102
	075947_5	 Q5VU21_140
A0A0S2Z4I4_212	075947_117	 Q5VU21_278
	075947_144	 Q5VU21_299
 P58876_12	075947_149	 Q5VU21_300
P58876_109	P61247_27	 P49411_447
P58876_121	P61247_144	A0A0D9SF54_602
Q9UHD8_262	P61247_222	A0A0D9SF54_1560
P31150_269	P61247_240	P21796_236
Q07666_175	P61247_249	Q16891_436
P61163_200	P62851_14	P62263_63
A8KAP3_244	P62851_20	P23246_208
Q16543_110	P62851_25	P08865_212
Q14019_110	P62851_57	P62753_30
A6NHG4_87	P62851_60	P07237_326
P14735_303	P62851_98	P62851_60
Q9UHD1_198	Q13423_394	P35637_448
P35241_3	Q13423_1059	P00505_159
Q9UHX1_201	Q08211_236	P00505_234
Q9UHX1_267	Q08211_235	P42766_77
P00390_401	Q08211_943	P39019_111
Q9P016_60	P40227_388	Q7KZF4_541
P25685_242	P40227_426	P62917_149
P62633_103	P40227_424	P62917_155
P63151_95	Q99729_82	P08708_72
P61088_92	Q99729_86	Q01082_1824
Q9C0C9_132	Q99729_118	P62888_44
075044_245	Q99729_149	Q86V81_86
P29350_257	Q99729_153	P07910_89
Q15631_219	Q99729_210	D6RBZ0_150
Q99961_171	Q99729_214	D6RBZ0_210
075935_59	Q99729_215	D6RBZ0_215
Q9HAV4_1147	Q99729_223	P17987_484
Q08AE8_288	Q99729_232	P41252_1042

P0DMV8_88	P63244_185	Q92522_143
P0DMV8_102	P63244_264	P62249_26
P0DMV8_251	P63244_271	Q96A26_150
P0DMV8_328	P36578_29	P61353_93
P0DMV8_345	P36578_368	P61513_7
P0DMV8_348	P36578_374	E9M4D4_17
P0DMV8_524	P36578_375	P24752_223
P0DMV8_569	P36578_380	P31948_250
P0DMV8_597	P36578_399	075746_406
P09874_97	P36578_412	P22307_534
P09874_108	Q8NC51_39	P84095_130
P09874_192	Q8NC51_299	P63220_74
P09874_249	Q8NC51_320	P46940_939
P09874_683	P07954_94	Q9GZR7_808
P61978_103	P07954_115	Q5T3I4_144
P61978_422	P07954_470	Q9UJV9_416
P06748_267	P07954_477	P35606_199
Q00839_265	P78527_310	060610_377
Q00839_464	P78527_2829	Q9UNX3_136
Q00839_516	P78527_3260	P09496_242
Q00839_551	P62913_38	Q15555_156
Q00839_565	P62913_52	P38117_53
Q00839_626	P62913_67	P06730_184
Q00839_635	Q16891_270	P46977_340
P08670_129	Q16891_282	Q86SR1_379
P08670_439	Q16891_315	Q04446_39
P38646_368	Q16891_427	Q8N254_280
P38646_377	Q16891_436	Q15052_722
P38646_468	Q16891_640	Q96SI9_75
Q08211_146	Q99832_67	P13804_226
P14866_418	Q99832_463	Q9UNF1_311
P23246_279	P07814_788	Q9NRX4_87
P23246_330	P84243_5	P08686_232
P23246_472	P84243_19	P20338_173
Q5CAQ5_561	P84243_24	094913_354
Q5CAQ5_671	P84243_57	P78344_187
Q5CAQ5_682	P84243_65	P13612_189
P52272_381	P84243_123	Q14103_111
P43243_798	Q99798_144	Q9P2K5_85
P17844_470	Q99798_409	Q8N3U4_53
Q6FI13_120	Q99798_605	Q96QR8_251
Q5VU21_300	Q99798_730	Q8NFC6_365
Q5VU21_306	P16401_35	P11142_500
P07910_89	P16401_49	P08238_649
P07910_157	P16401_132	A0A0S2Z377_9
D6RBZ0_83	P16401_133	A0A0S2Z377_102
D6RBZ0_87	P16401_140	P14625_628
DCDD30 403	P16401 168	P38646 654

D6RBZ0_215	P16401_188	B4DLR3_503
 D6RBZ0_232	 P16401_209	B4DLR3_647
Q15233 203	 P16401 214	 P48735 199
Q15233_467	P55809_176	Q00610_189
Q12906 342	P55809 185	Q02878 12
 P48643_160	 P55809_296	 Q02878_15
A0A024RDF4_242	P55809_418	B4DUQ1_52
P49327_436	P55809_421	B4DUQ1_60
P49327 673	P55809 481	B4DUQ1 381
 Q6NXR8_34	 Q68D11_798	P06733_422
P63244_183	Q04837_81	P27797_276
P42704_750	Q04837_103	P12956_262
P26641 220	Q04837 113	P12956 582
075390 459	P42677 16	P26583 59
 P12277_304	 P46782_201	 P26583_127
P54819_93	P27635_82	P10412_129
Q07666 432	P27635 121	P10412 130
000571_335	 P27635_145	 P10412_168
014979_180	P27635_170	P63244_185
P42167_346	P27635_188	P62753_211
Q7KZF4_116	P21796_20	B2RB06_185
Q13283_413	P21796_109	P27635_121
Q07020_119	P21796_201	P08575_967
015371_53	P21796_236	P42766_71
P22392_100	075083_90	P36542_36
P52292_459	075083_104	Q99798_689
P11177_336	075083_223	P46782_44
P04181_405	075083_256	P16401_184
P43487_111	P48047_54	P16401_214
Q15029_64	P48047_70	P47914_63
Q96PK6_593	P48047_73	P47914_103
Q9Y2W1_481	P48047_162	P47914_130
Q9Y2W1_876	P00367_183	D6RBZ0_154
A0A024RBE8_233	P00367_258	D6RBZ0_232
Q12849_242	P00367_365	D6RBZ0_325
Q13242_36	P62917_93	P62750_30
P55786_853	P62917_144	P62750_114
Q9H583_1675	P62917_155	P12236_23
Q9NY12_94	P38159_86	P61353_126
Q5SY16_670	P38159_150	075083_104
Q96I24_525	P38159_217	B3KS98_283
P50570_598	B3KX96_29	B3KS98_288
000231_417	B3KX96_39	Q12931_629
B4DZJ6_890	B3KX96_42	P35268_6
Q03701_195	B3KX96_89	Q99623_216
Q9UJX3_306	B3KX96_144	P46776_92
P08237_678	B3KX96_163	Q9Y3U8_35
015460 57	042200 114	P30/05 91

014671 718	097277 15	P62316 88
Q14071_718	09277_10	00011 883
D5/700 182	091277_20	
01/191 222	099714 104	
Q14161_232	043837.06	
P35914_179	043837_96	P03218_30
P38432_496	043837_146	P30626_68
Q14203_397	043837_354	Q96C36_291
Q8IZX4_1610	A0A0D9SF54_969	P18077_15
014727_142	A0A0D9SF54_1560	P11387_174
Q9BRT2_69	A0A0D9SF54_2411	P34932_332
P0DMV8_539	Q86V81_81	Q14204_1649
Q00839_543	Q86V81_86	Q3KP31_298
P61978_102	Q86V81_156	Q96BR6_416
P58876_117	Q86V81_164	Q9UIF9_660
P43243_146	Q13838_384	Q9UIF9_758
P17844_236	Q00325_209	Q99986_98
Q5CAQ5_663	Q00325_214	075477_205
G3V4C1_89	Q00325_234	Q9Y4W2_540
G3V4C1_144	Q00325_247	Q15027_302
Q15233_198	P55084_181	P10515_363
Q15233_239	P55084_188	Q9UK58_307
075390_43	P55084_272	Q14694_780
Q92945_203	P20700_261	B4DLN1_183
014979_142	P20700_457	P53804_1571
F8VY04 51	P20618 164	Q9HCL3 254
 P24534 147	P05388 77	P60709 284
09NZI8 465	P05388 106	P60709 315
015347 29	P05388 264	P68363 40
P25205 194	012931_369	P68363_280
000264_105	P62753_64	P68363_352
P25786 115	P62753_203	P07437_19
P49792 983	P62753_211	P07437_103
092265 201	P/6781 91	P07/37 297
A8KAD3 64	P46781_51	P07437_250
000241 992	P40781_121	P07437_330
Q00341_883	P40781_135	P10809_38
00110/7 100	P40781_133	P10809_191
Q9HAV7_100	B4DRW8_907	P10809_205
A2NX49_323	P31146_233	P04406_271
Q9Y4W2_540	P69905_17	P11142_601
Q14C86_1035	P69905_41	PU8133_81
075899_196	B4DIZ3_66	P08133_102
Q14103_129	B4DIZ3_213	P08133_442
Q5U071_30	Q9Y262_101	P08133_446
V9HW62_88	Q9Y262_393	P14625_593
P08238_411	Q9Y262_549	P14625_597
P08238_491	P08575_641	P14625_623
P68104_172	P08575_664	P48735_69
P68104 180	P08575 780	P48735 80

P68104_244	P08575_1145	P48735_133
P68104_330	P08575_1149	P48735_243
P68104_460	P50213_116	P48735_256
P06733_105	P08865_89	P48735_282
P06733_239	P08865_212	P48735_426
P0DMV8_25	P17844_91	P38646_138
P0DMV8_112	P17844_284	P38646_159
P0DMV8_128	P13073_53	P38646_234
P0DMV8_190	P13073_60	P38646_646
P0DMV8_246	Q2TU64_78	P06576_161
P0DMV8_257	Q2TU64_248	P06576_480
PODMV8_319	Q2TU64_427	P25705_506
PODMV8_325	Q71UI9_116	P40926_74
PODMV8_451	P31943_349	P40926_157
P0DMV8_497	Q92608_437	P40926_215
PODMV8_500	Q92608_1474	P40926_297
P0DMV8_507	P26599_410	P40926_314
PODMV8_512	P12236_147	P40926_328
PODMV8_526	P12236_166	P13010_307
PODMV8_550	P83731_27	P13010_534
PODMV8_573	P83731_119	P13010_544
PODMV8_589	P83731_144	P13010_545
PODMV8_628	P49458_41	P13010_703
P11142_25	Q96EY1_152	P09429_29
P11142_88	Q96EY1_299	P61978_163
P11142_361	P07237_271	P61978_179
P11142_423	P07237_328	A0A024RB53_52
P11142_500	Q9NZ45_55	A0A024RB53_179
P07900_209	Q9NZ45_68	P34897_200
P07900_478	P45880_247	P34897_269
P07900_657	P67809_64	P34897_464
P07900_693	P67809_92	Q00610_1441
P19338_15	P67809_170	Q00610_1443
P19338_71	Q9P0L0_52	P13639_498
P19338_79	Q9P0L0_125	B4DLR3_423
P19338_80	Q9P0L0_205	B4DLR3_585
P19338_87	Q9P0L0_211	Q02878_210
P19338_95	P62841_58	Q93079_12
P19338_96	P62841_65	Q93079_17
P19338_102	P62841_108	Q93079_21
P19338_109	P84098_146	Q93079_47
P19338_110	P84098_153	Q93079_109
P19338_116	Q9BXW7_69	Q93079_117
P19338_124	Q9BXW7_279	Q93079_121
P19338_125	P31930_111	P23396_18
P19338_132	Q14152_694	P23396_214
P19338_228	A0A0S2Z5H3_158	P31946_13
P19338_282	P30519_168	P31946_51

P19338_318	P30519_199	P31946_122
P13639_42	Q92841_547	P39023_103
P13639_235	P00813_23	P39023_312
P13639_252	P00813_273	P22626_22
P13639_314	P42704_103	P10412_46
P13639_328	P42704_1332	P48643_259
P13639_333	P49257_87	P48643_261
P13639_391	P49257_346	P48643_265
P13639_407	P35637_316	P48643_483
P13639_426	P31040_182	P48643_496
P13639_571	P31040_335	P62277_78
P13639_619	P31040_538	P27797_41
P13639_648	P26373_118	P27797_48
P13639_676	P26373_145	P00505_59
P13639_845	P26373_200	P00505_227
P04075_108	P16403_119	P07737_91
P04075_294	P16403_168	P62701_94
P00338_118	P16403_172	P62701_211
P00338_232	P16403_181	P00558_139
P49327_235	P32969_21	P50990_16
P49327_786	P32969_28	P50990_326
P49327_787	P62899_6	P50990_459
P49327_1116	P62899_55	P62424_34
P49327_1142	P46778_120	Q08211_14
P49327_1151	P09622_430	Q08211_220
P49327_1158	P18621_55	P15880_212
P49327_1239	P18621_96	P15880_263
P49327_1591	P18621_169	P12268_422
P49327_1866	Q01082_842	P12956_596
P49327_1878	Q01082_1354	P62906_152
P49327_1911	Q9NSE4_241	B2RB06_202
P07195_60	Q13151_99	A0A024RBE8_208
P07195_77	P15153_133	A0A024RBE8_213
P07195_119	P61313_83	A0A024RBE8_246
P07195_244	Q2VIR3_275	A0A024RBE8_303
P07195_310	Q9UMS4_244	P05388_77
P07195_318	Q92804_277	P05388_106
P04406_186	Q9P2J5_464	P05388_246
P14618_162	Q9P2J5_719	P05388_264
P14618_186	P18124_48	P62241_139
P14618_367	P18124_88	075390_43
Q06830_136	P47914_79	075390_215
P60842_68	P47914_82	075390_321
P60842_226	P47914_149	075390_382
P60842_238	Q9Y4L1_537	P21796_266
P60842_309	O43242_76	P36578_29
P09429_150	Q4G176_421	P36578_380
P31948 227	P39019 23	P11021 113

P31948_381	P39019_29	P11021_213
P31948_442	P39019_143	P62979_113
P26641_147	P22307_438	P63244_12
P26641_219	P22307_534	P63244_264
P26641_228	015372_269	P78527_357
P26641_253	015372_274	P78527_3264
P18669_157	Q969G3_123	P40939_60
P23528_152	P32322_215	P40939_303
P34932_388	P55265_494	P40939_334
P34932_437	P55265_1115	P27635_188
P34932_668	Q07021_91	Q96KK5_6
P60174_43	Q07021_123	Q96KK5_120
P60174_179	P36542_39	Q96KK5_126
P60174_275	P36542_115	P49411_238
P63104_115	P50914_85	P52566_175
P63104_139	P50914_164	P52566_197
Q32Q12_74	P50914_165	Q99798_144
Q32Q12_81	P50914_171	Q99798_739
Q32Q12_275	P30101_218	Q8NC51_39
P12277_101	P50995_282	Q14697_472
P12277_242	P04843_413	P26373_136
P12277_267	P31939_14	P26373_145
P12277_298	Q9BPW8_51	P51991_36
P12277_307	Q9BPW8_56	P51991_73
P12277_313	Q9BPW8_80	P07814_512
Q13263_188	P62263_63	Q01813_139
Q13263_296	P62263_86	P08575_641
Q13263_319	P04083_90	P08575_664
Q13263_377	P61353_27	P08575_759
Q13263_774	P30048_149	P08575_1145
Q13263_779	P06239_130	P09874_23
P62258_118	A4D1M6_176	P09874_940
P62258_153	A4D1M6_185	P61247_20
P35579_63	Q7KZF4_515	P61247_27
P35579_355	P62280_30	P61247_144
P22314_627	P62280_45	P61247_222
P22314_802	Q13310_104	P62851_94
P22314_806	Q9NSD9_560	P62913_52
P22314_838	P25787_92	P78371_154
P00918_24	Q9UII2_49	P78371_248
P00918_39	Q9UII2_72	Q04837_51
P00918_45	Q9UII2_82	P46781_121
P00918_76	Q9UII2_83	P46781_139
P00918_167	Q9UII2_100	P46781_155
Q02790_88	P62249_60	Q9Y277_15
Q02790_108	P35268_52	Q9Y277_20
Q02790_254	P35268_69	Q99714_104
002700 287	P21912 126	097262 101

Q02790_390	P21912_261	Q9Y262_437
P11586_246	P42766_71	P25205_656
P11586_878	P42766_79	P07954_502
P06744_12	P42766_118	P23246_421
P06744_524	P46779_127	P23246_518
P53396_469	Q12905_186	P52272_698
P53396_468	Q12905_328	P00367_183
P53396_471	P09972_13	P12236_105
P53396_780	A8K1X9_274	P55084_72
P53396_948	P10515_362	P55084_272
P53396_962	P10515_368	Q99832_109
P53396_1077	P10515_386	Q99832_157
P54577_247	095202_284	P39019_23
P54577_319	Q9NX58_50	P35268_10
P54577_334	015382_156	P35268_52
P54577_348	015382_377	Q9NZ45_68
P54577_391	Q9H2W6_216	Q14152_694
P54577_474	P62750_7	P69905_41
Q92598_221	P62750_14	Q9NUJ1_70
Q92598_272	P62750_26	P84098_144
Q92598_275	P62750_36	P84098_153
Q92598_430	Q05D08_174	Q16891_640
Q92598_772	Q05D08_188	P68032_86
Q92598_790	P14868_9	043837_146
A0A024R895_59	P11310_175	P24752_174
A0A024R895_119	P11310_212	P83731_131
A0A024R895_137	P11310_271	P62249_4
A0A024R895_154	Q8N183_58	P62249_60
A0A024R895_159	P50991_21	P62249_105
A0A024R895_164	P50991_489	Q9P0L0_125
A0A024R895_176	P62888_44	P26599_410
P55786_279	Q9UJV9_416	Q9UQ80_144
P55786_753	Q14683_766	Q9P2J5_350
P55786_821	Q00688_170	P83881_22
Q16576_21	075643_1294	P55809_176
Q16576_155	075643_1603	P55809_481
Q9HB71_19	P83111_199	Q86V81_164
Q9HB71_41	P83111_231	Q68D11_798
P11940_299	Q9GZR7_808	P11310_212
P63241_121	Q13601_264	P11310_271
P13797_52	P62191_24	P11310_301
P13797_452	Q13247_143	Q9NSD9_560
P13797_545	P53007_97	P16401_168
P13797_582	P09012_60	P16401_204
P32119_16	P09012_80	P62899_55
P32119_92	P09012_114	P25398_84
P32119_135	P83881_22	P25398_93
Q15366_309	P83881_27	Q96EY1_299

P40925_107	P37108_55	B4DRW8_907
P40925_205	P62873_209	P04083_214
P40925_214	Q8N163_97	P00813_23
P40925_220	P03928_45	P00813_273
P40925_298	P03928_49	P68431_19
P27348_115	Q15046_492	P68431_123
P27348_212	P16402_123	P18124_88
P43487_50	P69849_170	A0A0D9SF54_969
P43487_68	P69849_927	Q9Y285_315
P43487_150	Q16778_35	Q9Y285_342
P43487_190	P62269_91	P17844_391
P15121_12	P62269_150	P55072_754
P15121_179	P62861_1	P62753_218
P15121_222	P62861_51	P63173_9
015347_112	Q9HAV7_186	P63173_67
015347_126	Q14554_219	P61353_27
015347_145	Q99613_643	Q92608_1435
P18206_170	Q99613_712	P47914_77
P18206_276	P29144_1216	P49257_87
P18206_352	P46777_242	Q01082_1354
P18206_366	P55884_209	Q01082_2269
P18206_464	P55884_529	P18621_55
Q15181_199	P49207_36	P18621_96
Q15181_233	Q92930_58	Q9UDR5_584
Q15181_253	Q96I99_338	Q2TU64_78
P15170_72	Q1KMD3_626	Q2TU64_381
P15170_138	P63173_67	P42704_224
P15170_254	P40429_114	Q12931_382
043175_21	Q96F07_1234	Q99613_643
043175_351	Q9P2R7_205	P37268_318
P09211_209	H0Y2W2_200	P21912_126
P22234_30	H0Y2W2_481	P21912_261
P22234_36	H0Y2W2_554	P06239_130
Q9Y617_127	Q15067_260	P30050_130
P84077_142	Q9Y2W1_711	P30084_128
P24534_64	075746_406	Q9NSE4_500
P24534_129	Q9H9P8_104	Q15029_244
P30520_157	Q9UJZ1_233	Q9BXJ9_848
P30520_164	P12235_23	P50995_255
P30520_173	P56381_37	P50995_282
P30520_403	P48556_324	Q12905_186
P30520_419	Q92522_146	095202_284
P06737_29	D3DTY9_112	P30519_199
P06737_295	P30405_67	P41091_275
P06737_804	095453_335	015382_156
P06737_819	Q96IX5_16	043143_760
P30041_56	Q96AG4_73	P40429_114
P30041_63	Q96AG4_138	P25789_210

P30041_97	Q9Y3U8_62	P09972_13
P09960_127	P22695_21	B2R5W2_39
Q92945_473	P22695_42	B2R5W2_42
P09936_4	Q01844_644	B2R5W2_144
P09936_65	Q96CS3_167	P22695_42
P09936_71	P62834_128	P52597_224
P09936_123	Q86SR1_379	Q96AG4_73
P09936_221	P46776_94	Q96AG4_108
Q99832_172	P49406_129	P61026_59
P08758_97	Q9NYU2_596	Q06323_13
P08758_101	Q96CW1_400	P30040_99
P08758_290	Q96PK6_135	Q8N183_58
P08758_301	P28331_467	043242_76
P23526_43	P31937_297	P16615_502
P46821_1176	P62857_10	015371_53
P68371_379	P23368_26	P55884_529
P27694_588	Q13243_60	H0Y2W2_554
P50502_160	P22830_118	Q99460_429
P50502_353	Q53HG1_102	P10515_376
P50502_360	Q9NVP1_645	P10515_396
Q9Y266_123	Q9H1K4_82	Q96C36_307
Q9Y266_160	Q8TDX7_281	Q53HG1_102
Q9Y266_297	P62316_118	Q53HG1_146
Q9Y266_315	Q96CT7_40	P33991_549
P22102_598	Q99460_146	P29144_1216
P31939_389	P30044_86	Q8TCC3_152
P05455_105	P30044_142	P62861_51
P05455_229	P16615_400	095470_155
P05455_276	P09496_242	P07384_84
P05455_280	P27708_964	P07384_86
P05455_344	Q00059_95	Q9UJZ1_233
P05455_352	P53999_101	P07766_158
P61221_64	Q8NBU5_165	014979_302
P61221_121	P62829_113	Q9H0X9_402
O43719_56	C9JVQ0_10	P20674_72
P49321_626	P60228_82	Q8NBS9_140
P49321_643	Q9UFN0_166	P35606_336
075131_149	Q9P2K5_85	P50395_253
075131_167	P22033_621	Q96I99_338
075131_208	Q9NTJ5_456	Q9HAV7_186
Q09028_102	Q496E4_233	P61224_128
Q04760_44	P84103_23	D3DTY9_112
Q04760_140	Q9NZ01_12	P46776_94
P50991_213	Q9UQ35_169	P12235_23
P50991_288	Q8IYB3_54	P32322_215
P50991_319	014656_76	Q8N5C6_852
P17812_557	Q99536_372	P22830_118
P49773 30	P09110 198	P62308 10

P49773 82	Q9H0D6 641	095347 523
P49368 138	P35573 1303	P54819 147
P55209 271	Q14964 63	Q96CS3 167
 A6NHG4_21	Q9H082_83	 P62820_140
 A6NHG4 33	Q9NUI1 230	Q07021 104
 P04080 39	P51572 204	Q96CT7 40
 P04080_44	Q9H300_75	 P38159_150
 P04080_78	 Q8N5K1_81	Q9NZ01_12
Q9Y265 372	Q8WU39 111	Q8IZP2 114
 P10599_39	 P61769_111	Q9P035_72
000410_437	P00846_51	P23368_26
000410_705	Q9HAN9_56	Q06787_425
A0A024R321_373	P08574_315	E5KS55_205
Q9NTK5_248	P08574_325	P23743_671
Q9NTK5_253	O60884_226	Q15269_801
Q9NTK5_294	Q9BSH5_15	Q8N5K1_81
Q9NTK5_326	P08708_72	P49748_556
Q8TCG1_647	Q99623_89	Q96A33_374
Q8TCG1_783	P14678_50	014656_76
014980_686	Q5JTV8_556	P62304_12
Q99497_182	Q6DD88_375	P49189_366
076003_92	014950_151	P35573_1303
076003_253	Q9H0A0_823	P05023_487
Q14204_748	P78406_154	A0A024RAP0_197
Q14204_754	Q15555_165	095071_28
Q14204_4204	Q9HBD4_835	Q8IYB3_54
Q14103_197	095831_593	P36551_404
P52565_127	P47985_168	P08559_385
P52565_167	Q15052_722	075323_53
P06493_20	P52815_142	Q6FI58_135
P13693_19	Q13435_570	P08574_315
P13693_93	O00182_88	095865_51
P13693_112	Q14161_135	Q56VL3_41
P41250_501	P49841_292	043707_108
Q14C86_233	075323_53	Q5TCQ9_439
015067_25	Q15031_79	Q9Y2R5_41
P30086_47	Q9H4G4_53	Q5K651_1495
P30086_80	Q03001_1114	E9PI68_81
Q96FW1_59	O60814_121	Q9NYZ3_294
E7EVH7_481	Q93079_6	P08183_290
E7EVH7_556	P12814_89	P60709_336
Q9Y696_130	Q6IPU0_241	P08238_538
Q9Y696_194	Q9Y520_1160	P00338_228
P31153_234	Q6UXB8_80	P13796_76
Q9UHD1_38	P36551_404	P13796_82
Q9UHD1_101	Q8WXX5_107	P13796_88
A0A0S2Z4I4_100	Q01130_36	P13796_92

P21333_2417	Q9UBF2_313	P13796_297
P15311_254	P98171_460	P13796_444
P15311_344	Q9Y512_248	P13796_468
Q8WUM4_339	Q56VL3_41	P13796_472
Q8WUM4_486	043488_242	P13796_542
Q8WUM4_501	Q96C36_47	P14618_261
Q8WUM4_627	Q9UKM9_146	P00558_48
P55060_848	075489_260	P00558_56
Q9Y3F4_104	Q14103_111	P00558_106
Q9Y3F4_122	Q5K651_1495	P00558_146
Q9Y3F4_246	P05408_166	P00558_192
P31689_221	Q9BQE5_54	P00558_361
P12004_77	Q6ZQQ6_2341	P35579_403
P12004_168	Q13011_327	P35579_1024
Q9UNS2_254	Q9UPV0_936	Q06830_168
P35580_865	P60709_336	P09429_43
075347_21	P14618_89	P09429_65
075347_36	P13796_76	P09429_82
P61981_88	P13796_82	P09429_90
Q15185_7	P13796_92	P09429_127
Q15185_91	P13796_97	075083_90
P11766_120	P13796_297	075083_95
P11766_357	P13796_444	075083_569
P39687_86	P13796_449	P09211_116
P46109_265	P13796_456	P62826_38
Q14974_859	P13796_468	P50990_466
Q14974_867	P13796_472	P63104_75
043143_143	P13796_542	P52566_25
P61956_11	P04075_312	P52566_33
P61956_33	P04075_318	P52566_63
P61956_45	P00558_15	P52566_196
075436_116	P00558_56	P31146_20
Q01469_40	P00558_192	P31146_207
Q16543_273	P00558_353	P31146_449
Q16543_276	P35579_403	P26641_227
P08243_379	P35579_909	Q01518_63
075832_30	P35579_1024	P53396_978
Q13765_142	P35579_1212	043143_132
P37802_153	P35579_1249	P22234_110
Q00341_494	P35579_1775	P31939_66
000151_192	P35579_1793	P31948_207
Q9NRX4_48	P35579_1806	P31948_337
Q99615_32	P35579_1918	P31948_366
P55072_754	075083_95	P00813_170
P35606_199	075083_182	P00813_232
095757_185	075083_569	P41250_646
Q9BTT0_101	P09429_90	P78417_11
P37837 269	P09211 116	P78417_220

	1	1
Q53GN4_256	P26038_262	P49588_766
P63167_9	P26038_306	P11586_245
Q9NTJ3_607	P26038_313	P61158_317
P49588_366	P53396_978	Q9BWD1_180
Q9H773_140	Q01518_63	Q14141_379
P11021_447	Q01518_298	P21333_1538
Q9Y6Y8_931	P52566_25	P34932_719
P0DN79_269	P52566_33	P50570_629
P23381_27	P52566_63	P26583_173
P23381_47	P52566_96	000154_286
014737_66	P52566_197	P12814_682
Q9H8S9_210	P31146_20	P61981_120
Q9UHV9_18	P31146_207	P25205_194
Q14320_305	P31146_449	Q13263_469
Q15691_148	Q01082_2269	Q9Y490_875
000193_75	P22234_304	Q99426_188
Q9UHB9_277	P00813_170	P27707_88
Q9H3K6_47	P41250_82	075533_866
Q9Y237_75	P41250_646	P15170_103
Q5TBB1_259	Q01813_736	Q8N163_791
043765_137	014818_115	P49368_78
P46940_939	P10768_64	P49368_248
Q13526_82	P34932_674	A8K8F0_290
Q6FI81_48	P46940_368	P52907_278
Q6FI81_297	075369_2342	Q709C8_2356
043592_634	B1AK87_83	Q16181_326
Q7L1Q6_223	P78417_11	Q16181_349
P13984_154	P78417_143	Q969G3_123
P52701_1013	Q14141_353	Q9Y450_657
Q9P289_233	Q14141_379	Q9BUT1_48
P26640_243	P60900_102	Q01469_34
Q32MZ4_593	P48643_226	B4DQ80_50
Q13085_2127	A0A0D9SF54_39	B4DQ80_162
Q9UKK9_210	A0A0D9SF54_602	Q15459_419
Q9UKK9_218	A0A0D9SF54_1314	Q00013_299
014744_227	A0A0D9SF54_1635	Q9H2P0_118
P26639_319	P68032_86	075663_106
P40763_177	P26583_3	P51532_835
P53990_38	P26583_172	Q14019_98
075937_127	000154_286	P32321_78
075937_168	Q06323_13	P39687_99
Q15003_424	Q06323_190	Q9UHY7_106
Q9BZZ5_51	075533_1086	F6RFD5_19
Q9BZZ5_84	P12814_157	P50851_251
P53611_34	P12814_682	014929_364
Q13404_87	P49736_216	P41567_56
		D1 4550 407
Q16658_43	Q9UL46_180	P14550_127

P47813_94	P26639_279	P49593_334
Q5VW32_141	P27707_88	P09651_87
P35244_33	P24534_139	P09651_350
Q9NYL9_13	Q9Y490_875	Q96H79_185
Q96C23_101	Q99426_188	Q14847_17
095163_1042	P50570_629	Q96ST2_666
P51580_32	Q13907_180	015355_367
Q13616_759	Q8NCW5_144	P63208_130
Q69YN2_505	Q8NCW5_148	Q9Y2Z0_41
Q8NFC6_81	P31946_77	Q6ZUM4_426
015541_126	P51784_766	Q16775_229
Q96AC1_55	Q8N163_791	Q14790_250
P35611_406	O60234_35	014497_1230
P16152_148	060234_119	Q86VS8_324
094776_341	P67936_13	Q8TAQ2_326
P61970_55	P67936_76	Q13362_418
P53621_1028	P67936_113	075351_363
P51151_112	P67936_116	O60563_33
P22061_206	P67936_212	P67936_212
P22061_219	A0A024R5M9_1610	Q02878_29
P16949_53	Q16181_349	Q9BZH6_223
Q8TB03_84	Q16181_368	P04406_254
Q9NVE7_590	Q7L5N1_102	V9HWJ7_76
S4R435_252	Q12874_92	V9HWJ7_82
Q7Z4S6_1058	Q709C8_2356	V9HWJ7_88
P20073_199	P52907_278	V9HWJ7_92
Q9UNH7_291	Q07866_314	V9HWJ7_294
P61077_8	P53621_607	V9HWJ7_328
Q96PU8_91	P55160_326	V9HWJ7_444
P47756_95	Q9H9T3_414	V9HWJ7_449
Q9NXG2_56	A8K8F0_290	V9HWJ7_456
P25325_164	P05455_185	V9HWJ7_468
Q15785_100	Q01469_34	V9HWJ7_472
P60983_119	Q15428_57	V9HWJ7_542
P12081_22	094903_47	V9HWJ7_579
P19623_135	Q92888_214	P07900_58
A0A024RA19_251	Q14019_98	P07900_534
Q9H1E3_9	O60306_1045	P04075_108
Q9UPN3_6160	P32321_131	P35579_1802
P06454_21	P06400_791	P68104_244
Q8N8S7_22	095865_51	P06744_523
P49840_355	Q8N1F7_387	075083_223
Q13573_456	P25788_174	P62826_99
095456_65	B7Z738_456	P09429_12
Q16531_897	P50851_251	P52566_40
000160_194	V5YQL4_1126	P52566_47
P61758_114	Q00839_814	P52566_96
P49643 65	007666 214	001518 81

Q7Z6K5_101	075663_106	Q01518_298
Q6P4I2_55	Q9NZZ3_51	Q01518_304
Q9Y2T4_91	Q14847_17	P23528_78
075794_168	Q5VU61_187	P00813_164
Q9Y2A7_16	Q5VU61_203	P00813_331
015144_295	Q01844_404	P41250_219
Q4VCS5_596	Q86U86_553	P31948_364
000244_25	Q00535_237	V9HW33_185
Q92925_312	Q6ZUM4_426	V9HW33_332
P61024_11	Q15813_451	V9HW33_430
Q9UJX3_435	095260_64	V9HW33_674
P62837_8	Q92785_207	V9HW33_719
Q709C8_2092	Q96ST2_666	Q9BWD1_136
P15924_2317	P14921_138	A0A0D9SF54_2063
Q6ZSG2_124	Q9Y2Z0_41	P25789_64
Q13126_241	014776_820	P61978_168
Q9NXR1_263	Q6S8J3_1036	Q14141_327
Q2VJ45_324	P13984_236	Q14141_351
Q13206_768	014497_1230	Q14141_353
Q9NQ75_589	Q86V21_633	Q92688_99
P06733_422	Q13094_38	Q06323_190
P13639_322	Q3LXA3_487	P62942_35
P13639_330	P50552_21	P62942_53
P13639_438	060563_33	Q9UI08_22
P13639_572	Q9UN37_356	P67936_13
PODMV8_100	P48426_140	P67936_76
PODMV8_415	Q13362_418	P67936_116
P04406_5	P26640_903	P60520_24
P04406_66	P07951_149	P31150_253
P04406_86	P14618_136	060234_35
P07900_314	P14618_256	A0A024R5M9_1610
P07900_419	P00558_382	V5YQL4_1126
P19338_62	V9HWJ7_76	Q8WXH0_3093
P19338_70	V9HWJ7_82	Q9NY27_84
P19338_297	V9HWJ7_88	P55735_143
P19338_437	V9HWJ7_92	O95260_64
P19338_589	V9HWJ7_294	Q15813_451
P19338_708	V9HWJ7_444	075396_38
P49327_1993	V9HWJ7_449	Q2TAY7_509
P26641_208	V9HWJ7_456	P62333_27
P62826_141	V9HWJ7_468	Q7KZ85_381
P23528_95	V9HWJ7_472	O60664_262
P22314_68	V9HWJ7_542	P06400_427
P22314_604	V9HWJ7_579	P06400_791
P22314_884	P09429_7	P50552_21
P62258_78	P09429_50	Q15257_331
P29401_310	P63104_74	P23743_260
P29401_497	P52566_40	Q9UN37_356

00018 90		00111111 267
PUU918_80	r52500_4/	Q9UHX1_20/
Q02790_250	D3DPU2_63	Q13094_38
P61978_411	P00813_164	Q8N1F7_387
P34932_353	P00813_225	P49454_2972
P34932_477	043143_132	Q7RTS9_312
Q59HH3_192	P31948_388	Q9NQ75_589
Q59HH3_285	P48643_232	095747_42
Q59HH3_488	P26583_43	
Q59HH3_888	P27348_85	
Q13263_275	060610_786	
Q13263_337	P49368_78	
Q9HB71_212	Q96G03_565	
Q92598_316	P62942_35	
043175_58	Q14980_715	
043175_384	Q14980_1624	
P54577_231	P40121_137	
P54577_412	P40121_341	
Q15365_23	014744_343	
Q15365_31	P52907_268	
P55786_293	Q15027_302	
Q9Y617_333	P06400_427	
P32119_34	P49589_49	
P22234_80	P14550_127	
P23526_46	D4YW74_2318	
Q04760_151	P41567_56	
P0CG47_48	Q96SN8_865	
P0CG47_87	P23743_260	
P0CG47_200	075351_363	
P0CG47_215	Q99996_2015	
P09936_15	Q7RTS9_312	
P09936_78	P14618_224	
P10599_8	P14618_504	
P10599_96	P00558_297	
015347 161	P00558 388	
015318 61	 V9HWJ7_97	
 P24534_66		
P41250 204		
 P49321 637	 V9HWJ7_328	
 Q9BRA2_78	 P35579 79	
Q9BRA2 89	P35579 299	
075369 373	P35579 637	
P21333 771	P35579 682	
015067 279	P35579 860	
P55209 87	P35579 938	
09Y490 1544	P35579 1404	
P27694 489	P35579 1716	
P15311 64	P35579 1754	
P68036_82	P09429 146	
		1

P68036_145	P62826_37	
P13693_100	P11142_451	
P30086_132	075083_362	
095433_212	P26038_35	
095433_328	P52566_102	
P50502_5	P52566_110	
P30520_163	P18669_138	
P37837_277	P31948_32	
P61088_24	P31146_439	
A0A0S2Z4I4_13	Q01082_1312	
Q96AE4_400	Q01082_1878	
P61956_42	Q01082_1991	
Q9H4A4_162	Q01082_2054	
Q07866_384	D3DPU2_71	
014737_63	D3DPU2_81	
075832_221	D3DPU2_287	
Q8WUM4_11	D3DPU2_298	
095757_788	D3DPU2_304	
043143_17	P00813_232	
P37802_171	P00813_323	
D6RBW1_220	P00813_331	
Q15691_174	000299_131	
Q9UBT2_86	000299_192	
075937_105	P31939_66	
Q06203_372	P40227_199	
Q9BRX5_207	P40227_430	
P52907_226	P22234_286	
095347_187	P26583_65	
060841_1195	P26583_90	
P16949_100	P26583_139	
P62633_85	P41250_99	
P19623_96	P10768_10	
P53004_147	P14324_413	
060271_655	P50395_221	
Q14185_1469	075369_681	
Q9NRN7_74	075369_1979	
Q9BZD4_275	A0A0D9SF54_613	
Q9H074_337	A0A0D9SF54_1573	
Q92905_194	A0A0D9SF54_2063	
P46063_70	Q9BWD1_136	
P63279_74	P52209_375	
Q9UBU8_240	Q92688_110	
P52888_220	B1AK87_211	
Q99471_47	B1AK87_223	
095817_460	B1AK87_240	
P55160_14	Q14141_327	
P57076_7	Q14141_351	
P21675_1591	Q14141 400	

Q8WXH0_6754	P54578_49	
Q8NE71_545	P54578_214	
Q02878_29	P49368_21	
Q12849_337	P49368_222	
Q7Z4S6_963	P21333_1071	
Q2M2Z5_39	P21333_1294	
043502_328	P27348_11	
Q6ZU80_659	Q9Y490_1933	
Q96DT5_3875	060610_771	
Q14765_88	Q06323_35	
P08238_273	P25789_239	
P68104_64	P09972_42	
P13639_638	P13010_603	
P11142_597	P33992_196	
P19338_610	Q9Y266_268	
P14618_230	P39748_80	
P29401_314	Q9UI08_21	
P32119_67	Q9UI08_22	
A0A024R895_62	Q9UI08_70	
P22102_249	Q01105_167	
P22102_852	P52907_97	
P54577_346	P52907_103	
P31939_357	P67936_100	
P0CG47_11	Q13303_274	
P0CG47_63	P25787_53	
P0CG47_124	Q96AE4_591	
P0CG47_163	Q8N163_839	
P27694_167	P17252_197	
P05455_204	P17252_209	
P05455_208	B3KTT6_85	
P05455_354	Q16181_239	
P05455_397	Q16181_326	
P09936_131	Q16181_333	
P09936_157	B7Z217_1013	
Q9Y266_96	Q5TBB1_145	
Q9NTK5_394	P40121_300	
Q92945_448	Q9UBT2_447	
P15170_238	P63279_18	
P43487_76	P63279_76	
P40227_251	Q99879_109	
Q9UHD1_190	Q99879_117	
Q14103_178	Q99879_121	
Q14103_243	P39687_110	
Q14103_255	094776_492	
Q09028_215	075396_38	
Q96AE4_233	B4DW52_56	
Q15181_228	Q13177_136	
Q15181 282	Q13177 246	
B4DPD5_96	Q9UQE7_143	
----------------	----------------	--
P31689_24	F6WQW2_227	
P31689_32	F6WQW2_256	
P62942_48	Q9HC35_228	
P68036_64	Q16775_229	
P37837_307	Q14019_93	
E7EVH7_486	Q8WXF1_257	
Q9UBT2_409	A0A0S2Z4I7_21	
P37802_79	Q9Y2X7_135	
000267_143	A8MWD9_10	
000267_199	P13929_60	
P61088_10	H3BVE0_79	
Q9Y2L1_627	Q5THR3_563	
Q9Y2L1_654	Q14790_250	
B4DQ80_34	Q9BZH6_223	
B4DQ80_146	Q02224_1444	
B4DQ80_149	P35579_186	
B4DQ80_162	P35579_560	
B4DEA6_137	P35579_1081	
095347_320	P35579_1193	
P62316_71	P35579_1234	
P51858_19	P06744_423	
Q13451_155	P09429_112	
Q6P1N4_368	P26038_263	
P16949_43	P26038_448	
P16949_80	075083_7	
P08243_385	075083_480	
Q9UHV9_136	P31948_162	
Q9BXJ9_312	P31948_429	
P35080_116	P31948_523	
Q15056_120	043143_384	
Q562M3_30	B1AK87_66	
Q53GN4_104	075369_142	
Q53GN4_182	075369_838	
Q96A72_16	P46940_1445	
Q9H3P7_117	O60610_377	
P14314_438	P52209_51	
Q8N6H7_359	P27348_139	
P61077_128	P49915_182	
Q7L1Q6_255	P25787_70	
P62993_76	A0A0S2Z4I4_116	
P48637_172	Q9UHD8_262	
Q13257_200	P61163_200	
H0YC42_137	A8KAP3_244	
Q8WUA2_82	Q16543_110	
A0A0F7NGI8_537	Q14019_110	
P09884_829	P35241_3	
O96DG6 227	O9UHX1 201	

Q12965_196	Q9P016_60	
Q9GZM8_262	P25685_242	
Q05209_65	Q9C0C9_132	
P60981_19	075044_245	
Q8WWS9_693	P29350_257	
Q9Y6K9_309	075935_59	
P78316_334	Q08AE8_288	
P10809_369		
P11142_325		
P11142_531		
P38646_314		
P38646_345		
P38646_675		
P38646_671		
P68104_443		
P14625_137		
P14625_168		
P14625_467		
P14625_683		
P40926_105		
P40926_335		
P05141_199		
P19338_286		
P19338_384		
P48735_127		
P48735_360		
P09429_68		
B4DLR3_502		
B4DLR3_568		
B4DLR3_573		
B4DLR3_629		
B4DLR3_653		
P12268_436		
P06576_264		
P62807_86		
P10412_81		
P10412_122		
P10412_153		
P10412_180		
P10412_190		
P10412_195		
P10412_200		
P10412_210		
P27824_99		
P27824_199		
P27824_210		
P22626_151		
002878 20		1

Q02878_66		
Q02878_79		
P06748_193		
P06748_206		
P06748 233		
P26583_44		
P26583 55		
P26583 150		
P26583 154		
P26583 157		
P13010 195		
 P13010 702		
 P61604 56		
012906 214		
Q12906 389		
 Q12906 742		
P61978 166		
P62424 21		
P62424 121		
P62424 150		
P62847 84		
P62847_88		
P78527 700		
P78527_2366		
P78527_2500		
P26038 162		
P11940_167		
B2RB06 212		
B2RB06_295		
B2RB06 301		
P30048 217		
P60866_30		
P60866_44		
P60866_46		
P48047_60		
P62906_56		
08NC51 102		
08NC51_102		
POCOS8 37		
POCOS8_96		
POCOS8 120		
POCOS8 126		
D62277 24		
P62277 100		
P62277 120		
P12056 240		
F12330_243		
LTT220 2T1	1	1

P12956_338	
 P12956_468	
P62081_86	
P11021_122	
P11021 125	
 P11021 340	
 P11021 370	
P09622 146	
P09622 155	
P09622 159	
P09622 166	
 P61247 46	
 P61247 219	
P27635 141	
P35579 821	
Q13423 70	
014152_68	
014152 632	
P21796 252	
O9P0L0 161	
09P010 180	
075390 352	
P30042 233	
P42766 43	
P42766_74	
P36578 411	
P36578 423	
 P45880 120	
P51991 118	
O43390 584	
P07954_122	
P07954_263	
P07954_473	
P67809_81	
 P67809_93	
Q02218_561	
Q16891_211	
Q16891_314	
Q16891_344	
Q13838_156	
Q13838_163	
Q13838_188	
P62851_10	
P62851_18	
P62851_37	
000744 405	
Q99/14_105	
075521_51	

075521 335	
P09874_653	
000277 115	
D41252 282	
PE1650 184	
P51659_184	
P51659_415	
Q4G176_563	
Q7KZF4_497	
Q7KZF4_513	
P31040_608	
P46783_31	
P31689_59	
P31689_66	
P84243_80	
P36542_43	
P36542_46	
P36542_49	
P36542_64	
Q9NX63_45	
P61254_41	
P61254_134	
P50914_128	
P50914_141	
P50914_142	
P47914_84	
P16401_149	
P16401_178	
P16401_192	
P16401_194	
P55084_253	
P40939_129	
P40939_411	
P40939_631	
P31943_173	
Q99729_70	
P07910_29	
P07910 42	
 P04843 517	
 P04843 579	
 B4DRW8 456	
P61513 28	
P83731 113	
P83731 139	
P43243 478	
P48643 282	
P62829 123	
P15880 71	
P/0227 261	

P40227_377	
Q96HS1_144	
P04083_245	
P08575_448	
095202_150	
Q8WWV3_102	
P38919_60	
P38919_152	
Q99798_520	
Q92841_269	
P55809_271	
Q92900_318	
Q92608 145	
P39019 122	
Q9NQC3 1174	
 Q9Y3U8_16	
086V81_134	
086V81 161	
P11310 279	
P62750_23	
012931_432	
09Y4W6 508	
P16403 191	
P16403_207	
P16403_211	
Δ0Δ087X211 220	
094936 80	
09H936_83	
096512 5	
090132_5	
D51572 140	
P63173 52	
031/3_32	
DE5072 662	
P16615 120	
P16615 510	
012_222_202	
r35232_202	
PZ2005_3/	
Q15046_88	
Q92499_/02	
P55265_591	
P13995_50	
075431_95	
P42704_760	
P37108_32	
P37108_38	
A8K228_45	
0777H5 172	

Q7L014_793	
P35268_16	
P17987_538	
P16402_111	
P16402_169	
P16402_209	
015382_111	
Q99613_332	
P22830_133	
P60953_131	
Q93084_120	
P13667_528	
Q15269_127	
Q15084_150	
Q86U86_1025	
Q92621_66	
P46940 1558	
 Q9NYU2 1208	
P49748 276	
 Q14151_437	
Q99832 231	
Q96RE9_435	
 P53597_308	
O60884_39	
P30050_41	
P30405_183	
P56378_49	
P11387_148	
P18621_46	
P30038_487	
014949_82	
P49406_205	
Q9BX67_287	
Q9BX67_283	
Q9Y487_240	
095573_58	
095573_706	
060762_136	
P56381_44	
Q6UB98_868	
Q6UB98_1105	
H0Y2W2_80	
Q00059_186	
P30101_332	
Q6UB99_1345	
Q6UB99_1531	
Q6UB99_1621	
B4DVV3 332	

Q30330_400	
P62861_18	
P22102_350	
075964_54	
Q9Y2R9_63	
Q14571_1662	
Q96EY7_517	
Q9H845_456	
C9JVQ0 16	
P30049 165	
075190 60	
P49711 405	
Q96DI7 275	
Q8NI27 158	
014874_233	
 Q9UJZ1_222	
P17252 35	
Q9HC38 305	
P08754 67	
015320 500	
000839 215	
Q96PK6 167	
Q9UIF9 748	
Q8NBS9 407	
Q9UNL2 103	
Q9C0D2 389	
Q8TDB6 593	
 Q14651_94	
Q8NB50_475	
B4DZB4_636	
Q02880_1327	
P84090_41	
P04844_311	
Q9Y655_32	
Q86XL3_447	
O60488_49	
Q9Y6N5_260	
O60508_380	
H3BUE4_21	
Q09161_342	
P05114_42	
Q52LJ0_256	
Q9Y3A2_114	
Q4LE39_647	
O43283_498	
Q9H3S7_600	
Q96LB3_197	

AUAU24R856_2276	
Q7Z333_1290	
Q9UIG0_576	
Q2KHM9_377	
E5RHP9_40	
P38646_612	
Q5VTE0_41	
Q5VTE0_44	
Q5VTE0_179	
Q5VTE0_215	
Q5VTE0_255	
Q5VTE0_273	
Q5VTE0_392	
Q5VTE0_408	
Q5VTE0_439	
Q5VTE0_444	
Q5VTE0_450	
Q5VTE0 453	
Q5VTE0_457	
P08133 9	
P25705 132	
 P25705 539	
P62807 13	
 P13010 334	
B3KTT6 72	
B3KTT6 189	
B3KTT6 196	
B3KTT6 210	
B3KTT6 299	
B3KTT6 305	
P78527 3603	
P78527 4019	
P27797 207	
P27797 209	
013813 1334	
013813 1650	
P09622 277	
203	
D3DQ05_205	
030060 363	
030069_302	
093077 6	
002077 27	
002077 120	
002077 126	
014152.279	
Q14152_278	
P355/9_992	
043390 120	1

P62081_147	
P26373_210	
Q969Q0_27	
P35637_312	
P00505 73	
P00505 94	
P55084 44	
Q02543 136	
075521 177	
P47914 87	
P47914 134	
P09874_87	
099729_330	
016891 122	
016891_306	
P62241 37	
043837 199	
P36578 348	
P36578_390	
P50914_79	
P50914_177	
P13073_65	
P46777 220	
P16401_27	
P16401 161	
P16401 172	
P16401 217	
Q01082 1981	
P30101 226	
 P84098 196	
 P61513 87	
Q9Y262 558	
P24539 233	
A0A0S2Z5H3 471	
Q08257 116	
P62750 18	
P62263 106	
 P49207 62	
 Q9Y4W6 785	
 Q9NY12_140	
 P78406_131	
 Q9NX63_86	
 Q9H1K4_79	
P14314 83	
 P08621 138	
P07910 94	
Q99832 77	
 P62841 72	
_	

015372_221		
Q00688_96		
P50995_495		
Q86U86_225		
P14735_896		
Q4GUF2_45		
Q4GUF2_49		
Q7L2H7_177		
P61026_136		
Q6NZ52_92		
P11387_669		
P24752_266		
P26196_482		
060841_393		
P28062_133		
Q8IYB8_404		
B4DEB0_290		
Q8N0V3_70		
P18077_66		
Q13505_190		
Q96RE9_491		
014832_120		
076021_116		
Q13442_132		
P47813_104		
Q9NVP1_542		
Q8WXF1_380		
014617_189		
P55209_197		
Q6UB35_880		
P22307_453		
Q15031_81		
P01130_830		
Q8WZ42_3065		
Q8WZ42_29371		
Q13129_618		
075489_259		
Q6ZN06_297		
Q8N532_316		
Q10713_478		
Q8WXH0_4586		
P26440_146		
Q15024_178		
P27701_263		
Q3L8U1_2507		
P36957_145		
	I	
A0A0A6YYL4_103		

A0A0S2Z377_81	
A0A0S2Z377 265	
A0A0S2Z377 314	
A0A0S2Z377 354	
 A0A0S2Z377_370	
A0A0S2Z377 406	
 A0A0S2Z377 442	
 A0A0S2Z377 478	
 A0A0S2Z377_607	
P14625 532	
 B4DLR3 561	
 P13010 566	
 Q02878_247	
P05141 96	
 P23396_148	
 P39023_66	
 P61247 56	
P36578 405	
Q9UQ80 158	
P78527 2746	
Q5VU21 102	
Q5VU21 140	
Q5VU21_278	
Q5VU21_299	
P23246_208	
P62753_30	
P07237_326	
P35637_448	
P00505_234	
P42766_77	
P39019_111	
Q7KZF4_541	
P62917_149	
Q01082_1824	
D6RBZ0_150	
D6RBZ0_210	
P41252_1042	
Q9NX63_37	
Q92522_143	
P62249_26	
Q96A26_150	
P61353_93	
P61513_7	
E9M4D4_17	
P24752_223	
P84095_130	
P63220_74	
Q5T3I4 144	

Q9UNX3 136	
 Q15555_156	
P38117 53	
P06730 184	
P46977_340	
08N254_280	
096519 75	
P13804 226	
P08686_232	
P20338 173	
094913 354	
P78344 187	
P13612 189	
O8N3U/ 53	
0960R8 251	
08NFC6 365	
A0A0\$27377 0	
A0A0S2Z377_9	
AUAU322377_102	
P14025_028	
B4DLR3_503	
B4DLK3_647	
002878 12	
002878_12	
Q02878_15	
B4DUQ1_52	
B4DUQ1_381	
P2//9/_2/6	
P12956_262	
P10412_129	
r10412_130	
PU85/5_96/	
P36542_36	
Q99798_689	
P46782_44	
P16401_184	
P47914_63	
P47914_103	
P4/914_130	
D6RBZ0_154	
D6RBZ0_325	
P62750_30	
P62750_114	
P61353_126	
B3KS98_283	
B3KS98_288	
Q12931 629	1

1	1	I
P35268_6		
Q99623_216		
P46776_92		
Q9Y3U8_35		
P62316_88		
Q9Y4L1_883		
Q9UII2_71		
Q9UII2_96		
P63218_36		
Q96C36_291		
P18077_15		
P11387_174		
Q3KP31_298		
Q96BR6_416		
Q13033_755		
Q9UIF9_660		
Q9UIF9_758		
075477_205		
 P10515_363		
Q9UK58 307		
 Q14694 780		
B4DLN1 183		
P53804 1571		
Q9HCL3 254		
P07437 103		
 P14625 623		
P48735 243		
 P48735 256		
 P40926_328		
P13010 545		
000610 1443		
093079 12		
093079_17		
093079_21		
093079_21		
093079_109		
093079_117		
093079 121		
P23396 214		
P48643_496		
P00505 227		
008211 220		
D12268 122		
P62006 152		
F02900_192		
AUAU24NDE0_200		
AUAU24KDE8_213		
AUAU24KDE8_240		
AUAUZ4NDEO_3U3		1

P05388_246		
075390 215		
075390 321		
P21796 266		
P11021 113		
P11021_213		
P62979 113		
P78527 357		
P78527_3264		
P40939 334		
096KK5_6		
099798 739		
D26272 126		
D08575 750		
P08575_755		
P61247_20		
00/837 51		
004837_31		
Q91202_437		
P07054 502		
P07334_302		
P12230_105		
P55208_10		
P84098 144		
D92721 121		
P622/19 /		
P62249_4		
091080 144		
09P215 350		
P11310_301		
P16401 204		
P25398_84		
P04083_214		
P68431_19		
P68431_123		
09Y285_315		
097285_342		
P62753 218		
092608 1435		
P47914 77		
02TU64_381		
P42704 224		
P37268 318		
O9BXI9 848		
B2R5W2 39		
B2R5W2_33		
B2R5W/2_42		
Ο96ΔG4 108		
C	1	1

P01020_59	
P16615_502	
Q99460_429	
P10515_376	
P10515_396	
Q96C36_307	
Q53HG1_146	
Q8TCC3_152	
P07384 84	
P07384 86	
P07766_158	
Q9H0X9 402	
P61224 128	
P62308 10	
095347 523	
 P54819_147	
 P62820 140	
Q9BSJ2 87	
Q8IZP2 114	
Q9P035 72	
Q06787 425	
P23743 671	
Q15269 801	
P49748 556	
Q96A33 374	
P05023 487	
Q6FI58_135	
Q5TCQ9_439	
Q9Y2R5_41	
E9PI68_81	
Q9NYZ3_294	
P08183_290	
P62258_125	
P31948_366	
P15121_22	
P61981_120	
P33992_396	
Q9Y490_1314	
075533_866	
B4DQ80_50	
Q9H2P0_118	
F6RFD5_19	
P30520_203	
P09651_87	
Q8TAQ2 326	
· · · · · · · · · · · · · · · · · · ·	
P07900_58	

Q01518_81	
Q01518_304	
V9HW33_185	
V9HW33_332	
V9HW33 430	
V9HW33_674	
V9HW33_719	
P61978_168	
Q8WXH0_3093	
P55735_143	
Q2TAY7_509	
P62333_27	
O60664 262	
Q15257 331	
P49454 2972	
095747 42	
 P63261 61	
P63261 113	
P63261 326	
 P06576 432	
000571 581	
Q92945 291	
Q92945 646	
 Q07955_38	
 P31930 134	
Q99459 466	
Q96M27 253	
075431_206	
P78527_963	
Q6FHZ0_165	
P48047_84	
P84090_84	
P00338_90	
P00338_149	
P12277_265	
P31948_462	
Q6IBN1_219	
P09429_147	
P00918_256	
P13797_126	
P11940_512	
Q01105_132	
Q01105_150	
Q01105_172	
F5GWF6_46	
P27348_158	
Q9Y490_1947	
Q99832 366	

014247 144	I	l
014247_144		
014980_693		
043719_26		
P48643_275		
095373_429		
P38606_580		
P07814_693		
Q14166_510		
Q9NVS9_186		
Q14C86_87		
Q13765_113		
P46108_189		
P40227_129		
A0A087X1X7_483		
Q13564_381		
060271_714		
B2RDE1_13		
B2RDE1_215		
B2RDE1_228		
Q8WUM4_23		
Q06203_349		
Q06203_371		
014929_15		
095721_191		
Q9UJU6_164		
P52701_537		
Q99615_41		
Q13617_728		
Q8IV38 265		
 A5PL36 1161		
Q96HC4 127		
P41236 67		
 Q7Z4Q2_46		
075886 376		
Q16204 81		
Q96KB5 121		
012802 1765		
05TBB1_25		
013045_39		
06P996_680		
097669 310		
P40424 74		
P78417 110		
OGBDX3 03/		
000534 26		
E50105 120		
COUNTO 30E		
Q101225 210		
Q13372 210	1	1

O9NOW7 130	
09P260 633	
0911845_63	
D35210 102	
P42400 180	
075921 71	
075821_71	
Q90EK0_100	
Q90Q13_134	
P35221_178	
P48739_104	
Q5VYK3_1456	
Q9GZN8_105	
P51617_397	
P40426_77	
P20700_123	
Q9NXF7_167	
Q96F45_180	
Q96F45_607	
Q53FA7_257	
Q15126_69	
P49327_1523	
Q6IBN1_405	
P09429_44	
P29401_16	
P46821_2240	
P27694_410	
Q14204_692	
Q9H0B6_369	
E9PAV3_1976	
E9PAV3_2005	
B2RDE1_76	
P15311_427	
Q969T7_98	
Q9Y5A7_128	
Q8WVJ2_147	
Q9BUJ2_731	
Q9Y312_131	
014617_684	
Q9Y3Z3_312	
Q07002_158	
Q5TCZ1_321	
075330_589	
Q16352_215	
075131_523	
P50395_112	
P50395_137	
E5GWE6 272	

Q14974_73	
 P17812_109	
Q01105_72	
Q01105_75	
A0A024RB53 15	
 P84085 36	
P62987 6	
P62987 11	
 P62987 48	
 Q9BTE3 37	
P61160 217	
 094966 993	
 Q15813 463	
P41236 61	
P0DN79 83	
 094903 49	
 Q9UQE7 743	
Q96DG6 159	
Q8TEX9 801	
Q9BV20 259	
Q13625 773	
Q9NRV9 140	
P55263 224	
 P40425 84	
 Q969Q4 31	
 P48507 90	
Q93045_87	
P68104_378	
P07900_558	
P11940_324	
F5GWF6_248	
Q9Y490_841	
P08758_70	
Q13098_349	
O60610_133	
P28340_278	
075150_943	
Q13085_1564	
Q12802_1773	
Q92973_81	
P53004_253	
Q9UJX3_379	
Q8N4J0_163	
Q9NZW5_388	
E7ETY4_391	
B4DWT1_114	
P62837_128	

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q-Value
PRU00176	39	244	0.017097611	9.58E-23	RNA recognition motif (RRM) domain	1.29E-20
PRU00691	10	37	0.00259267	7.76E-09	thioredoxin domain	5.24E-07
PRU01185	8	26	0.001821877	9.37E-08	PCI domain	4.22E-06
PRU00042	1	811	0.056828533	1.52E-06	Zinc finger C2H2-type	5.12E-05
PRU00117	8	39	0.002732815	1.91E-06	KH domain	5.15E-05
PRU00599	5	12	0.000840866	5.98E-06	ADF-H domain	0.00013448
PRU01059	4	13	0.000910938	0.000168	Translational (tr)-type guanine nucleotide- binding (G) domain	0.00323913
PRU00156	5	26	0.001821877	0.000226	PPlase cyclophilin-type domain	0.00381309
PRU00542	9	117	0.008198444	0.000811	Helicase C-terminal domain	0.01103868
PRU00531	2	2	0.000140144	0.000818	WHEP-TRS domain	0.01103868
PRU01040	3	9	0.00063065	0.000908	DZF domain	0.01114262
PRU00410	3	11	0.000770794	0.001608	WH1 domain	0.01750219
PRU00278	2	3	0.000210217	0.001815	PpiC domain	0.01750219
PRU00282	2	3	0.000210217	0.001815	Solute carrier (Solcar) repeat	0.01750219
PRU00998	2	4	0.000280289	0.003183	Stathmin-like (SLD) domain	0.02865082
PRU00277	3	17	0.001191227	0.005425	PPlase FKBP-type domain	0.04577262
PRU00547	3	18	0.001261299	0.006344	CS domain	0.05037831
PRU00526	2	6	0.000420433	0.006972	BRO1 domain	0.05229121
PRU00044	7	109	0.007637867	0.007878	Calponin-homology (CH) domain	0.05326455

 Table 4.5. All lysine sites domain enrichment.

PRU00267	5	59	0.004134258	0.007891	HMG boxes A and B DNA- binding domains	0.05326455
PRU00507	2	7	0.000490505	0.009363	NAC-A/B (NAC- alpha/beta) domain	0.06019155
PRU00532	3	23	0.00161166	0.012283	Gcn5-related N- acetyltransferase (GNAT) domain	0.07537347
PRU00214	5	67	0.004694836	0.013079	Ubiquitin-like	0.0767698
PRU00541	7	123	0.008618877	0.014474	Helicase ATP-binding domain	0.08141673
PRU00573	2	10	0.000700722	0.018355	Acyl-CoA-binding (ACB) domain	0.08850131
PRU00813	1	1	7.01E-05	0.020323	DhaL domain	0.08850131
PRU01006	1	1	7.01E-05	0.020323	Clathrin heavy-chain (CHCR) repeat	0.08850131
PRU01145	1	1	7.01E-05	0.020323	Zinc finger C2HC LYAR- type	0.08850131
PRU00519	1	1	7.01E-05	0.020323	Elongation factor 1 (EF-1) gamma C-terminal domain	0.08850131
PRU00272	1	1	7.01E-05	0.020323	Thermonuclease domain	0.08850131
PRU00118	1	1	7.01E-05	0.020323	KH type-2 domain	0.08850131
PRU00686	2	11	0.000770794	0.021915	Glutaredoxin domain	0.09245571
PRU00984	2	14	0.00098101	0.03411	DHR-2 domain	0.1324759
PRU00175	1	298	0.020881508	0.036591	Zinc finger RING-type	0.1324759
PRU00209	1	2	0.000140144	0.040233	tRNA-binding domain	0.1324759
PRU01151	1	2	0.000140144	0.040233	Pyruvate carboxyltransferase domain	0.1324759
PRU00386	1	2	0.000140144	0.040233	SGS domain	0.1324759
PRU00666	1	2	0.000140144	0.040233	B12-binding domain	0.1324759
PRU00264	1	2	0.000140144	0.040233	Zinc finger PARP-type	0.1324759
PRU00182	1	2	0.000140144	0.040233	S4 RNA-binding	0.1324759
PRU00734	1	2	0.000140144	0.040233	CHORD domain	0.1324759
PRU00837	2	16	0.001121155	0.043387	Linker histone H1/H5 globular (H15) domain	0.1362136
PRU00115	2	16	0.001121155	0.043387	Importin N-terminal	0.1362136

PRU01134	2	17	0.001191227	0.048336	Alpha-carbonic anhydrase domain	0.14830462
					Translationally controlled	
PRU01133	1	3	0.000210217	0.059741	domain	0.16459257
PRU01175	1	3	0.000210217	0.059741	HD domain	0.16459257
PRU01170	1	3	0.000210217	0.059741	Peripheral subunit-binding (PSBD) domain	0.16459257
PRU00605	1	3	0.000210217	0.059741	Glutamine amidotransferase (GATase) type 1 domain	0.16459257
PRU01202	1	3	0.000210217	0.059741	MGS-like domain	0.16459257
PRU00160	3	44	0.003083176	0.063133	Protein-tyrosine phosphatase domain	0.17045859
PRU00782	3	46	0.00322332	0.070074	Myosin motor domain	0.18548903
PRU00286	3	47	0.003293392	0.073668	dnaJ domain	0.18675809
PRU01094	1	4	0.000280289	0.078853	Letm1 ribosome-binding (RBD) domain	0.18675809
PRU00398	1	4	0.000280289	0.078853	PARP alpha-helical domain	0.18675809
PRU00843	1	4	0.000280289	0.078853	Phosphagen kinase C- terminal domain	0.18675809
PRU00280	1	4	0.000280289	0.078853	Heavy-metal-associated domain	0.18675809
PRU00627	1	4	0.000280289	0.078853	PWI domain	0.18675809
PRU00159	17	539	0.037768902	0.088432	Protein kinase domain	0.20582993
PRU01138	1	5	0.000350361	0.097579	CoA carboxyltransferase domain	0.20582993
PRU00658	1	5	0.000350361	0.097579	L-type lectin-like (leguminous) domain	0.20582993
PRU00231	1	5	0.000350361	0.097579	Longin domain	0.20582993
PRU00972	1	5	0.000350361	0.097579	MRG domain	0.20582993
PRU00711	1	5	0.000350361	0.097579	4Fe-4S ferredoxin-type domain	0.20582993
PRU00107	1	5	0.000350361	0.097579	Histidine kinase core domain	0.20582993
PRU00266	2	27	0.001891949	0.106973	Double stranded RNA- binding domain	0.22041978
PRU00132	1	6	0.000420433	0.115924	MSP	0.22041978
PRU00369	1	6	0.000420433	0.115924	BAG domain	0.22041978

					Vicinal oxygen chelate	
PRU01163	1	6	0.000420433	0.115924	(VOC) domain	0.22041978
DRI 1001 70	1	c	0 000 4 20 4 2 2	0 115024	Poticulon	0 220/1079
PR000170	1	0	0.000420433	0.115924	Reliculon	0.22041978
PRU00378	1	6	0.000420433	0.115924	DDHD domain	0.22041978
PRU01187	1	6	0.000420433	0.115924	Lamin-tail (LTD) domain	0.22041978
					Guanylate kinase-like	
PRU00100	2	29	0.002032093	0.120255	domain	0.22547762
DDI 100524	1	7	0.000/00505	0 122800	EAT domain	0 22177675
FR000334	1	/	0.000490303	0.133833	OBG-type guanine	0.23177075
		_			nucleotide-binding (G)	
PRU01047	1	1	0.000490505	0.133899	domain	0.23177675
PRI 100465	1	7	0 000490505	0 133899	2Fe-2S ferredoxin-type	0 23177675
	-	,	0.000 190909	0.133033	domain	0.23177073
PRU00464	1	7	0.000490505	0.133899	ніт	0.23177675
					HotDog acyl-CoA	
PRU01106	1	7	0.000490505	0.133899	thioesterase (ACOT)-type domain	0.23177675
	_					
PRU00162	2	31	0.002172237	0.133915	PWWP	0.23177675
PRU00316	1	221	0.015485951	0.146008	FN3 domain	0.24642951
000000		0	0 0005 005 77	0 454500	to the UTU does to	0.24642054
PR000332	1	8	0.000560577	0.151509	La-type HTH domain	0.24642951
PRU00385	1	8	0.000560577	0.151509	KASH domain	0.24642951
PRU00698	1	8	0.000560577	0.151509	MI domain	0.24642951
PRU01228	1	8	0.000560577	0.151509	PRU01228	0.24642951
00127	1	0	0.00062065	0 1 0 7 0 7 0 7	NTEO	0.20404042
PR000137	1	9	0.00063065	0.168762	NIF2	0.26491643
PRU00695	1	9	0.00063065	0.168762	W2 domain	0.26491643
					Adenosine to inosine	
PRU00240	1	9	0.00063065	0.168762	editase domain	0.26491643
					Rho GTPase-	
PRU00579	1	10	0.000700722	0.185665	3 (GBD/FH3) domain	0.28482697
					Phosphatidylinositol	
PRU00781	1	10	0.000700722	0.185665	pnosphate kinase (PIPK) domain	0.28482697
-						
PRU00045	1	11	0.000770794	0.202226	CAP-Gly	0.29355361
PRU00130	1	11	0.000770794	0.202226	Zinc finger matrin-type	0.29355361
			0.00077076	0.00000	SAM-dependent	0.00055055
PRU01015	1	11	0.000770794	0.202226	methyltransferase PRMT-	0.29355361

					type domain	
PRU00164	1	11	0.000770794	0.202226	RanBD1	0.29355361
PRU00409	1	11	0.000770794	0.202226	ATP-grasp domain	0.29355361
PRU00221	1	12	0.000840866	0.218451	WD repeat	0.31043034
PRU00370	1	12	0.000840866	0.218451	BAH domain	0.31043034
PRU01188	3	81	0.005675846	0.232796	Intermediate filament (IF) rod domain	0.3261534
PRU00649	1	13	0.000910938	0.234347	TFIIS N-terminal domain	0.3261534
PRU00774	1	14	0.00098101	0.249921	Formin homology-2 (FH2) domain	0.33405322
PRU00404	1	14	0.00098101	0.249921	Mu homology domain (MHD)	0.33405322
PRU00983	1	14	0.00098101	0.249921	DHR-1 domain	0.33405322
PRU01056	1	14	0.00098101	0.249921	Septin-type guanine nucleotide-binding (G) domain	0.33405322
PRU00568	1	15	0.001051083	0.26518	TTL domain	0.35097301
PRI 101083	1	16	0.001121155	0 280129	Cytidine and deoxycytidylate deaminases domain	0 35687655
11001085	1	10	0.001121135	0.200125	Cysteine proteinase	0.33087033
PRU00239	1	16	0.001121155	0.280129	calpain-type catalytic domain	0.35687655
PRU00167	1	16	0.001121155	0.280129	Ras-GAP	0.35687655
PRU00143	1	177	0.012402775	0.280214	PDZ	0.35687655
PRU00434	2	52	0.003643753	0.289144	ABC transporter family domain	0.36480738
PRU00397	1	17	0.001191227	0.294774	PARP catalytic domain	0.36508758
PRU01055	1	17	0.001191227	0.294774	Dynamin-type guanine nucleotide-binding (G) domain	0.36508758
PRU00145	3	293	0 020531147	0 299291	РН	0 36731139
	5	233	0.020001147	0.255251		0.00701100
PRU00084	2	54	0.003783897	0.304223	FERM	0.3693066
PRU01082	1	18	0.001261299	0.309123	domain	0.3693066
PRU01182	1	18	0.001261299	0.309123	MPN (Mpr1 Pad1 N- terminal) domain	0.3693066
PRU00639	1	19	0.001331371	0.323181	Galactoside-binding lectin (galectin) domain	0.38271459

					I	
PRU00361	1	20	0.001401443	0.336954	BAR domain	0.39555472
DDU01100	1	22	0.001541589	0.262667	Myosin N-terminal SH3-	0 4222225
PR001190	T	22	0.001541588	0.363667	like domain	0.4232335
PRU00803	1	23	0.00161166	0.376619	FG-GAP repeat	0.43456033
PRU00186	1	25	0.001751804	0.401739	SAP	0.45961708
PRU00794	1	28	0.001962021	0.437541	Nudix hydrolase domain	0.4963699
PRU00322	1	29	0.002032093	0.448994	Zinc finger RanBP2-type	0.50094339
PRU01077	1	29	0.002032093	0.448994	F-BAR domain	0.50094339
PRU00441	1	31	0.002172237	0.471207	ABC transporter integral membrane type-1 domain	0.52141736
PRU00047	1	33	0.002312382	0.492527	Zinc finger CCHC-type	0.54057877
PRU00192	3	258	0.018078621	0.504599	Src homology 3 (SH3) domain	0.54936158
PRU00127	1	36	0.002522598	0.522912	MAGE	0.56474537
PRU00124	1	44	0.003083176	0.595363	LDL-receptor class A	0.63788939
PRU00448	3	230	0.0161166	0.639043	EF-hand	0.67929812
PRU00548	1	108	0.007567795	0.7314	B30.2/SPRY domain	0.76541846
PRU00191	1	108	0.007567795	0.7314	SH2 domain	0.76541846
PRU00163	1	50	0.003503609	1	Rab-GAP TBC	1
PRU00224	1	68	0.004764908	1	WW/rsp5/WWP domain	1
PRU00041	2	139	0.009740032	1	C2 domain	1
PRU00125	1	87	0.006096279	1	LIM zinc-binding domain	1
PRU00035	1	54	0.003783897	1	Bromodomain	1
PRU00024	1	86	0.006026207	1	Zinc finger B-box-type	1

Table 4.6. DrugBank proteins with modified lysines.

ones bragbant Entry	Sites	Gene Name	DrugBank Entry
---------------------	-------	-----------	----------------

SUCLG2 TUBA1B TPT1 ACTG1	DB00139; DB12695 DB01873; DB03010; DB05147; DB07574 DB11093; DB11348
TUBA1B TPT1 ACTG1	DB01873; DB03010; DB05147; DB07574 DB11093; DB11348
TPT1 ACTG1	DB11093; DB11348
ACTG1	
ACIGI	
RDS6	DB11638
RPI 234	DB02494: DB07374: DB08437: DB11638
	0002454, 0007374, 0000437, 0011038
ALDOA	DB04315 DB01593; DB02512; DB04326; DB04733; DB08240; DB11638
HNRNPK	DB11638; DB12695 DB00171; DB00482; DB00778; DB00813;
ABCB1	DB04377; DB04881; DB04905; DB05449; DB06191; DB06240; DB09031; DB11635; DB14061; DB14062; DB14063; DB14064; DB14065; DB14066; DB14067; DB14068; DB14069; DB14070; DB14071; DB14072
DCK	DB01073; DB02594; DB05494
ARF1 MTHFD2	DB02774; DB04121; DB04137; DB04315; DB07348; DB08231; DB09462 DB00116: DB00157
	0000120
5r3AZ	DB00789; DB00851; DB00920; DB02076;
	RPL23A NME2 ALDOA HNRNPK ABCB1 DCK ARF1 MTHFD2 SF3A2 PGD

P28062_133	PSMB8	DB08889
043283_498	МАРЗК13	DB12010
P30041_209 P30041_56 P30041_63 P 30041_97	PRDX6	DB02325; DB03814; DB09130
P41252_410 P41252_844 P41252_382 P41252_1042	IARS	DB00167
P51580_32	TPMT	DB01250
P30044_86 P30044_142	PRDX5	DB00995; DB03608; DB03793
Q9Y678_313	COPG1	DB03963
P40429_114	RPL13A	DB02494; DB07374; DB08437
P51858_19	HDGF	DB09130
Q13838_384 Q13838_156 Q13838_16 3 Q13838_188	DDX39B	DB02325; DB11638
P08574_315 P08574_325	CYC1	DB04141; DB04799; DB07401; DB07636; DB07763; DB07778; DB08330; DB08453; DB08690
Q14790_250	CASP8	DB12651
Q6ZMR3_155	LDHAL6A	DB00157
P53004_147 P53004_253	BLVRA	DB00157
P15121_173 P15121_12 P15121_179 P15121_222 P15121_22	AKR1B1	DB00143; DB00157; DB00605; DB01689; DB02007; DB02020; DB02021; DB02101; DB02132; DB02383; DB02518; DB02712; DB02834; DB02994; DB03461; DB04272; DB05327; DB05383; DB05533; DB06246; DB07028; DB07030; DB07063; DB07093; DB07139; DB07187; DB07450; DB07498; DB07999; DB08000; DB08084; DB08098; DB08449; DB08772
P20618_164 P20618_184	PSMB1	DB00188; DB08515; DB08889
P25786_115	PSMA1	DB08515
P25787_92 P25787_53 P25787_70	PSMA2	DB08515

1		l i i i i i i i i i i i i i i i i i i i	1
	P25789 2101P25789 641P25789 2391	PSMA4	DB08515
	P07766 158	CD3E	DB00075: DB06607
	Q13362 418	PPP2R5C	DB02506; DB06905
	<u> </u>		
	P29401_319 P29401_232 P29401_260		
	7 P29401_314 P29401_310 P29401_49	ткт	DB09130
	P14735 364 P14735 303 P14735 896		
		IDE	DB00030; DB00071; DB00626
	P39023_39 P39023_103 P39023_294		
	P39023_300[P39023_312[P39023_366 [P39023_66]	RPL3	DB02494; DB04865; DB07374; DB08437; DB09092
	P35241_3	RDX	DB03401
	075533_1086 075533_866	SF3B1	DB14017
	P61158_317 P61158_240	ACTR3	DB08235; DB08236
	P62807_6 P62807_12 P62807_17 P62		
	07_117 P62807_121 P62807_86 P628		
	07_13	HIST1H2BC	DB09130
	Q14103 111 Q14103 129 Q14103 19		
	7 Q14103_178 Q14103_243 Q14103_		DB11629
	233		DB11038
	P6/936_13 P6/936_76 P6/936_113 P 67936_116 P6/936_212 P6/936_100	TPM4	DB12695

P68104_41 P68104_44 P68104_146 P 68104_179 P68104_215 P68104_219 P68104_255 P68104_273 P68104_386 P68104_392 P68104_395 P68104_40 8 P68104_439 P68104_444 P68104_4 50 P68104_453 P68104_457 P68104_ 5 P68104_172 P68104_180 P68104_2 44 P68104_330 P68104_460 P68104		
64 P68104_443 P68104_378 P27635_82 P27635_121 P27635_145 P27635_170 P27635_188 P27635_141 	EEF1A1	DB01593; DB04315; DB09130; DB11638
Q9C0B1_216	FTO	DB11638
P36542_39 P36542_115 P36542_43 P 36542_46 P36542_49 P36542_64 P36 542_36 P19525_385	ATP5C1	DB04216; DB07384; DB07394; DB08399; DB08629 DB12010

P11142_108 P11142_112 P11142_137 P11142_159 P11142_187 P11142_24		
6 P11142_251 P11142_257 P11142_3 19 P11142_328 P11142_345 P11142_ 348 P11142_497 P11142_507 P11142_ 512 P11142_524 P11142_526 P1114 2_539 P11142_601 P11142_535 P111 42_583 P11142_451 P11142_25 P111 42_88 P11142_451 P11142_423 P111 42_500 P11142_597 P11142_325 P11 142_531	HSPA8	DB01254; DB07045; DB09130; DB11638
O43837_96 O43837_146 O43837_354 O43837_199	IDH3B	DB00157
Q92930 58	RAB8B	DB02082; DB04315
P12268_109 P12268_450 P12268_511 P12268_436 P12268_422	IMPDH2	DB00157; DB00688; DB00811; DB01024; DB03070; DB03948; DB04566; DB06103
P12268_109 P12268_450 P12268_511 P12268_436 P12268_422	IMPDH2	DB01033

	-	
P34897_103 P34897_181 P34897_200		
2 P34897 356 P34897 409 P34897 4		
59 P34897_464 P34897_469 P34897_		
474	SHMT2	DB00114; DB00116; DB00145; DB11638
075800 1061	CARRES	DB00181; DB00996; DB02530; DB05010;
072833_136	GABBRZ	DB08891; DB08892
P06400_791 P06400_427	RB1	DB00030; DB00071
Q07955_38	SRSF1	DB09130
P37802_17 P37802_153 P37802_171		
P37802_79	TAGLN2	DB11638
P08686_232	CYP21A2	DB01026
P00338 14 P00338 76 P00338 81 P0		
0338_222 P00338_243 P00338_318 P		
00338_59 P00338_126 P00338_155 P		
00338_2241200338_2281200338_1181	IDHA	DB00157; DB02483; DB02701; DB03940; DB09118: DB09130: DB11638
Q15185_48 Q15185_7 Q15185_91	PTGES3	DB05036; DB09130
P37268 318	FDFT1	DB05317

1		i de la constante de	i de la companya de l
			DB01197; DB02002; DB02352; DB03306; DB03424; DB05177; DB06828; DB06851;
			DB06917; DB07094; DB07099; DB07102;
			DB07104; DB07196; DB07237; DB07258;
	P09960_573 P09960_127	LTA4H	DB08466; DB11781
	P17844_91 P17844_284 P17844_391	22/5	BB4 4699
	P1/844_4/0 P1/844_236	DDXS	DB11638
	Q9UNX3_136	RPL26L1	DB02494; DB07374; DB08437
	P07814_512 P07814_788 P07814_841		
	P07814_861 P07814_951 P07814_51	EDDC	DB00142; DB00172; DB02510; DB02684;
	3 P07814_093	EPRS	DB03376
ļ			
			DB02563; DB02910; DB03059; DB04117;
	P30084_128	ECHS1	DB09568
ļ			
	O94903_47 O94903_49	PROSC	DB00114; DB00172
ļ			
	P14550 1271	AKR1A1	DB02383: DB03461: DB09130
ļ			
ļ			
	P22102_156 P22102_598 P22102_249		
	P22102_852 P22102_350	GART	DB00642; DB02236; DB03546

P06744_366 P06744_454 P06744_142 P06744_234 P06744_447 P06744_25 2 P06744_423 P06744_523 P06744_1 2 P06744_524	GPI	DB02007; DB02076; DB02093; DB02548; DB03042; DB03581; DB03937; DB04493; DB09130; DB11638
012126 241	MTAD	DB00173; DB02158; DB02281; DB02282;
		DB00114
P06748_27 P06748_32 P06748_54 P0 6748_141 P06748_154 P06748_155 P 06748_202 P06748_212 P06748_215] P06748_223 P06748_229 P06748_230 P06748_236 P06748_239 P06748_24 8 P06748_250 P06748_257 P06748_2 63 P06748_273 P06748_267 P06748_2 193 P06748_206 P06748_233	NPM1	DB11638
	DVCD1	
Q13085_323 Q13085_2127 Q13085_1 564	ACACA	DB00121
P63151 95	PPP2R2A	DB02506
Q96C36_47 Q96C36_291 Q96C36_307	PYCR2	DB00157; DB00172
000299_119 000299_183 000299_13 1 000299_192	CLIC1	DB09130; DB11638

P07195_7 P07195_156 P07195_82 P0		
7195_519[P07195_508[P07195_60]P0		DB00157; DB02401; DB03940; DB09118;
7195_310 P07195_318	LDHB	DB11638
		DB02152; DB03115; DB05239; DB06616;
		DB06892; DB07046; DB07101; DB08130;
Q02750_84	MAP2K1	DB08208; DB08911
000244_25	ATOX1	DB00515; DB02772; DB03127
P16152 148	CBR1	DB01698; DB02709; DB03556; DB04216; DB04463; DB11672
		· · · · · · · · · · · · · · · · · · ·
P04080 201004080 441004080 781	CSTR	DB00121
P60981_19	DSTN	DB04147
P54578_49 P54578_214	USP14	DB12695
Q15046_492 Q15046_88	KARS	DB00123
P15924_2317	DSP	DB01593; DB11638
P26640 903 P26640 243	VARS	DB00161
P60709_50 P60709_61 P60709_113 P		
60709_191 P60709_213 P60709_284 P60709_291 P60709_315 P60709_226		
P60709_328 P60709_336	АСТВ	DB04216; DB12695
Q12965 196	MY01E	DB03366
P49915_1821	GMPS	DB00142

	P13639_15 P13639_283 P13639_337 P13639_445 P13639_439 P13639_498 P13639_512 P13639_598 P13639_60 5 P13639_318 P13639_239 P13639_2 72 P13639_275 P13639_594 P13639_ 629 P13639_259 P13639_42 P13639_ 235 P13639_252 P13639_314 P13639 _328 P13639_333 P13639_391 P1363 9_407 P13639_426 P13639_571 P136 39_619 P13639_648 P13639_676 P13 639_845 P13639_322 P13639_330 P1 3639_438 P13639_572 P13639_638	EEF2	DB02059; DB03223; DB04315; DB08348
	P11586_245 P11586_262 P11586_10 P11586_66 P11586_543 P11586_553 P11586_246 P11586_878 P40763_177 P78417_11 P78417_136 P78417_143 P78417_198 P78417_220 P78417_110	MTHFD1 STAT3	DB00116; DB00157; DB02358; DB03461; DB04322 DB05959
	P04181_405	GSTO1 OAT	DB00143 DB00114; DB00129; DB02054; DB02821
l	P49591 171	L SAKS	0800133
000000000000000000000000000000000000000		D200162, D214001, D214002	
---	--------	-----------------------------------	
P23743_260[P23743_671]	DGKA	DB00163; DB14001; DB14002	
P15880_211 P15880_212 P15880_257			
	RPS2	DB09130	
P46459 586	NSF	DB01902	
		DD00120, DD04141, DD00620	
P21912_126 P21912_261	SDHB	DB00139; DB04141; DB08689	
P46940 368 P46940 1445 P46940 93			
9 P46940_1558	IQGAP1	DB11638	
P49411 79 P49411 88 P49411 91 P4			
9411_234 P49411_238 P49411_286 P			
49411_342 P49411_361 P49411_447	TUFM	DB01593; DB04315	
P62316 118 P62316 71 P62316 88	SNRPD2	DB11638	
P55809 176 P55809 185 P55809 296			
P55809_418 P55809_421 P55809_48			
1 P55809_271	OXCT1	DB00139; DB02731	
012422 2041012422 40501042422 7			
0	NNT	DB00157; DB01763; DB03461; DB0909	
000280 222	STK26	DB07852: DB12010	

P00505_59 P00505_82 P00505_90 P0 0505_159 P00505_309 P00505_338 P 00505_363 P00505_73 P00505_94 P0 0505_234 P00505_227	GOT2	DB00114; DB00128; DB00142; DB02783
Q15031 79 Q15031 81	LARS2	DB00149
4.000014.00001		
P07437_19 P07437_58 P07437_122 P 07437_154 P07437_216 P07437_252 P07437_297 P07437_324 P07437_336 P07437_350 P07437_379 P07437_10 3	ТИВВ	DB00361; DB00541; DB00570; DB01179; DB01394; DB01873; DB03010; DB05147; DB05284; DB06042; DB09130; DB11638; DB11641; DB11731; DB12334
O60664_262	PLIN3	DB01271; DB01279
P39748 200 P39748 267 P39748 80	FEN1	DB01592
P22314_671 P22314_627 P22314_802 P22314_806 P22314_838 P22314_68 P22314_604 P22314_884	UBA1	DB04119; DB04216
P30101_129 P30101_218 P30101_332 P30101_226	PDIA3	DB01593; DB09130
P27797_41 P27797_48 P27797_62 P2 7797_151 P27797_153 P27797_207 P 27797_209 P27797_276	CALR	DB00025; DB00031; DB01065; DB06245; DB09130; DB11093; DB11348; DB13998; DB13999

P41250_82 P41250_219 P41250_646		
P41250_99[P41250_108[P41250_501] P41250_204]	GARS	DB00145
P35219_192	CA8	DB00909
P49773_21 P49773_83 P49773_30 P4 9773 82	HINT1	DB00131; DB01972; DB02162; DB02183; DB03349
Q9Y6K9 309	IKBKG	DB04998; DB05289
P78527_310 P78527_1407 P78527_26		
83 P78527_2829 P78527_3260 P7852		
8527_3603 P78527_4019 P78527_274		
6 P78527_357 P78527_3264 P78527_		
P62993_76	GRBZ	DB00061; DB03276
P48735_45 P48735_48 P48735_69 P4		
8735_80 P48735_106 P48735_130 P4		
0/35_133 ۲48/35_155 ۲48/35_166 P 48735_180 P48735_193 P48735_199		
P48735_272 P48735_275 P48735_280		
40/35_202 40/35_304 40/35_41	1	
3 P48735_426 P48735_127 P48735_3		
3 P48735_426 P48735_127 P48735_3 60 P48735_243 P48735_256	IDH2	DB01727; DB13874

P09884_829	POLA1	DB00242; DB00631; DB01073; DB01280
Q16775_229	HAGH	DB00143; DB03889
P10768_64 P10768_186 P10768_200 P10768_10	ESD	DB00143
P30049_165	ATP5D	DB00228; DB00753; DB01028; DB01159; DB01189; DB01236
P12235_23	SLC25A4	DB00171; DB00720; DB01736; DB02426; DB03429; DB04178
P84098_146 P84098_153 P84098_190 P84098_196 P84098_144	RPL19	DB02494; DB07374; DB08437
	MATZA	DB00118
015067_25 015067_279	PFAS	DB00142
095747_42	OXSR1	DB12010
P55786_222 P55786_712 P55786_853 P55786_279 P55786_753 P55786_82 1 P55786_293	NPEPPS	DB11638; DB11781
P00846_51	MT-ATP6	DB00783; DB13952; DB13953; DB13954; DB13955; DB13956
P69905 17 P69905 41	HBA1	DB00358; DB00893; DB01592; DB01593; DB02126; DB06154; DB07427; DB07428; DB07645; DB08077; DB08262; DB08486; DB08632; DB09112; DB09130; DB09140; DB09146; DB09147; DB09517; DB13995

Q02224_1444 CENPE DB06097 Q9UJS0_408 SLC25A13 DB00128 P0CG47_48 P0CG47_87 P0CG47_200 P0CG47_1124 P0CG47_163 BB DB02542 P05141_23 P05141_43 P0 5141_63 P05141_24 P0CG47_163 UBB DB02542 P05141_23 P05141_43 P0 5141_63 P05141_272 P0 5141_156 P05141_272 P0 5141_166 P05141_26 SLC25A5 DB00720 P22033_621 MUT DB00115; DB00200 P2570 5_123 [P2570 SLC25A5 DB00115; DB00200 5_130 [P2570 SLC25A5 DB00115; DB00200 5_130 [P2570 SLC25A5 DB00115; DB07304; DB07394; DB0	P30519_168 P30519_199	HMOX2	DB00157; DB04912
OPUS0_408 SLC25A13 DB00128 P0CG47_48 P0CG47_87 P0CG47_200 DB00128 P0CG47_215 P0CG47_112 P0CG47_112 DB00128 P0CG47_124 P0CG47_163 UBB DB02542 P0S141_23 P0S141_33 P0S141_43 P0CG47_124 P0CG47_124 P0S141_21 P0S141_96 UBB DB02542 P0S141_23 P0S141_24 P0S141_96 DB00720 S141_196 P0S141_24 P0S141_96 SLC25A5 DB00720 P2233_621 MUT DB00115; DB00200 P2570 S_123 P2570 SLC25A5 DB00720 P2570 S_12 F0S1 F0S1 S_172 F0S1 F0S1 F0S1 F0S1 F0S1 F0S1 F0S1 F0S2	Q02224_1444	CENPE	DB06097
POCG47_48 POCG47_87 POCG47_200 POCG47_215 POCG47_11 POCG47_63 POCG47_124 POCG47_163 UBB DB02542 PO5141_23 PO5141_33 PO5141_43 PO 5141_63 PO5141_92 PO5141_147 PO5 141_166 PO5141_245 PO5141_272 PO 5141_199 PO5141_96 P22033_621 P22033_621 P2570 5_123 1671P 25705 	Q9UJS0 408	SLC25A13	DB00128
P0CG47_48[P0CG47_210] DB02542 P0CG47_124[P0CG47_163] UBB DB02542 P05141_23[P05141_33]P05141_43]P0 UBB DB02542 P05141_23[P05141_33]P05141_47[P05 141_166[P05141_245]P05141_272[P0 SLC25A5 DB00720 P22033_621] MUT DB00115; DB00200 DB00115; DB00200 P2570 SLC25A5 DB00115; DB00200 DB00115; DB00200 P2570 S_123 F05_11 F05_11 F05_11 F05_12 F05_1 F05_11 F05_11 F05_11 F07_5_1 F05_11 F05_11 F05_11 F05_11 F07_5_1 F05_11 F05_11 F05_11 F05_11 F07_5_5 F05_12 F05_12 F05_12 F05_12 F07_5_5 F05_12 F05_12 F05_12 F05_12 F05_5 F05_12 F05_12 F05_12 F05_12 F05_12 F05_12 F05_12 F05_12 F05_12 F05_5 F05_12 F05_12 F05_12 F05_12 F05_12 F05_12 <			
P005141_23[P05141_33]P05141_43]P0 DB02342 S141_63[P05141_33]P05141_43]P0 DB00720 S141_166[P05141_245]P05141_272[P0 SLC25A5 DB00720 S141_199[P05141_96] SLC25A5 DB00115; DB00200 P2570 S_123 P2570 S_123 [P257 05_12 6[P25 705_1 61 S705_ 167 2300 P2570 S_305 167 [P257 ST05_ 301 S705_ S105 167 P2570 S_305 167 P2570 S_123 P2570 S_305 [P257 05_42 7[P25 705_5 05[P2 S705_ S11[P 25705 J32 P2570 DB04216; DB07384; DB07394; D D804216; DB07384; DB07394; D DB082342, DB07394; D	P0CG47_48 P0CG47_87 P0CG47_200 P0CG47_215 P0CG47_11 P0CG47_63		0002542
P05141_23 P05141_33 P05141_43 P05 DB00720 5141_63 P05141_92 P05141_147 P05 SLC25A5 DB00720 P22033_621 MUT DB00115; DB00200 P2570 5_123 P2570 5_123 P257 05_12 6[P25 705_1 6[1P2 705_1 6[1P2 5705 2330 P2570 5_305 1671 P 25705 1671 P 25705 1671 P 1671 P 25705 1671 P 1671 P 1671P 1671 P 1671 P 171P 1671 P 1671 P 171P 171P 171P 171P 171P 171P 171P <	<u>F0CG47_124 F0CG47_105 </u>		0602342
P22033_621 MUT DB00115; DB00200 P2570 5_123 - \$_123 - - \$_1257 - - \$_5_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_12 - - \$_705_1 - - \$_230 - - \$_2305 - - \$_2305 - - \$_12570 - - \$_530 - - \$_132 - - \$_25705 - - \$_132 - - \$_2570 - -	P05141_23 P05141_33 P05141_43 P0 5141_63 P05141_92 P05141_147 P05 141_166 P05141_245 P05141_272 P0 5141_199 P05141_96	SLC25A5	DB00720
P2570 5_123 P257 05_12 6 P25 705_1 61 P2 5705 _230 P2570 5_305 P257 05_42 7 P25 705_5 06 P2 5705 _132 P2570 5_530 06 P2 5_539 DB04216; DB07384; DB07394; D DB08629: DB11638	P22033_621	MUT	DB00115; DB00200
	5_123 P257 05_12 6 P25 705_1 61 P2 5705_ 167 P 25705 _230 P2570 5_305 P257 05_42 7 P25 705_5 06 P2 5705_ 531 P 25705 _132 P2570 5_539 	ΑΤΡ5Α1	DB04216; DB07384; DB07394; D DB08629; DB11638
			DD04205 DD42505
	P55072 754 P55072 663	VCP	DB04395: DB12695

1	I	I
P08670_129 P08670_439	VIM	DB11638; DB12695
P49189_366	ALDH9A1	DB00157
Q9HAN9_56	NMNAT1	DB03227; DB04099
P61313_83	RPL15	DB02494; DB07374; DB08437
P15153_133	RAC2	DB00514
P14866_97 P14866_229 P14866_269		
P14866_493 P14866_533 P14866_418	HNRNPL	DB09130
P48507 90	GCLM	DB00142; DB00151
P14868 91	DARS	DB00128
P63104_9 P63104_11 P63104_49 P63 104 68 P63104 120 P63104 138 P63		
104_158 P63104_212 P63104_74 P63		
104_75 P63104_115 P63104_139	YWHAZ	DB12695
P13073_53 P13073_60 P13073_65	COX4I1	DB02659; DB04464
Q9Y617_116 Q9Y617_323 Q9Y617_12		
7 Q9Y617_333	PSAT1	DB00114; DB00142
P09936_4 P09936_65 P09936_71 P09		
936_78 P09936_131 P09936_157	UCHL1	DB12695
Q9H1K4_82 Q9H1K4_79	SLC25A18	DB00142
P01130 830	LDLR	DB00707
P61160 217	ACTR2	DB08235; DB08236

P22626_17 P22626_22 P22626_59 P2 2626_104 P22626_112 P22626_113 P 22626_173 P22626_151	HNRNPA2B1	DB09130; DB11638
P18669_106 P18669_176 P18669_39 P18669_100 P18669_113 P18669_228 P18669_241 P18669_251 P18669_13 8 P18669_225 P18669_157	PGAM1	DB09130; DB11638
P22061_206 P22061_219	PCMT1	DB01752
P04406_107 P04406_117 P04406_139 P04406_145 P04406_194 P04406_21 5 P04406_219 P04406_227 P04406_2 54 P04406_263 P04406_271 P04406_ 61 P04406_251 P04406_259 P04406_ 84 P04406_186 P04406_5 P04406_66 P04406_86	GAPDH	DB00157; DB02059; DB03893; DB07347; DB09092; DB09130; DB11638
P35080_116	PFN2	DB02078; DB02580
P11177_336	PDHB	DB00119; DB00157
P08708_72	RPS17	DB11638
P61769_111	B2M	DB00254; DB02740; DB04464; DB09130
P54819 93 P54819 147	AK2	DB01717: DB03366

Q06830_16 Q06830_93 Q06830_109 Q06830_178 Q06830_35 Q06830_67 Q06830_68 Q06830_168 Q06830_185		
Q06830_190 Q06830_192 Q06830_1 97 Q06830_27 Q06830_136	PRDX1	DB01593; DB09130; DB11638
P10606_57	COX5B	DB02659; DB04464
075390_76 075390_103 075390_382 075390_459 075390_43 075390_352 075390_315 075390_311	65	DB01969; DB01992; DB02637; DB03182;
P30520_157 P30520_164 P30520_173 P30520_403 P30520_419 P30520_16 3 P30520_203	ADSS	DB00128; DB05540
Q14181_232	POLA2	DB00851
095831_593	AIFM1	DB03147; DB05282
P11021_185 P11021_447 P11021_122 P11021_125 P11021_340 P11021_37 0 P11021_113 P11021_213	HSPA5	DB00025; DB00945; DB09130; DB13998; DB13999
P49588_766 P49588_625 P49588_366	AARS	DB00160
P49589_49	CARS	DB00151
P27695_125	APEX1	DB04967

P62277_27 P62277_39 P62277_43 P6		
2277_78 P62277_93 P62277_34 P622		
77_100 P62277_130	RPS13	DB11638
P60842_54 P60842_146 P60842_174		
P60842_195 P60842_291 P60842_309		
P60842_309	EIF4A1	DB09130
P37108 55 P37108 32 P37108 38	SRP14	DB11638
000407 4001000407 4001	DA DK7	5500120
Q99497_130 Q99497_182	PARK7	DB09130
P06733_54 P06733_64 P06733_71 P0 6733_80 P06733_81 P06733_89 P067		
33_92 P06733_193 P06733_197 P067		
33_199 P06733_202 P06733_221 P06		
733_233 P06733_256 P06733_281 P0 6733_326 P06733_330 P06733_335 P		
06733_358 P06733_420 P06733_434		
P06733_28 P06733_60 P06733_228 P	ENO1	DD01502, DD00120, D011620
00733_105 706733_239 706733_422	ENOT	DR01283; DR08130; DR11938
		DB01649: DB01960: DB02716: DB05165:
P06730 184	EIF4E	DB08217

	1	
		DB01880; DB02728; DB04272; DB07718;
P14174_78	MIF	DB07888; DB08333; DB08334; DB08335; DB08765
Q04760_88 Q04760_157 Q04760_44		DB00143; DB00328; DB03130; DB03330;
Q04760_140 Q04760_151	GLO1	DB03345; DB03602; DB04132; DB08179
		DB00114; DB00131; DB02089; DB02320;
		DB02379; DB03288; DB03496; DB03744;
P06737_29[P06737_295[P06737_804] P06737_819]	PYGL	DB04522; DB05044; DB07315; DB07395; DB07396; DB07968; DB08844
P08559_385	PDHA1	DB00157
P62837_8 P62837_128	UBE2D2	DB02418
Q01082 842 Q01082 1354 Q01082 2		
269 Q01082_1312 Q01082_1878 Q01		
Q01082_1824 Q01082_1824	SPTBN1	DB01373; DB03401
P46782_191 P46782_201 P46782_44	RPS5	DB11638
P46781_30 P46781_91 P46781_121 P	RDSQ	DB11638
09P2R7 205	SUCLA2	DB00139
021040 1021021040 2251021040 520		
P31040_162 P31040_335 P31040_538 P31040_608	SDHA	DB08689; DB09270
Q9H936_80 Q9H936_83	SLC25A22	DB00142

P07384_84 P07384_86	CAPN1	DB04276; DB04653; DB07627
P51151_112	RAB9A	DB03793; DB04315
P51659_184 P51659_415	HSD17B4	DB00157; DB03192
Q02218_970 Q02218_561	OGDH	DB00157; DB00313; DB09092
P21796_20 P21796_109 P21796_201		
P21796_236 P21796_252 P21796_266	VDAC1	DB01375: DB09061: DB14009: DB14011
060488 491	ACS14	DB00159: DB00197: DB00412
D25789 1741	DSMA2	DR08515: DR12605
P23766_174		0606313, 0612033
		DB01356: DB01772: DB01793: DB01950:
		DB01330; DB01772; DB01733; DB01330; DB02010; DB02052; DB03444; DB04014;
		DB04395; DB07014; DB07058; DB07149; DB07584: DB07585: DB07676: DB07812:
		DB07859; DB07947; DB08073; DB12010;
P49841_292	GSK3B	DB12129
P55263_224	ADK	DB00131; DB00811; DB07173; DB07280
P23246_314 P23246_338 P23246_421 P23246_518 P23246_279 P23246_33		
0 P23246_472 P23246_208	SFPQ	DB09130; DB11638
P07737_38 P07737_54 P07737_70 P0		
7737 116 P07737 126 P07737 127	PFN1	DB07908: DB11638

P40939_60 P40939_214 P40939_255 P40939_259 P40939_289 P40939_295 P40939_303 P40939_415 P40939_46 0 P40939_728 P40939_129 P40939_4 11 P40939_631 P40939_334	HADHA	DB00157
111 - 111 - 1120 - 2001 - 1120 - 2001 - 1120 - 2001		5500137
014832_120	РНҮН	DB00025; DB00126; DB13998; DB13999
P62857_10 P62857_16	RPS28	DB11638
P52597_224	HNRNPF	DB12695
O43447_153	РРІН	DB00172
P20674_72	COX5A	DB02659; DB04464
P09211_55 P09211_128 P09211_189 P09211_116 P09211_191 P09211_209 	GSTP1	DB00143; DB00197; DB00316; DB00363; DB00903; DB01015; DB01242; DB01834; DB01915; DB02633; DB03003; DB03619; DB03686; DB03814; DB04132; DB04339; DB04972; DB05460; DB06246; DB07849; DB08370; DB09462; DB11672; DB11831; DB13014
P62913_38 P62913_52 P62913_67	RPL11	DB02494; DB07374; DB08437
P62917_93 P62917_144 P62917_155 P62917_149	RPL8	DB02494; DB07374; DB08437
P31043 349 P31943 1731	HNRNDH1	DB09130
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		0003130

	P31946_13 P31946_51 P31946_122 P 31946_160 P31946_11 P31946_77 P3		
	1946 70 P31946 214	YWHAB	DB09130; DB12695
	P31948_50 P31948_123 P31948_252 P31948_434 P31948_486 P31948_513 P31948_63 P31948_486 P31948_513 P31948_63 P31948_73 P31948_109 P31948_169 P31948_207 P31948_250 P31948_337 P31948_347 P31948_36 4 P31948_388 P31948_32 P31948_21 0 P31948_317 P31948_453 P31948_1 3 P31948_162 P31948_429 P31948_5 23 P31948_227 P31948_381 P31948_5		
Ī			
	P61604_28 P61604_40 P61604_80 P6 1604_56	HSPE1	DB12695
	Q9Y277_15 Q9Y277_20 Q9Y277_109 Q9Y277_115	VDAC3	DB01375; DB06098

1	I	I
		DB00390; DB00511; DB00774; DB00903;
		DB01021; DB01078; DB01092; DB01119; DB01158: DB01188: DB01244: DB01345:
		DB01370; DB01378; DB01396; DB01430;
P05023_487	ATP1A1	DB06157; DB13996
P04083 901P04083 2451P04083 2141	ANXA1	DB00288: DB00741: DB01234
P33316_155 P33316_179	DUT	DB03413; DB04685
		DR00242; DR00000; DR01667; DR02222;
		DB02230; DB02377; DB02391; DB02568;
		DB02796; DB02857; DB03101; DB03551;
		DB03609; DB03881; DB04076; DB04260; DB04335: DB04753: DB04754: DB04757:
P00491_265	PNP	DB06185
Q13907_180	IDI1	DB01785
DE0052 122 DE0052 121	CDC42	DR02622: DR04215
014/2/_142	APAF1	DB00171
Q9UHY7_111 Q9UHY7_106	ENOPH1	DB07912
P48047_54 P48047_70 P48047_73 P4	4705.0	DD11630
0047_102[P48047_60[P48047_84]		22011970
P17812_557 P17812_109	CTPS1	DB00130
P00367_183 P00367_258 P00367_365 P00367_480	GLUD1	DB00142; DB00157; DB00756; DB04137; DB11081

1			
	P38606 5801	ΑΤΡ6V1Α	DB00630; DB01077; DB01133; DB06733; DB06734
	P00813_23 P00813_273 P00813_170		DB00552; DB00975; DB02096; DB02472; DB02616; DB02830; DB03015; DB03220;
	P00813_164 P00813_225 P00813_232 P00813_323 P00813_331	ADA	DB03370; DB03572; DB04218; DB04440; DB07711; DB07783; DB07785; DB07786
	P31937_297	HIBADH	DB00157
	P49327 436 P49327 673 P49327 235		
	P49327_786 P49327_787 P49327_11 16 P49327_1142 P49327_1151 P4932		
	7_1158 P49327_1239 P49327_1591 P		
	11 P49327_1993 P49327_1523	FASN	DB01034; DB01083
			DB04141; DB04741; DB04799; DB07401;
	P31930 111 P31930 134	UQCRC1	DB07763; DB07778; DB08330; DB08453; DB08690
	Q13526_63 Q13526_82	PIN1	DB01766; DB06867
	P31939_14 P31939_266 P31939_199		
	P31939_66 P31939_137 P31939_389 P31939_357	ATIC	DB00116; DB00642; DB01700; DB01972; DB02309; DB03442; DB04057
	Q99623_89 Q99623_216	PHB2	DB06774
	013177 136 013177 246	PAK2	DB12010

	P22234_47 P22234_116 P22234_226 P22234_304 P22234_235 P22234_110 P22234_286 P22234_30 P22234_36 P22234_80	PAICS	DB00128
	P21333_865 P21333_1538 P21333_10 71 P21333_1294 P21333_2513 P2133		
	3_2417 P21333_771 P24752_66 P24752_174 P24752_190 P24752_230 P24752_251 P24752_266	FLNA	DB11638
	P24752_223	ACAT1	DB00795
	P27348_9 P27348_49 P27348_68 P27 348_85 P27348_11 P27348_139 P273 48_115 D27248_212 P27348_159 P273	GLS	DB00142
	015460_57	P4HA2	DB00139; DB00172
ļ	P51617 397	IRAK1	DB12010

P14625_95 P14625_269 P14625_340 P14625_404 P14625_458 P14625_534 P14625_547 P14625_561 P14625_59 3 P14625_597 P14625_630 P14625_6 33 P14625_663 P14625_630 P14625_ 682 P14625_137 P14625_168 P14625 _467 P14625_683 P14625_532 P1462 5_628 P14625_623	НSР90B1	DB00615; DB02103; DB02424; DB02935; DB03719; DB03758; DB08464; DB08465; DB09130
	FARCA	5500120
	FARSA	DB00120
P53597_308	SUCLG1	DB00139
Q99714_99 Q99714_104 Q99714_105 	HSD17B10	DB00157; DB02820; DB09568
000264_105	PGRMC1	DB00514
000264_105	PGRMC1	DB00540; DB01104
P08865_89 P08865_212	RPSA	DB04985; DB09130
075330 5891	HMMR	DB08818
P11310_175 P11310_212 P11310_271 P11310_279 P11310_301	ACADM	DB02910; DB03147; DB03415
Q07020 119	RPL18	DB11638
 Q07021_91 Q07021_104 Q07021_123 	C1QBP	DB08818; DB09130
Q9NSE4_241 Q9NSE4_500	IARS2	DB00167
095573 581095573 7061	ACSI 3	DB00159

	P10809_31 P10809_58 P10809_72 P1 0809_75 P10809_82 P10809_83 P108 09_87 P10809_91 P10809_96 P10809 _125 P10809_130 P10809_133 P1080 9_156 P10809_160 P10809_202 P10 809_205 P10809_233 P10809_236 P1 0809_249 P10809_250 P10809_269 P 10809_352 P10809_359 P10809_310 P10809_364 P10809_387 P10809_38 9 P10809_364 P10809_469 P10809_4 73 P10809_481 P10809_369	HSPD1	DB09130
	014874 233	ВСКДК	DB02930
	P07237_271 P07237_328 P07237_326	Р4НВ	DB01593; DB03615; DB09130; DB11638
	Q15067_260	ACOX1	DB03147; DB07930
	095470_155	SGPL1	DB00114
ļ	Q04917_69	ҮШНАН	DB12695

P60174_92 P60174_225 P60174_231 P60174_106 P60174_212 P60174_122 P60174_193 P60174_43 P60174_179 P60174_275	TPI1	DB01593; DB01695; DB02726; DB03026; DB03132; DB03135; DB03314; DB03379; DB03900; DB04326; DB04447; DB04510; DB07387; DB11638
P49368_248 P49368_78 P49368_21 P 49368_222 P49368_381 P49368_138	ССТ3	DB04395; DB11638
P10515_362 P10515_368 P10515_386 P10515_363 P10515_376 P10515_39 6	DLAT	DB00157; DB03758; DB03760
Q00534_26	CDK6	DB03496; DB07379; DB07795; DB09073; DB11730; DB12001
P11387_148 P11387_669 P11387_174 	TOP1	DB00762; DB01030; DB04690; DB04882; DB04967; DB05129; DB05482; DB05630; DB05806; DB06069; DB06159; DB07354; DB08159; DB11254
P45880 247 P45880 120	VDAC2	DB01375; DB06098
P26196_482	DDX6	DB01694
P06493 331P06493 201	CDK1	DB02052; DB02116; DB02950; DB03428; DB03496; DB04014; DB05037; DB06195; DB12010

P08238_53 P08238_107 P08238_180 P08238_186 P08238_204 P08238_275 P08238_284 P08238_204 P08238_35 0 P08238_399 P08238_406 P08238_4 35 P08238_550 P08238_406 P08238_4 526 P08238_550 P08238_577 P08238 _607 P08238_624 P08238_541 P0823 8_646 P08238_69 P08238_402 P0823 8_410 P08238_428 P08238_531 P082 38_538 P08238_557 P08238_568 P08 238_623 P08238_649 P08238_354 P0 8238_64 P08238_552 P08238_559 P0 8238_655 P08238_573 P08238_574 P 08238_685 P08238_347 P08238_411 P08238_491 P08238_273	HSP90AB1	DB02424; DB02754; DB03758; DB05134; DB06070; DB07594; DB07877; DB08045; DB08153; DB08292; DB08293; DB08346; DB08464; DB08465; DB09221
Q06203_442 Q06203_372 Q06203_34 9 Q06203_371	РРАТ	DB00130; DB01033; DB01254
P28331_467	NDUFS1	DB00157
P62829_113 P62829_123	RPL23	DB02494; DB07374; DB08437

1		1	l
	P62826 38 P62826 60 P62826 71 P6		
	2826 134 P62826 142 P62826 152 P		
	62826_159 P62826_99 P62826_127 P		
	62826_37 P62826_141	RAN	DB04315
Γ			
			DB00232; DB00273; DB00311; DB00391;
			DB00436; DB00482; DB00562; DB00580;
			DB00606; DB00695; DB00703; DB00774;
			DB00819; DB00869; DB00880; DB00909;
			DB00999; DB01021; DB01031; DB01119;
			DB01144; DB01194; DB01325; DB01671;
			DB01748; DB01784; DB01942; DB01964;
			DB02069; DB02087; DB02220; DB02221;
			DB02292; DB02429; DB02479; DB02535;
			DB02602; DB02610; DB02679; DB02861;
			DB02866; DB02894; DB02986; DB03039;
			DB03221; DB03262; DB03270; DB03294;
			DB03533; DB03385; DB03526; DB03594;
			DBU3596; DBU3598; DBU3697; DBU3844;
			DB03077, DB03904, DB03950; DB03975; DB04002- DB04081- DB04080- DB04190-
			DB04203+ DB04081, DB04089, DB04180; DB04203+ DB04371+ DB04394+ DB04540+
			DB04600: DB04601: DB04763: DB04949,
			DB06954: DB07048: DB07050: DB07363
			DB07467; DB07476: DB07596: DB07632:
			DB07710; DB07742; DB08046; DB08083:
			DB08155; DB08156; DB08157; DB08165;
	P00918_24 P00918_39 P00918_45 P0		DB08202; DB08301; DB08329; DB08416;
	0918_76 P00918_167 P00918_80 P00		DB08418; DB08645; DB08659; DB08765;
l	918_256	CA2	DB08782; DB08846; DB09460; DB09472
ſ			
	P50213_77 P50213_116	IDH3A	DB00157; DB06757; DB09092; DB09130
I	P19784 103	CSNK2A2	DB07546' DB12010
┢	1 10/04 1001		55075 4 0, 0512010
	0974W6 50810974W6 7851	AFG3L2	DB00171
L			1000111

	•	
D12612 1801	ITGA4	DB00108; DB04997; DB05092; DB05122;
P13012_189	IIGA4	DB05468; DB06822; DB09033
Q9P2J5_464 Q9P2J5_719 Q9P2J5_350	LARS	DB00149
		DB01750; DB06980; DB06981; DB06982;
P63208_130	SKP1	DB07950
002500 4051002500 2241002500 27		
Q92598_185 Q92598_221 Q92598_27		
2 Q92598_275 Q92598_430 Q92598_ 772 Q92598_700 Q92598_316		DR12605
//2 032338_/30 032338_310		0012093
P12081_22	HARS	DB00117
P50914_85 P50914_164 P50914_165		
P50914_171 P50914_128 P50914_141		
P50914_142 P50914_79 P50914_177	DDI 1.4	DB11639
	RPL14	DB11638
P43490_189	NAMPT	DB05217; DB12731
P62937 28 P62937 31 P62937 44 P6		
2937 49 P62937 76 P62937 82 P629		
37_91 P62937_118 P62937_125 P629		
37_131 P62937_133 P62937_151 P62		DB00091; DB00172; DB01742; DB02419;
937_155	PPIA	DB03393; DB09130; DB11638
Q9UDR5_584	AASS	DB00142; DB00157; DB02338; DB04207
	NEUSCO	2222157
075489 2601025489 2591	NDUFS3	DB00157

P14324_295 P14324_123 P14324_413	EDPS	DB00282; DB00399; DB00630; DB00710; DB00884; DB01785; DB02508; DB02552; DB04714: DB06548: DB07780: DB07841
		DB00143; DB00157; DB00262; DB01644; DB02153; DB02553; DB02895; DB03147; DB02210: DB02867; DB07202; DB07714;
P00390_401	GSR	DB09130
P22830_118 P22830_133	FECH	DB02659
P62241_128 P62241_139 P62241_137 P62241_170 P62241_37	RPS8	DB11638
P17980_125	PSMC3	DB12695
		DB01254; DB01830; DB02010; DB03023;
		DB04003; DB04395; DB06925; DB07146; DB07297: DB08055: DB08056: DB08057:
P06239_130	LCK	DB08901; DB09079; DB12010
075964_54	ATP5L	DB11638; DB12695
P12236_23 P12236_147 P12236_166 P12236_105	SLC25A6	DB00720
075746_406	SLC25A12	DB00128
P42766_71 P42766_79 P42766_118 P 42766_43 P42766_74 P42766_77	RPL35	DB11638

P68371_58 P68371_379	TUBB4B	DB00518; DB00643; DB01873; DB03010; DB04910; DB05147; DB12695
P53611_34	RABGGTB	DB04464; DB07780; DB07841
P30626_68	SRI	DB11093; DB11348
P23368_26	ME2	DB00157; DB01677; DB03499; DB03589 DB03680
P26440_146	IVD	DB03147; DB04036
P34932_185 P34932_332 P34932_674 P34932_719 P34932_430 P34932_53 P34932_679 P34932_754 P34932_76 6 P34932_356 P34932_388 P34932_4 37 P34932_668 P34932_353 P34932_		
477	HSPA4	DB12695
P09110 198	ACAA1	DB09069

P10412_46 P10412_52 P10412_63 P1 0412 64 P10412 85 P10412 90 P104		
12_97 P10412_106 P10412_110 P104		
412_136 P10412_148 P10412_156 P1		
0412_168 P10412_186 P10412_197 P		
10412_153 P10412_180 P10412_190		
P10412_195 P10412_200 P10412_210 P10412_129 P10412_130	HIST1H1E	DB09130
P32119_10 P32119_26 P32119_177 P 32119_16 P32119_92 P32119_135 P3		
2119_34 P32119_67	PRDX2	DB02153; DB04048; DB09130

P07900_414 P07900_631 P07900_632 P07900_418 P07900_443 P07900_48 9 P07900_539 P07900_585 P07900_5 76 P07900_74 P07900_84 P07900_20 8 P07900_436 P07900_458 P07900_ 559 P07900_204 P07900_458 P07900_ 559 P07900_204 P07900_455 P07900 _209 P07900_478 P07900_657 P0790 0_633 P07900_314 P07900_419 P079 00_58 P07900_560 P07900_558	HSP90AA1	DB00615; DB00716; DB02359; DB02424; DB02550; DB02754; DB02840; DB03093; DB03137; DB03504; DB03749; DB03809; DB03899; DB04054; DB04216; DB04254; DB04505; DB04588; DB05134; DB06070; DB06956; DB06957; DB06958; DB06961; DB06964; DB06969; DB07100; DB07317; DB07319; DB07324; DB07325; DB07495; DB07502; DB07594; DB07601; DB07877; DB08194; DB08197; DB08436; DB08442; DB08443; DB08557; DB08786; DB08787; DB08788; DB08789; DB09130; DB09221; DB12442
P14618_62 P14618_66 P14618_115 P 14618_247 P14618_261 P14618_305 P14618_89 P14618_135 P14618_141 P14618_188 P14618_136 P14618_256 P14618_125 P14618_206 P14618_22 4 P14618_336 P14618_206 P14618_1 66 P14618_162 P14618_186 P14618_ 367 P14618_230	РКМ	DB00119; DB01733; DB02726; DB07628; DB07692; DB07697; DB09130; DB11638

P27824 118 P27824 127 P27824 170		
P27824_182 P27824_398 P27824_51		
5 P27824_99 P27824_199 P27824_21 0	CANX	DB00025; DB00031; DB06245; DB11093; DB11348; DB13998; DB13999
Q08257 116	CRYZ	DB00266; DB03461
P35754 20	GLRX	DB00143
P40925 110 P40925 236 P40925 107		
P40925_205 P40925_214 P40925_22		
0 P40925_298	MDH1	DB00157; DB03461; DB11638
P40926_74 P40926_78 P40926_91 P4		
0926_157 P40926_165 P40926_185 P		
P40926_203 P40926_215 P40926_239 P40926_239 P40926_297 P40926_301 P40926_307		
P40926_314 P40926_324 P40926_32		
9 P40926_105 P40926_335 P40926_3 28	MDH2	DB00157; DB04272; DB09092
· · ·		
P63244_12 P63244_185 P63244_264	PACK1	DB00120
<u></u>		0009130
015382_156 015382_377 015382_11		DB00114; DB00142; DB00149; DB00167;
1	BCAT2	DB02142; DB02635; DB04074
095865_51	DDAH2	DB00155
015144_295	ARPC2	DB08235; DB08236
P26639 279 P26639 273 P26639 222		
P26639_319	TARS	DB00156

Í	l		
	P39019_23 P39019_29 P39019_143 P 39019_122 P39019_111	RP\$19	DB11638
		N 315	
	075521_92 075521_51 075521_62 0	ECI2	DB08221
	///////////////////////////////////////		0000231
	P61024_11	CKS1B	DB00472; DB02681
	Q9NVS9 1001Q9NVS9 1861	PNPO	DB00114: DB03247: DB03345
	P00558_41 P00558_75 P00558_91 P0		
	0558_131 P00558_139 P00558_141 P 00558_156 P00558_191 P00558_199		
	P00558 267 P00558 279 P00558 291		
	P00558_323 P00558_11 P00558_15		
	P00558_30 P00558_48 P00558_56 P0		
	0558_133 P00558_146 P00558_192 P		
ļ	00558 97100558 106100558 3821 P00558 97100558 106100558 2641		
ļ	P00558_297 P00558_388	PGK1	DB03909; DB04510; DB09130; DB11638
ļ	P41001 275	EIE2S2	DB04215
ļ	[+41031_2/3]	LII 233	515-000
ļ			
ļ	ODEAEA 2481006454 5011006454 40		
ļ	01096AE4_2401Q90AE4_3911Q90AE4_40	FUBP1	DB05786

Q92945_627 Q92945_628 Q92945_65 3 Q92945_281 Q92945_203 Q92945_ 473 Q92945_448 Q92945_291 Q9294 5_646	KHSRP	DB02709; DB11638
Q99798_144 Q99798_409 Q99798_60 5 Q99798_730 Q99798_520 Q99798_ 689 Q99798_739	ACO2	DB01727; DB03964; DB04072; DB04351; DB04562
P12277_304 P12277_101 P12277_242 P12277_267 P12277_298 P12277_30 7 P12277_313 P12277_265	СКВ	DB00148; DB13191
	SNRPA	DB02175
P48637_172	GSS	DB00143; DB00145; DB00151; DB03408; DB04395; DB06151; DB09130
Q9Y266_53 Q9Y266_93 Q9Y266_268 Q9Y266_123 Q9Y266_160 Q9Y266_29		
7 Q9Y266 315 Q9Y266 96	NUDC	DB12695

I

P35579_30 P35579_29 P35579_910 P 35579_1129 P35579_1445 P35579_18 62 P35579_403 P35579_909 P35579_ 1024 P35579_1212 P35579_1240 P35 579_1249 P35579_1775 P35579_1793 P35579_1806 P35579_1918 P35579_ 1803 P35579_10P35579_209 P35579_		
637 P35579_682 P35579_860 P3557 9_938 P35579_1132 P35579_1404 P3 5579_1441 P35579_1477 P35579_171 6 P35579_1754 P35579_102 P35579_ 186 P35579_560 P35579_1081 P3557 9_1193 P35579_1234 P35579_63 P35 579_351P35579_821 P35579_63 P35	MVHQ	DB11638
P49720 771	PSMB3	DB08515
Q14571_1662	ITPR2	DB00201
	DCA454	5800100
	L 21AIET	0572090
043175_289 043175_394 043175_21 043175_351 043175_58 043175_384	PHGDH	DB00157
P10599_94 P10599_39 P10599_8 P10 599_96	TXN	DB12695

I Contraction of the second	I	I Contraction of the second	
P30405_67 P30405_91 P30405_183	PPIF	DB00091; DB00172; DB02078; DB08168	
000182_88	LGALS9	DB04472	
Q13564_381	NAE1	DB00171	
Q9H4G4_53	GLIPR2	DB03661	
P23381_27 P23381_47	WARS	DB00150; DB01831; DB04537	
Q9NSD9_560	FARSB	DB00120	
		DB04141; DB04799; DB07401; DB07636;	
P14927 96	UQCRB	DB07763; DB07778; DB08330; DB08453; DB08690	
·			
		DD00227. DD00064. DD00077. DD01712.	
		DB00337; DB00804; DB00877; DB01712; DB01723; DB01951; DB02311; DB02888;	
P62942_53 P62942_45 P62942_35 P6		DB03338; DB03621; DB04012; DB04094;	
2942_40		DB03814, DB08231, DB08320, DB08337	
P23526_389 P23526_20 P23526_43 P		DB02325; DB03216; DB03273; DB03769;	
23526_46	АНСУ	DB09130	
		DB00277; DB01593; DB02498; DB02690;	
P09874_23 P09874_196 P09874_621		DB02701; DB03072; DB03073; DB03509;	
P09874_97 P09874_108 P09874_192 P09874_249 P09874_683 P09874_653		DB07330; DB07787; DB09074; DB1793:	
[P09874_87]P09874_940]	PARP1	DB12332: DB13877	

P23528_19 P23528_30 P23528_44 P2 3528_45 P23528_73 P23528_92 P235 28_112 P23528_114 P23528_127 P23 528_144 P23528_22 P23528_78 P235 28_121 P23528_132 P23528_152 P23		
528_95	CFL1	DB04147; DB09130; DB11638
P15170 2471P15170 1031P15170 208		
P15170_490 P15170_72 P15170_138		
P15170_254 P15170_238	GSPT1	DB04315
		DB04141; DB04799; DB07401; DB07763;
014949_82	UQCRQ	DB07778; DB08330; DB08453; DB08690
Q12874_92	SF3A3	DB12695
		DB04141: DB04799: DB07401: DB07763:
P22695_21 P22695_42	UQCRC2	DB07778; DB08330; DB08453; DB08690
P49257_87 P49257_346	LMAN1	DB00025; DB13998; DB13999
P16615_400 P16615_120 P16615_510		
P16615_502	ATP2A2	DB06157
Q14697_472	GANAB	DB00491
P62269_91 P62269_150	RPS18	DB11638
P08758_309 P08758 97 P08758 101		DB02497; DB02846; DB02929; DB03484;
P08758_290 P08758_301 P08758_70	ANXA5	DB03935; DB03959; DB03981; DB09130

P36507_88	MAP2K2	DB06616; DB08911; DB11967; DB12010
		DB00380; DB00694; DB00773; DB04395;
Q02880_1327	ТОР2В	DB05022; DB05488; DB06042; DB06362; DB06421; DB08651
Q02880_1327	ТОР2В	DB00970
P23284_89	РРІВ	DB00172; DB04447
Q9BWD1_180 Q9BWD1_235 Q9BWD1 136	ACAT2	DB01915; DB01992
014818 115	PSMA7	DB07558: DB08515
P09622_430 P09622_146 P09622_155		
P09622_159 P09622_166 P09622_27		DR00157- DR02147
		0600137, 0603147
D09242 2701D09242 2951	ASNS	DR00128- DR00142- DR00171- DR00174
100245_575 1100245_505		
P09429_29 P09429_30 P09429_55 P0		
9429_59 P09429_88 P09429_114 P09 429 127 P09429 128 P09429 157 P0		
9429_165 P09429_167 P09429_172 P		
09429_177 P09429_12 P09429_43 P0 9429_65 P09429_82 P09429_90 P094		
29_154 P09429_180 P09429_7 P0942		
9_50 P09429_146 P09429_112 P0942 9_150 P09429_68 P09429_147 P0942		
9_44	HMGB1	DB05869

P36578_29 P36578_364 P36578_368 P36578_374 P36578_375 P36578_380 P36578_399 P36578_412 P36578_41 1 P36578_423 P36578_348 P36578_3		
90 P36578_405	RPL4	DB11638
P17252_197 P17252_209 P17252_35	PRKCA	DB00144; DB00163; DB05013; DB06451; DB06595; DB06641; DB08846; DB14001; DB14002
P17252_197 P17252_209 P17252_35	PRKCA	DB00675
P49840_355	GSK3A	DB12010
P30086_47 P30086_80 P30086_132	PEBP1	DB09130
P12004_80 P12004_77 P12004_168	PCNA	DB00279
P43487_179 P43487_111 P43487_50 P43487_68 P43487_150 P43487_190 P43487_76	RANBP1	DB09130; DB12695
P11766_366 P11766_120 P11766_357	ADH5	DB00157; DB03017; DB03704; DB04153
P13929 601	ENO3	DB01709: DB01819: DB02726: DB03645
		,, ,,

P06576_124 P06576_133 P06576_161 P06576_159 P06576_259 P06576_35 0 P06576_351 P06576_480 P06576_4 85 P06576_522 P06576_264 P06576_ 432	АТР5В	DB04216; DB07384; DB07394; DB08399; DB08629; DB12695
P60900 102	PSMA6	DB08515
P47985_168	UQCRFS1	DB04141; DB04799; DB07401; DB07636; DB07763; DB07778; DB08330; DB08453; DB08690
P62258_69 P62258_215 P62258_123 P62258_50 P62258_73 P62258_142 P 62258_118 P62258_153 P62258_78 P 62258_125	YWHAE	DB01780; DB12695
Q969G3_123	SMARCE1	DB12695

 Table 4.7. non-DBP domain enrichment.

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q- Value
PRU00691	6	37	0.00259267	2.45E-07	thioredoxin domain	1.37E-05
PRU00156	4	26	0.00182188	3.33E-05	PPIase cyclophilin-type domain	0.000933626
PRU00531	2	2	0.00014014	9.06E-05	WHEP-TRS domain	0.001463421
PRU01059	3	13	0.00091094	0.000105	Translational (tr)-type guanine nucleotide- binding (G) domain	0.001463421
PRU00282	2	3	0.00021022	0.000203	Solute carrier (Solcar) repeat	0.002273982

PRU00159	12	539	0.0377689	0.000304	Protein kinase domain	0.002833847
					RNA recognition motif	
PRU00176	7	244	0.01709761	0.001436	(RRM) domain	0.011484922
DRU00117	2	20	0 00272282	0 002484	KH domain	0.017201087
PR000117	5	39	0.00273282	0.002484	Kirdoman	0.01/39108/
PRU00599	2	12	0.00084087	0.003122	ADF-H domain	0.019424682
					Alpha-carbonic anhydrase	
PRU01134	2	17	0.00119123	0.006129	domain	0.034321463
PRU00264	1	2	0.00014014	0.013503	Zinc finger PARP-type	0.050411052
PRU00209	1	2	0.00014014	0.013503	tRNA-binding domain	0.050411052
		_				
PRU00182	1	2	0.00014014	0.013503	S4 RNA-binding	0.050411052
					Pyruvate	
PRU01151	1	2	0.00014014	0.013503	domain	0.050411052
PRU00666	1	2	0.00014014	0.013503	B12-binding domain	0.050411052
					Translationally controlled	
PRU01133	1	3	0.00021022	0.020187	domain	0.056522515
					Peripheral subunit-	
PRU01170	1	3	0.00021022	0.020187	binding (PSBD) domain	0.056522515
221000270			0 0000 1000	0.0004.07		0.056500545
PR000278	1	3	0.00021022	0.020187	PpiC domain Glutamine	0.056522515
					amidotransferase	
PRU00605	1	3	0.00021022	0.020187	(GATase) type 1 domain	0.056522515
PRI 101202	1	3	0 00021022	0 020187	MGS-like domain	0.056522515
11001202		5	0.00021022	0.020107	Hoppy-motal-associated	0.030322313
PRU00280	1	4	0.00028029	0.026825	domain	0.065314128
					Phosphagen kinase C-	
PRU00843	1	4	0.00028029	0.026825	terminal domain	0.065314128
221100000				0.000005	PARP alpha-helical	0.005044400
PR000398	1	4	0.00028029	0.026825	domain	0.065314128
PRU01138	1	5	0.00035036	0.03342	CoA carboxyltransferase domain	0.071981015
		-			I-type lectin-like	
PRU00658	1	5	0.00035036	0.03342	(leguminous) domain	0.071981015
					Histidine kinase core	
PRU00107	1	5	0.00035036	0.03342	domain	0.071981015
DD1100700	-		0.00000000	0.000505		0.070000055
PRUUU/82	2	46	0.00322332	0.039537	iviyosin motor domain	0.079939685
PRU01163	1	6	0.00042043	0.03997	Vicinal oxygen chelate (VOC) domain	0.079939685
	-	<u> </u>			Helicase C-terminal	
PRU00542	3	117	0.00819844	0.046032	domain	0.081332992
PR1100465	1	7	0 00049051	0 046476	2Fe-2S ferredoxin-type	0 081332992
------------	---	-----	------------	----------	---	--------------------
11000403		,	0.00043031	0.040470		0.001332332
PRU00464	1	7	0.00049051	0.046476	HIT	0.081332992
PRU00534	1	7	0.00049051	0.046476	FAT domain	0.081332992
					Helicase ATP-binding	
PRU00541	3	123	0.00861888	0.051977	domain	0.088203823
PRU00267	2	59	0.00413426	0.061492	HMG boxes A and B DNA- binding domains	0.101281112
					Acyl-CoA-binding (ACB)	
PRU00573	1	10	0.00070072	0.065734	domain	0.103480944
PRU00409	1	11	0.00077079	0.072067	ATP-grasp domain	0.103480944
PRU00164	1	11	0.00077079	0.072067	RanBD1	0.103480944
PRU00686	1	11	0.00077079	0.072067	Glutaredoxin domain	0.103480944
PRU00130	1	11	0.00077079	0.072067	Zinc finger matrin-type	0.103480944
PRU00214	2	67	0.00469484	0.076622	Ubiquitin-like	0.107270586
					Linker histone H1/H5	
PRU00837	1	16	0.00112116	0.103102	globular (H15) domain Cysteine proteinase	0.1374692
PRI 100239	1	16	0 00112116	0 103102	calpain-type catalytic	0 1374692
			0.00111110	0.100101		0.107.1002
PRU00397	1	17	0.00119123	0.109184	PARP catalytic domain	0.138962033
PRU00277	1	17	0.00119123	0.109184	PPlase FKBP-type domain	0.138962033
PRU00547	1	18	0.0012613	0.115226	CS domain	0.143392581
PRU00639	1	19	0.00133137	0.121227	Galactoside-binding lectin (galectin) domain	0.147581123
221/04/400		22	0.00154450	0.40000	Myosin N-terminal SH3-	0.465605054
PRU01190	1	22	0.00154159	0.13899	like domain	0.165605351
PRU00803	1	23	0.00161166	0.144832	FG-GAP repeat	0.168970462
00044	2	100	0.00762797	0 160776	Calponin-homology (CH)	0 104020076
PK000044	2	109	0.00763787	0.109776	domain	0.194029978
PRU00794	1	28	0.00196202	0.173457	Nudix hydrolase domain	0.194271503
	1	21	0 00217224	0 100174	ABC transporter integral	0 204802060
11000441	1	51	0.00217224	0.1901/4	memorane type-1 domain	0.204000009
PRU00162	1	31	0.00217224	0.190174	PWWP	0.204803069
	1	Q1	0 00567585	0 424275	Intermediate filament (IF)	<u>0 4482007/1</u>
11001100	1	01	0.00007000	0.727273		0.770230741

PRU00191	1	108	0.0075678	0.521389	SH2 domain	0.540700071
PRU00041	1	139	0.00974003	0.613032	C2 domain	0.624178452
PRU00145	1	293	0.02053115	0.726505	РН	0.726505089

Table 4.8. DBP

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q- Value
PRU00176	32	244	0.017097611	1.08E-21	RNA recognition motif (RRM) domain	1.10E-19
PRU01185	8	26	0.001821877	4.19E-09	PCI domain	2.13E-07
PRU00117	5	39	0.002732815	0.000226	KH domain	0.005773005
PRU00042	1	811	0.056828533	0.000276	Zinc finger C2H2-type	0.005773005
PRU01040	3	9	0.00063065	0.000283	DZF domain	0.005773005
PRU00410	3	11	0.000770794	0.000506	WH1 domain	0.008608284
PRU00599	3	12	0.000840866	0.000651	ADF-H domain	0.009483363
PRU00998	2	4	0.000280289	0.001448	Stathmin-like (SLD) domain	0.018461742
PRU00691	4	37	0.00259267	0.001815	thioredoxin domain	0.020565021
PRU00526	2	6	0.000420433	0.0032	BRO1 domain	0.032637449
PRU00532	3	23	0.00161166	0.004104	Gcn5-related N- acetyltransferase (GNAT) domain	0.036687702
PRU00507	2	7	0.000490505	0.004316	NAC-A/B (NAC-alpha/beta) domain	0.036687702
PRU00542	6	117	0.008198444	0.005915	Helicase C-terminal domain	0.046412415
PRU00813	1	1	7.01E-05	0.013641	DhaL domain	0.073229224
PRU01006	1	1	7.01E-05	0.013641	Clathrin heavy-chain (CHCR) repeat	0.073229224
PRU01145	1	1	7.01E-05	0.013641	Zinc finger C2HC LYAR-type	0.073229224
PRU00272	1	1	7.01E-05	0.013641	Thermonuclease domain	0.073229224
PRU00519	1	1	7.01E-05	0.013641	Elongation factor 1 (EF-1) gamma C-terminal domain	0.073229224

354

PRU00118	1	1	7.01E-05	0.013641	KH type-2 domain	0.073229224
DD1100004	2	14	0.00000101	0.016315		0.0000000.47
PR000984	Z	14	0.00098101	0.010215	DHR-2 domain	0.082098347
PRU00044	5	109	0.007637867	0.017988	Calponin-homology (CH) domain	0.087372215
PRU00115	2	16	0.001121155	0.020805	Importin N-terminal	0.096459698
	2	17	0.001101227	0 022270	DDIaco EKDD tuno domain	0.000141499
PR000277	2	17	0.001191227	0.023279	Pridse FKBP-type domain	0.099141488
PRU00160	3	44	0.003083176	0.023327	phosphatase domain	0.099141488
PRU00547	2	18	0.001261299	0.025867	CS domain	0.100560057
PRI 100386	1	2	0.000140144	0.027096	SGS domain	0 100560057
FR000380	1	2	0.000140144	0.027090		0.100500057
PRU00734	1	2	0.000140144	0.027096	CHORD domain	0.100560057
PRU00286	3	47	0.003293392	0.027605	dnaJ domain	0.100560057
PRI 100278	1	3	0 000210217	0 040369	PniC domain	0 137255665
11000278	1	5	0.000210217	0.040505		0.137235005
PRU01175	1	3	0.000210217	0.040369	HD domain	0.137255665
					HMG boxes A and B DNA-	
PRU00267	3	59	0.004134258	0.048557	binding domains	0.159767925
DRI 101094	1	1	0 000280289	0.053462	Letm1 ribosome-binding	0 161254404
PR001034	1	4	0.000280289	0.033402		0.101254404
PRU00627	1	4	0.000280289	0.053462	PWI domain	0.161254404
					Double stranded RNA-	
PRU00266	2	27	0.001891949	0.053751	binding domain	0.161254404
PRU00100	2	29	0.002032093	0.06093	Guanylate kinase-like domain	0.173601875
	_		0.002002000	0.00000		011/00010/0
PRU00214	3	67	0.004694836	0.065793	Ubiquitin-like	0.173601875
		_			4Fe-4S ferredoxin-type	
PRU00711	1	5	0.000350361	0.066377	domain	0.173601875
PRU00231	1	5	0.000350361	0.066377	Longin domain	0.173601875
PRU00972	1	5	0.000350361	0.066377	MRG domain	0.173601875
DD 1100100	-	-	0.000.000.00	0.0000		0.400.000
PRU00132	1	6	0.000420433	0.079117	MSP	0.183407416
PRU00369	1	6	0.000420433	0.079117	BAG domain	0.183407416
PRU00170	1	6	0.000420433	0.079117	Reticulon	0.183407416
PD1/00275	-	-	0.000.000.00	0.0		0.400.000
PRU00378	1	6	0.000420433	0.079117	DDHD domain	0.183407416

22104407				0.070447		0.400.407.446
PRU01187	1	6	0.000420433	0.079117	Lamin-tail (LTD) domain	0.183407416
PRU00541	4	123	0.008618877	0.090752	Helicase ATP-binding domain	0.198973129
PRU01047	1	7	0.000490505	0.091684	OBG-type guanine nucleotide-binding (G) domain	0.198973129
PRU01106	1	7	0.000490505	0.091684	HotDog acyl-CoA thioesterase (ACOT)-type domain	0.198973129
PRU00332	1	8	0.000560577	0.10408	La-type HTH domain	0.20815968
PRU00385	1	8	0.000560577	0.10408	KASH domain	0.20815968
PRU00698	1	8	0.000560577	0.10408	MI domain	0.20815968
PRU01228	1	8	0.000560577	0.10408	PRU01228	0.20815968
PRU00137	1	9	0.00063065	0.116308	NTF2	0.219692246
PRU00695	1	9	0.00063065	0.116308	W2 domain	0.219692246
PRU00240	1	9	0.00063065	0.116308	Adenosine to inosine editase domain	0.219692246
PRU00579	1	10	0.000700722	0.128369	homology 3 (GBD/FH3) domain	0.229713717
PRU00573	1	10	0.000700722	0.128369	Acyl-CoA-binding (ACB) domain	0.229713717
PRU00781	1	10	0.000700722	0.128369	Phosphatidylinositol phosphate kinase (PIPK) domain	0.229713717
PRU00045	1	11	0.000770794	0.140267	CAP-Gly	0.238454571
PRU01015	1	11	0.000770794	0.140267	SAM-dependent methyltransferase PRMT- type domain	0.238454571
PRU00686	1	11	0.000770794	0.140267	Glutaredoxin domain	0.238454571
PRU00221	1	12	0.000840866	0.152004	WD repeat	0.250070712
PRU00370	1	12	0.000840866	0.152004	BAH domain	0.250070712
PRU00434	2	52	0.003643753	0.160564	ABC transporter family domain	0.255000636
PRU00649	1	13	0.000910938	0.163581	TFIIS N-terminal domain	0.255000636
PRU01059	1	13	0.000910938	0.163581	guanine nucleotide-binding (G) domain	0.255000636
PRU00084	2	54	0.003783897	0.170229	FERM	0.255000636

PRU00983	1	14	0.00098101	0.175	DHR-1 domain	0.255000636
PRU00774	1	14	0.00098101	0.175	Formin homology-2 (FH2) domain	0.255000636
PRU00404	1	14	0 00098101	0 175	Mu homology domain (MHD)	0 255000636
PRU01056	1	14	0.00098101	0.175	Septin-type guanine nucleotide-binding (G) domain	0.255000636
PRU00568	1	15	0.001051083	0.186265	TTL domain	0.267591992
PRU01083	1	16	0.001121155	0.197377	Cytidine and deoxycytidylate deaminases domain	0.272059582
PRU00167	1	16	0.001121155	0.197377	Ras-GAP	0.272059582
PRU00837	1	16	0.001121155	0.197377	Linker histone H1/H5 globular (H15) domain	0.272059582
PRU00175	1	298	0.020881508	0.201164	Zinc finger RING-type	0.273583156
PRU01055	1	17	0.001191227	0.208337	Dynamin-type guanine nucleotide-binding (G) domain	0.279610372
PRU01082	1	18	0 001261299	0 219149	PPM-type phosphatase	0 286579196
DDU01102	1	10	0.001201203	0.210140	MPN (Mpr1 Pad1 N-	0.200575150
PROUII82	1	18	0.001261299	0.219149	terminal) domain	0.286579196
PRU00361	1	20	0.001401443	0.240333	BAR domain	0.310303838
PRU00186	1	25	0.001751804	0.290826	SAP	0.370803497
PRU00156	1	26	0.001821877	0.300517	PPIase cyclophilin-type domain	0.378428544
PRU01188	2	81	0.005675846	0.305649	Intermediate filament (IF) rod domain	0.38019734
PRU00322	1	29	0.002032093	0.328805	Zinc finger RanBP2-type	0.39926313
PRU01077	1	29	0.002032093	0.328805	F-BAR domain	0.39926313
PRU00162	1	31	0.002172237	0.347028	PWWP	0.416434068
PRU00047	1	33	0.002312382	0.36476	Zinc finger CCHC-type	0.432621761
PRU00316	1	221	0.015485951	0.38104	FN3 domain	0.446736752
PRU00127	1	36	0.002522598	0.390462	MAGE	0.452580919
PRU00145	2	293	0.020531147	0.448602	PH	0.511244822
PRU00124	1	44	0.003083176	0.454054	LDL-receptor class A	0.511244822

PRU00159	5	539	0.037768902	0.456111	Protein kinase domain	0.511244822
PRU00782	1	46	0.00322332	0.468893	Myosin motor domain	0.519859245
PRU00163	1	50	0.003503609	0.497376	Rab-GAP TBC	0.545509271
PRU00035	1	54	0.003783897	0.524339	Bromodomain	0.568963973
PRU00224	1	68	0.004764908	0.607867	WW/rsp5/WWP domain	0.652657136
PRU00143	1	177	0.012402775	0.738909	PDZ	0.785091104
PRU00548	1	108	0.007567795	1	B30.2/SPRY domain	1
PRU00448	3	230	0.0161166	1	EF-hand	1
PRU00041	1	139	0.009740032	1	C2 domain	1
PRU00125	1	87	0.006096279	1	LIM zinc-binding domain	1
PRU00024	1	86	0.006026207	1	Zinc finger B-box-type	1
PRU00192	3	258	0.018078621	1	Src homology 3 (SH3) domain	1

Table 4.9. Subcellular location of HHS-465 and HHS-475 probe modified lysines.

Protein	Compartment Code	Compartment
P54577	С	Cytosol
Q96199	PM	Plasma Membrane
Q15691	SK	Cytoskeleton
075643	NINT	Nuclear Lumen
P68363	SK	Cytoskeleton
Q9Y3U8	С	Cytosol
P54578	С	Cytosol
P40227	SK	Cytoskeleton
Q9HB71	С	Cytosol
P08575	PM	Plasma Membrane
P13693	С	Cytosol
P57737	С	Cytosol
014832	С	Cytosol
Q8WZ42	С	Cytosol
P61970	С	Cytosol
P62753	с	Cytosol
P62750	с	Cytosol
P22392	с	Cytosol

Q5VYK3	ML2	Multiple Organelles
P04075	SK	Cytoskeleton
P61978	С	Cytosol
P08183	PM	Plasma Membrane
P07910	SK	Cytoskeleton
P84077	С	Cytosol
P13995	М	Mitochondria
P20073	С	Cytosol
Q14247	SK	Cytoskeleton
P78371	SK	Cytoskeleton
Q8N5F7	С	Cytosol
P19623	С	Cytosol
P52209	С	Cytosol
P78406	С	Cytosol
Q9Y2R5	MINT	Mitochondria Lumen
P50213	М	Mitochondria
Q00535	SK	Cytoskeleton
Q9NXR1	SK	Cytoskeleton
Q9Y2R9	MINT	Mitochondria Lumen
P60900	С	Cytosol
P30049	М	Mitochondria
P30048	С	Cytosol
Q9UHB9	С	Cytosol
Q8N8S7	SK	Cytoskeleton
P0C0S8	NINT	Nuclear Lumen
043283	С	Cytosol
P41250	С	Cytosol
P30040	PM	Plasma Membrane
P41252	С	Cytosol
P30042	М	Mitochondria
075190	С	Cytosol
Q12931	М	Mitochondria
Q9Y678	С	Cytosol
Q13011	С	Cytosol
P40429	С	Cytosol
Q9BV20	С	Cytosol
Q9C0D2	SK	Cytoskeleton
Q13838	С	Cytosol
P08574	М	Mitochondria
075351	С	Cytosol
Q8N163	с	Cytosol
P62258	с	Cytosol
Q14790	SK	Cytoskeleton
Q6ZMR3	С	Cytosol
P09110	с	Cytosol
Q9Y696	SK	Cytoskeleton

Q93009	с	Cytosol
P19784	С	Cytosol
Q5K651	С	Cytosol
P62873	С	Cytosol
P05388	с	Cytosol
P62979	с	Cytosol
Q9GZR7	с	Cytosol
Q15003	с	Cytosol
Q07002	с	Cytosol
P15121	с	Cytosol
095456	с	Cytosol
P20618	с	Cytosol
P52272	NINT	Nuclear Lumen
095453	С	Cytosol
P67809	С	Cytosol
Q9H444	С	Cytosol
Q99426	SK	Cytoskeleton
P25786	С	Cytosol
P25787	С	Cytosol
Q15366	С	Cytosol
P25789	С	Cytosol
Q8TDX7	SK	Cytoskeleton
Q15365	С	Cytosol
P07766	PM	Plasma Membrane
075794	С	Cytosol
P29401	С	Cytosol
Q9UMS4	С	Cytosol
P14735	С	Cytosol
Q9P2J5	С	Cytosol
Q9Y520	С	Cytosol
Q9Y487	PM	Plasma Membrane
P39023	С	Cytosol
075436	С	Cytosol
P35241	PM	Plasma Membrane
075533	NINT	Nuclear Lumen
P61158	SK	Cytoskeleton
075821	С	Cytosol
000571	С	Cytosol
Q96AC1	С	Cytosol
095817	С	Cytosol
P09651	С	Cytosol
Q9UFN0	С	Cytosol
Q96CS3	ER	Endoplasmic Reticulum
Q15024	С	Cytosol
A6NDG6	С	Cytosol
P49643	NINT	Nuclear Lumen

P62807	с	Cytosol
P62805	NINT	Nuclear Lumen
O60610	SK	Cytoskeleton
Q14103	с	Cytosol
094776	NINT	Nuclear Lumen
P31946	с	Cytosol
Q06203	с	Cytosol
P67936	SK	Cytoskeleton
P23526	с	Cytosol
P68104	с	Cytosol
P27635	с	Cytosol
Q9BXW7	Μ	Mitochondria
O60814	с	Cytosol
O14980	с	Cytosol
P36542	М	Mitochondria
Q9BUT1	с	Cytosol
Q9Y450	с	Cytosol
P63220	с	Cytosol
P11142	с	Cytosol
043837	Μ	Mitochondria
Q96PU8	с	Cytosol
Q92930	с	Cytosol
P12268	с	Cytosol
P48643	SK	Cytoskeleton
Q96EK6	с	Cytosol
Q09161	с	Cytosol
Q8NFH4	с	Cytosol
Q13151	NINT	Nuclear Lumen
P25325	С	Cytosol
P50502	С	Cytosol
P34897	SK	Cytoskeleton
Q9H300	MINT	Mitochondria Lumen
A6NHG4	С	Cytosol
P49736	SK	Cytoskeleton
P13796	SK	Cytoskeleton
095071	с	Cytosol
Q13601	с	Cytosol
075899	С	Cytosol
Q9Y2L1	с	Cytosol
P06400	ML4	Multiple Organelle Lumens
Q14203	SK	Cytoskeleton
P17252	с	Cytosol
Q14204	SK	Cytoskeleton
Q9UII2	PM	Plasma Membrane
P09496	с	Cytosol
060762	ER	Endoplasmic Reticulum

P62899	С	Cytosol
Q14566	NINT	Nuclear Lumen
P62841	С	Cytosol
Q9BUJ2	NINT	Nuclear Lumen
P00338	с	Cytosol
Q15185	с	Cytosol
P37268	ER	Endoplasmic Reticulum
075947	Μ	Mitochondria
P09960	С	Cytosol
Q92841	С	Cytosol
P17844	с	Cytosol
P50570	SK	Cytoskeleton
P62269	с	Cytosol
P07814	с	Cytosol
Q86VP6	С	Cytosol
Q6UB35	м	Mitochondria
P30084	Μ	Mitochondria
P30086	с	Cytosol
094903	с	Cytosol
P31146	с	Cytosol
Q2TAY7	с	Cytosol
P49257	ML2	Multiple Organelles
P22102	с	Cytosol
Q96IX5	Μ	Mitochondria
P06744	с	Cytosol
Q8NFC6	NINT	Nuclear Lumen
Q92522	NINT	Nuclear Lumen
Q13126	С	Cytosol
043242	с	Cytosol
Q13033	С	Cytosol
Q8NEV1	NINT	Nuclear Lumen
P06748	С	Cytosol
Q9UPN3	SK	Cytoskeleton
P38432	NINT	Nuclear Lumen
P32322	М	Mitochondria
P46782	С	Cytosol
P32321	С	Cytosol
Q13085	SK	Cytoskeleton
Q9NQW7	С	Cytosol
Q13616	С	Cytosol
P26583	С	Cytosol
043765	С	Cytosol
Q9H0A0	NINT	Nuclear Lumen
Q96C36	м	Mitochondria
Q9UBF2	С	Cytosol
Q02878	с	Cytosol

O00299	С	Cytosol
P07195	с	Cytosol
Q01844	С	Cytosol
Q7Z333	С	Cytosol
Q02750	SK	Cytoskeleton
Q96F07	С	Cytosol
000244	С	Cytosol
Q07955	С	Cytosol
P16152	С	Cytosol
Q9BTT0	v	Vesicle
P35232	С	Cytosol
014950	С	Cytosol
P33316	м	Mitochondria
P15927	ML4	Multiple Organelle Lumens
095202	М	Mitochondria
Q02543	с	Cytosol
P30038	MINT	Mitochondria Lumen
P31689	SK	Cytoskeleton
Q9HAV4	С	Cytosol
Q15046	С	Cytosol
Q12802	С	Cytosol
P13073	м	Mitochondria
Q96P70	С	Cytosol
P26640	С	Cytosol
P46940	SK	Cytoskeleton
Q99460	С	Cytosol
Q9NTJ3	С	Cytosol
PODN79	С	Cytosol
095163	С	Cytosol
Q8WWV3	м	Mitochondria
075369	SK	Cytoskeleton
P04083	с	Cytosol
P60709	SK	Cytoskeleton
Q00534	с	Cytosol
Q12965	SK	Cytoskeleton
P60866	с	Cytosol
P49915	с	Cytosol
Q96EY7	с	Cytosol
P13639	с	Cytosol
Q96EY1	с	Cytosol
P52907	SK	Cytoskeleton
075131	с	Cytosol
P12277	с	Cytosol
P11586	с	Cytosol
P61353	с	Cytosol
P62847	с	Cytosol

P41567	С	Cytosol
P40763	С	Cytosol
P78417	С	Cytosol
P04181	М	Mitochondria
Q7KZ85	NINT	Nuclear Lumen
P14324	С	Cytosol
P60953	SK	Cytoskeleton
P23743	С	Cytosol
P38919	С	Cytosol
Q96SN8	SK	Cytoskeleton
P15880	С	Cytosol
Q8TCG1	С	Cytosol
P21912	PM	Plasma Membrane
P11940	С	Cytosol
P26641	С	Cytosol
Q6FI13	NINT	Nuclear Lumen
Q8WYP5	С	Cytosol
Q6P4I2	С	Cytosol
P05198	С	Cytosol
P62316	С	Cytosol
P55809	м	Mitochondria
Q13423	м	Mitochondria
P35268	С	Cytosol
P00505	PM	Plasma Membrane
Q15031	м	Mitochondria
P07437	SK	Cytoskeleton
P61758	С	Cytosol
P46779	С	Cytosol
Q6UB98	С	Cytosol
Q9Y490	SK	Cytoskeleton
Q9NVE7	С	Cytosol
P39748	М	Mitochondria
Q9NYU2	ML2	Multiple Organelles
Q13206	С	Cytosol
P23381	С	Cytosol
Q9GZM8	SK	Cytoskeleton
P22314	С	Cytosol
Q86SR1	GM	Golgi Apparatus Membrane
P50395	С	Cytosol
Q14847	С	Cytosol
P23528	С	Cytosol
P30101	РМ	Plasma Membrane
P27797	С	Cytosol
P30041	С	Cytosol
P35606	С	Cytosol
014737	С	Cytosol

P83111	С	Cytosol
P51532	NINT	Nuclear Lumen
P35219	С	Cytosol
P21675	NINT	Nuclear Lumen
P49773	SK	Cytoskeleton
Q9Y6K9	С	Cytosol
P62081	SK	Cytoskeleton
P78527	С	Cytosol
P25205	С	Cytosol
Q14320	NINT	Nuclear Lumen
P62993	С	Cytosol
P27707	С	Cytosol
Q16181	С	Cytosol
Q96SI9	SK	Cytoskeleton
P48739	ML3	Multiple Organelle Membranes
P27708	С	Cytosol
P16949	SK	Cytoskeleton
P30044	С	Cytosol
P09884	С	Cytosol
P17980	С	Cytosol
Q16775	С	Cytosol
Q96AG4	ML2	Multiple Organelles
O60884	С	Cytosol
Q16778	С	Cytosol
P17987	SK	Cytoskeleton
Q9Y4L1	ER	Endoplasmic Reticulum
Q92804	С	Cytosol
Q15813	SK	Cytoskeleton
Q9NR45	С	Cytosol
P00390	С	Cytosol
Q13283	С	Cytosol
P10768	V	Vesicle
Q9H0B6	SK	Cytoskeleton
Q9Y3Z3	PM	Plasma Membrane
P84098	С	Cytosol
Q709C8	С	Cytosol
P63173	С	Cytosol
Q13045	SK	Cytoskeleton
000154	С	Cytosol
Q15269	NINT	Nuclear Lumen
P84095	С	Cytosol
P61221	С	Cytosol
P52566	SK	Cytoskeleton
095747	с	Cytosol
P39019	С	Cytosol
P52565	SK	Cytoskeleton

Q14554	ERM	Endoplasmic Resticulum Membrane
Q6ZUM4	С	Cytosol
P61981	С	Cytosol
P55060	С	Cytosol
Q14258	С	Cytosol
P55786	С	Cytosol
P22626	С	Cytosol
P69905	С	Cytosol
P30519	PM	Plasma Membrane
043502	С	Cytosol
Q02224	SK	Cytoskeleton
Q8NC51	С	Cytosol
P18669	С	Cytosol
014776	NINT	Nuclear Lumen
Q96H79	С	Cytosol
P05141	PM	Plasma Membrane
Q9UQ80	С	Cytosol
P63241	С	Cytosol
P22033	М	Mitochondria
Q9UHD8	SK	Cytoskeleton
P37837	С	Cytosol
Q8IZP2	С	Cytosol
075044	С	Cytosol
Q05209	С	Cytosol
P25705	PM	Plasma Membrane
Q96CW1	С	Cytosol
P12814	С	Cytosol
Q7Z4S6	SK	Cytoskeleton
Q9BRT2	м	Mitochondria
P31937	MINT	Mitochondria Lumen
075323	м	Mitochondria
Q04837	м	Mitochondria
P48426	С	Cytosol
Q01813	С	Cytosol
P49792	С	Cytosol
Q53FA7	С	Cytosol
043592	С	Cytosol
P40121	С	Cytosol
Q00341	С	Cytosol
Q00610	С	Cytosol
Q2KHM9	С	Cytosol
Q5SRE5	N	Nucleus
Q9C0B1	NINT	Nuclear Lumen
P14866	с	Cytosol
P09012	NINT	Nuclear Lumen
Q8N4J0	С	Cytosol

Q9UQ13	С	Cytosol
Q16543	С	Cytosol
Q52LJ0	С	Cytosol
P14868	С	Cytosol
P63104	с	Cytosol
P49321	С	Cytosol
P49458	С	Cytosol
Q9HBG6	С	Cytosol
Q13263	NINT	Nuclear Lumen
Q13303	SK	Cytoskeleton
P18124	С	Cytosol
P49454	С	Cytosol
Q9P0L0	SK	Cytoskeleton
Q14671	С	Cytosol
Q969G3	NINT	Nuclear Lumen
Q969T7	С	Cytosol
Q02790	SK	Cytoskeleton
Q9Y617	С	Cytosol
P31939	С	Cytosol
Q8N3U4	С	Cytosol
Q9UHV9	С	Cytosol
Q01105	С	Cytosol
P29350	С	Cytosol
Q9H1K4	MINT	Mitochondria Lumen
Q8IYB3	С	Cytosol
Q99961	С	Cytosol
P01130	PM	Plasma Membrane
P61160	SK	Cytoskeleton
Q9H773	С	Cytosol
P42766	С	Cytosol
P61163	SK	Cytoskeleton
P00846	MINT	Mitochondria Lumen
Q13094	С	Cytosol
Q9UNF1	С	Cytosol
Q99623	С	Cytosol
P36957	М	Mitochondria
Q9H9P8	М	Mitochondria
P31948	С	Cytosol
P18206	SK	Cytoskeleton
Q9UKM9	NINT	Nuclear Lumen
P04406	SK	Cytoskeleton
P46109	С	Cytosol
P35080	SK	Cytoskeleton
Q99613	С	Cytosol
P36551	С	Cytosol
D2 45 0 0		Mitochondria

P11177	М	Mitochondria
P63218	PM	Plasma Membrane
P14550	С	Cytosol
P61769	С	Cytosol
P29692	С	Cytosol
043847	С	Cytosol
P54819	MINT	Mitochondria Lumen
Q06830	С	Cytosol
Q06787	С	Cytosol
Q8WXH0	С	Cytosol
Q9H1E3	С	Cytosol
Q9NRN7	С	Cytosol
075390	М	Mitochondria
Q92608	SK	Cytoskeleton
075396	ML2	Multiple Organelles
P30520	С	Cytosol
Q14181	С	Cytosol
Q9BZD4	С	Cytosol
Q8TCC3	MINT	Mitochondria Lumen
Q14185	С	Cytosol
P08686	ERM	Endoplasmic Resticulum Membrane
Q9UPV0	С	Cytosol
075886	С	Cytosol
P49748	С	Cytosol
Q9NZI8	С	Cytosol
P08133	С	Cytosol
Q9UL46	С	Cytosol
Q15428	NINT	Nuclear Lumen
Q99986	С	Cytosol
Q15785	С	Cytosol
P62701	С	Cytosol
P24534	С	Cytosol
P49411	М	Mitochondria
P49588	С	Cytosol
P49589	С	Cytosol
Q13573	NINT	Nuclear Lumen
P27694	NINT	Nuclear Lumen
060508	NINT	Nuclear Lumen
P62277	с	Cytosol
P17858	С	Cytosol
Q9NZZ3	С	Cytosol
P09972	SK	Cytoskeleton
Q9H3K6	С	Cytosol
Q8NE71	С	Cytosol
P60842	С	Cytosol
Q15181	С	Cytosol

	1	I
075083	C	Cytosol
000231	С	Cytosol
000232	С	Cytosol
Q09028	С	Cytosol
P23588	С	Cytosol
P98171	SK	Cytoskeleton
P37108	С	Cytosol
P48507	С	Cytosol
P06733	С	Cytosol
P06730	С	Cytosol
P14174	С	Cytosol
Q04760	С	Cytosol
P06737	С	Cytosol
P22234	С	Cytosol
P55735	С	Cytosol
P55327	С	Cytosol
Q15555	SK	Cytoskeleton
Q01082	С	Cytosol
Q9UI08	SK	Cytoskeleton
P50991	SK	Cytoskeleton
P50990	SK	Cytoskeleton
P10606	М	Mitochondria
P50995	С	Cytosol
Q15257	С	Cytosol
P46781	С	Cytosol
A0AVT1	С	Cytosol
P42704	SK	Cytoskeleton
043719	NINT	Nuclear Lumen
Q96C23	С	Cytosol
075489	М	Mitochondria
Q9P2R7	М	Mitochondria
P40424	С	Cytosol
P31040	Μ	Mitochondria
P05114	С	Cytosol
043707	С	Cytosol
P62888	С	Cytosol
Q9H3P7	ML2	Multiple Organelles
P51659	С	Cytosol
Q5SY16	NINT	Nuclear Lumen
Q9P260	V	Vesicle
Q8WVM8	С	Cytosol
P63261	SK	Cytoskeleton
Q02218	М	Mitochondria
095373	с	Cytosol
P20700	N	Nucleus
P55884	с	Cytosol
		· ·

P21796	PM	Plasma Membrane
Q9NVG8	С	Cytosol
Q7Z6Z7	С	Cytosol
Q86XL3	ER	Endoplasmic Reticulum
P46977	ERM	Endoplasmic Resticulum Membrane
P46821	SK	Cytoskeleton
Q9C0C9	С	Cytosol
P25788	С	Cytosol
Q71UI9	NINT	Nuclear Lumen
P49841	С	Cytosol
P43243	NINT	Nuclear Lumen
Q15459	NINT	Nuclear Lumen
Q14008	С	Cytosol
Q13813	SK	Cytoskeleton
Q9HAN9	NINT	Nuclear Lumen
P07737	SK	Cytoskeleton
Q86WX3	С	Cytosol
P62851	С	Cytosol
P0DMV8	С	Cytosol
P18621	С	Cytosol
P40939	М	Mitochondria
Q8NCW5	С	Cytosol
Q9BZJ0	NINT	Nuclear Lumen
P62857	С	Cytosol
Q93077	NINT	Nuclear Lumen
Q93079	С	Cytosol
P35221	SK	Cytoskeleton
P28062	С	Cytosol
P57076	SK	Cytoskeleton
043447	С	Cytosol
P20674	MINT	Mitochondria Lumen
Q9NQC3	PM	Plasma Membrane
P52292	С	Cytosol
P35579	SK	Cytoskeleton
Q8WUA2	С	Cytosol
P09211	С	Cytosol
Q92888	С	Cytosol
P62913	С	Cytosol
076003	С	Cytosol
P62917	С	Cytosol
Q10570	NINT	Nuclear Lumen
015372	С	Cytosol
015371	С	Cytosol
P49406	ML2	Multiple Organelles
Q15029	С	Cytosol
P62308	С	Cytosol

Q8N1F7	Ν	Nucleus
P62304	С	Cytosol
Q15027	V	Vesicle
Q13451	С	Cytosol
Q9BPW8	М	Mitochondria
P35914	с	Cytosol
P50552	SK	Cytoskeleton
Q86V81	С	Cytosol
P61604	Μ	Mitochondria
Q6IPU0	С	Cytosol
Q9Y277	М	Mitochondria
Q7Z7F7	MINT	Mitochondria Lumen
P63151	с	Cytosol
Q08AE8	SK	Cytoskeleton
Q9NTJ5	ML2	Multiple Organelles
P04080	С	Cytosol
Q8NI27	NINT	Nuclear Lumen
P22307	С	Cytosol
P23396	С	Cytosol
P00491	SK	Cytoskeleton
Q12849	С	Cytosol
Q9UJU6	С	Cytosol
095831	с	Cytosol
P46459	С	Cytosol
P35611	С	Cytosol
Q16531	С	Cytosol
014727	С	Cytosol
P53804	С	Cytosol
Q9NYZ3	С	Cytosol
Q9UHY7	С	Cytosol
095433	С	Cytosol
Q01130	С	Cytosol
Q10713	М	Mitochondria
000151	SK	Cytoskeleton
P48047	PM	Plasma Membrane
P17812	С	Cytosol
Q9UJZ1	SK	Cytoskeleton
095260	С	Cytosol
P62987	С	Cytosol
P14314	ER	Endoplasmic Reticulum
P00367	С	Cytosol
P38606	С	Cytosol
P00813	С	Cytosol
P61088	С	Cytosol
P08670	SK	Cytoskeleton

P32969	С	Cytosol
P31930	С	Cytosol
Q9BSJ2	SK	Cytoskeleton
Q5JTV8	Ν	Nucleus
Q4VCS5	С	Cytosol
P04844	ERM	Endoplasmic Resticulum Membrane
Q16763	С	Cytosol
P04843	С	Cytosol
P09936	С	Cytosol
P35244	NINT	Nuclear Lumen
Q7L2H7	С	Cytosol
Q92499	С	Cytosol
Q9NUI1	С	Cytosol
Q13177	С	Cytosol
Q99536	м	Mitochondria
Q8IZX4	NINT	Nuclear Lumen
Q9BPX3	С	Cytosol
Q14019	SK	Cytoskeleton
Q5TCZ1	С	Cytosol
Q9Y3A2	С	Cytosol
P62424	С	Cytosol
Q96DT5	ѕк	Cytoskeleton
P08559	м	Mitochondria
Q9Y2T4	С	Cytosol
P07900	С	Cytosol
P61254	С	Cytosol
P68431	NINT	Nuclear Lumen
095757	С	Cytosol
P21333	SK	Cytoskeleton
P27695	С	Cytosol
Q13625	С	Cytosol
P23246	С	Cytosol
Q00013	С	Cytosol
P49711	NINT	Nuclear Lumen
P31943	С	Cytosol
Q9P289	С	Cytosol
Q9H9T3	С	Cytosol
P55072	С	Cytosol
P30566	С	Cytosol
P84243	NINT	Nuclear Lumen
P24752	М	Mitochondria
Q9UNL2	ERM	Endoplasmic Resticulum Membrane
P51572	С	Cytosol
Q9H082	G	Golgi Apparatus
094925	С	Cytosol
P52888	C	Cvtosol

P27348	С	Cytosol
P38159	NINT	Nuclear Lumen
P47985	M	Mitochondria
014765	C	Cytosol
P52597	c	Cytosol
014152	sk	Cytoskeleton
O5VTE0	C	Cytosol
P14625	С	Cytosol
Q9BXT5	С	Cytosol
Q9Y285	С	Cytosol
P51617	С	Cytosol
Q99714	С	Cytosol
000267	NINT	Nuclear Lumen
Q5TCQ9	PM	Plasma Membrane
O00264	PM	Plasma Membrane
Q9UJV9	С	Cytosol
P48735	С	Cytosol
Q5THR3	NINT	Nuclear Lumen
075431	М	Mitochondria
Q9NVP1	С	Cytosol
075330	SK	Cytoskeleton
P11310	М	Mitochondria
Q07020	С	Cytosol
Q00059	С	Cytosol
Q12905	ML4	Multiple Organelle Lumens
Q9NSE4	С	Cytosol
Q6FI81	С	Cytosol
Q3LXA3	С	Cytosol
Q13325	SK	Cytoskeleton
Q9H0X9	С	Cytosol
095573	С	Cytosol
Q86VS8	SK	Cytoskeleton
P13010	с	Cytosol
P10809	С	Cytosol
Q9NRX4	С	Cytosol
Q8WUM4	SK	Cytoskeleton
014979	С	Cytosol
Q15631	С	Cytosol
014874	М	Mitochondria
Q9Y2W1	NINT	Nuclear Lumen
Q96G03	с	Cytosol
P07237	PM	Plasma Membrane
095347	с	Cytosol
Q15067	С	Cytosol
095470	ER	Endoplasmic Reticulum
	1	

Q96LB3	V	Vesicle
P47756	SK	Cytoskeleton
Q04917	С	Cytosol
Q9Y237	С	Cytosol
P60174	С	Cytosol
Q93084	ML2	Multiple Organelles
Q13257	С	Cytosol
P49368	SK	Cytoskeleton
Q13310	С	Cytosol
P10515	Μ	Mitochondria
Q2M2Z5	С	Cytosol
Q14697	G	Golgi Apparatus
P05023	PM	Plasma Membrane
P11387	NINT	Nuclear Lumen
P45880	PM	Plasma Membrane
P78344	С	Cytosol
Q9NYF8	С	Cytosol
Q3L8U1	С	Cytosol
Q99497	С	Cytosol
Q14683	С	Cytosol
P26196	С	Cytosol
P52815	М	Mitochondria
P06493	С	Cytosol
Q96M27	G	Golgi Apparatus
P08237	С	Cytosol
P08865	С	Cytosol
P05455	С	Cytosol
P08238	С	Cytosol
Q14151	с	Cytosol
P08621	с	Cytosol
P28331	Μ	Mitochondria
P62829	С	Cytosol
Q9NZW5	PM	Plasma Membrane
P62820	С	Cytosol
Q15233	NINT	Nuclear Lumen
P06454	С	Cytosol
014617	ML2	Multiple Organelles
P62826	С	Cytosol
P00918	с	Cytosol
Q13404	С	Cytosol
P51858	С	Cytosol
Q9Y4W2	С	Cytosol
Q9NY27	С	Cytosol
P52701	С	Cytosol
Q9Y4W6	М	Mitochondria
093034	C	Cytosol

P63167	SK	Cytoskeleton
Q9Y6G9	SK	Cytoskeleton
P63208	с	Cytosol
Q8NBS9	ER	Endoplasmic Reticulum
P14678	с	Cytosol
P28340	с	Cytosol
Q9H845	М	Mitochondria
Q92598	SK	Cytoskeleton
P33993	с	Cytosol
P33991	NINT	Nuclear Lumen
P12081	с	Cytosol
P50914	с	Cytosol
P47914	с	Cytosol
Q9UN37	с	Cytosol
Q6P996	G	Golgi Apparatus
P43490	С	Cytosol
P42677	С	Cytosol
014656	SK	Cytoskeleton
P62633	С	Cytosol
P60981	SK	Cytoskeleton
P50851	PM	Plasma Membrane
P61513	с	Cytosol
P15924	SK	Cytoskeleton
Q9UBQ0	с	Cytosol
P49593	С	Cytosol
015320	ERM	Endoplasmic Resticulum Membrane
P49591	С	Cytosol
P08243	С	Cytosol
Q99996	SK	Cytoskeleton
Q6UB99	С	Cytosol
O60664	С	Cytosol
P22830	М	Mitochondria
Q9UK45	С	Cytosol
Q9Y3F4	С	Cytosol
Q9NRV9	С	Cytosol
Q16204	SK	Cytoskeleton
P46063	С	Cytosol
Q07021	С	Cytosol
Q92688	С	Cytosol
Q9BXJ9	С	Cytosol
075964	М	Mitochondria
P62249	С	Cytosol
Q8N183	М	Mitochondria
Q96A33	ER	Endoplasmic Reticulum
Q9UNH7	С	Cytosol
	1	

075746	М	Mitochondria		
P12235	PM	Plasma Membrane		
Q9H0D6	NINT	Nuclear Lumen		
P68371	SK	Cytoskeleton		
043143	С	Cytosol		
Q96RE9	NINT	Nuclear Lumen		
094966	С	Cytosol		
P53611	С	Cytosol		
Q32MZ4	SK	Cytoskeleton		
P05408	V	Vesicle		
Q8N0V3	М	Mitochondria		
015347	С	Cytosol		
P55084	ML2	Multiple Organelles		
Q99615	SK	Cytoskeleton		
075663	С	Cytosol		
Q8IYB8	М	Mitochondria		
P53597	С	Cytosol		
Q96I24	С	Cytosol		
P26368	NINT	Nuclear Lumen		
P16401	NINT	Nuclear Lumen		
Q14C86	С	Cytosol		
P16403	NINT	Nuclear Lumen		
P16402	NINT	Nuclear Lumen		
Q9Y2A7	С	Cytosol		
P23368	М	Mitochondria		
Q14161	NINT	Nuclear Lumen		
Q9H936	MINT	Mitochondria Lumen		
Q8TEX9	с	Cytosol		
P34932	С	Cytosol		
P58876	с	Cytosol		
P25398	С	Cytosol		
Q96DI7	С	Cytosol		
Q14651	С	Cytosol		
P46783	С	Cytosol		
Q96HC4	SK	Cytoskeleton		
Q9BRX5	NINT	Nuclear Lumen		
Q9NUJ1	с	Cytosol		
P55263	С	Cytosol		
P55265	С	Cytosol		
P30626	С	Cytosol		
P32119	С	Cytosol		
060841				
000841	С	Cytosol		
P30050	c c	Cytosol Cytosol		
P30050 P26373	c c c	Cytosol Cytosol		
P30050 P26373 P48556	c c c c c	Cytosol Cytosol Cytosol Cytosol		

Q99729	С	Cytosol
P14618	С	Cytosol
075347	SK	Cytoskeleton
015067	с	Cytosol
P27824	ER	Endoplasmic Reticulum
P25685	С	Cytosol
Q9UNS2	с	Cytosol
Q9H8S9	с	Cytosol
Q9Y5A7	с	Cytosol
P36578	с	Cytosol
P38117	с	Cytosol
Q9Y2X7	с	Cytosol
P51580	с	Cytosol
Q9Y6Y8	с	Cytosol
P13612	PM	Plasma Membrane
P62906	С	Cytosol
Q9UDR5	М	Mitochondria
Q9UIF9	с	Cytosol
P35754	с	Cytosol
P26038	SK	Cytoskeleton
Q9H2W6	М	Mitochondria
P40925	с	Cytosol
P62861	с	Cytosol
P40926	Μ	Mitochondria
P19338	NINT	Nuclear Lumen
014929	с	Cytosol
P51991	с	Cytosol
P83731	с	Cytosol
Q96HS1	Μ	Mitochondria
Q00325	PM	Plasma Membrane
000410	С	Cytosol
Q13362	С	Cytosol
Q96FJ2	SK	Cytoskeleton
P63244	С	Cytosol
060563	NINT	Nuclear Lumen
P62333	С	Cytosol
015382	М	Mitochondria
Q9NZ45	Μ	Mitochondria
095865	SK	Cytoskeleton
060234	VINT	Vesicle Lumen
P41091	С	Cytosol
015144	SK	Cytoskeleton
Q9UIA9	С	Cytosol
Q96PK6	С	Cytosol
A8MWD9	NINT	Nuclear Lumen
014090		Cutosol

Q9Y265	SK	Cytoskeleton			
P61956	NINT	Nuclear Lumen			
P26639	SK	Cytoskeleton			
Q13907	с	Cytosol			
014497	NINT	Nuclear Lumen			
P13797	С	Cytosol			
Q08211	SK	Cytoskeleton			
Q13442	С	Cytosol			
Q96KK5	NINT	Nuclear Lumen			
P53004	С	Cytosol			
P35580	с	Cytosol			
P62263	с	Cytosol			
Q9UBU8	NINT	Nuclear Lumen			
P47813	с	Cytosol			
Q01518	PM	Plasma Membrane			
075521	С	Cytosol			
Q9BQE5	ERM	Endoplasmic Resticulum Membrane			
P18077	с	Cytosol			
P60228	с	Cytosol			
Q00688	С	Cytosol			
Q4G176	Μ	Mitochondria			
Q13765	с	Cytosol			
P61024	NINT	Nuclear Lumen			
Q8N6H7	С	Cytosol			
P51784	С	Cytosol			
Q9NVS9	С	Cytosol			
Q9UHX1	NINT	Nuclear Lumen			
Q96A72	NINT	Nuclear Lumen			
Q9UBT2	с	Cytosol			
P56381	MINT	Mitochondria Lumen			
Q16658	SK	Cytoskeleton			
Q12874	NINT	Nuclear Lumen			
P00558	С	Cytosol			
Q99832	ѕк	Cytoskeleton			
Q16891	М	Mitochondria			
Q96AE4	NINT	Nuclear Lumen			
P46108	SK	Cytoskeleton			
Q92945	С	Cytosol			
Q15084	С	Cytosol			
015318	С	Cytosol			
Q99798	М	Mitochondria			
Q9BX67	PM	Plasma Membrane			
Q03001	SK	Cytoskeleton			
P08708	С	Cytosol			
Q9UQE7	С	Cytosol			
000070		Cutosol			

Q92785	С	Cytosol
Q16576	С	Cytosol
Q9UIG0	NINT	Nuclear Lumen
Q16352	Ν	Nucleus
P48637	С	Cytosol
Q9Y266	SK	Cytoskeleton
Q01469	С	Cytosol
060306	NINT	Nuclear Lumen
Q92621	Ν	Nucleus
P61247	С	Cytosol
Q00839	PM	Plasma Membrane
014744	С	Cytosol
P13984	SK	Cytoskeleton
Q9NQ75	SK	Cytoskeleton
Q7KZF4	С	Cytosol
P56192	С	Cytosol
P49720	С	Cytosol
P35573	С	Cytosol
P13804	М	Mitochondria
P0CG47	С	Cytosol
Q9HAV7	М	Mitochondria
Q14571	PM	Plasma Membrane
Q13526	С	Cytosol
Q13617	С	Cytosol
075937	С	Cytosol
P15311	SK	Cytoskeleton
075935	SK	Cytoskeleton
P53396	С	Cytosol
Q7L1Q6	С	Cytosol
P55160	С	Cytosol
076021	NINT	Nuclear Lumen
Q06323	С	Cytosol
P07954	С	Cytosol
Q8TAQ2	NINT	Nuclear Lumen
094913	С	Cytosol
Q9Y2Z0	С	Cytosol
P41227	С	Cytosol
043175	С	Cytosol
P10599	С	Cytosol
Q8TDB6	С	Cytosol
P30405	M	Mitochondria
P31150	С	Cytosol
P83881	С	Cytosol
P31153	С	Cytosol
O9H074	С	Cytosol
0,51107.1		,

Q8WVJ2	SK	Cytoskeleton
P48444	С	Cytosol
Q8N5K1	ML2	Multiple Organelles
P53007	MINT	Mitochondria Lumen
Q9HC36	Μ	Mitochondria
Q13098	с	Cytosol
Q9HC35	SK	Cytoskeleton
Q9NTK5	С	Cytosol
Q9H3S7	С	Cytosol
000182	С	Cytosol
Q13564	С	Cytosol
P53621	С	Cytosol
000186	С	Cytosol
Q12906	с	Cytosol
Q9HC38	м	Mitochondria
Q99459	С	Cytosol
Q9NX58	С	Cytosol
P09429	PM	Plasma Membrane
Q9NSD9	С	Cytosol
P26599	NINT	Nuclear Lumen
P78316	NINT	Nuclear Lumen
P38646	с	Cytosol
Q969Q0	С	Cytosol
Q96ST8	С	Cytosol
P14927	MINT	Mitochondria Lumen
Q9P035	С	Cytosol
P14921	С	Cytosol
Q07666	С	Cytosol
Q5TBB1	NINT	Nuclear Lumen
P03928	MINT	Mitochondria Lumen
075832	С	Cytosol
Q96ST2	NINT	Nuclear Lumen
Q9Y512	М	Mitochondria
Q9H583	М	Mitochondria
043390	ER	Endoplasmic Reticulum
P42167	С	Cytosol
P12956	С	Cytosol
O60832	С	Cytosol
P07951	SK	Cytoskeleton
Q13435	NINT	Nuclear Lumen
P09874	ML2	Multiple Organelles
P13929	С	Cytosol
Q9UQ35	NINT	Nuclear Lumen
Q9H4A4	PM	Plasma Membrane
P07384	С	Cytosol
Q9NZ01	ER	Endoplasmic Reticulum

Q15052	С	Cytosol
014949	м	Mitochondria
P22061	С	Cytosol
P68036	С	Cytosol
P06576	PM	Plasma Membrane
Q13247	NINT	Nuclear Lumen
075150	С	Cytosol
Q99471	С	Cytosol
Q13243	С	Cytosol
Q13242	NINT	Nuclear Lumen
P39687	С	Cytosol
Q9UJA5	NINT	Nuclear Lumen
P37802	С	Cytosol
Q14694	С	Cytosol
043488	С	Cytosol
060271	SK	Cytoskeleton
P62837	с	Cytosol
P62942	С	Cytosol
P29144	С	Cytosol
P62834	С	Cytosol
Q86V21	С	Cytosol
P08758	С	Cytosol
Q04446	С	Cytosol
P36507	SK	Cytoskeleton
Q6IBN1	С	Cytosol
Q02880	С	Cytosol
P23284	С	Cytosol
Q1KMD3	NINT	Nuclear Lumen
Q8WXX5	С	Cytosol
Q56VL3	V	Vesicle
014818	С	Cytosol
Q13505	м	Mitochondria
P62937	С	Cytosol
P09622	м	Mitochondria
P19525	С	Cytosol
Q96CT7	SK	Cytoskeleton
P61077	С	Cytosol
Q9UKK9	С	Cytosol
043865	С	Cytosol
Q9BZZ5	С	Cytosol
P53999	NINT	Nuclear Lumen
Q92905	С	Cytosol
Q92925	NINT	Nuclear Lumen
Q86U86	NINT	Nuclear Lumen
Q96DG6	С	Cytosol
Q9NY12	NINT	Nuclear Lumen

P18754	С	Cytosol
P53990	С	Cytosol
P68032	С	Cytosol
Q15126	с	Cytosol
015460	с	Cytosol
Q96FW1	с	Cytosol
P26440	MINT	Mitochondria Lumen
P63279	с	Cytosol
Q7Z7H5	ERM	Endoplasmic Resticulum Membrane
O60488	с	Cytosol
Q4LE39	с	Cytosol
Q6DD88	ER	Endoplasmic Reticulum
Q9NXF7	NINT	Nuclear Lumen
Q9Y312	NINT	Nuclear Lumen
P49840	SK	Cytoskeleton
Q9UJS0	PM	Plasma Membrane
P46776	С	Cytosol
P46777	С	Cytosol
P15170	с	Cytosol
Q9NXG2	NINT	Nuclear Lumen
P46778	с	Cytosol
P11021	PM	Plasma Membrane
P16615	с	Cytosol
Q8WXF1	С	Cytosol
Q9Y262	С	Cytosol
Q15056	С	Cytosol
095721	С	Cytosol
Q9BZH6	SK	Cytoskeleton
Q9BRA2	с	Cytosol
P43487	с	Cytosol
075477	ER	Endoplasmic Reticulum
P11766	с	Cytosol
Q14974	С	Cytosol
Q92900	С	Cytosol
Q9UK58	NINT	Nuclear Lumen
Q07866	SK	Cytoskeleton
Q9BWD1	с	Cytosol
Q9Y6N5	MINT	Mitochondria Lumen
P22695	М	Mitochondria
Q6P2Q9	NINT	Nuclear Lumen
P35637	с	Cytosol
Q8WU39	С	Cytosol
P27701	PM	Plasma Membrane
P33992	С	Cytosol
Q08257	С	Cytosol
037CM7	SK	Cytoskeleton

Q92973	С	Cytosol
Q9H2P0	С	Cytosol
P49189	С	Cytosol
P84103	С	Cytosol
P12004	NINT	Nuclear Lumen
Q9BTE3	С	Cytosol
Q96A26	С	Cytosol
Q9UJX3	С	Cytosol

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q-Value
PRU00531	2	2	6.58E-05	9.54E-06	WHEP-TRS domain	0.000448587
PRU00176	7	378	0.012435438	2.08E-05	RNA recognition motif (RRM) domain	0.000489196
PRU00526	2	6	0.000197388	8.54E-05	BRO1 domain	0.001338115
PRU00599	2	12	0.000394776	0.000339	ADF-H domain	0.003731654
PRU01084	2	13	0.000427674	0.000397	Hexokinase domain	0.003731654
PRU00547	2	17	0.000559266	0.000675	CS domain	0.005287623
PRU00159	6	512	0.016843767	0.000947	Protein kinase domain	0.006356675
PRU00717	1	1	3.29E-05	0.002202	RINT1/TIP20 domain	0.010348336
PRU00518	1	1	3.29E-05	0.002202	YrdC-like domain	0.010348336
PRU00257	1	1	3.29E-05	0.002202	Cro/C1-type HTH domain	0.010348336
PRU00958	1	2	6.58E-05	0.004399	tRNA (guanine(26)- N(2))- dimethyltransferase (EC 2.1.1.216)	0.015903252
PRU00467	1	2	6.58E-05	0.004399	AMMECR1 domain	0.015903252
PRU00073	1	2	6.58E-05	0.004399	DRADA	0.015903252
PRU00084	2	50	0.001644899	0.005572	FERM	0.018706855
PRU01133	1	3	9.87E-05	0.006591	Translationally controlled tumor protein (TCTP) domain	0.019361075
PRU00690	1	3	9.87E-05	0.006591	Nop domain	0.019361075
PRU00170	1	4	0.000131592	0.008778	Reticulon	0.02426992

	0 0 24 / 84 9 26
PR000267 2 66 0.002171267 0.009492 DNA-binding domains	0.02 17 0 1920
PRU01040 1 5 0.00016449 0.010961 DZF domain	0.025758853
Poly(A)-binding protein	
C-terminal (PABC)	0 025758852
	0.023738833
PRU00695 1 7 0.000230286 0.015312 W2 domain	0.031290729
OBG-type guanine	
PRU01047 1 7 0.000230286 0.015312 domain	0.031290729
Acvl-CoA-binding (ACB)	
PRU00573 1 7 0.000230286 0.015312 domain	0.031290729
PRU00810 1 8 0.000263184 0.017481 PAH domain	0.034233708
SAM-dependent methyltransferase	
PRU01015 1 11 0.000361878 0.023959 PRMT-type domain	0.045042033
PRU00167 1 15 0.00049347 0.03253 Ras-GAP	0.05818093
Linker histone H1/H5	0.05010000
PR000837 1 16 0.000526368 0.034661 globular (H15) domain	0.05818093
PRU00439 1 16 0.000526368 0.034661 2 (MH2)	0.05818093
PRU00096 1 18 0.000592164 0.03891 GOLD	0.063060252
Translational (tr)-type	
PRU01059 1 22 0.000723756 0.047351 binding (G) domain	0.074183875
PPlase FKBP-type	
PRU00277 1 24 0.000789552 0.051545 domain	0.075706604
PPlase cyclophilin-type	
PRU00156 1 24 0.000789552 0.051545 domain	0.075706604
PRU00794 1 27 0.000888246 0.057801 Nudix hydrolase domain	0 082322803
	0.002322003
PRU00415 1 28 0.000921144 0.059877 Saposin B-type domain	0.082771794
ARF GTPase-activating	
PRU00288 1 30 0.00098694 0.064017 proteins domain	0.085965225
Double stranded RNA-	0.004.000007
PR000266 1 33 0.001085633 0.070192 binding domain	0.091639297
PRU00691 1 51 0.001677797 0.106409 thioredoxin domain	0.135167865
	0.200207.000
PRU00448 3 576 0.018949238 0.134346 EF-hand	0.165623958
PRU00214 1 67 0.002204165 0.137433 Ubiquitin-like	0.165623958
ABC transporter family	0 100101070
PRUUU434 1 80 0.002631839 0.161856 domain	0.190181079
PRU00542 1 108 0.003552982 0.212171 domain	0.243219952

DD1100044			0 00075007	0 222550	Calponin-homology (CH)	0.2400520
PRU00044	1	114	0.003/503/	0.222559	domain	0.2490538
PRU00125	1	160	0.005263677	0.297843	LIM zinc-binding domain	0.3255489
					Serine proteases, trypsin	
PRU00274	1	166	0.005461065	0.307117	domain	0.3280567
PRU00114	1	1464	0.048162648	0.381453	Ig-like domain	0.3984062
PRU00145	1	290	0.009540415	0.473907	PH	0.4842089
					G-protein coupled	
PRU00521	1	592	0.019475606	1	receptors family 1	

Table 4.12.	Enrichment	SuTEx	hyper-reactive
-------------	------------	-------	----------------

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q-Value
PRU01188	5	74	0.00243445	1.16E-08	Intermediate filament (IF) rod domain	2.32E-07
PRU00044	4	114	0.00375037	5.01E-06	Calponin-homology (CH) domain	5.01E-05
PRU01055	2	28	0.00092114	0.000363	Dynamin-type guanine nucleotide-binding (G) domain	0.002418747
PRU00966	1	1	3.29E-05	0.000986	NF-YA/HAP2 family	0.004932344
PRU00719	1	2	6.58E-05	0.001972	YjeF N-terminal domain	0.006573323
PRU01202	1	3	9.87E-05	0.002957	MGS-like domain	0.006573323
PRU00109	1	4	0.00013159	0.00394	HORMA	0.008447387
PRU00176	3	378	0.01243544	0.006075	RNA recognition motif (RRM) domain	0.009850586
PRU01015	1	11	0.00036188	0.0108	SAM-dependent methyltransferase PRMT-type domain	0.013500096
PRU00534	1	12	0.00039478	0.011776	FAT domain	0.013771115
PRU00466	1	16	0.00052637	0.015671	Laminin N-terminal domain	0.019626215
PRU01059	1	22	0.00072376	0.021486	Translational (tr)-type guanine nucleotide-binding (G) domain	0.019626215
PRU00100	1	23	0.00075665	0.022452	Guanylate kinase-like domain	0.024109384
PRU01185	1	24	0.00078955	0.023417	PCI domain	0.027549836
PRU00277	1	24	0.00078955	0.023417	PPlase FKBP-type domain	0.027549836
PRU00089	1	48	0.0015791	0.046304	Fork-head DNA-binding domain	0.027549836
PRU00191	1	117	0.00384906	0.109253	SH2 domain	0.027549836

PRU00723	1	132	0.00434253	0.122396	Zinc finger C3H1-type	0.051449125

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q-Value
PRU00170	2	4	0.000131592	3.99E-06	Reticulon	7.19E-05
PRU00717	1	1	3.29E-05	0.000724	RINT1/TIP20 domain	0.006511551
PRU01012	1	3	9.87E-05	0.002169	SAM-dependent methyltransferase TRM10-type domain	0.01301411
PRU00573	1	7	0.000230286	0.005054	Acyl-CoA-binding (ACB) domain	0.014891254
PRU01047	1	7	0.000230286	0.005054	OBG-type guanine nucleotide- binding (G) domain	0.014891254
PRU00810	1	8	0.000263184	0.005774	PAH domain	0.014891254
PRU00159	3	512	0.016843767	0.005791	Protein kinase domain	0.014891254
PRU01084	1	13	0.000427674	0.009367	Hexokinase domain	0.021075058
PRU00186	1	22	0.000723756	0.015802	SAP	0.028443965
PRU01059	1	22	0.000723756	0.015802	Translational (tr)-type guanine nucleotide-binding (G) domain	0.028443965
PRU00794	1	27	0.000888246	0.01936	Nudix hydrolase domain	0.02975419
PRU00415	1	28	0.000921144	0.02007	Saposin B-type domain	0.02975419
PRU00288	1	30	0.00098694	0.021489	ARF GTPase-activating proteins domain	0.02975419
PRU00176	2	378	0.012435438	0.030294	RNA recognition motif (RRM) domain	0.038949126
PRU01188	1	74	0.002434451	0.052211	Intermediate filament (IF) rod domain	0.062653018
PRU00434	1	80	0.002631839	0.056328	ABC transporter family domain	0.063369155
PRU00117	1	87	0.002862125	0.06111	KH domain	0.064704775
PRU00448	1	576	0.018949238	0.343534	EF-hand	0.343533538

 Table 4.13. Activated Ester Ligands Enrichment

Table 4.14. SuTEx 1,2,4 Ligand Enrichment

ProRule Domain	Number Liganded	Number in Database	Database Frequency	P-Value	Description	BH Corrected Q-Value
PRU00691	3	37	0.002593	0.0002937	thioredoxin domain	0.0108657
PRU01059	2	13	0.000911	0.0009484	Translational (tr)-type guanine nucleotide-binding (G) domain	0.01392867

386

PRU00267	3	59	0.004134	0.0011294	HMG boxes A and B DNA-binding domains	0.01392867
PRU00277	2	17	0.001191	0.0016077	PPIase FKBP-type domain	0.01487163
PRU00519	1	1	7.01E-05	0.0034278	Elongation factor 1 (EF-1) gamma C-terminal domain	0.01949077
PRU01185	2	26	0.001822	0.0036874	PCI domain	0.01949077
PRU00156	2	26	0.001822	0.0036874	PPlase cyclophilin-type domain	0.01949077
PRU00191	3	108	0.007568	0.0061599	SH2 domain	0.02813655
PRU00386	1	2	0.00014	0.006844	SGS domain	0.02813655
PRU00117	2	39	0.002733	0.008065	KH domain	0.02984037
PRU00797	1	3	0.00021	0.0102488	SIS domain	0.0316005
PRU01202	1	3	0.00021	0.0102488	MGS-like domain	0.0316005
PRU01138	1	5	0.00035	0.0170241	CoA carboxyltransferase domain	0.04716276
PRU01163	1	6	0.00042	0.0203947	Vicinal oxygen chelate (VOC) domain	0.04716276

Table 4.15.

PDB_Structure	Residue	Amino.Acid.No	Chain	рКа	Buried	Liganded
658L	TYR	24	А	13.37	100	Liganded
658L	TYR	83	А	12.89	50	Not Liganded
658L	TYR	103	А	14.2	100	Not Liganded
658L	TYR	108	А	13.15	48	Not Liganded
658L	TYR	161	А	11.78	45	Not Liganded
658L	TYR	172	А	13.08	95	Not Liganded
658L	TYR	185	А	15.01	100	Not Liganded
658L	TYR	210	А	10.58	43	Not Liganded
658L	TYR	224	А	14.06	97	Not Liganded
658L	TYR	262	А	10.6	0	Not Liganded
6S8L	TYR	272	А	12.73	100	Not Liganded
658L	TYR	282	А	10.04	0	Not Liganded
658L	TYR	312	А	13.16	77	Not Liganded
658L	TYR	319	А	12.55	74	Not Liganded
658L	TYR	357	А	10.41	0	Not Liganded
658L	TYR	399	А	11.16	30	Not Liganded
658L	TYR	408	А	14.51	100	Not Liganded
658L	TYR	432	А	13.31	100	Not Liganded
658L	TYR	36	В	11.02	0	Not Liganded
658L	TYR	52	В	13.7	100	Not Liganded
658L	TYR	53	В	13.05	100	Not Liganded

658L	TYR	61	В	11.43	17	Not Liganded	
658L	TYR	108	В	12.93	50	Not Liganded	
658L	TYR	161	В	13.57	35	Not Liganded	
658L	TYR	185	В	14.54	100	Not Liganded	
658L	TYR	202	В	16.6	100	Not Liganded	
658L	TYR	210	В	11.06	25	Not Liganded	
658L	TYR	224	В	12.01	58	Not Liganded	
658L	TYR	312	В	12.08	93	Not Liganded	
658L	TYR	342	В	10.14	0	Not Liganded	
658L	TYR	408	В	14.56	100	Not Liganded	
658L	TYR	432	В	14.78	100	Not Liganded	
658L	TYR	435	В	11.92	56	Not Liganded	
658L	TYR	57	F	11.14	60	Not Liganded	
6LPF	TYR	46	А	13.57	93	Not Liganded	
6LPF	TYR	52	А	21.53	100	Not Liganded	
6LPF	TYR	54	А	14.23	100	Not Liganded	
6LPF	TYR	76	А	13.79	53	Not Liganded	
6LPF	TYR	111	А	10.49	0	Not Liganded	
6LPF	TYR	156	А	10.33	0	Not Liganded	
6LPF	TYR	183	А	10.96	33	Not Liganded	
6LPF	TYR	213	А	11.69	46	Not Liganded	
6LPF	TYR	214	А	16.03	100	Not Liganded	
6LPF	TYR	237	А	11.52	48	Not Liganded	
6LPF	TYR	240	А	12.15	57	Not Liganded	
6LPF	TYR	264	А	11.89	47	Not Liganded	
6LPF	TYR	275	А	11.14	15	Not Liganded	
6LPF	TYR	313	А	13.05	82	Not Liganded	
6LPF	TYR	336	А	10.88	33	Not Liganded	
6LPF	TYR	369	А	10.49	30	Not Liganded	
6LPF	TYR	373	А	10.64	16	Not Liganded	
6LPF	TYR	416	А	10.92	18	Not Liganded	
6LPF	TYR	468	А	9.79	7	Not Liganded	
6LPF	TYR	473	А	10.25	0	Liganded	
6LPF	TYR	507	А	16.43	100	Not Liganded	
6LPF	TYR	531	А	11.36	24	Not Liganded	
6LPF	TYR	534	А	14.38	100	Not Liganded	
6LPF	TYR	577	А	12.67	40	Not Liganded	
6LPF	TYR	600	А	11.6	100	Not Liganded	
6LPF	TYR	604	А	14.61	100	Not Liganded	
6LPF	TYR	637	А	11.46	19	Not Liganded	
6LPF	TYR	666	А	15.1	100	Not Liganded	
6LPF	TYR	684	А	15.87	100	Not Liganded	
6LPF	TYR	685	А	13.59	100	Not Liganded	
6LPF	TYR	687	А	12.68	72	Not Liganded	
6LPF	TYR	768	А	10.61	0	Not Liganded	
6LPF	TYR	812	А	14.92	100	Not Liganded	
6LPF TYR 835 A 12.88 63 Not Liganded 6LPF TYR 901 A 16 88 Not Liganded 6LPF TYR 916 A 10.06 0 Not Liganded 6LPF TYR 939 A 10.56 2 Not Liganded 6LPF TYR 944 A 12.58 75 Not Liganded 6LPF TYR 52 B 21.43 100 Not Liganded 6LPF TYR 54 B 14.09 Not Liganded 6LPF TYR 111 B 10.34 0 Not Liganded 6LPF TYR 1138 B 10.94 37 Not Liganded 6LPF TYR 2133 B 11.16 13 Not Liganded 6LPF TYR 2244 B 11.62 56 Not Liganded 6LPF TYR 2333 B 11.16 13							
--	------	-----	-----	---	-------	-----	--------------
GLPF TYR 901 A 16 88 Not Liganded GLPF TYR 936 A 10.06 0 Not Liganded GLPF TYR 939 A 10.56 2 Not Liganded GLPF TYR 944 A 12.58 75 Not Liganded GLPF TYR 52 B 21.43 100 Not Liganded GLPF TYR 778 S1 8 11.03 Not Liganded GLPF TYR 76 B 10.34 0 Not Liganded GLPF TYR 111 B 10.34 0 Not Liganded GLPF TYR 1138 B 10.75 45 Not Liganded GLPF TYR 2138 B 11.50 10 Not Liganded GLPF TYR 2241 B 11.8 10.21 Not Liganded GLPF TYR 2408 11.16 13	6LPF	TYR	835	А	12.88	63	Not Liganded
SLPFTYR916A10.06ONot Liganded6LPFTYR939A10.56ZNot Liganded6LPFTYR944A12.58A75Not Liganded6LPFTYR6L813.2298100Not Liganded6LPFTYR766B13.9955Not Liganded6LPFTYR776B13.9955Not Liganded6LPFTYR776B13.9955Not Liganded6LPFTYR1111B10.3400Not Liganded6LPFTYR1213B10.9437Not Liganded6LPFTYR2133B11.5556Not Liganded6LPFTYR2237B11.6256Not Liganded6LPFTYR2244B11.8162Not Liganded6LPFTYR2373B11.6256Not Liganded6LPFTYR2373B11.6213<	6LPF	TYR	901	А	16	88	Not Liganded
GLPF TYR 939 A 10.56 Z Not Liganded 6LPF TYR 944 A 12.58 75 Not Liganded 6LPF TYR 6.65 B 13.82 98 Not Liganded 6LPF TYR 6.53 B 21.43 100 Not Liganded 6LPF TYR 778 B 13.99 55 Not Liganded 6LPF TYR 111 B 10.34 0 Not Liganded 6LPF TYR 1313 B 10.04 37 Not Liganded 6LPF TYR 2131 B 11.75 45 Not Liganded 6LPF TYR 2237 B 11.62 56 Not Liganded 6LPF TYR 2430 B 11.16 13 Not Liganded 6LPF TYR 2441 B 13.16 D4 Not Liganded 6LPF TYR 2453 B 11.16 <td>6LPF</td> <td>TYR</td> <td>916</td> <td>А</td> <td>10.06</td> <td>0</td> <td>Not Liganded</td>	6LPF	TYR	916	А	10.06	0	Not Liganded
GLPFTYR944A12.5875Not LigandedGLPFTYR16.6B13.8298Not LigandedGLPFTYR52B21.43100Not LigandedGLPFTYR176B13.9955Not LigandedGLPFTYR111B10.340Not LigandedGLPFTYR1118B10.340Not LigandedGLPFTYR1136B10.440Not LigandedGLPFTYR1233B11.7545Not LigandedGLPFTYR2134B15.96100Not LigandedGLPFTYR2237B11.6256Not LigandedGLPFTYR2244B13.1624Not LigandedGLPFTYR2264B11.1613Not LigandedGLPFTYR2333B13.1694Not LigandedGLPFTYR3336B11.0437Not LigandedGLPFTYR333B10.21100Not LigandedGLPFTYR333B10.2215Not LigandedGLPFTYR333B10.240LigandedGLPFTYR333B10.240LigandedGLPFTYR334B10.9923Not LigandedGLPFTYR666B15.19100Not Liganded <td>6LPF</td> <td>TYR</td> <td>939</td> <td>А</td> <td>10.56</td> <td>2</td> <td>Not Liganded</td>	6LPF	TYR	939	А	10.56	2	Not Liganded
GLPFTYR146B13.8298Not LigandedGLPFTYRS2B21.43100Not LigandedGLPFTYR176B13.99S5Not LigandedGLPFTYR111B10.340Not LigandedGLPFTYR1116B10.340Not LigandedGLPFTYR1138B10.9437Not LigandedGLPFTYR1213B11.7545Not LigandedGLPFTYR2141B11.6256Not LigandedGLPFTYR2237B11.6256Not LigandedGLPFTYR2237B11.6256Not LigandedGLPFTYR2237B11.6256Not LigandedGLPFTYR2336B11.6113Not LigandedGLPFTYR2336B11.6113Not LigandedGLPFTYR336B11.6131Not LigandedGLPFTYR336B10.6131Not LigandedGLPFTYR336B10.6131Not LigandedGLPFTYR468B10.24OLigandedGLPFTYR468B10.24OLigandedGLPFTYR573B12.6100Not LigandedGLPFTYR66910.24100Not LigandedGL	6LPF	TYR	944	А	12.58	75	Not Liganded
GLPFTYRTYRS2B21.43100Not LigandedGLPFTYRISRB1.09Not LigandedGLPFTYRISR13.99S5Not LigandedGLPFTYRISRB10.14ONot LigandedGLPFTYRISRB10.14ONot LigandedGLPFTYRISRB10.14ONot LigandedGLPFTYRISRB11.75ASNot LigandedGLPFTYRISRB11.62S6Not LigandedGLPFTYRISRB11.62S6Not LigandedGLPFTYRISRB11.16ISRNot LigandedGLPFTYRISRB11.16ISRNot LigandedGLPFTYRISRISR11.16ISRNot LigandedGLPFTYRISRISSNot LigandedISRNot LigandedGLPFTYRISSIS11.16ISSNot LigandedGLPFTYRISSISSNot LigandedISSNot LigandedGLPFTYRISSISSISSNot LigandedGLPFTYRISSISSISSNot LigandedGLPFTYRISSISSISSNot LigandedGLPFTYRISSISSISSNot LigandedGLPFTYRISSISSISSNot LigandedGLPFTYRISSS </td <td>6LPF</td> <td>TYR</td> <td>46</td> <td>В</td> <td>13.82</td> <td>98</td> <td>Not Liganded</td>	6LPF	TYR	46	В	13.82	98	Not Liganded
6LPFTYR54B14.09100Not Liganded6LPFTYR76B13.9955Not Liganded6LPFTYR111B10.340Not Liganded6LPFTYR118B10.9437Not Liganded6LPFTYR213B11.7545Not Liganded6LPFTYR213B11.7545Not Liganded6LPFTYR2237B11.6256Not Liganded6LPFTYR2240B12.1761Not Liganded6LPFTYR2264B11.862Not Liganded6LPFTYR264B11.862Not Liganded6LPFTYR2336B10.6131Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR336B10.1117Not Liganded6LPFTYR336B10.1210Not Liganded6LPFTYR3373B10.5215Not Liganded6LPFTYR336B10.1117Not Liganded6LPFTYR336B10.12100Not Liganded6LPFTYR534B10.47100Not Liganded6LPFTYR6667B15.19100Not Liganded <td>6LPF</td> <td>TYR</td> <td>52</td> <td>В</td> <td>21.43</td> <td>100</td> <td>Not Liganded</td>	6LPF	TYR	52	В	21.43	100	Not Liganded
GLPF TYR 76 B 13.99 55 Not Liganded GLPF TYR 1111 B 10.34 0 Not Liganded GLPF TYR 1156 B 10.14 0 Not Liganded GLPF TYR 1133 B 11.75 45 Not Liganded GLPF TYR 2131 B 11.62 56 Not Liganded GLPF TYR 2237 B 11.62 56 Not Liganded GLPF TYR 2240 B 12.17 GL Not Liganded GLPF TYR 2246 B 11.8 62 Not Liganded GLPF TYR 2333 B 10.61 31 Not Liganded GLPF TYR 3336 B 10.02 15 Not Liganded GLPF TYR 3733 B 10.52 15 Not Liganded GLPF TYR 4668 B 100	6LPF	TYR	54	В	14.09	100	Not Liganded
6LPFTYR111B10.340Not Liganded6LPFTYR156B10.140Not Liganded6LPFTYR213B11.7545Not Liganded6LPFTYR213B11.55100Not Liganded6LPFTYR214B15.96100Not Liganded6LPFTYR2237B11.6256Not Liganded6LPFTYR2240B12.1761Not Liganded6LPFTYR2375B11.1613Not Liganded6LPFTYR313B13.1694Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR336B10.1417Not Liganded6LPFTYR3373B10.5215Not Liganded6LPFTYR4468B1010Not Liganded6LPFTYR531B10.240Liganded6LPFTYR534B10.14100Not Liganded6LPFTYR6371B10.24100Not Liganded6LPFTYR6371B10.24100Not Liganded6LPFTYR6374B10.12100Not Liganded6LPFTYR6604B15.12100Not Liganded </td <td>6LPF</td> <td>TYR</td> <td>76</td> <td>В</td> <td>13.99</td> <td>55</td> <td>Not Liganded</td>	6LPF	TYR	76	В	13.99	55	Not Liganded
6LPFTYR156B10.140Not Liganded6LPFTYR183B10.9437Not Liganded6LPFTYR213B11.7545Not Liganded6LPFTYR214B15.96100Not Liganded6LPFTYR237B11.6256Not Liganded6LPFTYR240B12.1761Not Liganded6LPFTYR264B11.862Not Liganded6LPFTYR313B13.1694Not Liganded6LPFTYR333B10.6131Not Liganded6LPFTYR333B10.5255Not Liganded6LPFTYR369B10.6131Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR416B10.21100Not Liganded6LPFTYR666B11.25100Not Liganded </td <td>6LPF</td> <td>TYR</td> <td>111</td> <td>В</td> <td>10.34</td> <td>0</td> <td>Not Liganded</td>	6LPF	TYR	111	В	10.34	0	Not Liganded
6LPFTYR183B10.9437Not Liganded6LPFTYR213B11.7545Not Liganded6LPFTYR214B15.96100Not Liganded6LPFTYR237B11.6256Not Liganded6LPFTYR240B12.1761Not Liganded6LPFTYR264B11.862Not Liganded6LPFTYR236B11.1613Not Liganded6LPFTYR333B13.1694Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR4368B1010Not Liganded6LPFTYR4468B1010Not Liganded6LPFTYR4533B10.9923Not Liganded6LPFTYR5531B10.9923Not Liganded6LPFTYR6664B11.04Not Liganded6LPFTYR6664B11.05Not Liganded6LPFTYR6664B15.12100Not Liganded6LPFTYR6664B13.71100Not Liganded6LPFTYR6664B13.71100Not Liganded6LPF </td <td>6LPF</td> <td>TYR</td> <td>156</td> <td>В</td> <td>10.14</td> <td>0</td> <td>Not Liganded</td>	6LPF	TYR	156	В	10.14	0	Not Liganded
GLPFTYR213B11.7545Not LigandedGLPFTYR214B15.96100Not LigandedGLPFTYR237B11.6256Not LigandedGLPFTYR240B11.81G2Not LigandedGLPFTYR264B11.81G2Not LigandedGLPFTYR275B11.1613Not LigandedGLPFTYR313B13.1694Not LigandedGLPFTYR313B10.6131Not LigandedGLPFTYR369B10.6131Not LigandedGLPFTYR373B10.5215Not LigandedGLPFTYR468B10117Not LigandedGLPFTYR473B10.240LigandedGLPFTYR531B10.9923Not LigandedGLPFTYR533B11.6510Not LigandedGLPFTYR660B11.1510Not LigandedGLPFTYR666B15.12100Not LigandedGLPFTYR666B15.12100Not LigandedGLPFTYR666B13.11Not LigandedGLPFTYR668B13.12Not LigandedGLPFTYR666B13.11Not LigandedGLPFTYR66	6LPF	TYR	183	В	10.94	37	Not Liganded
6LPFTYR214B15.96100Not Liganded6LPFTYR237B11.62S6Not Liganded6LPFTYR240B12.1761Not Liganded6LPFTYR264B11.862Not Liganded6LPFTYR275B11.1613Not Liganded6LPFTYR313B13.1694Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR369B10.6131Not Liganded6LPFTYR369B10.6131Not Liganded6LPFTYR4468B10.1117Not Liganded6LPFTYR531B10.240Liganded6LPFTYR531B10.47100Not Liganded6LPFTYR531B14.47100Not Liganded6LPFTYR660B11.26100Not Liganded6LPFTYR6666B15.12100Not Liganded6LPFTYR6666B15.19100Not Liganded6LPFTYR6685B13.1172Not Liganded6LPFTYR6686B15.17100Not Liganded </td <td>6LPF</td> <td>TYR</td> <td>213</td> <td>В</td> <td>11.75</td> <td>45</td> <td>Not Liganded</td>	6LPF	TYR	213	В	11.75	45	Not Liganded
6LPFTYR237B11.6256Not Liganded6LPFTYR240B12.1761Not Liganded6LPFTYR264B11.862Not Liganded6LPFTYR275B11.613Not Liganded6LPFTYR313B13.1694Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR4468B10.1117Not Liganded6LPFTYR4468B10.1117Not Liganded6LPFTYR531B10.240Liganded6LPFTYR533B10.9923Not Liganded6LPFTYR533B10.9923Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR6604B15.12100Not Liganded6LPFTYR6664B15.12100Not Liganded6LPFTYR6664B15.19100Not Liganded6LPFTYR6664B15.19100Not Liganded6LPFTYR6685B13.1172Not Liganded6LPFTYR6686B15.19100Not Liganded<	6LPF	TYR	214	В	15.96	100	Not Liganded
6LPFTYR240B12.1761Not Liganded6LPFTYR264B11.862Not Liganded6LPFTYR275B11.1613Not Liganded6LPFTYR313B13.1694Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR336B10.5215Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR4468B10.11150Not Liganded6LPFTYR4468B10.240Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR6604B15.12100Not Liganded6LPFTYR6666B15.19100Not Liganded6LPFTYR6667B13.1172Not Liganded6LPFTYR6668B15.19100Not Liganded6LPFTYR6687B13.1172Not Liganded6LPFTYR6688B13.1172Not Liganded6LPFTYR688B13.1468Not Liganded<	6LPF	TYR	237	В	11.62	56	Not Liganded
6LPFTYR264B11.862Not Liganded6LPFTYR275B11.1613Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR336B10.6131Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR468B10.1117Not Liganded6LPFTYR468B10.240Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR534B11.26100Not Liganded6LPFTYR660B11.26100Not Liganded6LPFTYR6604B15.12100Not Liganded6LPFTYR6666B15.19100Not Liganded6LPFTYR6666B13.1172Not Liganded6LPFTYR6666B13.1172Not Liganded6LPFTYR6666B13.1172Not Liganded6LPFTYR6666B13.1172Not Liganded6LPFTYR6666B13.1172Not Liganded6LPFTYR6666B13.1172Not Liganded	6LPF	TYR	240	В	12.17	61	Not Liganded
6LPFTYR275B11.1613Not Liganded6LPFTYR313B13.1694Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR468B1050Not Liganded6LPFTYR473B10.240Liganded6LPFTYR551B16.69100Not Liganded6LPFTYR553B10.9923Not Liganded6LPFTYR553B14.47100Not Liganded6LPFTYR553B11.26100Not Liganded6LPFTYR660B11.26100Not Liganded6LPFTYR660B15.12100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR685B13.1468Not Liganded6LPFTYR685B13.1468Not Liganded	6LPF	TYR	264	В	11.8	62	Not Liganded
6LPFTYR313B13.1694Not Liganded6LPFTYR336B11.0437Not Liganded6LPFTYR369B10.6131Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR468B10.050Not Liganded6LPFTYR473B10.240Liganded6LPFTYR553B10.9923Not Liganded6LPFTYR553B14.47100Not Liganded6LPFTYR553B14.47100Not Liganded6LPFTYR553B11.26100Not Liganded6LPFTYR660B11.26100Not Liganded6LPFTYR660B11.0511Not Liganded6LPFTYR666B15.12100Not Liganded6LPFTYR666B13.1172Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR685B13.1468Not Liganded6LPFTYR685B13.1468Not Liganded <td>6LPF</td> <td>TYR</td> <td>275</td> <td>В</td> <td>11.16</td> <td>13</td> <td>Not Liganded</td>	6LPF	TYR	275	В	11.16	13	Not Liganded
6LPFTYR336B11.0437Not Liganded6LPFTYR369B10.6131Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR446B10.1117Not Liganded6LPFTYR4468B10.240Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR531B14.47100Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR537B12.8142Not Liganded6LPFTYR6600B11.26100Not Liganded6LPFTYR6604B15.12100Not Liganded6LPFTYR6664B15.19100Not Liganded6LPFTYR6665B13.71100Not Liganded6LPFTYR6865B13.71100Not Liganded6LPFTYR6865B13.1172Not Liganded6LPFTYR6865B13.1172Not Liganded6LPFTYR6865B13.1172Not Liganded6LPFTYR6865B13.1468Not Liganded6LPFTYR6865B13.1468Not Li	6LPF	TYR	313	В	13.16	94	Not Liganded
6LPFTYR369B10.6131Not Liganded6LPFTYR373B10.5215Not Liganded6LPFTYR446B10.1117Not Liganded6LPFTYR468B10.240Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.240Liganded6LPFTYR533B14.47100Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR660B15.12100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR668B13.1172Not Liganded6LPFTYR688B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR688B13.1468Not Liganded6LPFTYR688B13.1468Not Liganded6LPFTYR885B13.1468Not Liganded6LPFTYR985B10.51100Not Liganded <td>6LPF</td> <td>TYR</td> <td>336</td> <td>В</td> <td>11.04</td> <td>37</td> <td>Not Liganded</td>	6LPF	TYR	336	В	11.04	37	Not Liganded
6LPFTYR373B10.5215Not Liganded6LPFTYR416B10.1117Not Liganded6LPFTYR468B10050Not Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR531B14.47100Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR577B12.8142Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR6604B15.12100Not Liganded6LPFTYR6664B15.12100Not Liganded6LPFTYR6665B15.19100Not Liganded6LPFTYR6666B15.19100Not Liganded6LPFTYR6687B13.1172Not Liganded6LPFTYR6887B13.1172Not Liganded6LPFTYR6887B13.1170Not Liganded6LPFTYR6887B13.1170Not Liganded6LPFTYR6887B13.1170Not Liganded6LPFTYR6887B13.1170Not Liganded6LPFTYR6887B13.12100No	6LPF	TYR	369	В	10.61	31	Not Liganded
6LPFTYR416B10.1117Not Liganded6LPFTYR468B1050Not Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR531B14.47100Not Liganded6LPFTYR537B12.8142Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR666B15.12100Not Liganded6LPFTYR6664B15.12100Not Liganded6LPFTYR6665B15.19100Not Liganded6LPFTYR6666B13.1172Not Liganded6LPFTYR6685B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR688B13.12100Not Liganded6LPFTYR688B13.1172Not Liganded6LPFTYR688B13.1170Not Liganded6LPFTYR688B13.12100Not Liganded6LPFTYR688B13.1468Not Ligan	6LPF	TYR	373	В	10.52	15	Not Liganded
6LPFTYR468B1050Not Liganded6LPFTYR473B10.240Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR6604B15.12100Not Liganded6LPFTYR6664B15.12100Not Liganded6LPFTYR6665B15.19100Not Liganded6LPFTYR6666B15.19100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR688B13.21100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR688B13.2432Not Liganded6LPFTYR6837B13.1468Not Liganded6LPFTYR813.1468Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9939B10.668Not Liganded <tr< td=""><td>6LPF</td><td>TYR</td><td>416</td><td>В</td><td>10.11</td><td>17</td><td>Not Liganded</td></tr<>	6LPF	TYR	416	В	10.11	17	Not Liganded
6LPFTYR473B10.240Liganded6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR604B15.12100Not Liganded6LPFTYR666B11.0511Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1468Not Liganded6LPFTYR687B13.1468Not Liganded6LPFTYR687B13.1468Not Liganded6LPFTYR688B13.130Not Liganded6LPFTYR688B13.1468Not Liganded<	6LPF	TYR	468	В	10	50	Not Liganded
6LPFTYR507B16.69100Not Liganded6LPFTYR531B10.9923Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR600B15.12100Not Liganded6LPFTYR666B15.12100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR768B13.1172Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR812B13.1468Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9936B10.668Not Ligan	6LPF	TYR	473	В	10.24	0	Liganded
6LPFTYR531B10.9923Not Liganded6LPFTYR534B14.47100Not Liganded6LPFTYR577B12.8142Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR604B15.12100Not Liganded6LPFTYR666B15.12100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR684B15.69100Not Liganded6LPFTYR685B13.71100Not Liganded6LPFTYR685B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR768B13.1172Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR985B10.590Not Liganded <td>6LPF</td> <td>TYR</td> <td>507</td> <td>В</td> <td>16.69</td> <td>100</td> <td>Not Liganded</td>	6LPF	TYR	507	В	16.69	100	Not Liganded
6LPFTYR534B14.47100Not Liganded6LPFTYR577B12.8142Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR604B15.12100Not Liganded6LPFTYR604B15.12100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR686B15.19100Not Liganded6LPFTYR687B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR768B13.1172Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR835B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR935B10.590Not Liganded <td>6LPF</td> <td>TYR</td> <td>531</td> <td>В</td> <td>10.99</td> <td>23</td> <td>Not Liganded</td>	6LPF	TYR	531	В	10.99	23	Not Liganded
6LPFTYR577B12.8142Not Liganded6LPFTYR600B11.26100Not Liganded6LPFTYR604B15.12100Not Liganded6LPFTYR637B11.0511Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR6684B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1468Not Liganded6LPFTYR812B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR938B10.590Not Liganded6LPFTYR944B12.880Not Liganded<	6LPF	TYR	534	В	14.47	100	Not Liganded
6LPFTYR600B11.26100Not Liganded6LPFTYR604B15.12100Not Liganded6LPFTYR637B11.0511Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR666B15.69100Not Liganded6LPFTYR6884B15.69100Not Liganded6LPFTYR6887B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR768B13.1172Not Liganded6LPFTYR768B13.1172Not Liganded6LPFTYR768B13.1468Not Liganded6LPFTYR916B13.1468Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR939B10.590Not Liganded6LPFTYR935B10.590Not Liganded6LPFTYR935B10.590Not Liganded </td <td>6LPF</td> <td>TYR</td> <td>577</td> <td>В</td> <td>12.81</td> <td>42</td> <td>Not Liganded</td>	6LPF	TYR	577	В	12.81	42	Not Liganded
6LPFTYR604B15.12100Not Liganded6LPFTYR637B11.0511Not Liganded6LPFTYR666B15.19100Not Liganded6LPFTYR684B15.69100Not Liganded6LPFTYR6885B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR882B15.17100Not Liganded6LPFTYR768B12.2432Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR136A14.1489Not Liganded6LPFTYR136A10.734Not Liganded	6LPF	TYR	600	В	11.26	100	Not Liganded
6LPFTYR637B11.0511Not Liganded6LPFTYR6666B15.19100Not Liganded6LPFTYR684B15.69100Not Liganded6LPFTYR685B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B12.2432Not Liganded6LPFTYR768B12.2432Not Liganded6LPFTYR835B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9939B10.668Not Liganded6LPFTYR9944B12.880Not Liganded6LPFTYR9945B10.590Not Liganded6LPFTYR9945A14.1489Not Liganded6LPFTYR916A10.590Not Liganded6LPFTYR985B10.5934Not Liganded6LPFTYR136A10.734Not Liganded	6LPF	TYR	604	В	15.12	100	Not Liganded
6LPFTYR666B15.19100Not Liganded6LPFTYR6884B15.69100Not Liganded6LPFTYR6855B13.71100Not Liganded6LPFTYR6877B13.1172Not Liganded6LPFTYR6877B13.1172Not Liganded6LPFTYR768B12.2432Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR835B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR9395B10.590Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR945A10.590Not Liganded6LPFTYR945A14.1489Not Liganded6LPFTYR136A10.734Not Liganded	6LPF	TYR	637	В	11.05	11	Not Liganded
6LPFTYR684B15.69100Not Liganded6LPFTYR685B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR687B12.2432Not Liganded6LPFTYR8815.17100Not Liganded6LPFTYR8812B15.17100Not Liganded6LPFTYR885B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR9939B10.668Not Liganded6LPFTYR9944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR985A14.1489Not Liganded6LPFTYR136A10.734Not Liganded	6LPF	TYR	666	В	15.19	100	Not Liganded
6LPFTYR685B13.71100Not Liganded6LPFTYR687B13.1172Not Liganded6LPFTYR768B12.2432Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR835B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR901B10.310Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR985A14.1489Not Liganded6LPFTYR136A10.734Not Liganded	6LPF	TYR	684	В	15.69	100	Not Liganded
6LPFTYR687B13.1172Not Liganded6LPFTYR768B12.2432Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR8355B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR901B10.310Not Liganded6LPFTYR9916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR115A14.1489Not Liganded6IIKTYR136A10.734Not Liganded	6LPF	TYR	685	В	13.71	100	Not Liganded
6LPFTYR768B12.2432Not Liganded6LPFTYR812B15.17100Not Liganded6LPFTYR835B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR9016B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR115A14.1489Not Liganded6IIKTYR136A10.734Not Liganded	6LPF	TYR	687	В	13.11	72	Not Liganded
6LPFTYR812B15.17100Not Liganded6LPFTYR8355B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR9016B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR9395B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR1155A14.1489Not Liganded6IIKTYR136A10.734Not Liganded	6LPF	TYR	768	В	12.24	32	Not Liganded
6LPFTYR835B13.1468Not Liganded6LPFTYR901B17.92100Not Liganded6LPFTYR916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR985A14.1489Not Liganded6IIKTYR136A10.734Not Liganded	6LPF	TYR	812	В	15.17	100	Not Liganded
6LPFTYR901B17.92100Not Liganded6LPFTYR916B10.310Not Liganded6LPFTYR939B10.668Not Liganded6LPFTYR944B12.880Not Liganded6LPFTYR985B10.590Not Liganded6LPFTYR985A14.1489Not Liganded6IIKTYR136A10.734Not Liganded	6LPF	TYR	835	В	13.14	68	Not Liganded
6LPF TYR 916 B 10.31 0 Not Liganded 6LPF TYR 939 B 10.66 8 Not Liganded 6LPF TYR 944 B 12.8 80 Not Liganded 6LPF TYR 944 B 12.8 80 Not Liganded 6LPF TYR 985 B 10.59 0 Not Liganded 6IIK TYR 115 A 14.14 89 Not Liganded	6LPF	TYR	901	В	17.92	100	Not Liganded
6LPF TYR 939 B 10.66 8 Not Liganded 6LPF TYR 944 B 12.8 80 Not Liganded 6LPF TYR 985 B 10.59 0 Not Liganded 6LPF TYR 985 B 10.59 0 Not Liganded 6IIK TYR 115 A 14.14 89 Not Liganded	6LPF	TYR	916	В	10.31	0	Not Liganded
6LPF TYR 944 B 12.8 80 Not Liganded 6LPF TYR 985 B 10.59 0 Not Liganded 6IIK TYR 115 A 14.14 89 Not Liganded 6IIK TYR 136 A 10.7 34 Not Liganded	6LPF	TYR	939	В	10.66	8	Not Liganded
6LPF TYR 985 B 10.59 0 Not Liganded 6IIK TYR 115 A 14.14 89 Not Liganded 6IIK TYR 136 A 10.7 34 Not Liganded	6LPF	TYR	944	В	12.8	80	Not Liganded
6IIK TYR 115 A 14.14 89 Not Liganded 6IIK TYR 136 A 10.7 34 Not Liganded	6LPF	TYR	985	В	10.59	0	Not Liganded
6IIK TYR 136 A 10.7 34 Not Liganded	611K	TYR	115	А	14.14	89	Not Liganded
	611K	TYR	136	А	10.7	34	Not Liganded

6IIK	TYR	151	А	11.99	64	Not Liganded
6IIK	TYR	195	А	11.29	67	Not Liganded
6IIK	TYR	285	А	10.02	0	Liganded
6IIK	TYR	311	А	11.91	0	Not Liganded
6IIK	TYR	323	А	14.2	80	Not Liganded
6IIK	TYR	356	А	10.48	0	Not Liganded
6IIK	TYR	401	А	9.98	0	Not Liganded
6IIK	TYR	417	А	10.76	20	Not Liganded
6IIK	TYR	418	А	14.66	100	Not Liganded
6IIK	TYR	436	А	15.65	94	Not Liganded
6IIK	TYR	476	А	16.71	90	Not Liganded
6IIK	TYR	480	А	14.11	100	Not Liganded
6IIK	TYR	115	В	14.07	88	Not Liganded
6IIK	TYR	136	В	11.21	32	Not Liganded
6IIK	TYR	151	В	11.43	65	Not Liganded
6IIK	TYR	195	В	10.75	67	Not Liganded
6IIK	TYR	285	В	9.94	0	Liganded
611K	TYR	311	В	11.57	0	Not Liganded
611K	TYR	323	В	14.31	80	Not Liganded
611K	TYR	356	В	10.43	0	Not Liganded
611K	TYR	401	В	10.23	0	Not Liganded
611K	TYR	417	В	10.28	15	Not Liganded
611K	TYR	418	В	14.51	100	Not Liganded
611K	TYR	436	В	15.85	90	Not Liganded
611K	TYR	476	В	14.72	84	Not Liganded
611K	TYR	480	В	14.08	100	Not Liganded
6GZL	TYR	32	А	9.6	0	Liganded
6GZL	TYR	50	А	12.13	16	Not Liganded
6GZL	TYR	65	А	11.22	0	Not Liganded
6GZL	TYR	75	А	12.85	28	Not Liganded
6GZL	TYR	77	А	9.86	3	Not Liganded
6GZL	TYR	611	В	10.18	0	Not Liganded
6.00E+07	TYR	49	L	13.47	100	Not Liganded
6.00E+07	TYR	70	L	12.47	51	Not Liganded
6.00E+07	TYR	107	L	12.15	40	Not Liganded
6.00E+07	TYR	112	L	11.25	57	Liganded
6.00E+07	TYR	118	L	13.96	68	Not Liganded
6.00E+07	TYR	139	L	18.46	100	Not Liganded
6.00E+07	TYR	147	L	13.38	88	Not Liganded
6.00E+07	TYR	197	L	11.92	70	Not Liganded
6.00E+07	TYR	202	L	13.36	90	Not Liganded
6.00E+07	TYR	249	L	9.97	0	Not Liganded
6.00E+07	TYR	308	L	11.54	72	Not Liganded
6.00E+07	TYR	322	L	15.02	75	Not Liganded
6.00E+07	TYR	343	L	11.36	50	Not Liganded
6.00E+07	TYR	401	L	14.89	100	Not Liganded

6.00E+	07 TYR	424	L	14.9	100	Not Liganded
6.00E+	07 TYR	428	L	12.75	95	Not Liganded
6.00E+	07 TYR	437	L	15.14	90	Not Liganded
6.00E+	07 TYR	482	L	14.08	100	Not Liganded
6.00E+	07 TYR	484	L	11.13	30	Not Liganded
6.00E+	07 TYR	503	L	11.11	19	Not Liganded
6.00E+	07 TYR	507	L	18.46	95	Not Liganded
6.00E+	07 TYR	49	С	13.5	100	Not Liganded
6.00E+	07 TYR	70	С	12.45	51	Not Liganded
6.00E+	07 TYR	107	С	12.15	40	Not Liganded
6.00E+	07 TYR	112	С	11.41	58	Liganded
6.00E+	07 TYR	118	С	14.1	68	Not Liganded
6.00E+	07 TYR	139	С	18.55	100	Not Liganded
6.00E+	07 TYR	147	с	12.84	92	Not Liganded
6.00E+	07 TYR	197	с	11.89	69	Not Liganded
6.00E+	07 TYR	202	С	13.42	90	Not Liganded
6.00E+	07 TYR	249	С	9.95	0	Not Liganded
6.00E+	07 TYR	308	С	11.42	67	Not Liganded
6.00E+	07 TYR	322	С	14.26	57	Not Liganded
6.00E+	07 TYR	343	С	11.35	47	Not Liganded
6.00E+	07 TYR	401	С	15.15	100	Not Liganded
6.00E+	07 TYR	424	С	14.62	100	Not Liganded
6.00E+	07 TYR	428	С	12.52	92	Not Liganded
6.00E+	07 TYR	437	С	15.6	90	Not Liganded
6.00E+	07 TYR	482	С	13.96	100	Not Liganded
6.00E+	07 TYR	484	С	11.14	29	Not Liganded
6.00E+	07 TYR	503	С	11.19	22	Not Liganded
6.00E+	07 TYR	507	С	18.6	97	Not Liganded
6.00E+	07 TYR	49	F	13.48	100	Not Liganded
6.00E+	07 TYR	70	F	12.59	54	Not Liganded
6.00E+	07 TYR	107	F	12.22	42	Not Liganded
6.00E+	07 TYR	112	F	11.31	57	Liganded
6.00E+	07 TYR	118	F	14.13	69	Not Liganded
6.00E+	07 TYR	139	F	18	100	Not Liganded
6.00E+	07 TYR	147	F	12.92	93	Not Liganded
6.00E+	07 TYR	197	F	11.87	71	Not Liganded
6.00E+	07 TYR	202	F	13.3	89	Not Liganded
6.00E+	07 TYR	249	F	10.01	0	Not Liganded
6.00E+	07 TYR	308	F	11.44	69	Not Liganded
6.00E+	07 TYR	322	F	14.29	59	Not Liganded
6.00E+	07 TYR	343	F	11.32	48	Not Liganded
6.00E+	07 TYR	401	F	16.21	100	Not Liganded
6.00E+	07 TYR	424	F	14.49	100	Not Liganded
6.00E+	07 TYR	428	F	12.42	90	Not Liganded
6.00E+	07 TYR	437	F	15.43	88	Not Liganded
6.00E+	07 TYR	482	F	13.95	99	Not Liganded

6.00E+07	TYR	484	F	11.15	28	Not Liganded
6.00E+07	TYR	503	F	11.12	22	Not Liganded
6.00E+07	TYR	507	F	18.38	91	Not Liganded
6.00E+07	TYR	49	N	13.51	100	Not Liganded
6.00E+07	TYR	70	N	12.49	53	Not Liganded
6.00E+07	TYR	107	N	12.18	42	Not Liganded
6.00E+07	TYR	112	N	11.59	61	Liganded
6.00E+07	TYR	118	N	14.16	71	Not Liganded
6.00E+07	TYR	139	N	18.25	100	Not Liganded
6.00E+07	TYR	147	N	12.91	95	Not Liganded
6.00E+07	TYR	197	N	11.86	68	Not Liganded
6.00E+07	TYR	202	N	13.27	89	Not Liganded
6.00E+07	TYR	249	N	10.03	0	Not Liganded
6.00E+07	TYR	308	N	11.42	67	Not Liganded
6.00E+07	TYR	322	N	14.23	58	Not Liganded
6.00E+07	TYR	343	N	10.84	52	Not Liganded
6.00E+07	TYR	401	N	16.42	100	Not Liganded
6.00E+07	TYR	424	N	14.77	100	Not Liganded
6.00E+07	TYR	428	N	12.38	89	Not Liganded
6.00E+07	TYR	437	N	15.62	90	Not Liganded
6.00E+07	TYR	482	N	13.99	100	Not Liganded
6.00E+07	TYR	484	N	11.11	28	Not Liganded
6.00E+07	TYR	503	N	11.14	16	Not Liganded
6.00E+07	TYR	507	N	18.46	93	Not Liganded
6.00E+07	TYR	49	Q	13.45	100	Not Liganded
6.00E+07	TYR	70	Q	12.43	51	Not Liganded
6.00E+07	TYR	107	Q	12.19	40	Not Liganded
6.00E+07	TYR	112	Q	11.44	58	Liganded
6.00E+07	TYR	118	Q	13.61	68	Not Liganded
6.00E+07	TYR	139	Q	18.58	100	Not Liganded
6.00E+07	TYR	147	Q	12.97	95	Not Liganded
6.00E+07	TYR	197	Q	11.89	71	Not Liganded
6.00E+07	TYR	202	Q	13.35	90	Not Liganded
6.00E+07	TYR	249	Q	10.03	0	Not Liganded
6.00E+07	TYR	308	Q	11.26	69	Not Liganded
6.00E+07	TYR	322	Q	14.74	68	Not Liganded
6.00E+07	TYR	343	Q	11.11	47	Not Liganded
6.00E+07	TYR	401	Q	15.22	100	Not Liganded
6.00E+07	TYR	424	Q	14.58	100	Not Liganded
6.00E+07	TYR	428	Q	12.59	92	Not Liganded
6.00E+07	TYR	437	Q	15.69	92	Not Liganded
6.00E+07	TYR	482	Q	14.02	100	Not Liganded
6.00E+07	TYR	484	Q	10.86	28	Not Liganded
6.00E+07	TYR	503	Q	11.28	22	Not Liganded
6.00E+07	TYR	507	Q	18.39	93	Not Liganded
6.00E+07	TYR	49	Т	13.48	100	Not Liganded

6.00E+07	TYR	70	Т	12.43	50	Not Liganded
6.00E+07	TYR	107	т	12.17	41	Not Liganded
6.00E+07	TYR	112	т	11.37	56	Liganded
6.00E+07	TYR	118	Т	14.03	68	Not Liganded
6.00E+07	TYR	139	т	18.64	100	Not Liganded
6.00E+07	TYR	147	т	12.9	95	Not Liganded
6.00E+07	TYR	197	т	11.84	67	Not Liganded
6.00E+07	TYR	202	Т	13.5	92	Not Liganded
6.00E+07	TYR	249	Т	11.01	64	Not Liganded
6.00E+07	TYR	308	Т	11.49	70	Not Liganded
6.00E+07	TYR	322	т	14.3	59	Not Liganded
6.00E+07	TYR	343	т	11.17	44	Not Liganded
6.00E+07	TYR	401	Т	14.89	100	Not Liganded
6.00E+07	TYR	424	т	14.79	100	Not Liganded
6.00E+07	TYR	428	т	12.52	92	Not Liganded
6.00E+07	TYR	437	т	16.04	94	Not Liganded
6.00E+07	TYR	482	Т	13.98	100	Not Liganded
6.00E+07	TYR	484	т	11.16	29	Not Liganded
6.00E+07	TYR	503	Т	11.22	22	Not Liganded
6.00E+07	TYR	507	т	18.18	93	Not Liganded
6.00E+07	TYR	49	W	13.47	100	Not Liganded
6.00E+07	TYR	70	w	12.51	52	Not Liganded
6.00E+07	TYR	107	W	12.14	41	Not Liganded
6.00E+07	TYR	112	W	10.95	59	Liganded
6.00E+07	TYR	118	W	14.06	69	Not Liganded
6.00E+07	TYR	139	W	18.64	100	Not Liganded
6.00E+07	TYR	147	W	12.83	94	Not Liganded
6.00E+07	TYR	197	w	11.82	67	Not Liganded
6.00E+07	TYR	202	w	13.35	90	Not Liganded
6.00E+07	TYR	249	W	9.97	0	Not Liganded
6.00E+07	TYR	308	w	11.16	68	Not Liganded
6.00E+07	TYR	322	W	14.35	60	Not Liganded
6.00E+07	TYR	343	w	11.25	45	Not Liganded
6.00E+07	TYR	401	W	16.62	100	Not Liganded
6.00E+07	TYR	424	w	14.61	100	Not Liganded
6.00E+07	TYR	428	w	12.48	92	Not Liganded
6.00E+07	TYR	437	w	15.74	91	Not Liganded
6.00E+07	TYR	482	W	13.94	99	Not Liganded
6.00E+07	TYR	484	w	11.38	29	Not Liganded
6.00E+07	TYR	503	W	11.17	21	Not Liganded
6.00E+07	TYR	507	w	18.76	93	Not Liganded
6.00E+07	TYR	49	В	13.45	100	Not Liganded
6.00E+07	TYR	70	В	12.49	52	Not Liganded
6.00E+07	TYR	107	В	12.17	40	Not Liganded
6.00E+07	TYR	112	В	10.8	59	Liganded
6.00E+07	TYR	118	В	14.04	68	Not Liganded

	1	I	1		1	1
6.00E+07	TYR	139	В	18.6	100	Not Liganded
6.00E+07	TYR	147	В	12.89	93	Not Liganded
6.00E+07	TYR	197	В	11.9	70	Not Liganded
6.00E+07	TYR	202	В	13.26	88	Not Liganded
6.00E+07	TYR	249	В	9.92	0	Not Liganded
6.00E+07	TYR	308	В	11.4	67	Not Liganded
6.00E+07	TYR	322	В	14.27	58	Not Liganded
6.00E+07	TYR	343	В	11.2	46	Not Liganded
6.00E+07	TYR	401	В	14.81	100	Not Liganded
6.00E+07	TYR	424	В	14.63	100	Not Liganded
6.00E+07	TYR	428	В	12.62	91	Not Liganded
6.00E+07	TYR	437	В	15.49	89	Not Liganded
6.00E+07	TYR	482	В	13.92	99	Not Liganded
6.00E+07	TYR	484	В	11.08	27	Not Liganded
6.00E+07	TYR	503	В	11.35	22	Not Liganded
6.00E+07	TYR	507	В	17.81	90	Not Liganded
6ASY	TYR	39	А	10.03	97	Not Liganded
6ASY	TYR	65	А	12.24	100	Not Liganded
6ASY	TYR	127	А	12.19	58	Liganded
6ASY	TYR	160	А	11.71	39	Not Liganded
6ASY	TYR	175	А	12.24	82	Not Liganded
6ASY	TYR	209	А	13.89	66	Not Liganded
6ASY	TYR	270	А	11.2	15	Not Liganded
6ASY	TYR	313	А	10.57	0	Not Liganded
6ASY	TYR	396	А	11.88	90	Not Liganded
6ASY	TYR	462	А	11.95	19	Not Liganded
6ASY	TYR	564	А	11.36	32	Not Liganded
6ASY	TYR	566	А	10.57	0	Not Liganded
6ASY	TYR	39	В	10.1	96	Not Liganded
6ASY	TYR	65	В	12.1	100	Not Liganded
6ASY	TYR	127	В	12.5	58	Liganded
6ASY	TYR	160	В	11.75	40	Not Liganded
6ASY	TYR	175	В	12.21	81	Not Liganded
6ASY	TYR	209	В	13.72	64	Not Liganded
6ASY	TYR	270	В	11.25	18	Not Liganded
6ASY	TYR	313	В	10.55	0	Not Liganded
6ASY	TYR	396	В	11.22	91	Not Liganded
6ASY	TYR	462	В	10.64	17	Not Liganded
6ASY	TYR	564	В	11.74	32	Not Liganded
6ASY	TYR	566	В	10.63	0	Not Liganded
5XIX	TYR	123	А	10.12	0	Not Liganded
5XIX	TYR	155	А	11.36	60	Not Liganded
5XIX	TYR	168	А	9.65	0	Not Liganded
5XIX	TYR	182	А	11.12	8	Not Liganded
5XIX	TYR	265	А	17.1	100	Not Liganded
5XIX	TYR	266	А	12.19	84	Not Liganded

_						
5XIX	TYR	289	А	13.81	77	Not Liganded
5XIX	TYR	303	А	15.83	100	Not Liganded
5XIX	TYR	321	А	17.42	100	Not Liganded
5XIX	TYR	335	А	12.77	89	Not Liganded
5XIX	TYR	393	А	11.66	36	Not Liganded
5XIX	TYR	413	А	10.53	7	Not Liganded
5XIX	TYR	448	А	10.98	100	Not Liganded
5XIX	TYR	489	А	11.96	71	Liganded
5XIX	TYR	499	А	12.32	72	Not Liganded
5XIX	TYR	500	А	12.14	58	Not Liganded
5XIX	TYR	502	А	15.76	100	Not Liganded
5XIX	TYR	508	А	10.75	21	Not Liganded
5XIX	TYR	516	А	14.22	100	Not Liganded
5XIX	TYR	531	А	10.08	0	Not Liganded
5XIX	TYR	539	А	14.08	100	Not Liganded
5XIX	TYR	123	В	10.1	0	Not Liganded
5XIX	TYR	155	В	11.36	62	Not Liganded
5XIX	TYR	168	В	9.77	0	Not Liganded
5XIX	TYR	182	В	10.78	11	Not Liganded
5XIX	TYR	265	В	17.57	100	Not Liganded
5XIX	TYR	266	В	11.86	86	Not Liganded
5XIX	TYR	289	В	13.73	74	Not Liganded
5XIX	TYR	303	В	15.69	100	Not Liganded
5XIX	TYR	321	В	17.63	100	Not Liganded
5XIX	TYR	335	В	12.85	91	Not Liganded
5XIX	TYR	393	В	11.52	33	Not Liganded
5XIX	TYR	413	В	10.73	9	Not Liganded
5XIX	TYR	448	В	11.16	100	Not Liganded
5XIX	TYR	489	В	11.89	70	Liganded
5XIX	TYR	499	В	12.3	68	Not Liganded
5XIX	TYR	500	В	12.17	59	Not Liganded
5XIX	TYR	502	В	15.54	100	Not Liganded
5XIX	TYR	508	В	10.8	23	Not Liganded
5XIX	TYR	516	В	14.24	100	Not Liganded
5XIX	TYR	531	В	9.78	0	Not Liganded
5XIX	TYR	539	В	14.1	100	Not Liganded
5XIX	TYR	123	С	10.14	0	Not Liganded
5XIX	TYR	155	С	11.16	63	Not Liganded
5XIX	TYR	168	С	9.59	0	Not Liganded
5XIX	TYR	182	С	11.18	8	Not Liganded
5XIX	TYR	265	С	18.21	100	Not Liganded
5XIX	TYR	266	С	12.37	86	Not Liganded
5XIX	TYR	289	С	13.52	71	Not Liganded
5XIX	TYR	303	С	15.35	100	Not Liganded
5XIX	TYR	321	С	14.11	100	Not Liganded
	TVP	225	C	12.0	88	Not Liganded

5XIX	TYR	393	c	11.36	35	Not Liganded
5XIX	TYR	413	c	10.73	3	Not Liganded
5XIX	TYR	448	c	15.71	83	Not Liganded
5XIX	TYR	489	c	13.62	71	Liganded
5XIX	TYR	499	С	11.49	60	Not Liganded
5XIX	TYR	500	С	12.05	57	Not Liganded
5XIX	TYR	502	С	15.25	100	Not Liganded
5XIX	TYR	508	С	10.74	19	Not Liganded
5XIX	TYR	516	С	14.05	100	Not Liganded
5XIX	TYR	531	С	9.73	0	Not Liganded
5XIX	TYR	539	С	14.22	100	Not Liganded
5XIX	TYR	123	D	10.12	0	Not Liganded
5XIX	TYR	155	D	11.15	62	Not Liganded
5XIX	TYR	168	D	10.16	0	Not Liganded
5XIX	TYR	182	D	11.08	10	Not Liganded
5XIX	TYR	265	D	18.49	100	Not Liganded
5XIX	TYR	266	D	12.27	85	Not Liganded
5XIX	TYR	289	D	13.53	69	Not Liganded
5XIX	TYR	303	D	15.48	100	Not Liganded
5XIX	TYR	321	D	14.24	100	Not Liganded
5XIX	TYR	335	D	12.98	88	Not Liganded
5XIX	TYR	393	D	11.27	36	Not Liganded
5XIX	TYR	413	D	10.88	7	Not Liganded
5XIX	TYR	448	D	15.8	80	Not Liganded
5XIX	TYR	489	D	13.76	70	Liganded
5XIX	TYR	499	D	11.38	60	Not Liganded
5XIX	TYR	500	D	12.04	57	Not Liganded
5XIX	TYR	502	D	15.14	100	Not Liganded
5XIX	TYR	508	D	10.77	20	Not Liganded
5XIX	TYR	516	D	14.16	100	Not Liganded
5XIX	TYR	531	D	9.83	0	Not Liganded
5XIX	TYR	539	D	14.17	100	Not Liganded
5XDR	TYR	127	А	10.94	38	Not Liganded
5XDR	TYR	128	А	10.56	0	Not Liganded
5XDR	TYR	142	А	10.46	0	Not Liganded
5XDR	TYR	177	А	11.22	33	Not Liganded
5XDR	TYR	219	А	11.95	50	Not Liganded
5XDR	TYR	235	А	16.31	100	Not Liganded
5XDR	TYR	254	А	11.78	84	Not Liganded
5XDR	TYR	303	А	13.32	72	Not Liganded
5XDR	TYR	323	А	10.8	27	Not Liganded
5XDR	TYR	331	А	12.17	48	Not Liganded
5XDR	TYR	389	А	12.21	57	Not Liganded
5XDR	TYR	447	А	12.08	66	Not Liganded
5XDR	TYR	485	А	15.87	90	Not Liganded
5XDR	TYR	490	А	9.19	30	Not Liganded

SXDRTYR499A10.13OLigandedSXDRTYRS45A11.0639Not LigandedSXDRTYRG81A13.12G41Not LigandedSXDRTYRG615A10.11ONot LigandedSXDRTYRG651A10.13G4Not LigandedSXDRTYRG655A11.24Mot LigandedSXDRTYRG656A11.34Mot LigandedSXDRTYRG697A13.98100Not LigandedSXDRTYR710A13.51G3Not LigandedSXDRTYR736A13.29100Not LigandedSXDRTYR736A13.29100Not LigandedSXDRTYR766A13.37G0Not LigandedSXDRTYR766A13.3700Not LigandedSUQTYR792A10.110Not LigandedSUQTYR798A10.210Not LigandedSUQTYR799A13.1463Not LigandedSUQTYR1394A10.210Not LigandedSUQTYR799A13.1453Not LigandedSUQTYR792A10.14Not LigandedSUQTYR221A11.2559Not LigandedSUQTYR236 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
SXDRTYR545A11.06JNet LigandedSXDRTYRS81A11.2641Not LigandedSXDRTYRG81A10.11GNNot LigandedSXDRTYRG61A10.11GNNot LigandedSXDRTYRG685A12.7751Not LigandedSXDRTYRG686A11.3441Not LigandedSXDRTYRG686A13.38100Not LigandedSXDRTYRG706A13.38100Not LigandedSXDRTYR776A13.29100Not LigandedSXDRTYR776A13.29100Not LigandedSXDRTYR776A13.3793Not LigandedSXDRTYR776A13.3793Not LigandedSXDRTYR776A13.38100Not LigandedSXDRTYR778A13.3110Not LigandedSUQTYR778A13.1483Not LigandedSUQTYR1344A10.711Not LigandedSUQTYR1344A10.711Not LigandedSUQTYR277A13.1483Not LigandedSUQTYR278A13.1483Not LigandedSUQTYR229A13.1483Not Liganded<	5XDR	TYR	499	А	10.13	0	Liganded
SXDRTYRS81A11.2641Not LigandedSXDRTYRG61A13.3158Not LigandedSXDRTYRG645A10.11ONot LigandedSXDRTYRG665A11.3441Not LigandedSXDRTYRG666A11.3441Not LigandedSXDRTYRG697A13.38100Not LigandedSXDRTYRG767A13.38100Not LigandedSXDRTYR7766A13.87G3Not LigandedSXDRTYR7766A13.87G3Not LigandedSXDRTYR7766A13.87G3Not LigandedSXDRTYR7766A13.87G3Not LigandedSXDRTYR7766A13.87G3Not LigandedSXDRTYR778A10.21ONot LigandedSUZQTYR778A15.38100Not LigandedSUZQTYR10.41A10.71INot LigandedSUZQTYR2217A13.14A3Not LigandedSUZQTYR2217A13.14A3Not LigandedSUZQTYR2218A13.14A4Not LigandedSUZQTYR2314A10.25ANot LigandedSUZQTYR2328A13.48ANot L	5XDR	TYR	545	А	11.06	39	Not Liganded
SXDRTYR631A13.1358Not LigandedSXDRTYR665A10.110Not LigandedSXDRTYR6651A10.58ANot LigandedSXDRTYR6665A11.34A41Not LigandedSXDRTYR6666A11.34A41Not LigandedSXDRTYR776A13.58100Not LigandedSXDRTYR7760A13.5163Not LigandedSXDRTYR7765A13.8793Not LigandedSXDRTYR7765A13.8793Not LigandedSXDRTYR7765A13.8793Not LigandedSUQTYR77833100Not LigandedSUQTYR77833100Not LigandedSUQTYR13.85A10.210Not LigandedSUQTYR13.84A10.211Not LigandedSUQTYR21.74A13.1483Not LigandedSUQTYR22.14A13.14100Not LigandedSUQTYR22.14A13.14100Not LigandedSUQTYR22.14A13.14100Not LigandedSUQTYR22.14A13.14100Not LigandedSUQTYR22.14A13.14100Not Ligan	5XDR	TYR	581	А	11.26	41	Not Liganded
SXDRTYR645A10.110Not LigandedSXDRTYR661A10.58ANot LigandedSXDRTYR666A11.3441Not LigandedSXDRTYR666A11.3441Not LigandedSXDRTYR667A13.98100Not LigandedSXDRTYR770A13.5163Not LigandedSXDRTYR776A13.2793Not LigandedSXDRTYR7765A13.28100Not LigandedSXDRTYR7765A13.38100Not LigandedSXDRTYR7765A13.38100Not LigandedSUQTYR77833100Not LigandedSUQTYR778310.310Not LigandedSUQTYR199A13.1483Not LigandedSUQTYR221A11.3147Not LigandedSUQTYR221A11.2559Not LigandedSUQTYR222A13.1483Not LigandedSUQTYR222A13.91100Not LigandedSUQTYR223A13.91100Not LigandedSUQTYR224A13.91100Not LigandedSUQTYR235A13.91100Not Liganded <tr< td=""><td>5XDR</td><td>TYR</td><td>631</td><td>А</td><td>13.13</td><td>58</td><td>Not Liganded</td></tr<>	5XDR	TYR	631	А	13.13	58	Not Liganded
SXDRTYR661A10.58ANot LigandedSXDRTYR665A11.34K1Not LigandedSXDRTYR667A13.58G0Not LigandedSXDRTYR770A13.51G6Not LigandedSXDRTYR770A13.51G0Not LigandedSXDRTYR776A10.21G0Not LigandedSXDRTYR7765A13.57G0Not LigandedSXDRTYR7765A15.38100Not LigandedSXDRTYR7765A15.38100Not LigandedSXDRTYR778A10.31G0Not LigandedSUQTYR178A10.31100Not LigandedSUQTYR178A10.1211Not LigandedSUQTYR1214A11.5457Not LigandedSUQTYR222A13.8147Not LigandedSUQTYR223A13.8147Not LigandedSUQTYR2246A11.5457Not LigandedSUQTYR2246A13.8140Not LigandedSUQTYR2331A13.8440Not LigandedSUQTYR2345A14.4882Not LigandedSUQTYR2345A13.54100Liganded	5XDR	TYR	645	А	10.11	0	Not Liganded
SXDRTYR6685A12.77S1Not LigandedSXDRTYR666A11.3441Not LigandedSXDRTYR677A13.28100Not LigandedSXDRTYR7710A13.29100Not LigandedSXDRTYR7765A13.27100Not LigandedSXDRTYR7765A13.8793Not LigandedSXDRTYR7766A13.8793Not LigandedSXDRTYR7762A13.87100Not LigandedSXDRTYR7762A13.3100Not LigandedSUQTYR1786A9.570Not LigandedSUQTYR1999A13.1483Not LigandedSUQTYR1999A13.1483Not LigandedSUQTYR1999A13.1483Not LigandedSUQTYR2221A11.847Not LigandedSUQTYR2226A11.8555Not LigandedSUQTYR2236A14.4882Not LigandedSUQTYR2266A14.2888Not LigandedSUQTYR2335A12.8948Not LigandedSUQTYR2345A14.481000LigandedSUQTYR2345A12.8948Not Liganded </td <td>5XDR</td> <td>TYR</td> <td>651</td> <td>А</td> <td>10.58</td> <td>4</td> <td>Not Liganded</td>	5XDR	TYR	651	А	10.58	4	Not Liganded
SXDRTYR6686A11.3441Not LigandedSXDRTYR697A13.88100Not LigandedSXDRTYR710A13.5163Not LigandedSXDRTYR736A13.29100Not LigandedSXDRTYR736A13.8793Not LigandedSXDRTYR765A13.8793Not LigandedSXDRTYR766A15.38100Not LigandedSUQTYR69A9.570Not LigandedSUQTYR80A15.3100Not LigandedSUQTYR1185A10.20Not LigandedSUQTYR1194A10.711Not LigandedSUQTYR2104A13.1483Not LigandedSUQTYR221A11.847Not LigandedSUQTYR226A11.2559Not LigandedSUQTYR236A13.91100Not LigandedSUQTYR236A13.8482Not LigandedSUQTYR236A13.8482Not LigandedSUQTYR236A13.8482Not LigandedSUQTYR236A14.4882Not LigandedSUQTYR331A10.8425Not LigandedSUQ	5XDR	TYR	685	А	12.77	51	Not Liganded
SXDRTYR697A13.98100Not LigandedSXDRTYR710A13.51G3Not LigandedSXDRTYR776A13.29100Not LigandedSXDRTYR7765A13.8793Not LigandedSXDRTYR7765A13.8793Not LigandedSXDRTYR7766A15.38100Not LigandedSXDRTYR792A10.310Not LigandedSUQTYR80A9.570Not LigandedSUQTYR185A10.210Not LigandedSUQTYR1994A10.711Not LigandedSUQTYR1994A10.711Not LigandedSUQTYR1994A11.2157Not LigandedSUQTYR2217A11.847Not LigandedSUQTYR2228A11.847Not LigandedSUQTYR2358A13.91100Not LigandedSUQTYR3313A10.8425Not LigandedSUQTYR3314A10.8425Not LigandedSUQTYR3313A10.8425Not LigandedSUQTYR3314A10.8425Not LigandedSUQTYR3314A10.8425Not Liganded <t< td=""><td>5XDR</td><td>TYR</td><td>686</td><td>А</td><td>11.34</td><td>41</td><td>Not Liganded</td></t<>	5XDR	TYR	686	А	11.34	41	Not Liganded
SXDRTYR710A13.51G3Not ligandedSXDRTYR736A13.29100Not ligandedSXDRTYR766A13.8793Not ligandedSXDRTYR766A13.8793Not ligandedSXDRTYR766A15.38100Not ligandedSXDRTYR776A10.310Not ligandedSXDRTYR769A9.570Not ligandedSUQTYR1358A10.20Not ligandedSUQTYR1358A10.210Not ligandedSUQTYR1351A10.711Not ligandedSUQTYR217A15.1483Not ligandedSUQTYR221A11.8147Not ligandedSUQTYR2258A13.91100Not ligandedSUQTYR2364A11.2559Not ligandedSUQTYR3313A10.8425Not ligandedSUQTYR3331A10.3410ligandedSUQTYR3455A11.2848Not ligandedSUQTYR3454A10.3340Not ligandedSUQTYR3454A10.3412.4Not ligandedSUQTYR3455A12.8948Not liganded <t< td=""><td>5XDR</td><td>TYR</td><td>697</td><td>А</td><td>13.98</td><td>100</td><td>Not Liganded</td></t<>	5XDR	TYR	697	А	13.98	100	Not Liganded
SXDRTYR736A13.29100Not ligandedSXDRTYR746A10.210Not ligandedSXDRTYR766A13.8793Not ligandedSXDRTYR766A15.38100Not ligandedSXDRTYR792A10.310Not ligandedSUQTYR69A9.570Not ligandedSUQTYR69A9.570Not ligandedSUQTYR194A10.711Not ligandedSUQTYR199A13.1483Not ligandedSUQTYR217A11.847Not ligandedSUQTYR221A11.847Not ligandedSUQTYR2246A11.2559Not ligandedSUQTYR246A11.2559Not ligandedSUQTYR2331A10.8425Not ligandedSUQTYR2365A15.74100ligandedSUQTYR331A10.8425Not ligandedSUQTYR331A10.84100Not ligandedSUQTYR331A10.84100Not ligandedSUQTYR331A10.84100Not ligandedSUQTYR331A10.84100Not ligandedSUQ <t< td=""><td>5XDR</td><td>TYR</td><td>710</td><td>А</td><td>13.51</td><td>63</td><td>Not Liganded</td></t<>	5XDR	TYR	710	А	13.51	63	Not Liganded
SXDRTYR746A10.210Not LigandedSXDRTYR765A13.8793Not LigandedSXDRTYR776A15.38100Not LigandedSUQTYR792A10.31ONot LigandedSUZQTYR80A15.3100Not LigandedSUZQTYR80A15.3100Not LigandedSUZQTYR80A10.21ONot LigandedSUZQTYR199A13.1483Not LigandedSUZQTYR217A15.1457Not LigandedSUZQTYR221A11.8557Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR226A11.2559Not LigandedSUZQTYR2286A13.91100Not LigandedSUZQTYR2381A10.8422Not LigandedSUZQTYR2381A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.84100Not Liganded	5XDR	TYR	736	А	13.29	100	Not Liganded
SXDRTYR765A13.8793Not ligandedSXDRTYR766A15.38100Not ligandedSXDRTYR792A10.31ONot ligandedSUQTYR69A9.57ONot ligandedSUQTYR80A15.3100Not ligandedSUQTYR185A10.2ONot ligandedSUQTYR194A10.711Not ligandedSUQTYR199A13.1483Not ligandedSUQTYR217A15.1457Not ligandedSUQTYR221A11.847Not ligandedSUQTYR226A11.2559Not ligandedSUQTYR226A13.91100Not ligandedSUQTYR236A13.91100Not ligandedSUQTYR236A13.91100Not ligandedSUQTYR331A10.8425Not ligandedSUQTYR331A10.8420Not ligandedSUQTYR331A10.0340Not ligandedSUQTYR331A10.34100Not ligandedSUQTYR411A10.542Not ligandedSUQTYR411A10.542Not ligandedSUQT	5XDR	TYR	746	А	10.21	0	Not Liganded
SXDRTYR766A15.38100Not LigandedSXDRTYR792A10.310Not LigandedSUZQTYR69A9.570Not LigandedSUZQTYR80A15.3100Not LigandedSUZQTYR185A10.20Not LigandedSUZQTYR194A10.711Not LigandedSUZQTYR1994A10.711Not LigandedSUZQTYR217A15.1483Not LigandedSUZQTYR2217A11.847Not LigandedSUZQTYR2216A11.847Not LigandedSUZQTYR2266A11.2559Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR2361A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8426Not Liganded <tr< td=""><td>5XDR</td><td>TYR</td><td>765</td><td>А</td><td>13.87</td><td>93</td><td>Not Liganded</td></tr<>	5XDR	TYR	765	А	13.87	93	Not Liganded
SXDRTYR792A10.310Not LigandedSUZQTYR69A9.570Not LigandedSUZQTYR188A10.20Not LigandedSUZQTYR194A10.711Not LigandedSUZQTYR199A13.1483Not LigandedSUZQTYR217A15.1457Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR2246A11.2559Not LigandedSUZQTYR2266A11.2559Not LigandedSUZQTYR2266A11.842Not LigandedSUZQTYR2364A11.842Not LigandedSUZQTYR2364A11.842Not LigandedSUZQTYR2364A11.842Not LigandedSUZQTYR2364A11.842Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.340Not LigandedSUZQTYR331A10.340Not LigandedSUZQTYR345A12.8267Not LigandedSUZQTYR431A10.340Not LigandedSUZQTYR4141A10.542Not Liganded <td< td=""><td>5XDR</td><td>TYR</td><td>766</td><td>А</td><td>15.38</td><td>100</td><td>Not Liganded</td></td<>	5XDR	TYR	766	А	15.38	100	Not Liganded
SUZQTYR69A9.570Not LigandedSUZQTYR180A15.3100Not LigandedSUZQTYR185A10.20Not LigandedSUZQTYR199A13.1483Not LigandedSUZQTYR199A13.1483Not LigandedSUZQTYR217A15.1457Not LigandedSUZQTYR2217A11.847Not LigandedSUZQTYR2216A11.2559Not LigandedSUZQTYR2258A13.91100Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR335A12.8988Not LigandedSUZQTYR331A10.942Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4412A12.5948Not Liganded	5XDR	TYR	792	А	10.31	0	Not Liganded
SUZQTYR80A15.3100Not LigandedSUZQTYR185A10.20Not LigandedSUZQTYR194A10.711Not LigandedSUZQTYR217A15.1457Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR226A11.2559Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR331A10.0340Not LigandedSUZQTYR331A10.0340Not LigandedSUZQTYR331A10.0340Not LigandedSUZQTYR331A10.0340Not LigandedSUZQTYR4144A10.542Not LigandedSUZQTYR4144A10.542Not LigandedSUZQTYR4144A10.542Not LigandedSUZQTYR4144A10.542Not LigandedS	5UZQ	TYR	69	А	9.57	0	Not Liganded
SUZQTYR185A10.20Not LigandedSUZQTYR194A10.711Not LigandedSUZQTYR217A13.1483Not LigandedSUZQTYR2217A11.847Not LigandedSUZQTYR2211A11.847Not LigandedSUZQTYR2264A11.2559Not LigandedSUZQTYR2268A13.91100Not LigandedSUZQTYR2331A10.8422Not LigandedSUZQTYR3331A10.8425Not LigandedSUZQTYR3331A10.8425Not LigandedSUZQTYR3331A10.94Not LigandedSUZQTYR3335A12.8988Not LigandedSUZQTYR3331A10.0340Not LigandedSUZQTYR3331A10.0340Not LigandedSUZQTYR3331A10.0340Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4414A10.0Not LigandedSUZQTYR4414A10.0Not LigandedSUZQTYR4414A10.0Not LigandedSUZQTYR4414A10.0Not LigandedSUZQTYR46A	5UZQ	TYR	80	А	15.3	100	Not Liganded
SUZQTYR194A10.711Not LigandedSUZQTYR199A13.1483Not LigandedSUZQTYR217A15.1457Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR226A11.2559Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR335A15.74100LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR381A10.542Not LigandedSUZQTYR381A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A11.45100Not LigandedSUZ	5UZQ	TYR	185	А	10.2	0	Not Liganded
SUZQTYR199A13.1483Not LigandedSUZQTYR217A15.1457Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR2266A11.2559Not LigandedSUZQTYR2268A13.91100Not LigandedSUZQTYR2386A14.4882Not LigandedSUZQTYR2385A10.8425Not LigandedSUZQTYR3315A10.8425Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR3357A10.3340Not LigandedSUZQTYR3357A12.8948Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4412A12.5948Not LigandedSUZQTYR4414A10.05Not LigandedSUZQTYR4414A10.542Not LigandedSUZQTYR4412A12.5948Not LigandedSUZQTYR4414A10.6Not LigandedSUZQTYR4414A10.6Not LigandedSUZQ <t< td=""><td>5UZQ</td><td>TYR</td><td>194</td><td>А</td><td>10.71</td><td>1</td><td>Not Liganded</td></t<>	5UZQ	TYR	194	А	10.71	1	Not Liganded
SUZQTYR217A15.14S7Not LigandedSUZQTYR221A11.847Not LigandedSUZQTYR2266A11.25S9Not LigandedSUZQTYR2268A13.91100Not LigandedSUZQTYR2866A14.4882Not LigandedSUZQTYR3313A10.8425Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR3357A12.8948Not LigandedSUZQTYR3451A10.0340Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4412A12.5948Not LigandedSUZQTYR4411A10.542Not LigandedSUZQTYR4411A12.5748Not LigandedSUZQTYR4412A12.8267Not LigandedSUZQTYR441A13.93100Not LigandedSUZQTYR1444A13.93100Not LigandedSUZQTYR178A12.243Not Li	5UZQ	TYR	199	А	13.14	83	Not Liganded
SUZQTYR221A11.847Not LigandedSUZQTYR246A11.2559Not LigandedSUZQTYR258A13.91100Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR4112A12.8948Not LigandedSUZQTYR4112A12.8267Not LigandedSUZQTYR413A13.93100Not LigandedSUZQTYR416A12.8267Not LigandedSUZQTYR416A12.8267Not LigandedSUZQTYR416A13.93100Not LigandedSUZQTYR416A13.93100Not LigandedSUZQTYR416A12.8267Not LigandedSUZQTYR416A13.6969Not Liganded	5UZQ	TYR	217	А	15.14	57	Not Liganded
SUZQTYR246A11.25S9Not LigandedSUZQTYR258A13.91100Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR3357A12.8988Not LigandedSUZQTYR357A10.0340Not LigandedSUZQTYR357A10.542Not LigandedSUZQTYR4111A10.542Not LigandedSUZQTYR4111A10.542Not LigandedSUZQTYR4111A10.542Not LigandedSUZQTYR4112A12.5948Not LigandedSUZQTYR4441A100Not LigandedSUZQTYR4441A100Not LigandedSUZQTYR4441A100Not LigandedSUZQTYR446A12.8267Not LigandedSUZQTYR446A13.93100Not LigandedSUZQTYR446A13.6969Not LigandedSOF9TYR77A12.2743Not LigandedSOF9TYR446100Not LigandedSOF9NGRNot LigandedSOF9TYR243A11.3546Not LigandedS	5UZQ	TYR	221	А	11.8	47	Not Liganded
SUZQTYR258A13.91100Not LigandedSUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR345A15.74100LigandedSUZQTYR357A12.8988Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR381A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR412A12.8267Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR410A12.8267Not LigandedSUZQTYR416A12.1716Not LigandedSOF9TYR178A13.6969Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR273A11.45100Not LigandedSOF9TYR277A11.3646Not LigandedSOF9TYR277A11.3546Not Liganded <t< td=""><td>5UZQ</td><td>TYR</td><td>246</td><td>А</td><td>11.25</td><td>59</td><td>Not Liganded</td></t<>	5UZQ	TYR	246	А	11.25	59	Not Liganded
SUZQTYR286A14.4882Not LigandedSUZQTYR331A10.8425Not LigandedSUZQTYR345A15.74100LigandedSUZQTYR357A12.8988Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A12.5948Not LigandedSUZQTYR411A12.5948Not LigandedSUZQTYR411A12.5948Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR419A12.8267Not LigandedSUZQTYR413A12.8267Not LigandedSOF9TYR118A13.93100Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR277A11.3546Not LigandedSOF9TYR277A11.3546Not Liganded <tr< td=""><td>5UZQ</td><td>TYR</td><td>258</td><td>А</td><td>13.91</td><td>100</td><td>Not Liganded</td></tr<>	5UZQ	TYR	258	А	13.91	100	Not Liganded
SUZQTYR331A10.8425Not LigandedSUZQTYR345A15.74100LigandedSUZQTYR357A12.8988Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR420A12.8267Not LigandedSUZQTYR420A12.8267Not LigandedSUZQTYR420A12.8267Not LigandedSUZQTYR436A13.93100Not LigandedSOF9TYR178A13.6969Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR173A12.7723Not LigandedSOF9TYR248A16.33100Not LigandedSOF9TYR248A16.33100Not LigandedSOF9TYR277A11.3646Not LigandedSOF9TYR277A11.3546Not LigandedSOF9TYR277A11.3546Not Liganded	5UZQ	TYR	286	А	14.48	82	Not Liganded
SUZQTYR345A15.74100LigandedSUZQTYR357A12.8988Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR414A100Not LigandedSUZQTYR412A12.8267Not LigandedSUZQTYR414A100Not LigandedSUZQTYR416A12.1716Not LigandedSUZQTYR16A13.93100Not LigandedSOF9TYR1715A13.6969Not LigandedSOF9TYR1717A12.2743Not LigandedSOF9TYR1717A12.2723Not LigandedSOF9TYR173A12.2723Not LigandedSOF9TYR23A11.45100Not LigandedSOF9TYR243A16.33100Not LigandedSOF9TYR272A11.3646Not LigandedSOF9TYR277A11.3546Not LigandedSOF9TYR<	5UZQ	TYR	331	А	10.84	25	Not Liganded
SUZQTYR357A12.8988Not LigandedSUZQTYR381A10.0340Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR420A12.8267Not LigandedSUZQTYR420A12.8267Not LigandedSOF9TYR6A12.1716Not LigandedSOF9TYR18A13.93100Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR175A12.7723Not LigandedSOF9TYR243A11.45100Not LigandedSOF9TYR248A16.33100Not LigandedSOF9TYR272A11.3646Not LigandedSOF9TYR277A12.6847Not LigandedSOF9TYR277A13.5546Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR385A14.04100Not Liganded </td <td>5UZQ</td> <td>TYR</td> <td>345</td> <td>А</td> <td>15.74</td> <td>100</td> <td>Liganded</td>	5UZQ	TYR	345	А	15.74	100	Liganded
SUZQTYR381A10.0340Not LigandedSUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR410A12.8267Not LigandedSUZQTYR420A12.8267Not LigandedSUZQTYR406A12.1716Not LigandedSOF9TYR18A13.93100Not LigandedSOF9TYR101A14.86100Not LigandedSOF9TYR171A12.243Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR175A12.7723Not LigandedSOF9TYR243A11.45100Not LigandedSOF9TYR248A16.33100Not LigandedSOF9TYR277A11.3646Not LigandedSOF9TYR277A12.6847Not LigandedSOF9TYR277A11.3546Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR394A15.1883Not Liganded	5UZQ	TYR	357	А	12.89	88	Not Liganded
SUZQTYR411A10.542Not LigandedSUZQTYR412A12.5948Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR420A12.8267Not LigandedSUZQTYR6A12.1716Not LigandedSOF9TYR6A12.1716Not LigandedSOF9TYR18A13.93100Not LigandedSOF9TYR100A14.86100Not LigandedSOF9TYR100A14.86100Not LigandedSOF9TYR100A14.86100Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR175A12.7723Not LigandedSOF9TYR243A11.45100Not LigandedSOF9TYR248A16.33100Not LigandedSOF9TYR277A11.3646Not LigandedSOF9TYR2777A11.3546Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR394A15.1883Not Liganded	5UZQ	TYR	381	А	10.03	40	Not Liganded
SUZQTYR412A12.5948Not LigandedSUZQTYR419A14.44100Not LigandedSUZQTYR420A12.8267Not LigandedSOF9TYRA12.1716Not LigandedSOF9TYRA13.93100Not LigandedSOF9TYRA13.6969Not LigandedSOF9TYRA13.6969Not LigandedSOF9TYRA100A14.86100SOF9TYRA12.243Not LigandedSOF9TYRA173A12.7723SOF9TYRA175A12.7723SOF9TYRA11.45100Not LigandedSOF9TYRA11.3546Not LigandedSOF9TYRA272A11.3646SOF9TYRA277A12.6847SOF9TYRA279A11.3546SOF9TYRA279A11.3546SOF9TYRA385A14.04100SOF9TYRA385A34.0433SOF9TYRA394A35.1883SOF9TYRA394A35.1883SOF9TYRA394A35.1883 <t< td=""><td>5UZQ</td><td>TYR</td><td>411</td><td>А</td><td>10.54</td><td>2</td><td>Not Liganded</td></t<>	5UZQ	TYR	411	А	10.54	2	Not Liganded
SUZQTYR419A14.44100Not LigandedSUZQTYR420A12.8267Not LigandedSOF9TYRCA12.1716Not LigandedSOF9TYRC18A13.93100Not LigandedSOF9TYRCA13.6969Not LigandedSOF9TYRCA14.86100Not LigandedSOF9TYRCA14.86100Not LigandedSOF9TYRCA12.243Not LigandedSOF9TYRCA12.243Not LigandedSOF9TYRCA12.7723Not LigandedSOF9TYRCA11.45100Not LigandedSOF9TYRCA11.45100Not LigandedSOF9TYRCA11.3546Not LigandedSOF9TYRCA11.3546Not LigandedSOF9TYRCA11.3546Not LigandedSOF9TYRCA11.3546Not LigandedSOF9TYRAA14.04100Not LigandedSOF9TYRAA14.04100Not LigandedSOF9TYRAA14.04100Not LigandedSOF9TYRAA15.1883Not Liganded	5UZQ	TYR	412	А	12.59	48	Not Liganded
SUZQTYR420A12.8267Not LigandedSOF9TYRControlA12.1716Not LigandedSOF9TYR18A13.93100Not LigandedSOF9TYRControlA13.6969Not LigandedSOF9TYRControlA14.86100Not LigandedSOF9TYRControlA14.86100Not LigandedSOF9TYRControlA12.2743Not LigandedSOF9TYRControlA12.7723Not LigandedSOF9TYRControlA11.45100Not LigandedSOF9TYRControlA11.3546Not LigandedSOF9TYRControlA11.3546Not LigandedSOF9TYRControlA11.3546Not LigandedSOF9TYRControlA11.3546Not LigandedSOF9TYRControlA11.3546Not LigandedSOF9TYRControlA11.3546Not LigandedSOF9TYRAA14.04100Not LigandedSOF9TYRAA15.1883Not LigandedSOF9TYRAA15.1883Not Liganded	5UZQ	TYR	419	А	14.44	100	Not Liganded
SOF9TYRA12.1716Not LigandedSOF9TYRA13.93100Not LigandedSOF9TYRA13.6969Not LigandedSOF9TYRA14.86100Not LigandedSOF9TYRA12.243Not LigandedSOF9TYRA12.7723Not LigandedSOF9TYRA12.7723Not LigandedSOF9TYRA11.45100Not LigandedSOF9TYRA16.33100Not LigandedSOF9TYRA416.33100Not LigandedSOF9TYRA272A11.3646Not LigandedSOF9TYRA277A12.6847Not LigandedSOF9TYRA279A11.3546Not LigandedSOF9TYRA385A14.04100Not LigandedSOF9TYRA385A14.04100Not LigandedSOF9TYRA394A15.1883Not Liganded	5UZQ	TYR	420	А	12.82	67	Not Liganded
50F9TYR18A13.93100Not Liganded50F9TYRS1A13.6969Not Liganded50F9TYR100A14.86100Not Liganded50F9TYR173A12.243Not Liganded50F9TYR1775A12.7723Not Liganded50F9TYR243A11.45100Not Liganded50F9TYR243A16.33100Not Liganded50F9TYR272A16.33100Not Liganded50F9TYR277A12.6847Not Liganded50F9TYR277A11.3546Not Liganded50F9TYR279A11.3546Not Liganded50F9TYR385A14.04100Not Liganded50F9TYR394A15.1883Not Liganded	50F9	TYR	6	А	12.17	16	Not Liganded
50F9TYR51A13.6969Not Liganded50F9TYR100A14.86100Not Liganded50F9TYR173A12.243Not Liganded50F9TYR175A12.7723Not Liganded50F9TYR243A11.45100Not Liganded50F9TYR243A11.45100Not Liganded50F9TYR243A16.33100Not Liganded50F9TYR272A11.3646Not Liganded50F9TYR277A12.6847Not Liganded50F9TYR2779A11.3546Not Liganded50F9TYR385A14.04100Not Liganded50F9TYR394A15.1883Not Liganded	50F9	TYR	18	А	13.93	100	Not Liganded
SOF9TYR100A14.86100Not LigandedSOF9TYR173A12.243Not LigandedSOF9TYR175A12.7723Not LigandedSOF9TYR243A11.45100Not LigandedSOF9TYR243A11.45100Not LigandedSOF9TYR272A16.33100Not LigandedSOF9TYR272A11.3646Not LigandedSOF9TYR2777A12.6847Not LigandedSOF9TYR279A11.3546Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR394A15.1883Not Liganded	50F9	TYR	51	А	13.69	69	Not Liganded
5OF9TYR173A12.243Not Liganded5OF9TYR175A12.7723Not Liganded5OF9TYR243A11.45100Not Liganded5OF9TYR248A16.33100Not Liganded5OF9TYR272A11.3646Not Liganded5OF9TYR277A12.6847Not Liganded5OF9TYR277A12.6846Not Liganded5OF9TYR279A11.3546Not Liganded5OF9TYR385A14.04100Not Liganded5OF9TYR394A15.1883Not Liganded	50F9	TYR	100	А	14.86	100	Not Liganded
50F9TYR175A12.7723Not Liganded50F9TYR243A11.45100Not Liganded50F9TYR248A16.33100Not Liganded50F9TYR272A11.3646Not Liganded50F9TYR277A12.6847Not Liganded50F9TYR277A11.3546Not Liganded50F9TYR279A11.3546Not Liganded50F9TYR385A14.04100Not Liganded50F9TYR394A15.1883Not Liganded	50F9	TYR	173	А	12.2	43	Not Liganded
SOF9TYR243A11.45100Not LigandedSOF9TYR248A16.33100Not LigandedSOF9TYR272A11.3646Not LigandedSOF9TYR277A12.6847Not LigandedSOF9TYR279A11.3546Not LigandedSOF9TYR385A14.04100Not LigandedSOF9TYR394A15.1883Not Liganded	50F9	TYR	175	А	12.77	23	Not Liganded
5OF9 TYR 248 A 16.33 100 Not Liganded 5OF9 TYR 272 A 11.36 46 Not Liganded 5OF9 TYR 277 A 12.68 47 Not Liganded 5OF9 TYR 277 A 12.68 46 Not Liganded 5OF9 TYR 279 A 11.35 46 Not Liganded 5OF9 TYR 385 A 14.04 100 Not Liganded 5OF9 TYR 394 A 15.18 83 Not Liganded	50F9	TYR	243	А	11.45	100	Not Liganded
50F9 TYR 272 A 11.36 46 Not Liganded 50F9 TYR 277 A 12.68 47 Not Liganded 50F9 TYR 279 A 11.35 46 Not Liganded 50F9 TYR 279 A 11.35 46 Not Liganded 50F9 TYR 385 A 14.04 100 Not Liganded 50F9 TYR 394 A 15.18 83 Not Liganded	50F9	TYR	248	А	16.33	100	Not Liganded
50F9 TYR 277 A 12.68 47 Not Liganded 50F9 TYR 279 A 11.35 46 Not Liganded 50F9 TYR 385 A 14.04 100 Not Liganded 50F9 TYR 394 A 15.18 83 Not Liganded	50F9	TYR	272	А	11.36	46	Not Liganded
5OF9 TYR 279 A 11.35 46 Not Liganded 5OF9 TYR 385 A 14.04 100 Not Liganded 5OF9 TYR 394 A 15.18 83 Not Liganded	50F9	TYR	277	А	12.68	47	Not Liganded
50F9 TYR 385 A 14.04 100 Not Liganded 50F9 TYR 394 A 15.18 83 Not Liganded	50F9	TYR	279	А	11.35	46	Not Liganded
50F9 TYR 394 A 15.18 83 Not Liganded	50F9	TYR	385	А	14.04	100	Not Liganded
	50F9	TYR	394	А	15.18	83	Not Liganded

50F9	TYR	418	А	15.92	93	Liganded
50F9	TYR	436	А	14.37	81	Not Liganded
50F9	TYR	450	А	14.19	95	Not Liganded
5OF9	TYR	470	А	12.53	73	Not Liganded
50F9	TYR	485	А	10.25	0	Not Liganded
50F9	TYR	519	А	9.54	1	Not Liganded
50F9	TYR	6	В	13.11	30	Not Liganded
50F9	TYR	18	В	16.37	100	Not Liganded
50F9	TYR	51	В	13.68	67	Not Liganded
50F9	TYR	100	В	15.64	100	Not Liganded
50F9	TYR	173	В	12.53	44	Not Liganded
50F9	TYR	175	В	12.44	10	Not Liganded
50F9	TYR	243	В	11.21	100	Not Liganded
50F9	TYR	248	В	16.23	100	Not Liganded
50F9	TYR	272	В	11.7	51	Not Liganded
50F9	TYR	277	В	12.83	51	Not Liganded
50F9	TYR	279	В	11.32	45	Not Liganded
50F9	TYR	385	В	14.01	100	Not Liganded
50F9	TYR	394	В	15.13	81	Not Liganded
50F9	TYR	418	В	14.99	100	Liganded
50F9	TYR	436	В	14.36	84	Not Liganded
50F9	TYR	450	В	14.35	100	Not Liganded
50F9	TYR	470	В	12.37	70	Not Liganded
50F9	TYR	485	В	9.74	0	Not Liganded
50F9	TYR	519	В	10.07	0	Not Liganded
5NQR	TYR	16	А	10.16	0	Not Liganded
5NQR	TYR	36	А	11.9	61	Not Liganded
5NQR	TYR	74	А	10.08	0	Liganded
5NQR	TYR	90	А	10.74	31	Not Liganded
5NQR	TYR	119	А	10.99	49	Not Liganded
5NQR	TYR	198	А	14.66	76	Not Liganded
5NQR	TYR	200	А	14.23	100	Not Liganded
5NQR	TYR	16	В	10.29	0	Not Liganded
5NQR	TYR	36	В	11.94	64	Not Liganded
5NQR	TYR	74	В	10.13	0	Liganded
5NQR	TYR	90	В	10.99	33	Not Liganded
5NQR	TYR	119	В	11.03	48	Not Liganded
5NQR	TYR	198	В	13.11	73	Not Liganded
5NQR	TYR	200	В	14.02	100	Not Liganded
5KY6	TYR	2	А	10.43	3	Not Liganded
5KY6	TYR	4	А	11.44	17	Not Liganded
5КҮ6	TYR	58	А	12.39	64	Not Liganded
5KY6	TYR	84	А	12.53	19	Not Liganded
5KY6	TYR	137	А	10.8	58	Not Liganded
5KY6	TYR	173	А	16.91	100	Not Liganded
5KY6	TYR	203	А	12.76	86	Not Liganded

5KY6	TYR	213	А	13.63	100	Not Liganded
5KY6	TYR	222	А	13.89	86	Not Liganded
5KY6	TYR	301	А	13.8	100	Liganded
5KY6	TYR	327	А	13.42	100	Not Liganded
5KY6	TYR	342	А	10.86	16	Not Liganded
5KY6	TYR	2	В	10.18	6	Not Liganded
5KY6	TYR	4	В	11.38	20	Not Liganded
5KY6	TYR	58	В	12.08	64	Not Liganded
5KY6	TYR	84	В	12.7	23	Not Liganded
5KY6	TYR	137	В	10.7	58	Not Liganded
5KY6	TYR	173	В	16.74	100	Not Liganded
5KY6	TYR	203	В	13	91	Not Liganded
5KY6	TYR	213	В	13.77	100	Not Liganded
5KY6	TYR	222	В	12.17	63	Not Liganded
5KY6	TYR	301	В	13.75	100	Liganded
5KY6	TYR	327	В	13.29	100	Not Liganded
5KY6	TYR	342	В	11.18	20	Not Liganded
5KY6	TYR	363	В	12.09	42	Not Liganded
5KY6	TYR	2	С	10.19	2	Not Liganded
5KY6	TYR	4	С	11.25	16	Not Liganded
5KY6	TYR	58	С	12.19	65	Not Liganded
5KY6	TYR	84	С	12.65	21	Not Liganded
5КҮ6	TYR	137	С	11.38	59	Not Liganded
5KY6	TYR	173	С	16.96	100	Not Liganded
5KY6	TYR	203	С	13.05	91	Not Liganded
5KY6	TYR	213	С	13.68	100	Not Liganded
5KY6	TYR	222	С	12.29	64	Not Liganded
5KY6	TYR	301	С	13.67	100	Liganded
5KY6	TYR	327	С	13.37	100	Not Liganded
5KY6	TYR	342	С	11.17	18	Not Liganded
5KY6	TYR	363	С	12	39	Not Liganded
5KY6	TYR	2	D	10.43	6	Not Liganded
5KY6	TYR	4	D	11.31	16	Not Liganded
5KY6	TYR	58	D	12.37	66	Not Liganded
5KY6	TYR	84	D	12.51	18	Not Liganded
5KY6	TYR	137	D	10.72	58	Not Liganded
5KY6	TYR	173	D	17.11	100	Not Liganded
5KY6	TYR	203	D	12.8	87	Not Liganded
5KY6	TYR	213	D	13.62	100	Not Liganded
5KY6	TYR	222	D	14.05	89	Not Liganded
5KY6	TYR	301	D	13.72	100	Liganded
5KY6	TYR	327	D	13.43	100	Not Liganded
5KY6	TYR	342	D	11.02	16	Not Liganded
5JOA	TYR	47	А	10.16	0	Not Liganded
5J0A	TYR	74	А	14.99	90	Not Liganded
5J0A	TYR	78	А	12.93	88	Not Liganded

5J0A	TYR	100	А	14.12	100	Not Liganded
5J0A	TYR	117	А	13.77	55	Not Liganded
5J0A	TYR	131	А	10.95	35	Not Liganded
5J0A	TYR	156	А	10.07	23	Liganded
5J0A	TYR	206	А	14.78	100	Not Liganded
5J0A	TYR	271	А	15.23	65	Not Liganded
5J0A	TYR	272	А	10.14	1	Not Liganded
5J0A	TYR	290	А	11.47	33	Not Liganded
5J0A	TYR	47	В	10.65	0	Not Liganded
5J0A	TYR	74	В	14.46	93	Not Liganded
5J0A	TYR	78	В	15.99	89	Not Liganded
5J0A	TYR	100	В	13.93	99	Not Liganded
5J0A	TYR	117	В	13.54	52	Not Liganded
5J0A	TYR	131	В	10.47	32	Not Liganded
5J0A	TYR	156	В	10.01	20	Liganded
5J0A	TYR	206	В	14.85	100	Not Liganded
5J0A	TYR	271	В	15.1	65	Not Liganded
5J0A	TYR	272	В	10.41	0	Not Liganded
5J0A	TYR	290	В	11.74	40	Not Liganded
5IQP	TYR	19	А	10.9	10	Not Liganded
5IQP	TYR	48	А	12.26	66	Not Liganded
5IQP	TYR	82	А	13.15	68	Not Liganded
5IQP	TYR	104	А	10.27	0	Not Liganded
5IQP	TYR	118	А	12.52	67	Not Liganded
5IQP	TYR	125	А	15.47	98	Not Liganded
5IQP	TYR	128	А	12.14	95	Liganded
5IQP	TYR	149	А	15.37	100	Not Liganded
5IQP	TYR	178	А	10.54	26	Not Liganded
5IQP	TYR	179	А	10.48	0	Not Liganded
5IQP	TYR	211	А	10.19	0	Not Liganded
5IQP	TYR	19	В	10.94	11	Not Liganded
5IQP	TYR	48	В	12.5	68	Not Liganded
5IQP	TYR	82	В	13.06	66	Not Liganded
5IQP	TYR	104	В	10.05	0	Not Liganded
5IQP	TYR	118	В	11.73	65	Not Liganded
5IQP	TYR	125	В	15.07	95	Not Liganded
5IQP	TYR	128	В	12.19	96	Liganded
5IQP	TYR	149	В	15.27	100	Not Liganded
5IQP	TYR	178	В	10.72	29	Not Liganded
5IQP	TYR	179	В	10.47	0	Not Liganded
5IQP	TYR	211	В	10.31	0	Not Liganded
5IKO	TYR	51	А	10.05	12	Not Liganded
5IKO	TYR	74	А	14.17	100	Not Liganded
5IKO	TYR	75	А	10.25	0	Not Liganded
5IKO	TYR	83	А	11.9	100	Not Liganded
5IKO	TYR	84	А	15.24	100	Not Liganded

5IKO	TYR	90	А	13.5	100	Not Liganded
5IKO	TYR	113	А	10.22	0	Not Liganded
5IKO	TYR	155	А	9.29	100	Not Liganded
5IKO	TYR	157	А	14.54	100	Not Liganded
5IKO	TYR	161	А	14.26	100	Not Liganded
5IKO	TYR	185	А	9.8	0	Not Liganded
5IKO	TYR	196	А	10.41	15	Not Liganded
5IKO	TYR	203	А	13.42	54	Not Liganded
5IKO	TYR	226	А	10.51	45	Not Liganded
5IKO	TYR	233	А	11.65	53	Not Liganded
5IKO	TYR	262	А	10.08	0	Not Liganded
5IKO	TYR	280	А	16.74	100	Not Liganded
5IKO	TYR	297	А	15.14	100	Not Liganded
5IKO	TYR	374	А	15.16	100	Not Liganded
5IKO	TYR	404	А	10.15	22	Not Liganded
5IKO	TYR	472	А	10.13	0	Not Liganded
5IKO	TYR	553	А	12.47	78	Not Liganded
5IKO	TYR	573	А	10.76	83	Not Liganded
5IKO	TYR	587	А	12.6	30	Not Liganded
5IKO	TYR	613	А	12.66	47	Not Liganded
5IKO	TYR	648	А	14.27	100	Not Liganded
5IKO	TYR	726	А	13.98	90	Not Liganded
5IKO	TYR	731	А	11.11	40	Not Liganded
5IKO	TYR	732	А	11.24	10	Liganded
5IKO	TYR	777	А	12.28	75	Not Liganded
5IKO	TYR	780	А	14.22	100	Not Liganded
5IKO	TYR	791	А	14.64	86	Not Liganded
5IKO	TYR	820	А	12.22	100	Not Liganded
5IA7	TYR	18	А	9.9	0	Liganded
5IA7	TYR	18	В	9.9	0	Liganded
5FV7	TYR	26	А	13.47	40	Not Liganded
5FV7	TYR	40	А	10.36	0	Not Liganded
5FV7	TYR	69	А	10.77	26	Not Liganded
5FV7	TYR	83	А	12.62	100	Not Liganded
5FV7	TYR	152	А	10.68	24	Not Liganded
5FV7	TYR	173	А	12.42	48	Not Liganded
5FV7	TYR	234	А	14.43	77	Not Liganded
5FV7	TYR	268	А	10.25	0	Liganded
5FV7	TYR	26	В	11.58	25	Not Liganded
5FV7	TYR	40	В	10.24	0	Not Liganded
5FV7	TYR	69	В	10.56	18	Not Liganded
5FV7	TYR	83	В	12.52	100	Not Liganded
5FV7	TYR	152	В	10.38	22	Not Liganded
5FV7	TYR	173	В	12.3	33	Not Liganded
5FV7	TYR	234	В	14.35	66	Not Liganded
5FV7	TYR	268	В	10	0	Liganded
	-					

	su
5EPC TYR 35 A 13.26 50 Not Lig	anded
SEPC TYR 66 A 12.88 71 Not Lig	anded
5EPC TYR 157 A 12.08 41 Not Lig	anded
5EPC TYR 195 A 17.56 100 Not Lig	anded
5EPC TYR 232 A 12.93 100 Not Lig	anded
5EPC TYR 268 A 11.04 28 Not Lig	anded
5EPC TYR 322 A 13.76 91 Not Lig	anded
5EPC TYR 353 A 10.48 29 Not Lig	anded
5EPC TYR 420 A 10.64 60 Not Lig	anded
5EPC TYR 428 A 11.41 42 Not Lig	anded
5EPC TYR 430 A 12.75 64 Not Lig	anded
5EPC TYR 466 A 11.61 68 Not Lig	anded
5EPC TYR 476 A 12.22 46 Not Lig	anded
5EPC TYR 517 A 10.88 96 Not Lig	anded
5EPC TYR 521 A 10.94 36 Not Lig	anded
5EPC TYR 12 B 10.79 5 Ligande	ed
SEPC TYR 35 B 13.13 44 Not Lig	anded
5EPC TYR 66 B 12.84 69 Not Lig	anded
5EPC TYR 157 B 12.05 36 Not Lig	anded
5EPC TYR 195 B 17.58 100 Not Lig	anded
5EPC TYR 232 B 13 100 Not Lig	anded
5EPC TYR 268 B 10.95 22 Not Lig	anded
5EPC TYR 322 B 13.56 91 Not Lig	anded
5EPC TYR 353 B 10.56 25 Not Lig	anded
5EPC TYR 420 B 10.65 57 Not Lig	anded
5EPC TYR 428 B 11.15 40 Not Lig	anded
5EPC TYR 430 B 12.4 55 Not Lig	anded
5EPC TYR 466 B 11.55 60 Not Lig	anded
5EPC TYR 476 B 12.19 45 Not Lig	anded
5EPC TYR 517 B 11.98 93 Not Lig	anded
5EPC TYR 521 B 10.6 30 Not Lig	anded
5CYO TYR 112 A 13.4 98 Not Lig	anded
5CYO TYR 115 A 11 36 Not Lig	anded
5CYO TYR 138 A 18.01 100 Not Lig	anded
5CYO TYR 198 A 13.39 82 Not Lig	anded
5CYO TYR 231 A 10.96 11 Liganda	ed
5CYO TYR 260 A 10.16 2 Not Lig	anded
5CYO TYR 285 A 12.41 24 Not Lig	anded
5CYO TYR 112 B 13.69 100 Not Lig	anded
5CYO TYR 115 B 10.95 36 Not Lig	anded
5CYO TYR 138 B 16.72 100 Not Lig	anded
5CYO TYR 198 B 12.92 73 Not Lig	anded
5CYO TYR 231 B 10.57 O Ligande	ed
SCYO TYR 260 B 9.89 0 Not lig	anded

4XW3	TYR	96	А	10.53	0	Liganded
4XW3	TYR	134	А	17.49	98	Not Liganded
4XW3	TYR	135	А	16.92	100	Not Liganded
4XW3	TYR	182	А	12.84	65	Not Liganded
4XW3	TYR	195	А	12.92	90	Not Liganded
4XW3	TYR	265	А	10.4	19	Not Liganded
4XW3	TYR	96	В	10.21	0	Liganded
4XW3	TYR	134	В	15.04	68	Not Liganded
4XW3	TYR	135	В	16.91	100	Not Liganded
4XW3	TYR	182	В	14.14	100	Not Liganded
4XW3	TYR	195	В	11.14	44	Not Liganded
4XW3	TYR	265	В	10.13	0	Not Liganded
4XOS	TYR	131	А	13.97	57	Liganded
4XOS	TYR	144	А	9.93	7	Not Liganded
4XOS	TYR	148	А	9.96	0	Not Liganded
4XOS	TYR	131	В	13.84	56	Liganded
4XOS	TYR	144	В	10.02	0	Not Liganded
4XOS	TYR	148	В	10.13	0	Not Liganded
4RJT	TYR	14	А	14.02	70	Not Liganded
4RJT	TYR	53	А	10.14	0	Not Liganded
4RJT	TYR	96	А	10.6	28	Liganded
4RJT	TYR	108	А	9.84	3	Not Liganded
4RJT	TYR	123	А	11.41	40	Not Liganded
4RJT	TYR	199	А	13.47	100	Not Liganded
4RJT	TYR	286	А	11.33	60	Not Liganded
4RJT	TYR	299	А	9.52	0	Not Liganded
4RJT	TYR	309	А	10.38	28	Not Liganded
4RJT	TYR	352	А	12.62	63	Not Liganded
4RJT	TYR	356	А	10.3	36	Not Liganded
4RJT	TYR	367	А	11.4	34	Not Liganded
4RJT	TYR	402	А	10.23	17	Not Liganded
4RJT	TYR	425	А	13.62	86	Not Liganded
4RJT	TYR	14	В	15.22	80	Not Liganded
4RJT	TYR	53	В	10.14	0	Not Liganded
4RJT	TYR	96	В	10.6	27	Liganded
4RJT	TYR	108	В	9.9	9	Not Liganded
4RJT	TYR	123	В	11.38	41	Not Liganded
4RJT	TYR	199	В	13.74	100	Not Liganded
4RJT	TYR	286	В	11.42	61	Not Liganded
4RJT	TYR	299	В	9.58	0	Not Liganded
4RJT	TYR	309	В	10.34	27	Not Liganded
4RJT	TYR	352	В	12.73	68	Not Liganded
4RJT	TYR	356	В	10.54	37	Not Liganded
4RJT	TYR	367	В	11.36	33	Not Liganded
4RJT	TYR	402	В	10.12	15	Not Liganded
4RJT	TYR	425	В	13.54	84	Not Liganded

4RJT	TYR	14	С	14.8	76	Not Liganded
4RJT	TYR	53	С	10.17	0	Not Liganded
4RJT	TYR	96	С	10.03	27	Liganded
4RJT	TYR	108	с	9.88	6	Not Liganded
4RJT	TYR	123	с	11.45	44	Not Liganded
4RJT	TYR	199	с	13.69	100	Not Liganded
4RJT	TYR	286	с	11	60	Not Liganded
4RJT	TYR	299	С	9.5	0	Not Liganded
4RJT	TYR	309	С	10.33	26	Not Liganded
4RJT	TYR	352	С	12.71	65	Not Liganded
4RJT	TYR	356	С	10.47	37	Not Liganded
4RJT	TYR	367	С	11.43	33	Not Liganded
4RJT	TYR	402	с	10.35	18	Not Liganded
4RJT	TYR	425	с	14	88	Not Liganded
4P22	TYR	55	А	11.58	83	Not Liganded
4P22	TYR	60	А	15.45	100	Not Liganded
4P22	TYR	117	А	14.09	100	Not Liganded
4P22	TYR	141	А	11.47	70	Not Liganded
4P22	TYR	147	А	10.66	0	Not Liganded
4P22	TYR	273	А	9.6	0	Liganded
4P22	TYR	286	А	11.46	21	Not Liganded
4P22	TYR	388	А	13.17	80	Not Liganded
4P22	TYR	425	А	13.93	100	Not Liganded
4P22	TYR	55	В	11.89	86	Not Liganded
4P22	TYR	60	В	15.12	94	Not Liganded
4P22	TYR	117	В	13.25	100	Not Liganded
4P22	TYR	141	В	10.09	0	Not Liganded
4P22	TYR	147	В	10.64	0	Not Liganded
4P22	TYR	273	В	9.86	0	Liganded
4P22	TYR	286	В	11.21	19	Not Liganded
4P22	TYR	388	В	13.2	77	Not Liganded
4P22	TYR	425	В	14.01	100	Not Liganded
4NUA	TYR	10	А	12.33	88	Not Liganded
4NUA	TYR	51	А	11.46	21	Not Liganded
4NUA	TYR	58	А	10.92	45	Not Liganded
4NUA	TYR	119	А	11.85	31	Not Liganded
4NUA	TYR	140	А	12.84	64	Not Liganded
4NUA	TYR	146	А	10.81	32	Not Liganded
4NUA	TYR	152	А	12.7	67	Not Liganded
4NUA	TYR	153	А	10.11	3	Not Liganded
4NUA	TYR	165	A	10.29	0	Not Liganded
4NUA	TYR	193	A	19.16	100	Not Liganded
4NUA	TYR	199	A	9.93	7	Not Liganded
4NUA	TYR	204	A	10.67	100	Not Liganded
4NUA	TYR	207	А	13.23	75	Not Liganded
4NUA	TYR	215	A	11.17	37	Not Liganded

4NUA	 TYR	245	A	11.02	30	Not Liganded
4NUA	TYR	283	А	10.24	2	Not Liganded
4NUA	TYR	290	А	16.73	100	Not Liganded
4NUA	TYR	305	А	15.83	100	Not Liganded
4NUA	TYR	317	А	12.36	79	Not Liganded
4NUA	TYR	322	А	10.25	1	Not Liganded
4NUA	TYR	332	А	9.95	0	Not Liganded
4NUA	TYR	349	А	12.9	73	Liganded
4KXV	TYR	4	А	11.91	26	Not Liganded
4KXV	TYR	58	А	13.73	99	Not Liganded
4KXV	TYR	83	А	13.47	98	Not Liganded
4KXV	TYR	137	А	13.23	75	Not Liganded
4KXV	TYR	141	А	10.76	35	Not Liganded
4KXV	TYR	147	А	13.01	97	Not Liganded
4KXV	TYR	150	А	11.64	100	Not Liganded
4KXV	TYR	173	А	13.76	60	Not Liganded
4KXV	TYR	202	А	12.15	76	Not Liganded
4KXV	TYR	275	А	9.62	9	Not Liganded
4KXV	TYR	309	А	12.93	75	Liganded
4KXV	TYR	321	А	15.87	100	Not Liganded
4KXV	TYR	363	А	10.53	6	Not Liganded
4KXV	TYR	447	А	15.13	100	Not Liganded
4KXV	TYR	481	А	17.26	93	Not Liganded
4KXV	TYR	563	А	11.69	35	Not Liganded
4KXV	TYR	564	А	9.13	38	Not Liganded
4КВО	TYR	118	А	12	73	Not Liganded
4КВО	TYR	128	А	10.23	0	Liganded
4KBO	TYR	161	А	10.82	13	Not Liganded
4КВО	TYR	181	А	10.96	0	Not Liganded
4KBO	TYR	196	А	13.54	92	Not Liganded
4KBO	TYR	230	А	11.87	55	Not Liganded
4KBO	TYR	243	А	13.39	90	Not Liganded
4KBO	TYR	331	А	10.14	0	Not Liganded
4H5R	TYR	15	А	16.92	100	Not Liganded
4H5R	TYR	41	А	11.75	95	Liganded
4H5R	TYR	107	А	10.21	11	Not Liganded
4H5R	TYR	115	А	11.63	0	Not Liganded
4H5R	TYR	134	А	12.44	43	Not Liganded
4H5R	 TYR	149	A	13.17	89	Not Liganded
4H5R	 TYR	183	A	11.39	53	Not Liganded
4H5R	 TYR	288	A	10.68	0	Not Liganded
4H5R	 TYR	294	A	13.61	70	Not Liganded
4H5R	 TYR	371	А	10.65	29	Not Liganded
4H5R	TYR	15	В	16.97	100	Not Liganded
4H5R	 TYR	41	В	12.02	97	Liganded
4H5R	TYR	107	В	10.19	10	Not Liganded

4H5R	TYR	115	В	11.64	0	Not Liganded
4H5R	TYR	134	В	12.5	42	Not Liganded
4H5R	TYR	149	В	13.12	87	Not Liganded
4H5R	TYR	183	В	11.39	55	Not Liganded
4H5R	TYR	288	В	10.81	0	Not Liganded
4H5R	TYR	294	В	13.68	71	Not Liganded
4H5R	TYR	371	В	10.66	31	Not Liganded
4FCJ	TYR	19	А	21.67	100	Not Liganded
4FCJ	TYR	20	А	15.52	100	Not Liganded
4FCJ	TYR	34	А	17.7	100	Not Liganded
4FCJ	TYR	40	А	14.91	100	Not Liganded
4FCJ	TYR	56	А	10.64	30	Liganded
4FCJ	TYR	125	А	11.36	40	Not Liganded
4FCJ	TYR	133	А	11.64	57	Not Liganded
4FCJ	TYR	19	В	21.95	100	Not Liganded
4FCJ	TYR	20	В	15.55	100	Not Liganded
4FCJ	TYR	34	В	17.58	100	Not Liganded
4FCJ	TYR	40	В	14.78	100	Not Liganded
4FCJ	TYR	56	В	11.02	42	Liganded
4FCJ	TYR	125	В	10.74	18	Not Liganded
4FCJ	TYR	133	В	12.18	71	Not Liganded
4CET	TYR	20	А	10.1	6	Not Liganded
4CET	TYR	43	А	10.62	27	Liganded
4CET	TYR	68	А	13.79	60	Not Liganded
4CET	TYR	76	А	10.95	28	Not Liganded
4CET	TYR	127	А	11.28	37	Not Liganded
4CET	TYR	129	А	10.21	0	Not Liganded
4CET	TYR	133	А	10.44	4	Not Liganded
4CET	TYR	156	А	10.81	34	Not Liganded
4CET	TYR	191	А	11.71	46	Not Liganded
4CET	TYR	222	А	10.15	0	Not Liganded
4BSM	TYR	36	А	10.12	0	Liganded
4BSM	TYR	78	А	12.6	58	Not Liganded
4BSM	TYR	105	А	12.91	35	Not Liganded
4BSM	TYR	126	А	11.61	55	Not Liganded
4BSM	TYR	240	А	9.46	0	Not Liganded
4BSM	TYR	252	А	10.26	0	Not Liganded
4BSM	TYR	279	А	10.84	0	Not Liganded
4BSM	TYR	308	А	11.27	20	Not Liganded
4BSM	TYR	353	А	12.04	41	Not Liganded
4BSM	TYR	372	А	14.39	100	Not Liganded
4BSM	TYR	381	А	10.3	5	Not Liganded
4BSM	TYR	409	А	17.76	91	Not Liganded
4BSM	TYR	454	А	12.22	70	Not Liganded
4BSM	TYR	463	А	11.56	11	Not Liganded
4BSM	TYR	469	А	11	6	Not Liganded

4BSM	TYR	546	А	15.59	81	Not Liganded
4BSM	TYR	551	А	13.76	96	Not Liganded
4BSM	TYR	634	А	10.95	53	Not Liganded
4BSM	TYR	639	А	10.14	15	Not Liganded
4BSM	TYR	657	А	12.92	87	Not Liganded
4BSM	TYR	714	А	11.75	51	Not Liganded
4BSM	TYR	721	А	13.17	53	Not Liganded
4BSM	TYR	788	А	10.6	23	Not Liganded
4BSM	TYR	915	А	10.35	0	Not Liganded
4BSM	TYR	918	А	10.31	0	Not Liganded
4BEX	TYR	68	1	12.83	82	Not Liganded
4BEX	TYR	82	1	13.53	73	Not Liganded
4BEX	TYR	85	1	16.58	91	Not Liganded
4BEX	TYR	89	1	12.42	22	Liganded
4BEX	TYR	117	1	11.82	64	Not Liganded
3SRH	TYR	82	А	10.34	10	Not Liganded
3SRH	TYR	104	А	13.11	60	Not Liganded
3SRH	TYR	147	А	10.23	0	Not Liganded
3SRH	TYR	160	А	12.47	43	Not Liganded
3SRH	TYR	174	А	11.31	51	Not Liganded
3SRH	TYR	369	А	10.53	0	Not Liganded
3SRH	TYR	389	А	13.31	78	Liganded
3SRH	TYR	443	А	13.94	80	Not Liganded
3SRH	TYR	465	А	13.08	93	Not Liganded
3SRH	TYR	82	В	10.25	12	Not Liganded
3SRH	TYR	104	В	12.55	58	Not Liganded
3SRH	TYR	147	В	10.23	0	Not Liganded
3SRH	TYR	160	В	12.25	35	Not Liganded
3SRH	TYR	174	В	10.71	49	Not Liganded
3SRH	TYR	369	В	10.45	0	Not Liganded
3SRH	TYR	389	В	13.1	76	Liganded
3SRH	TYR	443	В	13.87	83	Not Liganded
3SRH	TYR	465	В	12.71	90	Not Liganded
3SRH	TYR	82	С	10.29	9	Not Liganded
3SRH	TYR	104	С	12.25	58	Not Liganded
3SRH	TYR	147	С	10.14	0	Not Liganded
3SRH	TYR	160	С	12.49	41	Not Liganded
3SRH	TYR	174	С	10.22	47	Not Liganded
3SRH	TYR	369	С	10.4	0	Not Liganded
3SRH	TYR	389	С	13.23	80	Liganded
3SRH	TYR	443	С	14.06	84	Not Liganded
3SRH	TYR	465	С	13.18	95	Not Liganded
3SRH	TYR	82	D	10.55	28	Not Liganded
3SRH	TYR	104	D	12.73	58	Not Liganded
3SRH	TYR	147	D	10.19	0	Not Liganded
3SRH	TYR	160	D	12.62	41	Not Liganded

3SRH	TYR	174	D	10.85	47	Not Liganded
3SRH	TYR	369	D	10.51	0	Not Liganded
3SRH	TYR	389	D	13.02	75	Liganded
3SRH	TYR	443	D	13.37	86	Not Liganded
3SRH	TYR	465	D	13.35	100	Not Liganded
3Q6M	TYR	309	А	11.8	33	Not Liganded
3Q6M	TYR	313	А	12.37	47	Not Liganded
3Q6M	TYR	364	А	10.86	20	Not Liganded
3Q6M	TYR	381	А	14.09	73	Not Liganded
3Q6M	TYR	434	А	13.71	88	Not Liganded
3Q6M	TYR	438	А	13.83	100	Not Liganded
3Q6M	TYR	465	А	18.06	100	Liganded
3Q6M	TYR	466	А	10.48	10	Not Liganded
3Q6M	TYR	480	А	13.04	87	Not Liganded
3Q6M	TYR	492	А	12.4	61	Not Liganded
3Q6M	TYR	493	А	12.35	82	Not Liganded
3Q6M	TYR	520	А	11.42	53	Not Liganded
3Q6M	TYR	528	А	11.2	9	Not Liganded
3Q6M	TYR	604	А	9.94	0	Not Liganded
3Q6M	TYR	667	А	12.19	52	Not Liganded
3Q6M	TYR	689	А	14.94	100	Not Liganded
3Q6M	TYR	309	В	11.74	35	Not Liganded
3Q6M	TYR	313	В	13.78	70	Not Liganded
3Q6M	TYR	364	В	10.83	21	Not Liganded
3Q6M	TYR	381	В	14.31	71	Not Liganded
3Q6M	TYR	434	В	13.31	85	Not Liganded
3Q6M	TYR	438	В	12.1	100	Not Liganded
3Q6M	TYR	465	В	17.93	100	Liganded
3Q6M	TYR	466	В	10.63	11	Not Liganded
3Q6M	TYR	480	В	13.4	91	Not Liganded
3Q6M	TYR	492	В	12.73	61	Not Liganded
3Q6M	TYR	493	В	12.49	83	Not Liganded
3Q6M	TYR	520	В	11.38	49	Not Liganded
3Q6M	TYR	528	В	10.31	0	Not Liganded
3Q6M	TYR	604	В	10.07	0	Not Liganded
3Q6M	TYR	667	В	12.69	56	Not Liganded
3Q6M	TYR	689	В	15.23	100	Not Liganded
3Q6M	TYR	309	С	11.81	35	Not Liganded
3Q6M	TYR	313	С	12.59	43	Not Liganded
3Q6M	TYR	364	С	12.51	73	Not Liganded
3Q6M	TYR	381	С	13.74	62	Not Liganded
3Q6M	TYR	434	С	13.16	81	Not Liganded
3Q6M	TYR	438	С	13.36	100	Not Liganded
3Q6M	TYR	465	С	17.85	100	Liganded
3Q6M	TYR	466	С	10.4	10	Not Liganded
3Q6M	TYR	480	С	12.84	88	Not Liganded

	i i					
3Q6M	TYR	492	С	12.23	57	Not Liganded
3Q6M	TYR	493	С	12.14	82	Not Liganded
3Q6M	TYR	520	С	11.3	45	Not Liganded
3Q6M	TYR	528	С	10.32	8	Not Liganded
3Q6M	TYR	604	С	10.09	0	Not Liganded
3Q6M	TYR	667	С	10.4	45	Not Liganded
3Q6M	TYR	689	С	10.14	0	Not Liganded
3PFF	TYR	16	А	12.47	98	Not Liganded
3PFF	TYR	31	А	13.52	51	Not Liganded
3PFF	TYR	120	А	16.69	70	Not Liganded
3PFF	TYR	124	А	11.23	25	Not Liganded
3PFF	TYR	131	А	11.71	0	Not Liganded
3PFF	TYR	192	А	15.9	95	Not Liganded
3PFF	TYR	196	А	12.46	65	Not Liganded
3PFF	TYR	199	А	14.1	71	Not Liganded
3PFF	TYR	213	А	10.71	28	Not Liganded
3PFF	TYR	227	А	11.6	36	Not Liganded
3PFF	TYR	247	А	10.24	9	Not Liganded
3PFF	TYR	252	А	10.4	18	Not Liganded
3PFF	TYR	288	А	12.89	100	Not Liganded
3PFF	TYR	304	А	10.26	47	Not Liganded
3PFF	TYR	307	А	11.87	100	Not Liganded
3PFF	TYR	317	А	11.72	0	Not Liganded
3PFF	TYR	319	А	13.59	100	Not Liganded
3PFF	TYR	364	А	10.47	18	Not Liganded
3PFF	TYR	384	А	10.96	45	Not Liganded
3PFF	TYR	517	А	10.18	0	Not Liganded
3PFF	TYR	531	А	10.35	0	Not Liganded
3PFF	TYR	542	А	11.36	0	Not Liganded
3PFF	TYR	579	А	11.5	39	Not Liganded
3PFF	TYR	588	А	10.8	8	Not Liganded
3PFF	TYR	652	А	9.86	0	Not Liganded
3PFF	TYR	659	А	13.24	100	Not Liganded
3PFF	TYR	682	А	10.75	48	Liganded
3PFF	TYR	692	А	12.09	67	Not Liganded
3PFF	TYR	704	А	14.53	100	Not Liganded
3PFF	TYR	725	А	11.25	12	Not Liganded
3PFF	TYR	801	А	11.47	17	Not Liganded
3PBH	TYR	16	А	9.27	0	Not Liganded
3PBH	TYR	31	А	10.69	17	Not Liganded
3PBH	TYR	37	А	14.4	100	Not Liganded
3PBH	TYR	75	А	10.32	0	Not Liganded
3PBH	TYR	94	А	10.51	0	Not Liganded
3PBH	TYR	103	А	14.25	100	Not Liganded
3PBH	TYR	136	А	11.54	25	Not Liganded
3PBH	TYR	140	А	13.32	48	Not Liganded

3PBH	TYR	146	A	10.22	13	Not Liganded
3PBH	TYR	148	А	10.14	0	Not Liganded
3PBH	TYR	151	А	12.24	80	Not Liganded
3PBH	TYR	165	А	10.25	0	Not Liganded
3PBH	TYR	177	А	10.58	0	Liganded
3PBH	TYR	183	А	13.32	82	Not Liganded
3PBH	TYR	188	А	16.88	96	Not Liganded
3PBH	TYR	214	А	11.3	37	Not Liganded
3GJ0	TYR	39	А	11.62	64	Not Liganded
3GJ0	TYR	79	А	14.99	100	Not Liganded
3GJ0	TYR	80	А	13.26	77	Not Liganded
3GJ0	TYR	98	А	10.06	45	Not Liganded
3GJ0	TYR	146	А	16.05	100	Liganded
3GJ0	TYR	147	А	11.82	58	Not Liganded
3GJ0	TYR	155	А	13.67	55	Not Liganded
3GJ0	TYR	197	А	10.89	31	Not Liganded
3GJ0	TYR	39	В	10.25	0	Not Liganded
3GJ0	TYR	79	В	14.56	100	Not Liganded
3GJ0	TYR	80	В	12.45	56	Not Liganded
3GJ0	TYR	98	В	10.17	45	Not Liganded
3GJ0	TYR	146	В	15.99	100	Liganded
3GJ0	TYR	147	В	11.9	57	Not Liganded
3GJ0	TYR	155	В	11.95	52	Not Liganded
3GJ0	TYR	197	В	11.12	31	Not Liganded
3FRR	TYR	43	А	9.01	0	Liganded
3FRR	TYR	64	А	10.51	12	Not Liganded
3FRR	TYR	75	А	12.25	37	Not Liganded
3FRR	TYR	128	А	11.93	47	Not Liganded
3FRR	TYR	132	А	13.34	57	Not Liganded
3FRR	TYR	165	А	12.72	47	Not Liganded
3FRR	TYR	173	А	10.4	0	Not Liganded
3FRR	TYR	177	А	13.01	39	Not Liganded
3FCX	TYR	35	А	11.56	43	Not Liganded
3FCX	TYR	49	А	13.74	100	Not Liganded
3FCX	TYR	67	А	13.99	100	Not Liganded
3FCX	TYR	106	А	15.26	100	Not Liganded
3FCX	TYR	118	А	13.68	100	Not Liganded
3FCX	TYR	121	А	15.62	100	Not Liganded
3FCX	TYR	123	А	14.83	100	Not Liganded
3FCX	TYR	166	А	16.19	100	Not Liganded
3FCX	TYR	191	А	12.49	60	Not Liganded
3FCX	TYR	202	А	13.06	100	Liganded
3FCX	TYR	211	А	11.83	77	Not Liganded
3FCX	TYR	258	А	10.15	0	Not Liganded
3FCX	TYR	262	А	13.77	88	Not Liganded
3FCX	TYR	263	А	10.01	0	Not Liganded
		-				

3FCX	TYR	279	А	10.58	6	Not Liganded
3FCX	TYR	35	В	11.2	35	Not Liganded
3FCX	TYR	49	В	13.69	100	Not Liganded
3FCX	TYR	67	В	13.94	100	Not Liganded
3FCX	TYR	106	В	14.54	100	Not Liganded
3FCX	TYR	118	В	14.99	71	Not Liganded
3FCX	TYR	121	В	15.11	100	Not Liganded
3FCX	TYR	123	В	14.72	100	Not Liganded
3FCX	TYR	166	В	16.28	100	Not Liganded
3FCX	TYR	191	В	11.7	100	Not Liganded
3FCX	TYR	202	В	13.3	100	Liganded
3FCX	TYR	211	В	12.03	56	Not Liganded
3FCX	TYR	258	В	10.04	0	Not Liganded
3FCX	TYR	262	В	14.21	100	Not Liganded
3FCX	TYR	263	В	10.02	0	Not Liganded
3FCX	TYR	279	В	11.98	8	Not Liganded
3F8U	TYR	67	А	15.22	100	Liganded
3F8U	TYR	95	А	12.63	36	Not Liganded
3F8U	TYR	100	А	13.82	63	Not Liganded
3F8U	TYR	115	А	12.29	55	Not Liganded
3F8U	TYR	182	А	11.53	51	Not Liganded
3F8U	TYR	196	А	11.61	34	Not Liganded
3F8U	TYR	222	А	11.8	27	Not Liganded
3F8U	TYR	264	А	13.61	82	Not Liganded
3F8U	TYR	265	А	14.52	88	Not Liganded
3F8U	TYR	269	А	11.9	69	Not Liganded
3F8U	TYR	278	А	8.95	0	Not Liganded
3F8U	TYR	356	А	12.03	38	Not Liganded
3F8U	TYR	364	А	11.23	29	Not Liganded
3F8U	TYR	402	А	12.58	63	Not Liganded
3F8U	TYR	416	А	14.96	100	Not Liganded
3F8U	TYR	445	А	12.02	72	Not Liganded
3F8U	TYR	454	А	9.33	25	Not Liganded
3F8U	TYR	467	А	12.04	37	Not Liganded
3F8U	TYR	479	А	12.38	49	Not Liganded
3F8U	TYR	45	В	10.89	7	Not Liganded
3F8U	TYR	62	В	10.46	20	Not Liganded
3F8U	TYR	164	В	12.53	100	Not Liganded
3F8U	TYR	249	В	12.12	75	Not Liganded
3F8U	TYR	257	В	11.9	46	Not Liganded
3F8U	TYR	269	В	9.69	4	Not Liganded
3F8U	TYR	301	В	12.29	30	Not Liganded
3F8U	TYR	360	В	11.92	57	Not Liganded
3F8U	TYR	67	С	15.18	100	Liganded
3F8U	TYR	95	С	12.31	25	Not Liganded
3F8U	TYR	100	С	14.04	57	Not Liganded

3F8U	TYR	115	С	12.54	58	Not Liganded
3F8U	TYR	182	С	11.33	48	Not Liganded
3F8U	TYR	196	С	11.63	35	Not Liganded
3F8U	TYR	222	С	11.85	29	Not Liganded
3F8U	TYR	264	С	13.91	85	Not Liganded
3F8U	TYR	265	С	14.28	87	Not Liganded
3F8U	TYR	269	С	11.75	66	Not Liganded
3F8U	TYR	278	С	8.9	0	Not Liganded
3F8U	TYR	356	С	12.04	39	Not Liganded
3F8U	TYR	364	С	10.99	25	Not Liganded
3F8U	TYR	402	С	12.71	66	Not Liganded
3F8U	TYR	416	С	14.94	100	Not Liganded
3F8U	TYR	445	С	12.01	72	Not Liganded
3F8U	TYR	454	С	9.37	26	Not Liganded
3F8U	TYR	467	С	11.98	36	Not Liganded
3F8U	TYR	479	С	12.38	49	Not Liganded
3F8U	TYR	45	D	10.9	11	Not Liganded
3F8U	TYR	62	D	10.42	19	Not Liganded
3F8U	TYR	164	D	12.78	96	Not Liganded
3F8U	TYR	249	D	12.11	74	Not Liganded
3F8U	TYR	257	D	12.07	48	Not Liganded
3F8U	TYR	269	D	9.68	6	Not Liganded
3F8U	TYR	301	D	11.77	26	Not Liganded
3F8U	TYR	360	D	11.73	48	Not Liganded
3.00E+77	TYR	12	А	11.41	40	Not Liganded
3.00E+77	TYR	32	А	11.74	42	Not Liganded
3.00E+77	TYR	70	А	11.72	37	Not Liganded
3.00E+77	TYR	101	А	13.59	100	Not Liganded
3.00E+77	TYR	131	А	11.29	40	Not Liganded
3.00E+77	TYR	148	А	17.21	100	Not Liganded
3.00E+77	TYR	150	А	19.38	100	Not Liganded
3.00E+77	TYR	151	А	16.16	97	Not Liganded
3.00E+77	TYR	230	А	14.37	100	Not Liganded
3.00E+77	TYR	240	А	12.25	61	Not Liganded
3.00E+77	TYR	249	А	14.3	89	Not Liganded
3.00E+77	TYR	279	А	14.96	98	Not Liganded
3.00E+77	TYR	289	А	13.99	83	Liganded
3.00E+77	TYR	346	А	10.05	100	Not Liganded
3.00E+77	TYR	12	В	10.7	29	Not Liganded
3.00E+77	TYR	32	В	10.96	40	Not Liganded
3.00E+77	TYR	70	В	11.71	37	Not Liganded
3.00E+77	TYR	101	В	13.36	100	Not Liganded
3.00E+77	TYR	131	В	11.13	36	Not Liganded
3.00E+77	TYR	148	В	17.42	100	Not Liganded
3.00E+77	TYR	150	В	19.24	100	Not Liganded
3.00E+77	TYR	151	В	16.45	100	Not Liganded

3.00E+77	TYR	230	В	14.29	100	Not Liganded
3.00E+77	TYR	240	В	12.45	65	Not Liganded
3.00E+77	TYR	249	В	13.64	81	Not Liganded
3.00E+77	TYR	279	В	14.92	100	Not Liganded
3.00E+77	TYR	289	В	13.79	77	Liganded
3.00E+77	TYR	346	В	10.13	100	Not Liganded
3.00E+77	TYR	12	с	9.75	0	Not Liganded
3.00E+77	TYR	32	С	10.2	36	Not Liganded
3.00E+77	TYR	70	С	11.34	35	Not Liganded
3.00E+77	TYR	101	С	13.32	100	Not Liganded
3.00E+77	TYR	131	С	10.99	32	Not Liganded
3.00E+77	TYR	148	С	17.35	100	Not Liganded
3.00E+77	TYR	150	С	18.9	100	Not Liganded
3.00E+77	TYR	151	С	16.19	96	Not Liganded
3.00E+77	TYR	230	с	13.84	100	Not Liganded
3.00E+77	TYR	240	С	9.64	0	Not Liganded
3.00E+77	TYR	249	С	12.97	47	Not Liganded
3.00E+77	TYR	279	С	14.68	96	Not Liganded
3.00E+77	TYR	289	С	13.82	83	Liganded
3.00E+77	TYR	346	с	10.78	93	Not Liganded
3CU8	TYR	19	А	11.59	25	Liganded
3CU8	TYR	48	А	13.82	68	Not Liganded
3CU8	TYR	82	А	13.38	68	Not Liganded
3CU8	TYR	118	А	12.5	74	Not Liganded
3CU8	TYR	125	А	13.79	100	Not Liganded
3CU8	TYR	126	А	10.92	41	Not Liganded
3CU8	TYR	128	А	15.07	100	Not Liganded
3CU8	TYR	149	А	16.03	100	Not Liganded
3CU8	TYR	178	А	11.31	37	Not Liganded
3CU8	TYR	179	А	10.52	0	Not Liganded
3CU8	TYR	211	А	10.13	0	Not Liganded
3CU8	TYR	19	В	11.19	23	Liganded
3CU8	TYR	48	В	13.4	67	Not Liganded
3CU8	TYR	82	В	13.22	61	Not Liganded
3CU8	TYR	118	В	12.4	69	Not Liganded
3CU8	TYR	125	В	14.29	100	Not Liganded
3CU8	TYR	126	В	10.91	39	Not Liganded
3CU8	TYR	128	В	15.49	100	Not Liganded
3CU8	TYR	149	В	14.56	100	Not Liganded
3CU8	TYR	178	В	11.15	33	Not Liganded
3CU8	TYR	179	В	10.57	0	Not Liganded
3CU8	TYR	211	В	10.1	0	Not Liganded
3CTZ	TYR	22	А	10.26	0	Not Liganded
3CTZ	TYR	30	А	13.48	100	Not Liganded
3CTZ	TYR	42	А	13.02	70	Not Liganded
3CTZ	TYR	78	А	9.25	38	Not Liganded

3CTZTYR128A13.4298Liganded3CTZTYR173A11.1415Not Liganded3CTZTYR225A10.2100Not Liganded3CTZTYR2268A11.2136Not Liganded3CTZTYR2268A11.2236Not Liganded3CTZTYR2326A11.0224Not Liganded3CTZTYR3226A11.0224Not Liganded3CTZTYR4420A13.17100Not Liganded3CTZTYR4420A11.5613Not Liganded3CTZTYR4439A13.56100Not Liganded3CTZTYR4439A13.5894Not Liganded3CTZTYR4439A13.8894Not Liganded3CTZTYR4566A11.8721Not Liganded3CTZTYR4566A11.8721Not Liganded3CTZTYR526A11.8730Not Liganded3CTZTYR526A11.8130Not Liganded3CTZTYR526A11.8150Not Liganded3CTZTYR526A11.8150Not Liganded3CTZTYR526A11.8150Not Liganded3CTZTYR526A11.8150Not Ligande							
BCTZTYR173A11.1415Not LigandedGCTZTYR225A13.2100Not LigandedGCTZTYR261A15.31100Not LigandedGCTZTYR2361A11.2236Not LigandedGCTZTYR2362A11.2736Not LigandedGCTZTYR3366A11.0944Not LigandedGCTZTYR3366A11.0940Not LigandedGCTZTYR4420A13.17100Not LigandedGCTZTYR4430A13.5613Not LigandedGCTZTYR4430A13.5894Not LigandedGCTZTYR4463A13.8894Not LigandedGCTZTYR5266A11.8721Not LigandedGCTZTYR5267A99ONot LigandedGCTZTYR5268A11.84100Not LigandedGCTZTYR5268A11.84100Not LigandedGCTZTYR5278A99ONot LigandedGCTZTYR5368A11.84100Not LigandedGCTZTYR5368A13.33100Not LigandedGCTZTYR5368A11.9150Not LigandedZI3TYR5468A11.84100Not L	3CTZ	TYR	128	A	13.42	98	Liganded
3CTZTYR225A13.2100Not Liganded3CTZTYR261A10.689Not Liganded3CTZTYR266A11.53100Not Liganded3CTZTYR266A11.0723Not Liganded3CTZTYR2336A11.0924Not Liganded3CTZTYR4403A13.17100Not Liganded3CTZTYR4402A11.518Not Liganded3CTZTYR4443A11.518Not Liganded3CTZTYR4463A11.518Not Liganded3CTZTYR4463A11.518Not Liganded3CTZTYR4463A11.51100Not Liganded3CTZTYR526A11.84100Not Liganded3CTZTYR44.811.84100Not Liganded3CTZTYR43.411.84100Not Liganded3CTZTYR44.811.84100Not Liganded3CTZTYR4.83.413.84100Not Liganded3CTZTYR4.83.413.84100Not Liganded3CTZTYR4.83.413.84100Not Liganded3CTZTYR4.83.413.84100Not Liganded3CTZTYR4.83.413.810.8	3CTZ	TYR	173	А	11.14	15	Not Liganded
3CTZTYR2C1A10.689Not Liganded3CTZTYR268A15.31100Not Liganded3CTZTYR236A11.0224Not Liganded3CTZTYR3121A10.0522Not Liganded3CTZTYR4.412A13.17100Not Liganded3CTZTYR4.421A15.65130Not Liganded3CTZTYR4.423A15.55131Not Liganded3CTZTYR4.433A15.55131Not Liganded3CTZTYR4.448A11.5188Not Liganded3CTZTYR4.448A11.51100Not Liganded3CTZTYR4.468A11.84100Not Liganded3CTZTYR526A11.84100Not Liganded3CTZTYR546A13.18100Not Liganded3CTZTYR546A13.18100Not Liganded3CTZTYR546A13.18100Not Liganded3CTZTYR546A13.18100Not Liganded3CTZTYR546A13.18100Not Liganded3CTZTYR546A13.18100Not Liganded2CT3TYR546A13.18100Not Liganded2CT3TYR546A13.1810	3CTZ	TYR	225	А	13.2	100	Not Liganded
3CTZTYR268A15.31100Not Liganded3CTZTYR2366A11.7236Not Liganded3CTZTYR3366A11.0723Not Liganded3CTZTYR2366A11.0720Not Liganded3CTZTYR4420A13.17100Not Liganded3CTZTYR4420A14.5513Not Liganded3CTZTYR4433A13.8894Not Liganded3CTZTYR4433A13.8894Not Liganded3CTZTYR10056A10.5517Not Liganded3CTZTYR10056A10.55100Not Liganded3CTZTYR10058A11.8721Not Liganded3CTZTYR10058A11.8720Not Liganded3CTZTYR10058A13.13100Not Liganded3CTZTYR10058A13.13100Not Liganded3CTZTYR10058A13.13100Not Liganded3CTZTYR10058A13.13100Not Liganded3CTZTYR10058A13.13100Not Liganded3CTZTYR10058A13.13100Not Liganded2CT3TYR10058A13.13100Not Liganded223TYR10058A13.14	3CTZ	TYR	261	А	10.68	9	Not Liganded
3CTZTYR266A11.7236Not Liganded3CTZTYR3312A10.5722Not Liganded3CTZTYR4336A11.0924Not Liganded3CTZTYR4420A13.15100Not Liganded3CTZTYR4400A14.55133Not Liganded3CTZTYR4466A11.518Not Liganded3CTZTYR4466A11.518Not Liganded3CTZTYR6463A11.5824Not Liganded3CTZTYR7474466A11.51743CTZTYR747566A11.84100Not Liganded3CTZTYR1455A11.84100Not Liganded3CTZTYR747A11.84100Not Liganded3CTZTYR747A11.84100Not Liganded3CTZTYR747A11.84100Not Liganded2213TYR747A11.84100Not Liganded2213TYR747A11.84100Not Liganded2213TYR747A11.84100Not Liganded2213TYR747A11.84100Not Liganded2213TYR747A11.84100Not Liganded2213TYR6465A13.8410.14 <td>3CTZ</td> <td>TYR</td> <td>268</td> <td>А</td> <td>15.31</td> <td>100</td> <td>Not Liganded</td>	3CTZ	TYR	268	А	15.31	100	Not Liganded
SCTZTYR312A10.5723Not Liganded3CTZTYR366A11.0924Not Liganded3CTZTYR420A13.17100Not Liganded3CTZTYR420A14.55100Not Liganded3CTZTYR4460A11.518Not Liganded3CTZTYR4463A11.518Not Liganded3CTZTYR566A10.5517Not Liganded3CTZTYR566A11.8721Not Liganded3CTZTYR526A11.8721Not Liganded3CTZTYR526A11.8721Not Liganded3CTZTYR526A11.81100Not Liganded3CTZTYR538A13.31100Not Liganded3CTZTYR538A13.13100Not Liganded3CTZTYR538A13.13100Not Liganded2Z13TYR7414.1810.02Not Liganded2Z13TYR534A10.220Liganded2Z13TYR535A11.1837Not Liganded2Z13TYR536A11.24100Not Liganded2Z13TYR536A10.240Not Liganded2Z13TYR536A10.250Not Liganded <t< td=""><td>3CTZ</td><td>TYR</td><td>296</td><td>А</td><td>11.72</td><td>36</td><td>Not Liganded</td></t<>	3CTZ	TYR	296	А	11.72	36	Not Liganded
3CTZTYR396A11.0924Not Liganded3CTZTYR4412A13.17100Not Liganded3CTZTYR4420A14.5513Not Liganded3CTZTYR4464A11.5148Not Liganded3CTZTYR4465A11.5148Not Liganded3CTZTYR506A10.5517Not Liganded3CTZTYR526A11.84100Not Liganded3CTZTYR526A11.84100Not Liganded3CTZTYR527A11.84100Not Liganded3CTZTYR538A13.33100Not Liganded3CTZTYR538A11.84100Not Liganded3CTZTYR744A10.628Not Liganded3CTZTYR747A14.18100Not Liganded2C13TYR744A10.628Not Liganded2Z3TYR534A10.220Liganded2Z3TYR535A11.48100Not Liganded2Z3TYR536A12.3810Not Liganded2Z3TYR536A11.48100Not Liganded2Z3TYR536A12.3810Not Liganded2Z3TYR536A11.4810Not Liganded <td>3CTZ</td> <td>TYR</td> <td>312</td> <td>А</td> <td>10.57</td> <td>23</td> <td>Not Liganded</td>	3CTZ	TYR	312	А	10.57	23	Not Liganded
3CTZTYR412A13.17100Not liganded3CTZTYR420A15.66100Not liganded3CTZTYR4439A14.5513Not liganded3CTZTYR4468A11.518Not liganded3CTZTYR4483A10.5517Not liganded3CTZTYR5266A11.8721Not liganded3CTZTYR5267A11.87100Not liganded3CTZTYR5288A13.31100Not liganded3CTZTYR5388A13.33100Not liganded3CTZTYR5388A13.33100Not liganded2C13TYR74434A10.628Not liganded2Z13TYR74434A10.220liganded2Z13TYR5348A13.38100Not liganded2Z13TYR563A11.48100Not liganded2Z13TYR563A11.48100Not liganded2Z13TYR5638A11.38104Not liganded2Z14TYR563A10.2410Not liganded2Z13TYR563A11.48100Not liganded2Z14TYR665A13.48100Not liganded2Z14TYR665A11.6742N	3CTZ	TYR	396	А	11.09	24	Not Liganded
3CTZTYR420A15.66100Not liganded3CTZTYR449A14.5513Not liganded3CTZTYR446A11.518Not liganded3CTZTYR506A11.8721Not liganded3CTZTYR506A11.8721Not liganded3CTZTYR5257A11.84100Not liganded3CTZTYR5284A9.90Not liganded3CTZTYR588A10.080Not liganded3CTZTYR7484A10.080Not liganded2Z13TYR7484A10.020Not liganded2Z13TYR7444A10.220liganded2Z13TYR7444A10.220liganded2Z13TYR5454A10.220liganded2Z13TYR7545A11.1830Not liganded2Z13TYR5563A11.3865Not liganded2Z13TYR6553A10.240Not liganded2Z13TYR5563A11.2830Not liganded2Z14TYR6553A11.24100Not liganded2Z14TYR6553A11.24100Not liganded2Z14TYR6553A11.7530Not liganded <tr< td=""><td>3CTZ</td><td>TYR</td><td>412</td><td>А</td><td>13.17</td><td>100</td><td>Not Liganded</td></tr<>	3CTZ	TYR	412	А	13.17	100	Not Liganded
3CTZTYR439A14.5513Not Liganded3CTZTYR446A11.518Not Liganded3CTZTYR483A13.8894Not Liganded3CTZTYR506A10.5517Not Liganded3CTZTYR526A11.8721Not Liganded3CTZTYR527A11.84100Not Liganded3CTZTYR527A13.13100Not Liganded3CTZTYR7844.0410.080Not Liganded3CTZTYR784A10.080Not Liganded2Z13TYR784A10.080Not Liganded2Z3TYR784A10.028Not Liganded2Z13TYR784A10.220Liganded2Z13TYR534A10.220Liganded2Z13TYR553A11.1837Not Liganded2Z13TYR553A10.1410Not Liganded2Z13TYR553A10.1410Not Liganded2Z13TYR553A10.1410Not Liganded2Z14TYR786A11.6742Not Liganded2Z14TYR665A9.8410.0Not Liganded2Z84TYR786A11.6742Not Liganded	3CTZ	TYR	420	А	15.66	100	Not Liganded
3CTZTYR446A11.51BNot Liganded3CTZTYR483A13.8894Not Liganded3CTZTYR506A10.5517Not Liganded3CTZTYR526A11.84100Not Liganded3CTZTYR527A11.84100Not Liganded3CTZTYR549A9.9ONot Liganded3CTZTYR549A9.9ONot Liganded2Z13TYR748A10.080Not Liganded2Z13TYR747A11.1950Not Liganded2Z13TYR747A10.628Not Liganded2Z13TYR747A10.628Not Liganded2Z13TYR534A10.22OLiganded2Z13TYR546A13.3865Not Liganded2Z13TYR556A10.1410Not Liganded2Z13TYR558A10.1410Not Liganded2Z13TYR746A13.3810Not Liganded2Z14TYR558A10.1410Not Liganded2Z14TYR655A10.1410Not Liganded2Z14TYR746A13.3810Not Liganded2Z14TYR746A10.250Not Liganded2Z14	3CTZ	TYR	439	А	14.55	13	Not Liganded
3CTZTYR483A13.8894Not Liganded3CTZTYR506A10.5517Not Liganded3CTZTYR526A11.8721Not Liganded3CTZTYR527A11.8720Not Liganded3CTZTYR549A9.9ONot Liganded3CTZTYR548A10.08ONot Liganded3CTZTYR348A10.08ONot Liganded2Z13TYR348A10.02ONot Liganded2Z13TYR4344A10.628Not Liganded2Z13TYR4344A10.628Not Liganded2Z13TYR534A10.22OLiganded2Z13TYR534A10.22OLiganded2Z13TYR534A10.22OLiganded2Z13TYR534A10.22OLiganded2Z13TYR534A10.22OLiganded2Z13TYR534A10.24Not Liganded2Z13TYR534A10.24Not Liganded2Z13TYR538A12.38ONot Liganded2Z14TYR656A9.84ONot Liganded2Z14TYR656A9.8410.0Not Liganded2Z84TYR746A <t< td=""><td>3CTZ</td><td>TYR</td><td>446</td><td>А</td><td>11.51</td><td>8</td><td>Not Liganded</td></t<>	3CTZ	TYR	446	А	11.51	8	Not Liganded
3CTZTYR506A10.5517Not Liganded3CTZTYRS256A11.8721Not Liganded3CTZTYRS277A11.84100Not Liganded3CTZTYRS688A9.90Not Liganded2CTZTYRS688A13.13100Not Liganded2CT3TYRA10.080Not Liganded2C13TYRA11.1950Not Liganded2C13TYRA11.1950Not Liganded2C13TYRA14.181000Not Liganded2C13TYRA14.181000Not Liganded2C13TYRAA10.220Liganded2C13TYRAA10.220Liganded2C13TYRAA10.230Not Liganded2C13TYRAA10.240Not Liganded2C13TYRAA10.2410Not Liganded2C13TYRAA10.2410Not Liganded2C13TYRAA10.2410Not Liganded2C13TYRAA10.2410Not Liganded2C14TYRAA10.2410Not Liganded2C13TYRAA10.2410Not Liganded2C14TYRAA10.1410Not Li	3CTZ	TYR	483	А	13.88	94	Not Liganded
3CTZTYRS26A11.8721Not Liganded3CTZTYRS277A11.84100Not Liganded3CTZTYRS88A9.90Not Liganded2C13TYRS88A10.080Not Liganded2Z13TYR348A10.080Not Liganded2Z13TYR3777A11.1950Not Liganded2Z13TYR434A10.628Not Liganded2Z13TYR434A10.620Liganded2Z13TYR553A10.220Liganded2Z13TYR554A10.220Liganded2Z13TYR553A10.14100Not Liganded2Z13TYR553A10.14100Not Liganded2Z13TYR553A10.14100Not Liganded2Z13TYR553A10.14100Not Liganded2Z13TYR553A10.14100Not Liganded2Z13TYR553A10.14100Not Liganded2Z14TYR553A10.250Not Liganded2Z14TYR655A11.6742Not Liganded2Z84TYR10.25A11.6743Not Liganded2Z84TYR12.28A11.53100Not Liganded <t< td=""><td>3CTZ</td><td>TYR</td><td>506</td><td>А</td><td>10.55</td><td>17</td><td>Not Liganded</td></t<>	3CTZ	TYR	506	А	10.55	17	Not Liganded
3CTZTYR527A11.84100Not Liganded3CTZTYR549A9.90Not Liganded3CTZTYR388A13.13100Not Liganded2Z13TYR348A10.080Not Liganded2Z13TYR3477A11.1950Not Liganded2Z13TYR4344A10.628Not Liganded2Z13TYR4434A10.620Liganded2Z13TYR534A10.220Uiganded2Z13TYR554A13.3865Not Liganded2Z13TYR5548A11.1837Not Liganded2Z13TYR5563A10.14100Not Liganded2Z13TYR5563A10.14100Not Liganded2Z13TYR5563A10.14100Not Liganded2Z13TYR6553A10.14100Not Liganded2Z14TYR655A9.8400Not Liganded2Z84TYR655A11.6742Not Liganded2Z84TYR10.06A11.7730Not Liganded2Z84TYR10.28A11.6742Not Liganded2Z84TYR10.28A11.5740Not Liganded2Z84TYR10.28A11.5740Not Liganded </td <td>3CTZ</td> <td>TYR</td> <td>526</td> <td>А</td> <td>11.87</td> <td>21</td> <td>Not Liganded</td>	3CTZ	TYR	526	А	11.87	21	Not Liganded
3CTZTYR549A9.90Not Liganded3CTZTYR1588A13.13100Not Liganded2ZJ3TYR348A10.080Not Liganded2ZJ3TYR377A11.1950Not Liganded2ZJ3TYR434A10.628Not Liganded2ZJ3TYR434A10.628Not Liganded2ZJ3TYR4777A14.18100Not Liganded2ZJ3TYR534A10.220Liganded2ZJ3TYR536A11.1837Not Liganded2ZJ3TYR563A10.1410Not Liganded2ZJ3TYR563A10.1410Not Liganded2ZJ3TYR563A10.1410Not LigandedZJ3TYR563A10.20Not LigandedZJ3TYR563A10.20Not LigandedZJ3TYR665A9.8400Not LigandedZJ3TYR665A10.20Not LigandedZJ3TYR665A10.20Not LigandedZJ3TYR665A10.20Not LigandedZJ3TYR665A11.6742Not LigandedZB4TYR12.8411.67100Not LigandedZB4TYR <td< td=""><td>3CTZ</td><td>TYR</td><td>527</td><td>А</td><td>11.84</td><td>100</td><td>Not Liganded</td></td<>	3CTZ	TYR	527	А	11.84	100	Not Liganded
3CTZTYR588A13.13100Not Liganded2ZJ3TYR348A10.080Not Liganded2ZJ3TYR377A11.1950Not Liganded2ZJ3TYR434A10.628Not Liganded2ZJ3TYR434A10.628Not Liganded2ZJ3TYR534A10.220Liganded2ZJ3TYR534A11.1837Not Liganded2ZJ3TYR546A13.3865Not Liganded2ZJ3TYR563A10.1410Not Liganded2ZJ3TYR563A10.1410Not Liganded2ZJ3TYR563A9.840Not Liganded2ZJ3TYR665A9.840Not Liganded2ZJ3TYR78665A9.840Not Liganded2ZB4TYR78665A9.840Not Liganded2ZB4TYR78A11.6742Not Liganded2ZB4TYR78A11.7341Not Liganded2ZB4TYR78A11.7341Not Liganded2ZB4TYR78A11.6762Not Liganded2ZB4TYR78A11.6762Not Liganded2ZB4TYR78A11.6762Not Liganded </td <td>3CTZ</td> <td>TYR</td> <td>549</td> <td>А</td> <td>9.9</td> <td>0</td> <td>Not Liganded</td>	3CTZ	TYR	549	А	9.9	0	Not Liganded
2ZJ3TYR348A10.08.0Not Liganded2ZJ3TYR377A11.1950Not Liganded2ZJ3TYR4343A10.62R8Not Liganded2ZJ3TYRA14.18100Not Liganded2ZJ3TYRA10.220Liganded2ZJ3TYRA11.1837Not Liganded2ZJ3TYRA10.2410Not Liganded2ZJ3TYRA11.1837Not Liganded2ZJ3TYRAA10.2410Not Liganded2ZJ3TYRAA10.2410Not Liganded2ZJ3TYRAA10.240Not Liganded2ZJ3TYRAA10.240Not Liganded2ZJ3TYRAA10.20Not Liganded2ZJ3TYRAA10.20Not Liganded2ZJ3TYRAA10.20Not Liganded2ZB4TYRAA10.20Not Liganded2ZB4TYRAA10.25ANot Liganded2ZB4TYRAA10.250Not LigandedZB4TYRAA10.55100Not LigandedZB4TYRAA11.57100Not LigandedZB4TYRAA11.53100Not Liganded </td <td>3CTZ</td> <td>TYR</td> <td>588</td> <td>А</td> <td>13.13</td> <td>100</td> <td>Not Liganded</td>	3CTZ	TYR	588	А	13.13	100	Not Liganded
22]3TYR377A11.1950Not Liganded22]3TYR4343A10.628Not Liganded22]3TYR477A14.18100Not Liganded22]3TYR534A10.220Liganded22]3TYR546A13.3865Not Liganded22]3TYR553A10.1410Not Liganded22]3TYR6553A10.1410Not Liganded22]3TYR6655A9.8410Not Liganded22]3TYR6655A9.840Not Liganded22]3TYR6655A9.840Not Liganded22]3TYR6655A9.840Not Liganded22]3TYR6655A9.840Not Liganded22]3TYR6655A9.840Not Liganded22]3TYR6655A9.840Not Liganded2284TYR14.65A11.6742Not Liganded2284TYR10.01A11.7730Not Liganded2284TYR10.28A11.6741Not Liganded2284TYR10.28A11.6741Not Liganded2284TYR10.28A11.53100Not Liganded2284TYR12.84A15.55100Not Liganded <td>2ZJ3</td> <td>TYR</td> <td>348</td> <td>А</td> <td>10.08</td> <td>0</td> <td>Not Liganded</td>	2ZJ3	TYR	348	А	10.08	0	Not Liganded
2213TYR4434A10.6288Not Liganded2213TYR4477A14.18100Not Liganded2213TYR5546A13.38655Not Liganded2213TYR5565A11.18377Not Liganded2213TYR5563A10.14100Not Liganded2213TYR6555A9.8410.14100Not Liganded2213TYR6555A9.8410.20Not Liganded2213TYR6555A9.840Not Liganded2214TYR10.655A9.8410.2Not Liganded2284TYR14.65A11.6742Not Liganded2284TYR14.64A10.250Not Liganded2284TYR14.64A10.25100Not Liganded2284TYR14.67A11.77300Not Liganded2284TYR14.67A11.6744Not Liganded2284TYR14.67A11.67100Not Liganded2284TYR14.67A11.67100Not Liganded2284TYR14.67A11.67100Not Liganded2284TYR14.67A11.67100Not Liganded2284TYR14.67A10.65100Not Liganded2284TYR14	2ZJ3	TYR	377	А	11.19	50	Not Liganded
2213TYR4477A14.18100Not Liganded2213TYR534A10.220Liganded2213TYR546A13.3865Not Liganded2213TYR563A10.1410Not Liganded2213TYR563A10.1410Not Liganded2213TYR665A9.8410Not Liganded2213TYR665A9.840Not Liganded2214TYR665A9.840Not Liganded2284TYR665A11.6742Not Liganded2284TYR665A11.6742Not Liganded2284TYR664A10.250Not Liganded2284TYR178A11.7730Not Liganded2284TYR178A11.7341Not Liganded2284TYR1288A11.7341Not Liganded2284TYR2288A15.35100Not Liganded2284TYR2283A15.35100Not Liganded2284TYR2283A15.35100Not Liganded2284TYR2283A15.35100Not Liganded2284TYR2284A10.6520Not Liganded2784TYR2283A10.6520Not Liganded<	2ZJ3	TYR	434	А	10.62	8	Not Liganded
2213TYRS34A10.22(1)Liganded2213TYR1548A11.3865Not Liganded2213TYR1548A11.1837Not Liganded2213TYR1665A10.14100Not Liganded2213TYR1665A9.840Not Liganded2213TYR1665A9.840Not Liganded2214TYR1665A9.840Not Liganded2284TYR16.15A11.6742Not Liganded2284TYR16.16A10.250Not Liganded2284TYR16.16A11.7730Not Liganded2284TYR16.16A11.7730Not Liganded2284TYR16.128A11.7341Not Liganded2284TYR16.128A11.7730Not Liganded2284TYR16.128A11.6742Not Liganded2284TYR16.128A11.67100Not Liganded2284TYR17.8116.128A10.6520Not Liganded2284TYR17.8116.128A10.6510Not Liganded2284TYR17.8116.128A10.6510Not Liganded2284TYR17.8116.128A10.6510Not Liganded278Q </td <td>2ZJ3</td> <td>TYR</td> <td>477</td> <td>А</td> <td>14.18</td> <td>100</td> <td>Not Liganded</td>	2ZJ3	TYR	477	А	14.18	100	Not Liganded
2ZJ3TYR546A13.38655Not Liganded2ZJ3TYR548A11.1837Not Liganded2ZJ3TYR563A10.1410Not Liganded2ZJ3TYR665A9.840Not Liganded2ZJ3TYR6655A9.840Not Liganded2ZB4TYR6655A9.840Not Liganded2ZB4TYR6655A11.6742Not Liganded2ZB4TYR646A10.250Not Liganded2ZB4TYR646A10.250Not Liganded2ZB4TYR646A10.250Not Liganded2ZB4TYR64A10.250Not Liganded2ZB4TYR64A10.250Not Liganded2ZB4TYR64A10.250Not Liganded2ZB4TYR64A10.250Not Liganded2ZB4TYR64A10.55100Not Liganded2ZB4TYR7462Not Liganded2282ZB4TYR62A15.35100Not Liganded2ZB4TYR746215.35100Not Liganded2ZB4TYR746210.6520Not Liganded2ZB4TYR746210.6510Not Liganded2ZB4TY	2ZJ3	TYR	534	А	10.22	0	Liganded
2ZJ3TYR548A11.1837NotLiganded2ZJ3TYR653A10.14100NotLiganded2ZJ3TYR655A9.8410NotLiganded2ZB4TYR665A9.840NotLiganded2ZB4TYR665A11.6742NotLiganded2ZB4TYR665A11.6742NotLiganded2ZB4TYR665A11.6742NotLiganded2ZB4TYR665A11.6742NotLiganded2ZB4TYR646A10.250NotLiganded2ZB4TYR646A10.250NotLiganded2ZB4TYR641A10.250NotLiganded2ZB4TYR641A11.7730NotLiganded2ZB4TYR641A11.7730NotLiganded2ZB4TYR642A11.7341NotLiganded2ZB4TYR642A11.7341NotLiganded2ZB4TYR64A10.53100NotLiganded2ZB4TYR64A10.51100Liganded2ZB4TYR64A10.51100NotLiganded2ZB4TYR746410.51100NotLiganded2ZB4TYR746410.51100NotLiganded2ZB4TYR	2ZJ3	TYR	546	А	13.38	65	Not Liganded
ZZJ3TYR563A10.1410Not LigandedZZJ3TYRS98A12.3819Not LigandedZZJ3TYR665A9.840Not LigandedZZB4TYRA10.20Not LigandedZZB4TYRA11.6742Not LigandedZZB4TYRA11.6742Not LigandedZZB4TYRA11.6742Not LigandedZZB4TYRA11.6740Not LigandedZZB4TYRA11.7730Not LigandedZZB4TYRA11.7730Not LigandedZZB4TYRA11.7341Not LigandedZZB4TYRA11.7341Not LigandedZZB4TYRA11.7341Not LigandedZZB4TYRA11.7341Not LigandedZZB4TYRA11.7341Not LigandedZZB4TYRA11.7341Not LigandedZZB4TYRA10.55100Not LigandedZZB4TYRA10.55A15.17100ZZB4TYRA10.55A10.5520Not LigandedZZB4TYRAA10.55A10.5510Not LigandedZZB4TYRAA10.52A10.5510Not LigandedZYRQ <t< td=""><td>2ZJ3</td><td>TYR</td><td>548</td><td>А</td><td>11.18</td><td>37</td><td>Not Liganded</td></t<>	2ZJ3	TYR	548	А	11.18	37	Not Liganded
2ZJ3TYR598A12.3819Not Liganded2ZJ3TYR6655A9.840Not Liganded2ZB4TYR2A10.20Not Liganded2ZB4TYR6A11.6742Not Liganded2ZB4TYR6A10.250Not Liganded2ZB4TYR6A10.250Not Liganded2ZB4TYR6A10.250Not Liganded2ZB4TYR6A10.250Not Liganded2ZB4TYR6A11.7730Not Liganded2ZB4TYR6A11.7344Not Liganded2ZB4TYR6A11.7344Not Liganded2ZB4TYR6A11.7344Not Liganded2ZB4TYR6A11.7341Not Liganded2ZB4TYR6A11.73100Icganded2ZB4TYR6A11.73100Liganded2ZB4TYR6A11.51100Icganded2ZB4TYR1012.51100Icganded2ZB4TYR10.62A10.6520Not Liganded2ZB4TYR17.7A10.6510.410.612ZB4TYR17.7A10.5110.1Not Liganded2ZB4TYR17.710.6	2ZJ3	TYR	563	А	10.14	10	Not Liganded
2ZJ3TYR665A9.840Not Liganded2ZB4TYR29A10.20Not Liganded2ZB4TYRA11.6742Not Liganded2ZB4TYRA11.6742Not Liganded2ZB4TYRA10.250Not Liganded2ZB4TYRA10.250Not Liganded2ZB4TYRA11.7730Not Liganded2ZB4TYRA11.7730Not Liganded2ZB4TYRA11.6741Not Liganded2ZB4TYRA11.6762Not Liganded2ZB4TYRA11.6762Not Liganded2ZB4TYRA208A11.67622ZB4TYRA208A11.67622ZB4TYRA208A11.671002ZB4TYRA228A10.531002ZB4TYRA228A10.51100Liganded2ZB4TYRA265A15.17100Liganded2ZB4TYRA23A10.6520Not Liganded2YRQTYRAA10.521Not Liganded2YRQTYRAA10.371Not Liganded2YRQTYRAA10.374Not Liganded2YRQTYRA	2ZJ3	TYR	598	А	12.38	19	Not Liganded
2ZB4TYR29A10.20Not Liganded2ZB4TYRAA11.67A2Not Liganded2ZB4TYRAA14.46100Not Liganded2ZB4TYRAA10.250Not Liganded2ZB4TYRAA10.250Not Liganded2ZB4TYRAA11.7730Not Liganded2ZB4TYRAA11.7341Not Liganded2ZB4TYRAA14.6762Not Liganded2ZB4TYRAA14.6762Not Liganded2ZB4TYRAA15.35100Not Liganded2ZB4TYRAA15.35100Not Liganded2ZB4TYRAA15.35100Not Liganded2ZB4TYRAA15.17100Liganded2ZB4TYRAA10.6520Not Liganded2ZB4TYRAA10.6510Not Liganded2ZB4TYRAA10.5211Not Liganded2ZB4TYRAA10.5211Not Liganded2YRQTYRAA10.3711Not Liganded2YRQTYRAA10.37ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRA <td< td=""><td>2ZJ3</td><td>TYR</td><td>665</td><td>А</td><td>9.84</td><td>0</td><td>Not Liganded</td></td<>	2ZJ3	TYR	665	А	9.84	0	Not Liganded
2ZB4TYR45A11.6742Not Liganded2ZB4TYRS1A14.46100Not Liganded2ZB4TYRA10.25ONot Liganded2ZB4TYRA11.7730Not Liganded2ZB4TYRA11.7730Not Liganded2ZB4TYRA11.7341Not Liganded2ZB4TYRA14.6762Not Liganded2ZB4TYRA14.6762Not Liganded2ZB4TYRA228A15.35100Not Liganded2ZB4TYRA259A12.7100Not Liganded2ZB4TYRA59A15.17100Liganded2ZB4TYRA292A10.6520Not Liganded2ZB4TYRA292A10.6520Not Liganded2ZB4TYRA292A10.6520Not Liganded2ZB4TYRAA10.521Not Liganded2YRQTYRAA10.371Not Liganded2YRQTYRAA10.371Not Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYR	2ZB4	TYR	29	А	10.2	0	Not Liganded
ZZB4TYRA14.46100Not LigandedZZB4TYR64A10.250Not LigandedZZB4TYR1000A11.7730Not LigandedZZB4TYR1288A11.7341Not LigandedZZB4TYR2088A14.6762Not LigandedZZB4TYR2288A15.35100Not LigandedZZB4TYR2288A15.35100Not LigandedZZB4TYR2288A15.35100Not LigandedZZB4TYR2289A10.53100Not LigandedZZB4TYR2289A10.6520Not LigandedZZB4TYR2289A10.6520Not LigandedZZB4TYR2289A10.6520Not LigandedZZB4TYR2289A10.6520Not LigandedZYRQTYR238A10.5211Not LigandedZYRQTYRAA10.5211Not LigandedZYRQTYRAA10.3714Not LigandedZYRQTYRAA10.355Not LigandedZYRQTYRAA10.355Not LigandedZYRQTYRAA10.355Not LigandedZYRQTYRAA10.670Not LigandedZYRQ	2ZB4	TYR	45	А	11.67	42	Not Liganded
ZZB4TYR64A10.250Not LigandedZZB4TYR1000A11.7730Not LigandedZZB4TYR1288A11.7341Not LigandedZZB4TYR2088A14.6762Not LigandedZZB4TYR2288A15.35100Not LigandedZZB4TYR2288A15.35100Not LigandedZZB4TYR2298A12.7100Not LigandedZZB4TYR259A12.7100LigandedZZB4TYR265A15.17100LigandedZZB4TYR2282A10.6520Not LigandedZZB4TYR232A10.6520Not LigandedZYRQTYR233A10.893LigandedZYRQTYR235A10.5211Not LigandedZYRQTYR166A10.3711Not LigandedZYRQTYR166A10.3714Not LigandedZYRQTYR166A10.355Not LigandedZYRQTYR166A10.355Not LigandedZYRQTYR166A10.355Not LigandedZYRQTYR166A10.355Not LigandedZYRQTYR166A10.670Not Liganded	2ZB4	TYR	51	А	14.46	100	Not Liganded
2ZB4TYR100A11.7730Not Liganded2ZB4TYR128A11.7341Not Liganded2ZB4TYR208A14.6762Not Liganded2ZB4TYR2288A15.35100Not Liganded2ZB4TYR2288A15.35100Not Liganded2ZB4TYR2255A11.77100Liganded2ZB4TYR2265A15.17100Liganded2ZB4TYR2292A10.6520Not Liganded2ZB4TYR2233A10.8933Liganded2YRQTYRA23A10.8934Liganded2YRQTYRAA10.521Not Liganded2YRQTYRAA10.440Not Liganded2YRQTYRAA10.371Not Liganded2YRQTYRAA10.374Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.670Not Liganded	2ZB4	TYR	64	А	10.25	0	Not Liganded
2ZB4TYR128A11.7341Not Liganded2ZB4TYR208A14.6762Not Liganded2ZB4TYR228A15.35100Not Liganded2ZB4TYR2285A12.7100Not Liganded2ZB4TYR2265A15.17100Liganded2ZB4TYR292A10.6520Not Liganded2ZB4TYR292A10.6520Not Liganded2YRQTYR278A10.6520Not Liganded2YRQTYRA10.5211Not Liganded2YRQTYRAA10.5211Not Liganded2YRQTYRAA10.5110Not Liganded2YRQTYRAA10.5211Not Liganded2YRQTYRAA10.5214Not Liganded2YRQTYRAA10.5314Not Liganded2YRQTYRAA10.555Not Liganded2YRQTYRAA10.554Not Liganded2YRQTYRAA10.555Not Liganded2YRQTYRAA10.554Not Liganded2YRQTYRAA10.555Not Liganded2YRQTYRAA10.554Not Liganded2YRQTYRA <td>2ZB4</td> <td>TYR</td> <td>100</td> <td>А</td> <td>11.77</td> <td>30</td> <td>Not Liganded</td>	2ZB4	TYR	100	А	11.77	30	Not Liganded
2ZB4TYR208A14.67G2Not Liganded2ZB4TYR228A15.35100Not Liganded2ZB4TYR259A12.7100Not Liganded2ZB4TYR265A15.17100Liganded2ZB4TYR292A10.6520Not Liganded2ZB4TYR232A10.6520Not Liganded2YRQTYR233A10.893Liganded2YRQTYRA10.5211Not Liganded2YRQTYRA10.5211Not Liganded2YRQTYRA10.51A10.37112YRQTYRA11.5444Not Liganded2YRQTYRA10.52A10.3552YRQTYRA10.55A10.3542YRQTYRA10.55A10.3552YRQTYRAA10.355Not Liganded2YRQTYRAA10.670Not Liganded2YRQTYRAA10.670Not Liganded	2ZB4	TYR	128	А	11.73	41	Not Liganded
ZZB4TYR228A15.35100Not LigandedZZB4TYR259A12.7100Not LigandedZZB4TYR265A15.17100LigandedZZB4TYR2025A10.6520Not LigandedZZB4TYR2022A10.6520Not Liganded2YRQTYR233A10.893Liganded2YRQTYRA10.521Not Liganded2YRQTYRA10.4400Not Liganded2YRQTYRA11.6410.371Not Liganded2YRQTYRA11.54A10.44Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.355Not Liganded2YRQTYRAA10.670Not Liganded2YRQTYRAA10.670Not Liganded	2ZB4	TYR	208	А	14.67	62	Not Liganded
2ZB4TYR259A12.7100Not Liganded2ZB4TYR265A15.17100Liganded2ZB4TYR292A10.6520Not Liganded2YRQTYR292A10.893Liganded2YRQTYRA10.5211Not Liganded2YRQTYRA10.5211Not Liganded2YRQTYRA10.440Not Liganded2YRQTYRA10.65A10.4402YRQTYRA11.64A10.37A2YRQTYRAA11.54ANot Liganded2YRQTYRAA10.35SNot Liganded2YRQTYRAA10.35A10.44Not Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.670Not Liganded	2ZB4	TYR	228	А	15.35	100	Not Liganded
2ZB4TYR265A15.17100Liganded2ZB4TYR292A10.6520Not Liganded2YRQTYR23A10.893Liganded2YRQTYRA10.521Not Liganded2YRQTYRA10.521Not Liganded2YRQTYRA10.440Not Liganded2YRQTYRA11.6410.371Not Liganded2YRQTYRA11.54ANot Liganded2YRQTYRAA10.35SNot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.35ANot Liganded2YRQTYRAA10.670Not Liganded	2ZB4	TYR	259	А	12.7	100	Not Liganded
ZZB4TYR292A10.6520Not Liganded2YRQTYRCAA10.89CALiganded2YRQTYRCAA10.52CANot Liganded2YRQTYRCAA10.44ONot Liganded2YRQTYRCAA10.37CANot Liganded2YRQTYRCAA10.37ANot Liganded2YRQTYRCAA10.35ANot Liganded2YRQTYRCAA10.35SNot Liganded2YRQTYRCAA10.35SNot Liganded2YRQTYRAA10.67ONot Liganded	2ZB4	TYR	265	А	15.17	100	Liganded
2YRQTYR23A10.893Liganded2YRQTYR778A10.521Not Liganded2YRQTYR85A10.440Not Liganded2YRQTYR1166A10.371Not Liganded2YRQTYR1151A11.544Not Liganded2YRQTYR162A10.355Not Liganded2YRQTYR166A10.670Not Liganded	2ZB4	TYR	292	А	10.65	20	Not Liganded
2YRQTYRA10.521Not Liganded2YRQTYRR5A10.44ONot Liganded2YRQTYR116A10.371Not Liganded2YRQTYR1151A11.544Not Liganded2YRQTYR162A10.355Not Liganded2YRQTYR169A10.670Not Liganded	2YRQ	TYR	23	А	10.89	3	Liganded
2YRQTYR85A10.440Not Liganded2YRQTYR116A10.371Not Liganded2YRQTYR151A11.544Not Liganded2YRQTYR162A10.355Not Liganded2YRQTYR162A10.670Not Liganded	2YRQ	TYR	78	А	10.52	1	Not Liganded
2YRQ TYR 116 A 10.37 1 Not Liganded 2YRQ TYR 151 A 11.54 4 Not Liganded 2YRQ TYR 162 A 10.35 5 Not Liganded 2YRQ TYR 162 A 10.35 5 Not Liganded 2YRQ TYR 169 A 10.67 0 Not Liganded	2YRQ	TYR	85	А	10.44	0	Not Liganded
2YRQ TYR 151 A 11.54 4 Not Liganded 2YRQ TYR 162 A 10.35 5 Not Liganded 2YRQ TYR 169 A 10.67 0 Not Liganded	2YRQ	TYR	116	А	10.37	1	Not Liganded
2YRQ TYR 162 A 10.35 5 Not Liganded 2YRQ TYR 169 A 10.67 0 Not Liganded	2YRQ	TYR	151	А	11.54	4	Not Liganded
2YRQ TYR 169 A 10.67 0 Not Liganded	2YRQ	TYR	162	А	10.35	5	Not Liganded
	2YRQ	TYR	169	А	10.67	0	Not Liganded

2XQQ	TYR	32	А	9.7	0	Liganded
2XQQ	TYR	41	А	10.92	1	Not Liganded
2XQQ	TYR	50	А	12.14	16	Not Liganded
2XQQ	TYR	65	А	11.61	66	Not Liganded
2XQQ	TYR	75	А	14.71	91	Not Liganded
2XQQ	TYR	77	А	12.04	60	Not Liganded
2XQQ	TYR	32	В	10.02	0	Liganded
2XQQ	TYR	41	В	11.05	1	Not Liganded
2XQQ	TYR	50	В	12.55	17	Not Liganded
2XQQ	TYR	65	В	10.28	0	Not Liganded
2XQQ	TYR	75	В	12.16	31	Not Liganded
2XQQ	TYR	77	В	9.75	0	Not Liganded
2XQQ	TYR	32	С	13.25	55	Liganded
2XQQ	TYR	41	С	11.49	26	Not Liganded
2XQQ	TYR	50	С	11.88	11	Not Liganded
2XQQ	TYR	65	С	9.83	18	Not Liganded
2XQQ	TYR	75	С	13.95	65	Not Liganded
2XQQ	TYR	77	С	10.07	26	Not Liganded
2XQQ	TYR	32	D	10.2	0	Liganded
2XQQ	TYR	41	D	12.11	35	Not Liganded
2XQQ	TYR	50	D	14.81	71	Not Liganded
2XQQ	TYR	65	D	10.18	0	Not Liganded
2XQQ	TYR	75	D	12.1	21	Not Liganded
2XQQ	TYR	77	D	9.91	0	Not Liganded
2VYI	TYR	114	А	12.13	56	Not Liganded
2VYI	TYR	127	А	12.51	27	Not Liganded
2VΥΙ	TYR	135	А	10.67	37	Not Liganded
2VYI	TYR	141	А	9.97	0	Liganded
2VYI	TYR	158	А	13.36	54	Not Liganded
2VYI	TYR	162	А	10.68	9	Not Liganded
2VYI	TYR	181	А	11.31	28	Not Liganded
2VYI	TYR	182	А	12.46	56	Not Liganded
2VYI	TYR	195	А	11.65	41	Not Liganded
2VYI	TYR	114	В	12.38	56	Not Liganded
2VYI	TYR	127	В	12.37	17	Not Liganded
2VYI	TYR	135	В	10.64	33	Not Liganded
2VYI	TYR	141	В	9.87	0	Liganded
2VYI	TYR	158	В	12.74	48	Not Liganded
2VYI	TYR	162	В	10.08	6	Not Liganded
2VYI	TYR	181	В	10.89	29	Not Liganded
2VYI	TYR	182	В	12.43	57	Not Liganded
2VYI	TYR	195	В	11.48	36	Not Liganded
2V40	TYR	77	А	10.01	0	Not Liganded
2V40	TYR	170	А	12.54	95	Not Liganded
2V40	TYR	202	А	11.19	56	Liganded
2V40	TYR	206	А	9.82	4	Not Liganded

2Y40TYR223A10.87Z.3Net Liganded2Y40TYR236A10.61ONet Liganded2Y40TYR239A10.3ONet Liganded2Y40TYR239A10.3GNet Liganded2Y40TYR230A17.6100Net Liganded2Y40TYR330A17.6100Net Liganded2Y40TYR338A17.655Net Liganded2Y40TYR378A17.655Net Liganded2Y40TYR4428A13.71100Net Liganded2Q40TYR100A11.6563Net Liganded2Q44TYR100A11.65100Net Liganded2Q44TYR1015A11.65100Net Liganded2Q44TYR1015A11.65100Net Liganded2Q44TYR201A12.570Net Liganded2Q44TYR201A12.570Net Liganded2Q44TYR201A12.570Net Liganded2Q44TYR201A12.570Net Liganded2Q44TYR201A12.570Net Liganded2Q44TYR201A12.570Net Liganded2Q44TYR201A12.570Net Liganded <trr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></trr<>							
2Y40TYR236A10.610Net Liganded2Y40TYR229A10.30Net Liganded2Y40TYR266A10.150Net Liganded2Y40TYR230A12.84Net Liganded2Y40TYR338A11.7448Net Liganded2Y40TYR378A11.7669Net Liganded2Y40TYR378A11.7660Net Liganded2Y40TYR378A11.6663Net Liganded2Y40TYR100A11.6663Net Liganded2Q40TYR1100A11.6663Net Liganded2Q41TYR1100A11.653Net Liganded2Q44TYR1100A11.65100Net Liganded2Q44TYR1159A11.17100Net Liganded2Q44TYR12.16A11.535Net Liganded2Q44TYR21.16A11.535Net Liganded2Q44TYR22.16A11.535Net Liganded2Q44TYR22.16A11.535Net Liganded2Q44TYR22.16A11.535Net Liganded2Q44TYR22.16A11.54100Net Liganded2Q44TYR22.16A11.555Net Liganded	2V40	TYR	223	А	10.87	23	Not Liganded
2Y40TYR238A10.30Nutliganded2Y40TYR266A10.15GNutliganded2Y40TYR294A12.08ANutliganded2Y40TYR300A17.6100Nutliganded2Y40TYR300A17.6100Nutliganded2Y40TYR378A17.648Nutliganded2Y40TYR400A12.4663Nutliganded2Y40TYR400A11.6963Nutliganded2Q0HTYR100A11.6963Nutliganded2Q1HTYR155A11.09Nutliganded2Q1HTYR155A15.59100Nutliganded2Q1HTYR2214A13.3366Nutliganded2Q1HTYR2244A13.53100Nutliganded2Q1HTYR2244A15.51100Nutliganded2Q1HTYR2244A15.51100Nutliganded2Q1HTYR2244A15.51100Nutliganded2Q1HTYR2245A15.21Nutliganded2Q1HTYR2446A15.21Nutliganded2Q1HTYR2446A15.21Nutliganded2Q1HTYR2446A15.21Nutliganded2Q1HTYR2446A15.21 <td>2V40</td> <td>TYR</td> <td>236</td> <td>А</td> <td>10.61</td> <td>0</td> <td>Not Liganded</td>	2V40	TYR	236	А	10.61	0	Not Liganded
2Y40TYR266A10.150Net Liganded2V40TYR294A12.0846Net Liganded2V40TYR300A17.6100Net Liganded2V40TYR388A11.7448Net Liganded2V40TYR388A11.7448Net Liganded2V40TYR4022A12.4660Net Liganded2V40TYR428A13.71100Net Liganded2QuHTYR1050A11.6663Net Liganded2QuHTYR1051A17.11100Net Liganded2QUHTYR1215A16.59100Net Liganded2QUHTYR2124A13.0360Net Liganded2QUHTYR2246A12.570Net Liganded2QUHTYR2246A15.2188Liganded2QUHTYR329A16.22Net Liganded2QUHTYR329A12.97100Net Liganded2QUHTYR179329A12.97100Net Liganded2QUHTYR329A12.97100Net Liganded2QUHTYR329A12.97100Net Liganded2QUHTYR320A12.97100Net Liganded2QUHTYR320B13.07101Net Ligan	2V40	TYR	239	А	10.3	0	Not Liganded
2Y40TYR294A12.0846Not Liganded2V40TYR300A17.6100Not Liganded2V40TYR378A11.7448Not Liganded2V40TYR378A11.7660Not Liganded2V40TYR402A12.4660Not Liganded2V40TYR1000A11.6663Not Liganded20UHTYR1000A11.6663Not Liganded20UHTYR157A17.11100Not Liganded20UHTYR12016A16.59100Not Liganded20UHTYR2016A12.570Not Liganded20UHTYR2016A12.570Not Liganded20UHTYR2016A12.5100Not Liganded20UHTYR204A12.5188Liganded20UHTYR248A16.32100Not Liganded20UHTYR248A16.32100Not Liganded20UHTYR248A16.32100Not Liganded20UHTYR249A12.57100Not Liganded20UHTYR249A12.5188Liganded20UHTYR248A16.32100Not Liganded20UHTYR240B11.5720Not Liganded <td>2V40</td> <td>TYR</td> <td>266</td> <td>А</td> <td>10.15</td> <td>0</td> <td>Not Liganded</td>	2V40	TYR	266	А	10.15	0	Not Liganded
2V40TYR300A17.6100Net Liganded2V40TYR348A11.7448Net Liganded2V40TYR378A17.0695Net Liganded2V40TYR4020A12.4660Net Liganded2V40TYR428A13.71100Net Liganded2U40TYR1100A11.6663Net Liganded2QUHTYR1150A11.0936Net Liganded2QUHTYR1157A17.11100Not Liganded2QUHTYR1212A13.0360Net Liganded2QUHTYR2214A10.5355Net Liganded2QUHTYR2246A12.55100Not Liganded2QUHTYR2404A12.51188Liganded2QUHTYR2404A12.55100Not Liganded2QUHTYR2404A12.55165Not Liganded2QUHTYR2404A12.55160Not Liganded2QUHTYR2404A12.55100Not Liganded2QUHTYR14402A12.55160Not Liganded2QUHTYR2406A12.55100Not Liganded2QUHTYR2406B11.67100Not Liganded2QUHTYR2406B16.77100 <td>2V40</td> <td>TYR</td> <td>294</td> <td>А</td> <td>12.08</td> <td>46</td> <td>Not Liganded</td>	2V40	TYR	294	А	12.08	46	Not Liganded
2V40TYR348A11.7448Net Uganded2V40TYR378A17.0695Net Uganded2V40TYR402A12.6660Net Uganded2V40TYR428A13.71100Net Uganded2Q0HTYR1000A11.6663Net Uganded2QUHTYR17871.119100Net Uganded2QUHTYR1.159A11.9936Net Uganded2QUHTYR1.159A1.59100Net Uganded2QUHTYR2.01A1.59100Net Uganded2QUHTYR2.01A1.535Net Uganded2QUHTYR2.01A1.52100Net Uganded2QUHTYR2.02A1.52100Net Uganded2QUHTYR2.03A1.52100Net Uganded2QUHTYR2.04A1.5276Net Uganded2QUHTYR3.66A1.5188Uganded2QUHTYR4.02A1.25700Net Uganded2QUHTYR4.02A1.25100Net Uganded2QUHTYR4.02A1.25100Net Uganded2QUHTYR1.010B1.17100Net Uganded2QUHTYR2.02B1.05100Net Uganded2QUH <td>2V40</td> <td>TYR</td> <td>300</td> <td>А</td> <td>17.6</td> <td>100</td> <td>Not Liganded</td>	2V40	TYR	300	А	17.6	100	Not Liganded
2V40TYR378A17.0695Not Liganded2V40TYR402A12.466.00Not Liganded2V40TYR42.8A13.71100Not Liganded2QUHTYR1000A11.666.3Not Liganded2QUHTYR150A11.093.6Not Liganded2QUHTYR1577A17.11100Not Liganded2QUHTYR12.12A13.0360Not Liganded2QUHTYR22.12A13.0360Not Liganded2QUHTYR22.14A13.0360Not Liganded2QUHTYR22.14A10.52Not Liganded2QUHTYR22.04A12.75100Not Liganded2QUHTYR23.29A12.2556Not Liganded2QUHTYR32.92A12.2676Not Liganded2QUHTYR42.00A12.77100Not Liganded2QUHTYR42.00A12.2654Not Liganded2QUHTYR42.00A12.2654Not Liganded2QUHTYR10.15B10.522Not Liganded2QUHTYR12.21B12.2267Not Liganded2QUHTYR12.25SNot Liganded202QUHTYR12.24B10.55Not Liganded<	2V40	TYR	348	А	11.74	48	Not Liganded
2V40TYR402A12.4660Not Liganded2V40TYR428A13.71100Not Liganded2QUHTYR100A11.66G3Not Liganded2QUHTYR1557A17.11100Not Liganded2QUHTYR1557A16.59100Not Liganded2QUHTYR2011A16.59100Not Liganded2QUHTYR2021A13.0360Not Liganded2QUHTYR2024A10.535Not Liganded2QUHTYR2024A10.535Not Liganded2QUHTYR2024A16.32100Not Liganded2QUHTYR2024A12.2576Not Liganded2QUHTYR2026A12.2676Not Liganded2QUHTYR3100A12.2554Not Liganded2QUHTYR1000B11.9777Not Liganded2QUHTYR1000B12.2267Not Liganded2QUHTYR1001B12.2350Not Liganded2QUHTYR1015B10.51100Not Liganded2QUHTYR1010B12.2267Not Liganded2QUHTYR2024B16.76100Not Liganded2QUHTYR2024B13.1898 <t< td=""><td>2V40</td><td>TYR</td><td>378</td><td>А</td><td>17.06</td><td>95</td><td>Not Liganded</td></t<>	2V40	TYR	378	А	17.06	95	Not Liganded
2V40TYR4428A13.71100Not liganded2QUHTYR1000A11.66G3Not liganded2QUHTYR1157A11.0936Not liganded2QUHTYR1157A16.59100Not liganded2QUHTYR2016A12.570Not liganded2QUHTYR2012A13.03G6Not liganded2QUHTYR20212A13.03G0Not liganded2QUHTYR20248A10.5355Not liganded2QUHTYR20248A16.52100Not liganded2QUHTYR20248A16.32100Not liganded2QUHTYR2048A12.57100Not liganded2QUHTYR2048A12.57100Not liganded2QUHTYR2049A12.9770Not liganded2QUHTYR2040A12.97100Not liganded2QUHTYR2040B11.9770Not liganded2QUHTYR2040B10.57100Not liganded2QUHTYR2040B10.57100Not liganded2QUHTYR2040B10.57100Not liganded2QUHTYR2040B10.57100Not liganded2QUHTYR2040B10.57<	2V40	TYR	402	А	12.46	60	Not Liganded
2QUHTYR100A11.66G.3Not liganded2QUHTYR1.157A1.1093.6Not liganded2QUHTYR1.157A1.1.11.00Not liganded2QUHTYR1.157A1.6.591.00Not liganded2QUHTYR1.2.12A1.6.396.0Not liganded2QUHTYR2.2.12A1.3.036.0Not liganded2QUHTYR2.2.12A1.3.035.0Not liganded2QUHTYR2.2.12A1.5.31.00Not liganded2QUHTYR2.2.12A1.5.35.0Not liganded2QUHTYR1.2.12A1.5.27.0Not liganded2QUHTYR1.2.12A1.5.27.0Not liganded2QUHTYR1.2.12A1.2.57.0Not liganded2QUHTYR1.2.12A1.2.57.0Not liganded2QUHTYR1.2.12A1.2.57.0Not liganded2QUHTYR1.2.15B1.1.57.0Not liganded2QUHTYR1.2.15B1.2.57.0Not liganded2QUHTYR1.2.15B1.2.57.0Not liganded2QUHTYR1.2.15B1.2.57.0Not liganded2QUHTYR1.2.15B1.2.57.0Not liganded2QUHTY	2V40	TYR	428	А	13.71	100	Not Liganded
2QUHTYR1100A11.00Not liganded2QUHTYR1157A17.11100Not liganded2QUHTYR1155A16.59100Not liganded2QUHTYR2121A13.03G0Not liganded2QUHTYR2121A13.03SNot liganded2QUHTYR2124A10.53SNot liganded2QUHTYR22046A12.75100Not liganded2QUHTYR22047A15.2188liganded2QUHTYR22048A15.2188liganded2QUHTYR22048A12.0576Not liganded2QUHTYR22047A12.0576Not liganded2QUHTYR22046A12.9770Not liganded2QUHTYR22046A12.9770Not liganded2QUHTYR22046B10.5770Not liganded2QUHTYR22046B10.5770Not liganded2QUHTYR22046B10.5770Not liganded2QUHTYR22046B10.5770Not liganded2QUHTYR22046B10.57100Not liganded2QUHTYR22046B10.57100Not liganded2QUHTYR2204B10.5310.01	2QUH	TYR	100	А	11.66	63	Not Liganded
2QUHTYR1157A17.11100Not liganded2QUHTYR1159A16.59100Not liganded2QUHTYR2016A12.570Not liganded2QUHTYR2121A13.0360Not liganded2QUHTYR2124A10.535Not liganded2QUHTYR2406A12.75100Not liganded2QUHTYR2436A15.2188liganded2QUHTYR2436A12.9576Not liganded2QUHTYR2430A12.9576Not liganded2QUHTYR24304A12.9576Not liganded2QUHTYR24304A12.9576Not liganded2QUHTYR10402A12.9576Not liganded2QUHTYR10403811.9777Not liganded2QUHTYR10405811.9777Not liganded2QUHTYR10105811.9777Not liganded2QUHTYR10105811.9770Not liganded2QUHTYR2016811.9770Not liganded2QUHTYR2016811.9770Not liganded2QUHTYR2016811.97100Not liganded2QUHTYR2016811.3898 <td>2QUH</td> <td>TYR</td> <td>150</td> <td>А</td> <td>11.09</td> <td>36</td> <td>Not Liganded</td>	2QUH	TYR	150	А	11.09	36	Not Liganded
2QUHTYR159A16.59100Not liganded2QUHTYR2011A12.570Not liganded2QUHTYR2124A13.0360Not liganded2QUHTYR2244A10.5355Not liganded2QUHTYR2246A16.32100Not liganded2QUHTYR2248A16.32100Not liganded2QUHTYR2248A15.2588liganded2QUHTYR2329A12.0576Not liganded2QUHTYR4420A12.9654Not liganded2QUHTYR4420A12.9654Not liganded2QUHTYR4420A12.97Not liganded2QUHTYR4420A12.97Not liganded2QUHTYR4420B11.97Not liganded2QUHTYR4420B10.522Not liganded2QUHTYR441515B10.6100Not liganded2QUHTYR441515B10.5100Not liganded2QUHTYR44261B13.6100Not liganded2QUHTYR44261B13.610.0Not liganded2QUHTYR444151B10.5100Not liganded2QUHTYR444151B10.5100Not liganded <trr< td=""><td>2QUH</td><td>TYR</td><td>157</td><td>А</td><td>17.11</td><td>100</td><td>Not Liganded</td></trr<>	2QUH	TYR	157	А	17.11	100	Not Liganded
2QUHTYR201A12.57.0Not liganded2QUHTYR2121A13.0360Not liganded2QUHTYR2124A10.535Not liganded2QUHTYR2244A12.75100Not liganded2QUHTYR2248A15.2188liganded2QUHTYR2329A12.057.6Not liganded2QUHTYR2329A12.97100Not liganded2QUHTYR4402A12.97100Not liganded2QUHTYR4402A12.97100Not liganded2QUHTYR1000811.977.7Not liganded2QUHTYR10100811.977.7Not liganded2QUHTYR10101810.55100Not liganded2QUHTYR10105810.55100Not liganded2QUHTYR10115815.6100Not liganded2QUHTYR10121815.2350Not liganded2QUHTYR10121812.2267Not liganded2QUHTYR10121812.3250Not liganded2QUHTYR10121813.1898Not liganded2QUHTYR10121813.18101Not liganded2QUHTYR10123810.55<	2QUH	TYR	159	А	16.59	100	Not Liganded
2QUHTYR2112A13.0366Not liganded2QUHTYR2244A10.535Not liganded2QUHTYR2248A16.32100Not liganded2QUHTYR2328A15.2188liganded2QUHTYR2329A12.0576Not liganded2QUHTYR2329A12.0576Not liganded2QUHTYR24420A12.97100Not liganded2QUHTYR24400A12.97100Not liganded2QUHTYR24400A12.9654Not liganded2QUHTYR24400B11.9777Not liganded2QUHTYR15010B16.76100Not liganded2QUHTYR24415B16.76100Not liganded2QUHTYR24420B12.3250Not liganded2QUHTYR24415B16.76100Not liganded2QUHTYR24420B12.3250Not liganded2QUHTYR24420B12.3250Not liganded2QUHTYR244420B10.5510Not liganded2QUHTYR244420B13.1898Not liganded2QUHTYR244420B14.55100Not liganded2QUHTYR244420B10.31	2QUH	TYR	201	А	12.5	70	Not Liganded
2QUHTYR214A10.53SNot Liganded2QUHTYR2400A12.75100Not Liganded2QUHTYR248A16.32100Not Liganded2QUHTYR316A15.2188Liganded2QUHTYR329A12.0576Not Liganded2QUHTYR402A12.97100Not Liganded2QUHTYR402A12.97100Not Liganded2QUHTYR400B11.9777Not Liganded2QUHTYR150B10.522Not Liganded2QUHTYR150B10.520Not Liganded2QUHTYR1517B17.6100Not Liganded2QUHTYR1519B16.76100Not Liganded2QUHTYR2121B12.3250Not Liganded2QUHTYR2124B13.1898Not Liganded2QUHTYR2124B13.1898Not Liganded2QUHTYR2144B10.550Not Liganded2QUHTYR2144B10.51100Not Liganded2QUHTYR2144B10.51100Not Liganded2QUHTYR2144B10.51100Not Liganded2QUHTYR2144B10.51100Not Liga	2QUH	TYR	212	А	13.03	60	Not Liganded
2QUHTYR240A12.75100Not liganded2QUHTYR248A16.32100Not liganded2QUHTYR3166A15.2188liganded2QUHTYR3295A12.0576Not liganded2QUHTYR4402A12.97100Not liganded2QUHTYR4400B11.9777Not liganded2QUHTYR1000B11.9777Not liganded2QUHTYR10010B10.522Not liganded2QUHTYR1015B10.522Not liganded2QUHTYR1015B16.76100Not liganded2QUHTYR2016B12.2267Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.6816.77100Not liganded2QUHTYR2016A11.18 <td< td=""><td>2QUH</td><td>TYR</td><td>214</td><td>А</td><td>10.53</td><td>5</td><td>Not Liganded</td></td<>	2QUH	TYR	214	А	10.53	5	Not Liganded
2QUHTYR248A16.32100Not liganded2QUHTYR316A15.2188liganded2QUHTYR329A12.0576Not liganded2QUHTYR402A12.97100Not liganded2QUHTYR4000B11.9777Not liganded2QUHTYR1000B11.9777Not liganded2QUHTYR1001B10.522Not liganded2QUHTYR1015B10.522Not liganded2QUHTYR1015B10.522Not liganded2QUHTYR1015B10.5100Not liganded2QUHTYR1012B12.2267Not liganded2QUHTYR2011B12.2267Not liganded2QUHTYR2012B13.1898Not liganded2QUHTYR2014B13.1898Not liganded2QUHTYR2014B13.1898Not liganded2QUHTYR2016B13.1892liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.1898Not liganded2QUHTYR2016B13.18100Not liganded2QUHTYR2016A13.18100Not ligande	2QUH	TYR	240	А	12.75	100	Not Liganded
2QUHTYR316A15.218.88Liganded2QUHTYR329A12.0576Not Liganded2QUHTYR4402A12.97100Not Liganded2QUHTYR4400A12.9654Not Liganded2QUHTYR1100B11.9777Not Liganded2QUHTYR1100B10.522Not Liganded2QUHTYR1155B10.522Not Liganded2QUHTYR1155B16.76100Not Liganded2QUHTYR2016B12.2267Not Liganded2QUHTYR2012B12.3250Not Liganded2QUHTYR2014B10.550Not Liganded2QUHTYR2014B13.1898Not Liganded2QUHTYR2014B13.1898Not Liganded2QUHTYR2014B10.51100Not Liganded2QUHTYR2014B10.51100Not Liganded2QUHTYR2014B10.51100Not Liganded2QUHTYR2014B10.51100Not Liganded2QUHTYR2016B13.1898Not Liganded2QUHTYR2016B10.51100Not Liganded2QUHTYR2016B10.51100 <td< td=""><td>2QUH</td><td>TYR</td><td>248</td><td>А</td><td>16.32</td><td>100</td><td>Not Liganded</td></td<>	2QUH	TYR	248	А	16.32	100	Not Liganded
2QUHTYR329A12.0576Not Liganded2QUHTYR402A12.97100Not Liganded2QUHTYR4200A12.9654Not Liganded2QUHTYR1000B11.9777Not Liganded2QUHTYR1005B10.522Not Liganded2QUHTYR1155B10.522Not Liganded2QUHTYR1155B16.76100Not Liganded2QUHTYR2016B12.2267Not Liganded2QUHTYR2021B12.3250Not Liganded2QUHTYR2021B13.1898Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2046B13.1898Not Liganded2QUHTYR2047B10.3172Not Liganded2QUHTYR2048B10.3172Not Liganded2QUHTYR2046B13.1898Not Liganded2QUHTYR2046B10.3172Not Liganded2QUHTYR2046B13.1874Not Liganded2QUHTYR2047A10.01Not Liganded2QUHTYR2046B13.1874Not Liganded<	2QUH	TYR	316	А	15.21	88	Liganded
2QUHTYR400A12.97100Not Liganded2QUHTYR420A12.9654Not Liganded2QUHTYR1000B11.9777Not Liganded2QUHTYR1557B10.522Not Liganded2QUHTYR1557B16.76100Not Liganded2QUHTYR2016B12.2267Not Liganded2QUHTYR2017B12.3250Not Liganded2QUHTYR2014B10.550Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2026B13.1898Not Liganded2QUHTYR2028B10.3172Not Liganded2QUHTYR36B15.1692Liganded2QUHTYR36B13.6858Not Liganded2QUHTYR46A10.3170Not Liganded2QUHTYR66A10.410Not Liganded2QUHTYR66A10.140Not Liganded2QUHTYR66A10.140Not Liganded2QUHTYR66A10.140Not Liganded2QC7TYR66A10.140Not Liganded2	2QUH	TYR	329	А	12.05	76	Not Liganded
2QUHTYR420A12.9654Not Liganded2QUHTYR1000B11.9777Not Liganded2QUHTYR1557B10.522Not Liganded2QUHTYR1557B16.76100Not Liganded2QUHTYR2011B12.2267Not Liganded2QUHTYR2012B12.3250Not Liganded2QUHTYR2014B10.550Not Liganded2QUHTYR2014B10.550Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2024B16.77100Not Liganded2QUHTYR2024B16.77100Not Liganded2QUHTYR2036B16.77100Not Liganded2QUHTYR2036B16.77100Not Liganded2QUHTYR2036B16.77100Not Liganded2QUHTYR2046B13.6858Not Liganded2QUHTYR4403B10.3170Not Liganded2QUHTYR66A10.170Iganded2QUHTYR66A10.73100Not Liganded2QC7TYR66A10.1843Not Liganded2QC7TYR1666A11.1835Not Ligan	2QUH	TYR	402	А	12.97	100	Not Liganded
2QUHTYR100B11.97Not Liganded2QUHTYR155B10.522Not Liganded2QUHTYR157B17.16100Not Liganded2QUHTYR159B16.76100Not Liganded2QUHTYR2011B12.2267Not Liganded2QUHTYR2021B12.3250Not Liganded2QUHTYR2021B10.550Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2024B13.1898Not Liganded2QUHTYR2028B16.77100Not Liganded2QUHTYR2036B15.1692Liganded2QUHTYR2036B10.3172Not Liganded2QUHTYR2046B10.3172Not Liganded2QUHTYR2046B10.3172Not Liganded2QUHTYR400B14.25100Not Liganded2QUHTYR400B10.3172Not Liganded2QUHTYR400B14.25100Not Liganded2QUHTYR400B14.25100Not Liganded2QUHTYR40A10.170Liganded2QUTTYR66A10.140Not Liganded <td< td=""><td>2QUH</td><td>TYR</td><td>420</td><td>А</td><td>12.96</td><td>54</td><td>Not Liganded</td></td<>	2QUH	TYR	420	А	12.96	54	Not Liganded
2QUHTYR150B10.522Not Liganded2QUHTYR157B17.16100Not Liganded2QUHTYR159B16.76100Not Liganded2QUHTYR2011B12.2267Not Liganded2QUHTYR2012B12.3250Not Liganded2QUHTYR214B10.550Not Liganded2QUHTYR2404B13.1898Not Liganded2QUHTYR2408B16.77100Not Liganded2QUHTYR2488B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR316B10.3172Not Liganded2QUHTYR316B10.3172Not Liganded2QUHTYR4002B13.6858Not Liganded2QUHTYR4002B13.6858Not Liganded2QUHTYR4004B10.170Liganded2QUTTYR400A10.170Liganded2QUTTYR64A10.170Liganded2QC7TYR166A11.1843Not Liganded2QC7TYR1115A11.1335Not Liganded2QC7TYR1115A10.8114Not Liganded <t< td=""><td>2QUH</td><td>TYR</td><td>100</td><td>В</td><td>11.97</td><td>77</td><td>Not Liganded</td></t<>	2QUH	TYR	100	В	11.97	77	Not Liganded
2QUHTYR157B17.16100Not Liganded2QUHTYR159B16.76100Not Liganded2QUHTYR201B12.2267Not Liganded2QUHTYR212B12.3250Not Liganded2QUHTYR214B10.550Not Liganded2QUHTYR214B10.550Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR316B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR420B13.6858Not Liganded2QUHTYR420B13.6858Not Liganded2QUHTYR464A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A11.1843Not Liganded2QC7TYR115A11.1836Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR119A11.1836Not Liganded2QC7TYR132A10.8114Not Liganded <td< td=""><td>2QUH</td><td>TYR</td><td>150</td><td>В</td><td>10.5</td><td>22</td><td>Not Liganded</td></td<>	2QUH	TYR	150	В	10.5	22	Not Liganded
2QUHTYR159B16.76100Not Liganded2QUHTYR201B12.2267Not Liganded2QUHTYR212B12.3250Not Liganded2QUHTYR214B10.550Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR440B10.3172Not Liganded2QUHTYR440B10.3172Not Liganded2QUTTYR440B10.3172Not Liganded2QC7TYR64A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR115A11.1835Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR132A10.8114Not Liganded2QC7TYR132A10.8114Not Liganded <td< td=""><td>2QUH</td><td>TYR</td><td>157</td><td>В</td><td>17.16</td><td>100</td><td>Not Liganded</td></td<>	2QUH	TYR	157	В	17.16	100	Not Liganded
2QUHTYR201B12.2267Not Liganded2QUHTYR212B12.3250Not Liganded2QUHTYR214B10.550Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR402B13.6858Not Liganded2QUFTYR64A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A11.1843Not Liganded2QC7TYR115A11.1836Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR115A10.8114Not Liganded2	2QUH	TYR	159	В	16.76	100	Not Liganded
2QUHTYR212B12.3250Not Liganded2QUHTYR214B10.550Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR66A10.7310Not Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR115A11.1835Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR119A11.1836Not Liganded2QC7TYR119A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR151A10.580Not Liganded <td< td=""><td>2QUH</td><td>TYR</td><td>201</td><td>В</td><td>12.22</td><td>67</td><td>Not Liganded</td></td<>	2QUH	TYR	201	В	12.22	67	Not Liganded
2QUHTYR214B10.550Not Liganded2QUHTYR240B13.1898Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR402B13.6858Not Liganded2QC7TYR440A10.7310Not Liganded2QC7TYR66A10.140Not Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR115A11.1835Not Liganded2QC7TYR1115A11.1836Not Liganded2QC7TYR1119A11.1836Not Liganded2QC7TYR1119A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR151A10.580Not Liganded <trr< td=""><td>2QUH</td><td>TYR</td><td>212</td><td>В</td><td>12.32</td><td>50</td><td>Not Liganded</td></trr<>	2QUH	TYR	212	В	12.32	50	Not Liganded
2QUHTYR240B13.1898Not Liganded2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR420B13.6858Not Liganded2QC7TYR420B13.6858Not Liganded2QC7TYR66A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A11.1843Not Liganded2QC7TYR115A11.1835Not Liganded2QC7TYR115A11.1836Not Liganded2QC7TYR115A11.1836Not Liganded2QC7TYR115A11.1836Not Liganded2QC7TYR115A10.8114Not Liganded2QC7TYR132A10.8114Not Liganded2QC7TYR131A10.8114Not Liganded2QC7TYR131A10.8114Not Liganded2QC7TYR132A10.8114Not Liganded	2QUH	TYR	214	В	10.55	0	Not Liganded
2QUHTYR248B16.77100Not Liganded2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR420B13.6858Not Liganded2QC7TYR47A10.7310Not Liganded2QC7TYR66A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A11.1843Not Liganded2QC7TYR1105A11.1335Not Liganded2QC7TYR1115A11.1836Not Liganded2QC7TYR1115A11.1836Not Liganded2QC7TYR1115A11.1836Not Liganded2QC7TYR1115A10.8114Not Liganded2QC7TYR132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QUH	TYR	240	В	13.18	98	Not Liganded
2QUHTYR316B15.1692Liganded2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR402B13.6858Not Liganded2QUHTYR420B13.6858Not Liganded2QC7TYR420A10.7310Not Liganded2QC7TYR66A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR108A11.1843Not Liganded2QC7TYR108A11.1835Not Liganded2QC7TYR1115A11.1335Not Liganded2QC7TYR1119A11.1836Not Liganded2QC7TYR1132A10.8114Not Liganded2QC7TYR1132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QUH	TYR	248	В	16.77	100	Not Liganded
2QUHTYR329B10.3172Not Liganded2QUHTYR402B14.25100Not Liganded2QUHTYR420B13.6858Not Liganded2QC7TYR420B13.6858Not Liganded2QC7TYR64A10.7310Not Liganded2QC7TYR66A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR66A11.1843Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR1115A11.1335Not Liganded2QC7TYR1119A11.1836Not Liganded2QC7TYR1132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QUH	TYR	316	В	15.16	92	Liganded
2QUHTYR402B14.25100Not Liganded2QUHTYR420B13.6858Not Liganded2QC7TYR47A10.7310Not Liganded2QC7TYR64A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR66A11.1843Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR1115A11.1335Not Liganded2QC7TYR1115A11.1836Not Liganded2QC7TYR1132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QUH	TYR	329	В	10.31	72	Not Liganded
2QUHTYR420B13.6858Not Liganded2QC7TYR47A10.7310Not Liganded2QC7TYR64A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR66A10.140Not Liganded2QC7TYR96A11.1843Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR1115A11.1335Not Liganded2QC7TYR1119A11.1836Not Liganded2QC7TYR1132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QUH	TYR	402	В	14.25	100	Not Liganded
2QC7TYR47A10.7310Not Liganded2QC7TYR64A10.170Liganded2QC7TYR66A10.140Not Liganded2QC7TYR66A11.1843Not Liganded2QC7TYR96A11.1843Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR115A11.1335Not Liganded2QC7TYR119A11.1836Not Liganded2QC7TYR1132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QUH	TYR	420	В	13.68	58	Not Liganded
2QC7 TYR 64 A 10.17 0 Liganded 2QC7 TYR 66 A 10.14 0 Not Liganded 2QC7 TYR 66 A 11.18 43 Not Liganded 2QC7 TYR 96 A 11.18 43 Not Liganded 2QC7 TYR 108 A 12.42 42 Not Liganded 2QC7 TYR 1115 A 11.13 35 Not Liganded 2QC7 TYR 1119 A 11.18 36 Not Liganded 2QC7 TYR 1132 A 10.81 14 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	47	А	10.73	10	Not Liganded
2QC7TYR66A10.140Not Liganded2QC7TYR96A11.1843Not Liganded2QC7TYR108A12.4242Not Liganded2QC7TYR115A11.1335Not Liganded2QC7TYR119A11.1836Not Liganded2QC7TYR119A11.836Not Liganded2QC7TYR132A10.8114Not Liganded2QC7TYR151A10.580Not Liganded2QC7TYR161A11.522Not Liganded	2QC7	TYR	64	А	10.17	0	Liganded
2QC7 TYR 96 A 11.18 43 Not Liganded 2QC7 TYR 108 A 12.42 42 Not Liganded 2QC7 TYR 115 A 11.13 35 Not Liganded 2QC7 TYR 119 A 11.13 36 Not Liganded 2QC7 TYR 119 A 11.18 36 Not Liganded 2QC7 TYR 1132 A 10.81 14 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	66	А	10.14	0	Not Liganded
2QC7 TYR 108 A 12.42 42 Not Liganded 2QC7 TYR 115 A 11.13 35 Not Liganded 2QC7 TYR 119 A 11.18 36 Not Liganded 2QC7 TYR 119 A 11.18 36 Not Liganded 2QC7 TYR 132 A 10.81 14 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	96	А	11.18	43	Not Liganded
2QC7 TYR 115 A 11.13 35 Not Liganded 2QC7 TYR 119 A 11.18 36 Not Liganded 2QC7 TYR 119 A 11.18 36 Not Liganded 2QC7 TYR 132 A 10.81 14 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	108	А	12.42	42	Not Liganded
2QC7 TYR 119 A 11.18 36 Not Liganded 2QC7 TYR 132 A 10.81 14 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	115	А	11.13	35	Not Liganded
2QC7 TYR 132 A 10.81 14 Not Liganded 2QC7 TYR 151 A 10.58 0 Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	119	А	11.18	36	Not Liganded
2QC7 TYR 151 A 10.58 O Not Liganded 2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	132	А	10.81	14	Not Liganded
2QC7 TYR 161 A 11.5 22 Not Liganded	2QC7	TYR	151	А	10.58	0	Not Liganded
	2QC7	TYR	161	А	11.5	22	Not Liganded

2QC7	TYR	202	А	14.67	70	Not Liganded
2QC7	TYR	47	В	10.65	11	Not Liganded
2QC7	TYR	64	В	10.18	0	Liganded
2QC7	TYR	66	В	10.32	0	Not Liganded
2QC7	TYR	96	В	10.65	0	Not Liganded
2QC7	TYR	108	В	12.29	42	Not Liganded
2QC7	TYR	115	В	11.28	37	Not Liganded
2QC7	TYR	119	В	11.24	37	Not Liganded
2QC7	TYR	132	В	10.8	16	Not Liganded
2QC7	TYR	151	В	10.6	0	Not Liganded
2QC7	TYR	161	В	11.5	22	Not Liganded
2QC7	TYR	202	В	14.82	73	Not Liganded
2Q5H	TYR	80	А	13.74	92	Not Liganded
2Q5H	TYR	87	А	10.04	0	Not Liganded
2Q5H	TYR	94	А	11.38	48	Not Liganded
2Q5H	TYR	195	А	11.07	12	Not Liganded
2Q5H	TYR	207	А	11.7	18	Not Liganded
2Q5H	TYR	241	А	12.09	14	Not Liganded
2Q5H	TYR	320	А	10.03	0	Not Liganded
2Q5H	TYR	322	А	10.23	10	Not Liganded
2Q5H	TYR	354	А	13.54	52	Not Liganded
2Q5H	TYR	360	А	10.65	36	Not Liganded
2Q5H	TYR	362	А	14.04	100	Not Liganded
2Q5H	TYR	386	А	11.36	0	Not Liganded
2Q5H	TYR	399	А	11.14	43	Not Liganded
2Q5H	TYR	413	А	14.54	91	Liganded
2Q5H	TYR	512	А	10.35	0	Not Liganded
2Q5H	TYR	532	А	15.62	66	Not Liganded
2Q5H	TYR	604	А	13.02	100	Not Liganded
2Q5H	TYR	669	А	11.29	14	Not Liganded
2PD6	TYR	169	А	13.35	100	Liganded
2PD6	TYR	247	А	12.51	58	Not Liganded
2PD6	TYR	169	В	13.55	100	Liganded
2PD6	TYR	247	В	12.15	45	Not Liganded
2PD6	TYR	169	С	13.41	100	Liganded
2PD6	TYR	247	С	12.42	53	Not Liganded
2PD6	TYR	169	D	13.6	100	Liganded
2PD6	TYR	247	D	12.89	67	Not Liganded
20K3	TYR	36	А	10.17	30	Not Liganded
20K3	TYR	37	А	15.41	100	Not Liganded
20K3	TYR	75	А	11.84	20	Not Liganded
20K3	TYR	78	А	9.76	0	Not Liganded
20K3	TYR	105	А	13.76	79	Not Liganded
20K3	TYR	115	А	10.63	33	Liganded
20K3	TYR	141	А	10.19	0	Not Liganded
2LQN	TYR	15	А	12.12	24	Not Liganded

2LQN	TYR	48	А	10.35	25	Not Liganded
2LQN	TYR	61	А	16.91	100	Not Liganded
2LQN	TYR	88	А	13.7	97	Not Liganded
2LQN	TYR	92	А	10.22	3	Liganded
2LQN	TYR	105	А	9.94	0	Not Liganded
2LQN	TYR	127	А	10.4	17	Not Liganded
2LQN	TYR	132	А	10.11	0	Not Liganded
2LQN	TYR	177	А	10.75	0	Not Liganded
2LQN	TYR	198	А	10.23	1	Not Liganded
2LQN	TYR	207	А	10.09	0	Not Liganded
2LQN	TYR	251	А	10.62	0	Not Liganded
2IF1	TYR	43	А	10.74	0	Not Liganded
2IF1	TYR	67	А	10.66	16	Not Liganded
2IF1	TYR	92	А	10.38	8	Liganded
2IE4	TYR	11	А	10.26	0	Not Liganded
2IE4	TYR	60	А	11.87	0	Not Liganded
2IE4	TYR	85	А	10.05	0	Not Liganded
2IE4	TYR	155	А	12.33	35	Not Liganded
2IE4	TYR	169	А	10.36	11	Not Liganded
2IE4	TYR	261	А	10.68	18	Liganded
2IE4	TYR	426	А	11.28	59	Not Liganded
2IE4	TYR	456	А	11.53	72	Not Liganded
2IE4	TYR	495	А	13.37	100	Not Liganded
2IE4	TYR	577	А	10.9	25	Not Liganded
2IE4	TYR	80	С	15.57	100	Not Liganded
2IE4	TYR	86	С	15.51	100	Not Liganded
2IE4	TYR	91	С	9.96	0	Not Liganded
2IE4	TYR	92	С	10.87	9	Not Liganded
2IE4	TYR	107	С	12.56	73	Not Liganded
2IE4	TYR	127	С	10.93	25	Not Liganded
2IE4	TYR	130	С	10.44	0	Not Liganded
2IE4	TYR	137	С	13.28	69	Not Liganded
2IE4	TYR	145	С	9.63	0	Not Liganded
2IE4	TYR	152	С	10.31	8	Not Liganded
2IE4	TYR	218	С	10.62	0	Not Liganded
2IE4	TYR	248	С	10.59	15	Not Liganded
2IE4	TYR	265	С	11.71	98	Not Liganded
2IE4	TYR	267	С	11.84	59	Not Liganded
2IE4	TYR	284	С	9.67	5	Not Liganded
2H31	TYR	14	А	13.2	72	Not Liganded
2H31	TYR	22	А	11.32	0	Liganded
2H31	TYR	119	А	10.17	0	Not Liganded
2H31	TYR	122	А	10	0	Not Liganded
2H31	TYR	316	А	11.44	30	Not Liganded
2H31	TYR	345	А	10.48	1	Not Liganded
2GSE	TYR	32	А	10.09	2	Not Liganded

2GSE	TYR	36	А	11.42	0	Not Liganded
2GSE	TYR	135	А	13.85	70	Not Liganded
2GSE	TYR	167	А	13.99	100	Not Liganded
2GSE	TYR	182	А	13.45	63	Not Liganded
2GSE	TYR	251	А	17.68	100	Not Liganded
2GSE	TYR	275	А	11.07	100	Not Liganded
2GSE	TYR	290	А	13.6	100	Not Liganded
2GSE	TYR	395	А	16.1	99	Not Liganded
2GSE	TYR	431	А	9.63	3	Liganded
2GSE	TYR	468	А	11.72	94	Not Liganded
2GSE	TYR	479	А	15.21	93	Not Liganded
2GSE	TYR	32	В	10.17	6	Not Liganded
2GSE	TYR	36	В	11.49	0	Not Liganded
2GSE	TYR	135	В	14.08	71	Not Liganded
2GSE	TYR	167	В	14	100	Not Liganded
2GSE	TYR	182	В	13.31	60	Not Liganded
2GSE	TYR	251	В	17.89	100	Not Liganded
2GSE	TYR	275	В	10.58	100	Not Liganded
2GSE	TYR	290	В	13.51	100	Not Liganded
2GSE	TYR	395	В	16.57	98	Not Liganded
2GSE	TYR	431	В	9.69	4	Liganded
2GSE	TYR	468	В	11.94	90	Not Liganded
2GSE	TYR	479	В	15.28	97	Not Liganded
2GSE	TYR	32	С	10.12	6	Not Liganded
2GSE	TYR	36	С	10.66	0	Not Liganded
2GSE	TYR	135	С	13.73	71	Not Liganded
2GSE	TYR	167	С	13.88	100	Not Liganded
2GSE	TYR	182	С	13.37	61	Not Liganded
2GSE	TYR	251	С	17.72	100	Not Liganded
2GSE	TYR	275	С	11.14	100	Not Liganded
2GSE	TYR	290	С	13.63	100	Not Liganded
2GSE	TYR	395	С	15.76	99	Not Liganded
2GSE	TYR	431	С	9.7	5	Liganded
2GSE	TYR	468	С	11.99	93	Not Liganded
2GSE	TYR	479	С	15.32	95	Not Liganded
2GSE	TYR	32	D	10.11	7	Not Liganded
2GSE	TYR	36	D	11.12	0	Not Liganded
2GSE	TYR	135	D	14.09	71	Not Liganded
2GSE	TYR	167	D	13.96	100	Not Liganded
2GSE	TYR	182	D	13.61	65	Not Liganded
2GSE	TYR	251	D	17.71	100	Not Liganded
2GSE	TYR	275	D	10.86	100	Not Liganded
2GSE	TYR	290	D	13.48	100	Not Liganded
2GSE	TYR	395	D	16.63	99	Not Liganded
2GSE	TYR	431	D	9.62	4	Liganded
2GSE	TYR	468	D	11.66	95	Not Liganded

l	1	I		I		I
ZGSE	TYR	479	D	15.15	95	Not Liganded
2GRN	TYR	68	A	13.35	66	Liganded
2GRN	TYR	87	A	13.3	52	Not Liganded
2GRN	TYR	134	A	12.5	41	Not Liganded
2GRN	TYR	137	A	10.56	19	Not Liganded
2GRN	TYR	144	A	13.34	79	Not Liganded
2GRN	TYR	536	В	11.02	13	Not Liganded
2GRN	TYR	550	В	14.65	71	Not Liganded
2GRN	TYR	585	В	10.29	0	Not Liganded
2EYZ	TYR	14	А	12.4	70	Not Liganded
2EYZ	TYR	47	А	11.67	46	Not Liganded
2EYZ	TYR	60	А	11.45	31	Not Liganded
2EYZ	TYR	104	А	16.26	100	Not Liganded
2EYZ	TYR	108	А	10.13	0	Liganded
2EYZ	TYR	136	А	10.41	0	Not Liganded
2EYZ	TYR	186	А	10.72	31	Not Liganded
2EYZ	TYR	190	А	9.71	0	Not Liganded
2EYZ	TYR	221	А	10.16	0	Not Liganded
2EYZ	TYR	239	А	11.2	58	Not Liganded
2EYZ	TYR	251	А	10.43	0	Not Liganded
2E5B	TYR	18	А	12.57	100	Not Liganded
2E5B	TYR	23	А	12.54	71	Not Liganded
2E5B	TYR	26	А	15.34	100	Not Liganded
2E5B	TYR	34	А	12.75	95	Not Liganded
2E5B	TYR	36	А	16	100	Not Liganded
2E5B	TYR	54	А	12.09	61	Not Liganded
2E5B	TYR	60	А	13.94	100	Not Liganded
2E5B	TYR	64	А	17.01	100	Not Liganded
2E5B	TYR	69	А	18.97	100	Not Liganded
2E5B	TYR	87	А	14.36	100	Not Liganded
2E5B	TYR	103	А	11.03	0	Not Liganded
2E5B	TYR	108	А	12.76	12	Not Liganded
2E5B	TYR	142	А	11.99	71	Not Liganded
2E5B	TYR	157	А	14.3	100	Not Liganded
2E5B	TYR	175	А	11.34	13	Not Liganded
2E5B	TYR	188	А	11.71	51	Not Liganded
2E5B	TYR	195	А	13.92	100	Not Liganded
2E5B	TYR	230	A	11.81	49	Not Liganded
2E5B	TYR	231	A	18.35	100	Not Liganded
2E5B	TYR	240	А	11.08	25	Not Liganded
2E5B	TYR	281	A	13.42	82	Not Liganded
2E5B	TYR	284	А	10.52	41	Not Liganded
2E5B	TYR	341	А	10.62	5	Not Liganded
2E5B	TYR	347	A	11.15	24	Not Liganded
2E5B	TYR	403	А	10.41	23	Not Liganded
2E5B	TYR	453	А	10.34	0	Not Liganded
	K					

2E5B	TVR	471	Δ	10 79	47	Liganded
2E5B	TVR	18	B	1/1 3/	100	Not Liganded
2E5B	TVR	23	B	12.34	67	Not Liganded
2E5B	TYR	25	B	15.25	100	Not Liganded
2E5B	TYR	34	в	12.64	93	Not Liganded
2E5B	TYR	36	B	16.13	100	Not Liganded
2E5B	TYR	54	B	12 13	61	Not Liganded
2E5B	TYR	60	B	13.84	100	Not Liganded
2E5B	TYR	64	B	19.2	100	Not Liganded
2E5B	TYR	69	B	17.02	100	Not Liganded
2E5B	TYR	87	В	14.43	100	Not Liganded
2E5B	TYR	103	B	12 35	0	Not Liganded
2E5B	TYR	108	B	12.55	13	Not Liganded
2E5B	TYR	142	B	12.07	73	Not Liganded
2E5B	TYR	157	B	14.22	100	Not Liganded
2E5B	TYR	175	В	12.23	12	Not Liganded
2E5B	TYR	188	В	11.92	52	Not Liganded
2E5B	TYR	195	B	13.86	100	Not Liganded
2E5B	TYR	230	B	11 73	49	Not Liganded
2E5B	TYR	230	в	18.51	100	Not Liganded
2E5B	TYR	231	B	11 18	28	Not Liganded
2E5B	TYR	240	в	13.45	83	Not Liganded
2E5B	TYR	281	B	10.39	37	Not Liganded
2E5B	TYR	341	B	10.55	5	Not Liganded
2E5B	TYR	347	B	11 17	25	Not Liganded
2E5B	TYR	403	B	10.46	23	Not Liganded
2E5B	TYR	453	B	10.33	0	Not Liganded
2E5B	TYR	471	В	12.44	48	Liganded
2000	TYR	83	A	10.22	0	Not Liganded
2DUD	TYR	85	A	9.67	0	Not Liganded
2DUD	TYR	93	A	11.97	14	Not Liganded
2DUD	TYR	100	А	12.77	99	Not Liganded
2DUD	TYR	103	А	10.27	0	Liganded
2DUD	TYR	83	В	10.19	0	Not Liganded
2DUD	TYR	85	В	10.08	0	Not Liganded
2DUD	TYR	93	В	11.42	10	Not Liganded
2DUD	TYR	100	В	13.36	98	Not Liganded
2DUD	TYR	103	В	9.85	0	Liganded
2DFD	TYR	38	А	12.35	41	Not Liganded
2DFD	TYR	62	А	11.43	28	Liganded
2DFD	TYR	143	А	12.57	69	Not Liganded
2DFD	TYR	235	А	14.58	91	Not Liganded
2DFD	TYR	269	А	14.01	72	Not Liganded
2DFD	TYR	38	В	12.35	46	Not Liganded
2DFD	TYR	62	В	11.03	22	Liganded
2DFD	TYR	143	В	12.12	64	Not Liganded
			•			· · · · · · · · · · · · · · · · · · ·

1	I	I			1	1
2DFD	TYR	235	В	14.4	87	Not Liganded
2DFD	TYR	269	В	13.88	69	Not Liganded
2DFD	TYR	38	С	11.98	39	Not Liganded
2DFD	TYR	62	С	11.17	25	Liganded
2DFD	TYR	143	С	12.45	69	Not Liganded
2DFD	TYR	235	С	14.56	90	Not Liganded
2DFD	TYR	269	С	13.99	70	Not Liganded
2DFD	TYR	38	D	12.25	43	Not Liganded
2DFD	TYR	62	D	11.33	27	Liganded
2DFD	TYR	143	D	12.26	71	Not Liganded
2DFD	TYR	235	D	13.99	87	Not Liganded
2DFD	TYR	269	D	14.08	70	Not Liganded
2D2Z	TYR	104	А	10.34	0	Not Liganded
2D2Z	TYR	128	А	12.6	45	Not Liganded
2D2Z	TYR	154	А	12.45	76	Not Liganded
2D2Z	TYR	205	А	11.26	19	Not Liganded
2D2Z	TYR	220	А	17.41	100	Not Liganded
2D2Z	TYR	225	А	13.45	76	Not Liganded
2D2Z	TYR	244	А	13.04	90	Liganded
2D2Z	TYR	104	В	11.23	51	Not Liganded
2D2Z	TYR	128	В	12.86	56	Not Liganded
2D2Z	TYR	154	В	11.21	41	Not Liganded
2D2Z	TYR	205	В	10.99	16	Not Liganded
2D2Z	TYR	220	В	17.48	100	Not Liganded
2D2Z	TYR	225	В	13.7	81	Not Liganded
2D2Z	TYR	244	В	11.97	68	Liganded
2D2Z	TYR	104	С	10.37	0	Not Liganded
2D2Z	TYR	128	С	13.78	75	Not Liganded
2D2Z	TYR	154	С	10.98	34	Not Liganded
2D2Z	TYR	205	С	12.5	57	Not Liganded
2D2Z	TYR	220	С	17.42	100	Not Liganded
2D2Z	TYR	225	С	14.69	100	Not Liganded
2D2Z	TYR	244	С	11.84	65	Liganded
2CPL	TYR	48	А	14.32	100	Liganded
2CPL	TYR	79	А	12.07	35	Not Liganded
2BR9	TYR	9	А	10.13	0	Not Liganded
2BR9	TYR	20	А	10.87	0	Not Liganded
2BR9	TYR	49	А	14.71	73	Liganded
2BR9	TYR	85	А	10.23	0	Not Liganded
2BR9	TYR	121	А	12.67	70	Not Liganded
2BR9	TYR	122	А	10.49	23	Not Liganded
2BR9	TYR	128	А	14.66	100	Not Liganded
2BR9	TYR	131	А	18.13	100	Not Liganded
2BR9	TYR	152	А	15.43	100	Not Liganded
2BR9	TYR	181	А	10.39	26	Not Liganded
2BR9	TYR	182	А	10.46	0	Not Liganded

2BR9	TYR	214	А	10.1	0	Not Liganded
2AI6	TYR	22	A	13.06	94	Not Liganded
2AI6	TYR	47	A	12.33	43	Not Liganded
2AI6	TYR	52	A	10.48	0	Not Liganded
2AI6	TYR	57	А	11.17	15	Not Liganded
2AI6	TYR	91	А	9.59	15	Not Liganded
2AI6	TYR	93	А	10.37	0	Liganded
2AI6	TYR	97	A	11.34	8	Not Liganded
2AI6	TYR	113	A	10.31	0	Not Liganded
2AI6	TYR	116	A	10.24	2	Not Liganded
2AI6	TYR	125	А	10.22	0	Not Liganded
2A2R	TYR	3	А	11.28	46	Not Liganded
2A2R	TYR	7	А	11.82	100	Liganded
2A2R	TYR	49	А	14.5	100	Not Liganded
2A2R	TYR	63	А	12.23	58	Not Liganded
2A2R	TYR	79	А	11.98	100	Not Liganded
2A2R	TYR	103	А	13.58	76	Not Liganded
2A2R	TYR	108	А	10.52	52	Not Liganded
2A2R	TYR	111	А	10.75	5	Not Liganded
2A2R	TYR	118	А	13.2	74	Not Liganded
2A2R	TYR	153	А	14.51	80	Not Liganded
2A2R	TYR	179	А	17.08	100	Not Liganded
2A2R	TYR	198	А	12.23	77	Not Liganded
2A2R	TYR	3	В	11.87	42	Not Liganded
2A2R	TYR	7	В	11.85	100	Liganded
2A2R	TYR	49	В	14.51	100	Not Liganded
2A2R	TYR	63	В	12.09	54	Not Liganded
2A2R	TYR	79	В	14.76	100	Not Liganded
2A2R	TYR	103	В	13.55	77	Not Liganded
2A2R	TYR	108	В	10.44	51	Not Liganded
2A2R	TYR	111	В	10.74	5	Not Liganded
2A2R	TYR	118	В	13.12	72	Not Liganded
2A2R	TYR	153	В	14.76	82	Not Liganded
2A2R	TYR	179	В	17.1	100	Not Liganded
2A2R	TYR	198	В	12.32	79	Not Liganded
1YZ1	TYR	4	А	11.25	31	Not Liganded
1YZ1	TYR	18	А	11.94	46	Not Liganded
1YZ1	TYR	88	А	13.57	97	Not Liganded
1YZ1	TYR	91	А	14.82	93	Liganded
1YZ1	TYR	95	А	15.88	100	Not Liganded
1YZ1	TYR	132	А	12.2	51	Not Liganded
1YZ1	TYR	151	А	11.32	45	Not Liganded
1YZ1	TYR	159	А	11.61	38	Not Liganded
1YZ1	TYR	4	В	11.42	31	Not Liganded
1YZ1	TYR	18	В	12.02	47	Not Liganded
1YZ1	TYR	88	В	13.26	96	Not Liganded

I	I	I	I	I	1	I
1YZ1	TYR	91	В	14.95	93	Liganded
1YZ1	TYR	95	В	16.26	100	Not Liganded
1YZ1	TYR	132	В	12.14	51	Not Liganded
1YZ1	TYR	151	В	11.11	38	Not Liganded
1YZ1	TYR	159	В	11.75	35	Not Liganded
1YZ1	TYR	4	С	11.05	30	Not Liganded
1YZ1	TYR	18	С	11.91	46	Not Liganded
1YZ1	TYR	88	С	13.56	96	Not Liganded
1YZ1	TYR	91	С	16.52	100	Liganded
1YZ1	TYR	95	С	15.15	100	Not Liganded
1YZ1	TYR	132	С	11.15	52	Not Liganded
1YZ1	TYR	151	С	11.3	42	Not Liganded
1YZ1	TYR	159	С	11.33	0	Not Liganded
1YZ1	TYR	4	D	11.13	29	Not Liganded
1YZ1	TYR	18	D	11.89	47	Not Liganded
1YZ1	TYR	88	D	13.03	92	Not Liganded
1YZ1	TYR	91	D	14.88	94	Liganded
1YZ1	TYR	95	D	15.92	100	Not Liganded
1YZ1	TYR	132	D	12.18	50	Not Liganded
1YZ1	TYR	151	D	11.22	41	Not Liganded
1YZ1	TYR	159	D	11.44	36	Not Liganded
1YFK	TYR	4	А	10.03	0	Not Liganded
1YFK	TYR	26	А	11.02	42	Not Liganded
1YFK	TYR	50	А	9.84	29	Not Liganded
1YFK	TYR	92	А	13.35	100	Not Liganded
1YFK	TYR	119	А	11.27	23	Not Liganded
1YFK	TYR	133	А	10.12	0	Liganded
1YFK	TYR	142	А	12.67	100	Not Liganded
1YFK	TYR	218	А	14.04	66	Not Liganded
1YFK	TYR	4	В	10.32	0	Not Liganded
1YFK	TYR	26	В	11.08	44	Not Liganded
1YFK	TYR	50	В	9.96	30	Not Liganded
1YFK	TYR	92	В	13.52	100	Not Liganded
1YFK	TYR	119	В	11.16	18	Not Liganded
1YFK	TYR	133	В	10.08	0	Liganded
1YFK	TYR	142	В	12.52	100	Not Liganded
1YFK	TYR	218	В	14.06	65	Not Liganded
1XQ8	TYR	39	А	10.04	0	Liganded
1XQ8	TYR	125	А	10.04	0	Not Liganded
1XQ8	TYR	133	А	10.05	0	Not Liganded
1XQ8	TYR	136	А	10.16	0	Not Liganded
1WZY	TYR	25	А	13.2	47	Not Liganded
1WZY	TYR	30	А	10.93	0	Not Liganded
1WZY	TYR	36	А	12.19	67	Not Liganded
1WZY	TYR	43	А	10.35	0	Not Liganded
1WZY	TYR	64	А	10.31	0	Not Liganded
	•		•			
I	I	I		1		l
-------	-----	-----	-----	-------	------------	---------------
1WZY	TYR	102	A	12.36	53	Not Liganded
1WZY	TYR	113	A	10.05	10	Liganded
1WZY	TYR	128	A	10.39	0	Not Liganded
1WZY	TYR	131	A	13.25	38	Not Liganded
1WZY	TYR	139	А	10.86	30	Not Liganded
1WZY	TYR	187	А	9.05	76	Not Liganded
1WZY	TYR	193	А	14.95	72	Not Liganded
1WZY	TYR	205	А	10.43	40	Not Liganded
1WZY	TYR	233	А	10.33	12	Not Liganded
1WZY	TYR	263	А	10.98	26	Not Liganded
1WZY	TYR	312	А	13.31	65	Not Liganded
1WZY	TYR	316	А	12.03	18	Not Liganded
1WZY	TYR	317	А	11	1	Not Liganded
1WYM	TYR	14	А	11.01	19	Not Liganded
1WYM	TYR	62	А	10.74	26	Not Liganded
1WYM	TYR	95	А	12.24	56	Liganded
1WOU	TYR	4	А	10.48	1	Not Liganded
1WOU	TYR	30	А	13.28	70	Not Liganded
1WOU	TYR	68	А	12.77	48	Not Liganded
1WOU	TYR	76	А	11.16	16	Not Liganded
1WOU	TYR	99	А	10.78	27	Liganded
1W7B	TYR	24	А	9.83	0	Not Liganded
1W7B	TYR	30	А	9.92	0	Not Liganded
1W7B	TYR	75	А	11.44	34	Not Liganded
1W7B	TYR	109	А	14.58	100	Not Liganded
1W7B	TYR	147	А	14.1	53	Not Liganded
1W7B	TYR	151	А	11.53	36	Not Liganded
1W7B	TYR	188	A	10.12	0	Not Liganded
1W7B	TYR	199	A	10.37	0	Not Liganded
1W7B	TYR	232	А	11.36	66	Not Liganded
1W7B	TYR	235	A	9.79	0	Not Liganded
1W7B	TYR	238	А	9.18	0	Not Liganded
1W7B	TYR	269	А	15.59	100	Not Liganded
1W7B	TYR	275	А	10.02	0	Not Liganded
1W7B	TYR	311	А	13.51	31	Not Liganded
1W7B	TYR	316	А	10.78	11	Not Liganded
1W7B	TYR	317	А	10.11	0	Liganded
1W7B	TYR	318	А	11.23	1	Not Liganded
1W7B	TYR	327	А	14.22	64	Not Liganded
1W7B	TYR	333	А	10.26	7	Not Liganded
1U8F	TYR	42	0	11.66	60	Not Liganded
1U8F	TYR	45	0	12.72	94	Not Liganded
1U8F	TYR	45	0	12.5	66	Not Liganded
1U8F	TYR	45	0	13 75	48	Liganded
1118F	TYP	140	0	11 07	-+0 //1	Not Liganded
1118F	TVR	240	0	12.24	41 QC	Not Ligandod
1001	LIN	235	U U	13.34	60	not Ligariued

276	0	12.71	23	Not Liganded
314	0	14.05	100	Not Liganded
320	0	14.4	100	Not Liganded
42	Р	12.01	71	Not Liganded
45	Р	12.94	98	Not Liganded
49	Р	12.53	66	Not Liganded
94	Р	13.98	51	Liganded
140	Р	12.07	42	Not Liganded
255	Р	13.35	85	Not Liganded
276	Р	12.81	23	Not Liganded
314	Р	14.62	100	Not Liganded
320	Р	14.56	100	Not Liganded
42	Q	11.92	68	Not Liganded
45	Q	12.93	97	Not Liganded
49	Q	12.66	68	Not Liganded
94	Q	13.73	47	Liganded
140	Q	12.03	42	Not Liganded
255	Q	13.3	84	Not Liganded
276	Q	12.73	21	Not Liganded
314	Q	14.64	100	Not Liganded
320	Q	14.56	100	Not Liganded
42	R	11.82	65	Not Liganded
45	R	12.82	93	Not Liganded
49	R	12.59	70	Not Liganded
94	R	14.08	50	Liganded
140	R	11.93	41	Not Liganded
255	R	13.37	84	Not Liganded
276	R	12.88	24	Not Liganded
314	R	14.61	100	Not Liganded
320	R	14.49	100	Not Liganded
34	А	11.03	33	Not Liganded
42	А	10.91	17	Not Liganded
135	А	16.59	100	Not Liganded
139	А	12.58	79	Not Liganded
156	А	10.9	13	Not Liganded
167	А	10.44	19	Not Liganded
183	А	11.6	62	Not Liganded
208	А	10.31	43	Not Liganded
219	А	13.73	100	Not Liganded
231	А	11.47	33	Not Liganded
235	А	11.07	50	Not Liganded
246	А	14.07	99	Liganded
272	А	12.43	80	Not Liganded
285	А	12.16	60	Not Liganded
316	А	10.92	27	Not Liganded
		10.10	10	Net Conservational
	276 314 320 42 45 49 94 140 255 276 314 320 42 45 49 94 140 255 276 314 320 42 45 275 276 314 320 42 45 275 276 314 320 42 45 275 276 314 320 42 45 276 314 320 42 45 276 314 320 42 45 276 314 320 42 45 276 314 320 42 45 276 314 320 42 45 276 314 320 42 45 276 314 320 42 255 276 314 320 42 45 314 320 42 45 314 320 42 314 320 42 45 314 320 42 45 314 320 42 45 314 320 42 45 314 320 42 45 314 320 42 45 314 320 42 45 314 320 245 314 320 245 314 320 245 314 320 245 314 320 245 314 320 245 314 320 245 314 320 245 314 320 34 42 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 314 320 320 314 320 320 320 320 320 320 320 320	276O314O320O42P45P49P94P255P276P314P320P4140Q255Q255Q255Q255Q255Q255Q255Q255Q255Q255Q255Q255Q255Q255Q255R276R314Q320Q42R94R1314R320R314R320R314R320R314R320R314R320R314R320R314R320R314R320R314R320R314R320R314R320A314R321A323A231A235A246A235A246A235A346A346A346A<	276012.71314014.05320014.442P12.0145P12.9449P12.5394P13.98140P12.07255P13.35276P12.81314P14.62320P14.5642Q11.9245Q12.6642Q12.6694Q12.6694Q12.63255Q13.3140Q12.03255Q13.3276Q12.73314Q14.64320Q14.5642R11.8245R12.8249R14.08140R11.93255R13.37276R12.88314R14.01320R14.4934A11.0342A10.91135A16.59139A12.58156A10.91167A10.44183A11.67246A14.07246A14.07246A12.16316A10.92	276 0 12.71 23 314 0 14.05 100 320 0 14.4 100 320 0 14.4 100 42 P 12.01 71 45 P 12.94 98 49 P 13.98 51 140 P 12.07 42 255 P 13.35 85 276 P 12.81 23 314 P 14.62 100 320 P 14.56 100 42 Q 11.92 68 45 Q 12.33 97 49 Q 13.73 47 140 Q 12.66 68 94 Q 13.73 44 140 Q 14.64 100 320 Q 14.56 100 320 Q 14.55 100 <

1700	TVP	201		10.5	16	Not Ligandod
1109		391	A D	11.16	27	Not Liganded
1109		34	D	10.06	10	Not Ligandad
1109		125	B	16.30	100	Not Liganded
1109		135	D	18.55	100	Not Liganded
1109	TYP	155	D	11.26	14	Not Liganded
1109	TYP	150	D	10.02	27	Not Liganded
1109		183	B	11.33	/18	Not Liganded
1109		208	B	11.27	48	Not Liganded
1109	TYR	208	B	14.08	100	Not Liganded
1109	TYR	215	B	11.00	33	Not Liganded
1100	TYR	231	B	11.52	50	Not Liganded
1109	TYR	235	B	13.91	96	
1109	TYR	240	B	22.95	100	Not Liganded
1109	TYR	272	B	11 25	60	Not Liganded
1109	TYR	316	B	10.05	25	Not Liganded
1109	TYR	319	B	10.05	10	Not Liganded
1109	TYR	313	B	10.33	14	Not Liganded
1072	TYR	161	Δ	10.25	14	Not Liganded
1072	TYR	101	<u>^</u>	10.20	0	Not Liganded
1072		177	A A	10.45	0	Not Liganded
1072	TYP	202	A 	0.62	2	Ligandod
1072		202	A A	10.07	0	Not Liganded
1072	TYR	220	Δ	10.07	0	Not Liganded
1072	TYR	225	Δ	10.45	87	Not Liganded
1072	TYR	245	<u>^</u>	12.69	/13	Not Liganded
1072	TYR	286	Δ	10.25		Not Liganded
1072	TYR	200	Δ	12.04	59	Not Liganded
1072	TYR	302	Δ	10.43	0	Not Liganded
1072	TYR	383	Δ	10.43	4	Not Liganded
1072	TYR	411	Δ	11.95	11	Not Liganded
1072	TYR	161	В	10.06	0	Not Liganded
1072	TYR	177	В	11.28	1	Not Liganded
1072	TYR	178	В	9.82	0	Not Liganded
1072	TYR	202	В	9.64	0	Liganded
10Z2	TYR	220	В	9.86	0	Not Liganded
1072	TYR	225	В	10.54	0	Not Liganded
1072	TYR	245	В	13.76	91	Not Liganded
1072	TYR	280	В	12.06	44	Not Liganded
1QZ2	TYR	286	В	9.36	0	Not Liganded
1QZ2	TYR	293	В	11.97	55	Not Liganded
1QZ2	TYR	302	В	11.04	3	Not Liganded
1QZ2	TYR	383	В	11.48	20	Not Liganded
1QZ2	TYR	411	В	10.9	14	Not Liganded
1QZ2	TYR	161	с	8.98	0	Not Liganded
1QZ2	TYR	177	с	11.65	0	Not Liganded
		•	•			

I	T	I	l	1	1	I
1QZ2	TYR	178	С	11.4	32	Not Liganded
1QZ2	TYR	202	С	9.81	0	Liganded
1QZ2	TYR	220	С	9.62	13	Not Liganded
1QZ2	TYR	225	С	10.4	10	Not Liganded
1QZ2	TYR	245	С	13.93	93	Not Liganded
1QZ2	TYR	280	С	12.83	47	Not Liganded
1QZ2	TYR	286	С	10.28	0	Not Liganded
1QZ2	TYR	293	С	12.09	47	Not Liganded
1QZ2	TYR	302	С	10.86	0	Not Liganded
1QZ2	TYR	383	С	10.9	6	Not Liganded
1QZ2	TYR	411	С	10.92	0	Not Liganded
1PBU	TYR	297	А	14.1	100	Not Liganded
1PBU	TYR	309	А	10.82	14	Not Liganded
1PBU	TYR	323	А	12.26	44	Not Liganded
1PBU	TYR	326	А	11.69	37	Not Liganded
1PBU	TYR	394	А	10.62	0	Not Liganded
1PBU	TYR	397	А	13.92	75	Not Liganded
1PBU	TYR	416	А	13.12	83	Liganded
1M9I	TYR	10	А	11.95	33	Not Liganded
1M9I	TYR	30	А	9.86	0	Liganded
1M9I	TYR	62	А	13.34	36	Not Liganded
1M9I	TYR	66	А	11.17	1	Not Liganded
1M9I	TYR	76	А	10.04	0	Not Liganded
1M9I	TYR	95	А	9.9	22	Not Liganded
1M9I	TYR	134	А	13.05	40	Not Liganded
1M9I	TYR	138	А	11.89	35	Not Liganded
1M9I	TYR	185	А	10.44	0	Not Liganded
1M9I	TYR	201	А	9.4	6	Not Liganded
1M9I	TYR	218	А	12.03	60	Not Liganded
1M9I	TYR	255	А	14.09	100	Not Liganded
1M9I	TYR	297	А	14.96	100	Not Liganded
1M9I	TYR	302	А	10.23	7	Not Liganded
1M9I	TYR	313	А	13.8	64	Not Liganded
1M9I	TYR	340	А	10.41	33	Not Liganded
1M9I	TYR	439	А	11.26	100	Not Liganded
1M9I	TYR	477	А	11.94	45	Not Liganded
1M9I	TYR	481	А	12.14	43	Not Liganded
1M9I	TYR	556	А	9.09	100	Not Liganded
1M9I	TYR	572	А	11.12	28	Not Liganded
1M9I	TYR	609	А	11.55	62	Not Liganded
1M9I	TYR	645	А	16.67	92	Not Liganded
1JLH	TYR	16	А	10.98	34	Not Liganded
1JLH	TYR	54	А	12.73	82	Not Liganded
1JLH	TYR	91	А	14.65	93	Not Liganded
1JLH	TYR	143	А	10.85	4	Not Liganded
1JLH	TYR	173	А	11.24	64	Not Liganded
						J

1JLH	TYR	182	А	12.96	100	Liganded
1JLH	TYR	273	А	12.57	100	Not Liganded
1JLH	TYR	326	А	14.06	100	Not Liganded
1JLH	TYR	340	А	13.22	100	Not Liganded
1JLH	TYR	343	А	13	66	Not Liganded
1JLH	TYR	350	А	14.38	100	Not Liganded
1JLH	TYR	362	А	12.76	83	Not Liganded
1JLH	TYR	391	А	17.82	100	Not Liganded
1JLH	TYR	493	А	16.69	100	Not Liganded
1JLH	TYR	16	В	11.49	34	Not Liganded
1JLH	TYR	54	В	12.53	83	Not Liganded
1JLH	TYR	91	В	14.57	93	Not Liganded
1JLH	TYR	143	В	10.88	5	Not Liganded
1JLH	TYR	173	В	11.3	64	Not Liganded
1JLH	TYR	182	В	13.11	100	Liganded
1JLH	TYR	273	В	12.61	100	Not Liganded
1JLH	TYR	326	В	14.07	100	Not Liganded
1JLH	TYR	340	В	13.2	100	Not Liganded
1JLH	TYR	343	В	13.09	68	Not Liganded
1JLH	TYR	350	В	14.5	100	Not Liganded
1JLH	TYR	362	В	12.85	82	Not Liganded
1JLH	TYR	391	В	17.82	100	Not Liganded
1JLH	TYR	493	В	16.68	100	Not Liganded
1JLH	TYR	16	С	11.43	36	Not Liganded
1JLH	TYR	54	С	12.68	85	Not Liganded
1JLH	TYR	91	С	14.58	91	Not Liganded
1JLH	TYR	143	С	11.07	7	Not Liganded
1JLH	TYR	173	с	11.21	63	Not Liganded
1JLH	TYR	182	с	13.07	100	Liganded
1JLH	TYR	273	С	12.57	100	Not Liganded
1JLH	TYR	326	С	14.07	100	Not Liganded
1JLH	TYR	340	С	13.26	100	Not Liganded
1JLH	TYR	343	С	12.98	66	Not Liganded
1JLH	TYR	350	С	14.58	100	Not Liganded
1JLH	TYR	362	С	12.69	82	Not Liganded
1JLH	TYR	391	С	17.81	100	Not Liganded
1JLH	TYR	493	С	16.42	100	Not Liganded
1JLH	TYR	16	D	11.34	36	Not Liganded
1JLH	TYR	54	D	12.69	83	Not Liganded
1JLH	TYR	91	D	14.54	92	Not Liganded
1JLH	TYR	143	D	11.92	1	Not Liganded
1JLH	TYR	173	D	11.29	62	Not Liganded
1JLH	TYR	182	D	13	100	Liganded
1JLH	TYR	273	D	12.57	100	Not Liganded
1JLH	TYR	326	D	14.06	100	Not Liganded
1JLH	TYR	340	D	13.18	100	Not Liganded

1	IJLH	TYR	343	D	13.11	67	Not Liganded
1	IJLH	TYR	350	D	14.4	100	Not Liganded
1	IJĹĦ	TYR	362	D	12.73	81	Not Liganded
1	IJLH	TYR	391	D	17.73	100	Not Liganded
1	IJLH	TYR	493	D	16.45	100	Not Liganded
1	LJ1B	TYR	56	А	11.56	56	Not Liganded
1	LJ1B	TYR	71	А	10.65	23	Not Liganded
1	LJ1B	TYR	114	А	10.5	21	Not Liganded
1	LJ1B	TYR	117	А	9.77	36	Not Liganded
1	LJ1B	TYR	127	А	11.19	16	Not Liganded
1	LJ1B	TYR	134	А	10.68	31	Not Liganded
1	LJ1B	TYR	140	А	10.03	21	Not Liganded
1	LJ1B	TYR	146	А	10.67	20	Not Liganded
1	LJ1B	TYR	157	А	11.14	20	Not Liganded
1	LJ1B	TYR	161	А	12.83	79	Not Liganded
1	LJ1B	TYR	163	А	14.3	97	Not Liganded
1	LJ1B	TYR	171	А	11.14	42	Not Liganded
1	LJ1B	TYR	216	А	16.37	92	Not Liganded
1	LJ1B	TYR	221	А	10.88	45	Not Liganded
1	LJ1B	TYR	222	А	15.79	92	Not Liganded
1	LJ1B	TYR	234	А	12.44	97	Not Liganded
1	LJ1B	TYR	288	А	13.15	100	Liganded
1	LJ1B	TYR	323	А	13.5	81	Not Liganded
1	LJ1B	TYR	556	В	12.07	73	Not Liganded
1	LJ1B	TYR	571	В	10.59	30	Not Liganded
1	LJ1B	TYR	614	В	10.86	47	Not Liganded
1	LJ1B	TYR	617	В	11	41	Not Liganded
1	LJ1B	TYR	627	В	12.01	21	Not Liganded
1	LJ1B	TYR	634	В	10.73	36	Not Liganded
1	LJ1B	TYR	640	В	10.19	21	Not Liganded
1	LJ1B	TYR	646	В	10.58	18	Not Liganded
1	LJ1B	TYR	657	В	11.01	18	Not Liganded
1	LJ1B	TYR	661	В	12.82	78	Not Liganded
1	LJ1B	TYR	663	В	14.24	98	Not Liganded
1	LJ1B	TYR	671	В	11.19	42	Not Liganded
1	LJ1B	TYR	716	В	14.64	98	Not Liganded
1	LJ1B	TYR	721	В	10.74	45	Not Liganded
1	LJ1B	TYR	722	В	15.95	93	Not Liganded
1	LJ1B	TYR	734	В	12.54	99	Not Liganded
1	lj1B	TYR	788	В	11.69	88	Not Liganded
1	LJ1B	TYR	823	В	13.51	82	Not Liganded
1	LIOZ	TYR	83	А	13.13	83	Not Liganded
1	LIOZ	TYR	127	A	10.24	0	Not Liganded
1	LIOZ	TYR	145	А	10.91	33	Not Liganded
1	LIOZ	TYR	172	А	12.67	68	Not Liganded
1	LIOZ	TYR	239	А	12.63	46	Not Liganded

1I0Z	TYR	247	A	10.93	96	Not Liganded
1I0Z	TYR	281	А	10.77	37	Liganded
1I0Z	TYR	83	В	13.7	88	Not Liganded
1I0Z	TYR	127	В	10.09	0	Not Liganded
1I0Z	TYR	145	В	11.11	37	Not Liganded
1I0Z	TYR	172	В	12.72	70	Not Liganded
1I0Z	TYR	239	В	11.81	42	Not Liganded
1I0Z	TYR	247	В	13.46	98	Not Liganded
1I0Z	TYR	281	В	10.77	35	Liganded
1GZK	TYR	154	А	10.36	0	Not Liganded
1GZK	TYR	177	А	10.21	13	Not Liganded
1GZK	TYR	178	А	11.27	28	Not Liganded
1GZK	TYR	217	А	10.58	0	Not Liganded
1GZK	TYR	231	А	13.29	89	Not Liganded
1GZK	TYR	255	А	12.42	79	Not Liganded
1GZK	TYR	265	А	10	0	Not Liganded
1GZK	TYR	273	А	15.53	100	Not Liganded
1GZK	TYR	316	А	12.07	54	Not Liganded
1GZK	TYR	327	А	10.54	10	Liganded
1GZK	TYR	341	А	12.23	54	Not Liganded
1GZK	TYR	351	А	9.95	0	Not Liganded
1GZK	TYR	438	А	10.31	25	Not Liganded
1GIF	TYR	37	А	10.23	0	Not Liganded
1GIF	TYR	76	А	11.76	48	Not Liganded
1GIF	TYR	96	А	13.42	87	Liganded
1GIF	TYR	99	А	13.82	90	Not Liganded
1GIF	TYR	100	А	14.25	100	Not Liganded
1GIF	TYR	37	В	10.26	0	Not Liganded
1GIF	TYR	76	В	11.66	43	Not Liganded
1GIF	TYR	96	В	13.21	85	Liganded
1GIF	TYR	99	В	13.75	91	Not Liganded
1GIF	TYR	100	В	13.49	100	Not Liganded
1GIF	TYR	37	С	10.27	0	Not Liganded
1GIF	TYR	76	С	11.82	43	Not Liganded
1GIF	TYR	96	С	13.18	84	Liganded
1GIF	TYR	99	С	13.71	91	Not Liganded
1GIF	TYR	100	С	12.32	100	Not Liganded
1EGX	TYR	16	А	10.42	0	Not Liganded
1EGX	TYR	39	А	10.32	2	Liganded
1EGX	TYR	72	А	15.52	100	Not Liganded
1EF7	TYR	15	А	10.52	0	Liganded
1EF7	TYR	27	А	10.66	17	Not Liganded
1EF7	TYR	82	А	12.8	77	Not Liganded
1EF7	TYR	96	А	11.91	58	Not Liganded
1EF7	TYR	124	А	10.88	22	Not Liganded
1EF7	TYR	132	А	14.17	82	Not Liganded

	1	1				
1EF7	TYR	146	А	10.27	0	Not Liganded
1EF7	TYR	164	А	12.03	52	Not Liganded
1EF7	TYR	169	А	12.61	40	Not Liganded
1EF7	TYR	172	А	10.37	0	Not Liganded
1EF7	TYR	177	А	10.21	0	Not Liganded
1EF7	TYR	195	А	10.12	25	Not Liganded
1EF7	TYR	219	А	10.27	4	Not Liganded
1EF7	TYR	227	А	9.11	0	Not Liganded
1EF7	TYR	15	В	10.41	0	Liganded
1EF7	TYR	27	В	10.44	8	Not Liganded
1EF7	TYR	82	В	12.99	76	Not Liganded
1EF7	TYR	96	В	11.76	56	Not Liganded
1EF7	TYR	124	В	10.85	23	Not Liganded
1EF7	TYR	132	В	14.06	83	Not Liganded
1EF7	TYR	146	В	10.25	0	Not Liganded
1EF7	TYR	164	В	12.67	51	Not Liganded
1EF7	TYR	169	В	12.46	41	Not Liganded
1EF7	TYR	172	В	10.45	0	Not Liganded
1EF7	TYR	177	В	10.17	0	Not Liganded
1EF7	TYR	195	В	10.1	27	Not Liganded
1EF7	TYR	219	В	10.26	6	Not Liganded
1EF7	TYR	227	В	9.69	0	Not Liganded
1BD9	TYR	29	А	13.18	96	Not Liganded
1BD9	TYR	64	А	11.32	27	Not Liganded
1BD9	TYR	81	А	9.93	0	Not Liganded
1BD9	TYR	106	А	15.3	100	Not Liganded
1BD9	TYR	120	А	16.31	100	Liganded
1BD9	TYR	125	А	15.93	97	Not Liganded
1BD9	TYR	158	А	13.08	26	Not Liganded
1BD9	TYR	169	А	17.98	100	Not Liganded
1BD9	TYR	176	А	11.39	41	Not Liganded
1BD9	TYR	181	А	11.85	67	Not Liganded
1BD9	TYR	29	В	13.4	99	Not Liganded
1BD9	TYR	64	В	11.35	28	Not Liganded
1BD9	TYR	81	В	9.98	0	Not Liganded
1BD9	TYR	106	В	15.29	100	Not Liganded
1BD9	TYR	120	В	16.36	100	Liganded
1BD9	TYR	125	В	16.03	99	Not Liganded
1BD9	TYR	158	В	13.09	30	Not Liganded
1BD9	TYR	169	В	17.92	100	Not Liganded
1BD9	TYR	176	В	11.28	41	Not Liganded
1BD9	TYR	181	В	12.09	76	Not Liganded
1AVH	TYR	91	А	15.45	98	Not Liganded
1AVH	TYR	94	А	11.27	47	Not Liganded
1AVH	TYR	129	А	13.22	48	Liganded
1AVH	TYR	133	А	11.84	36	Not Liganded

1AVH	TYR	148	А	10.41	0	Not Liganded
1AVH	TYR	149	А	12.88	84	Not Liganded
1AVH	TYR	213	А	11.61	43	Not Liganded
1AVH	TYR	250	А	13.31	100	Not Liganded
1AVH	TYR	256	А	9.21	0	Not Liganded
1AVH	TYR	257	А	10.6	19	Not Liganded
1AVH	TYR	297	А	11.45	0	Not Liganded
1AVH	TYR	308	А	14.14	61	Not Liganded
1AVH	TYR	91	В	15.04	98	Not Liganded
1AVH	TYR	94	В	11.26	46	Not Liganded
1AVH	TYR	129	В	13.09	43	Liganded
1AVH	TYR	133	В	11.6	26	Not Liganded
1AVH	TYR	148	В	10.44	0	Not Liganded
1AVH	TYR	149	В	12.61	71	Not Liganded
1AVH	TYR	213	В	12.02	45	Not Liganded
1AVH	TYR	250	В	13.75	100	Not Liganded
1AVH	TYR	256	В	10.06	0	Not Liganded
1AVH	TYR	257	В	10.87	24	Not Liganded
1AVH	TYR	297	В	10.16	0	Not Liganded
1AVH	TYR	308	В	14.13	63	Not Liganded

Table 4.16. GSTP1 Dual Screen Results

JWB Inhibitor	Normalized Lane Intenstiy (Inhibitor/DMSO)	Normalized Band Intenstiy (Inhibitor/DMSO)	AutoDock Affinity (Kcal/mol)
101	0.851323804	0.980038463	-6.3
102	0.832815888	1.039534624	-7.3
104	0.647433928	0.84259362	-7.2
105	0.616319988	0.760287272	-7.4
106	0.623118331	0.801085239	-7.1
107	0.317456275	0.567487844	-7.1
108	0.605849451	0.720539571	-7.8
109	0.789692247	0.906217355	-7.7
111	0.388242998	0.692272141	-7.1
112	0.797539467	0.914800343	-8.2
116	0.867812369	0.980425258	-6.5
117	0.891484649	1.004864963	-7.4
119	0.653501906	0.737698314	-7.4
120	0.568354562	0.61285215	-7.4
121	0.353392955	0.504103101	-7.2
122	0.375893597	0.547263178	-7.3
123	0.62348918	0.688955484	-8.2
124	0.436866278	0.499510367	-7.8
126	0.509179936	0.690414172	-7.2
127	0.75240169	0.781729966	-8.4
131	0.831321354	0.963604238	-6.5

132	0.52179896	0.685022564	-7.4
134	0.421715528	0.591223332	-7.2
135	0.454385607	0.538563496	-7.4
136	0.561319588	0.648866634	-7.3
137	0.201618519	0.346087087	-7.3
138	0.580692711	0.693478956	-8.2
139	0.346944498	0.416323954	-7.8
141	0.341612819	0.593841225	-7.3
142	0.869720417	0.946186447	-8.3
146	0.94447896	0.991921515	-7
147	0.555704281	0.626683617	-8
149	0.313737428	0.37089193	-7.9
150	0.410908983	0.464818734	-8
151	0.404204329	0.478076002	-8
152	0.175593828	0.310696363	-7.8
153	0.418268534	0.458295264	-8.9
154	0.578889646	0.635237414	-7.9
156	0.473175604	0.650987635	-7.8
157	0.717279589	0.754766215	-8.9
161	0.952875039	1.115736611	-6.6
162	0.933652947	1.026605297	-7.5
164	1	0.993424495	-7.3
165	0.833233131	0.909356008	-7.5
166	0.86400632	1.181308054	-7.3
167	0.337411256	0.411264138	-7.3
168	0.459469663	0.501407869	-8.5
169	0.661004896	0.731236843	-7.8
171	0.436909209	0.722856531	-7.4
172	0.646446428	0.77770171	-8.4
176	0.851282529	0.945077515	-6.2
177	0.599252941	0.774178322	-7.3
179	0.217765469	0.44033655	-7.1
180	0.387672882	0.670710386	-7.1
181	0.424057417	0.618528562	-7.1
182	0.384818077	0.543469987	-7.1
183	0.280372055	0.359865784	-7.8
184	0.303260916	0.443129244	-7.6
186	0.392478728	0.63988966	-7.1
187	0.77864146	0.967959468	-8.2
191	0.971335025	1.014629827	-6.3
192	0.400448515	0.656033837	-7.2
194	0.179500317	0.354995588	-7.1
195	0.459250794	0.685762712	-7.1
196	0.342944749	0.494466117	-7.1
197	0.46639318	0.63583909	-7.1
198	0.706188554	0.791481605	-7.9

201	0.355199389	0.624526671	-7
202	0.694991582	0.877325868	-8.2
206	0.997643819	1.056541399	-6
207	0.536866391	0.691784728	-7
209	0.781986539	0.880453074	-6.9
210	0.571298922	0.683583523	-6.9
211	0.816220185	0.976213088	-6.9
212	0.476072427	0.608017896	-6.9
213	0.520783726	0.633994382	-7.9
214	0.362997788	0.44739781	-7.2
216	0.360337323	0.68822907	-6.7
217	0.701411456	0.798769468	-8
221	0.559916589	0.729590752	-7.6
222	0.489124758	0.629676547	-7.8
223	0.751260691	0.725219431	-8.6
224	0.811211228	0.82297362	-7.8
226	0.324441512	0.531034583	-7.4
227	0.331641784	0.526513243	-7.3
228	0.275137908	0.495017801	-7.7
229	0.253386522	0.524366729	-7.1
230	0.262883384	0.529237126	-7.4
231	0.236797891	0.459255393	-7.4
232	0.424160869	0.593429627	-7.5
233	0.339726489	0.474758584	-7.9
234	0.368570634	0.559593867	-7.6
235	0.576860541	0.666293054	-7.5
237	0.59856862	0.720363978	-7.3
238	0.666828062	0.739153226	-7.3
239	0.730542905	0.764412566	-7.2
241	0.641955486	0.701610357	-7.9

Table 4.17. DPP3 Dual Screen Results

JWB Inhibitor	Normalized Lane Intenstiy (Inhibitor/DMSO)	Normalized Band Intenstiy (Inhibitor/DMSO)	AutoDock Affinity (Kcal/mol)
101	0.733567146	1.03228334	-7.2
102	0.828713655	0.8563548	-7.8
104	0.908360674	0.94071985	-7.3
105	0.930535128	0.82425952	-7.9
106	0.963118	0.81906702	-7.4
107	0.871252404	0.78153894	-7.1
108	0.909378889	0.77798673	-8.9
109	0.870234189	0.93414825	-7.9
111	0.840253422	0.71747375	-7.4
112	0.822038692	0.92389908	-8.8
116	0.732096391	1.04231312	-6.8

117	0.745446317	0.75228543	-7.8
119	0.756307275	0.65159066	-7.5
120	0.801221858	0.75934806	-7.6
121	0.758343704	0.60501489	-7.5
122	0.763774183	0.76450922	-7.4
123	0.413508315	0.6403385	-8.9
124	0.808236226	0.71960508	-7.8
126	1	0.80227759	-7.6
127	0.806426066	0.85100559	-8.9
131	0.714428135	1.04994365	-6.8
132	0.508279896	0.76589856	-7.7
134	0.553082795	0.7466356	-7.5
135	0.554976975	0.74140379	-7.6
136	0.609971245	0.66257297	-7.6
137	0.391460196	0.57185169	-7.4
138	0.726261385	0.79315877	-9.1
139	0.492977579	0 59791241	-8
141	0.462137819	0 70792048	-7 5
142	0.775067941	0.88696936	-8.8
146	0.909635732	1.04850966	-7.7
143	0.748435601	0.87005417	-8.8
147	0.748455001	0.81164628	-8.2
150	0.764842378	0.57595525	-0.2
150	0.524482823	0.51555525	-0.2
152	0.41550891	0.50856136	-0.2
152	0.41550851	0.30850130	_0 5
153	0.59/916291	0.73095911	-9.3
154	0.61019797	0.72007702	-0.2
150	0.695945132	0.85184678	_9.1
161	0.779559633	0.82988108	-7.1
162	0.824047487	0.82923784	-8.1
164	0.656327837	0.68577008	-0.1
165	0.599604246	0.66406216	-7.0
165	0.599004240	0.61239507	-1.5
167	0.582480400	0.66835185	-7.0
168	0.566100753	0.00833183	-7.5
169	0.500109755	0.5533584	-9.1
109	0.05255507	0.05555584	-0.2
171	0.739484937	0.78428891	-7.0
172	0.044070914	0.09429073	-0.0
170	0.735772034	0.83091439	-0.0
177	0.730172807	0.63217033	-7.4
1/9	0.540078595	0.69677072	-1.2
180	0.031308008	0.08077275	-7.3
101	0.747300173	0.7402005	-1.3
182	0.525949275	0.00012082	-0.9
104	0.692905.772	0.58/04108	-8.8
184	0.002000/3	0.59010025	-/.8
180	0.609095956	0.63424489	-1
18/	0.548405074	0.53531557	-8
191	0.758298318	0.87406981	-6.5
192	0.75722618	0.84868068	-7.5

194	0.184285573	0.30547525	-7.2
195	0.692363961	0.80413271	-7.4
196	0.740382927	0.80712016	-7.3
197	0.720090802	0.84895015	-6.9
198	0.438788876	0.50724189	-8.8
201	0.715746797	0.82350082	-7
202	0.523523487	0.60812455	-8.7
206	0.740705342	0.78147704	-6.4
207	0.744144282	0.75426404	-7.3
209	0.590502737	0.71734163	-6.8
210	0.542887244	0.60495446	-7
211	0.675362155	0.71546291	-7
212	0.651724085	0.63076268	-6.9
213	0.344310552	0.46468035	-8.3
214	0.389157851	0.49984955	-7.5
216	0.465853535	0.56622314	-6.7
217	0.652275375	0.76665107	-8.2
221	0.739229635	0.94264141	-7.6
222	0.695700494	0.98577325	-8
223	0.843657829	1.03164869	-8.3
224	1	1.15782133	-7.9
226	0.598859889	1.01613577	-7.3
227	0.590343471	0.97228169	-7.2
228	0.364827414	0.94607175	-8.9
229	0.399907285	0.94621259	-7.7
230	0.388204548	0.9440252	-7.7
231	0.501533441	0.8400396	-7.3
232	0.530491693	0.81606828	-7.3
233	0.578837095	0.68988821	-9.2
234	0.52833779	0.83831604	-8.1
235	0.620459648	0.87831285	-7.7
237	0.72345831	1.05515825	-7
238	0.464360398	0.85217437	-7.1
239	0.492895562	0.71663136	-6.9
241	0.595301091	0.72560233	-8.9

Works Cited

1. Downard, K. Mass Spectrometry. (2004). doi:10.1039/9781847551306.

2. Kinter, M. & Sherman, N. E. Protein Sequencing and Identification Using Tandem Mass Spectrometry. (2000) doi:10.1002/0471721980.

3. Mitchell Wells, J. & McLuckey, S. A. Collision-Induced Dissociation (CID) of Peptides and Proteins. in *Methods in Enzymology* vol. 402 148–185 (Academic Press, 2005).

4. Sleno, L. & Volmer, D. A. Ion activation methods for tandem mass spectrometry. *J. Mass Spectrom.* **39**, 1091–1112 (2004).

5. Olsen, J. V. *et al.* Higher-energy C-trap dissociation for peptide modification analysis. *Nat. Methods* **4**, 709–712 (2007).

6. Zubarev, R. A. & Makarov, A. Orbitrap Mass Spectrometry. *Anal. Chem.* **85**, 5288–5296 (2013).

7. Chowdhury, S. K., Katta, V. & Chait, B. T. Electrospray ionization mass spectrometric peptide mapping: A rapid, sensitive technique for protein structure analysis. *Biochem. Biophys. Res. Commun.* **167**, 686–692 (1990).

8. Pitt, J. J. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. *Clin. Biochem. Rev.* **30**, 19–34 (2009).

9. Gama, M. R., Collins, C. H. & Bottoli, C. B. G. Nano-Liquid Chromatography in Pharmaceutical and Biomedical Research. *J. Chromatogr. Sci.* **51**, 694–703 (2013).

10. McDonald, W. H. & Yates, J. R. Shotgun Proteomics and Biomarker Discovery. *Dis. Markers* **18**, 99–105 (2002).

11. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. *J. Am. Soc. Mass Spectrom.* **5**, 976–989 (1994).

12. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. *Nat. Methods* **15**, 440–448 (2018).

13. Hood, L. & Rowen, L. The Human Genome Project: big science transforms biology and medicine. *Genome Med.* **5**, 79 (2013).

14. Hubler, S. L. *et al.* Challenges in Peptide-Spectrum Matching: A Robust and Reproducible Statistical Framework for Removing Low-Accuracy, High-Scoring Hits. *J. Proteome Res.* **19**, 161–173 (2020).

15. Hoopmann, M. R. & Moritz, R. L. Current algorithmic solutions for peptidebased proteomics data generation and identification. *Curr. Opin. Biotechnol.* **24**, (2013).

16. Verheggen, K. *et al.* Anatomy and evolution of database search engines—a central component of mass spectrometry based proteomic workflows. *Mass Spectrom. Rev.* **39**, 292–306 (2020).

17. Bern, M., Kil, Y. J. & Becker, C. Byonic: Advanced Peptide and Protein Identification Software. *Curr. Protoc. Bioinforma.* **40**, (2012).

18. Seidler, J., Zinn, N., Boehm, M. E. & Lehmann, W. D. De novo sequencing of peptides by MS/MS. *PROTEOMICS* **10**, 634–649 (2010).

19. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-Based Protein Profiling: From Enzyme Chemistry to Proteomic Chemistry. *Annu. Rev. Biochem.* **77**, 383–414

(2008).

20. Roberts, A. M., Ward, C. C. & Nomura, D. K. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots. *Curr. Opin. Biotechnol.* **43**, 25–33 (2017).

21. *Activity-Based Protein Profiling*. vol. 420 (Springer International Publishing, 2019).

22. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: The serine hydrolases. *Proc. Natl. Acad. Sci.* **96**, 14694–14699 (1999).

23. Nordin, B. E. *et al.* ATP Acyl Phosphate Reactivity Reveals Native Conformations of Hsp90 Paralogs and Inhibitor Target Engagement. *Biochemistry* **54**, 3024–3036 (2015).

24. Patricelli, M. P. *et al.* Functional Interrogation of the Kinome Using Nucleotide Acyl Phosphates. *Biochemistry* **46**, 350–358 (2007).

25. De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A. K. & Moitessier, N. Covalent inhibitors design and discovery. *Eur. J. Med. Chem.* **138**, 96–114 (2017).

26. Liu, R., Yue, Z., Tsai, C.-C. & Shen, J. Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors. *J. Am. Chem. Soc.* **141**, 6553–6560 (2019).

27. Hacker, S. M. *et al.* Global profiling of lysine reactivity and ligandability in the human proteome. *Nat. Chem.* **9**, 1181–1190 (2017).

28. Kathman, S. G., Xu, Z. & Statsyuk, A. V. A Fragment-Based Method to Discover Irreversible Covalent Inhibitors of Cysteine Proteases. *J. Med. Chem.* **57**, 4969–4974 (2014).

29. Kuljanin, M. *et al.* Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. *Nat. Biotechnol.* **39**, 630–641 (2021).

30. Abo, M., Li, C. & Weerapana, E. Isotopically-Labeled Iodoacetamide-Alkyne
Probes for Quantitative Cysteine-Reactivity Profiling. *Mol. Pharm.* 15, 743–749 (2018).
31. Fonović, M. & Bogyo, M. Activity-based probes as a tool for functional

proteomic analysis of proteases. *Expert Rev. Proteomics* **5**, 721–730 (2008).

32. Drewes, G. & Knapp, S. Chemoproteomics and Chemical Probes for Target Discovery. *Trends Biotechnol.* **36**, 1275–1286 (2018).

33. Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-Based Protein Profiling in Vivo Using a Copper(I)-Catalyzed Azide-Alkyne [3 + 2] Cycloaddition. *J. Am. Chem. Soc.* **125**, 4686–4687 (2003).

34. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. *Angew. Chem. Int. Ed.* **41**, 2596–2599 (2002).

35. Hirsch, J. D. *et al.* Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. *Anal. Biochem.* **308**, 343–357 (2002).

36. Franks, C. E., Campbell, S. T., Purow, B. W., Harris, T. E. & Hsu, K.-L. The Ligand Binding Landscape of Diacylglycerol Kinases. *Cell Chem. Biol.* **24**, 870-880.e5 (2017).

37. Hsu, K.-L. *et al.* DAGL β inhibition perturbs a lipid network involved in macrophage inflammatory responses. *Nat. Chem. Biol.* **8**, 999–1007 (2012).

38. Hsu, K.-L. *et al.* Discovery and Optimization of Piperidyl-1,2,3-Triazole Ureas as Potent, Selective, and in Vivo-Active Inhibitors of α/β -Hydrolase Domain Containing 6 (ABHD6). *J. Med. Chem.* **56**, 8270–8279 (2013).

39. Wolf, E. V. *et al.* A New Class of Rhomboid Protease Inhibitors Discovered by Activity-Based Fluorescence Polarization. *PLOS ONE* **8**, e72307 (2013).

40. Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. *Nat. Methods* **2**, 910–919 (2005).

41. Aaltonen, N. *et al.* Tissue-ABPP enables high-resolution confocal fluorescence imaging of serine hydrolase activity in cryosections – Application to glioma brain unveils activity hotspots originating from tumor-associated neutrophils. *bioRxiv* 783704 (2019) doi:10.1101/783704.

42. Speers, A. E. & Cravatt, B. F. Activity-Based Protein Profiling (ABPP) and Click Chemistry (CC)-ABPP by MudPIT Mass Spectrometry. *Curr. Protoc. Chem. Biol.* **1**, 29–41 (2009).

43. Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. *Nat. Rev. Cancer* **14**, 455–467 (2014).

44. Lu, T. *et al.* Discovery of a subtype-selective, covalent inhibitor against palmitoylation pocket of TEAD3. *Acta Pharm. Sin. B* (2021) doi:10.1016/j.apsb.2021.04.015.

45. Klaeger, S. *et al.* The target landscape of clinical kinase drugs. *Science* **358**, eaan4368 (2017).

46. Médard, G. *et al.* Optimized Chemical Proteomics Assay for Kinase Inhibitor Profiling. *J. Proteome Res.* **14**, 1574–1586 (2015).

47. Jameson, D. M. & Ross, J. A. Fluorescence Polarization/Anisotropy in Diagnostics and Imaging. *Chem. Rev.* **110**, 2685–2708 (2010).

48. Mann, M. Functional and quantitative proteomics using SILAC. *Nat. Rev. Mol. Cell Biol.* **7**, 952–958 (2006).

49. Navarrete-Perea, J., Yu, Q., Gygi, S. P. & Paulo, J. A. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3. *J. Proteome Res.* **17**, 2226–2236 (2018).

50. Aggarwal, K., Choe, L. H. & Lee, K. H. Shotgun proteomics using the iTRAQ isobaric tags. *Brief. Funct. Genomics* **5**, 112–120 (2006).

51. Zanon, P. R. A., Lewald, L. & Hacker, S. M. Isotopically Labeled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of the Bacterial Cysteinome. *Angew. Chem.* **132**, 2851–2858 (2020).

52. Long, J. Z. & Cravatt, B. F. The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease. *Chem. Rev.* 111, 6022–6063 (2011).
53. Bachovchin, D. A. & Cravatt, B. F. The pharmacological landscape and therapeutic potential of serine hydrolases. *Nat. Rev. Drug Discov.* 11, 52–68 (2012).

54. Shin, M. *et al.* Liposomal Delivery of Diacylglycerol Lipase-Beta Inhibitors to

Macrophages Dramatically Enhances Selectivity and Efficacy in Vivo. *Mol. Pharm.* **15**, 721–728 (2018).

55. Adams, J. A. Kinetic and Catalytic Mechanisms of Protein Kinases. *Chem. Rev.* **101**, 2271–2290 (2001).

56. Bhullar, K. S. *et al.* Kinase-targeted cancer therapies: progress, challenges and future directions. *Mol. Cancer* **17**, (2018).

57. Golkowski, M. *et al.* Kinobead and Single-Shot LC-MS Profiling Identifies Selective PKD Inhibitors. *J. Proteome Res.* **16**, 1216–1227 (2017).

58. Reinecke, M. *et al.* Kinobeads: A Chemical Proteomic Approach for Kinase Inhibitor Selectivity Profiling and Target Discovery. in *Target Discovery and Validation* 97–130 (John Wiley & Sons, Ltd, 2019). doi:10.1002/9783527818242.ch4.

59. Cooper, M. J. *et al.* Application of Multiplexed Kinase Inhibitor Beads to Study Kinome Adaptations in Drug-Resistant Leukemia. *PLOS ONE* **8**, e66755 (2013).

60. Kuenzi, B. M. *et al.* Polypharmacology-based ceritinib repurposing using integrated functional proteomics. *Nat. Chem. Biol.* **13**, 1222–1231 (2017).

61. MacKinnon, A. L. & Taunton, J. Target Identification by Diazirine Photo-Crosslinking and Click Chemistry. *Curr. Protoc. Chem. Biol.* **1**, 55–73 (2009).

62. Ward, C. C., Kleinman, J. I. & Nomura, D. K. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots. *ACS Chem. Biol.* **12**, 1478–1483 (2017).

63. Nguyen, D.-T. *et al.* Pharos: Collating protein information to shed light on the druggable genome. *Nucleic Acids Res.* **45**, D995–D1002 (2017).

64. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? *Nat. Rev. Drug Discov.* **5**, 993–996 (2006).

65. Koresawa, M. & Okabe, T. High-Throughput Screening with Quantitation of ATP Consumption: A Universal Non-Radioisotope, Homogeneous Assay for Protein Kinase. *ASSAY Drug Dev. Technol.* **2**, 153–160 (2004).

66. Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and evolution. *Nat. Rev. Drug Discov.* **13**, 577–587 (2014).

67. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. *Nat. Rev. Drug Discov.* **16**, 531–543 (2017).

68. Knight, Z. A., Lin, H. & Shokat, K. M. Targeting the cancer kinome through polypharmacology. *Nat. Rev. Cancer* **10**, 130–137 (2010).

69. Drewes, G. Chemical Proteomics in Drug Discovery. *Methods Mol. Biol.* 15–21 (2011) doi:10.1007/978-1-61779-364-6_2.

70. Roskoski, R. Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs). *Pharmacol. Res.* **165**, 105422 (2021).

71. Ni, D., Lu, S. & Zhang, J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. *Med. Res. Rev.* **39**, 2314–2342 (2019).

72. Baillie, T. A. Targeted Covalent Inhibitors for Drug Design. *Angew. Chem. Int. Ed.* **55**, 13408–13421 (2016).

73. Chatterjee, P. *et al.* Can Relative Binding Free Energy Predict Selectivity of

Reversible Covalent Inhibitors? J. Am. Chem. Soc. 139, 17945–17952 (2017).

74. Baillie, T. A. Approaches to mitigate the risk of serious adverse reactions in covalent drug design. *Expert Opin. Drug Discov.* **16**, 275–287 (2021).

75. Thibaudeau, T. A. & Smith, D. M. A Practical Review of Proteasome Pharmacology. *Pharmacol. Rev.* **71**, 170–197 (2019).

76. Kennedy, S. P., Hastings, J. F., Han, J. Z. R. & Croucher, D. R. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family. *Front. Cell Dev. Biol.* **4**, (2016).

77. Lu, S., Jang, H., Gu, S., Zhang, J. & Nussinov, R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. *Chem. Soc. Rev.* **45**, 4929–4952 (2016).

78. Canon, J. *et al.* The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. *Nature* **575**, 217–223 (2019).

79. Commissioner, O. of the. FDA Approves First Targeted Therapy for Lung Cancer Mutation Previously Considered Resistant to Drug Therapy. *FDA*

https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-lung-cancer-mutation-previously-considered-resistant-drug (2021).

80. Ehmann, D. E. *et al.* Avibactam is a covalent, reversible, non $-\beta$ -lactam β -lactamase inhibitor. *Proc. Natl. Acad. Sci.* **109**, 11663–11668 (2012).

81. H. Jones, L. & W. Kelly, J. Structure-based design and analysis of SuFEx chemical probes. *RSC Med. Chem.* **11**, 10–17 (2020).

82. Liu, Z. *et al.* SuFEx Click Chemistry Enabled Late-Stage Drug Functionalization. *J. Am. Chem. Soc.* **140**, 2919–2925 (2018).

83. Zheng, Q. *et al.* SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. *Proc. Natl. Acad. Sci.* **116**, 18808–18814 (2019).

84. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. *Angew. Chem. Int. Ed.* **53**, 9430–9448 (2014).

85. Zhao, Q. *et al.* Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. *J. Am. Chem. Soc.* **139**, 680–685 (2017).

86. MacLean, B. *et al.* Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinforma. Oxf. Engl.* 26, 966–968 (2010).
87. Yu, F., Li, N. & Yu, W. PIPI: PTM-Invariant Peptide Identification Using Coding

Method. J. Proteome Res. 15, 4423-4435 (2016).

88. Marx, H. *et al.* A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics. *Nat. Biotechnol.* **31**, 557–564 (2013).

89. Shteynberg, D. D. *et al.* PTMProphet: Fast and Accurate Mass Modification Localization for the Trans-Proteomic Pipeline. *J. Proteome Res.* **18**, 4262–4272 (2019).

90. Palafox, M. F., Desai, H. S., Arboleda, V. A. & Backus, K. M. From chemoproteomic-detected amino acids to genomic coordinates: insights into precise multi-omic data integration. *Mol. Syst. Biol.* **17**, e9840 (2021).

91. Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. *Nat. Protoc.* **8**, 1551–1566 (2013).

92. Counihan, J. L., Ford, B. & Nomura, D. K. Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms. *Curr. Opin. Chem. Biol.* **30**, 68–76 (2016).

93. London, N. *et al.* Covalent docking of large libraries for the discovery of chemical probes. *Nat. Chem. Biol.* **10**, 1066–1072 (2014).

94. Bensinger, D. *et al.* Virtual Screening Identifies Irreversible FMS-like Tyrosine Kinase 3 Inhibitors with Activity toward Resistance-Conferring Mutations. *J. Med. Chem.* **62**, 2428–2446 (2019).

95. Morris, G. M. *et al.* AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *J. Comput. Chem.* **30**, 2785–2791 (2009).

96. Peng, Y. *et al.* 5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. *Cell* **172**, 719-730.e14 (2018).

97. Barone, J. A. *et al.* Safety Evaluation of Ritanserin—An Investigational Serotonin Antagonist. *Drug Intell. Clin. Pharm.* **20**, 770–775 (1986).

98. Purow, B. Molecular Pathways: Targeting Diacylglycerol Kinase Alpha in Cancer. *Clin. Cancer Res.* **21**, 5008–5012 (2015).

99. Boroda, S., Niccum, M., Raje, V., Purow, B. W. & Harris, T. E. Dual activities of ritanserin and R59022 as DGKα inhibitors and serotonin receptor antagonists. *Biochem. Pharmacol.* **123**, 29–39 (2017).

100. McCloud, R. L. *et al.* Deconstructing Lipid Kinase Inhibitors by Chemical Proteomics. *Biochemistry* **57**, 231–236 (2017).

101. Sakane, F., Imai, S., Kai, M., Yasuda, S. & Kanoh, H. Diacylglycerol kinases: Why so many of them? *Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids* **1771**, 793–806 (2007).

102. Greer, P. Closing in on the biological functions of fps/fes and fer. *Nat. Rev. Mol. Cell Biol.* **3**, 278–289 (2002).

103. Dominguez, C. L. *et al.* Diacylglycerol Kinase α Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers. *Cancer Discov.* **3**, 782–797 (2013).

104. Olmez, I. *et al.* Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. *Neuro-Oncol.* **20**, 192–202 (2017).

105. Schilling, B. *et al.* Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline. *Mol. Cell. Proteomics* **11**, 202–214 (2012).

106. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* **5**, 113 (2004).

107. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. *Trends Genet.* **16**, 276–277 (2000).

108. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. *Nat. Rev. Drug Discov.* **10**, 221–237 (2011).

109. Bartling, B. RasGTPase-activating protein is a target of caspases in spontaneous apoptosis of lung carcinoma cells and in response to etoposide. *Carcinogenesis* **25**, 909–921 (2004).

110. Wang, Y., Yang, H., Liu, H., Huang, J. & Song, X. Effect of staurosporine on the

mobility and invasiveness of lung adenocarcinoma A549 cells: an in vitro study. *BMC Cancer* **9**, (2009).

111. Patricelli, M. P. *et al.* In Situ Kinase Profiling Reveals Functionally Relevant Properties of Native Kinases. *Chem. Biol.* **18**, 699–710 (2011).

112. Shin, M., Franks, C. E. & Hsu, K.-L. Isoform-selective activity-based profiling of ERK signaling. *Chem. Sci.* **9**, 2419–2431 (2018).

113. Chang, J. W. *et al.* Selective Inhibitor of Platelet-Activating Factor Acetylhydrolases 1b2 and 1b3 That Impairs Cancer Cell Survival. *ACS Chem. Biol.* **10**, 925–932 (2015).

114. Nagano, J. M. G. *et al.* Selective inhibitors and tailored activity probes for lipoprotein-associated phospholipase A2. *Bioorg. Med. Chem. Lett.* **23**, 839–843 (2013). 115. Agarwal, A. *et al.* The AKT/IκB kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-κB and β-catenin. *Oncogene* **24**, 1021–1031 (2004).

116. Castellano, E. *et al.* Requirement for Interaction of PI3-Kinase p110α with RAS in Lung Tumor Maintenance. *Cancer Cell* **24**, 617–630 (2013).

117. Sanclemente, M. *et al.* c-RAF Ablation Induces Regression of Advanced Kras/Trp53 Mutant Lung Adenocarcinomas by a Mechanism Independent of MAPK Signaling. *Cancer Cell* **33**, 217-228.e4 (2018).

118. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. *Mol. Cell* **66**, 801–817 (2017).

119. Graziano, S. L. *et al.* Involvement of theRAFI locus, at band 3p25, in the 3p deletion of small-cell lung cancer. *Genes. Chromosomes Cancer* **3**, 283–293 (1991).

120. Morrow, A. A. *et al.* The Lipid Kinase PI4KIIIβ Is Highly Expressed in Breast Tumors and Activates Akt in Cooperation with Rab11a. *Mol. Cancer Res.* **12**, 1492–1508 (2014).

121. Cheng, Y. *et al.* eEF-2 kinase is a critical regulator of Warburg effect through controlling PP2A-A synthesis. *Oncogene* **35**, 6293–6308 (2016).

122. Ye, J. *et al.* The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. *EMBO J.* **29**, 2082–2096 (2010).

123. Kim, J.-A. *et al.* Amplification of TLK2 Induces Genomic Instability via Impairing the G2–M Checkpoint. *Mol. Cancer Res.* **14**, 920–927 (2016).

124. Lewis, T. S., Shapiro, P. S. & Ahn, N. G. Signal Transduction through MAP Kinase Cascades. *Adv. Cancer Res.* 49–139 (1998) doi:10.1016/s0065-230x(08)60765-4.

125. Pearson, G. *et al.* Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions*. *Endocr. Rev.* 22, 153–183 (2001).

126. Seger, R. & Krebs, E. G. The MAPK signaling cascade. *FASEB J.* **9**, 726–735 (1995).

127. Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS Proteins and Their Regulators in Human Disease. *Cell* **170**, 17–33 (2017).

128. Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. *Oncogene* **26**, 3279–3290 (2007).

129. Griner, E. M. & Kazanietz, M. G. Protein kinase C and other diacylglycerol effectors in cancer. *Nat. Rev. Cancer* **7**, 281–294 (2007).

130. Wu, P., Nielsen, T. E. & Clausen, M. H. FDA-approved small-molecule kinase inhibitors. *Trends Pharmacol. Sci.* **36**, 422–439 (2015).

131. Sadaghiani, A. M., Verhelst, S. H. & Bogyo, M. Tagging and detection strategies for activity-based proteomics. *Curr. Opin. Chem. Biol.* **11**, 20–28 (2007).

132. Niphakis, M. J. & Cravatt, B. F. Enzyme Inhibitor Discovery by Activity-Based Protein Profiling. *Annu. Rev. Biochem.* **83**, 341–377 (2014).

133. Deu, E., Verdoes, M. & Bogyo, M. New approaches for dissecting protease functions to improve probe development and drug discovery. *Nat. Struct. Mol. Biol.* **19**, 9–16 (2012).

134. Kumar, S. *et al.* Activity-based probes for protein tyrosine phosphatases. *Proc. Natl. Acad. Sci.* **101**, 7943–7948 (2004).

135. Vocadlo, D. J. & Bertozzi, C. R. A Strategy for Functional Proteomic Analysis of Glycosidase Activity from Cell Lysates. *Angew. Chem. Int. Ed.* **43**, 5338–5342 (2004).

136. Weerapana, E. *et al.* Quantitative reactivity profiling predicts functional cysteines in proteomes. *Nature* **468**, 790–795 (2010).

137. Lin, S. *et al.* Redox-based reagents for chemoselective methionine bioconjugation. *Science* **355**, 597–602 (2017).

138. Matthews, M. L. *et al.* Chemoproteomic profiling and discovery of protein electrophiles in human cells. *Nat. Chem.* **9**, 234–243 (2016).

139. Parker, C. G. *et al.* Ligand and Target Discovery by Fragment-Based Screening in Human Cells. *Cell* **168**, 527-541.e29 (2017).

140. Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. *Chem. Sci.* **6**, 2650–2659 (2015).

141. Gao, B. *et al.* Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. *Nat. Chem.* **9**, 1083–1088 (2017).

142. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-Based Synthesis of Polysulfates. *Angew. Chem. Int. Ed.* **53**, 9466–9470 (2014).

143. Fahrney, D. E. & Gold, A. M. Sulfonyl Fluorides as Inhibitors of Esterases. I. Rates of Reaction with Acetylcholinesterase, α -Chymotrypsin, and Trypsin. *J. Am. Chem. Soc.* **85**, 997–1000 (1963).

144. Shannon, D. A. *et al.* Sulfonyl Fluoride Analogues as Activity-Based Probes for Serine Proteases. *ChemBioChem* **13**, 2327–2330 (2012).

145. Gu, C. *et al.* Chemical Proteomics with Sulfonyl Fluoride Probes Reveals Selective Labeling of Functional Tyrosines in Glutathione Transferases. *Chem. Biol.* **20**, 541–548 (2013).

146. Yang, B. *et al.* Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. *Proc. Natl. Acad. Sci.* **115**, 11162–11167 (2018).

147. Yang, X. *et al.* An Affinity-Based Probe for the Human Adenosine A2A Receptor. *J. Med. Chem.* **61**, 7892–7901 (2018).

148. Chen, W. *et al.* Arylfluorosulfates Inactivate Intracellular Lipid Binding Protein(s) through Chemoselective SuFEx Reaction with a Binding Site Tyr Residue. *J. Am. Chem. Soc.* **138**, 7353–7364 (2016).

149. Fadeyi, O. O. et al. Covalent Enzyme Inhibition through Fluorosulfate

Modification of a Noncatalytic Serine Residue. ACS Chem. Biol. 12, 2015–2020 (2017).

150. Mortenson, D. E. *et al.* "Inverse Drug Discovery" Strategy To Identify Proteins That Are Targeted by Latent Electrophiles As Exemplified by Aryl Fluorosulfates. *J. Am. Chem. Soc.* **140**, 200–210 (2017).

151. Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highlycustomizable Venn and Euler diagrams in R. *BMC Bioinformatics* **12**, (2011).

152. Wishart, D. S. *et al.* DrugBank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res.* **46**, D1074–D1082 (2017).

153. Hornbeck, P. V. *et al.* PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res.* **43**, D512–D520 (2014).

154. Bereman, M. S. *et al.* An Automated Pipeline to Monitor System Performance in Liquid Chromatography–Tandem Mass Spectrometry Proteomic Experiments. *J. Proteome Res.* **15**, 4763–4769 (2016).

155. Adibekian, A. *et al.* Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors. *Nat. Chem. Biol.* **7**, 469–478 (2011).

156. Ahn, K. *et al.* Discovery of a Selective Covalent Inhibitor of Lysophospholipaselike 1 (LYPLAL1) as a Tool to Evaluate the Role of this Serine Hydrolase in Metabolism. *ACS Chem. Biol.* **11**, 2529–2540 (2016).

157. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. *Nat. Rev. Mol. Cell Biol.* **19**, 327–341 (2018).

158. Yaffe, M. B. Phosphotyrosine-binding domains in signal transduction. *Nat. Rev. Mol. Cell Biol.* **3**, 177–186 (2002).

159. Shannon, D. A. *et al.* Investigating the Proteome Reactivity and Selectivity of Aryl Halides. *J. Am. Chem. Soc.* **136**, 3330–3333 (2014).

160. Humphrey, S. J. *et al.* Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. *Cell Metab.* **17**, 1009–1020 (2013).

161. Lundby, A. *et al.* Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. *Nat. Commun.* **3**, (2012).

162. Song, G. *et al.* Proteome-wide Tyrosine Phosphorylation Analysis Reveals Dysregulated Signaling Pathways in Ovarian Tumors. *Mol. Cell. Proteomics* **18**, 448–460 (2019).

163. Hitosugi, T. *et al.* Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth. *Sci. Signal.* **2**, ra73–ra73 (2009).

164. Weerapana, E., Simon, G. M. & Cravatt, B. F. Disparate proteome reactivity profiles of carbon electrophiles. *Nat. Chem. Biol.* **4**, 405–407 (2008).

165. Harris, T. K. & Turner, G. J. Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites. *IUBMB Life Int. Union Biochem. Mol. Biol. Life* **53**, 85–98 (2002).

166. Decker, C. J. & Parker, R. P-Bodies and Stress Granules: Possible Roles in the Control of Translation and mRNA Degradation. *Cold Spring Harb. Perspect. Biol.* **4**, a012286–a012286 (2012).

167. Song, L., Turkson, J., Karras, J. G., Jove, R. & Haura, E. B. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. *Oncogene* **22**, 4150–4165 (2003).

168. Hong, J. Y., Oh, I.-H. & McCrea, P. D. Phosphorylation and isoform use in p120catenin during development and tumorigenesis. *Biochim. Biophys. Acta BBA - Mol. Cell Res.* **1863**, 102–114 (2016).

169. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–15550 (2005).

170. Bai, J. *et al.* BioContainers Registry: Searching Bioinformatics and Proteomics Tools, Packages, and Containers. *J. Proteome Res.* **20**, 2056–2061 (2021).

171. Jalili, V. *et al.* The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. *Nucleic Acids Res.* **48**, W395–W402 (2020).

172. Hahm, H. S. *et al.* Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. *Nat. Chem. Biol.* **16**, 150–159 (2019).

173. Maik-Rachline, G., Hacohen-Lev-Ran, A. & Seger, R. Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. *Int. J. Mol. Sci.* **20**, 1194 (2019).

174. Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. *J. Chem. Theory Comput.* **7**, 2284–2295 (2011).

175. Bailey, T. L. *et al.* MEME Suite: tools for motif discovery and searching. *Nucleic Acids Res.* **37**, W202–W208 (2009).

176. Quirós, M., Gražulis, S., Girdzijauskaitė, S., Merkys, A. & Vaitkus, A. Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. *J. Cheminformatics* **10**, 23 (2018).

177. Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J. Comput. Chem.* **31**, 455–461 (2010).

 Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. (2015).
 Campbell, S. T. *et al.* Chemoproteomic Discovery of a Ritanserin-Targeted Kinase Network Mediating Apoptotic Cell Death of Lung Tumor Cells. *Mol. Pharmacol.* 94, 1246–1255 (2018).

180. Sigrist, C. J. A. *et al.* ProRule: a new database containing functional and structural information on PROSITE profiles. *Bioinformatics* **21**, 4060–4066 (2005).

181. Raje, S. & Thorpe, C. Inter-Domain Redox Communication in Flavoenzymes of the Quiescin/Sulfhydryl Oxidase Family: Role of a Thioredoxin Domain in Disulfide Bond Formation,. *Biochemistry* **42**, 4560–4568 (2003).

182. Khoshnevis, S. *et al.* Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. *Nucleic Acids Res.* **42**, 4123–4139 (2014).

183. Wolkowicz, U. M. & Cook, A. G. NF45 dimerizes with NF90, Zfr and SPNR via a conserved domain that has a nucleotidyltransferase fold. *Nucleic Acids Res.* **40**, 9356–9368 (2012).

184. Charton, M. Electrical Effect Substituent Constants for Correlation Analysis. *Prog. Phys. Org. Chem.* 119–251 (2007) doi:10.1002/9780470171929.ch3.

185. Backus, K. M. *et al.* Proteome-wide covalent ligand discovery in native biological systems. *Nature* **534**, 570–574 (2016).

186. Fox, P. L. & Jia, J. Identification of EPRS domains required for formation of the GAIT mRNP: Key roles of WHEP-TRS repeats. *FASEB J.* 20, A1372–A1372 (2006).
187. Wu, K. C. *et al.* Coiled-Coil Trigger Motifs in the 1B and 2B Rod Domain Segments Are Required for the Stability of Keratin Intermediate Filaments. *Mol. Biol. Cell* 11, 3539–3558 (2000).

188. Korenbaum, E. & Rivero, F. Calponin homology domains at a glance. *J. Cell Sci.* **115**, 3543–3545 (2002).

189. Brulet, J. W., Borne, A. L., Yuan, K., Libby, A. H. & Hsu, K.-L. Liganding Functional Tyrosine Sites on Proteins Using Sulfur–Triazole Exchange Chemistry. *J. Am. Chem. Soc.* **142**, 8270–8280 (2020).

190. Azevedo, C. & Saiardi, A. Why always lysine? The ongoing tale of one of the most modified amino acids. *Adv. Biol. Regul.* **60**, 144–150 (2016).

191. Callebaut, I. An EVH1/WH1 domain as a key actor in TGF β signalling. *FEBS Lett.* **519**, 178–180 (2002).

192. Huang, T. *et al.* Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. *Chem. Sci.* **12**, 3295–3307 (2021).

193. Brewer, F. K., Follit, C. A., Vogel, P. D. & Wise, J. G. In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains. *Mol. Pharmacol.* **86**, 716–726 (2014).

194. al-Shawi, M. K., Urbatsch, I. L. & Senior, A. E. Covalent inhibitors of P-glycoprotein ATPase activity. *J. Biol. Chem.* **269**, 8986–8992 (1994).