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ABSTRACT 

 

Complex and dynamic environments including military operations, healthcare, aviation, 

and driving require operators to seamlessly manage continuous shifts between levels of mental 

workload, which is known as a workload transition. Even though they are expected, there has 

been limited work examining workload transitions. Currently there is no single theoretical 

explanation able to unite the findings of workload transition research. For example, there has 

been limited work examining the effect of transition rate, i.e., the speed at which workload 

transitions, multiple transitions, multitasking environments, and with context-relevant 

populations. This limits the ability to provide general design guidance for environments 

experiencing workload transitions. 

One promising way to address the current research gaps is to study visual attention 

allocation patterns of an individual experiencing a workload transition in real-time. Features 

inherent to dynamic domains are not often included in workload transition research, which 

hinders its generalizability. Eye tracking is an increasingly accessible and reliable method to 

capture the visual attention allocation patterns of a person, which provides the ability to quantify 

how workload transitions impact the person’s mental resources and performance over time.  

 This dissertation attempts to bridge some of the gaps in the workload transition literature 

by examining the effect different transition rates have on multitasking performance, performance 

trends over time, and visual attention allocation patterns within an Unmanned Aerial Vehicle 

(UAV) command and control environment. The findings add to the workload transition theory 

and provide design guidance.  
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CHAPTER 1 

 

Introduction 

 

Dynamic domains like the military (Huey & Wickens, 1993), driving (Morgan & 

Hancock, 2011), air traffic control (Edwards et al., 2012), and emergency response (Parush & 

Rustanjaja, 2013) require their operators to seamlessly transition between varying levels of task 

demands (i.e., workload). Previous research primarily focuses on understanding the effects of 

low or high workload (Cain, 2007; Grier et al., 2008; Wickens, 2008). However, most dynamic 

domains do not remain at one constant level of workload, rather they tend to shift between low 

and high workload, and this can have serious consequences (Williams, 2006). For example, 

when the Apollo 12 spacecraft was struck by lightning, “all the [alarm] lights came on” the 

telemetry stream, drastically increasing workload in a short amount of time (Murray & Cox, 

1989, p. 374). Although research on workload has received a great deal of attention (see review 

in Hancock & Matthews, 2019), understanding the consequences of when it changes—i.e., 

workload transitions—has received less to date (Cox-Fuenzalida, 2007; Huey & Wickens, 1993; 

Prytz & Scerbo, 2015).  

Across the workload transition literature, the observed performance of the operator, i.e., 

the speed and accuracy with which he/she attends to tasks, is not consistent. Performance has 

been found to be better, worse, or no different than constant workload, depending on the study 

(detailed review in Bowers, 2013). As for how it trends over time, performance can follow one 

of these same outcomes or even switch between bettering and worsening (Gluckman et al., 

1993). Some research has focused on explaining why performance may be inconsistent (e.g., 
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Ungar et al., 2005), but no single, unifying theory has been developed. Rather, several theoretical 

explanations exist (Cox-Fuenzalida, 2007; Prytz & Scerbo, 2015; Jansen et al., 2016), but there 

is uncertainty in their applicability. Even amongst the official calls for research (Huey & 

Wickens, 1993) and waves of renewed interest (e.g., Cox-Fuenzalida, 2007, Bowers et al., 2014), 

research rarely discusses how the results add to the theory of workload transition performance, 

which limits the design guidance on how to properly account for changes in workload.  

One promising way to address the present research gaps of workload transitions is to use 

real-time, physiological data. For example, eye tracking technology can track a person’s real-

time point of gaze when interacting with a display (Holmqvist et al., 2011; Poole & Ball, 2006). 

Eye tracking can be used to capture visual attention allocation patterns, i.e., the spatial and 

temporal properties of overt, selective attention in the visual channel (Moon et al., 2019). 

Previous research has consistently found these patterns to be a psychophysiological measure, i.e., 

a biological response due to the mental activity (Gaillard & Kramer, 2009). Research has 

seldomly examined how an individual’s visual attention allocation patterns influence 

performance when workload transitions, even though the visual channel is inundated with 

information (Woods et al., 2002). The goal of this research is to see whether eye tracking can 

shed light on operator’s performance during workload transitions in complex, dynamic, realistic 

work environments. Specifically, it thoroughly explores multitasking performance trends and 

scan-based eye tracking metrics during different workload transition rates with aggregate and 

longitudinal analysis methods. The work of this dissertation is among the first to examine 

whether eye tracking can predict performance when workload transitions over time.  

This research occurs in the domain of military unmanned aerial vehicle (UAV) command 

and control. The United States Department of Defense has expressed the desire to enhance the 
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human-machine collaboration between operators and UAVs, particularly via the design of the 

visual display (Department of Defense, 2018, p. 29). Currently, it takes several operators to 

control a single UAV, but the Department of Defense wants one operator to control several 

UAVs in the future (Cummings et al., 2007; Department of Defense, 2018, p. 20; Goodrich & 

Cummings, 2015; Sibley et al., 2015). The design of the display is essential to achieving this 

mission given most, if not all, the pertinent information is visually presented, which differs from 

manned flight environments (McCarley & Wickens, 2004; Hobbs & Shivley, 2014). The design 

of the display is also essential for successful human-machine interaction, which is prevalent in 

UAV command and control (Baker & Keebler, 2017; Cummings et al., 2019). The Department 

of Defense also wants to diversify the UAV’s utility by deploying it in different theatres 

including combat, surveillance, and maintenance (Freedberg, 2021). The combination of the 

aforementioned will likely increase the severity and likelihood of workload transitions, which 

have led to UAV mishaps in the past (Hobbs & Shivley, 2014; Sibley et al., 2015; Williams, 

2006). Given the current system requires operators to monitor several visual displays 

simultaneously, studying visual attention allocation patterns via eye tracking is a promising 

means to inform the design of future displays (Abich et al., 2017, p. 804; Giese et al., 2013). Eye 

tracking may also be a tool implemented in UAV command and control, as a part of the greater 

investment in engineering solutions for current human-machine interaction challenges (Baker & 

Keebler, 2017; Department of Defense, 2017, p. 20; Giese et al., 2013). This dissertation focuses 

on aspects of workload transitions relevant to UAV command and control: 

• The impact transition rate, i.e., the speed at which workload changes from one load to 

another has on multitasking performance and performance over time. 

• The ability of eye tracking data to explain and predict the observed performance 
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trends of workload transitions. 

• The empirical development of the current theoretical explanations as a means to 

inform future display design for dynamic environments. 

 

Workload and workload transitions 

 

Unlike workload transitions, there are several definitions in the literature for workload. 

(Cain, 2007; Van Acker, Parmentier, Vlerick, & Saldien, 2018; Young, Brookhuis, Wickens, & 

Hancock, 2015). They all categorize workload as a multi-dimensional construct that is dependent 

on performance, subjective, and/or physiological responses and “reflect the level of allocation of 

the specific pool of attentional resources accessed in response to the incipient demands of the 

task” (Hancock & Matthews, 2019). Research manipulates workload by task complexity, 

frequency, quantity, and/or allowed completion time. For the purposes of this research, we define 

workload as the gap between the mental demands placed on the user and his/her attentional 

resources (Wickens, 2008). We manipulate workload via task quantity due to the long-term goals 

of UAV command and control (Arrabito et al., 2010; Department of Defense, 2017). Both ends 

of the workload spectrum have performance challenges: periods of very low workload, i.e., 

underload, may result in inefficient usage of mental resources (Young & Stanton, 2002) whereas 

periods of very high workload, i.e., overload, may result in fatigue, frustration, and/or narrowing 

of attention (Grier et al., 2003; Helton & Russell, 2012).  

In contrast, there is no consensus on the associated performance effects for workload 

transitions, especially when workload transitions from low to high. Evaluating performance 

during workload transitions often requires separating the workload transition by its periods of 
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low and high workload and then comparing these periods to experimental conditions of constant 

workload. Alternatively, a subset of studies compares performance before and after a workload 

transition. These studies are investigating workload history effects, i.e., hysteresis, which 

examines how a period of previous workload impacts subsequent performance at a different 

workload level (Goldberg & Stewart, 1981; Farrell, 1999; Matthews, 1986; Morgan & Hancock, 

2011). In general, the findings have shown that workload transitions can result in: 

• Performance decrements (Bowers et al., 2014; Boyer et al., 2015; Cox-Fuenzalida, 

2007; Cox-Fuenzalida & Angie, 2005; Cox-Fuenzalida, Angie, et al., 2006; Cox-

Fuenzalida, Beeler, et al., 2006; Cumming & Croft, 1973; Goldberg & Stewart, 1980; 

Hauck et al., 2008; Matthews & Desmond, 2002; Prytz & Scerbo, 2015; Ungar et al., 

2005), 

• Performance improvements (Cox-Fuenzalida, 2007; Cox-Fuenzalida, Swickert, & 

Hittner, 2004; Cumming & Croft, 1973; Edwards et al., 2017; Goldberg & Stewart, 

1980; Hauck et al., 2008; Kim et al., 2019; Krulewitz et al., 1975; Matthews, 1986; 

Matthews & Desmond, 2002; Prytz & Scerbo, 2015; Ungar et al., 2005),  

• Performance remaining unchanged (Bowers et al., 2014; Boyer et al., 2015; Helton 

et al., 2008; Fischer et al., 1995; Matthews, 1986; McKendrick & Harwood, 2019; 

Prytz & Scerbo, 2015; Voorheis et al., 2005), and  

• Performance fluctuations, i.e., switching from improving to worsening and vice 

versa (Bowers et al., 2014; Gluckman et al., 1993; Morgan & Hancock, 2011; 

Moroney et al., 1995).  
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Workload transitions are imposed in experiments in several ways. It can consist of 

changing the event rate of a single task (e.g., Cox-Fuenzalida, 2007), transitioning to and from 

multiple tasks (e.g., Matthews & Desmond, 2002), or the appearance of an unexpected event 

(e.g., Boyer et al., 2015). Workload transitions are also studied in very different environments, 

which include well-validated psychometric tasks (e.g., Bakan vigilance task; Cox-Fuenzalida, 

2007) and real-life testbeds (driving simulation; Morgan & Hancock, 201l). However, diverging 

performance trends exist even within the same experimental setups, suggesting the paradigm is 

not the primary cause of the divergent performance findings across the literature. For example, 

performance in a flight simulation appeared highly dependent on the previous period’s workload 

level (Hancock et al., 1995), but studies using the same experimental paradigm failed to replicate 

this dependency as they found null effects (Fischer et al., 1995; Voorheis et al., 2005). Krulewitz 

et al. (1975) and Gluckman et al. (1993) also relied on the same workload transition paradigm, 

but their findings conflicted, which resulted in two different theoretical explanations – a common 

theme in workload transition research.  

To explain the disparate results in single task environments, multiple theoretical 

explanations have been proposed. These include: expectancy effects (Cumming & Croft, 1973), 

contrast effects (Krulewitz et al., 1975), short-term memory overload (Goldberg & Stewart, 

1980), strategic persistence (Matthews, 1986), motivational intensity theory (Prytz & Scerbo, 

2015), and the disruption of cognitive process integration (McKendrick & Harwood, 2019). 

However, no explanation can apply to all findings (see reviews in Cox-Fuenzalida, 2007 and 

Gluckman et al., 1993). Studies in multitasking environments mostly rely on two explanations 

that are rooted in adaptation-based models of mental resources (Hancock & Warm, 1989; 

Hockey et al., 1986): 
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1. Resource depletion. After a workload transition, there will be a shortage of mental 

resources and performance will suffer. Resources will eventually recuperate once 

workload returns to low levels, due to the compensatory regeneration component, and 

performance will eventually rebound (Gluckman et al., 1993). In other words, there 

will be a decrement in performance immediately after a shift, but eventually resources 

will recuperate, and performance will improve.  

2. Effort regulation. Workload transition performance is dependent on the person 

accurately appraising, recruiting, and deploying the necessary amount of mental 

resources for the present workload. Performance is stable as long as their appraisal is 

correct and workload does not reach levels of overload (Hockey, 1997).  

 

Previous studies support either resource depletion (e.g., Cox-Fuenzalida & Angie, 2005; 

Gluckman et al., 1993; Moroney et al., 1995), effort regulation (e.g., Cox-Fuenzalida, 2007; 

Jansen et al., 2016; Matthews & Desmond, 2002), or both depending on operator motivation 

(Matthews & Desmond, 2002), primary task difficulty (Ungar et al., 2005), or time in experiment 

(Cox-Fuenzalida, 2007). Clarifying the applicability of theoretical explanations is challenging, 

which may be why the focus of more recent workload transition research is applied and seldom 

comments on how the results build upon the existing theory. Bridging the gap between the 

findings of applied work and their relation to theory not only builds the knowledgebase, but also 

informs how to design operational environments to properly account for workload transitions. 
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Current gaps in workload transition research 

 

Currently, applied workload transition research focuses on how features of the 

environment, transition, and/or individual impact performance. Although diverse, there has been 

some success in unifying these efforts with human performance models, but their validity and 

applicability still need extensive research (Sebok et al., 2015). Across these topics, research 

usually relies on analysis methods based in pairwise comparisons (exceptions: Mracek et al., 

2014; McKendrick & Harwood, 2019), which may be contributing to some of the divergence 

observed in performance trends. The present research addresses these aforementioned factors. 

 

Workload transition research needs to be conducted in applied environments  

 

Studies focused on the characteristics of the environment include examining the effect of 

alerting participants of an imminent workload transition (Farrell et al., 1999; Helton et al., 2008), 

modulating primary task difficulty in a dual to single task transition (Matthews & Desmond, 

2002; Ungar et al., 2005), providing social support (Hauck et al., 2008), transitioning workload 

by simulating a total system failure (Morgan & Hancock, 2011), and instructing participants on 

how to prioritize tasks (Jansen et al., 2016). These studies found performance trends were not 

affected by external assistance and more dependent on the features of the task itself (Morgan & 

Hancock, 2011). More recently, studies have examined workload transitions in multitasking 

environments and the results suggest performance trends can widely vary (Bowers et al., 2013; 

Cox-Fuenzalida & Angie, 2005; Edwards et al., 2017; Jansen et al., 2016; Kim et al., 2019). 

Previous studies have shown that high workload performance improves over time and/or 
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performance does not change for any task in the experiment (Bowers et al, 2014; Edwards et al., 

2017). Research needs to consider how the completion of multiple tasks may depend on one 

another or the fluctuating priorities of the environment. 

 

Workload transition research needs to better understand the specifics of the workload 

transition 

 

Research finds the direction, rate, frequency, and magnitude of a workload transition 

influences performance effects differently (Cox-Fuenzalida, Beeler, et al., 2006; Matthews, 

1986; Morgan & Hancock, 2011; Moroney et al., 1995; Prytz & Scerbo, 2015). Two features of 

the workload transition that are rarely examined include: 

1. Transition rate, i.e., the speed at which workload shifts from one load to the next, 

and 

2. Transition frequency, i.e., the number of transitions that an individual experiences. 

To date, only one study has examined transition rate, as Moroney et al. (1995) compared gradual 

and abrupt shifts from low to high workload. They found that gradual shifts led to a lower 

accuracy rates (Moroney et al., 1995). There has also been limited work examining more than 

two transitions in an experimental scenario (exceptions: Morgan & Hancock, 2011) as most 

studies transition workload in one (or two) of the paradigms in Figure 1.1. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1.1 Graphical representation of the paradigms often used in workload transition research: 

(a) an example of a transition from low to high workload, (b) an example of a transition from 

high to low workload, (c) an example of a transition from low to high back to low workload, and 

(d) an example of a transition from high to low back to high workload 

 

There are both theoretical and practical motivations to examine the role of transition rate 

with multiple transitions. First, workload and its transitions are expected to be unpredictable in 

dynamic domains, so workload transitioning in the same way each time and occurring only once 

or twice is unlikely. For example, Williams (2006) finds handoffs between UAV operators can 

increase workload, which is identified as the primary factor for most mishaps, but the way the 

handoff occurs can vary.  

Second, the previous literature has found both theoretical and practical value in studying 

features of the workload transition, whether it leads to new theoretical explanations (Prytz & 

Scerbo, 2015) or informs training guidance (Cox-Fuenzalida, Beeler, et al., 2006). For instance, 
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it may be that different transition rates lead to different types of performance trends with regards 

to speed versus accuracy, low and high workload, and trends over time, as this is observed when 

manipulating other aspects of the workload transition (e.g., Matthews, 1986).  

 

Workload transition research needs to better account for individual differences 

 

Lastly, the final subset of applied workload transition research focuses on the individual, 

like the effect of personality (Cox-Fuenzalida, Angie, et al., 2006; Cox-Fuenzalida et al., 2004), 

working memory capacity (Harwood & McKendrick, 2019), and video game experience (Devlin 

& Riggs, 2018). In fact, Mracek et al. (2014) successfully predicted performance over time based 

on the person’s perception of how demanding the workload transition was in real-time. Some 

experimental designs customize the workload transition to an individual’s assessed performance 

capabilities (Bowers et al., 2014; McKendrick & Harwood, 2019), but unexplainable 

inconsistencies in performance still exist when this method is used. However, the majority of 

workload transition research still does not account for the individual. This is a practical problem 

because context-relevant populations, e.g., non-university student populations, are rarely 

recruited for workload transition research, even though it may matter when studying its 

performance effects. Edwards et al. (2017) studied workload transition performance of air traffic 

controllers and performance surprisingly improved, but there was also increased performance 

variability over time. Unfortunately, their sample size only included eight participants, which 

makes generalizing their results challenging. Understanding individual differences also has 

operational value as it can inform the selection and training procedures for UAV command and 

control (Foroughi et al., 2019). 
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Workload transition research needs to consider alternative analysis techniques  

 

The divergence in workload transition performance may be due to the method historically 

used to analyze the data. Most research conducts pairwise comparisons, and although this 

analysis approach is sufficient to determine workload history effects, it may not be adequate in 

characterizing how performance depends on time and/or the individual. For example, Jansen et 

al. (2016) conjectured that they may not have detected a change in performance over time 

because performance may have been changing within each workload period, citing the need for 

more granular analysis methods. Given performance was averaged by workload period, which is 

standard in the workload transition literature, there would be no way to detect such a trend. 

Furthermore, the current analysis methods are unable to measure if the observed performance 

trends are happening for all individuals in the experiment, which could be an alternative 

explanation to the findings of Jansen et al. (2016) and possibly other studies where discrepancies 

are observed. Making this distinction is possible with longitudinal data analysis methods, e.g., 

growth curve modeling, which estimates change over time based on how each individual changes 

over time (Hoffman, 2015).  

In summary, there are still several unknowns about workload transitions, which prevent 

the development of both their theory and design solutions. This dissertation examines how 

multiple instances of various transition rates affects multitasking performance, specifically in 

low and high workload, as well as over time. Studying these underexplored features in a realistic 

setting with novel analyses may fill the current research gaps, while avoiding pitfalls of previous 

research. At the same time, including measures of the operator that are informative on how the 
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individual manages tasks as workload transitions, may also assist in addressing the current 

research gaps. For example, including eye tracking data in tandem with, and even as a predictor 

of, performance aims to provide a richer understanding on the effects of workload transitions. 

 

Motivation to include eye tracking in the present work 

 

Psychophysiological measures have consistently shown the ability to improve the 

understanding of theoretical explanations, environmental features, and individual differences 

(see review in Charlton & O’Brien, 2008) – i.e., the present research gaps of workload 

transitions – but incorporating psychophysiological measures in studies of workload transitions 

remains limited. A small subset of investigations include cerebral measures and while all reliably 

track a psychophysiological response during a workload transition, none of the investigations 

solidly contribute to current theory or design (Bowers et al., 2014; Boyer et al., 2015; Cerruti et 

al., 2010; Kim et al., 2019; McKendrick & Harwood, 2019). For example, 

electroencephalograms (EEG) show that the electrical activity in cognitive-related areas of the 

brain increase as workload increases (such as in Figure 1.1a or 1.1c), suggesting participants 

actively rely on certain mental resources in the face of workload transitions (Bowers et al., 2014; 

Kim et al., 2019). However, there were some noted limitations, as EEG is rather invasive, can 

lead to inconsistent and convoluted interpretations (especially when the performance trends are 

considered in tandem), and provided no direct guidance on how to best design for the workload 

transition examined (Bowers et al., 2014; Kim et al., 2019).  Hemodynamic measures of the 

brain have been explored, but it appears they struggle tracking the imposed workload transition 

(Boyer et al., 2015) even when it is designed specifically for the individual (McKendrick & 
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Harwood, 2019). Consequently, they added no additional information to the observed 

performance trends, other than potentially suggesting the activation of the mental resources is not 

critical to workload transition performance. 

 

Introduction to eye tracking 

 

Eye tracking data may be able to be more specific about the effects of workload 

transitions as it has been found to provide “objective and quantitative evidence of the user’s 

visual, overt attentional processes, based on the user’s scan patterns” (Duchowski, 2017, p. 247). 

This adds another dimension to traditional speed/performance analysis often relied on in human 

factors research (Duchowski, 2002). Including eye tracking data has been able to directly inform 

the design of visual displays, given the metrics capture the features of the display most relevant 

to the attentional process. For example, instead of indicating “cognitive behavior and decision 

making” were essential to completing the task, eye tracking can specify if visually reading, 

searching, and/or extracting information was essential and the elements of the display that were 

related to each action (Duchowski, 2002; Kovesdi et al., 2018; Moacdieh & Sarter, 2017).  

Various human factors research topics have used eye tracking data for theory 

development, display design, and real-time performance monitoring. Some examples include: 

• Information processing (e.g., Duchowski, 2017; Shiferaw et al., 2019), 

• Cognitive load (e.g., Coral, 2016; Krejtz et al., 2018; Wilson & Russell, 2007), 

•  Human-automation trust (e.g., Hergeth et al., 2016; Sarter et al., 2007; Thomas & 

Wickens, 2004; Victor et al., 2018), 

• Individual differences (e.g., Hayes & Henderson, 2017; Jarodzka et al., 2010; Raptis 
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et al., 2017; Shic et al., 2008).   

With recent innovations, eye tracking is less invasive, more versatile, more mobile, and more 

cost-effective than ever before and compared to other psychophysiological measures (e.g., EEG; 

Dorneich et al., 2008), prompting it for wide-scale used (Krafka et al., 2016; Sibley et al., 2017). 

Eye tracking is a hopeful tool when pursuing the outstanding research questions in the workload 

transition literature while also having the potential to be deployed for real-time operational use.  

To study scan patterns, eye tracking technology can rely on the corneal-reflection 

technique (Singh & Sigh, 2012), which shines an infrared light in to a person’s eye to create and 

track a single reflection point on the cornea (Poole & Ball, 2006; see Figure 1.2 for a schematic).  
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(a) 

 

(b) 

Figure 1.2. Experimental setup with the corneal reflection technique: (a) participant seated so 

eye movements are tracked on the screen (c.f. Gazepoint, 2019) and (b) schematic of the corneal 

reflection technique (c.f. Poole & Ball, 2006) 
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The resulting data consists of timestamped Cartesional coordinates, which are based on the eye 

tracker's sampling rate and the display resolution. These coordinates are then used to distinguish 

fixations and saccades. Fixations are when the eye is relatively still, allowing for information 

processing to occur and characterize about 90% of viewing behavior. Saccades are the ballistic 

movements between fixations (Duchowski, 2007; Poole & Ball, 2006). Fixations and saccades 

are the basis of most scan-based metrics, i.e. measures capturing the features of visual attention 

allocation (Poole & Ball, 2006). Examples of metrics include the amount of time a given fixation 

lasts (i.e., fixation duration) or the size of a saccade (i.e., saccade amplitude; Salvucci & 

Goldberg, 2000). Sometimes, scan-based metrics are calculated and compared across predefined 

locations on the display, which are termed areas of interest (AOIs). Figure 1.3 details how AOIs 

may be determined on a display, depending on the experimental goals. 
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(a) 

 

(b) 

Figure 1.3. Example of two different AOI discretization methods: (a) context-independent AOIs, 

i.e., their boundaries were not dependent on features of the image and (b) context-dependent 

AOIs, i.e., their boundaries depended on semantic features of display (e.g., the theatre, street, and 

skyline, respectively). It also shows how fixations and saccades may occur across the display, 

with the numbers indicating the sequential order of each fixation. 
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Traditionally, eye tracking analyses consist of calculating a set of metrics for the entirety 

of the experiment and making comparisons based on their average values (Holmqvist et al., 

2011, p. 299-468). Recently, there has been interest in creating more advanced scan-based 

metrics to capture a “higher level descriptor of visual behavior” (Duchowski, 2017, p. 169). For 

example, discriminating between the individual’s reliance on focal (i.e., focused, close together) 

versus ambient (i.e., global, dispersed) visual attention when completing a visual search task 

informs the familiarity the individual has with the environment (Irwin & Zelinksy, 2003). Krejtz 

et al. (2016) created a new scan-based metric based on the normalized size and order of each 

fixation and saccade as a means to discern focal from ambient visual attention over time. It has 

since been applied successfully to several different domains and even informs how displays can 

assist the individual (Krejtz et al., 2017; Lounis et al., 2020). Another set of promising eye 

tracking metrics are based on the concept of information entropy, as they measure the 

randomness of visual attention transitions across AOIs and quantitatively explain and compare 

scan patterns – a constant challenge in the literature (Duchowski, 2017, p. 172; Ellis & Stark, 

1986; Shannon, 1948). These metrics have informed concepts including: situation awareness 

(van de Merwe et al., 2012), decision making (van Maarseveen et al., 2018), task performance 

(Radun et al., 2017; Shiferaw et al., 2018), task complexity (Di Stasi et al., 2016), and individual 

differences (Raptis et al., 2017; Shic et al., 2008). This can be particularly informative on task 

strategy when AOIs are context-dependent (Figure 1.3b).   

To the author’s knowledge, eye tracking data have never been included in the study of 

workload transitions. Of immediate interest is to see whether scan-based metrics can help bridge 

the present research gaps, specifically when it comes to understanding how individuals respond 
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to workload transitions in a multitasking environment (Edwards et al., 2017). Although other 

measures predict workload transition performance (e.g., perception of the workload transition; 

Mracek et al., 2014) and non-scan-based metrics successfully measure mental workload (e.g., 

pupillometry, blink rate; see reviews in Buettner et al., 2018 and Duchowski et al., 2020), these 

measures do not offer direct information on how workload transitions are being managed and 

how the visual display should be designed accordingly. Scan-based metrics have been previously 

successful in predicting some human factors concepts in applied environments, like situation 

awareness (Ebeid & Gwizdka, 2018; Ratwani et al., 2010) and working memory capacity (Hayes 

& Henderson, 2017). If scan-based metrics can predict performance during workload transitions, 

this would directly and quantifiably address the current research gaps. More generally, it would 

support the notion that eye tracking may be able to monitor and assist the operator in real-time 

amongst environment changes, like in the form of an adaptive display (Rothrock et al., 2002; 

Feigh et al., 2012). Longitudinal analysis methods like growth curve modeling can explore the 

predictive capability of scan-based metrics directly (Hoffman, 2015).   

 

Motivation and research questions 

 

In order to better detail and design for the effects of workload transitions, it is essential to 

simultaneously study and connect the mental resources the operator relies on to perform multiple 

tasks as workload transitions within an applied environment. Specifically, this dissertation 

explores the role transition rate has on: (a) multitasking performance, (b) performance trends 

over time, (c) visual attention allocation patterns, and (d) the relation between the 

aforementioned, in a realistic setting. Although these aspects are prominent in UAV command 
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and control, very little is known on how they influence the operator’s ability to perform in the 

face of workload transitions. Additionally, addressing each aspect with both traditional and novel 

measures and analyses aims to innovate both theory and applications of workload transitions. 

The research questions are as follows: 

1. What are the multitasking performance trends of workload transitions and how do 

they compare to constant workload? 

2. What do scan-based eye tracking metrics inform about workload transition 

performance? 

3. How does workload transition rate influence performance trends over time? 

4. To what extent are scan-based eye tracking metrics predictive of the performance 

trends observed over time for workload transitions?  

Chapter 2 provides an initial investigation of the multitasking performance when 

workload transitions at two different rates in a UAV command and control testbed and how it 

fares to constant workload performance. Chapter 3 expands the understanding of the 

performance trends observed in Chapter 2 by comparing visual attention allocation patterns 

across the two transition rates and constant workload by analyzing a suite of scan-based metrics. 

Chapter 4 is an expansion on the workload transition rate investigation as it studies three 

different transition rates with a United States Naval aviator population. To accurately detect and 

characterize how performance trends over time and how it varies across individuals for each 

transition rate, Chapter 4 analyzes performance with the traditional analysis method, i.e., 

pairwise comparisons over time and growth curve modeling. Finally, Chapter 5 synthesizes the 

present work by investigating the predictive ability the scan-based metrics from Chapter 3 have 

in predicting the performance trends observed in Chapter 4. The goal is to add to the theoretical 
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explanations and provide design guidance surrounding workload transitions for the benefit of 

multitasking environments. 
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CHAPTER 2 

 

What are the multitasking performance trends of workload transitions and 

how do they compare to constant workload? 

 

Introduction 

 

As Chapter 1 details, complex and dynamic environments require operators to transition 

seamlessly between varying levels of workload. For example, operators overseeing the command 

and control of unmanned aerial vehicles (UAVs) are subject to varying workload levels as they 

manage various responsibilities, task demands, and automation levels (Sibley et al., 2015). To 

date, most research has focused on the effects of low or high workload; however, transitions 

from low to high workload are not studied nearly as often, even though they are more realistic to 

what operators experience while on the job, and are increasingly probable due to the increased 

reliance on automation (Baker & Keebler, 2017; Hooey et al., 2017; Huey & Wickens, 1993). In 

this chapter, we investigated the effects of medium and fast transitions from low to high 

workload in a dynamic, multitasking environment, to better understand the effect these 

transitions have on performance in complex and dynamic domains. We also compared 

performance of the two transition rates over time, to understand the presence and severity of 

workload history effects.  

As discussed in Chapter 1, there is currently no consensus on the associated performance 

effects for workload transitions. Subsequently, theoretical explanations of workload history are 

not widely agreed upon (Cox-Fuenzalida, 2007). Given that the impact of workload transitions 
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may be dynamic, further examination of transition effects on performance is needed (Jansen et 

al., 2016). For example, performance has been found to be dependent on the direction of the 

transition (i.e., transitions from low to high versus high to low workload; Cumming & Croft, 

1973; Cox-Fuenzalida, Beeler, et al., 2006), the magnitude of the transition (Prytz & Scerbo, 

2015), and measures of performance (errors of commission versus omission; Cox-Fuenzalida, 

2007). Less is known on how the rate of a workload transition affects multitasking performance. 

To our knowledge, only one study to date has compared gradual and sudden shifts from low to 

high workload, and found that gradual shifts led to a lower accuracy rates (Moroney et al., 1995). 

More work is needed to further understand these performance trends, especially for domains 

requiring multitasking.  

Several theoretical explanations have been proposed for performance where workload 

transitions in single-task environments (see review in Cox-Fuenzalida, 2007; McKendrick & 

Harwood, 2019; Prytz & Scerbo, 2015). Two explanations have been primarily used to explain 

performance when transitioning between a dual- and single-task paradigm: resource depletion 

and effort regulation (see Chapter 1 for definitions). Previous studies support either resource 

depletion (Cox-Fuenzalida & Angie, 2005; Gluckman et al., 1993; Moroney et al., 1995), effort 

regulation (Cox-Fuenzalida, 2007; Jansen et al., 2016; Matthews & Desmond, 2002), or both 

(Matthews & Desmond, 2002; Ungar et al., 2005). Across these studies, performance during 

workload transitions is either compared to constant workload (e.g., Bowers et al., 2014; Cox-

Fuenzalida, 2007; Moroney et al., 1995; Ungar et al., 2005) or over time (e.g., Jansen et al., 

2016; Kim et al., 2019; Morgan & Hancock, 2011). Rarely are both analyses conducted, which 

may be contributing to the divergence across the literature. For example, performance trends 

may not be the same for both low and high workload as some previous work shows their 
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performance trends match (Cox-Fuenzalida, 2007; Cox-Fuenzalida, Angie, et al., 2006; Cox-

Fuenzalida & Angie, 2005; Helton et al., 2008; Moroney et al., 1995), but others have found it 

differs (e.g., decrements for low workload, but not high workload; Cox-Fuenzalida, 2007; 

Matthews, 1986; Prytz & Scerbo, 2015). Also, performance differences may not be immediate as 

an operator may be able to manage a workload transition, but it may have ramifications on 

performance at a later point in time (Edwards et al., 2017; Huey & Wickens, 1993). 

This chapter aims to address some of the knowledge gaps in workload transition research, 

particularly as it relates to complex environments: 

1. Transition rate: The speed at which workload transitions has been underexplored. 

Most research has focused on immediate shifts between low and high workload, 

whereas there has been less reported on shifts that are not instant (exception: 

Matthews, 1986; Moroney et al., 1995). When it has been explored, performance has 

only been compared to constant workload and not to other transitions rates nor over 

time. 

2. Theoretical explanations: There is also a need to understand the applicability and 

validity of the resource depletion and effort regulation explanations in multitasking 

domains that are not just transitioning between dual- and single-task paradigms (Cox-

Fuenzalida, 2007). Existing evidence supports both explanations (Ungar et al., 2005), 

but most investigations have been limited to studying a single dual- to single-task 

transition. Previous work has explored the applicability of these explanations in other 

types of multitasking environments (Bowers et al., 2014; Jansen et al., 2016), but 

none test their applicability directly. 

3. Realistic environment features: Historically, factors pertinent to complex and 
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dynamic work environments are underexamined in the workload transition literature 

(Cox-Fuenzalida & Angie, 2005; Huey & Wickens, 1993). This includes better 

understanding multitasking performance and the impact of multiple transitions. 

a. Previous researchers have suggested that findings from single-task studies 

may not hold true in multitasking environments (Gluckman et al., 1993), so 

these environments warrant their own investigation. When multitasking has 

been included in workload transition studies, it has been in either highly-

controlled laboratory settings (Cox-Fuenzalida & Angie, 2005), realistic 

testbeds (Jansen et al., 2016; Morgan & Hancock, 2011), or thoroughly 

validated multitasking environments (e.g., Air Force Multi-Attribute Task 

Battery; Bowers et al., 2014). Of specific interest is to further explore primary 

and secondary task performance effects during workload transitions, (Cox-

Fuenzalida & Angie, 2005; Jansen et al., 2016; Morgan & Hancock, 2011), 

especially when they are realistically related. For example, operators in these 

environments are expected to continuously manage various interdependent 

tasks and responsibilities that fluctuate in their demand for operator attention. 

Depending on the situation, tasks that may be secondary to the mission may 

be critical to the overall viability of the UAV, so capturing this nuance in task 

prioritization is important (Clare et al., 2010). Understanding the effects of 

secondary tasks is important to not only expand the current workload 

transition literature, but also as operational environments become increasingly 

complex and greater threaten operator and system safety (Cummings, 2014; 

Matthews, et al., 1996).  
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b. Also, there is a need to understand how multiple workload transitions impact 

performance trends. The majority of existing research has employed one or 

two workload transitions in a single-task environment (an exception is the 

work by Morgan & Hancock, 2011); however, findings from one or two 

workload transitions may not be representative of the multiple transitions 

operators may experience while on the job.  

The goal of Chapter 2 is to address these research gaps simultaneously. The three specific 

research questions (RQ) are:  

1. RQ 2.1: How does performance compare between medium and fast transitions from 

low to high workload?  

a. Expectations: In order to answer this question, we will compare performance 

between two transition rates as a whole, per workload level, and per workload 

period, i.e., study its workload history effect. We expect fast transitions will 

result in better primary and secondary task performance compared to medium 

transitions (Moroney et al., 1995). As for how it will compare over time, we 

expect primary task performance to degrade with workload transitions (Cox-

Fuenzalida, 2007; Cox-Fuenzalida & Angie, 2005; Hancock et al., 1995; 

Morgan & Hancock, 2011) and it to be more pronounced for medium 

transitions compared to fast ones (Moroney et al., 1995). Performance may 

partially recover and then plateau across the low workload periods, as this is 

consistent with the previous research that studies workload transitions in 

dynamic, multitasking environments (Edwards et al., 2017; Jansen et al., 

2016; Morgan & Hancock, 2011). 
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2. RQ 2.2: How does performance compare between the low workload periods of 

medium and fast transitions and constantly low workload?  

a. Expectations: Previous work has shown that both primary and secondary task 

performance were better when workload was constantly low (Bowers et al., 

2014; Cox-Fuenzalida, 2007; Cox-Fuenzalida & Angie, 2005; Matthews, 

1986; Ungar et al., 2005; Wickens et al., 1985). Additionally, the resource 

depletion explanation predicts that both primary and secondary task 

performance will be better when workload is constantly low, compared to the 

low workload periods of medium and fast transitions, because resources will 

have not been depleted from any transitions during constant low workload. 

3. RQ 2.3: How does performance compare between the high workload periods of 

medium and fast transitions and constantly high workload?  

a. Expectations: We expected that performance will be worse for both primary 

and secondary tasks when workload is constantly high (Bowers et al., 2014; 

Cox-Fuenzalida & Angie, 2005; Matthews, 1986; Prytz & Scerbo, 2015; 

Wickens et al., 1985). The effort regulation explanation predicts that primary 

task performance will be better during the high workload periods of medium 

and fast transitions than constant high workload, because the workload 

transitions will signal for the adjustment of resources accordingly. 

Table 2.1 summarizes how each research question expands on each theoretical explanation. Of 

note, RQ 2.1 is not included because it does not provide further insights into the theoretical 

explanations.  
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Table 2.1 Justification of how research questions to map to theoretical explanations 

Research Question (RQ)  Resource Depletion Explanation Effort Regulation Explanation 

RQ 2.2: Low workload vs. the 

low workload periods of 

medium and fast transitions, 

respectively 

If constant low workload outperforms 

the low workload periods of medium or 

fast transitions: 

• Resources depletion IS a function 

of workload transitions. Workload 

transitions deplete more mental 

resources than constant low 

workload  

(Bowers et al., 2014; Cox-

Fuenzalida, 2007; Cox-Fuenzalida 

& Angie, 2005; Matthews, 1986; 

Ungar, 2005). 

  

If the low workload periods of medium 

or fast transitions is equal to or 

outperforms low workload: 

• Resources depletion IS NOT a 

function of workload transitions. 

Workload transitions do not deplete 

mental resources differently than 

low workload (Matthews, 1986). 

n/a 

 

RQ 2.3: Constant high 

workload vs. the high 

workload periods of medium 

and fast workload transitions, 

respectively 

n/a 

 

If constant high workload is equal to 

or outperforms the high workload 

period of medium and fast transitions: 

• Effort regulation IS NOT a 

function of workload transitions. 

Workload transitions do not 

impact the effective regulation of 

mental resources (Gluckman et 

al., 1993). 

 

If the high workload period of medium 

and fast transitions outperforms 

constant high workload: 

• Effort regulation IS a function of 

workload transition. Workload 

transitions can help actively 

regulate mental resources under 

high workload (Hockey, 1997; 

Matthews & Desmond, 2002; 

Matthews, 1986). 

 

The goal of this chapter is to gain an initial understanding on how different workload 

transition rates impacts both primary and secondary task performance, and how that compares to 
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constant workload and over time. It’s the first step in informing how to design a display to better 

account for workload transition effects, as a means to make complex domains safer and more 

effective. Unmanned aerial vehicle (UAV) command and control was specifically of interest per 

the current and expected demands of the environments and the initiative to address these 

challenges with design solutions (Department of Defense, 2017). 

 

Method 

 

Participants 

 

Twenty-one students participated in this study (13 males and 8 females; M=20.9 years, 

SD=1.5 years) and each was compensated $10/hour. The data of two participants was excluded 

from the workload history analysis: one had missing eye tracking data (which will be important 

for the analysis in Ch. 3) and another had no primary task performance data during one of the 

low workload periods. The study was approved by the Clemson University Institutional Review 

Board (IRB2015-217) and all participants provided informed consent. 

  

Experimental setup 

 

The testbed was developed using the Unity game development platform and was based 

on the ‘Vigilant Spirit Control Station’ (VSCS) used by the Air Force to develop interfaces to 

control multiple UAVs (Feitshans et al., 2008). The VSCS platform has been used to test how 

interface design could aid UAV operators. Tasks in the testbed were typical of an UAV 
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command and control environment, such as target detection and route planning (Feitshans et al., 

2008), which require operators to employ perceptual, cognitive, and motor resources. The testbed 

ran on a desktop computer with a Dell 32” monitor (2560×1600 resolution) and a standard 

mouse. 

 

UAV command and control testbed 

 

Participants were responsible for controlling and managing UAVs under four 15-minute 

scenarios in the UAV testbed, i.e., testbed scenario. There were four tasks in each scenario, one 

primary task and three secondary tasks, and each will be discussed in turn, but Figure 2.1 shows 

the interface of the testbed. For each scenario, the frequency of the primary task varied (see 

section Testbed scenarios), while one of the three secondary tasks occurred every 20 s, on 

average, in a pseudo-random order. 
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Figure 2.1 The interface of the testbed used in the study 

 

Target detection task (primary task) 

Participants were instructed that this task had the highest priority. They were tasked to 

monitor up to 16 UAV video feeds on the Video Feed panel for a target, presented as a semi-

transparent cube (see Figure 2.2). Targets could only be detected when a UAV video feed was 

active (illuminated). When a UAV video feed was active and a target was present, participants 

were instructed to press the “target” button. Otherwise, they were instructed to leave the default 

“no target” button selected. The “no target” button was the default, as pilot testing suggested this 

better assessed the participant’s search abilities and not their ability to click quickly. UAV video 

feeds were active for 10 s, and targets could appear during this time. Video feeds cycled between 

active and inactive throughout the scenario. If a target was present in an active UAV, but the 
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participant did not select the target button within the 10 s, the participant missed the opportunity 

to detect that specific target. On average, 20% of active UAVs detected a target. The number of 

simultaneously active UAVs determined the workload level (see section Testbed scenarios).  

 

 

Figure 2.2 Example of active and inactive UAVs on the Video Feed panel and directions on how 

to detect a target 

 

Reroute task (secondary task) 

 Participants were tasked to reroute a UAV when it was projected to enter a no-fly-zone 
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(i.e., red square on the Map panel in Figure 2.3). If a UAV was projected to enter the no-fly-

zone, its route and label would turn orange and participants had 15–20 s to reroute it away from 

the no-fly-zone. To reroute a UAV, a participant clicked on the respective UAV’s numbered 

square in the Reroute Menu panel and chose from one of three new routes. For each new route, 

participants could select “Preview” to see the alternative route, “Confirm” to reroute the UAV to 

a specific alternative route, or “Cancel” to exit from previewing the alternative route. There was 

no limit to how many times a UAV could be rerouted. If a UAV was not rerouted to avoid the 

no-fly-zone, it became nonoperational for the remainder of the scenario. The rerouting task 

occurred 18 times in each scenario. 
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Figure 2.3 Map panel (top half) shows projected routes for each UAV and Reroute Menu panel 

(bottom half) is where participants could choose a new route for a given UAV. After clicking on 

the UAV’s number from the buttons in the top two rows in Reroute Menu panel (i.e., the buttons 

numbered 1–16), a menu of route options was presented. The “Preview” button allowed 

participants to see if the alternative route, which was overlaid on the Map panel, avoided the no-
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fly-zone, the “Confirm” button reroute the UAV to that alternative route, and the “Cancel” 

button removed the overlaid alternative route from the Map panel 

 

Fuel leak task (secondary task) 

Participants were also tasked to monitor for fuel leaks using the General Health panel 

(Figure 2.4). When a fuel leak occurred, the color of the health status bar (top bar denoted with a 

heart) changed from green to yellow with a “FIX LEAK” warning. Participants then had 10 s to 

click on the bar; otherwise, it would change from yellow to orange and read “FATAL FUEL 

LEAK” for that specific UAV. A fuel leak occurred 14 times in each scenario. 

 

 

Figure 2.4 Example of how the status of a UAV could change in the General Health panel. 

Participants were tasked to press the health status bar when a fuel leak occurred: (a) when fuel 

leak was fixed in time, the health status bar changed from yellow to green and the “FIX LEAK” 

warning disappeared; (b) when a fuel leak was not fixed in time, the health status bar changed to 

orange and read “FATAL FUEL LEAK” meaning the fuel leak could no longer be stopped 

 

Chat message task (secondary task) 

Participants were tasked with responding to chat messages by selecting between the two 
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options on the left-hand side of the Chat Message panel (Figure 2.5). Responding to chat 

messages consisted of selecting from one of two options (e.g., selecting ‘yes’ or ‘no’ to yes/no 

questions). Participants could respond to a chat message until another message appeared and 

were instructed to accurately answer as many questions as possible. There were 19 chat 

messages in each scenario. 

 

 

Figure 2.5 Example of an incoming message prompting a response in the Chat Message panel. 

Participants could select from one of two options for every message 

 

Point system and dependent measures 

 

Table 2.2 shows the point system implemented to encourage participants to prioritize the 

primary task and avoid task shedding. This point system reinforced the need to prioritize 

searching for targets in the Video Feed panel, as successfully detecting a target earned the most 

points. Losing a UAV in the no-fly-zone not only resulted in an immediate loss of points, but 

also the loss of the opportunity to gain points from that UAV’s target detection task. Whenever 

the UAV became inoperable, the corresponding UAV video feed became inactive for the 

remainder for the scenario. The highest scoring participant also earned a bonus $10 gift card. 

Response time for the primary target detection task was calculated from the appearance of the 

target to when the participant clicked the “Target” button. For all secondary tasks, response time 
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was calculated from the onset of the event to when the participant responded. Accuracy was 

calculated as the percentage of correct responses within the time limit for each task. 

 

Table 2.2 Point system for the UAV command and control testbed 

 

 

 

 

 

Testbed scenarios 

 

Workload was manipulated by varying the number of active UAVs (i.e., highlighted 

video feeds) in the target detection task. This approach is consistent with previous studies, where 

workload was manipulated by directly manipulating the load of the primary task (e.g., Hancock 

et al., 1995). Additionally, this approach was considered appropriate given that the long-term 

goal of UAV command and control is to increase the load per operator (United States 

Department of Defense, 2013). The four workload scenarios used in this study are as follows: 

1. Low workload scenario: There were 3–5 UAVs active for the entirety of the 

scenario. 

2. High workload scenario: There were 13–16 UAVs active for the entirety of the 

scenario. 

3. Medium transitions scenario: The number of active UAVs increased incrementally. 

The scenario started at low workload for 20 s, and then one to three active UAVs 

Task 
Points per 

Response 

Correctly recognizing a target +100 

Correctly recognizing a non-target +50 

All secondary tasks (reroute, fuel leak, and chat message) +30 

Any incorrect or lack of response (false positive or negative to target 

detection task, UAV flies through no-fly-zone, or “FATAL FUEL 

LEAK” condition) 

-100 
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were added every 10 s until high workload was reached (13–16 active UAVs). The 

scenario would remain at high workload for two minutes, before immediately 

returning to low workload. This cycle repeated five times for this scenario. The solid 

dark gray line in Figure 2.6 depicts the theoretical number of simultaneously active 

UAVs over the course of this testbed scenario. 

4. Fast transitions scenario: The number of active UAVs increased instantaneously. 

One minute of low workload (3–5 UAVs) was followed by an instantaneous increase 

to high workload (13–16 UAVs) that lasted for two minutes. After the two minutes of 

high workload, there was an immediate return to low workload. This cycle repeated 

five times for this scenario. The dotted light gray line in Figure 2.6 depicts the 

theoretical number of simultaneously active UAVs over the course of this scenario. 

 

 

Figure 2.6 The theoretical number of active UAVs throughout the medium and fast transition 

scenarios. The horizontal axis and denotes workload periods (e.g., 1st low, 1st high, etc.) and is 

highlighted accordingly 
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Workload level thresholds (i.e., low and high) were based on pilot testing data using both 

performance and NASA-TLX measures (Hart & Staveland, 1988). Mean target detection task 

(primary task) accuracy was approximately 30% higher in low workload compared to high 

workload. NASA-TLX dimensions of interest included mental demand, temporal demand, and 

performance. Significant differences between low and high workload were found for all 

dimensions (p<.05; analysis was done with a Friedman test and pairwise comparisons 

were performed using Mann-Whitney tests). A range of UAVs was used for the low and high 

workload thresholds because it was possible for the participant to lose a UAV by not rerouting it 

in time. As such, the range of UAVs allowed the requisite workload level throughout the 

scenario to be maintained. There was never a situation where the intended workload was not 

imposed due to the loss of UAVs. Of note, the medium and fast transition scenarios only 

included transitions from low to high workload, as this transition direction is emblematic of 

situations likely to occur in data-rich, dynamic domains (e.g., Apollo 12, Murray & Cox, 

1989) and was therefore the focus of our work. Also, the high workload periods within the 

medium and fast transition scenarios were longer than the low workload periods as extended 

periods of high workload is a challenge of data-rich, dynamic domains (e.g., UAVs command 

and control; Arrabito et al., 2010; Williams, 2006). In order to have the medium and fast 

transitions scenarios include the same number of transitions from low to high workload, the time 

spent in low workload varied slightly between the two scenarios.  

 

Procedures 

 

This research complied with the APA Code of Ethics and was approved by the 
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Institutional Review Board at Clemson University. Informed consent was obtained from each 

participant. The experiment took place over two consecutive days at approximately the same 

time of day. On the first day, participants gave consent and were briefed about the study goals 

and expectations. Participants then completed a five-minute training session where 4–6 UAVs 

were always active. By the end of the training session, participants had to demonstrate 

proficiency by having a minimum accuracy of 70% across all tasks. If not, they could ask 

questions and reattempt the training session; otherwise, they were excused from the study. Only 

four participants completed the training session twice and each succeeded on their second 

attempt. Participants then completed the two constant workload scenarios (low and high 

workload scenarios) in a randomized order (i.e., 10 participants completed the low workload then 

high workload scenario and vice versa for the other 11 participants). This approach allowed for 

the constant workload scenarios to serve as baseline comparisons. On the second day, 

participants completed the two transitions scenarios (medium and fast transitions scenarios) in a 

randomized order (i.e., 11 participants completed the medium then fast transitions scenario and 

vice versa for the other 10). The study lasted about 2.5 hours over two days, with the first day 

lasting 1.5 hours and the second day lasting 1 hour. 

 

Analysis 

 

Four repeated-measures analysis of variance (RM ANOVA) were performed to address 

each research question. Of primary interest was to compare primary and secondary task 

performance, so response time and accuracy of the primary task, i.e., target detection task, was 

compared to the aggregated response time and accuracy of all the secondary tasks, i.e., reroute, 
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fuel leak, and chat message task.  

• Analysis for RQ 2.1 compared performance between the medium and fast transitions 

scenarios. Specifically, response time and accuracy were analyzed using separate 2×2 

RM ANOVA (two testbed scenarios, two task types). Then to analyze the workload 

history effect on performance, a 2×2×5 RM ANOVA was used. There were two 

testbed scenarios, (medium, fast), two levels of workload (low, high), and five 

workload periods (1st, 2nd. . . 5th; refer to the highlighted sections of Figure 2.6 as 

those were the only sections included in the analysis). Specific main and interaction 

effects of this RM ANOVA were of interest to our research questions. The dependent 

performance measures were based on the primary task only, because workload was 

manipulated using this task and it happened continuously over the course of both 

scenarios. For this separate analysis, RStudio 1.2.1335 was used with general eta-

squared (𝜂𝐺
2) as the effect size measure for the omnibus test (RStudio Team, 2020). 

Post-hoc tests with Tukey’s adjustment method determined significant differences 

between means.  

• Analysis for RQ 2.2 compared performance in the low workload scenario to low 

workload of the medium transitions scenario (i.e., the five 20 s low workload periods 

aggregated) and the fast transitions scenario (i.e., the five 60 s low workload periods 

aggregated). Specifically, response time and accuracy were analyzed with 3×2 RM 

ANOVA (three testbed scenarios, two task types). 

• Analyses for RQ 2.3 compared performance in the high workload scenario to high 

workload of the medium and fast transitions scenario (the five 120 s high workload 

periods aggregated, respectively). Specifically, response time and accuracy were 
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analyzed with separate 3×2 RM ANOVAs (three testbed scenarios, two task types).  

Unless otherwise specified, Bonferroni corrected, Fisher’s protected LSD post-hoc tests 

were performed to test differences between means, and significance was set at α=.05. Before 

completing the analyses associated with each research question, 2×2×2 (two order types, two 

transition scenarios, and two task types) mixed ANOVAs were completed to assess whether the 

testbed scenario order affected primary and secondary task performance. There were no 

significant main effects of order (p>.05), so analyses for RQ 2.2 and 2.3 proceeded. Violations of 

normality were assessed prior to analysis, and Greenhouse-Geisser corrections were used when 

sphericity was violated (using Mauchly’s test). SPSS 24 was used for all analyses and partial eta-

squared (𝜂𝑝
2) is reported as a measure of effect size for the omnibus test, and values of .01, .06, 

and .14 are interpreted as small, medium, and large effect sizes, respectively (Cohen, 1988). For 

all post-hoc pairwise comparisons, effect sizes were measured using Cohen’s d for repeated 

measures (𝑑𝑟𝑚 Lakens, 2013), and values of .2, .5, and .8 are interpreted as small, medium, and 

large effect sizes, respectively (Cohen, 1988). For all figures, braces indicate groupings of 

testbed scenarios and brackets with an asterisk denote a significant difference between the 

testbed scenarios. 

 

Results 

 

RQ 2.1: Medium vs. fast transitions 

 

Response time 

When comparing medium to fast transitions, there was no main effect of testbed scenario 
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(F(1,20)= 1.497, p=.235, 𝜂𝑝
2=.070), but there was a main effect of task type (F(1,20)=110.400, 

p<.001, 𝜂𝑝
2=.847). The mean response time for the primary task (M=2.85 s, SE=0.03 s) was 

significantly faster than the secondary tasks (M=3.87 s, SE=0.10 s; p<.001, 𝑑𝑟𝑚=2.908). There 

was no testbed scenario × task type interaction effect (F(1,20)=1.581, p=.223, 𝜂𝑝
2=.073). 

To understand the workload history effect of primary task response time during medium 

and fast transitions, we examine the three-way interaction effect between testbed scenario, 

workload level, and workload period. Mauchly's test of sphericity indicated that the assumption 

of sphericity had been violated for the three-way interaction effect (𝜒2(9)=0.292, p=.017). Using 

the Greenhouse-Geisser correction of ε=.608, there was a significant three-way interaction effect 

(F(2.429, 43.718)=5.123, p=.001, 𝜂𝐺
2=0.049). Post-hoc tests showed that for medium transitions, 

response times were faster in the 1st low workload period (M=1.98 s, SD=0.34 s) compared to 

the 3rd – 5th  low workload periods (3rd period: M=2.99 s, SD=0.77 s, p<.0001, 𝑑𝑟𝑚= 1.627; 4th 

period: M=2.74 s, SD=1.30 s, p<.001, 𝑑𝑟𝑚=.800; 5th period: M=3.06 s, SD=0.70 s, p<.0001, 

𝑑𝑟𝑚=1.93). In addition, the 2nd low workload period (M=2.23 s, SD=0.76 s) was significantly 

faster than the 3rd low workload period (p<.001, 𝑑𝑟𝑚=1.000) and 5th low workload period 

(p=.0001, 𝑑𝑟𝑚=1.127). For the fast transitions, the 2nd low workload period (M=1.90 s, SD=0.30 

s) was significantly faster than the 3rd low workload period (M=2.51 s, SD=0.39 s, p=.022, 

𝑑𝑟𝑚=1.724). Finally, there was one significant difference between the medium and fast 

transitions; the 5th low workload period of medium transitions was significantly slower than the 

5th low workload period of fast transitions (M=2.28 s, SD=0.43 s, p<.0001, 𝑑𝑟𝑚=1.260). Figure 

2.7 shows response time over time based on workload period and transition rate. 
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Figure 2.7 Mean primary task response time for each workload period in the medium and fast 

transitions scenarios. Error bars are standard deviation of the mean 

 

Accuracy  

There was no main effect of testbed scenario (F(1,20)=1.552, p=.227, 𝜂𝑝
2=.220), but there 

was a significant main effect of task type (F(1,20)=579.583, p<.001, 𝜂𝑝
2=.967). There was a 

significant testbed scenario × task type interaction effect (F(1,20)=6.056, p=.023, 𝜂𝑝
2=.232). For 

the primary task, the medium transitions scenario (M=69.6%, SE=1.5%) had significantly worse 

accuracy than fast transitions scenario (M=72.4%, SE=0.8%; p=.048, 𝑑𝑟𝑚=.421), but this was 

not true for the secondary task (Figure 2.8).  
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Figure 2.8 Mean accuracy for both task types in the medium and fast transitions scenario. 

Asterisks (*) denote significant differences between conditions. Error bars represent standard 

error of the mean 

 

To understand the workload history effect of primary task accuracy during medium and 

fast transitions, we examine the three-way interaction effect between testbed scenario, workload 

level, and workload period. There was a significant three-way interaction between testbed 

scenario, workload level, and period (F(4,72)=3.274, p=.016, 𝜂𝐺
2=.027). Post hoc tests showed 

that for medium transitions, accuracy for the 1st low workload period (M=99.0%, SD=4.6%) was 

significantly higher than all subsequent low workload periods (2nd period: M=85.5%, 

SD=12.7%, p=.008, 𝑑𝑟𝑚=1.466; 3rd period: M=85.3%, SD=16.1%, p=.006, 𝑑𝑟𝑚=1.208; 4th 

period: M=87.7%, SD=25.5%, p=.077, 𝑑𝑟𝑚=0.638; 5th period: M=80.8%, SD=23.1%, p<.0001, 

𝑑𝑟𝑚=1.152). With fast transitions, the 4th high workload period (M=74.9%, SD=7.2%) had 

significantly higher accuracy than 5th high workload period (M=61.6%, SD=9.6%, p=.009, 

𝑑𝑟𝑚=1.472). Figure 2.9 shows accuracy rates based on workload period and transition rate.  
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Figure 2.9 Mean primary task accuracy for each workload period in the medium and fast 

transition scenarios. Error bars are standard deviation of the respective mean 

 

RQ 2.2: Comparing low workload performance  

 

Response time 

There was a significant effect of testbed scenario (F(2,40)=20.968, p<.001, 𝜂𝑝
2=.512) and 

task type (F(1,20)=155.535, p<.001, 𝜂𝑝
2=.886), as well as a significant testbed scenario × task 

type interaction (F(2,40)=32.238, p<.001, 𝜂𝑝
2=.617). For the primary task, response time during 

low workload in the medium transitions scenario (M=2.64 s, SE=0.08 s) was significantly slower 

than the low workload scenario (M=2.38 s, SE=0.04 s; p<.009, 𝑑𝑟𝑚=.844) and low workload in 

the fast transitions scenario (M=2.35 s, SE=0.05 s; all p<.002, 𝑑𝑟𝑚=.917), whereas the latter two 

did not differ from each other. For the secondary tasks, response time was significantly slower in 

the low workload scenario (M=5.09 s, SE=0.26 s) than during low workload in the medium 
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(M=3.70 s, SE=0.13 s; p<.001, 𝑑𝑟𝑚=1.445) and fast transitions scenarios (M=3.58 s, SE=0.17 s; 

p<.001, 𝑑𝑟𝑚=1.509) as seen in Figure 2.10. 

 

 

Figure 2.10 Mean response times for both task types during low workload. Asterisks (*) denote 

significant differences between scenarios. Error bars represent standard error of the mean 

 

Accuracy 

Mauchly's test of sphericity indicated that the assumption of sphericity had been violated 

for workload condition (χ2(2)=11.732, p=.003). Using the Greenhouse-Geisser correction of 

ɛ=.685, there was a significant effect of testbed scenario (F(1.369,27.384)=32.363, p<.001, 

𝜂𝑝
2=.618). Across both tasks, mean accuracy for all testbed scenarios were significantly different 

from each other. The low workload scenario (M=85.8%, SE=1.5%) was significantly lower than 

low workload in the medium (M=92.7%, SE=1.1%; p=.001, 𝑑𝑟𝑚=1.138) and fast transitions 

scenario (M=95.8%, SE=0.7%; p<.001, 𝑑𝑟𝑚=1.591). Accuracy for low workload in the medium 
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transitions scenario was significantly lower than low workload in the fast transitions scenario 

(p=.022, 𝑑𝑟𝑚=.700). There was also a significant effect of task type (F(1,20)=77.774, 

p<.001, 𝜂𝑝
2=.795), with the mean accuracy for the primary task (M=87.8%, SE=0.9%) being 

significantly lower than the secondary task (M=95.1%, SE=1.0%; p<.001, 𝑑𝑟𝑚=1.671). There 

was no significant testbed scenario × task type interaction on accuracy F(1.476,29.514)=3.22, 

p=.068, 𝜂𝑝
2=.139).  

 

RQ 2.3: Comparing high workload performance 

 

Response time  

There was a significant effect of testbed scenario (F(2,40)=38.882, p<.001, 𝜂𝑝
2=.660), 

task type (F(1,20)=109.988, p<.001, 𝜂𝑝
2=.846), as well as a significant testbed scenario × task 

type interaction (F(2,40)=14.253, p<.001, 𝜂𝑝
2=.416). Primary task response time for the high 

workload scenario (M=3.38 s, SE=0.06 s) was significantly slower than high workload in the 

medium (M=3.03 s, SE=0.03 s; p<.001, 𝑑𝑟𝑚=1.549) and fast transitions scenarios (M=3.03 s, 

SE=0.03 s; p<.001, 𝑑𝑟𝑚=1.553). For the secondary tasks, response time for the high workload 

scenario (M=5.22 s, SE=0.22 s) was slower than high workload in the medium (M=4.10 s, 

SE=0.10 s; p<.001, 𝑑𝑟𝑚=1.247) and fast transitions scenarios (M=3.93 s, SE=0.14 s; p<.001, 

𝑑𝑟𝑚=1.490) as seen in Figure 2.11.  
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Figure 2.11 Mean response times for both task types during high workload. Asterisks (*) denote 

significant differences between scenarios. Error bars represent standard error of the mean 

 

Accuracy  

There was a significant effect of testbed scenario (F(2,40)=44.028, p<.001, 𝜂𝑝
2=.688). 

Across both tasks, mean accuracy for the high workload scenario (M=73%, SE=1.3%) was 

significantly worse than high workload in the medium (M=82.3%, SE=1.0%; p<.001, 

𝑑𝑟𝑚=1.507) and fast transitions scenarios (M=81.6%, SE=1.0%; p<.001, 𝑑𝑟𝑚=1.459). There was 

also a significant effect of task type (F(1,20)=484.172, p<.001, 𝜂𝑝
2=.960). Mean accuracy for the 

primary task (M=63.7%, SE=1.3%) was significantly lower than the secondary task (M=94.1%, 

SE=0.9%; p<.001, 𝑑𝑟𝑚=5.777). There was no significant testbed scenario × task type interaction 

(F(2,40)=3.22, p=.200, 𝜂𝑝
2=.077).  
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Discussion 

 

Our goal was to better understand how workload transitions influence multitasking 

performance in a realistic domain, and to assess the applicability of the resource depletion and 

effort regulation explanations. With respect to RQ 2.1, the analyses found a few, minor 

differences between medium and fast workload transitions, in that fast transitions had higher 

primary task accuracy compared to medium transitions overall (Figure 2.8) and faster primary 

task response time during low workload (Figure 2.10). More notable differences were found 

when investigating the workload history effect of each scenario (Figure 2.7 and 2.9). 

We expected response time and accuracy to degrade and then plateau over time for both 

transitions scenarios, leading to a transient workload history effect. The results here did reveal a 

workload history effect, but it was only for low workload periods and it was not the same for 

medium and fast transitions. Similar to previous work, both transitions scenarios had faster 

response times in earlier low workload periods, i.e., 1st and 2nd, than later ones, i.e., 3rd–5th. 

However, the results showed that the workload history effect was more pronounced for medium 

transitions as response times increased and then plateaued at these slower response times during 

the latter low workload periods (Bowers et al., 2014; Morgan & Hancock, 2011). For fast 

transitions, response time increased significantly during the middle of the scenario, i.e., 3rd low 

workload period, but then recovered to initial speeds later (Jansen et al., 2016; Prytz & Scerbo, 

2015). Similarly, for accuracy, we also observed workload history effects that manifested over 

time during the low workload periods, but only for medium transitions (Moroney et al., 1995). 

Consistent with previous work and our expectations, accuracy was the highest at the beginning 

of the medium transitions scenario and then decreased over time (Bowers et al., 2014; Cox-
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Fuenzalida & Angie, 2005; Helton et al., 2008; Morgan & Hancock, 2011). On the other hand, 

with fast transitions, accuracy remained relatively stable over time for low workload periods. 

The only performance difference within fast transitions was the significant drop in accuracy 

between the last two high workload periods, although it is unclear if this is due to workload 

history or fatigue (Cox-Fuenzalida, 2007). Nevertheless, the performance results support a subset 

of previous work and our expectations: workload history effect are a function of workload 

transition rate, workload level, and experimental setting, i.e., multitasking during multiple 

workload transitions, as performance either remained constant, worsened, or fluctuated between 

worsening and improving over time, depending on these factors. The findings here suggest that 

dynamic multitasking—the main experimental difference between this line of work and the 

single-task environment used in Moroney et al. (1995)—may affect workload transition 

performance differently. Although addressing RQ 2.1 provides further understanding on 

workload transitions, it does not elucidate the applicability of either the resource depletion or 

effort regulation explanations. To further understand the applicability of these explanations, 

comparing low and high performance of medium and fast workload transitions to constant 

workload is needed.  

Regarding RQ 2.2 the majority of findings indicated faster response times and higher 

accuracy rates during the low workload periods of both the medium and fast transitions scenarios 

compared to the low workload scenario (e.g., Figure 2.10), which is consistent with some prior 

work (e.g., Jansen et al., 2016; Krulewitz et al., 1975). The only instance when this was not the 

case was primary task response time. Specifically, low workload performance during the 

medium transitions scenario resulted in longer response times compared to low workload 

performance during the fast transitions scenario and the low workload scenario. Our results are 
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consistent with previous work that found performance improves during low workload periods of 

workload transitions in the presence of a secondary task (Jansen et al., 2016; Matthews & 

Desmond, 2002). Our findings also show that fluctuations in workload result in superior 

performance than when workload is held at a constant low level. In sum, our findings do not 

support the resource depletion explanation, which predicts that low workload periods of 

workload transitions will result in worse performance because resources are depleted during high 

workload periods. It appears that different kinds of multitasking environments may not cause 

operators to experience resource depletion during a workload transition in the same way 

(Gluckman et al., 1993). There needs to be more work to examine the impacts of specific 

contextual factors, as our work suggests that diversified task demands can help thwart resource 

depletion effects in complex work environments.  

For RQ 2.3, we found that primary and secondary task performance was better during the 

high workload periods of the medium and fast transitions scenarios, compared to the high 

workload scenario (e.g., Figure 2.11). However, this improvement in performance is in contrast 

with some previous work that has found performance decrements during high workload of 

workload transitions (Cox-Fuenzalida, 2007; Cox-Fuenzalida & Angie, 2005; Gluckman et al., 

1993; Krulewitz et al., 1975; Moroney et al., 1995). Previous work did not include secondary 

tasks and/or multiple workload transitions. The results here suggest that the effort regulation 

explanation, which suggests that participants can effectively redistribute their mental resources 

as task demands change, may be dependent not only on the presence of a workload transition, but 

also multiple workload transitions—the main difference in this study that sets it apart from 

previous ones. Further research, especially studies that modulate the number of workload 

transitions, is needed to corroborate this finding, and would shed further understanding on how 
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to improve performance during high workload (Grier et al., 2008). 

Overall, the findings here demonstrate that existing theoretical explanations cannot fully 

explain the effects of workload transitions on performance. Instead, our work further supports 

the nuanced nature of workload transitions, as we explored contexts that have been overlooked 

to-date. For instance, existing explanations do not distinguish between primary and secondary 

task performance. Our results showed this to be an important consideration, since secondary task 

performance improved with both types of workload transitions, but this was not always the case 

for the primary task. This finding highlights the importance of considering the role of secondary 

tasks in complex domains, because it has been historically assumed that primary task 

performance would be prioritized over secondary task performance (Wickens et al., 2015). In 

reality, task prioritization may vary depending on context, especially in dynamic environments 

such as UAV operations where operators are juggling multiple, interrelated tasks and 

responsibilities (Jansen et al., 2016; Matthews et al., 1996).  

Our work demonstrates this notion empirically, as participants attended successfully to 

secondary tasks, even if at times it led to an immediate cost to primary task performance. This 

satisficing approach supports previous work that has shown that participants may change how 

they prioritize tasks as they recognize task interdependencies can change over time (Jansen et al., 

2016). Therefore, it is important for future work to investigate workload transitions with 

interdependent, dynamic tasks to fully understand: (a) the effect of workload transitions on 

performance; (b) the applicability of existing theoretical explanations; and (c) contextual factors 

from different occupational environments. Overall, our results suggest that occupational factors 

in these complex and dynamic domains impact workload transition performance in different 

ways than expected and the findings can be used to inform design. For example, it may be 
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beneficial to strategically engage and reengage operators in UAV command and control with 

diverse tasks, so they can manage mental resources more effectively over time, just as the 

workload history analysis suggested. Such a strategy may help negate the effects due to vigilance 

decrements during constant low workload and data overload during constant high workload. As a 

result, performance may improve because mental resources could be more effectively employed. 

This strategy could be taken into consideration occupational and technology design.  

 

Limitations 

 

Our results show workload transition performance is nuanced. One limitation of the 

current work is that only two workload transition rates were examined. Transition rate was not 

thoroughly explored, because it would have affected either the number of transitions per scenario 

if scenario length was held constant, or the lengths of each scenario if the number of transitions 

was held constant. Although this presents a limitation of this work, the subsequent analyses and 

discussion are unaffected because our overarching goal was to examine how the rate of workload 

transitions affects performance during the low and high workload periods. Nevertheless, it may 

be of interest to consider different rates in future work as the performance differences currently 

observed between transition rates did begin to inform theory applicability. While outside of the 

scope of this study, scenario duration is another limitation worth mentioning as there is evidence 

that workload transitions may have longer-term ramifications (Cox-Fuenzalida, 2007). Another 

potential limitation was that low and high workload thresholds were set equivalent across 

participants. As a result, high workload may have been deemed to be more difficult for some 

participants than others (Prytz & Scerbo, 2015). Future work could individually tailor workload 
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thresholds to account for individual differences, however such an experimental design comes 

with its own challenges (see Bowers et al., 2014; McKendrick & Harwood, 2019). It may be 

more advantageous for future work to compare workload history effects between subgroups of 

performers (e.g., best and worst performers). Given the spread of the data for both the 

performance measures was considerable, it warrants further explanation at an individual level. 

Other occupationally-relevant effects, such as task type (e.g., manual vs. verbal tasks), 

expectancy effects (e.g., Landman et al., 2017), and individual differences, (e.g., expertise and 

personality; Cox-Fuenzalida, Angie, et al., 2006; Cox-Fuenzalida et al., 2004) should be 

explored to evaluate the present findings and provide further details for these domains. Similarly, 

it may be beneficial to include real-time, unobtrusive measures of the operator during workload 

transitions as a means to capture his/her real-time state. For example, measuring how the 

operator allocates his/her visual attention to features of the environment is informative on how 

the operator is managing the tasks beyond just speed and accuracy. This may better explain the 

nuanced performance trends and potentially the applicability of current theoretical explanations 

surrounding workload transitions (Duchowski, 2017). This will be particularly critical as the 

frequency of overt actions from the operator decreases given the increased reliance on 

automation and autonomy in these environments (Cummings et al., 2019; Sibley et al., 2015).  

 

Conclusion 

 

This study highlights the nuanced nature surrounding workload transitions, specifically 

that the effects evolve differently over time in dynamic, multitasking domains. This study 

addressed the need to consider different transition rates, multitasking, and multiple transitions to 
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understand the effects of workload transitions overall and over time (Jansen et al., 2016). Our 

results showed some differences in performance between medium and fast transitions, but 

transitions in general resulted in faster and more accurate performance than constant workload. 

In total, our findings provide further support for the effort regulation explanation (Hockey, 

1997); however, future work should investigate the applicability of existing theoretical 

explanations by better understand how the operator is managing the workload transition 

(Edwards et al., 2017) and as they relate to different occupational factors and settings. Although 

our findings have implications on the design of systems for operators in various complex 

domains, future work needs to address how to best integrate them to ensure operators can safely 

cope with workload transitions, such as the operator’s management approach and other aspects 

of multi-UAV environments (Cummings et al., 2019; Ramchurn et al., 2015; Sibley et al., 2015). 
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CHAPTER 3 

 

What do scan-based eye tracking metrics inform about workload transition 

performance? 

 

Introduction 

 

To better understand the performance trends of Chapter 2 and how they contribute to both 

the theory and applicability of workload transitions, Chapter 3 examines the user’s visual 

attention allocation patterns. Previous workload transition research has also included non-

performance measures of the operator like, his/her personality (Cox-Fuenzalida, Angie, et al., 

2006; Cox-Fuenzalida et al., 2004) or subjective experience (Fallahi et al., 2016; Helton et al., 

2008; Jansen et al., 2016; Morgan & Hancock, 2011). These measures have shed more light on 

various aspects of workload transitions, but their limitations may hinder their overall 

applicability in operational settings, e.g., the need to interrupt the operator while they complete 

tasks in the environment, (Estes et al., 2015; Matthews et al., 2019; McKendrick & Cherry, 

2018). Physiological responses avoid some these shortcomings and have found to have some 

preliminary use for workload transitions (Bowers et al., 2014; Kim et al., 2019). Several studies 

have used eye tracking techniques to understand differences between low and high workload (see 

Coral, 2016 for a review), but there is little work exploring how the operator visually attends to 

tasks as workload transitions. 

The goal of the present work is to determine whether eye tracking analysis can be a non-

invasive and quantitative means to further understand how operators are impacted by workload 
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transitions. Nine scan-based metrics were calculated and compared across the four testbed 

scenarios in Chapter 2 and one metric was calculated across the low and high workload periods 

of the medium and fast transitions scenarios because it considers the sequence of fixations and 

saccades as they happen over time in its calculation (Krejtz et al., 2016). Understanding visual 

attention allocation patterns can be an indication of how the operator is managing workload 

transitions—for instance, does the operator consistently concentrate their visual attention or 

disperse it across the entire display? Knowing this information can potentially explain the 

performance trends observed in Chapter 2 and ideally inform the design of environments where 

workload transitions.  

 

Previous use of psychophysiological measures in workload and workload transitions 

 

To date, workload transition research has rarely included eye tracking, but some research 

has included other psychophysiological measures (Bowers et al., 2014; Kim et al., 2019). For 

example, electroencephalograms (EEG) have shown an increase in the electrical activity in 

several cognitive-related areas of the brain during workload transitions. However, there are 

unexplained inconsistencies with some EEG correlates, especially when considering the 

performance trends over time or the correlates of constant workload conditions (Bowers et al., 

2014; Kim et al., 2019). It is worth investigating if eye tracking can serve as a less invasive and 

less complex psychophysiological measure to capture the impacts of workload transitions in real-

time. Of specific interest is to understand how operators use mental resources to manage 

complex environments and understand how it impacts performance (Edwards et al., 2017).  

Unlike workload transitions, different types of psychophysiological measures have been 
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extensively explored when studying workload, including eye tracking (see reviews in Cain, 

2007; Young et al., 2015). The most frequently used eye tracking measures for workload 

evaluation are pupillometry metrics such as pupil diameter (Hampson et al., 2010) and eye blink 

frequency and duration (Hwang et al., 2008; Veltman & Gaillard, 1996). These measures are 

often positively correlated with workload; however, such measures are also sensitive to other 

extraneous factors, such as the amount of light in the environment (Coral, 2016; Monfort et al., 

2016). Although avoiding these problems is possible (e.g., Duchowski et al., 2020; Rozado & 

Dunser, 2015), there are simpler, and potentially more advantageous alternatives, such as scan-

based metrics, i.e., ones that capture how an individual is viewing the display (Poole & Ball, 

2006).  

Scan-based metrics inform how an individual is extracting and sampling the visual 

information to manage the current environment, which is a present need for both workload 

transition theory and design. For example, some of the previous research finds high workload 

leads to the range of attention to narrow, the size of eye movements to increase, and attention on 

specific items to last longer (Rantanen & Goldberg, 1999; Savage et al., 2013). Questions that 

scan-based metrics can answer about workload transitions include: In comparison to constant 

workload, how dispersed was visual attention overall? How large were eye movements across 

the display? How long did attention last? How were the multiple tasks attended to? By 

answering such questions, scan-based metrics can provide insight into the participant’s visual 

attention allocation patterns during workload transitions, which helps explain the performance 

trends of Chapter 2.  

Fixations and saccades are the basis of most scan-based eye tracking metrics, i.e., the way 

in which visual attention patterns are quantified (Poole & Ball, 2006). The selected scan-based 
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metrics, with their respective definitions, are summarized in Table 3.1. Some of these metrics 

have been extensively used in workload research (e.g., fixation duration and saccade amplitude; 

De Rivecourt et al., 2008; Di Stasi et al., 2013), whereas other measures have been valuable for 

other research topics in realistic environments. For example, stationary gaze entropy and gaze 

transition entropy measure the randomness of an individual’s attention transitions across the set 

of AOIs and has informed task completion strategies in simulated aviation, surgical, and driving 

environments (Di Stasi et al., 2016; Shiferaw et al., 2018; Shiferaw et al., 2019).  

Moacdieh and Sarter (2015) classified scan-based metrics in to three distinct categories: 

spread (where are users looking?), directness (how efficiently are users scanning?), and duration 

(how long are users looking at a certain area?). Spread metrics have rarely been explored in the 

context of workload (e.g., Rantanen & Goldberg, 1999) and only a small selection of directness 

metrics, such as mean saccade amplitude (e.g., Savage et al., 2013) have been previously 

explored in this context. Both spread and directness measures have been informative on how 

visual attention is allocated during the task, such as: Was attention evenly distributed in the 

environment? Did attention reach a certain area efficiently or was there a lot of inefficient back-

and-forth scanning? Duration measures have been successful in discriminating low and high 

workload, but their ability to do so among multiple, interrelated tasks has rarely been tested. 

Given the testbed places tasks across distinct areas on the display, answering the aforementioned 

questions will inform the effectiveness of the task completion strategies used in Chapter 2.  
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Table 3.1 Scan-based eye tracking metrics investigated in Chapter 3 

Metric Definition and Calculation 

Spread metrics (where are users generally looking?) 

Convex hull area [pixels2]  

The minimum convex area which contains the fixation points (Goldberg & 

Kotval, 1999). This is calculated using the Matlab function convHull, with 

the X and Y positions of the fixation points as input. The maximum area of 

the screen is 2,560×1600 = 4.096 x 106 pixels2 

 

A larger convex hull area indicates more spread of gaze points and larger 

cognitive load as the user attempts to sample all the information available 

within the display (Di Nocera et al., 2007) However, note that there are 

opposing views related to task load and the visual field of view (Coral, 

2016)  

Spatial density 

 

The number of grid cells containing gaze points divided by the total number 

of cells (Goldberg & Kotval, 1999). A 20×20 evenly-divided grid (128×80 

pixels per cell) was created to cover the full screen dimensions. Similar to 

convex hull area, a higher spatial density would indicate a larger dispersion 

of attention.  

Stationary gaze entropy (SGE) 

Stationary gaze entropy indicates how equally distributed a person’s 

attention is, with larger values indicating more evenly spread attention 

across areas of interest and lower values indicating more narrowed attention 

(Krejtz et al., 2015). It is calculated using the following equation 

 

𝐻𝑠 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑖∈𝐴𝑂𝐼𝑠

 

where 𝑝𝑖  represents the proportion of transitions to the ith state, i.e., the ith 

AOI (the AOIs are as defined in Figure 2.1) from on all the state transitions 

based on the Markov property (i.e., transitions to a given state only depend 

on the current state; Shiferaw et al., 2019).  

Directness metrics (how purposeful are attention transitions?) 

Mean saccade amplitude [pixels] 

The average distance traveled during a saccade (Smeets & Hooge, 2003). 

Higher mean saccade amplitude indicates lower scanning efficiency 

(Gegenfurtner et al., 2011). 

Scanpath length per second 

[pixels/s] 

The sum of all the saccade lengths divided by the total time. Similar to mean 

saccade amplitude, a larger scanpath length indicates less efficiency 

(Goldberg & Kotval, 1999).   

Backtrack rate [/s] 

A backtrack is defined as an angle between two saccades that is greater than 

90o (Goldberg & Kotval, 1999), indicating a change in direction. A higher 

backtrack rate indicates lower efficiency.  

Gaze transition rate [grid cells/s] 

The rate of transitions between equal grid cells (Goldberg & Kotval, 1999). 

A higher rate of transitions indicates lower efficiency. The same grid cells 

used for spatial density were used here.  

Gaze transition entropy (GTE) 

Gaze transition entropy represents the randomness and complexity of a 

person’s eye movements, with higher values indicating more randomness 

and lower efficiency (Krejtz et al., 2015). It is calculated based on the 

following formula: 

 

𝐻𝑡 = − ∑ 𝑝𝑖 ∑ 𝑝𝑖𝑗

𝑗∈𝐴𝑂𝐼𝑠

log2 𝑝𝑖𝑗

𝑖∈𝐴𝑂𝐼𝑠

 

where 𝑝𝑖  is as described in stationary gaze entropy, and 𝑝𝑖𝑗  is the probability 

of transitioning form state i to state j in one fixation. Assuming the Markov 

property holds, this was calculated by counting the number of transitions 

from i to j and then dividing by the total number of transitions from i 
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(Shiferaw et al., 2019). This was done for each pairing of AOIs (the AOIs 

are as defined in Figure 2.1).  

Duration metric (how long, in general, does attention last?) 

Fixation duration [ms] 
The amount of time a fixation lasts. A lower mean fixation duration suggests 

the user is extracting information quickly (Jacob & Karn, 2003).  

 

 

Using eye tracking techniques to understand workload history 

 

Often, metrics are aggregated across experimental conditions for comparison, which 

overlooks how visual attention patterns change over time (Cutrell & Guan, 2007; Goldberg & 

Kotval, 1999; Jarodzka et al., 2010). For example, a study conducted by Jiang et al. (2014) found 

that as participants completed a web search task, their performance and scan patterns were 

inversely proportional to the workload changes over time. In other words, as participants 

completed more search tasks, both the likelihood of selecting the correct search result and mean 

fixation duration decreased, demonstrating the importance of capturing the evolution of visual 

attention as it happens. However, the interpretation of a certain metric’s trend over time can be 

convoluted (Pan et al., 2004). Advanced metrics able to account for the order in which certain 

types of fixations and saccades occur over time have the potential to capture and accurately 

depict the evolution of visual attention. The metric, coefficient 𝐾, is a viable candidate to better 

understand the workload history effects observed in Chapter 2 (Krejtz et al., 2016). 

 

Coefficient Κ: A dynamic measure of ambient and focal visual attention 

 

Coefficient Κ accounts for changes in the magnitude and sequence of each fixation and 

saccade in a scan pattern. It has effectively distinguished between the two types of visual 
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attention used during visual search tasks: ambient and focal (Krejtz et al., 2016). Ambient visual 

attention occurs when people are gaining spatial orientation (i.e., “getting a sense” of the 

environment), whereas focal visual attention occurs when people are processing the details of the 

environment (Buswell, 1935; Previc, 1998). Ambient visual attention usually consists of a 

pattern where sequences of short fixations are followed by long saccades. Oppositely, focal 

visual attention usually consists of sequences of long fixations followed by short saccades 

(Buswell, 1935; Velichkovsky et al., 2005). The interaction between ambient and focal visual 

attention in scene perception is dynamic (Velichkovsky et al., 2005; Previc, 1998). For example, 

when a scene is initially being examined, there is typically more ambient visual attention (i.e., 

shorter fixations and longer saccades), but as objects are identified, there is more focal visual 

attention (i.e., fixation durations increase and saccades decrease; (Irwin & Zelinsky, 2002; Over 

et al., 2007).  

When it comes to studying visual attention, most analyses aggregate the duration and 

magnitude of the fixations and saccades over time. There has been limited work analyzing how 

scan-based metrics change over time and their relation to overall changes in visual attention 

patterns. Pannasch et al. (2008) compared fixation durations and saccade amplitudes during the 

early and late phases of scene perception to better understand the relationship between ambient 

and focal visual attention over time. However, their analysis aggregated fixations and saccades 

over blocks of time so it did not capture how the sequence of fixations and saccades impacts the 

evolution of visual attention patterns over time. Krejtz et al. (2016) developed a metric that 

distinguishes between ambient and focal visual attention each time a fixation or saccade occurs. 

Equation (3.1) shows how coefficient Κ is the difference between standardized values (Z-score) 

of each fixation duration 𝑑𝑖 and its following saccade amplitude (𝑎𝑖+1):  
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𝐾𝑖 =  
𝑑𝑖 −  𝜇𝑑

𝜎𝑑
−  

𝑎𝑖 −  𝜇𝑎

𝜎𝑎
 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

1

𝑛
 ∑ 𝐾𝑖

𝑛

𝑖=1

= 1 (3.1) 

Here, 𝜇𝑑  is the mean fixation duration, 𝜇𝑎 is the mean saccade amplitude, 𝜎𝑑 and 𝜎𝑎 are the 

respective standard deviations. These parameters are for the entire data set to account for any 

bias. Coefficient Κ is a measure of standard deviation; a value of 1 indicates that “the duration of 

the current fixation is beyond 1 standard deviation longer than the subsequent saccade 

amplitude,” whereas a value of −1 indicates that “a saccade is more than 1 standard deviation 

longer than the preceding fixation duration” (Krejtz et al., 2016). Positive coefficient Κ values 

are an indicator of focal attention as they occur when long fixations are followed by short 

saccades. Negative coefficient Κ values are an indicator of ambient visual attention as they occur 

when short fixations are followed by long saccades (Velichkovsky et al., 2005). A coefficient Κ 

value that approaches zero suggests that fixations and subsequent saccades are relatively equal 

with their respective means and is not an indicator of either attention type. (*Note: This 

occurrence is rare on an individual level, although may occur when averaging). Previous 

research has used it to distinguish the visual attention patterns when viewing artwork (Krejtz et 

al., 2016), completing cartographic tasks (Krejtz et al., 2017), and between socially anxious and 

non-anxious viewers (Krejtz et al., 2018). In all cases, coefficient Κ has been more informative 

on the details of the focal-ambient viewing dynamics, which further explains the viewer’s overall 

visual attention patterns in these environments. Coefficient Κ may further shed light on the 

effects of workload history by quantifying the visual attention patterns in dynamic environments.  

 

Motivation 

 

This work aims to further understand the performance effects of workload transitions by 
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using scan-based eye tracking metrics to assess how operators relied on their visual attention 

with different workload transition rates and over time. The goal is to gain perspective on how the 

participants relied on mental resources during workload transitions, while also potentially 

informing the design of intelligent technology for domains where workload transitions are 

prevalent. We are exploring the potential of the aforementioned metrics because they 

characterize real-time visual attention in a straightforward format and allow for direct 

interpretation. This chapter examines whether (a) visual attention type is informative of any of 

the present workload history effects and (b) scan-based metrics can discern between transitioning 

and constant workload and shed light on their respective performance trends. Specifically, the 

research questions are: 

1. RQ 3.1: Is coefficient Κ informative of the workload history effects observed during 

medium and fast transitions?  

a. Expectations: Based on its previous success (Krejtz et al., 2017; Krejtz et al., 

2018), we expect coefficient Κ to serve as a quantitative measure of people 

assessing the current needs of the environment and then developing effective 

management strategies based on that assessment, i.e., the effort regulation 

explanation (Hockey, 1997). If this is the case, then participants will first 

survey the overall environment, i.e., use ambient visual attention which 

produces negative coefficient Κ values, to “get a sense” and evaluate its 

dynamics. During this evaluation, performance may suffer if ambient visual 

attention is not ideal for the current environment. However, once participants 

develop a management strategy to account for varying workloads, coefficient 

Κ values will most likely be positive during high workload periods, i.e., focal 



88 
 

visual attention, and negative during low workload periods, i.e., ambient 

visual attention. 

2. RQ 3.2: Are scan-based metrics informative on the performance differences between 

transitioning and constant workload?  

a. Expectations: Performance will worsen when participants distribute their 

visual attention to many, wide-ranging areas of the display and when they do 

not transition efficiently between those different areas (Goldberg & Kotval, 

1999; Shiferaw et al., 2019). We expect that performance decrements will 

coincide with increased values of spread and duration metrics and decreased 

values of directness metrics. 

Combining the findings from Chapter 2 and 3 leads to a comprehensive, initial investigation of 

the effects of transition rate on multitasking performance and visual attention allocation patterns. 

 

Method 

 

Participants 

 

The eye tracking data of the participants from Chapter 2 was analyzed for the present 

research goals. All participants self-reported normal or corrected-to-normal vision. 

 

Experimental setup 

 

The same experimental setup from Chapter 2 was used for the present research goals. A 
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desktop-mounted corneal reflection FOVIO eye tracker (Seeing Machines platform) was used to 

collect gaze data (sampling rate (fs) of 60 Hz, reported mean degree of error is 0.78 with a 

standard deviation of 0.59; Eyetracking, 2011). Participants sat 71–78 cm from the eye tracker, 

which was placed 2 cm below the bottom edge of the monitor. Participants completed a 5-point 

calibration procedure before each recording and the accuracy of the calibration was verified by 

the experimenter before proceeding. 

 

UAV command and control testbed and tasks 

 

The same UAV command and control testbed from Chapter 2 was used for this chapter’s 

research questions. 

 

Testbed scenarios 

 

The same testbed scenarios from Chapter 2 were used for this chapter’s research 

questions. 

 

Procedures 

 

The same procedures from Chapter 2 were relevant for the present research questions. 

Additionally, participants completed a 5-point calibration procedure before each eye tracking 

recording and the accuracy of the calibration was verified by the experimenter before proceeding 

to the next testbed scenario. 
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Results 

 

Data reduction 

 

For calculating coefficient Κ over time, the raw gaze points, which consist of the 

positional (xi, yi) and temporal information (ti), for 19 participants was preprocessed by custom 

VBA scripts, where missing and invalid data (e.g., coordinates outside the screen and blinks) was 

removed. The mean data loss across all participants and trials was 11.9%, (SD=11.2%). It was 

then smoothed with a second-order Butterworth filter, with a 60 Hz sampling and 6.15 Hz cutoff 

frequency. A velocity-threshold algorithm (I-VT; Salvucci & Goldberg, 2000) was used to 

distinguish saccades from fixations. Saccades were any eye movement above the velocity 

threshold of 20°/s; otherwise, all other data points were classified as fixations. This procedure 

matched the one used to empirically validate coefficient Κ (Krejtz et al., 2016). 

For comparing the set of scan-based eye tracking metrics (Table 3.1) between constant 

and transitioning workload, the raw gaze points were screened to meet data quality requirements 

as outlined in ISO/TS 15007-2:2014-09, which states that at most 15% data loss is acceptable for 

good quality data. Following this guideline, the eye tracking of five participants was not used in 

any of the analyses. The mean data loss of the included participants was 7.1%. The gaze points 

from the eye tracker were used to calculate fixations and saccades (the eye tracker automatically 

filters out blinks and any fixations outside the screen were discarded). A dispersion-threshold 

algorithm (I-DT; Goldberg & Kotval, 1999) was applied to distinguish fixations from saccades: 

A cluster of gaze points was classified as a fixation if the points within the cluster were within 75 
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pixels of each other, and there was a minimum number of six gaze points within this fixation 

cluster. This made for a minimum fixation duration of approximately 100 ms. The first gaze 

point outside the 75-pixel limit was considered to be not part of the fixation; the gaze point just 

before would be the endpoint of the fixation. Any gaze points that were not part of fixations were 

assumed to be saccades. The calculated fixations were then used to calculate the metrics 

described in Table 3.1. 

 

Analysis  

 

All eye tracking metrics were analyzed with a RM ANOVA. To analyze how coefficient 

Κ compared between low and high workload periods over time for each transition rate (RQ 3.1), 

a 2×2×5 repeated measures analysis of variance (RM ANOVA) was used, which matches how 

the performance results were analyzed. Significance was set at α=0.05 and post-hoc tests with 

Tukey’s adjustment method were used to determine significant differences between means. 

Violations of normality were assessed prior to analysis and Greenhouse-Geisser corrections were 

used when sphericity was violated. RStudio 1.2.1335 was used for all analyses (RStudio Team, 

2020). General eta-squared (𝜂𝐺
2) is reported as a measure of effect size for the omnibus test and 

values of 0.01, 0.06, and 0.14 are interpreted as small, medium, and large effect sizes, 

respectively (Cohen, 1988). For all post hoc pairwise comparisons, effect size was measured 

with Cohen’s d for repeated measures (𝑑𝑟𝑚;Lakens, 2013) and values of .2, .5, and .8 are 

interpreted as small, medium, and large effect sizes (Cohen, 1988). For this figure, braces 

indicate groupings of workload periods, while brackets with an asterisk indicate a significant 

comparison between the workload periods. 
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To compare transitioning and constant workload scenarios (RQ 3.2), a one-way RM 

ANOVA with four levels (i.e., the four testbed scenarios from Ch. 2) was used to compare the 

scan-based metrics in Table 3.1. Bonferroni corrections were applied for all post hoc tests. In all 

cases, Epsilon (ε) was calculated according to Greenhouse-Geisser and used to correct the one-

way repeated measures ANOVA. For this set of figures, braces indicate groupings of testbed 

scenarios, while brackets with an asterisk indicate a significant comparison between the testbed 

scenarios. 

 

RQ 3.1: Comparing coefficient Κ across the workload periods 

To fully address RQ 3.1, i.e., the explanatory power of coefficient Κ on the observed 

workload history effects in Chapter 2, we examined the three-way interaction effect between 

transition rate, workload level, and workload period. There was a significant three-way 

interaction between transition rate, workload level, and period (F(4,72)=6.568, p=.0001, 

𝜂𝐺
2=0.064). This interaction effect specifically addresses our third research question. For medium 

transitions, the 2nd low workload period (M=0.15, SD=0.19) had significantly higher coefficient 

Κ values than all other low workload periods (1st period: M=-0.19, SD=0.16, p<.0001, 

𝑑𝑟𝑚=1.922; 3rd period: M=-0.13, SD=0.16, p< .0001, 𝑑𝑟𝑚=1.547; 4th period: M=-0.15, 

SD=0.17, p<.0001, 𝑑𝑟𝑚=1.587; 5th period: M=-0.02, SD=0.16, p=.028, 𝑑𝑟𝑚=0.955). In addition, 

coefficient Κ for the 2nd low workload period was also significantly higher than the 2nd low 

workload period of fast transitions (M=-0.06, SD=0.11, p=.001,  𝑑𝑟𝑚=1.270). Also with medium 

transitions, the 1st low workload period had a significantly lower coefficient Κ value than the 5th 

low workload period (p=.024, 𝑑𝑟𝑚= 1.06). Figure 3.1 shows coefficient Κ values over time based 

on workload and transition rate. 
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Figure 3.1 Mean coefficient Κ values for each workload period in the medium and fast 

transitions scenarios. Error bars represent standard deviation of the mean 

 

RQ 3.2: Comparing scan-based metrics to constant workload 

The spread metrics for each testbed scenario are presented in Figure 3.2. There was no 

significant effect of testbed scenario on convex hull area (Figure 3.2a). There was a significant 

effect of testbed scenario on spatial density (F(2.48,37.24)=5.24, p=.006, 𝜂𝑝
2=.25, ε=.82; Figure 

3.2b). Post hoc tests found the low workload scenario had a larger spatial density than the 

medium (p=.004) and fast transition scenario (p=.008). There was also a significant effect of 

testbed scenario on stationary gaze entropy (F(2.21,33.17)=9.49, p<.001, 𝜂𝑝
2=.38, ε=.78; Figure 

3.2c). Post hoc tests found that low workload had a higher stationary gaze entropy than all other 

testbed scenarios (high workload: p=.009, medium transition: p=.001, and fast transition: 

p=.007). Stationary gaze entropy was also significantly higher in the high workload scenario than 

the medium transition scenario (p=.014).   
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(a)  

(b) 

 

(c) 

 

Figure 3.2 Results of the spread metrics for each testbed scenario: (a) convex hull area, (b) 

spatial density, and (c) stationary gaze entropy. Error bars represent standard error of the mean 

 

For the directness metrics, which can be seen in Figure 3.3, there was a significant effect 

of testbed scenario on mean saccade amplitude (F(2.38,35.76)=13.81, p<.001, 𝜂𝑝
2=.47, ε=.79; 

Figure 3.3a). Post hoc tests showed that the low workload scenario had significantly larger 

saccade amplitude than all other testbed scenarios (all p<.001). For scanpath length per second, 

there was also a significant effect of testbed scenario (F(2.84,42.61)=16.32, p<.001; 𝜂𝑝
2=.52, 

ε=.94; Figure 3.3b). Post hoc tests showed that there was a significant difference between low 
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workload scenario and all other testbed scenarios (all p<.001). There was no significant effect of 

testbed scenario on backtrack rate (Figure 3.3c). There was a significant effect of testbed 

scenario on gaze transition rate (F(2.65,39.75)=4.92, p=.007, 𝜂𝑝
2=.24, ε=.88; Figure 3.3d). Post 

hoc tests found gaze transition rate was significantly lower during the low workload scenario 

compared to the medium (p=.029) and fast transitions scenario (p=.005). For gaze transition 

entropy, there was an effect of testbed scenario (F(2.16,32.48)=15.83, p<.001, 𝜂𝑝
2=.51, ε=.72; 

Figure 3.3e). Gaze transition entropy was significantly higher in the low workload scenario than 

all other testbed scenarios (all p=<.001). The gaze transition entropy in the high workload 

scenario was also significantly higher than the medium transition scenario (p=.007). Finally, for 

the duration metric, there was no significant effect of testbed scenario on mean fixation duration 

(Figure 3.4). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 3.3 Results of the directness metrics for each testbed scenario: (a) mean saccade 

amplitude, (b) scanpath length per second, (c) backtrack rate, (d) gaze transition rate, and (e) 

gaze transition entropy. Error bars represent standard error of the mean 
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Figure 3.4 Results of the duration metric for each testbed scenario. Error bars represent standard 

error of the mean 

 

Table 3.2 summarizes the present eye tracking results across workload transitions and constant 

workload. 
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Table 3.2 Summary of the eye tracking analysis between transitioning and constant workload 

Metric Result Main conclusions  

Spread Metrics 

Convex hull area (pixels2)  Not significant 

Increased spread was associated with 

worst performance 

 

 

Spatial density 
• Highest value in low workload 

compared to medium and fast 

transitions  

Stationary gaze entropy  

• Highest value in low workload 

• Higher value in high workload 

than medium transitions  

Directness Metrics 

Mean saccade amplitude (pixels) 
• Highest value in low workload 

scenario 

Except for gaze transition rate, all of 

metrics indicated less directness (i.e., 

efficiency) was associated with worst 

performance 

Scanpath length per second (pixels) 
• Highest value in low workload 

scenario 

Backtrack rate [/sec] Not significant 

Gaze transition rate [grid cells/sec] 
• Lowest value in low workload 

scenario compared to medium 

and fast transitions   

Gaze transition entropy 

• Highest value in low workload 

• Higher value in high workload 

than medium transitions 

Duration Metric 

Fixation duration [ms] Not significant 
Duration of visual attention was not 

associated with any performance trend 

 

 

Discussion 

 

The aim of this chapter was to understand if and how visual attention allocation explained 

the workload transition performance trends. Overall, including eye tracking data, specifically 
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scan-based metrics, was informative on the performance trends observed in Chapter 2 and 

specifics as to how will be discussed by addressing the outcomes of each research question. 

 

RQ 3.1: Is coefficient Κ informative of the workload history effects observed during 

medium and fast transitions? 

 

Most of the performance differences between medium and fast transitions were based on 

workload period, i.e., their respective workload history effect (Ch. 2). To better understand why 

this was the case, we consider the performance and coefficient Κ results together, to see whether 

these two data streams can provide a more complete understanding of the workload history 

effect. Overall, our expectations for this research question were partially met when considering 

the result of fast transitions: there was a decline in performance when participants engaged in 

more ambient visual attention initially, but performance improved later after coefficient Κ 

became aligned with workload level expectations, i.e., positive coefficient Κ during high 

workload periods and negative coefficient Κ during low workload periods. The findings for fast 

transitions show that a participant’s performance can recover if visual attention allocation 

strategies are developed in accordance with each workload level.  

Oppositely, for medium transitions, coefficient Κ peaked during the 2nd low workload 

period as it was significantly higher than all other low workload periods and the corresponding 

low workload period of fast transitions. The significant increase in coefficient Κ coincides with 

the first time low workload periods of medium transitions irreversibly increase in response times 

and decrease in accuracy rates. Workload history effects with medium transitions may be due to 

a large, unexpected, increase in focal attention during low workload. Similarly, coefficient Κ was 
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significantly larger in the final low workload period of medium transitions compared to its first 

low workload period. The findings here may indicate that an increase in focal attention during 

low workload periods of workload transitions may be an indicator of future performance 

decrements, i.e., a workload history effect, and not an improved acquaintance with the 

environment like previous work suggests (Irwin & Zelinsky, 2002; Krejtz et al., 2017; Krejtz et 

al., 2018). Workload history effects are more likely to be apparent during low workload periods 

(Bowers et al., 2014; Cox-Fuenzalida, 2007; Matthews, 1986), but now coefficient Κ provides a 

quantitative explanation as to why this is the case—not using the appropriate visual attention 

type as a function of workload. Furthermore, even though coefficient Κ values eventually 

converged to similar patterns over time for both transition rates, performance trends did not. One 

potential explanation could be adopting ineffective strategies at the onset may have both 

immediate and delayed effects on performance, even if more effective strategies are adopted 

eventually, as presently seen with medium transitions. It may also show that the visual attention 

type adopted for fast transitions may not be best for medium transitions and vice versa. A follow-

up study should ideally examine workload history over a longer time frame to see if performance 

recovers when an effective visual attention management strategy is eventually adopted and if 

effective visual attention allocation varies by transition rate. 

Overall, these results suggest that it is important to immediately adopt an effective 

strategy to account for workload transitions or performance may irrevocably suffer (i.e., a 

workload history effect endures). The findings also support the premise that people initially 

evaluate the environment to develop a management strategy for workload transition, but struggle 

to update this strategy over time (Over et al., 2007; Prytz & Scerbo, 2015). The findings add to 

the effort regulation explanation because how operators manage workload transitions impacts 
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performance over the course of workload transitions. Previous research that examined workload 

history with other psychophysiological measures detect a cognitive response to the workload 

transition, but the practical interpretation of these measures is unclear (Bowers et al., 2014; Kim 

et al., 2019). However, the findings here show the potential of advanced scan-based metrics to be 

used in real-time and inform the design of intelligent technology (Feigh et al., 2012; Rothrock et 

al., 2002). 

 

RQ 3.2: Are scan-based metrics informative on the performance differences between 

transitioning and constant workload? 

 

In Chapter 2, the analysis of the primary and secondary tasks performance during both 

low and high workload provided further insights into the effects of workload transitions. There 

were minimal performance differences between primary and secondary task performance of 

medium and fast transitions when analyzed overall and by workload level. Similarly, none of the 

scan-based metrics were significantly different between medium and fast transitions. It appears 

the small subset of overall and by workload level performance differences between the two 

transition scenarios is not a function of how participants sampled and extracted information from 

the environment. As for how it compares to constant workload, primary and secondary tasks 

mostly performed better during workload transitions. The results confirm that workload 

transitions can affect how people perform their tasks in a way that is different from just high or 

low workload (Cox-Fuenzalida, 2007; Cumming & Croft, 1973; Goldberg & Stewart, 1980), 

especially when in a dynamic, realistic, multitasking environment (Jansen et al., 2016). 

Analyzing the scan-based measures aims to understand how priorities and strategies adjusted 
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during workload transitions to prompt superior multitasking performance.  

In general, results were consistent with the hypothesis of worst multitasking performance 

being associated with increased spread and less directness. As previously discussed in Chapter 2, 

worse multitasking performance was surprisingly during the low and high workload condition. 

For example, during low workload, the spread metrics suggest participants were covering wider 

and more varied areas of the display, whereas the directness metrics suggest participants were 

scanning less efficiently especially compared to medium and fast transitions. The only exception 

to this statement is gaze transition rate being higher with medium and fast transitions than 

compared to constant low workload. Similarly, the only expectation that was not met was for the 

duration metric; results suggest that there was no association between certain performance 

findings or workload transitions and the length of time participants spent fixating. This is 

surprising given how frequently mean fixation duration is used in the context of workload (e.g., 

Schulz et al., 2011). It could be that there is no issue of discriminating information in this study, 

although this would need to be further explored. 

Multitasking performance trends were best reflected in the eye tracking metrics capturing 

transitions between AOIs. Specifically, stationary gaze entropy and gaze transition entropy were 

the only measures where both the constant low and high workload scenarios were significantly 

different than the transitioning scenarios, suggesting that these metrics are particularly sensitive 

to changes occurring within the environment. These two metrics are based on the Markov 

property, a stochastic process in which the next state (in this case, the next AOI that is fixated) 

depends only on the current state (current AOI being fixated). By modeling visual attention 

allocation as probabilities of where attention will switch based on the current location of 

attention, it directly informs task strategy, which seems to be the key difference between constant 
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and transitioning workload performance. These measures found better performance was 

associated with more concentrated and routine attention transitions, respectively. It would appear 

that the order attention transitions to AOIs and the probability of it being on each AOI is an 

aspect that should be regularly explored in studies where workload transitions in dynamic 

environments, contrary to what is currently the case.  

Visual attention allocation was more structured and planned during both workload 

transition rates, potentially suggesting workload transitions assisted with the regulation of mental 

resources. The spread metrics suggest that visual attention was covering more of the display 

during the low workload scenario (e.g., higher spatial density) and the distribution of transitions 

across panels was larger (e.g., higher stationary gaze entropy) for both the low and high 

workload scenarios compared to the medium and fast transitions scenarios. The directness 

metrics suggested participants were scanning less in general (e.g., decreased gaze transition rate) 

and with less purpose (e.g., higher gaze transition entropy) in the low and/or high workload 

scenario compared to the medium and fast transitions scenarios. Therefore, the strategic use of 

mental resources contributed to the improved performance during workload transitions which 

supports the effort regulation explanation because improved performance is associated with the 

ability to strategically deploy mental resources, i.e., establish a visual attention allocation 

strategy. A more systematic visual attention allocation strategy used during workload transitions 

would also explain why there was an increase in gaze transition rate: participants moved from 

one general area of the screen to another in an urgent, systematic fashion. During low workload, 

participants scanned more of the display with less purpose, potentially making their task 

completion strategy less systematic. This seemed to be a bigger contributor in hindering effective 

multitasking performance rather than the amount of mental resource available for use, which 
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challenge the applicability of the resource depletion explanation. The findings here demonstrate 

the importance of considering multiple types of scan-based metrics to understand the effects of 

workload transitions on visual attention allocation as thoroughly as possible. 

Overall, Chapter 3 shows how scan-based eye tracking measures help explain the 

operator’s process in managing workload transitions and its impact on performance. Specifically, 

the spread, directness, and type of visual attention can be a non-invasive, psychophysiological, 

and quantitative method to further understand how people are impacted by and responding to 

workload transitions, and how this leads to certain workload history effects and multitasking 

performance trends.  

 

Limitations 

 

More work is needed before concretely relating scan-based measures to workload 

transition performance trends. First, a study with a similar task paradigm, but larger sample size 

and different display layout should be completed to see if these results replicate. Second, it might 

be best to investigate how different lengths of time at each workload level impacts coefficient Κ 

results. Here, medium and fast transitions had different amounts of time in low workload due to 

the experimental setup and it is unclear if this influenced the coefficient Κ results (Krejtz et al., 

2016). Two potential ways it could potentially impact the comparisons made between the two 

transition rates include (a) coefficient Κ values in the low workload periods of the medium 

transition were more sensitive to any major fluctuations in fixation duration and/or saccade 

amplitude or (b) the longer durations in the low workload periods of fast transitions gave 

participants more time to establish a consistent visual attention strategy for each low workload 
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period. Albeit, this is a limitation of the present study, coefficient Κ still appears to be a 

promising metric in capturing changes to visual attention and performance outcomes over time 

when workload changes.  

It would also be interesting to look at how the set of scan-based metrics in Table 3.1 

detail performance trends over time. This would be particularly important when studying the 

effects of different workload transition rates given this is where most of those performance 

differences manifested. Exploring over longer workload periods would also better assess the 

applicability of the resource depletion explanation, as more time may be needed for resource to 

deplete and/or recover (Gluckman et al., 1993). However, most previous workload transition 

research is conducted in a time frame that is similar to the present work and both theories have 

been found to apply (e.g., Cox-Fuenzalida & Angie, 2005; Hancock et al., 1995; Jansen et al., 

2016; Morgan & Hancock, 2011). Furthermore, the sampling rate of the eye tracker used in this 

study (60 Hz) is not ideal for the study of saccade amplitude, although it makes no difference to 

the detection of fixations or the coefficient Κ calculation (Leube et al., 2017; Krejtz et al., 2016). 

Finally, future work should thoroughly examine the explanatory power of scan-based metrics by 

modeling them as predictors of workload transition performance. Conducting this analysis will 

not only verify the currently observed associations between visual attention allocation patterns 

and performance, but it will be necessary if eye tracking is to serve as the basis of advanced 

technology that can cater to the needs of the individual in real-time.  

 

Conclusion 

 

Coefficient Κ has promise to be a real-time, proactive indicator of visual attention 
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strategies that might later lead to negative workload history effects during low workload. 

Therefore, coefficient Κ may be a reliable indicator of when the operator needs assistance and 

how to provide that assistance (e.g., encourage the operator to engage in a certain visual attention 

type when workload transitions over time). This potential has not been as promising with other 

real-time, cognitive-based measures (e.g., EEG; Bowers et al., 2014; Kim et al., 2019). 

Additionally, using a combination of scan-based metrics, especially ones capturing the context of 

the environment, assists in explaining how visual attention allocation impacts performance 

during workload transitions. In particular, the spread (namely, spatial density and stationary gaze 

entropy) and directness metrics (namely, gaze transition rate and gaze transition entropy) 

provided an explanation on why workload transitions outperformed constant workload, i.e., 

visual attention was more concentrated and efficient. This is interesting considering these types 

of metrics are rarely used in the context of workload (e.g., Coyne et al., 2017; Foy & Chapman, 

2018). The two entropy metrics were particularly informative, suggesting that they should be 

used more in studies of workload transitions. Given that stationary gaze entropy reflects where 

visual attention was most likely to be across the different tasks, these metrics provide direct, 

quantifiable insight into participants’ task switching behavior during workload transitions – a 

completely novel finding. It would seem workload transitions cannot be expected to produce 

performance trends that are some “average” between low and high workload, as workload 

transitions seem to prompt a different multitasking approach.  

Our future work will expand upon these findings for the benefit of both theory and 

application. For example, if workload transition performance is a function of how visual 

attention is deployed, then the effort regulation explanation should be further expanded upon. 

Additionally, understanding how visual attention impacts performance, directly informs the 
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design of visual displays in the environment, and how to further investigate the design of 

advanced technology, like adaptive displays (Feigh et al., 2012). 

 

Next Steps 

 

Chapters 2 and 3 served as initial investigations into the effects of workload transition 

rate on performance and visual attention allocation patterns. The biggest findings so far include: 

• Workload transitions in multitasking, realistic environments produce nuanced, 

unexpected performance trends potentially because they prompt the active regulation 

of mental resources. 

• Transition rate differences were the most prominent with time-based analyses. 

• Advanced scan-based metrics were the most informative on task strategy and 

performance differences over time. 

Per these results and their identified limitations, our follow up investigation includes: 

• A further expansion on workload transition rate with a context-relevant population. 

• Analyzing workload transition performance with longitudinal analysis methods, while 

actively accounting for the performance trends of each individual. 

• Directly synthesizing the performance and visual attention allocation together by 

making the latter a direct predictor in the former’s trends over time. 

The follow up study and analysis fills out the remaining two chapters of this dissertation. 
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CHAPTER 4 

 

How does workload transition rate influence performance trends over time? 

 

Introduction 

 

Per the performance trends in Chapter 2, this chapter aims to understand how 

performance trends over time. It specifically investigates if these performance trends depend on 

the transition rate, the workload level, i.e., low versus high workload, and/or the individual 

managing the workload transition. Two different analysis methods, one that is widely relied upon 

and one that is new to workload transition research, will be conducted to provide practical, 

nuanced, and operator-centric design guidance. Chapter 4 begins to simultaneously address the 

applied research gaps stated at the end of Chapter 3 as a means to develop theory and design, 

given it has been limited to sporadic and vague recommendations on the expected outcomes of 

workload transitions, with no guidance on how operators should manage workload transitions in 

real-world environments. Specifically, Chapter 4 details how primary task performance trends 

over time across three different transition rates. 

 

Background on the experimental paradigm and analysis method 

 

Further examining the impact of transition rate and multiple transitions can potentially 

inform the applicability of each theoretical explanation (e.g., Ungar et al., 2005). Including these 

characteristics may also lead to a more thorough understanding of workload transition 
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performance, such as speed/accuracy tradeoffs, low versus high workload performance, and the 

severity of decrements and/or improvements over time. Fleshing out these details can lead to 

more informative design guidance for environments experiencing workload transitions. We 

decided to further explore transition rate given workload transitions produced unexpectedly 

better performance and more purposeful visual attention allocation patterns.  

Second, context-relevant populations, i.e., non-university student populations, are rarely 

recruited for workload transition research, even though there is evidence of workload transitions 

impacting individuals differently (Cox-Fuenzalida, Angie, et al., 2006; Cox-Fuenzalida et al., 

2004; Devlin & Riggs, 2018; McKendrick & Harwood, 2019; Mracek et al., 2014). Edwards et 

al. (2017) studied workload transition performance of air traffic controllers and performance 

surprisingly improved between the two high workload periods in a high-low-high workload 

paradigm (Figure 1.1d). However, their sample size only included eight participants, which 

questions the generalizability of their results. The workload history effects found in Chapter 2 

did report rather large performance variance across the workload periods, making it possible that 

performance trends over time may have differed across participants, but there was no way to 

confirm this with the analysis method used, i.e., post hoc tests of a repeated measures analysis of 

variance. 

 Third, the analysis method to date has consisted of either pairwise comparisons to a 

constant workload baseline (e.g., comparing performance during the low workload period in a 

workload transition to performance during constant low workload; Bowers et al., 2014; Cox-

Fuenzalida, 2007; Devlin et al., 2020) or between the same workload levels over time (e.g., 

comparing 1st and 2nd low workload periods, etc.; Devlin et al., 2021; Jansen et al., 2016; Kim et 

al., 2019; Morgan & Hancock, 2011). Although the latter is sufficient to determine workload 
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history effects, it cannot decipher if performance fluctuates (temporary change) or changes 

(indefinite change) over time and if either depends on the individual. Determining whether these 

types of trends exist could inform the theory and design surrounding workload transitions (Cox-

Fuenzalida et al., 2004; Cox-Fuenzalida et al., 2006; McKendrick & Harwood, 2019; Mracek et 

al., 2014).  

 

Motivation for the current chapter 

 

The goal of Chapter 4 was to understand how transition rate, workload level, and the 

individual impact performance trends over time for both response time and accuracy when there 

are multiple instances of workload transitions. The specific research questions aim to build upon 

the current theoretical explanations and provide design guidance to better support operators 

experiencing workload transitions in complex environments. There is growing evidence 

workload transition performance trends are transient over time (Jansen et al., 2016) and depend 

on the individual (McKendrick & Harwood, 2019; Mracek et al., 2014), yet the analysis used by 

most existing studies cannot detect these critical caveats. One way to simultaneously address 

these two gaps consists of analyzing performance trends from a context-relevant population with 

methods such as growth curve modeling. This modeling approach estimates performance trends 

over time by estimating and comparing how each individual performs over time (Curran, 

Obeidat, & Losardo, 2011). Completing both the aggregate analysis (traditional analysis used in 

existing literature) and growth curve modeling are necessary to answer the following research 

questions:  

1. RQ 4.1: Does transition rate affect performance trends over time?  
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a. Expectations: Previous work showed performance trends depended on 

transition rate, with slower transition rates showing performance declines over 

time (Devlin et al., 2021; Moroney et al., 1995). Our previous work also found 

performance trends depended on workload level, i.e., the low and high 

workload periods within a workload transition, and the performance measure, 

i.e., response time and accuracy. Hence, we expect response times to slow, 

especially across the low workload periods of each transition rate, but 

ultimately recover for all transition rates, where recovery will be faster and 

more pronounced with faster transition rates (Devlin et al., 2021; Moroney et 

al., 1995). For accuracy, we expect an initial decline during low and high 

workload periods of slower transitions, but then a slight recovery; yet with 

faster transitions, accuracy will remain unchanged over time (Devlin et al., 

2021; Moroney et al., 1995).  

2. RQ 4.2: Which theoretical explanation—i.e., resource depletion or effort 

regulation—accounts for the observed performance trends over time?   

a. Expectations: Given the aggregate analysis relies on pairwise comparisons, it 

is not equipped to indicate the general performance trends over time (i.e., 

deciphering fluctuation from change). Here, growth curve modeling serves as 

a way to concisely and uniquely quantify performance trends in that it 

estimates a single performance trajectory for each individual across both low 

and high workload. If resource depletion better explains the performance 

trends over time, then growth curve modeling will estimate a quadratic 

trajectory, i.e., a U-shape, for both response time and accuracy. Specifically, it 
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will show performance initially suffering, but then recovering for all 

individuals. If effort regulation better explains the performance trends over 

time, then growth curve modeling will estimate both performance metrics to 

have linear trajectories, with its direction and steepness dependent on the 

individual. 

3. RQ 4.3: Does the individual affect performance trends over time? 

a. Expectations: Chapter 2 found large performance variability in low and high 

workload periods for both transition rates (Devlin et al., 2021). However, our 

previous analysis method, i.e., the aggregate analysis, could not reveal 

whether performance trends varied across individuals. For this research 

question, we rely on growth curve modeling because it estimates a 

performance trajectory for each individual and then assesses the variability 

amongst the trajectories. Although our study is with a homogenous, context-

relevant population, we expect that growth curve modeling will estimate 

significant variability between individual trajectories, especially for faster 

transition rates, given transition rate is not often studied in previous work and 

performance outcomes of previous work diverges (see review in Bowers, 

2013). A counterintuitive advantage of answering this research question with 

a homogenous, context-relevant population is if individual differences are 

present, this all but guarantees its presence with more heterogeneous 

populations. Knowing and quantifying this effect is essential to designing 

visual displays able to account for workload transitions. 

Overall, the motivation to answer these aforementioned research questions is to provide 
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empirically informed design guidelines for environments prone to workload transitions. This 

study is with a context-relevant population (student Naval aviators) who experienced three 

different transition rates in the UAV command and control testbed. 

 

Method 

 

Participants 

 

Sixty student Naval aviators participated in this study (50 males, age: M=24.5, SD=2.3). 

Participants provided verbal informed consent and the study was approved by the Naval 

Research Laboratory’s Institutional Review Board. Each participant completed three trials (i.e., 

the testbed scenarios). To assure asymptote performance was being analyzed (as this will be 

critical to growth curve modeling), participants who were below the 25th percentile during 

training (i.e., 64% average accuracy across all tasks) only had their 2nd and 3rd trial included in 

the analysis. There was also data quality threshold for eye tracking data (see details in Chapter 

5). The final subset of data included 95 trials from 40 participants, where each transition rate was 

represented relatively equally, with 32, 34, and 29 trials, of the slow, medium, and fast 

transitions scenario, respectively (see Testbed scenarios section in this chapter for more details).  

 

Experimental setup 

 

The same experimental setup in Chapter 2 was used in Chapter 4. However, the testbed 

was now presented on a ViewSonic 24” monitor (2560×1440 resolution, 60 Hz refresh rate). 

Otherwise, all other details from Chapter 2 apply to Chapter 4. 
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UAV command and control testbed and tasks 

 

The same UAV command and control testbed from Chapter 2 was used for this chapter’s 

research goals. 

 

Testbed scenarios 

 

Workload was manipulated in the same way as Chapter 2. An additional transition rate 

was created meaning three workload transition rates were tested via three testbed scenarios, i.e., 

15-minute missions in the UAV command and control testbed, and were as follows: 

1. Slow transitions scenario. The number of active UAVs increased steadily from low 

to high workload. The scenario started at low workload for 100 seconds, and one 

active UAV was added every 10 seconds until high workload was reached (13-16 

active UAVs). The scenario would remain at high workload for 100 seconds, before 

immediately returning to low workload. This cycle repeated three times for this 

scenario, meaning there was a total of three periods of low workload and three 

periods of high workload. The dotted black line in Figure 4.1 depicts the number of 

simultaneously active UAVs over the course of this testbed scenario. 

2. Medium transitions scenario. This testbed scenario was the same as Chapter 2. The 

dashed dark gray line in Figure 4.1 depicts the theoretical number of simultaneously 

active UAVs over the course of this testbed scenario.  

3. Fast transitions scenario. This testbed scenario was the same as Chapter 2. The solid 
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light gray line in Figure 4.1 depicts the number of simultaneously active UAVs over 

the course of this testbed scenario. 

 

 

Figure 4.1 The hypothetical number of active UAVs throughout the three testbed scenarios, i.e., 

transition rates. Each workload period for each testbed scenario is highlighted. Of note, there is 

only three low and three high workload periods during slow transitions in order to keep testbed 

scenario length constant 

 

Procedures 

 

This research complied with the APA Code of Ethics and was approved by the 

Institutional Review Board at the U.S. Naval Research Laboratory. Informed consent was 

obtained from each participant. Participants then completed a self-paced informational training 

session and then completed a five-minute training session where 6-10 UAVs were always active. 

Participants then completed testbed scenarios in a counterbalanced order.  
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Results 

 

Both the aggregate and growth curve modeling analysis explored how performance 

trends over time depended on transition rate, workload, and the individual. For both analyses, the 

dependent variable was always primary task performance, i.e., the target detection task, as this 

task happened continuously over time. Response time was the time between target onset and its 

correct detection and accuracy was the percent of correct detections. 

 

Aggregate analysis results  

 

The aggregate analysis consisted of an analysis of variance (ANOVA) on workload 

period performance for each transition rate. Given the data structure (e.g., different number of 

trials per participant and different number of workload periods within each transition scenario), 

restricted maximum likelihood estimation with Satterthwaite’s method for degrees of freedom 

was necessary to accurately conduct the omnibus test and significance was set at α=.05 (Luke, 

2017). The ANOVA had one factor with 34 levels, where each level was a combination of 

transition rate and workload period (i.e., 9 workload periods in slow transitions, 15 workload 

periods in medium transitions, and 10 workload periods in fast transitions). To determine if there 

were significant differences between workload periods’ response time and accuracy, post hoc 

tests employed custom linear contrast with Sidak’s adjustment for multiple comparisons (Kim, 

2015). Adjusted partial eta-squared (𝜂𝑝
2) is reported as a measure of effect size for the omnibus 

test (interpretation: very small <0.02, small 0.02-0.13, medium 0.13-0.26, large if >0.26; Cohen, 

1988). For pairwise comparisons, Cohen’s d for repeated measures (𝑑𝑟𝑚) is reported 
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(interpretation: small=<0.2, medium 0.2-0.5, large >0.8; Lakens, 2013). For all figures, error bars 

represent the standard deviation of the mean, braces indicate groupings of workload periods, and 

brackets with an asterisk indicate a significant comparison between two workload periods. 

 

Primary task response time  

When analyzing response time, the main effect of the transition rate and workload period 

was significant (F(33, 1016.6)=32.404, p<.001, adjusted 𝜂𝑝
2=0.5). During slow transitions, 

response time was slower in the 2nd low workload period (M=3.31 s, SD=0.57 s) than the 1st 

(M=2.69 s, SD=0.32 s, p=.009, 𝑑𝑟𝑚=0.931) and 3rd (M=2.62 s, SD=0.58 s, p=.002, 𝑑𝑟𝑚=0.850), 

suggesting an immediate performance decrement that recovered over time. For medium 

transitions, response time for the 1st low workload period (M=3.65 s, SD=0.87 s) was slower than 

the 2nd (M=2.52 s, SD=1.30 s, p<.0001, 𝑑𝑟𝑚=0.707), 3rd (M=2.35 s, SD=1.43 s, p<.0001, 

𝑑𝑟𝑚=0.770), and 4th (M=2.13 s, SD=0.96 s, p<.0001, 𝑑𝑟𝑚=1.155). However, the 5th low 

workload period (M=5.08 s, SD=0.79 s) had the slowest response time compared to all other 

periods (all p<.0001, 𝑑𝑟𝑚=1.155-2.340), suggesting response times were faster with the first 

instances of medium transitions, but performance eventually returned to initial speeds over time. 

For fast transitions, the 3rd (M=2.83 s, SD=0.80 s), 4th (M=3.29 s, SD=0.75 s), and 5th low 

workload periods (M=3.46 s, SD=0.63 s) had significantly slower response times than the 1st 

(M=1.82 s, SD=0.46 s, all p<.01, 𝑑𝑟𝑚=1.073, 1.654, and 2.119 respectively) and 2nd low 

workload periods (M=2.16 s, SD=1.08 s, all p<.01, 𝑑𝑟𝑚=0.491, 0.842, and 1.032 respectively). 

However, the 5th low workload period was also significantly slower than the 3rd low workload 

period (p=.02, 𝑑𝑟𝑚=0.609), suggesting response time slowed from the onset of the first fast 

transition. Figure 4.2 details the differences in primary task response time across each low 
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workload period within each transition rate. 

   

Figure 4.2 Mean primary task response time across the low workload periods in each transition 

rate. Asterisks (*) denote significant differences between workload periods 

   

For high workload periods, post hoc tests found the 1st high workload period in slow 

transitions (M=3.22 s, SD=0.40 s) had significantly faster response time than the 2nd (M=3.77 s, 

SD=0.37 s, p=.046, 𝑑𝑟𝑚=1.102). By the 3rd high workload period, response time was closer to 

initial speeds, but it was not significantly slower or faster than either previous period (M=3.40 s, 

SD=0.36 s, both p>.05). For medium and fast transitions, there were no significant differences 
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for the response times of high workload periods. Figure 4.3 details the differences in primary 

task response time across each high workload period within each transition rate. 

 

Figure 4.3 Mean primary task response time across the high workload periods in each transition 

rate. Asterisks (*) denote significant differences between conditions 

 

Primary task accuracy  

When analyzing accuracy, the main effect of transition rate and workload period was 

significant (F(33,1016.6)=19.422, p<.0001, adjusted 𝜂𝑝
2=0.37). Post hoc comparisons showed no 

differences in accuracy across any of the low workload periods for slow transitions (all p>0.05). 
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This was not the case for the medium transitions, as accuracy was higher in the 1st (M=92.4%, 

SD=19.9%) and 2nd low workload period (M=95.6%, SD=18.9%) compared to the 3rd (M=68.6%, 

SD=30.6%, both p<.0001, 𝑑𝑟𝑚=0.632 and 0.734 respectively) and 4th low workload period 

(M=73.5%, SD=30.7%, both p<.0001, 𝑑𝑟𝑚=0.506 and 0.597 respectively). Accuracy recovered 

by the 5th low workload period (M=85.3%, SD=24.9%), and was significantly higher than the 3rd 

low workload period (p<.0001, 𝑑𝑟𝑚=0.419). For the fast transitions, the 1st low workload period 

(M=91.0%, SD=26.5%) had significantly higher accuracy than the 2nd (M=73.3%, SD=27.0%, 

p<0.0001, 𝑑𝑟𝑚=0.469), 3rd (M=51.4%, SD=29.5%, p<0.0001, 𝑑𝑟𝑚=0.997), and 4th (M=74.5%, 

SD=25.6%, p=0.002, 𝑑𝑟𝑚=0.449) low workload periods. Again, accuracy significantly drops, but 

recovers as the 2nd (p<.0001, 𝑑𝑟𝑚=0.547), 4th (p<.0001, 𝑑𝑟𝑚=0.588) and 5th low workload 

periods (M=81.6%, SD=28.1%, p<.0001, 𝑑𝑟𝑚=0.741) had significantly higher accuracy than the 

3rd low workload period. Figure 4.4 details the differences in primary task accuracy across each 

low workload period within each transition rate. 
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Figure 4.4 Mean primary task accuracy across the low workload periods in each transition rate. 

Asterisks (*) denote significant differences between conditions 

 

For the accuracy across the high workload periods, there were no significant differences 

during slow transitions. However, high workload accuracy improved during medium transitions, 

as the 4th (M=69.3%, SD=16.0%, p=.001, 𝑑𝑟𝑚=0.673) and 5th high workload periods (M=66.7%, 

SD=17.6%, p=.022, 𝑑𝑟𝑚=0.539) had significantly higher accuracy than the 1st high workload 

period (M=53.5%, SD=17.0%). There was also no significant difference in accuracy across the 

high workload periods of fast transitions. Figure 4.5 details the differences in primary task 
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accuracy across the high workload periods in each transition rate. 

 

Figure 4.5 Mean primary task accuracy across the high workload periods in each transition rate. 

Asterisks (*) denote significant differences between conditions 

 

Growth curve modeling  

 

The second analysis consisted of growth curve modeling, where the goal was to 

determine if and how: (a) performance changed over time (RQ 4.1) and (b) varied across 

individuals (RQ 4.3). This meant building several growth curve models for both response time 
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and accuracy for each testbed scenario, i.e., slow, medium, and fast transitions. The growth curve 

models consisted of two types of effects. Fixed effects do not vary across the grouping variable 

of interest, which in this work was always the participant so, the estimated value and significance 

of a fixed effect applies to all participants. Specifically, the fixed effects estimated the 

performance trends over time (RQ 4.1). On the other hand, random effects capture the variance 

associated with each parameter, meaning the value for that parameter depends on the participant. 

In this work, the model’s random effects estimate the variance associated with the estimated 

performance trends over time, which allows for assessing the impact of individual differences 

(RQ 4.3). Equation 4.1 shows a model estimating values over time 𝑡 where the intercept (𝛽0𝑖) is 

a random effect, i.e., a random intercept, because its value depends on person 𝑖. However, the 

predictor (𝛽1) is a fixed effect because its value does not have this dependency. 

 

 𝑦𝑡𝑖 =  𝛽0𝑖 + 𝛽1𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑒𝑡𝑖 (4.1) 

 𝑤ℎ𝑒𝑟𝑒 𝛽0𝑖 = 𝛾00 + 𝑈0𝑖  

 

The first step in growth curve modeling is to determine the appropriate null model, i.e., 

the model to build upon when determining the best fit. This consisted of testing if an empty 

means, random intercept model (Equation 4.2) significantly improved model fit when compared 

to an empty means only model (Equation 4.3) as determined by a nested likelihood ratio test 

(LRT) with significance set at α=0.05. Maximum likelihood estimation (ML) was used to fit both 

models. 
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 𝑦𝑡𝑖 =  𝛽0𝑖 + 𝑒𝑡𝑖   (4.2) 

 𝑤ℎ𝑒𝑟𝑒,  𝛽0𝑖 = 𝛾00 + 𝑈0𝑖  

 

 𝑦𝑡𝑖 =  𝛽0+ 𝑒𝑡𝑖   (4.3) 

 

If the empty means, random intercept model (Equation 4.2) was a significantly better fit, then the 

intercept of the growth curve model, which in this work represents baseline performance, had a 

significant variance (𝜏𝑈0

2 ). In practical terms, this means the intercept value depends on the 

individual participant, so each participant needs his/her own growth curve. Otherwise, the empty 

means only model (Equation 4.3) served as the null model.  

Then, fixed effects of scenario time, i.e., fixed time slopes, were added to the null model. 

Scenario time was in 10 second increments because a new target appeared every 10 seconds, on 

average. Fixed linear, quadratic, and cubic time slopes were of interest; cubic was the highest 

ordered polynomial considered because previous workload transition research observes 

performance to change trends over time no more than twice over the course of the experimental 

session (Gluckman et al.,1993; McKendrick & Harwood, 2019), which can be captured by a 

cubic time slope. Also, higher order polynomials seldom fit human behavioral data (Hoffman, 

2015). Each fixed time slope was sequentially added to the model to see if it significantly 

improved model fit, as assessed via nested likelihood ration tests (LRTs) where significance was 

set at α=0.05 (Fitzmaurice, Laird, & Ware, 2011; Hedeker & Gibbons, 2006). When a new, 

higher ordered polynomial fixed time slope was added, all lower ordered polynomials, regardless 

of significance, were kept to accurately compare model fit and preserve proper interpretation. 

Equation 4.4 is an example of a growth curve model with a fixed cubic time slope and random 
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intercept, which would be referred to as a fixed cubic, random intercept growth curve model. 

 

 𝑦𝑡𝑖 =  𝛽0𝑖 + 𝛽1(𝑇𝑖𝑚𝑒𝑡𝑖) + 𝛽2(𝑇𝑖𝑚𝑒𝑡𝑖)
2 + 𝛽3(𝑇𝑖𝑚𝑒𝑡𝑖)

3 + 𝑒𝑡𝑖 (4.4) 

 𝑤ℎ𝑒𝑟𝑒, 𝛽0𝑖 = 𝛾00 + 𝑈0𝑖, 𝛽1 = 𝛾10, 𝛽2 = 𝛾20, 𝛽3 = 𝛾30  

 

 Once the best fitting fixed time slope model was determined, every time slope in the 

model was then sequentially tested as a random effect, i.e., a random time slope. Again, nested 

LRTs were used to compare model fit, but significance was now set at α=0.10 to protect against 

Type II errors (Fitzmaurice et al., 2011; Hedeker & Gibbons, 2006). However, if the model 

became singular when adding random time slopes, i.e., the variance of that time slope was 

estimated as non-positive, model fit was not assessed as the likelihoods were no longer 

comparable (Hoffman, 2015, p. 198). Equation 4.5 is an example of a growth curve model with 

fixed quadratic and cubic time slopes, random intercept, and random linear time slope, which 

would be referred to as a fixed cubic, random intercept, and random linear growth curve model. 

 

 𝑦𝑡𝑖 =  𝛽0𝑖 + 𝛽1𝑖(𝑇𝑖𝑚𝑒𝑡𝑖) + 𝛽2(𝑇𝑖𝑚𝑒𝑡𝑖)
2 + 𝛽3(𝑇𝑖𝑚𝑒𝑡𝑖)

3 + 𝑒𝑡𝑖 (4.5) 

 𝑤ℎ𝑒𝑟𝑒, 𝛽0𝑖 = 𝛾00 + 𝑈0𝑖,  𝛽1𝑖 = 𝛾10 + 𝑈1𝑖,  𝛽2 = 𝛾20, 𝛽3 = 𝛾30   

 

 Again, maximum likelihood estimation (ML) method was used to fit each model. Time 

slopes were scaled to assure model convergence, but rescaled coefficients are presented when 

practical interpretation is needed, i.e., when presenting the best fitting growth curve model 

(Bates et al., 2015). RStudio (version 1.3.1093) was used for all analyses: response time was 

modeled as a normal distribution and built with the nlme (Pinheiro et al., 2021) and lme4 
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package (Bates et al., 2015; RStudio Team, 2020). Accuracy was modeled as a binomial 

distribution and built with GLMMadaptive package in RStudio to robustly fit models and 

estimate the standard errors of the fixed effects (Rizopoulos, 2021). The scaled coefficients and 

fit statistics of each model are reported in Tables 4.1-4.6. In the interest of brevity, not every 

model that was built is reported. Rather, only the details of the null model, each fixed time slope 

model, and the random linear time slope model are presented because making the quadratic or 

cubic time slopes random effects never improved model fit. The final growth curve model, i.e., 

the best fitting model overall, for each performance metric of each transition rate is interpreted 

and discussed in the text and highlighted in its respective table.   

 

Response Time: Slow transitions scenario  

The empty means, random intercept model was a significantly better model fit than an 

empty means only model (χ2(1)=18.581, p<.0001). This indicated baseline response time speeds 

varied significantly across participants (𝜏𝑈0

2 = 0.038) and an empty mean, random intercept model 

should be the null model. To determine how response time trended over the course of slow 

transitions, linear (χ2(1)=0.252, p=0.616), quadratic (χ2(1)=19.901, p<.001), and cubic (χ2(1)= 

83.385, p<.001) time slopes were incrementally added to the model and compared. The fixed 

quadratic and cubic time slopes significantly improved model fit (details of these models in 

Table 4.1). Including a random linear time slope did not lead to a significantly better model fit 

(Model 4, χ2(2)=1.742, p=0.419) and all other random time slopes lead to singular model fits, so 

they were not compared. Therefore, a fixed positive cubic time slope and random intercept 

model was the best fitting growth curve model of response time during slow transitions (Model 3 

in Table 4.1). 
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Starting response time, i.e., the intercept, was estimated to be 2.4 s; however, the 

intercept was a significant random effect, meaning the intercept varied significantly across 

participants (p<.001, 𝜏𝑈0

2 =0.04, estimated range: [2.1-2.7 s]). Response time then changed 

cubically over time, as it was estimated to increase by 1.2 s during the first 300 seconds, then 

decrease by 0.5 s during the next 400 seconds, and then increase again by 0.7 s for the remainder 

of the scenario. Table 4.1 presents each model and its comparative fit. Figure 4.6 shows how the 

growth curve model estimates response time trends for each participant, specifically showing 

response time depended on the participant, but response time slowed for all participants over the 

course of the slow transitions.    
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Table 4.1 Slow transitions’ scaled estimates of each growth curve model fitted for primary task 

response time. The best fitting model is bolded and highlighted in gray 

 Null model 

(Empty means, 

random 

intercept) 

Model 1 

(Fixed linear, 

time slope, 

random 

intercept) 

Model 2 

(Fixed linear 

and quadratic 

time slopes, 

random 

intercept) 

Model 3 

(Fixed linear, 

quadratic, 

and cubic 

time slopes, 

random 

intercept) 

Model 4 

(Fixed linear, 

quadratic, and 

cubic time 

slopes, random 

intercept and 

linear time 

slope) 

Intercept  

(γ00) 

3.247*** 

(0.04449) 

3.247*** 

(0.04450) 

3.247***    

(0.04447) 

3.247*** 

(0.04424) 

3.248*** 

(0.04427) 

Fixed linear 

time slope 

(γ10) 

- 
0.014 

(0.028) 

0.505*** 

(0.113) 

2.482*** 

(0.271) 

2.482*** 

(0.271) 

Fixed 

quadratic time 

slope  

(γ20) 

- - 
-0.506*** 

(0.113) 

-5.695*** 

(0.658) 

-5.690*** 

(0.657) 

Fixed cubic 

time slope 

(γ30) 

- - - 
3.315*** 

(0.414) 

3.311*** 

(0.414) 

Intercept 

variance 

(𝜏𝑈0
2 ) 

0.038 0.038 0.038 0.038 0.039 

Linear slope 

variance 

(𝜏𝑈1
2 ) 

- - - - 0.003 

Fit Statistics 

LL -3987.6 -3987.5 -3977.5 -3945.9 -3945.0 

χ2df - 1 1 1 2 

χ2 - 0.252 19.901 83.385 1.742 

p - 0.616 <0.001*** <0.001*** 0.419 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.1  

 



138 
 

 

Figure 4.6 Slow transitions’ estimated growth curve of primary task response time for each 

participant. Response time varied across participants, but it was estimated to follow a cubic trend 

over time 

 

Response time: Medium transitions scenario  

The empty means, random intercept model was a significantly better model fit than an 

empty means only model (χ2(1)= 22.023, p<.0001), meaning participant’s baseline response time 

speeds varied significantly for medium transitions (𝜏𝑈0

2 = 0.039). Therefore, an empty mean, 
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random intercept model was the null model when adding in fixed time slopes. To determine how 

response time trended over the course of the medium transitions scenario, linear (χ2(1)= 0.760, 

p=0.383), quadratic (χ2(1)=7.263, p=.007), and cubic (χ2(1)=1.628, p=0.202) time slopes were 

incrementally added and compared. A quadratic time slope was the only one to improve model 

fit (details of these models in Table 4.2). Random linear and quadratic time slopes were added, 

but both lead to singular model fits, so they could not be compared. Therefore, a fixed positive 

quadratic time slope with a random intercept was the best fitting growth curve model of response 

time during medium transitions (Model 2 in Table 4.2).  

Starting response time, i.e., the intercept, was estimated to be 4.0 s; however, the 

intercept was a significant random effect, so starting response time varied significantly across 

participants (p<.001, 𝜏𝑈0

2 = 0.042, estimated range: [3.6-4.3 s]). However, all participants were 

expected to experience an estimated improvement in response time of 0.2 s during the first 430 

seconds of medium transitions, but a decrement of 0.3 s followed for the remainder of the 

scenario, meaning response time essentially returned to initial speeds over time. Table 4.2 

presents each model and its comparative fit. Figure 4.7 shows how the growth curve model 

estimates response time trends for each participant, specifically showing its speed depended on 

the participant, but all participants trended similarly over the course of medium transitions. 

 

  



140 
 

Table 4.2 Medium transitions’ scaled estimates for each growth curve model of primary task 

response times. The best fitting model is bolded and highlighted in gray 

 Null model  

(Empty means, 

random intercept) 

Model 1  

(Fixed linear time 

slope, random 

intercept) 

Model 2  

(Fixed linear and 

quadratic time 

slope, random 

intercept) 

Model 3 

(Fixed linear, 

quadratic, and cubic 

time slope random 

intercept) 

Intercept 

(γ00) 

3.845*** 

(0.044) 

3.850***  

(0.044) 

3.850*** 

(0.044) 

3.850*** 

(0.044) 

Fixed linear time 

slope 

(γ10) 

- 
0.033 

(0.027) 

-0.257* 

(0.107) 

0.054 

(0.266) 

Fixed quadratic 

time slope 

(γ20) 

- - 
0.289** 

(0.107) 

-0.517 

(0.641) 

Fixed cubic time 

slope  

(γ30) 

- - - 
0.512 

(0.402) 

Intercept variance  

(𝜏𝑈0
2 ) 

0.041 0.041 0.042 0.042 

Fit Statistics 

LL -4615.5 -4615.1 -4611.5 -4610.7 

χ2 df - 1 1 1 

χ2 - 0.760 7.263 1.628 

p - 0.383 0.007** 0.202 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.1  
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Figure 4.7 Medium transitions’ estimated growth curve of primary task response time for each 

participant. Response time speeds depended on the participant, but it was estimated to follow 

quadratic trend over time 

 

Response Time: Fast transitions scenario 

 The empty means, random intercept model was not a significantly better model fit than 

an empty means only model (χ2(1)= 2.159, p=.142) indicating that response time did not 

significantly differ amongst participants. Therefore, the null model was an empty means only 
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model. As a follow up, random time slopes were explored, but none significantly improved 

model fit (all p>0.05), confirming individual differences in response time were not present 

during fast transitions. Therefore, models were fit with the same three fixed polynomial time 

slopes with no random effects (all details in Table 4.3; linear: χ2(1)= 32.202, p<0.0001; 

quadratic: χ2(1)= 20.047, p<0.0001; cubic: χ2(1)= 7.160, p=.008). All polynomial time slopes 

improved model fit, making a fixed cubic time slope with no random effects the best fitting 

growth curve model of response time during fast transitions (Model 3 in Table 4.3).  

Starting response time (i.e., the intercept) was estimated to be 2.27 s, but it would 

increase by 0.9 s during the first 440 seconds of the scenario. Then, it was estimated to decrease 

by 0.06 s for the following 280 seconds before increasing again for the remainder of the scenario, 

ending at an estimated total increase of 0.90 s. Table 4.3 presents each model and its comparative 

fit and Figure 4.8 shows the best fitting growth curve model is the same for all participants. 
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Table 4.3 Fast transitions’ scaled estimates of each growth curve model of primary task response 

times. The best fitting model is bolded and highlighted in gray 

 Null 

(Empty means 

model) 

Model 1 

(Fixed linear time 

slope) 

Model 2 

(Fixed linear and 

quadratic time 

slope) 

Model 3 

(Fixed linear, 

quadratic, and 

cubic time slope) 

Intercept 

(γ00) 

2.995***  

(0.028) 

2.995***  

(0.028) 

2.995*** 

(0.028) 

2.995*** 

(0.028) 

Fixed linear time 

slope 

 (γ10) 

- 
0.159*** 

(0.028) 

0.639***  

(0.111) 

1.309*** 

(0.273) 

Fixed quadratic time 

slope  

(γ20) 

- - 
-0.496*** 

(0.111)   

-2.231*** 

(0.658) 

Fixed cubic time 

slope  

(γ30) 

- - - 
1.103** 

(0.412) 

Fit Statistics 

LL -3638.1 -3621.9 -3611.9 -3608.4 

χ2 df - 1 1 1 

χ2 - 32.202 20.047 7.159 

p - <0.0001*** <0.0001*** 0.008** 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.1  
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Figure 4.8 Fast transitions’ estimated growth curve of primary task response time. A single 

growth curve applies to all participants because there was no random intercept or time slope 

 

Accuracy: Slow transitions scenario  

The empty means, random intercept model significantly improved model fit 

(χ2(1)=122.977, p<.0001) meaning accuracy varied significantly across participants (𝜏𝑈0

2 = 0.20) 

and an empty means, random intercept model would be the null model. To determine how 

accuracy trended over time, linear (χ2(1)= 4.79, p<0.029), quadratic (χ2(1)= 0.39, p=.530), and 
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cubic (χ2(1)=66.58, p<0.001) time slopes were incrementally added and compared. Fixed linear 

and cubic time slopes significantly improved model fit (details of these models in Table 4.4). 

Adding a random linear, quadratic, or cubic time slope did not improve model fit, i.e., all LRTs 

produce p>0.10 with the fit statistics from Model 4 in Table 4.4 as an example: (χ2(1)=0.19, 

p=.912), meaning how performance trended over time did not significantly depend on the 

participant. Therefore, a fixed negative cubic time slope and random intercept is the best fitting 

growth curve model of accuracy during slow transitions (Model 3 in Table 4.4). 

Starting accuracy, i.e., the intercept, was estimated to be 87.4%, but it was a random 

effect so intercept values significantly varied across participants (p<.001, 𝜏𝑈0

2 = 0.21, estimated 

range: [71.0-92.4%]). However, all participants were estimated to initially decline by 25.6% for 

the first 300 seconds, somewhat recover by 10.5% for another 360 seconds, before declining 

again, so that accuracy was 32.7% lower by the end of the scenario. Table 4.4 presents the details 

of each model and its comparative model fit. Figure 4.9 shows how accuracy rates varied for 

each participant, yet all trended similarly over the course of slow transitions. 
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Table 4.4 Slow transitions’ scaled estimates of each growth curve model of primary task 

accuracy. The best fitting model is bolded and highlighted in gray 

 Null model 

(Empty means, 

random 

intercept model) 

Model 1 

(Fixed linear 

time slope, 

random 

intercept) 

Model 2 

(Fixed linear 

and quadratic 

time slope, 

random 

intercept) 

Model 3 

(Fixed linear, 

quadratic, and 

cubic time 

slope, random 

intercept) 

Model 4 

(Fixed linear, 

quadratic, and 

cubic time 

slope, random 

intercept and 

linear time 

slope) 

Intercept 

(γ00) 

0.708*** 

(0.084) 

0.718*** 

(0.084) 

0.718*** 

(0.084) 

0.776*** 

(0.088) 

0.776*** 

(0.088) 

Fixed linear 

time slope 

(γ10) 

- 
-0.065** 

(0.023) 

-0.147 

(0.114) 

-2.992*** 

(0.273) 

-3.005 

(0.273) 

Fixed quadratic 

time slope 

(γ20) 

- - 
0.079 

(0.109) 

6.829*** 

(0.608) 

6.855 

(0.608) 

Fixed cubic 

time slope 

(γ30) 

- - - 
-4.068*** 

(0.367) 

-4.082 

(0.367) 

Intercept 

variance 

(𝜏𝑈0
2 ) 

0.201 0.201 0.201 0.201 0.208 

Linear slope 

variance 

(𝜏𝑈1
2 ) 

- - - - 0.0005 

Fit Statistics 

LL -2388.7 -2386.3 -2386.1 -2352.8 -2352.9 

χ2 df - 1 1 1 2 

χ2 - 4.79 0.39 66.58 0.19 

p - 0.029* 0.530 <0.001*** 0.912 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.1  
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Figure 4.9 Slow transitions’ estimated growth curve of primary task accuracy rates for each 

participant. Accuracy rates depended on the participant, but it was estimated to follow a cubic 

trend over time 

 

Accuracy: Medium transitions scenario  

The empty means, random intercept model was a significantly better fit (χ2(1)=113.791, 

p<.001) meaning accuracy varied significantly across participants (𝜏𝑈0

2 =0.14) and an empty 

means, random intercept model was the null model. To determine how accuracy trended over 
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time, fixed linear (χ2(1)= 32.3, p<.001), quadratic (χ2(1)=0, p=.95), and cubic (χ2(1)= 4.09, 

p=.043) time slopes were incrementally added to the model. Fixed linear and cubic time slopes 

improved model fit (details of these models in columns 2 and 4 Table 4.5). Additionally, 

including a random linear time slope significantly improved model fit (χ2(1)= 4.74, p=0.09) 

suggesting performance over time did not trend in the same way for all participants. Therefore, a 

fixed negative cubic time slope, random intercept and random linear time slope is the best fitting 

growth curve model of accuracy during medium transitions (Model 4 in Table 4.5).  

Starting accuracy (i.e., the intercept) was estimated to be 65.5%, but the intercept was a 

significant random effect, meaning participants’ intercept value varied significantly (p<.001, 

𝜏𝑈0

2 = 0.15, estimated range: [52.2-76.3%]). Over time, accuracy was estimated to decrease by 

2.5% in the first 170 seconds of the scenario for all participants. However, the significant random 

linear time slope shows the trends afterwards differed across participants. For reference, 18% of 

the participants were estimated to decline in accuracy whereas 82% were estimated to improve 

over the course of medium transitions. Table 4.5 presents the details of each model and its 

comparative fit. Figure 4.10 shows how accuracy rates and trends depended on each participant 

for medium transitions. 
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Table 4.5 Medium transitions’ scaled estimates of each growth curve model of primary task 

accuracy. The best fitting model is bolded and highlighted in gray 

 Null model 

(Empty means, 

random 

intercept) 

Model 1 

(Fixed linear 

time slope, 

random 

intercept) 

Model 2 

(Fixed linear 

and quadratic 

time slope, 

random 

intercept) 

Model 3 

(Fixed linear, 

quadratic, and 

cubic time 

slope, random 

intercept) 

Model 4 

(Fixed linear, 

quadratic, and 

cubic time 

slope, random 

intercept and 

linear time 

slope) 

Intercept 

(γ00) 

0.728*** 

(0.070) 

0.726*** 

(0.070) 

0.727*** 

(0.070) 

0.732*** 

(0.070) 

0.734***   

(0.070) 

Fixed linear 

time slope (γ10) 
- 

0.145*** 

(0.030) 

0.139 

(0.075) 

-0.382 

(0.245) 

-0.387 

(0.240) 

Fixed quadratic 

time slope 

(γ20) 

- - 
0.006 

(0.072) 

1.317* 

(0.603) 

1.334* 

(0.595) 

Fixed cubic 

effect of time 

(γ30) 

- - - 
-0.821* 

(0.383) 

-0.826* 

(0.381) 

Intercept 

variance 

(𝜏𝑈0
2 ) 

0.143 0.145 0.145 0.145 0.146 

Linear slope 

variance 

(𝜏𝑈1
2 ) 

- - - - 0.009 

Fit Statistics 

LL -3012.5 -2996.4 -2996.4 -2994.3 -2991.9 

χ2 df - 1 1 1 2 

χ2 - 32.3 0.01 4.09 2.31 

p - <0.001 0.955 0.043* 0.093† 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.1  
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Figure 4.10 Medium transitions’ estimated growth curve of primary task accuracy for each 

participant. As pictured, baseline accuracy rates and accuracy rates over time varied across all 

participants. All participants followed a cubic trend, but performance could improve, remain the 

same, or get worse by the end of the medium transitions scenario 

 

Accuracy: Fast transitions scenario  

The empty means, random intercept model significantly improved model fit 

(χ2(1)=116.576, p<.0001) meaning accuracy varied significantly across participants (𝜏𝑈0

2 = 0.171) 

Example of a growth curve 

estimating accuracy will 

ultimately decrease 

Example of a growth 

curve estimating 

accuracy will 

ultimately increase 
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and an empty means, random intercept model was the null model. To determine how accuracy 

trended over time, linear (χ2(1)=1.11, p=.291), quadratic (χ2(1)=0.48, p=.490), and cubic 

(χ2(1)=16.27, p<.001) time slopes were incrementally added to the model. The fixed cubic time 

slope significantly improved model fit (details of Model 3 Table 4.6). However, no random time 

slope improved model fit, i.e., all p>0.10, review the fit statistics of Model 4 as an example: 

(χ2(1)=0.19, p=.911). Therefore, a negative cubic time slope with a random intercept was the best 

fitting growth curve model of accuracy during fast transitions (Model 3 in Table 4.6).  

Starting accuracy, i.e. the intercept, was estimated to be 72.5%. However, the intercept 

was a significant random effect, meaning starting accuracy varied significantly amongst 

participants (p<.001, 𝜏𝑈0

2 =0.172, estimated range: [50.0-85.6%]). As for how accuracy changed 

over time, the best fitting model predicted accuracy would initially decline by 10.7% for the first 

270 seconds, increase by 5.2% for another 360 seconds, before declining again for a total 

decrease of 15.9%. Table 4.6 presents each model’s details and its comparative fit. Figure 4.11 

shows how the growth curve model estimates accuracy to depend on each participant, but all 

participants followed the same trend over the course of fast transitions. 
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Table 4.6 Fast transitions’ scaled estimates of each growth curve model of primary task 

accuracy. The best fitting model is bolded and highlighted in gray 

 Null model 

(Empty means, 

random 

intercept) 

Model 1 

(Fixed linear 

time slope, 

random 

intercept) 

Model 2 

(Fixed linear 

and quadratic 

time slope, 

random 

intercept) 

Model 3 

(Fixed linear, 

quadratic, and 

cubic time 

slope, random 

intercept) 

Model 4 

(Fixed linear, 

quadratic, and 

cubic time 

slope, random 

intercept and 

linear time 

slope) 

Intercept 

(γ00) 

0.583 

(0.082) 

0.584*** 

(0.082) 

0.584*** 

(0.082) 

0.598*** 

(0.081) 

0.598*** 

(0.081) 

Fixed linear 

time slope 

(γ10) 

- 
-0.029 

(0.027) 

0.049 

(0.100) 

-1.127*** 

(0.229) 

-1.129*** 

(0.228) 

Fixed quadratic 

time slope 

(γ20) 

- - 
-0.078 

(0.095) 

2.805*** 

(0.495) 

2.804*** 

(0.496) 

Fixed cubic 

time slope  

(γ30) 

- - - 
-1.772*** 

(0.278) 

-1.770*** 

(0.279) 

Intercept 

variance 

(𝜏𝑈0
2 ) 

0.171 0.171 0.171 0.172 0.175 

Linear slope 

variance 

(𝜏𝑈1
2 ) 

- - - - 0.0009 

Fit Statistics 

LL -2431.1 -2430.5 -2430.3 -2422.2 -2422.1 

χ2 df - 1 1 1 2 

χ2 - 1.11 0.48 16.27 0.19 

p - 0.291 0.489 <0.001*** 0.911 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.1  
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Figure 4.11 Fast transitions’ estimated growth curve of primary task accuracy for each 

participant. Accuracy rates depended on the participant, but it was estimated to follow a negative 

cubic trend 

 

Table 4.7 summarizes the present results. The table focuses on the general takeaways from each 

analysis and how they address each research question.  

 

 



154 
 

Table 4.7 Summary of all the performance results. Red text highlights where the interpretation of 

the two analyses agree 

Transition rate 

ANALYSIS 

Aggregate analysis 

(Current analysis used by most workload 

transition studies) 

Growth curve modeling 

Slow 

Response time: Initially slows, but 

eventually recovers to starting speeds for 

low and high workload periods.  

Response time: Baseline speeds differ 

across individuals, but all individuals 

follow a positive cubic trend, i.e., response 

time initially slows, slightly improves, and 

then slows again. 

Accuracy: Not significantly different over 

the course of the scenario. 

Accuracy: Baseline rates differ across 

individuals, but all individuals follow a 

negative cubic trend, i.e., accuracy initially 

declines, slightly improves, and then 

declines again.  

Medium 

Response time: For low workload periods, 

it initially speeds up before slowing to its 

original speed by the end of the scenario. 

For high workload periods, it did not 

change over the course of the scenario. 

Response time: Baseline speeds differ for 

each individual. For all participants, 

response times follow a positive quadratic 

trend, i.e., it initially speeds up but then 

slows to original speeds by the end of the 

testbed scenario.  

Accuracy: For low workload periods, rates 

decline initially, but there is some recovery 

by the end of the scenario. For high 

workload periods, accuracy rates improve 

over the course of the scenario. 

Accuracy: Baseline rates and changes in 

rates over time differ for each individual. 

Although all participants show a negative 

cubic trend, 18% show an eventual 

decline in accuracy by the end of the 

scenario whereas 82% show an 

improvement. 

Fast 

Response time: For low workload periods, 

it slows continuously over time. For high 

workload periods, it did not change over 

the course of the scenario. 

Response time: Baseline speeds and 

changes in speed over time were similar 

for all individuals as only a single growth 

curve with a positive cubic trend, is 

needed for all participants. It estimates 

response times initially slowing, and then 

showing some evidence of speeding up, 

before beginning to slow again by the end 

of the scenario.  

Accuracy: For the low workload periods, 

rates immediately decline but ultimately 

improved to previously observed rates. For 

high workload periods, accuracy rates did 

not significantly differ over the course of 

the scenario. 

Accuracy: Baseline rates differ for each 

individual, but all individuals follow a 

negative cubic trend, i.e., accuracy initially 

declines, slightly improves, yet eventually 

declines again. The trend was less 

pronounced, i.e., the slopes were less 

negative than the cubic trend seen with 

accuracy during slow transitions. 
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Discussion 

 

The goal of this work was to understand how transition rate, workload level, and the 

individual impact performance trends over time for both response time and accuracy when there 

were multiple instances of workload transitions. Answering each research question builds upon 

the current knowledgebase and provides design guidelines for environments expected to 

experience workload transitions. 

 

RQ 4.1: Does transition rate affect performance trends over time? 

 

For RQ 4.1, we expected performance to be different between the transition rates with 

slow transitions leading to the worst performance trends over time. When reviewing results from 

both analyses, this was partially supported, as performance was indeed different between the 

three transition rates. However, the aggregate analysis showed slow transitions had some of the 

most stable performance trends over time across both low and high workload, even if response 

time and accuracy was worst compared to the other transition rates. The aggregate analysis also 

showed that accuracy improves over time for the high workload periods of medium transitions; 

however, there was a large initial drop in accuracy during low workload periods, while response 

time remained stagnant throughout. Fast transitions also experienced this large, initial drop in 

low workload accuracy, but with faster initial response time. Growth curve modeling showed 

baseline performance was more dependent on the individual, not transition rate. Growth curve 

modeling also projects performance across participants to worsen over time with slow and fast 

transitions, but improve or remain stagnant with medium transitions.  
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Overall, both analyses showed that transition rate impacted performance, but the 

conclusions from each analysis differed, which is not surprising due to their different 

approaches. The aggregate analysis measured performance trends, on average, over time within 

low or high workload periods. Growth curve modeling measured general performance trends 

over time, independent of workload, and assessed how they differed across individuals. Per these 

interpretations, performance during workload transitions is dependent on several factors: the 

workload level, the elapsed time, the performance measure, and the individual. Therefore, it is 

essential to synthesize the two results to provide goal-oriented and nuanced design guidance to 

assist operators experiencing workload transitions.  

 

RQ 4.2: Which theoretical explanation—i.e., resource depletion or effort regulation—

accounts for the observed over time performance trends? 

 

 The results from growth curve modeling, specifically the significant fixed polynomial 

time slopes, (e.g., linear, quadratic, cubic time slopes), substantially increased the understanding 

of the applicability of the two main theoretical explanations in the workload transition literature, 

which addresses RQ 4.2. Under the resource depletion explanation—i.e., workload transitions 

initially deplete resources, causing performance to suffer, but recovery is possible during low 

workload—we expected the best fitting growth curve model to have a fixed quadratic time slope, 

specifically one where performance initially worsens, but then improves. Gluckman et al. (1993) 

informally observed a quadratic performance trend in their results when developing this 

theoretical explanation. Under the effort regulation explanation, i.e., workload transition 

performance is dependent on the individual adjusting and deploying mental resources effectively 
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to the present workload, we expected the best fitting growth curve model to have a random linear 

time slope as performance depended on the individual appraising and recruiting resources.  

However, the best fitting growth curve models were often neither quadratic nor linear, 

rather they were cubic, i.e., performance was projected to decline initially, improve for some 

duration of time, before declining again. This suggests both theoretical explanations may have 

been applicable throughout each scenario, similar to how previous work finds each theoretical 

explanation depends on the environmental context (Matthews & Desmond, 2002; Ungar et al., 

2005). Specifically, resource depletion accounted for the initial performance trends: workload 

transitions initially deplete resources, so performance initially suffers. Although resource 

depletion states performance can recover, it stipulates it is only possible during low workload. 

However, growth curve modeling consistently projected performance to recover during periods 

of low and high workload. This better supports the effort regulation explanation, as participants 

may have been able to eventually appraise and recruit resources when workload transitioned to 

maintain improved performance.  

The significant random linear time slope estimated for the growth curve model of 

medium transition accuracy also supported the effort regulation explanation as it contends 

addressing the dynamic needs in the environment will vary across individuals’ ability to appraise 

the environment and attend to its needs effectively. When performance declines again, as seen 

for slow and fast transitions, it becomes unclear which explanation better applies. Resources may 

have been too depleted to maintain the newly improved performance, which would support the 

resource depletion explanation, or the occurrence of multiple transitions made evaluating the 

environment too challenging to recruit and deploy resources effectively, which aligns with the 

effort regulation explanation. Further research should address this ambiguity, as multiple 



158 
 

workload transitions are expected to be prevalent in a variety of contexts. This research shows 

the value in using novel methods to build upon the current theory when it struggles to fully 

explain observed performance trends. In addition, new analysis approaches can also be used to 

simultaneously account for factors that are not central, but potentially impactful, in a given 

workload transition experiment. For example, the growth curve modeling results contend 

baseline performance and performance over time often depended on the individual to some 

extent, across transition rates, which addressed our third research question. 

 

RQ 4.3: Does the individual affect performance trends over time? 

 

For RQ 4.3, we expected performance to vary significantly across individuals for all 

transition rates, but particularly during fast transitions. Our hypothesis was mostly supported as 

all but one best fitting growth curve model showed that baseline performance, i.e., the intercept, 

varied across participants, yet only one best fitting growth curve model showed performance 

trending differently over time across participants, i.e., a random linear time slope. Performance 

being the most variable with medium transitions, actually further supports the effort regulation 

explanation because this explanation expects performance to vary per the individual (Hockey et 

al., 1997). Performance variability is expected in these types of environments (Cummings et al., 

2019; Muhs et al., 2017) and is sometimes even accounted for a priori (Bowers et al., 2014; 

McKendrick & Harwood, 2019). However, the observed variability is particularly notable from 

the homogenous population of student Naval aviators. When previously studying individual 

differences within workload transitions, research has relied on extreme group design methods, 

such as comparing subpopulations that are extreme ends of a given measure (Cox-Fuenzalida, et 
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al., 2004, 2006). Recently, this method has been found to be problematic for both experimental 

and statistical reasons (Tsukahara et al., 2016), but growth curve modeling is not subject to those 

shortcomings because it is not relying on a priori stratification nor pairwise comparison methods 

to detect individual differences. Future workload transition research will need to appropriately 

account for the individual to provide meaningful design guidance, especially for populations 

more diverse than the one used in this study.  

 

Synthesizing the present results for design guidance 

 

In this chapter, we found: 

1. Performance trends differed across transition rates, but the implications of those 

differences depended on the analysis method. 

2. A hybrid of the two dominating theoretical explanations best explained the 

performance trends. Specifically, workload transition performance was subject to 

resource depletion until effective strategies were discerned by the individual, which 

the ability to do so depended on the transition rate and the individual.  

3. Individuals mostly varied in baseline performance, but individual trajectories also 

differed depending on the transition rate. 

Although both analyses are informative, growth curve modeling addresses substantial research 

gaps (e.g., the dynamic applicability of theoretical explanations within the same experimental 

setting, quantifying the impact of individual differences, etc.). Ideally, designing systems that 

experience workload transitions would continuously take aspects of the environment and 

individual in to account because the current results suggest that is more likely necessary than not. 
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However, design guidance from the current results are as presented in Table 4.8 and include 

foreseeable caveats and tradeoffs.  
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Table 4.8 Design guidance for workload transitions as a function of performance goal 

Performance goal 
Recommended 

transition rate 
Justification 

Potential 

Tradeoffs 
Domain Example 

If the goal is 

consistent and 

predictable low and 

high workload 

performance…  

 

Slow 

transitions 

Performance 

during slow 

transitions is more 

dependent on 

workload than 

time, and this will 

most likely apply 

to all individuals  

 

Baseline 

performance is 

worse in both 

workload levels 

than faster 

transition rates and 

it does not show 

the potential to 

improve over time  

 

Strike missions because 

straying from expected 

performance when 

workload transitions is 

potentially fatal. These 

missions can offset the 

cost in general 

performance by 

dispatching additional 

manpower, delaying 

engagement, etc. Also, 

performance-based 

adaptive automation 

would be more successful 

with slow transitions, as 

the performance 

differences between low 

and high workload were 

discernable and consistent 

over time (Feigh et al., 

2012). 

 

If the goal is for 

performance to 

generally improve 

over time as 

workload 

transitions… 

Medium 

transitions 

Medium 

transitions were 

the only ones that 

showed the 

potential to 

improve over time 

for both 

performance 

measures and 

across both 

workload levels.  

 

Potentially may 

cause an initial, but 

recoverable 

performance cost 

and these benefits 

might depend on 

the individual. 

Search and rescue 

missions, as performance 

needs to improve as time 

progresses due to the 

probability of detecting 

rescues gets harder with 

time, regardless of present 

workload. These missions 

can offset the cost in 

initial accuracy providing 

more resources at the 

beginning of mission and 

then reducing over time 

accordingly. 

If the goal is faster 

and predictable 

performance trends 

across individuals 

over time… 

Fast transitions If it’s preferable 

for participants to 

have similar 

performance 

trends, fast 

transitions may be 

best as the results 

indicated fast 

transitions had the 

fastest response 

times and least 

dependence on the 

individual. 

Potentially there is 

an initial, but 

recoverable, cost in 

accuracy and 

response times 

may also slow over 

time   

Sustained reconnaissance 

missions, as performance 

needs to be as quick as 

possible especially in the 

beginning of the mission. 

These missions can offset 

the cost of initial accuracy 

by weighting the results 

from earlier parts of the 

mission differently 

(O’Rourke, 2006). 
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Conclusion 

 

Although the impact of this work was threefold, it was not without limitations. Most 

importantly, future work should investigate how to design for the individual in environments 

where workload transitions differently as this original investigation has found individual 

differences to be a significant factor. Although the provided design guidance accounts for this, it 

is now necessary to discern what specific abilities or strategies individuals rely upon to manage 

workload transitions to increase the generalizability of design guidance.  

Second, although the sample size of participants was relatively large for workload 

transition research, our sample size may have been underpowered to detect all significant random 

time slopes, especially higher ordered ones (Astivia et al., 2019). Although a larger sample size 

was planned (e.g., ~100 participants), the COVID-19 pandemic limited data collection. One 

random time slope was detected, so the present sample size may have been sufficient, but future 

work should validate the current results and plan future work accordingly.  

Finally, future work needs to include online cognitive measures for both theoretical and 

practical applications. For example, one psychophysiological metric that has found to be reliable 

in discerning mental strategies is eye tracking. For example, scan-based metrics (Moacdieh et al., 

2020) capture visual attention strategy, which is ideal for understanding the explain effort 

regulation. Growth curve modeling can readily include these measures, so the next chapter will 

synthesize the performance and scan-based metrics together to shed light on their direct 

relationship. Overall, future workload transition research needs to consider including growth 

curve modeling in their studies, even if only as a follow-up analysis, as it has shown the ability to 

clarify the cause of ambiguous findings, theoretical explanations, and design guidance.  
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CHAPTER 5 

 

Are scan-based eye tracking metrics predictive of workload transition’s 

performance trends over time? 

 

Introduction 

 

It important to understand the operator’s visual attention allocation patterns as they 

manage workload transitions because the operator is often inundated with visual information 

(Abich et al., 2017; Hobbs & Shivley, 2014; Sibley et al., 2015). However, there is limited 

research using eye tracking to examine workload transitions (exception Devlin, Byham, & Riggs, 

2021; Moacdieh, Devlin, Jundi, & Riggs, 2020) and neither explore whether it can predict 

performance over time—the focus of this chapter. The goal here is to determine whether visual 

attention patterns are predictive of the performance trends observed over time during workload 

transitions. Specifically, we examine several eye tracking metrics as predictors in the growth 

curve models of performance established in Chapter 4.  

 

Review of previous investigations studying workload transitions over time. 

 

One potential way to explain the different performance trends observed across transition 

rates in Chapter 4 is to identify and detail the mental processes used during workload transitions. 

Previous investigations find participants produce a psychophysiological response to workload 

transitions (Bowers et al., 2014; Boyer et al., 2015; Cerruti et al., 2010; Kim et al., 2019; 
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McKendrick & Harwood, 2019). There are some limitations with the current investigations, as 

they do not indicate how a person explicitly used their mental resources to complete the task. As 

detailed in Chapter 3, scan-based eye tracking metrics, i.e., measures capturing the features of 

visual attention allocation (Poole & Ball, 2006), can quantify and compare visual attention 

patterns, which has been informative in a variety of settings (as detailed in Chapter 1). Chapter 3 

found visual attention patterns clarified multitasking and over time performance trends of 

workload transitions so of interest is to directly build on those findings by modeling the most 

informative scan-based metrics as predictors of workload transition performance. Eye tracking 

has successfully predicted operator needs and mental state in previous research, but to our 

knowledge, has not attempted to predict workload transition performance (e.g., Barz et al., 2021; 

Steichen et al., 2013; Ratwani et al., 2010).  

Chapter 3 found spread and directness measures were different between constant and 

transitioning workload, with newer-developed metrics being the most enlightening. For example, 

stationary gaze entropy, which measures how distributed attention transitions are across the set 

of AOIs, was lower during workload transitions than during constant workload. Given this was 

coupled with better multitasking performance, these results suggested visual attention transitions 

to task-specific areas of the display should not be equal in multitasking environments. These 

results emphasize the need to include scan-based metrics, especially ones mapped to how visual 

attention is allocated to each task when studying workload transitions.  

 

Motivation and research questions 

 

The goal of this Chapter 5 is to understand the extent to which scan-based eye tracking 
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metrics can predict performance trends of the three different transition rates (slow, medium, and 

fast). Specifically, we explored a subset of the scan-based metrics used in Chapter 3 as predictors 

in the growth curve models of performance established in Chapter 4. For prediction models to be 

useful in real-world environments, they need to account for the variability amongst individuals, 

which is a strength of growth curve modeling. Additionally, this modeling approach also allows 

for a more specific investigation on the predictive capability of scan-based metrics, as they can 

be specified to predict baseline performance and/or how it will change over time, allowing for a 

more informative prediction model (Hoffman, 2015, pp. 286-287).  

The scan-based metrics used in this chapter will be the metrics that discriminated 

between constant and transitioning workload in Chapter 3. We also included at least one metric 

from the three different aspects of visual attention allocation, i.e., spread, directness, and 

duration (Moacdieh & Sarter, 2015). Coefficient Κ was not included in the present investigation 

because it was found to depend on time, i.e., workload period, which violates an assumption of 

adding predictors to the model (further explanation provided in the Results section). The list of 

scan-based metrics used in Chapter 5 is presented in Table 5.1. 
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Table 5.1 The scan-based metrics explored as predictors for all the previously established 

response time and accuracy growth curve models 

Metric Definition and calculation 

Spread metrics (where are users generally looking?) 

Spatial density 

 

The number of grid cells containing gaze points divided by the total number of cells. A 

20×20 evenly-divided grid (128×72 pixels per cell) was created to cover the full screen 

dimensions. A higher spatial density would indicate a larger dispersion of attention 

(Goldberg & Kotval, 1999).  

Stationary gaze 

entropy (SGE) 

Stationary gaze entropy indicates how equally distributed a person’s attention is, with 

larger values indicating more evenly spread attention across areas of interest (AOI) and 

lower values indicating more narrowed attention (Krejtz et al., 2015). It is calculated as 

follows: 

 

𝐻𝑠 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑖∈𝐴𝑂𝐼𝑠

 

where 𝑝𝑖  represents the proportion of transitions to the ith state, i.e. the ith AOI (the AOIs 

are as defined in Figure 2.1) from on all the state transitions based on the Markov 

property (i.e., transitions to a given state only depend on the current state; Shiferaw et 

al., 2019). The value is then normalized for comparison (Duchowski, 2017).  

Directness metrics (how purposeful are attention transitions?) 

Gaze transition rate 

[grid cells/s] 

The rate of transitions between equal grid cells (Goldberg & Kotval, 1999). A higher 

rate of transitions indicates lower efficiency. The same grid cells used for spatial 

density were used here.  

Gaze transition 

entropy (GTE) 

The gaze transition entropy represents the randomness and complexity of a person’s eye 

movements, with higher values indicating more randomness and lower efficiency 

(Krejtz et al., 2015). It is calculated as follows: 

 

𝐻𝑡 = − ∑ 𝑝𝑖 ∑ 𝑝𝑖𝑗

𝑗∈𝐴𝑂𝐼𝑠

log2 𝑝𝑖𝑗

𝑖∈𝐴𝑂𝐼𝑠

 

where 𝑝𝑖  is as described in stationary gaze entropy, and 𝑝𝑖𝑗  is the probability of 

transitioning form state i to state j in one fixation. Assuming the Markov property holds, 

this was calculated by counting the number of transitions from i to j and then dividing 

by the total number of transitions from i (Shiferaw et al., 2018). This was done for each 

pairing of AOIs (the AOIs are as defined in Figure 2.1). The value is then normalized 

for comparison (Duchowski, 2017). 

Duration metrics (how long, in general, does attention last?) 

Fixation duration [ms]  The amount of time a fixation lasts. A lower mean fixation duration suggests the user is 

extracting information quickly (Jacob & Karn, 2003).  

 

Previous work has applied growth curve modeling to eye tracking data (e.g., Ayasse & 

Wingield, 2020; Barr, 2007; Godfroid et al., 2018; Mirman et al., 2008), but rarely as a direct 

predictor of performance trends over time, especially when workload transitions. Given this 

investigation is the first of its kind, our research questions are as follows:  
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1. RQ 5.1: Is eye tracking predictive of performance trends over time?  

a. RQ 5.1a: Is this a function of workload transition rate? 

We expect that multiple scan-based metrics, especially spread and directness metrics, will 

be predictive of performance trends over time, i.e., multiple metrics will be significant predictors 

in each growth curve model, but the same scan-based metrics will be significant predictors 

across the three transition rates per the minimal differences previously observed for these metrics 

in Chapter 3. If successful, the findings may add the much-needed detail to the theoretical 

explanations surrounding workload transitions, e.g., how mental resources are deployed, and 

inform display design in complex, multitasking environments, like UAV command and control.  

 

Method 

 

Participants 

 

The same participants from Chapter 4 were used to answer this chapter’s research 

questions. All participants had less than 20% of their raw gaze samples missing as recommended 

by Komogortsev et al. (2010). 

 

Experimental setup 

 

All the details from the experimental setup of Chapter 4 apply. Participants sat 

approximately 65 cm from the monitor-mounted Gazepoint HD eye tracker (fs=150 Hz, reported 

accuracy of 0.5-1˚; Gazepoint, 2019) so their eye movements could be collected.  
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UAV command and control testbed and tasks 

 

The same UAV command and control testbed from Chapter 4 was used for this chapter’s 

research goals. 

 

Testbed scenarios 

 

 The same testbed scenarios from Chapter 4 were relevant to this chapter’s research goals. 

 

Procedures 

 

The same procedures from Chapter 4 applied to the present research goals. Participants 

learned the eye tracker’s 9-point calibration procedure during the self-paced informational 

training session. Participants calibrated their point of gaze to the eye tracker before each 

transition scenario. 

 

Results 

 

Preprocessing eye tracking data  

 

Raw gaze points, which consist of the positional (xi, yi) and temporal information (ti), 

were screened for completeness and accuracy via the data quality metric provided by Gazepoint 
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and trials were removed if they did not reach the quality threshold (as previously mentioned). 

Velocity profiles were then calculated from the raw gaze points (xi, yi, ti) by differentiating with a 

six-tap Savitzky-Golay filter of degree 2 (Krejtz et al., 2016). An I-VDT event detection 

algorithm (Komogortsev & Karpov, 2013) was used to determine fixations due to the increased 

sampling rate. The velocity threshold for fixations was determined by the adaptive algorithm 

outlined in Nyström & Holmqvist (2010), and it ranged 25.6-60.8 degrees/s across all trials. 

Then, individual fixations were determined as clusters of raw gaze points that were below the 

trial’s velocity threshold, a maximum of 110 pixels from each other (i.e., ~1˚ visual angle), and 

occurred within a minimum of 80 ms from each other. 

 

Model fitting process to determine a conditional growth curve model 

 

The ultimate goal of this modeling process is to identify the eye tracking metric(s) that 

predict performance trends over time when workload transitions. The five scan-based metrics 

from Table 5.1 were explored as time-invariant predictors (TIP) for each growth curve model. 

Response time and accuracy were modeled in RStudio (version 1.3.1093; RStudio Team, 2020) 

and as separate growth curve models for each transition rate (with packages lme4 and 

GLMMadaptive, respectively; Bates et al., 2015; Rizopoulous, 2021), but response time for fast 

transitions was excluded due to no presence of individual differences. A time-invariant predictor 

is a measure of the individual that is not expected to change over time or can only be reliably 

measured once in the experiment (Hoffman, 2015, p. 312). In the present research, the eye 

tracking metrics were modeled as time-invariant predictors because they served as measures of 

the individual’s task completion strategy and were only calculated once per person per testbed 
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scenario. Exploring the predictive ability of these scan-based metrics consisted of following the 

two-phase modeling process recommended by (Hoffman, 2021):   

1. The first phase was to determine the bivariate relationship between each eye tracking 

metric and each growth curve model. This consisted of comparing model fits of each 

unconditional growth curve model, i.e., the best fitting growth curve model where 

time is the only predictor variable, e.g., Equation (4.5) to a conditional growth curve 

model, i.e., a growth curve model that includes more than just predictors of time, with 

a single scan-based metric. There were two types of conditional growth curve models 

that were first considered: (1) one where the scan-based metric was an additive effect, 

i.e., an additive time-invariant predictor, and (2) one where the scan-based metric was 

a cross-level interaction effect with the linear time slope of the unconditional growth 

curve model, i.e., a cross-level time-invariant predictor. An additive time-invariant 

predictor predicts baseline performance, i.e., the model’s intercept, where a cross-

level time-invariant predictor predicts how performance changes over time, i.e., the 

model’s linear time slope. Equation 5.1 shows an example of the scan-based metric 

included as an additive time-invariant predictor (𝛾01) in a fixed cubic, random 

intercept growth curve model for each person (𝑖) over time (𝑡). Equation 5.2 shows 

an example of the scan-based metric as a cross-level time-invariant predictor (𝛾11) in 

a fixed cubic, random intercept growth curve model. 
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𝑦𝑡𝑖 =  𝛽0𝑖 + 𝛽1(𝑇𝑖𝑚𝑒𝑡𝑖) + 𝛽2(𝑇𝑖𝑚𝑒𝑡𝑖)

2 + 𝛽3(𝑇𝑖𝑚𝑒𝑡𝑖)
3 

(5.1) 

 𝑤ℎ𝑒𝑟𝑒, 𝛽0𝑖 = 𝛾00 + 𝛾01(𝑆𝑐𝑎𝑛 − 𝑏𝑎𝑠𝑒𝑑 𝑚𝑒𝑡𝑟𝑖𝑐𝑖) + 𝑈0𝑖,  𝛽1 =
𝛾10,  𝛽2 = 𝛾20, 𝛽3 = 𝛾30 

 

 
 

 

 
𝑦𝑡𝑖 =  𝛽0𝑖 + 𝛽1(𝑇𝑖𝑚𝑒𝑡𝑖) + 𝛽2(𝑇𝑖𝑚𝑒𝑡𝑖)

2 + 𝛽3(𝑇𝑖𝑚𝑒𝑡𝑖)
3 

(5.2) 

 𝑤ℎ𝑒𝑟𝑒, 𝛽0𝑖 = 𝛾00 + 𝛾01(𝑆𝑐𝑎𝑛 − 𝑏𝑎𝑠𝑒𝑑 𝑚𝑒𝑡𝑟𝑖𝑐𝑖) + 𝑈0𝑖,   

𝛽1 = 𝛾10 + 𝛾11(𝑆𝑐𝑎𝑛 − 𝑏𝑎𝑠𝑒𝑑 𝑚𝑒𝑡𝑟𝑖𝑐𝑖),  𝛽2 = 𝛾20, 𝛽3 = 𝛾30 
 

 

In summary, establishing the bivariate relationship between each scan-based metric 

and performance growth curve model separately better specifies the predictive 

capability the scan-based metric has on the observed performance trends. Likelihood 

ratio tests assessed model fit where significance for an additive time-invariant 

predictor was set at α=0.05 and significance for a cross-level time-invariant predictor 

was set at α=0.10 (Mathieu et al., 2012). 

2. The second phase of the analysis began once the bivariate relationship between all 

unconditional and conditional growth curve models were established. The goal of this 

phase was to answer the research questions by determining: (a) the predictive 

capability of an eye tracking metric when it was combined with other significant eye 

tracking metrics and (b) differences in combined conditional growth curve model 

across transition rates. Each scan-based metric that had a significant bivariate 

relationship was strategically combined into a single model, specifically by building 

upon bivariate models with a cross-level time-invariant predictor and then including 

additive time-invariant predictors thereafter. Likelihood ratio tests were used to 

determine model fit across conditional growth curve models (additive: α=0.05 and 

cross-level: α=0.10; Mathieu et al., 2012), but when that failed to distinguish a better 
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model fit, Bayesian Information Criterion (BIC) determined the final conditional 

growth curve model (Hoffman, 2015, p. 271). An example of when this happened 

was when the scan-based metrics in the models were the same, but they differed in 

the type of time-invariant predictor, e.g., additive vs. cross-level. Psuedo-R2 was 

calculated as the effect size measure for each time-invariant predictor in the combined 

model (Raudenbush & Bryk, 2002; Singer & Willet, 2003). The results from the first 

phase, i.e., the bivariate relations, are briefly mentioned in the text, but the results 

from the second phase, i.e., all the estimates and fit statistics of each conditional 

growth curve model are presented in detail with the final combined model interpreted 

in the text.  

 

For slow transitions, fixation duration and stationary gaze entropy predict the baseline 

response time and its trend over time  

The unconditional growth curve model of response time during slow transitions had a 

positive fixed cubic time slope and a random intercept (χ2(1)= 63.232, p<.001; model fitting 

details in Table 4.1). The first phase of the analysis found the following eye tracking metrics had 

a significant bivariate relation: stationary gaze entropy (additive and cross-level), gaze transition 

entropy (cross-level: χ2(1)= 3.592, p=.058), average fixation duration (additive and cross-level), 

and gaze transition rate (additive: χ2(1)= 4.712, p=.030). In the second phase of the analysis, 

stationary gaze entropy and average fixation duration remained significant, but the BIC was 

smaller when stationary gaze entropy was a cross-level time-invariant predictor and average 

fixation duration was an additive time-invariant predictor (χ2(1)= 4.490, p=.034). Therefore, this 

was determined as the final conditional growth curve model, i.e., Model 5 in Table 5.2.  
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Specifically, longer average fixation duration (M=125.2 ms, SD=17.3 ms) predicted 

faster baseline response time during slow transitions (Model 5’s rescaled γ01=-0.005, 95% CI: [-

0.001, -0.00002]). In other words, for every one standard deviation increase in average fixation 

duration, and assuming all other predictors remain equal, response time improved, i.e., sped up, 

by 0.09 s. Stationary gaze entropy was a significant cross-level time-invariant predictor, meaning 

it predicted changes in response time during slow transitions. In general, it found larger 

stationary gaze entropy (M=0.63, SD=0.08) predicted more severe decrements in response time 

during slow transitions (Model 5’s rescaled γ11= -0.03, 95% CI: [-0.0002, -0.003]). Specifically, 

for every one standard deviation increase in stationary gaze entropy, the estimated total 

decrement in response time would be 0.2 s longer. Table 5.2 shows the results of all the 

combined models and Figure 5.1 depicts how response time follows a cubic trend over time, but 

the scan-based metrics predict baseline response time and how it changes over time.  
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Table 5.2 Slow transitions scenario’s scaled estimates of significant scan-based metrics as time-

invariant predictors in the combined conditional growth curve models of primary task response 

time (time-invariant predictors=TIP; AFD=average fixation duration; SGE=stationary gaze 

entropy). Final model is bolded and highlighted in gray 

 

Unconditional 

growth curve 

model 

(fixed 

positive cubic 

time slope, 

random 

intercept) 

Model 1 

(conditional 

growth 

curve model 

with SGE as 

an additive 

TIP) 

Model 2 

(conditional 

growth 

curve model 

with SGE as 

a cross-level 

TIP) 

Model 3 

(conditional 

growth 

curve model 

with AFD 

as an 

additive 

TIP) 

Model 4 

(conditional 

growth 

curve model 

with AFD 

as a cross-

level TIP) 

Model 5 

(model 2 

with AFD 

as an 

additive 

TIP) 

Model 6 

(model 4 

with SGE 

as an 

additive 

TIP) 

Intercept 

(γ00) 

3.247*** 

(0.044) 

3.244*** 

(0.040) 

3.244*** 

(0.040) 

3.245*** 

(0.040) 

3.245*** 

(0.039) 

3.244*** 

(0.037) 

3.244*** 

(0.037) 

Fixed 

linear 

time 

slope 

(γ10) 

2.482*** 

(0.271) 

2.484*** 

(0.271) 

2.002*** 

(0.344) 

2.475*** 

(0.271) 

2.841*** 

(0.337) 

1.994*** 

(0.344) 

2.846*** 

(0.337) 

Fixed 

quadratic 

time 

slope 

(γ20) 

-5.695*** 

(0.658) 

-5.703*** 

(0.658) 

-5.685*** 

(0.657) 

-5.678*** 

(0.658) 

-5.689*** 

(0.657) 

-5.669*** 

(0.657) 

-5.697*** 

(0.657) 

Fixed 

cubic 

time 

slope 

(γ30) 

3.315*** 

(0.414) 

3.320*** 

(0.414) 

3.308*** 

(0.415) 

3.304*** 

(0.414) 

3.309*** 

(0.414) 

3.298*** 

(0.414) 

3.315*** 

(0.414) 

Fixed 

additive 

TIP  

(γ01) 

- 
0.108* 

(0.040) 

-0.002 

(0.063) 

-0.113** 

(0.040) 

-0.025*** 

(0.063) 

AFD: 

-0.087* 

(0.040) 

AFD: 

0.002 

(0.062) 

SGE: 

-0.031 

(0.062) 

SGE: 

0.081* 

(0.039) 

Fixed 

cross-

level TIP 

(γ11) 

- - 
0.494* 

(0.216) 
- 

-0.374† 

(0.204) 

0.496* 

(0.216) 

-0.375† 

(0.204) 

Intercept 

variance 

(𝜏𝑈0
2 ) 

0.038 0.027 0.027 0.026 0.026 0.020 0.020 

Residual 

variance 

(𝜎𝑒
2) 

1.739 1.731 1.735 1.739 1.737 1.735 1.737 
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Psuedo-

R2 for 

(𝜏𝑈0
2 ) 

- 0.299 0.298 0.333 0.331 0.472 0.472 

Psuedo-

R2 for 

(𝜎𝑒
2) 

- - 0.002 - 0.001 0.002 0.002 

Fit Statistics 

LL - -3942.5 -3939.9 -3942.3 -3940.6 -3937.7 -3938.6 

χ2 df - 1 1 1 1 1 1 

χ2 - 6.719 5.201 7.161 3.339 4.490 4.031 

p - 0.010** 0.023* 0.007** 0.068† 0.034* 0.045* 

BIC - - - - - 7945.1 7947.0 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05, ‘†’ indicates p<0.10  

 

 

Figure 5.1 Slow transitions’ combined conditional growth curve models for primary task 

response time, when each scan-based metric is at its mean and ±1 standard deviation (SD) from 

it 

 

For medium transitions, stationary gaze entropy predicts baseline response time  

The unconditional growth curve model of response time during the medium transitions 

scenario had a positive quadratic fixed effect of time and a random intercept (χ2(1)=7.263, 

p=.007; model fitting details in Table 4.2). Stationary gaze entropy was the only metric that had 
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a significant bivariate relation with the unconditional growth curve model, specifically as an 

additive time-invariant predictor (χ2(1) =7.986, p=.005), making it the final conditional growth 

curve model by default, i.e., Model 1 in Table 5.3.  

Specifically, larger stationary gaze entropy (M=0.60, SD=0.09) predicted slower baseline 

response time during medium transitions (Model 1’s rescaled γ01=1.27, 95% CI: [0.42, 2.13]). In 

other words, for every one standard deviation increase in stationary gaze entropy, baseline 

response time slowed by 0.11 s. Table 5.3 shows the results of all the combined models and 

Figure 5.2 shows how primary task response time would follow the predicted quadratic trend, but 

stationary gaze entropy predicted baseline response time speeds.  
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Table 5.3 Medium transitions scenario’s scaled estimates of significant scan-based metrics as 

time-invariant predictors in the combined conditional growth curve models of primary task 

response time (time-invariant predictors=TIP; SGE=stationary gaze entropy). Final model is 

bolded and highlighted in gray 

 Unconditional growth 

curve model 

(fixed positive quadratic 

time slope, random 

intercept) 

Model 1 

(Conditional growth curve 

model with SGE as an 

additive TIP) 

Model 2 

(Conditional growth 

curve model with SGE as 

a cross-level TIP) 

Intercept 

 (γ00) 

3.850*** 

(0.043) 

3.850*** 

(0.039) 

3.850*** 

(0.039) 

Fixed linear time slope 

(γ10) 

-0.257* 

(0.107) 

-0.255* 

(0.107) 

-0.192 

(0.207) 

Fixed quadratic time 

slope 

(γ20) 

0.289** 

(0.107) 

0.288** 

(0.107) 

0.288** 

(0.107) 

Fixed additive TIP 

(γ01) 
- 

0.116** 

(0.039) 

0.132* 

(0.060) 

Fixed cross-level TIP 

(γ11) 
- - 

-0.066 

(0.184) 

Intercept variance 

(𝜏𝑈0
2 ) 

0.040 0.026 0.026 

Residual variance 

(𝜎𝑒
2) 

1.880 1.880 1.879 

Psuedo-R2 for 

𝜏𝑈0
2  

- 0.330 0.330 

Psuedo-R2 for 

𝜎𝑒
2 

- - 0.0001 

Fit Statistics 

LL -4611.5 -4607.5 -4607.4 

χ2 df - 1 1 

χ2 - 7.986 0.129 

p - 0.005** 0.718 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.10  
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Figure 5.2 Medium transitions’ combined conditional growth curve model of primary task 

response time, when stationary gaze entropy is at its mean and ±1 standard deviation from it 

 

For slow transitions, stationary gaze entropy predicts baseline primary task accuracy  

The unconditional growth curve model of accuracy during slow transitions had a negative 

fixed cubic time slope and a random intercept (χ2(1)=66.58, p<.001; model fitting details in 

Table 4.4). Stationary gaze entropy was the only significant time-invariant predictor in the 

bivariate investigation, specifically as an additive time-invariant predictor (χ2(1)=7.84, p<.005), 

making it the final conditional growth curve model, i.e., Model 1 in Table 5.4.  

The model found larger stationary gaze entropy values predicted worse baseline accuracy 

during slow transitions (Model 1’s rescaled γ01= -2.70, 95% CI: [-4.47, -0.92]). For every one 

standard deviation increase in stationary gaze entropy (M=0.63, SD=0.08) estimated baseline 

accuracy to worsen by 5.0%. Table 5.4 shows the results of all the combined models and Figure 

5.3 shows how accuracy follows a cubic trend over time, but stationary gaze entropy predicts 

baseline accuracy rates.  
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Table 5.4 Slow transitions scenario’s scaled estimates of significant scan-based metrics as time-

invariant predictors in the combined conditional growth curve models of primary task accuracy 

(time-invariant predictors=TIP; SGE=stationary gaze entropy). Final model is bolded and 

highlighted in gray 

 Unconditional growth 

curve model 

(fixed negative cubic time 

slope, random intercept) 

Model 1 

(Conditional growth curve 

model with SGE as an 

additive TIP) 

Model 2 

(Conditional growth curve 

model with SGE as a 

cross-level TIP) 

Intercept 

(γ00) 

0.776*** 

(0.088) 

0.777*** 

(0.078) 

0.777*** 

(0.078) 

Fixed linear time slope 

(γ10) 

-2.992*** 

(0.273) 

-2.992*** 

(0.273) 

-2.999*** 

(0.305) 

Fixed quadratic time 

slope  

(γ20) 

6.829*** 

(0.608) 

6.829*** 

(0.608) 

6.829*** 

(0.608) 

Fixed cubic time slope 

(γ30) 

-4.068*** 

(0.367) 

-4.067*** 

(0.367) 

-4.068*** 

(0.367) 

Fixed additive TIP  

(γ01) 
- 

-0.226*** 

(0.078) 

-0.227** 

(0.087) 

Fixed cross-level TIP  

(γ11) 
- - 

0.0061 

(0.180) 

Intercept variance  

(𝜏𝑈0
2 ) 

0.206 0.156 0.156 

Psuedo-R2 for 𝜏𝑈0
2   - 0.244 0.244 

Fit Statistics 

LL -2352.8 -2348.9 -2348.9 

χ2 df - 1 1 

χ2 - 7.840 0.001 

p - 0.005** 0.980 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.10  
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Figure 5.3 Slow transitions’ combined conditional growth curve model of primary task accuracy, 

when stationary gaze entropy is at its mean and ±1 standard deviation (SD) from it 

 

For medium transitions, stationary gaze entropy predicts baseline primary task accuracy  

The unconditional growth curve model of accuracy during the medium transitions 

scenario had a negative fixed cubic time slope, a random intercept, and random linear time slope 

(χ2(1)=2.31, p=0.09; model fitting details in Table 4.5). In the first phase of the analysis, both 

stationary gaze entropy and average fixation duration were significant additive time-invariant 

predictors. However, average fixation duration was no longer significant when combining both 

scan-based metrics as additive time-invariant predictors into a single model, making the final 

conditional growth curve model to include stationary gaze entropy as an additive time-invariant 

predictor, i.e., Model 1 in Table 5.5.  

Specifically, larger stationary gaze entropy predicted worst baseline accuracy during 

medium transitions (i.e., Model 1’s γ01=-2.35, 95% CI: [-3.60, -1.09]). For example, every one 

standard deviation increase in stationary gaze entropy (M=0.60, SD=0.09), baseline accuracy 
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would decrease by 4.8%. Table 5.5 shows the results of all the combined models and Figure 5.4 

shows how accuracy follows a cubic trend over time, but stationary gaze entropy predicts its 

baseline accuracy rates. 
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Table 5.5 Medium transitions scenario’s scaled estimates of significant scan-based metrics as 

time-invariant predictors in the combined conditional growth curve models of primary task 

accuracy (time-invariant predictors=TIP; AFD=average fixation duration; SGE=stationary gaze 

entropy). Final model is bolded and highlighted in gray 

 

Unconditional 

growth curve 

model 

(fixed 

negative cubic 

time slope, 

random 

intercept and 

linear time 

slope) 

Model 1 

(Conditional 

growth curve 

model with 

SGE as an 

additive TIP) 

Model 2 

(Conditional 

growth curve 

model with 

SGE as a 

cross-level 

TIP) 

Model 3 

(Conditional 

growth curve 

model with 

AFD as an 

additive TIP) 

Model 4 

(Conditional 

growth curve 

model with 

AFD as a 

cross-level 

TIP) 

Model 5  

(Model 1 and 

Model 3 

combined) 

Intercept 

(γ00) 

0.734***   

(0.070) 

0.735*** 

(0.058) 

0.735*** 

(0.058) 

0.735*** 

(0.064) 

0.735*** 

(0.064) 

0.735*** 

(0.057) 

Fixed 

linear time 

slope (γ10) 

-0.387 

(0.240) 

-0.389 

(0.239) 

-0.178 

(0.298) 

-0.387 

(0.240) 

-0.526 

(0.329) 

-0.389 

(0.239) 

Fixed 

quadratic 

time slope 

(γ20) 

1.334* 

(0.5950) 

1.337* 

(0.5927) 

1.336* 

(0.5934) 

1.333* 

(0.5947) 

1.334* 

(0.595) 

1.336* 

(0.593) 

Fixed 

cubic time 

slope 

 (γ30) 

-0.826*  

(0.381) 

-0.828* 

(0.379) 

-0.827* 

(0.380) 

-0.826* 

(0.380) 

-0.826* 

(0.380) 

-0.828* 

(0.380) 

Additive 

TIP  

(γ01) 

- 
-0.213*** 

(0.056) 

-0.173** 

(0.067) 

0.154** 

(0.057) 

0.132* 

(0.061) 

AFD: 0.057 

(0.065) 

SGE: -0.182** 

(0.061) 

Cross-

level TIP  

(γ11) 

- - 
-0.218 

(0.220) 
- 

0.145 

(0.235) 
- 

Intercept 

variance 

(𝜏𝑈0
2 ) 

0.147 0.10 0.095 0.120 0.120 0.09 

Linear 

slope 

variance 

(𝜏𝑈1
2 ) 

0.009 0.009 0.008 0.009 0.009 0.009 

Psuedo-R2 

for 𝜏𝑈0
2  

- 0.351 
0.351 

0.180 
0.179 

0.365 
0.107 0.029 
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and 𝜏𝑈1
2  

Fit Statistics 

LL -2991.9 -2986.3 -2985.7 -2989.2 -2988.9 -2985.9 

χ2 df - 1 1 1 1 
Model 1: 1 

Model 3: 1 

χ2 - 11.37 1.09 5.57 0.41 
Model 1: 0.71 

Model 3: 6.52 

p - <0.001 0.296 0.018* 0.524 
Model 1: 0.398 

Model 3: 0.011* 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05 ‘*’, ‘†’ indicates p<0.10  

 

 

Figure 5.4 Medium transitions’ combined conditional growth curve model of primary task 

accuracy, when stationary gaze entropy is at its mean and ±1 standard deviation (SD) from it 

 

For fast transitions, stationary gaze entropy and gaze transition rate predict baseline accuracy 

and its change over time  

The unconditional growth curve model had a negative fixed cubic time slope and a 

random intercept (χ2(1)=16.27, p<.001; model fitting details in Table 4.6). In the first phase of 

the analysis, stationary gaze entropy was a significant additive time-invariant predictor and gaze 
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transition rate was a significant cross-level time-invariant predictors. Model fit significantly 

improved when both time-invariant predictors were combined in to a single model, making it the 

final conditional growth curve model (Model 5 in Table 5.6).  

Specifically, larger stationary gaze entropy predicted worse baseline accuracy during the 

fast transitions scenario (Model 5’s rescaled γ01= -2.31, 95% CI: [-4.33, -0.44]). Specifically, for 

every one standard deviation increase in stationary gaze entropy (M=0.61, SD=0.08), and 

assuming all other predictors are held equal, baseline accuracy was lower by 4.2%. As for gaze 

transition rate, it predicted that larger gaze transition rates would lead to a less severe accuracy 

decrement during the fast transitions (Model 5’s rescaled γ11=0.003, 95% CI: [-0.00007, 0.006]). 

Assuming all other predictors are held equal, for every standard deviation above the mean gaze 

transition rate (M=2.7 grids/s, SD=0.7), accuracy was estimated to have a decrement that was 

3.9% less than a person with a mean gaze transition rate. Table 5.6 shows the results of all the 

combined models and Figure 5.5 shows how accuracy would follow the cubic trend over time, 

but a larger stationary gaze entropy and a smaller gaze transition rate would predict worst initial 

accuracy and for it to get even worst during fast transitions. 
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Table 5.6 Fast transitions scenario’s scaled estimates of significant scan-based metrics as time-

invariant predictors in the combined conditional growth curve models for primary task accuracy 

(time-invariant predictors=TIP; GTR=gaze transition rate; SGE=stationary gaze entropy). Final 

model is bolded and highlighted in gray. 

 Unconditional 

growth curve 

model 

(fixed 

negative 

cubic time 

slope and 

random 

intercept) 

Model 1 

(Conditional 

growth curve 

model with 

SGE as an 

additive TIP) 

Model 2 

(Conditional 

growth curve 

model with 

SGE as a 

cross-level 

TIP) 

Model 3 

(Conditional 

growth curve 

model with 

GTR as an 

additive TIP) 

Model 4 

(Conditional 

growth curve 

model with 

GTR as a 

cross-level 

TIP) 

Model 5 

(Model 4 

with SGE as 

an additive 

TIP) 

Intercept  

(γ00) 

0.598*** 

(0.081) 

0.597*** 

(0.075) 

0.598*** 

(0.075) 

0.597*** 

(0.081) 

0.598*** 

(0.081) 

0.598*** 

(0.075) 

Fixed linear 

time slope 

(γ10) 

-1.127*** 

(0.229) 

-1.127*** 

(0.229) 

-0.830** 

(0.293) 

-1.127*** 

(0.229) 

-1.332*** 

(0.269) 

-1.333*** 

(0.269) 

Fixed 

quadratic 

time slope  

(γ20) 

2.805*** 

(0.495) 

2.806*** 

(0.495) 

2.808*** 

(0.494) 

2.805*** 

(0.495) 

2.809*** 

(0.495) 

2.810*** 

(0.495) 

Fixed cubic 

time slope 

(γ30) 

-1.772*** 

(0.278) 

-1.772*** 

(0.278) 

-1.775*** 

(0.278) 

-1.772*** 

(0.278) 

-1.773*** 

(0.278) 

-1.773*** 

(0.278) 

Fixed 

additive TIP  

(γ01) 

- 
-0.172* 

(0.083) 

-0.104 

(0.110) 

0.020 

(0.072) 

-0.076 

(0.094) 

SGE:  

-0.182* 

(0.086) 

GTR:  

-0.130 

(0.092) 

Fixed cross-

level TIP 

(γ11) 

- - 
-0.306 

(0.200) 
- 

0.229† 

(0.134) 

0.229† 

(0.134) 

Intercept 

variance 

 (𝜏𝑈0
2 )  

0.172 0.142 0.142 0.171 0.172 0.141 

Psuedo-R2 

for  𝜏𝑈0
2   

- 0.175 0.174 0.002 0.001 0.182 

Fit Statistics 

LL -2422.2 -2419.8 -2418.8 -2422.1 -2420.3 -2417.8 

χ2 df - 1 1 1 1 1 
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χ2 - 4.78 1.86 0.06 3.67 4.97 

p - 0.029* 0.173 0.805 0.056† 0.027* 

Significance codes: ‘***’ indicates p<0.001, ‘**’ indicates p<0.01, ‘*’ indicates p<0.05, ‘†’ indicates p<0.10  

 

 

Figure 5.5 Fast transitions’ combined conditional growth curve model of primary task accuracy, 

when each scan-based metric is at its mean and ±1 standard deviation (SD) from it 

 

Table 5.7 summarizes the present results by identifying and interpreting the scan-based 

metric(s) that were significant time-invariant predictors in the final conditional growth curve 

models for each performance metric in each testbed scenario. 
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Table 5.7 Summary of the significant time-invariant predictors. A ✓ means the scan-based 

metrics was significant in the final combined model. The last column describes the takeaways 

from each of the final combined models  

Transition 

rate 

Performance 

metric 

Spread 

metric 

Directness 

metric 

Duration 

metric 

Takeaway 
Spatial 

density 

Stationary 

gaze 

entropy 

Gaze 

transition 

rate 

Gaze 

transition 

entropy 

Average 

fixation 

duration 

SLOW 

Response 

time 
 ✓   ✓ 

• Longer average 

fixation 

duration 

predicts faster 

baseline 

response times 

• Larger 

stationary gaze 

entropy predicts 

larger 

decrements in 

response time 

over time 

Accuracy  ✓    

• Larger 

stationary gaze 

entropy predicts 

lower baseline 

accuracy rates 

MEDIUM 

Response 

time 
 ✓    

• Larger 

stationary gaze 

entropy predicts 

slower baseline 

response times 

Accuracy  ✓    

• Larger 

stationary gaze 

entropy predicts 

lower baseline 

accuracy rates 

FAST Accuracy  ✓ ✓   

• Larger 

stationary gaze 

entropy predicts 

lower baseline 

accuracy 

• Larger gaze 

transition rate 

predicts smaller 

decrements in 

accuracy over 

time  
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Discussion 

 

The goal of this research was to assess whether scan-based metrics are predictive of 

performance trends (RQ 5.1) and if it depended on workload transition rate (RQ 5.1a). Here, we 

found these metrics had predictive capability and it was a function of the performance measure, 

i.e., response time and accuracy, and workload transition rate. The final combined model of slow 

transitions found the average duration of visual attention (fixation duration) and how dispersed 

its transitions are across the AOIs (stationary gaze entropy) are predictive of both baseline 

performance and/or its trends over time. For medium transitions, the dispersion of visual 

attention transitions across the AOIs (stationary gaze entropy) was predictive of baseline 

performance. For fast transitions, the dispersion of visual attention transitions across the AOIs 

(stationary gaze entropy) is predictive of baseline accuracy whereas the average pace of visual 

attention changes in general (gaze transition rate) is predictive of performance trends over time. 

Our expectations were mostly met, but with caveats. For instance, across all transition rates, 

stationary gaze entropy was predictive of baseline performance and/or it trend over time, which 

is consistent with other work that studies scan-based metrics in realistic environments (Shiferaw 

et al., 2019). However, the same metrics were not always predictive for each growth curve 

model, further supporting the notion that workload transition rate matters (Chapter 4).  

 

Implications of stationary gaze entropy being a significant predictor across all transition 

rates 

 

The ability of stationary gaze entropy to predict performance may lie in the inclusion of 
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context-driven AOIs and the Markov property—i.e., memoryless transitions. The Markov 

property is true if, “the probability distribution of future states of the process conditioned on both 

the past and present states depends only on the present state” (Gudivada et al., 2015). For 

example, transitions to AOIs on the display is only dependent on the current AOI the participant 

is looking at. Here the long-term probabilities are the proportion of transitions that go to each 

AOI (Shiferaw et al., 2019). Stationary gaze entropy may have high predictive capability because 

it is a measuring spread based on active, directionally specific transitions between AOIs (Shic et 

al., 2008) and the certainty of those transitions. Thus, providing a single quantitative value on the 

dynamics of visual attention transitions across AOIs, given both micro (i.e., where current visual 

attention is transitioning to) and macro (i.e., how the proportion of visual attention to each AOI 

compare to each other over time) visual attention allocation patterns. Additionally, the current 

success of assuming transitions between AOIs are a memoryless process, i.e., the Markov 

property, shows practical potential in deploying effective adaptive assistance based on in visual 

attention allocation. The eye tracker can intermittently lose contact with the operator’s point of 

gaze, so it is imperative adaptive assistance can provide accurate predictions without requiring 

the entire scanpath. Vetting this approach is essential as its applicability may change depending 

on AOI definition or task paradigm.  

The overwhelming predictive capability of stationary gaze entropy may not only be due 

to the Markov property as gaze transition entropy, which also relies on the Markov property, was 

not nearly as effective in predicting performance. This is actually consistent with some previous 

work that studied both entropy metrics in a simulated driving environment (e.g., Shiferaw et al., 

2018). The predictive capability of stationary gaze entropy may also be due to it being a spread 

metric, i.e., measuring where someone looks, as gaze transition entropy is a directness metric, 
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i.e., measuring the efficiency of someone’s scan. However, between the two spread metrics, i.e., 

spatial density and stationary gaze entropy, only stationary gaze entropy predicted performance 

trends, meaning the way spread metrics are defined matters. Spatial density may have been and 

ineffective predictor because it reduces the display into a uniform grid, providing no context on 

how each grid cell relates to the task or how often it is viewed. Oppositely, the AOIs of 

stationary gaze entropy had a direct mapping with a testbed task, which inherently provides more 

semantic information than a grid cell. Specifically, it informs how participants relied on their 

visual attention to manage tasks as workload transitioned. Simply knowing how much of the 

display was viewed at one point in time, which is essentially what spatial density measures, 

could be more dependent of display design than the participant’s visual attention allocation 

patterns (Moacdieh & Sarter, 2015), potentially making it uninformative on the management of 

workload transitions. In summary, where and how frequent visual attention transitioned to task-

relevant areas is a better indicator of performance than where it landed in general.  

Finally, stationary gaze entropy was not only predictive of performance, but also informs 

display design. Stationary gaze entropy suggests having a balanced number of transitions 

between the AOIs results in worse performance across all transition rates. Given this study had a 

primary task, we conjecture that performance improved when most of the transitions were to the 

primary task’s AOI (i.e., Video Feed panel). From a design perspective, attention should be 

directed to a primary task and minimized elsewhere either via design features and/or external 

assistance. When reviewing suggested layouts of current UAV command and control tasks, we 

found that AOIs associated with each task are typically dispersed across the display and 

organized into several subgroups, just like this testbed had (Feitshans et al., 2008; Foroughi et 

al., 2019). It may be strategic to reorganize these displays based on the operator’s priorities, 
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especially if multitasking between tasks is not equal.  

 

Implications on theory: Effort regulation may manifest differently depending on sensory 

modality and depend on the features of the transition and environment  

 

The interpretations from the final combined models add to the existing theory on 

workload transitions. To date, there has been limited work that expands upon the two 

explanations—i.e., effort regulation and resource depletion—even when psychophysiological 

measures are included (e.g., Bowers et al., 2014; Kim et al., 2019). Here, the current findings, 

allow us a unique opportunity to build upon the effort regulation explanation, given it stipulates 

that workload transition performance is a function of how mental resources are relied upon. 

Specifically, it states: 

Workload transition performance is dependent on the individual actively appraising, 

recruiting, and deploying the requisite amount of mental resources for the present workload. 

Performance is stable as long as the appraisal is correct and workload does not reach levels 

of overload (Hockey, 1997).  

 

We expand upon the bolded terms in the definition above. Specifically, we will add 

specifications to the theory regarding: (a) what in the environment is appraised, and (b) how 

mental resources are deployed, (c) the type of mental resource. The only aspect of this 

explanation we do not address is resource recruitment, but future work ideally can (see 

alternatives presented in Conclusion).  

First, we propose workload transition performance is not only dependent on appraising 

the amount of workload, but it is also dependent on appraising the rate in which workload 

transitions. The different significant predictors across the conditional growth curve models 
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support this notion. Although all models predicted performance to worsen when visual attention 

transitions were more evenly distributed across tasks (i.e., when stationary gaze entropy was 

larger), there is some evidence different visual attention strategies across the three transition rates 

improved performance. For example, for slow transitions, longer periods of visual attention 

predicted improved baseline response time, meaning performing quickly during slow transitions 

required more thoughtful cognitive processing (Holmqvist et al., 2011; Poole & Ball, 2006). This 

may be why larger performance differences were observed between periods of low and high 

workload during slow transitions in Chapter 4, as thoughtful cognitive processing was more 

limited during high workload. For fast transitions, frequent general attention shifts predicted 

improved baseline accuracy and a smaller decrement over time suggesting performing well 

during fast transitions requires more frequent changes in attention (Yang et al., 2018). Chapter 4 

finds performance was quicker during fast transitions, potentially because the more frequent 

change in general attention may lend to detecting targets faster. The significance of stationary 

gaze entropy during medium transitions also explains why individual differences were detected 

for both baseline and over time performance in Chapter 4—it was more dependent on the task 

strategy which stationary gaze entropy holistically captures. Our results show performance 

improves when visual attention patterns account for transition rate. 

Second, we propose the deployment of resources should consider the way in which visual 

attention is allocated. Namely, its location, efficiency, and time span. This is evident by one 

scan-based eye tracking metric from each category—i.e., spread, directness, and duration—

being a significant predictor for at least one performance trend over time. We propose the 

deployment of mental resources needs to consider the questions regarding the scan-based metric 

categories: where are people generally looking? (spread), how efficiently are people looking? 
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(directness), and how long are people looking? (duration; Moacdieh & Sarter, 2015).  

Third, we propose amending the effort regulation explanation to specify that workload 

transition performance is dependent on the type of mental resource. Here we propose the effort 

regulation explanation should say workload transition performance hinges on having the 

requisite amount of visual attentional resources. This is supported by the fact that at least one 

scan-based metric was a significant predictor of performance. Considering the entire experiment 

was largely visual in nature, this finding is not surprising; however, this highlights how the 

applicability of this theory may hinge on what sensory modality is considered. This supports the 

premise of the Multiple Resource Model, which posits different sensory modalities draw from 

separate attentional resources (Wickens, 1980). Future work should examine whether this holds 

true for other modalities (i.e., auditory, tactile, etc.). We believe detailing the effort regulation 

explanation in this way leads to a better understanding and expectation of how people perform 

and allocate their visual attention during workload transitions. 

 

Implication for design: Technology design for each transition rate based on scan-based 

metrics  

 

Workload transitions continue to be an important feature of the environment that needs to 

be taken into consideration when designing visual displays, but currently there is limited design 

guidance that exists. Beyond prediction, the current results also provide new information on the 

success of task strategy. Therefore, design guidance for each workload transition rate is outlined 

in Table 5.8.  
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Table 5.8 Findings, design guidance, and design example across all transition rates and for each 

transition rate 

Transition 

rate 
Finding Design Guidance Example 

ALL 

• Stationary gaze entropy 

suggests performance was 

expected to be worse with 

more even attention 

transitions across tasks.   

• Conduct a task analysis for 

the content and placement of 

AOIs  

o Minimize transitions 

between AOIs and/or 

centralize the most used 

AOIs  

o Offload less prioritized 

tasks to other sensory 

channels (e.g., chat 

messages to auditory, fuel 

leaks to tactile; Riggs et 

al., 2017) 

• Alerting participants of 

potential threats via the tactile 

channel improved 

performance without 

hindering secondary tasks in 

a simulated combat 

environment (Oskarsson, 

Eriksson, & Carlander, 2012)  

SLOW 

• Longer fixation duration was 

predictive of better baseline 

performance  

• Design elements on the 

display that prompt further 

examination so the operator 

is prompted to spend time 

encoding information 

• Make items essential to 

performance, e.g., the target, 

engaging and informative so 

the operator spends time 

fixating (Jacob & Karn, 

2003; Poole & Ball, 2006) 

• Increasing the information 

detail and salience without 

increasing clutter helped 

refocus attention without a 

cost of cognitive load in 

nuclear power plant control 

environments (Kovesdi et al., 

2018) 

MEDIUM 

• Stationary gaze entropy is 

the only metric able to 

predict response time and 

accuracy trends, so it should 

be further explored to be 

used in real-time 

• Build and test stochastic 

models of transitions between 

AOIs (i.e., Markov chains) to 

identify the most to least 

frequent transitions between 

AOIs to determine the 

distance between AOIs 

• Gaze location in static image 

viewing was predicted with 

56% accuracy (chance was 

33%) with hidden Markov 

modeling (Coutrot, Hsiao, & 

Chan, 2018) 

FAST 

• Larger gaze transition rate 

was predictive of better 

baseline performance and its 

trend over time 

• Prompt efficient scanning by 

decluttering the display and 

making key tasks salient and 

informative (Moacdieh & 

Sarter, 2015) 

• Provide redundancy for the 

most important tasks by 

including multiple, 

informative visual 

representations in the 

environment (Yang et al., 

2018) 

• Comprehension rates and 

visual attention transition 

rates increased when 

information was presented 

across multiple visualizations 

(O’Keefe et al., 2014)  
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Future work and limitations 

 

Although the present work substantially adds to the workload transition knowledgebase, 

it is not without limitations. First, although the selection of eye tracking metrics included in this 

study was motivated by Chapter 3, there are other metrics worth exploring. Several scan-based 

metrics had significant bivariate relations with each unconditional growth curve model, so their 

usefulness may change based on research goals (e.g., the applicability of spatial destiny and 

fixation duration in the present work versus Chapter 3). Also, eye tracking metrics used to study 

cognitive load, such as pupillometry and blink rate, may be better equipped to address any 

applicability of the resource depletion explanation and/or the recruitment of mental resources due 

to their ability to address amounts of mental resources, specifically.  

Relatedly, multivariate growth curve modeling could explore if the way that scan-based 

metrics trend over time relates to workload transition performance. It would require a rather 

large sample size (>100 participants; Astivia et al., 2019), but it may be particularly informative 

to build upon the resource depletion explanation and/or the recruitment of resources, as both 

depend on time and workload. Additionally, this approach could include scan-based measures 

like coefficient Κ, which identifies ambient versus focal visual attention as fixations and 

saccades occur sequentially over time (Krejtz et al., 2016), and has previously been informative 

of workload transition performance (Devlin et al., 2021). The current eye tracking metrics were 

added as time-invariant predictors to the model because of how these metrics are calculated, i.e., 

measures that were only measured once per person, and the ultimate goal to understand the 

predictive capability of eye tracking on workload transition performance trends.  

Future work should see if Markov models could reliably predict visual attention 
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transitions across AOIs during workload transitions. Previous work has shown some success of 

using Markov models to predict visual attention allocation (Ebeid et al., 2019; Liechty, Pieters, 

& Wedel, 2003), but it is unclear how transition rate, individual differences, and task features 

would impact findings, which is essential in ever-increasing complex environments (Cummings, 

2014). 

 

Conclusion 

 

In summary, the present results suggest scan-based metrics can predict workload 

transition performance trends. They are also very informative on differences in performance 

trends across transitions rates, as they are able to concretely detail theory and provide design 

guidance. Future work should continue to explore how novel measures and methods can test and 

revise theory surrounding workload transitions in order to innovate the current state of the 

knowledgebase. This work finds another application where studying visual attention allocation is 

informative of performance trends and shows potential to be applied to operational 

environments. Future work should build upon the present momentum and include eye tracking 

and longitudinal data analysis methods to their workload transition research questions as several, 

relevant follow-up questions are apparent from the present work. 
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CHAPTER 6 

 

Conclusion 

 

Workload transitions continue to be an open, relevant research topic, for settings like 

UAV command and control given the features of the environment are constantly changing and 

the expectations of the operator are expanding (Cummings et al., 2014, 2019; Sibley et al., 

2015). This dissertation addresses some of the research gaps by concurrently considering 

performance measures with eye tracking data. Specifically, this dissertation addresses: 

• The impact transition rate, i.e., the speed at which workload changes from one load to 

another, has on multitasking performance and performance over time. 

• The ability of eye tracking data to explain and predict the observed performance 

trends of workload transitions. 

• The empirical development of the current theoretical explanations as a means to 

inform future display design for the dynamic environments. 

The present research finds workload transition performance depends on the task, 

transition rate, and individual. However, visual attention allocation patterns are valuable in 

explaining and predicting these effects. Specifically, Chapters 2 and 3 shed light on how people 

multitask and adjust visual attention allocation patterns as workload transitions. Chapters 4 and 5 

confirm and detail how transition rate influences performance and visual attention allocation and 

offers amendments to an existing theoretical explanation of workload transitions. Finally, this 

work proposes display design guidance to account for transition rate, so that technology supports 

operators in environments prone to workload transitions, like UAV command and control. 
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Intellectual Merit: Contributions to the Workload Transition Knowledgebase 

 

This dissertation addresses a specific, unexplored niche in the knowledgebase: the study 

of how visual attention allocation evolves under different types of workload transitions in 

multitasking environments. Specifically, the present dissertation builds upon the following 

aspects of workload transitions: 

• Existing theoretical explanations,  

• Human performance modeling, and  

• The predictive and explanatory value of visual attention allocation patterns. 

It also lays the groundwork for human factors professionals to pursue different analysis 

techniques for their multifaceted, operationally relevant research questions. 

 

Building upon current workload transition theory: The effort regulation explanation 

 

The workload transition knowledgebase is fragmented, with no single theory unifying the 

observed performance trends. The most consequential finding of this dissertation is the 

contribution it makes towards the theoretical explanations surrounding workload transitions. 

Specifically, the effort regulation explanation, which states performance during workload 

transitions is dependent on the ability to appraise, recruit, and deploy mental resources 

effectively (Hockey, 1997). The following findings from each chapter support and add to the 

effort regulation explanation:  

• Chapter 2: Performance was better during workload transitions than constant low 
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workload and remained stable or recovered with multiple occurrences of workload 

transitions.  

• Chapter 3: Better multitasking performance was associated with more concentrated 

and direct visual attention and primary task performance was better when visual 

attention type followed workload level expectations over time, i.e., focal during high 

workload and ambient during low workload. 

• Chapter 4: Primary task performance trends were different for each transition rate, 

and even within a given transition rate, as performance either improved, stagnated, or 

worsened over time.  

• Chapter 5: Scan-based eye tracking metrics predicted primary task performance 

trends over time for each transition rate. Specifically, attention transitions that were 

more dispersed predicted worst primary task performance. 

Chapter 2 supports the effort regulation explanation because improved performance was 

not only possible during constant low levels of workload, as performance improved with high 

workload and multiple workload transitions for both the primary and secondary task. Chapter 3 

lent to the effort regulation explanation because better performance was associated with how 

visual attention was used, specifically in terms of spread (where are users generally looking?) 

and directness (how purposeful are attention transitions?). The follow up studies (Chs. 4 and 5) 

provided evidence to amend the effort regulation explanation to say that performance during 

workload transitions is dependent on the ability to appraise both the workload level and 

transition rate, as well as deploy visual attention resources effectively, particularly in terms of 

spread, directness, and duration. These studies highlight the nuances associated with adaptation-

based models of mental resources (Hancock & Warm, 1989; Hockey, 1986), but providing 
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specifications helps understand their applicability. For example, the Multiple Resource Model, 

which posits that different sensory modalities draw from separate attentional resources, specifies 

how multitasking performance is a function of relying on mental resource from different sensory 

channels and information stages (Wickens, 1980). Providing these specifications has led to a 

more informed understanding and expectations of multitasking performance across applications 

(Wickens, 2008). There are still unanswered details surrounding the effort regulation 

explanation, but this work begins to shed light on the how mental resources are used during 

workload transitions and the factors that influence their usage. This is of particular importance 

when trying to clarify the nuance surrounding workload transition performance.  

The consistent support for the effort regulation explanation actually gives a rationale for 

the performance differences observed in the workload transition literature. The results from 

Chapters 4 and 5 suggest differences stem from an individual’s visual attention allocation 

patterns. This not only builds on the notion of individual differences being influential to 

workload transition performance (Cox-Fuenzalida et al., 2004, 2006; McKendrick & Harwood, 

2019; Mracek et al., 2014), but it provides an explanation as to why – i.e., individuals’ visual 

attention allocation patterns. Chapter 4 shows the value of considering the individual’s 

performance trends, so future work should continue to do so; otherwise there should be a 

cautious interpretation of the results as basing decisions only on pairwise comparisons may be 

problematic and/or incomplete. Given the importance of visual attention allocation patterns have 

on workload transition performance (Chs. 3 and 5), measures of an individual’s attentional 

control should be considered in future workload transition research (Engle, 2018). Also, 

technology and systems should be more customized to the individual (Szalma, 2009) in the 

hopes of making them more effective tools for each operator managing dynamic environments.   
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Studying workload transitions with context adds to human performance modeling 

 

Human performance models for workload transitions should be expanded to directly 

account for how transitions occur within the context of the environment, e.g., the transition rate 

(Chs. 2 and 4), and how it may not impact all individuals in the same way, e.g., their 

performance trends over time (Ch. 4) or their visual attention allocation patterns (Ch. 5).  

• Chapter 2: Workload history effects of medium transitions were more severe 

compared to the workload history effects of fast transitions. However, secondary task 

performance was the same for the two transition rates. 

• Chapter 4: Primary task performance trends over time depend on the transition rate, 

performance measure, workload level, and the individual. Slow transitions lead to 

more stable performance across each workload period, while medium transitions 

show the potential to improve performance for some individuals over time. Fast 

transitions lead to some of the fastest performance, with a minimal cost to accuracy. 

• Chapter 5: Workload transition rate influences visual attention allocation patterns 

differently.  

Given this dissertation is one of the first thorough investigations of workload transition rate, the 

workload transition literature is inherently expanded from the present results. It also was 

essential to specifying theory, which not only increases the value of its impact, but also suggests 

it needs to be considered in future research.  

Transition rate should ideally be accounted for in human performance models. For 

instance, it should be added as a component of S-PRINT, a human performance model that 
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predicts how performance will fare when workload suddenly increases to levels of overload after 

extended periods of underload (Sebok et al., 2017). There were some instances where the 

performance differences amongst transition rates would lead to very different practical outcomes. 

For example, Chapter 2 finds primary task accuracy worsens and never recovers during medium 

transitions, but remains stable during fast transitions. Performance also could differ within a 

given transition rate, as Chapter 4 finds medium transitions lead to improved performance for 

some participants and not others. Chapter 3 showed that workload transitions affected how visual 

attention was allocated and Chapter 5 showed how it depended on the transition rate. Based on 

these collective findings, we cannot assume workload transitions impact operators in the same 

way. Instead, transition rate and visual attention allocation, needs to be actively accounted for 

when modeling workload transition performance. Currently, S-PRINT does not include features 

of the workload transition as a model component, and rather focuses on more general operational 

aspects, like operator’s fatigue level and human-automation interaction. S-PRINT could benefit 

from adding specifics related to workload transitions in order to increase its accuracy and utility. 

More broadly, human performance models of multitasking should consider how 

workload transitions may impact task completion strategies by better understanding how tasks 

priorities fluctuate in the environment (Clare et al., 2010). Chapter 3 found workload transitions 

made visual attention allocation more efficient and direct and this benefitted both primary and 

secondary task performance (Ch. 2). Currently, the Strategic Task Overload Management model 

(STOM; Wickens et al., 2013) is based on the idea that task completion is largely dictated by its 

engagement, as defined by its urgency, saliency, difficulty. This dissertation suggests the 

dynamics of the environment, i.e., its propensity to shift workload and the interdependency of the 

tasks, should also be considered given its rather profound impact on multitasking performance 
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trends. The results of this dissertation also directly emphasize the recent calls to explore how the 

time on task (Ch. 4), fluctuations in task priority (Ch. 2), and individual differences (Ch. 4) 

impact task completion and therefore STOM (Wickens & Gutzwiller, 2017), as all were 

influential on workload transition performance. 

Overall, the current results support the general need for human performance models as 

features of the environment, task, and their interaction appear to greatly influence task 

completion strategies in dynamic environments. Focusing on relevant features (e.g., transition 

rate) with as much context as possible (e.g., dynamic multitasking, sampling from the relevant 

population, etc.) was successful in contributing to the knowledgebase, which supports the 

growing call for human factors research to be conducted with increased specificity and context 

for greater impact (Dul et al., 2012). Clearly, performance trends are subject to how certain 

events occur the environment and how they are managed by the individual. With the growing 

complexity of environments (Cummings, 2014), it is essential to include as many realistic 

features as possible in research initiatives and continuously iterate in identifying and studying 

influential features.  

  

Visual attention allocation with workload transitions 

 

This dissertation also makes a substantial impact on a specific, unexplored niche in the 

knowledgebase: the study of how visual attention allocation evolves over time under workload 

transitions in a multitasking environment. Specifically, it finds: 

• Chapter 3: Compared to constant workload, workload transitions leads to visual 

attention transition to be more concentrated and efficient, and visual attention 
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allocation patterns develop over time.  

• Chapter 5: Across all transitions rates, better performance was (again) associated 

with less dispersed visual attention transitions. However, there were still notable 

differences in visual attention allocation patterns for each transition rate, which lend 

to explain and predict their currently observed performance differences over time. 

This research is among the few studies to show that psychophysiological measures can 

predict certain aspects of workload transition performance via growth curve modeling (Kim et 

al., 2019). Visual attention allocation newly identified why individuals have varying levels of 

success during a workload transition and what that means for display design (Ch. 3 and 5). 

Questions addressed by studying visual attention allocation include: why multitasking 

performance was better than constant workload (Ch. 3), why performance recovered for a certain 

transition rate (Ch. 3), or why performance varied across individuals (Ch. 5). More generally, the 

visual attention allocation patterns suggested performance during workload transitions may not 

depend on the amount of mental resources, but rather how those resources are organized and 

used, which builds upon a suite of theories suggesting performance is not as dependent on the 

sheer amount of workload, but rather how the task prompts mental resource usage (Abich et al., 

2017; Hockey, 1997; Sebok et al., 2015; Wickens, 2002; Young & Stanton, 2002).  

This work also confirms the value of advanced scan-based measures—i.e., gaze transition 

entropy, stationary gaze entropy, and coefficient Κ—as they were essential in explaining and/or 

predicting performance outcomes. This dissertation supports the notion that higher-level 

descriptors of visual attention allocation are needed to understand cognitive processes in 

dynamic environments (Krejtz et al., 2016). Advanced metrics can provide the nuance and 

specificity other methods struggle to provide, (e.g., think aloud protocol, debriefing strategies, 
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etc.), further confirming the benefit of continuous, unobtrusive, psychophysiological measures. 

For example, Abich et al. (2017) note the need to quantify and compare how dispersed attention 

was across the display, but how it would be extremely challenging with debriefing data alone. 

Continuously monitoring and understanding the management process used by the individual in 

these environments is not only useful for prediction (Ch. 5), but it can provide very tangible and 

specific insights on convoluted concepts, such as the nuance and variation in workload transition 

performance, e.g., the slight differences observed in coefficient Κ over time in Chapter 3.  

 

New analysis approaches to be considered by human factors researchers and practitioners 

 

When trying to provide clarity for an underdeveloped or poorly understood human factors 

concept, multiple investigations, measures, and analyses may be necessary. This dissertation not 

only shows the value, but also a method, on how to thoroughly study inherent features of an 

environment and synthesize across different measures. For example: 

• Chapter 2: Expanding both the performance and eye tracking analysis to compare 

across workload periods was more meaningful when studying transition rate. 

• Chapter 3: Advanced scan-based metrics lead to insightful findings towards 

understanding human performance over time.  

• Chapter 4: Conducting both the aggregate analysis and growth curve modeling for 

response time and accuracy of all transition rates lead to operator-centric design 

recommendations.  

• Chapter 5: Directly applying scan-based metrics as predictors of individual’s 

performance led to some of the most groundbreaking findings of this dissertation.  
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Developing multifaceted experimental designs and thorough analysis approaches are only 

increasing in importance as these environments continue to increase in complexity and 

potentially threaten operator and system safety (Cummings, 2014). Making minor adjustments to 

central parts of the research question in follow-up investigations (e.g., expanding the transition 

rate investigation, Ch. 4), relying on different measures (e.g., eye tracking Chs. 3 and 5), and 

analysis approaches (e.g., growth curve modeling, Chs. 4 and 5) not only confirmed the 

magnitude of the observed effect, but it also led to more nuanced prediction models, theory 

development, and design guidance.  

Human factors work should ideally consider using multiple analysis approaches when 

exploring relevant topics to dynamic domains. This notion is directly supported when reviewing 

the outcomes of the aggregate and growth curve modeling results in Chapter 4. The 

interpretation from each analysis differed as the aggregate analysis suggested slow transitions 

lead to some of the most stable performance, but growth curve modeling estimated performance 

to improve during medium transitions. If conclusions were only based on the typical aggregate 

analysis, then theory and design guidance may have only been applicable for “average” 

performers – a very small portion of the population that becomes even more irrelevant as UAVs 

span to different military populations (Freedberg, 2018). Topics like situation awareness and 

fatigue should explore how the synthesis of longitudinal models and psychophysiological 

measures can address their current research gaps, given these topics can evolve over time, be 

physiologically tracked, and vary across individuals in dynamic environments (Endsley, 2015; 

Guastello et al., 2012; Salfinger et al., 2013).  
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Broader Impacts: Informing the Design of Technology in UAV Environments 

 

This research occurred in the context of the complex and dynamic domain of UAV 

command and control. However, the experimental design (e.g., studying transition rate, including 

psychophysiological measures of the operator, sampling from a context-relevant population, etc.) 

and analysis approach (e.g., longitudinal models of workload transition performance with 

psychophysiological data as model predictors), can benefit various complex, dynamic work 

environments (e.g., aviation, nuclear plant control, and emergency response; Huey & Wickens, 

1993). This dissertation delivers empirically based guidelines on display design as a means to 

better account for an operator’s needs in real-time during workload transitions. It also expands 

the methodological options for adaptive displays (i.e., displays that adjust the information 

presentation, content, or amount based on the real-time needs of the operator; Feigh et al., 2012).  

 

Informing display design in complex work environments 

 

An immediate applied takeaway from this work is the understanding of how to design 

displays to account for workload transitions. Specifically, each chapter finds: 

• Chapter 2: Workload transitions may change strategies of multitasking.  

• Chapter 3: To improve multitasking performance, display should be designed so that 

visual attention transitions are efficient and concentrated to a few necessary areas on 

the display.  

• Chapter 4: Depending on the performance goals, technology and systems should be 

designed to foster certain types of workload transitions.  
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• Chapter 5: Tasks and information essential to performance should be collocated on 

the display.  

Across all transition rates, performance improved when individuals dedicated their visual 

attention less equally across the display (Chs. 3 and 5). Performance improved further if 

individuals adjusted their visual attention strategy for the transition rate accordingly (Ch. 5). 

Although these scan patterns may be trainable (Vine et al., 2012), it may be more advantageous 

to design displays that prompt visual attention allocation accordingly. For example, features of 

the display that are essential to system performance or safety should be collocated. Display 

design should also be based on the transition rate (Table 5.8 in Ch. 5), which can vary per the 

performance goals of the environment (Table 4.8 in Ch. 4). UAV command and control 

environments need extensive research on display design because their operators sometimes 

primarily rely on, or only have, visual information during missions (Hobbs & Shivley, 2014). 

They also rely on automation with unprecedented functionality (e.g., multiple, related 

autonomous systems; Cummings et al., 2019). This creates a very different environment when 

compared to manned aerial missions (McCarley & Wickens, 2004), so simply applying that 

display guidance may not suffice. Display design may not only prevent or mitigate large-impact 

errors, it might also reduce the burnout amongst operators working incredibly long shifts in these 

high-stakes missions (Arrabito et al., 2010). Burnout can lead to serious personal health issues 

and long-term staffing problems, which has been identified as a threat to the UAV population 

specifically (Ouma et al., 2011), but is by no means unique to this population (e.g., healthcare; 

Moss et al., 2016; van Wulfften Palthe et al., 2016). Preventing and tempering burnout is not 

new to human factors research either, so further investigations of this kind are warranted 

(Matthews et al., 2019). Informing display design with a multifaceted approach, i.e., 
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simultaneously studying the impact specific features of the task, environment, and individual 

have on performance, also informs aspects of the system as well, including the open question of 

selection and training procedures (Harkins, 2020). 

 

Laying the foundation for adaptive displays: Using scan-based metrics and novel analysis 

methods  

 

Given the goal is to implicitly monitor the real-time state of the operator without 

imposing any additional burden on that operator (Feigh et al., 2012), it is important to identify 

adaptive drivers, i.e., measures that are able to continuously and implicitly monitor the operator’s 

state and predict their needs in real-time (Rothrock et al., 2002). This dissertation finds: 

• Chapter 3: Measuring how dispersed and direct visual attention was, especially in 

terms of how it related to the tasks, helped identify differences in multitasking 

performance between transitioning and constant workload. 

• Chapter 5: Understanding how efficiency and duration of visual attention explained 

the performance differences between individuals and transition rate. 

Scan-based metrics show promise to be adaptive drivers because they predicted workload 

transition performance across different transition rates and performance measures (Ch. 5). Even 

more promising, they suggested when and how visual attention patterns should adjust for the 

transition rate and performance goals, which is key to effective adaptive assistance. The current 

results suggest adaptive drivers should monitor the distribution of attention switches across the 

display and prompt the operator to reduce the frequency of those switches when target detection 

rates need to improve (Chs. 3 and 5). Growth curve modeling should be further explored as the 
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basis of adaptive displays as it not only identified the differences in individual performance, but 

also how visual attention allocation patterns contributed to those differences across difference 

transition rates (Ch. 5).  

Given the current success of gaze transition entropy and stationary gaze entropy (Chs. 3 

and 5), another potential alternative for adaptive display algorithms is basing them on Markov 

models. It is becoming increasingly necessary to explore and verify stochastic models for human 

performance, as the true characteristics of human behavior continue to be observed and 

characterized as naturally dynamic (Feng et al., 2016; Hancock & Matthews, 2019). This 

dissertation shows the promise of modeling visual attention patterns as a Markovian process, 

which further supports some our preliminary investigations (Devlin & Riggs, 2017). Practically, 

it may be successful in predicting the location of visual attention in real-time in a dynamic 

environment, which is an essential first step in catering to the operator’s most pressing needs. 

This alternative also has a practical benefit, as it would require minimal input and training data, 

which is a drawback of methods like growth curve modeling and machine learning (Delucia & 

Pitts, 2006; Kruthiventi, Ayush, & Babu, 2017). This benefit is particularly relevant for eye 

tracking considering the inevitable loss of eye tracking data in real-time (Holmqvist et al., 2011; 

Sibley et al., 2017). Providing adaptive assistance has innovated several fields, most notably in 

the learning and training domain (e.g., Bayesian Knowledge Tracing; Corbett & Anderson, 

1994). Ever since the implementation of intelligent tutoring systems, students have learned faster 

and retained the information longer, which inherently benefits society (Chassignol et al., 2018). 

Similar societal benefits may follow if we move away from post hoc methods of design (Hobbs 

& Shivley, 2014) and towards proactively designing displays to thwart and predict operator error 

in UAV command and control, as a means to substantially and sustainably reduce consequential 
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mishaps and accidents (Breslow et al., 2014; Williams, 2006). 

 

Future Work 

 

This dissertation simultaneously expands and details the workload transition 

knowledgebase, specifically by better informing theoretical explanations and the design of 

displays in complex and dynamic environments. It also sets the stage for several future research 

efforts, ranging from direct follow-up investigations to new expansion on promising findings. 

The benefits of completing this future work include expanding theory, human performance 

models, and technology design for workload transitions.  

A follow-up study to the current work would be to explore how the number and/or 

duration of workload transitions affects performance in a similar, dynamic, multitasking setting. 

It is currently unclear if the instances where performance stabilized was due to transition rate 

and/or expectancy effects (i.e., awareness of/preparing for workload to shift given it had several 

times prior; Kochan et al., 2004; Landman et al., 2017). The only other previous work that 

studies multiple workload transitions also finds performance stabilized as workload transitions 

multiple times in the experiment, but they only ever transitioned workload instantly (Morgan & 

Hancock, 2011). Completing this work could address the validity of the resource depletion 

explanation. If performance trends are similar even when the number of transitions differs, this 

would not support the resource depletion explanation as resources recover only when workload 

is low. Further exploring the impact of multiple workload transitions would inform if technology 

needs to intervene for every instance of a workload transition or if there is any benefit to have the 

operator experience workload transitions under certain circumstances.  
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There is also a need to understand how different, occupationally-relevant modulations of 

workload transitions, especially ones that span sensory modality, influence performance. Relying 

on scan-based metrics for an entirely visual task was greatly successful in explaining nuanced 

performance trends surrounding workload transitions. Future work should continue to include 

real-time cognitive measures for both theoretical and practical applications. For example, it may 

be worthwhile to include additional psychophysiological measures as task demands span sensory 

modality. For example, heart rate measures should be included if tasks rely on the auditory 

channel (see review in Erfanian et al., 2019). Although using multiple psychophysiological 

measures within the same experiment can fail to converge to the same conclusions (Matthews et 

al., 2015), initial investigations are necessary to better understand the operator’s experience of 

multimodal workload transitions.  

Future work should also actively search and identify the specific features of the 

individual that are moderating workload transition performance. This dissertation calls for future 

research to go beyond identifying and/or controlling for individual differences, as it should 

scrutinize how features of the individual influence performance. For example, eye tracking 

studies find training novices with expert scan patterns improves performance and learning rates 

(Law et al., 2005; Vine et al., 2012), so conducting this type of investigation will directly inform 

what to expect from and how to design for the individual in environments where workload 

transitions differently. Along the same lines, understanding how teams of individuals perform 

when workload transitions in these environments will be critical across complex domains. 

Developing measures and methods that specifically monitor and assist with effective 

collaboration (e.g., understanding the effect of team personality, task completion strategy, and 

quantifying their shared visual attention allocation patterns with new eye tracking metrics and 



226 
 

analysis methods; e.g., Devlin et al., 2018; Devlin et al., 2019; Devlin et al., 2020a, 2020b) is 

essential to further understanding workload transitions and display design alike.  

To confirm and expand upon the value of eye tracking data, future work should consider 

other eye tracking metrics. Here, several scan-based metrics predicted performance trends when 

it was the only predictor in the growth curve model and the applicability of these measures can 

change per research goals (e.g., the applicability of spatial destiny and fixation duration in Ch. 3 

vs. 5). It is unrealistic to assume a single set of scan-based metrics will be applicable to all 

research situations, but this work can serve as a starting point for future explorations focused on 

scan-based metrics. Also, it may be interesting to include eye tracking metrics for cognitive load 

(e.g., pupillometry, blink rate). These measures may be better equipped to address any 

applicability of the resource depletion explanation and/or the recruitment process of mental 

resources due to their specific capability to measure amounts of mental resources.  

Finally, different analysis techniques should also be considered. Multivariate growth 

curve modeling could explore if eye tracking metrics evolve over time and if/how this relates to 

workload transition performance. This would require a larger sample size (i.e., >100; Astivia et 

al., 2019), but it may be particularly informative to build upon the resource depletion explanation 

and/or the recruitment of resources, as both depends on time and workload. Additionally, 

multivariate growth curve modeling could allow for the inclusion of coefficient Κ, given its 

dependence on timing of fixations and saccades and present workload level (Ch. 3). Eye tracking 

metrics were added as time-invariant predictors in this dissertation because of how these metrics 

are calculated, i.e., measures that were only measured once per person, and the ultimate goal to 

understand the predictive capability of eye tracking on performance trends.  
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