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Abstract 

The outline of the following chapters is listed below. 

Chapter 1 states the problem that is addressed by this dissertation and the contents of each of the 

specific aims.  

Chapter 2 provides background on the physiology of glucose homeostasis in the human body. A review 

of diabetes pathology, simulation modeling of type one diabetes, challenges with self-reported data, 

and meal detection is also included. 

Chapter 3 describes the design and evaluation of an automatic bolus priming system focused on safety. 

This chapter also includes the results of a pilot clinical study where the automatic bolus priming system 

was integrated into an MPC-based automatic insulin dosing system and compared to a state-of-the-art 

artificial pancreas control system. 

Chapter 4 explains the design of two glycemic disturbance detection algorithms. There is also a 

comparison of these two algorithms provided in this chapter. 

Chapter 5 details how historical data was used to create individualized profiles representing patterns of 

disturbances experienced by people with type 1 diabetes and how these profiles were integrated into a 

multistage model predictive control system to anticipate glycemic disturbances such as meals. The 

results of a simulation experiment designed to evaluate the impact of the bolus priming system and the 

anticipatory disturbance profiles on glycemia are also discussed.  

Chapter 6 summarizes the findings of this dissertation and reflects on its impact. Additionally, there are 

some further applications of this work that are presented. 
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Introduction 

Glycemic disturbances such as meals and exercise are the primary causes of hypoglycemia and 

hyperglycemia for those with type 1 diabetes (T1D). Currently available automatic insulin dosing systems 

(i.e., hybrid artificial pancreas systems) cannot sufficiently mitigate the unwanted effects of these 

disturbances without user input. Because meals are entered manually by the user, there are errors 

regarding the timing and size estimates of these events, which causes issues with both real-time control 

of blood glucose (BG) and retrospective data analysis. To create a fully closed-loop artificial pancreas 

system, techniques to automatically detect, anticipate, and reject disturbances must be developed. 

This dissertation strives to advance diabetes technology by developing a method to detect 

glycemic disturbances in real-time and create a strategy to automatically dose insulin when appropriate. 

Additionally, methods to improve data quality by retrospectively detecting positive glycemic 

disturbances will be defined and compared. Finally, this work describes a procedure to recognize 

patterns in behaviors relevant to glycemic control and characterize those patterns in a way that is usable 

in a closed-loop system to anticipate disturbances. These advances will be used for real-time 

disturbance detection and dosing, data reconstruction, and disturbance mitigation through anticipatory 

behavioral profiles. 

The primary hypotheses of this work are: (1) events where insulin doses can be administered 

safely and would improve control of plasma BG can be detected in real-time using machine learning, and 

a strategy for automatically dosing insulin can be determined from the output of this detection 

algorithm; (2) data-driven methodologies can be used to detect and reconstruct past disturbance events 

accurately; and finally (3) reconstructed records can be used to create profiles of glycemic disturbances 

to inform the planning of insulin treatment strategies (i.e., model predictive controllers that can 

anticipate meals). The chapters related to the specific aims of this work detail how each of these 

hypotheses was evaluated.  
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Background 

Physiology of Glucose Homeostasis 

In a healthy state, the human body can maintain tight control of plasma BG levels. This process 

involves input and response from several physiological components. Glucose regulation is achieved 

through a sophisticated interplay between various hormones and neuropeptides released and regulated 

by the brain, pancreas, liver, intestine, and muscle and adipose tissue. The pancreas plays a vital role in 

this process by producing insulin, which lowers BG, and glucagon, which raises it. These two hormones 

serve as counterbalances in raising and lowering plasma BG as deemed appropriate. Both T1D and type 

two diabetes (T2D) are characterized by defective insulin production. Those with T1D have little to no 

endogenous insulin production, and those with T2D have impaired regulation due to reduced insulin 

production and increased resistance to insulin.1 Defective glucose regulation causes hypoglycemia and 

hyperglycemia in both conditions. Figure 1 shows the components involved in the glucose homeostasis 

process. This system involves the kidneys, pancreas, liver, and tissue (e.g., brain, muscle). The processes 

that raise BG are shown in blue, and the processes that lower BG are shown in orange. 

 

Figure 1 – A diagram of the insulin-glucose system. The processes shown in orange represent actions that lower blood glucose. 
The processes in blue raise blood glucose. 
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Pancreas 

The pancreas is located in the left upper abdominal cavity behind the stomach and is 

responsible for releasing digestive enzymes and hormones. Five types of cells produce hormones in the 

pancreas, α-cells that make glucagon, β-cells that generate amylin and insulin (which is released with c-

peptide), ɣ-cells that make pancreatic polypeptide, somatostatin producing δ-cells, and ɛ-cells that make 

ghrelin. The body maintains BG within a narrow range from the balancing effects of glucagon and 

insulin. Glucagon raises BG by stimulating hepatic glycogenolysis as well as hepatic and renal 

gluconeogenesis. The production of glucagon is inversely proportional to BG.  

Conversely, insulin secretion is stimulated by elevated BG and reduced when BG is decreased. 

Insulin lowers BG by enabling the insulin-dependent uptake of glucose into muscle and adipose tissues. 

This action, in turn, decreases BG values by removing exogenous glucose from plasma blood. The release 

of insulin also signals α-cells to downregulate glucagon production.1,2 

Liver 

The liver plays an essential role in glucose homeostasis through two mechanisms: 

gluconeogenesis and glycogenolysis. Glycogenolysis is the transformation of glycogen to free glucose. 

Gluconeogenesis is the formation of glucose from precursors (e.g., lactate, glycerol, amino acids) and 

the conversion of that glucose (i.e., glucose-6-phosphatase) to free glucose.3 In the fasted state, the liver 

can release glucose from stored glycogen through the process of glycogenolysis. Glycogenolysis is 

triggered by glucagon's presence and releases glucose that can be consumed by the brain, red blood 

cells, and muscles.4 After eating, glucose is stored in the liver in the form of glycogen. Insulin signaling, 

which occurs after eating, activates glycogen synthase, allowing the conversion of glucose to glycogen. 

Plasma BG levels are reduced by converting free glucose to glycogen, which is stored in the liver.5  

Kidneys 

The kidneys contribute to the homeostasis process by releasing glucose into blood plasma via 

gluconeogenesis and absorbing glucose to maintain renal functionality through glucose uptake. Besides 

the liver, the kidneys are the only organ capable of significant gluconeogenesis, which allows the release 

of glucose into circulation. In addition to gluconeogenesis, the kidneys are also capable of 

glycogenolysis, where glycogen stored renally is transformed into free glucose in the blood plasma.3 

Some studies have shown that the kidneys may be responsible for up to 40% of all gluconeogenesis.6 

The kidneys also contribute to glucose homeostasis by filtering and reabsorbing glucose. Under normal 

glycemic conditions, the kidneys absorb as much glucose as is available. In a hyperglycemic state, 
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usually, when BG is greater than 200 mg/dL, glucose transporter proteins become overwhelmed, and 

glucosuria occurs.  

Tissue 

 Following eating, skeletal muscles are a significant consumer of glucose through insulin-

dependent glucose uptake. In euglycemic conditions where plasma insulin levels are high, skeletal 

muscles are responsible for approximately 80% of all glucose uptake. In muscle and adipose tissue, 

GLUT4 is mainly responsible for glucose transport. GLUT4 is insulin sensitive and allows for postprandial 

glucose to be absorbed into adipose and skeletal muscle tissue.7 The brain is a large consumer of glucose 

and uses roughly 20% of all energy derived from glucose.8 The degree to which the brain affects glucose 

homeostasis is somewhat controversial, but there is some evidence to support its role.9 The adipose 

tissue accounts for 10% to 15% of glucose disposal after a meal. It has been shown that both too little 

fat (i.e., lipodystrophy) and excess fat (i.e., obesity) are linked to insulin resistance and hyperglycemia.10 

Altogether, tissues are responsible for a large portion of glucose absorption and play a role in glucose 

homeostasis by removing free glucose from plasma.  

Diabetes 

Type One Diabetes 

The process of glucose homeostasis is substantially disrupted for individuals with T1D. T1D is a 

chronic autoimmune disease characterized by the destruction of insulin-producing β-cells in the 

pancreas. The exact cause of T1D is unclear but is likely due to the interplay of environmental, immune, 

and genetic factors.11 In addition to attenuated or a complete lack of insulin production, glucagon 

amounts can be increased inappropriately for the prevailing plasma BG levels, and endogenous glucose 

output is higher in T1D than in health.12 The smooth transition of insulin and glucagon secretion present 

in health is dysfunctional for those with T1D. Eating and the subsequently absorbed glucose do not stop 

endogenous glucose output, and there is some evidence to support that it accelerates this process. 

Additionally, for people with T1D, eating is not compensated for through total glucose disposal 

because of the lack of naturally produced insulin in the system. The disruption in glucose homeostasis 

makes individuals with T1D prone to hyperglycemia because of their lack of insulin production. To 

manage BG, those with T1D inject exogenous insulin and monitor BG levels. Miscalculations in insulin 

doses can lead to both hypoglycemia and hyperglycemia. Dysregulation of BG to the degree of T1D can 

be experienced by those who have severely progressed T2D.12 
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Type Two Diabetes 

People with T2D generally have fasting insulin secretion rates and glucagon concentrations that 

are higher than in health. When the renal glucose absorption rates are at a maximum, glycosuria 

provides a glucose disposal method through urine, as it does in T1D. In T2D, insulin resistance is usually 

present in the peripheral tissues and liver.12  Those with T2D often experience postprandial plasma 

glucose concentrations that are higher than what is found in health. Several factors contribute to this 

occurrence. In the fed state, glucagon levels may be elevated for those with T2D. 

Additionally, in T2D, glucose-induced insulin secretion, GLP-1 response, and glucagon 

suppression are attenuated, eliminating some of the endocrine system's ability to regulate BG. An 

overarching issue of T2D is that hyperglycemia does not prevent the liver from releasing glucose. Those 

with T2D also have higher insulin levels in the presence of elevated plasma glucose, thus indicating 

insulin resistance. Furthermore, glucose clearance is reduced in peripheral tissues.12 The combination of 

these factors that disrupt glucose homeostasis makes people with T2D more prone to hyperglycemia. 

Prevalence 

Although the exact quantity is unknown, the International Diabetes Federation estimated that in 

2019 there were 463 million people with diabetes worldwide.13 Globally this accounts for 9.3% of the 

population, and it is projected that 10.9% of the world will have diabetes by 2045. The increasing 

prevalence of obesity, hypertension, urbanization, alcohol use, and diagnostic testing, as well as 

decreasing consumption of fruits and vegetables, may contribute to the increase in T2D.14 The cause of 

increasing rates of T1D is not clear. It has been hypothesized that viruses, hygiene, vitamin D deficiency, 

and even the consumption of breast and cow milk may affect the pathogenesis of T1D, but a consensus 

has not been reached among scientists.15  

There are 26.9 million people in the United States with diagnosed diabetes, which accounts for 

8.2% of the total population.16 Of those people, nearly 6% (1.6 million) have T1D. Based on the 

laboratory criteria for diabetes, an additional 7.3 million Americans in 2018 had diabetes but were 

unaware of their disease.  

Due to complications associated with the disease, people with diabetes have a notable increase 

in the risk of all-cause mortality.17,18 It has been estimated that 4.2 million people, ages 20 to 79, died as 

a result of diabetes in 2019.19 Globally, diabetes contributes to 11.3% of death with disparities in various 

continents, regions, and countries. In Europe, diabetes is a factor in 31.4% of deaths for people under 



6 
 

60, whereas this percentage is 73.1% in Africa.  The estimated worldwide expenditure on diabetes in 

2019 was $760 billion.  

Complications 

The hemoglobin A1c (HbA1c) test is the most widely accepted measurement of glycemic control 

in diabetes. This test measures the amount of glucose attached to hemoglobin in the blood and typically 

indicates glycemic control over the last three months.20–22 HbA1c is so widely used because its value is 

strongly linked to the risk of developing complications from diabetes.23–25  Only 52.5% of adults with T2D 

and 21% of adults with T1D are meeting the goals set forth by the American Diabetes Association of 

having an HbA1c value of less than 7%.26,27 When the criteria for diabetes management are extended to 

other factors significant to the development of complications for T2D, such as low-density lipoproteins 

(LDL) cholesterol and blood pressure, only 18.8% of the population met the benchmarks.  

The complications related to hyperglycemia are severe and can be fatal. Prolonged 

hyperglycemia can result in numerous vascular complications, including.28 Hypoglycemia may lead to 

short and long-term complications such as myocardial infarction, neurocognitive dysfunction, 

cerebrovascular disease, retinal cell death, and vision loss.29 Severe hypoglycemia can result in coma, 

seizure, brain damage, or even death.30 There is also growing evidence to link diabetes to some cancers, 

dementia, infections, and liver disease.28 It is believed that people with diabetes can avoid glycemia-

related complications through intensive insulin therapy and careful management of BG levels.23 

 People with diabetes are also more likely to suffer from psychological conditions such as 

anxiety, depression, and disordered eating.31 These problems can often stem from diet issues, 

management tasks such as measuring BG and administering insulin, and a lack of support from family 

members and health care providers. There is a defined relationship between worse glycemic control and 

increased psychological symptoms.32 Depression and anxiety can increase the occurrence of severe 

hypoglycemia and diabetic ketoacidosis, both of which can be fatal.33 Additionally, people living with 

diabetes have a lower quality of life than those without it.34 

3.8% of females and 1.5% of males between the ages of 13 and 18 in the US exhibit some form 

of disordered eating.35 Rates of disordered eating are 2.4 times higher in women with T1D than in the 

population without diabetes in the US.36  Furthermore, preteen and teenage girls with T1D were more 

likely to exhibit a combination of two or more disordered eating behaviors than their peers without 

diabetes.37 Empirically, it has been shown that risk factors associated with eating disorders, such as 
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higher body mass index (BMI), depression, and monitored eating, are often more prevalent in the lives 

of those with T1D.38 People with T1D can also restrict insulin to lose weight, which is a modality of 

unhealthy weight control not available to the population without diabetes. Those who limit insulin 

injections compared to other women with T1D have a threefold increase in mortality after controlling 

for BMI, HbA1c, and age.39 It has been posited that increased rates of disordered eating could be a result 

of management tasks related to T1D, such as dietary restraint and monitoring.40–42 

Management of Type One Diabetes 

To supplement halted or attenuated insulin production, people with T1D administer exogenous 

insulin through either insulin injections or continuous subcutaneous insulin infusion via an insulin pump. 

When people eat glucose, it is absorbed and released into circulation. To compensate for the ensuing 

rise in plasma glucose, people with diabetes must inject insulin when they eat (i.e., meal boluses). 

People with T1D also administer correction boluses to mitigate hyperglycemia. For those who take 

multiple daily injections, a dose of long-acting insulin is given either once or twice daily. Pump users 

have insulin continuously infused. This "basal rate" varies from person to person and may change 

throughout the day.43  

To ensure that proper amounts of insulin are being delivered and BG concentration is in the 

euglycemic range, people with T1D measure glucose concentrations throughout the day. While HbA1c 

provides information about relative levels of glycemic control over a long time, it does not give 

information about the effect of specific activities (e.g., eating, physical activity) or intraday patterns of 

glycemia. Self-monitoring of blood glucose (SMBG) is a method for measuring capillary glucose 

concentrations where an individual pricks his or her finger, produces a droplet of blood, and places that 

droplet on the end of a disposable strip protruding from a glucose meter. SMBG allows people to 

monitor BG levels whenever they need to with a meter that can be transported easily. A challenge 

associated with glucometers is that they must be calibrated using a control solution periodically, and it 

has been shown that 58% of patients or their caregivers never do.44 

It is recommended that people with diabetes use some glucose monitoring method like SMBG 

to keep BG values within an acceptable range. SMBG can improve the management of diabetes by 

collecting information to determine long-term patterns in glycemia, allow for people with diabetes and 

their families to make day-to-day decisions regarding treatment, prevent unwanted glycemic events 

(i.e., hypoglycemia and hyperglycemia), and educate people on how activities (e.g., eating and exercise) 

affect BG.45 The frequency at which individuals measure their BG through SMBG is positively correlated 



8 
 

with positive glycemic outcomes for people with T1D and T2D.46 The American Diabetes Association 

(ADA) recommends that people who use insulin to manage their diabetes should measure their BG 

“prior to meals and snacks, at bedtime, occasionally postprandially, prior to exercise, when they suspect 

low blood glucose, after treating low BG until they are normoglycemic, and prior to and while 

performing critical tasks such as driving.”47 The ADA estimates that this would require six to ten finger 

sticks per day. 

Although helpful, SMBG can be invasive and painful. It also does not fully describe trends, 

variability, and glycemic excursions throughout the day. Additionally, SMBG does not alert individuals to 

current or imminent hypoglycemia or hyperglycemia without their prompting. Continuous glucose 

monitoring (CGM) measures glucose with a small sensor inserted in the interstitium (i.e., just under the 

skin). The values measured in this manner are then converted to estimates of plasma BG levels. These 

devices collect measurements frequently, usually every five minutes, and transmit them using a 

Bluetooth transmitter to a device where they are displayed. The device where BG values are displayed 

can be a CGM-specific receiver, smartphone, or a connected insulin pump. 

Figure 2 shows an example of the differences between CGM and SMBG measurements for one 

day. The CGM measurements are shown with the blue markers, and the SMBG measurements are 

shown in red. Here the difference in sampling is clear. If SMBG measurements are only taken before 

meals, the rise and variability following those events would be unknown to the individual. Even the 

mean between the two methods of measurement is notably different in this example. The average CGM 

value is 136 mg/dL, whereas the average SMBG value is 32 mg/dL lower. 
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Figure 2 – An example of SMBG in red and CGM values in blue throughout a day. 

A vast body of research supports that CGM’s improve glycemic control for those using intensive 

insulin therapy.48,49,58,59,50–57 CGM’s have proven effective in reducing both hypoglycemia, hyperglycemia, 

and HbA1c overall. Those who use their CGM device the most regularly experienced the greatest benefit 

in terms of glycemic control.48,50,57 It is also believed that CGM’s can reduce diabetes-related 

complications and medical costs as well as improve quality of life over the lifetime of a person with 

diabetes compared to SMBG.60,61 A recent study has shown that the prevalence of people using insulin 

pumps and CGMs is increasing, and those who use those advanced devices have better glycemic 

management overall.27 

Feedforward Control for Prandial Insulin Dosing 

The dynamics associated with insulin and glucose create a pernicious problem from a control 

perspective. In the context of T1D management, the actuator, which is insulin administration, has 

somehow slower time dynamics than the disturbances that it is attempting to mitigate (i.e., meals and 

exercise), thus justifying the use of feedforward control. Intensive insulin therapy (a.k.a. functional 

insulin therapy) has been used widely for the past decades as a method of preventing postprandial 

hyperglycemia. This feedforward strategy requires people with T1D to quantify the magnitude of a 

disturbance in real-time in the form of carbohydrate amounts, and then an insulin dose is calculated to 

prevent future hyperglycemia caused by this disturbance. The formula for functional insulin therapy is, 
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𝐽 =
𝐶𝐻𝑂

𝐶𝑅
+

𝐵𝐺 − 𝐵𝐺𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝐹
− 𝐼𝑂𝐵, 

where 𝐽 (u) is the insulin dose, 𝐶𝐻𝑂 (g) is the number of carbohydrates consumed, 𝐶𝑅 (g/u) is the 

carbohydrate to insulin ratio, 𝐵𝐺 (mg/dL) is the current BG value, 𝐵𝐺𝑡𝑎𝑟𝑔𝑒𝑡 (mg/dL) is the target BG 

value, 𝐶𝐹 (mg/dL/u) is the correction factor, and 𝐼𝑂𝐵 (u) is an estimate of the amount of insulin 

currently in the system.  

Traditionally, the CR and CF parameters were changed by physicians empirically based on 

observation and clinical experience. Paul Davidson pioneered a formulaic approach to determining these 

values from clinical observations in the 1980s.62 The so-called “1500 rule” is, 

𝐶𝐹 =
1500

𝑇𝐷𝐼
, 

where 𝑇𝐷𝐼 (u) is the patient’s average total daily insulin amount. Similarly, Walsh and Roberts 

introduced the “450 rule” based on Walsh’s clinical experience.63 This rule to determine appropriate CR 

is, 

𝐶𝑅 =
450

𝑇𝐷𝐼
. 

These guidelines did not consider the patient's size or the type of insulin being used. The “1500 

rule” was initially construed for regular insulin and updated when insulin analogs and insulin pumps 

became more prevalent.64 Based on a retrospective clinical study with 167 insulin pump patients, the 

formulas for CR and CF became, 

𝐶𝑅 =
2.8 ∙ 𝐵𝑊

𝑇𝐷𝐼
, 

𝐶𝐹 =
1717

𝑇𝐷𝐼
, 

with BW (lb) representing the patient’s body weight. These formulas are based on the basal insulin 

requirement accounting for 48% of the TDI. Others have also tried to develop formulaic rules for 

prandial insulin dosing using clinical trials and retrospective data analysis.65 In all of these studies, the 

formulas derived disregard known fluctuations in intraday and interday insulin sensitivity. Additionally, 

none take into account differences in individuals, hormone fluctuations, or the macronutrient content of 

what is being eaten. These empirical rules may serve as a good starting point for physicians to select 
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parameters if there is little or no data available but are crude and ignore many factors that affect the 

insulin need of individuals. 

Automatic Insulin Delivery 

CGM’s and insulin pumps have been integrated to assist those with T1D further than traditional 

intensive insulin therapy. Threshold suspend and predictive suspend systems, anticipate BG values in the 

near future, and reduce or stop basal delivery of insulin to prevent hypoglycemia. These systems are 

available commercially to individuals in the United States through several medical device manufacturers 

(e.g., Tandem Diabetes Care, Medtronic) and have been shown to reduce the time and intensity of 

hypoglycemia.66,67 The US Food and Drug Administration (FDA) approved the first hybrid closed-loop 

insulin dosing system, the Medtronic 670G HCL, which in addition to preventing hypoglycemia by 

reducing insulin, is capable of increasing insulin to prevent hyperglycemia. Clinical trials of this product 

showed improvements in HbA1c, reduction in hypoglycemia, and an increased percentage of BG values 

in a euglycemic range.68 The FDA approved a second hybrid closed-loop insulin dosing system, Tandem 

Control-IQ, in 2019 for adults and adolescents and 2020 for school-aged children. The algorithm used in 

this product was developed to a large degree at the University of Virginia (UVA) and licensed by Tandem 

to make it available to consumers.  

Research efforts regarding automatic insulin delivery systems, also known as artificial 

pancreases, have expanded to systems that anticipate meals, adapt continuously, and adjust for exercise 

based on detections and announcements.69–73 The two main strategies in automatic insulin delivery 

development are single hormone and dual hormone control. Single-hormone systems infuse one 

hormone to regulate BG levels, which is always insulin. Dual hormone control uses multiple hormones to 

lower BG with insulin and a second hormone (e.g., pramlintide, glucagon) to either raise BG or change 

the dynamics of glucose absorption. Recent meta-analyses have shown an improvement of 10% to 15% 

in the amount of time when the users’ BG was between 70 and 180 mg/dL (i.e., time in range) when 

artificial pancreases are used compared to conventional therapy or sensor-augmented pump therapy. 

Time in range can be further increased when a second hormone is implemented in the system.74  

Several automatic insulin dosing systems that do not require users to input meal amounts have 

been tested. In 2014, Harvey et al. evaluated a fully closed-loop artificial pancreas system on 12 adult 

participants with T1D in an inpatient clinical trial.75 Overall, this system produced glycemic control with 

80% of all BG readings in the 70 to 180 mg/dL range but caused high postprandial glucose values 

following unannounced meals. Forlenza et al. presented the performance of a fully closed-loop system 
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that preempted predefined postprandial excursions in a 72-hour hotel-based study, reporting a time in 

range of 63.6 ± 9.2%.76 However, in the four hours following unannounced meals, the time above range 

(i.e., >180mg/dL) was 60.9 ± 23.3%.  A recent study by Dovc et al. used two formulations of insulin, 

FIASP, and Aspart, in a 27-hour inpatient admission study of their fully closed-loop artificial pancreas 

system.77 They reported time in range of 53.3% and 57.9% for Aspart and FIASP insulins, respectively. 

Their approach relied on a meal detection algorithm but similarly faced difficulty with unannounced 

meals. Multi-hormone approaches have reported better performances, with recent early outpatient 

results.78 In 2021, Haidar et al. conducted a 30 participant open-label crossover trial and showed that an 

automatic insulin dosing system using simple meal announcements and empagliflozin was non-inferior 

to a hybrid system with meal announcements. The dual hormone system achieved a mean BG of 153 ± 

25.2 mg/dL compared to the hybrid system, which had a mean BG of 153 ± 27.0 mg/dL.79  Majdpour et 

al. demonstrated the non-inferiority of an insulin-pramlintide fully closed-loop artificial pancreas to a 

hybrid system in another 2021 pilot study.80 In this study, the fully closed-loop system had a time in 

range of 81%, whereas the subjects were in range 83% of the time using the hybrid closed-loop system. 

Simulation Modeling of Type One Diabetes 

The University of Virginia/Padova Type One Diabetes Simulator 

In 2008, the US FDA accepted a T1D simulation platform designed through a collaboration of 

researchers from the UVA and the University of Padova for testing new insulin dosing strategies in place 

of animal trials.81 This platform, known as the UVA/Padova T1D Simulator, can accurately represent the 

effects of insulin and ingested carbohydrates for people with T1D. It contains a 300-subject population 

of virtual subjects consisting of 100 adults, 100 adolescents, and 100 children with parameterizations 

based on observed metabolic characteristics of the T1D population.  

The UVA/Padova T1D Simulator can represent the features of various commercially available 

insulin delivery methods (i.e., insulin pumps) and glucose measurement devices (i.e., CGM’s). Updates to 

the platform have improved the accuracy of the model’s glucose dynamics as well as allow for the 

simulation of multiple sequential meals and intraday fluctuations of insulin sensitivity.82,83 The original 

paper describing the UVA/Padova T1D Simulator has over 700 citations, and this simulator has been 

used to verify the safety and efficacy of numerous closed-loop insulin dosing systems preceding human 

clinical trials.  A limitation of this method is that this platform helps determine a treatment’s effect in an 

overall sense but does not match specific in silico subjects to in vitro individuals, thus demonstrating the 

effect it would have on them in real life. Other limitations are that it does not incorporate aspects of 
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diabetes management like the effect of exercise, hormonal changes (e.g., sickness, menstruation), 

device failures, and behavioral characteristics frequently observed in the population (e.g., inaccurate 

carbohydrate counting, missed or late boluses). 

Insulin-Glucose Dynamics 

A two-compartment model represents the glucose subsystem in the UVA/Padova T1D Simulator. 

This model is defined as, 

𝐺̇𝑝(𝑡) = 𝐸𝐺𝑃(𝑡) + 𝑅𝑎𝑚𝑒𝑎𝑙(𝑡) − 𝑈𝑖𝑖(𝑡) − 𝐸(𝑡) − 𝑘1 ∙ 𝐺𝑝(𝑡) + 𝑘2 ∙ 𝐺𝑡(𝑡), 

with 𝐸𝐺𝑃 (mg/kg/min) as the endogenous glucose production, 𝑅𝑎𝑚𝑒𝑎𝑙 (mg/kg/min) as meal glucose 

rate of appearance, 𝑈𝑖𝑖  (mg/kg/min) representing the insulin-independent glucose utilization, 𝐸 

(mg/kg/min) as the renal excretion, 𝑘1,2 (1/min) as time constants, and 𝐺𝑡 (mg/dL) representing the 

glucose mass in the rapidly and slowly equilibrating tissues. 𝐺𝑡 is shown as, 

𝐺̇𝑡(𝑡) = −𝑈𝑖𝑑(𝑡) + 𝑘1 ∙ 𝐺𝑝(𝑡) − 𝑘2 ∙ 𝐺𝑡(𝑡), 

with 𝑈𝑖𝑑 (mg/kg/min) as the rate of insulin-dependent glucose uptake. The measured BG value,  𝐺 

(mg/dL), is found through the equation, 

𝐺(𝑡) =
𝐺𝑝(𝑡)

𝑉𝐺
, 

where 𝑉𝐺 (dL/kg) is the distribution volume of glucose. 

Glucose Rate of Appearance in Blood Plasma 

The physiological model used for intestinal glucose absorption in the UVA/Padova T1D simulator 

was described first by Dalla Man et al.84 This representation describes how glucose is transferred 

through the digestive system by representing the stomach with two compartments and a single 

compartment for the gut. The stomach compartments are represented as, 

𝑄𝑠𝑡𝑜(𝑡) = 𝑄𝑠𝑡𝑜1(𝑡) + 𝑄𝑠𝑡𝑜2(𝑡), 

𝑄̇𝑠𝑡𝑜1(𝑡) = −𝑘𝑔𝑟𝑖 ∙ 𝑄𝑠𝑡𝑜1(𝑡) + 𝐷 ∙ 𝛿(𝑡), 

𝑄̇𝑠𝑡𝑜2(𝑡) = −𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ∙ 𝑄𝑠𝑡𝑜2(𝑡) + 𝑘𝑔𝑟𝑖 ∙ 𝑄𝑠𝑡𝑜1(𝑡), 
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where 𝑘𝑔𝑟𝑖 (1/min) and = −𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) (1/min) are rate constants describing grinding and gastric 

emptying. 𝐷 (mg) is the amount of ingested glucose, and 𝛿 is the impulse function. The gut 

compartment is represented as, 

𝑄̇𝑔𝑢𝑡(𝑡) = −𝑘𝑎𝑏𝑠 ∙ 𝑄𝑔𝑢𝑡(𝑡) + 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) ∙ 𝑄𝑠𝑡𝑜2(𝑡), 

with 𝑘𝑎𝑏𝑠 (1/min) representing the rate constant for intestinal absorption. Glucose rate of appearance 

this then found using,  

𝑅𝑎(𝑡) =  
𝑓 ∙ 𝑘𝑎𝑏𝑠 ∙ 𝑄𝑔𝑢𝑡(𝑡)

𝐵𝑊
, 

where 𝑓 (unitless) is the fraction of absorbed glucose and 𝐵𝑊 (kg) is the individual’s body weight. 

The Subcutaneous Oral Glucose Minimal Model 

The subcutaneous oral glucose minimal model (SOGMM) is a framework to represent the effects 

of ingested carbohydrates and subcutaneously injected insulin on plasma BG levels.85  The SOGMM is an 

extension of previous compartmental models, namely those developed by Bergman et al. and Dalla Man 

et al.86,87 The core minimal submodel model equations are given as, 

𝐺̇(𝑡) = −(𝑆𝑔 + 𝑋(𝑡)) ∙ 𝐺(𝑡) + 𝑆𝑔 ∙ 𝐺𝑏 +
𝑅𝑎(𝑡)

𝑉𝑔
, 

𝑋̇(𝑡) = −𝑝2 ∙ 𝑋(𝑡) + 𝑝2 ∙ 𝑆𝐼(𝐼(𝑡) − 𝐼𝑏), 

where 𝐺 (mg/dL) is the plasma glucose concentration. 𝑅𝑎 (mg/dL/min) represents the glucose rate of 

appearance. 𝐺𝑏(mg/dL) is the basal plasma glucose value associated with the individual’s basal insulin 

rate. 𝑆𝑔 (1/min) is the fractional glucose effectiveness, which represents how well glucose can stimulate 

glucose disposal and reduce endogenous glucose production and 𝑉𝑔 (kg/dL) is the distribution volume of 

glucose in the blood plasma. 𝑋 (1/min) is the proportion of insulin in the remote compartment. 𝐼 (mU/L) 

is the concentration of insulin in the plasma. 𝐼𝑏 (mU/L) is the individual’s plasma insulin requirement. 𝑝2 

(1/min) is the rate constant for the remote insulin compartment and 𝑆𝐼 (1/min/mU/L) is the insulin 

sensitivity factor which represents the individual’s ability dispose of glucose from injected insulin. 

Glucose rate of appearance, 𝑅𝑎, is found by, 

𝑅𝑎(𝑡) =
(𝑄2(𝑡) ∙𝑘𝑎𝑏𝑠∙𝑓)

𝐵𝑊
, 
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with 𝑄2 as the second “gut” compartment. 𝑘𝑎𝑏𝑠 (1/min) represents the rate constant for oral glucose 

absorption. 𝑓 (dimensionless) is the proportion of intestinal absorption of glucose that appears in 

plasma, and 𝐵𝑊 (kg) is the individual’s body weight. Insulin concentration, 𝐼 (mU), is determined as, 

𝐼(𝑡) =
𝐼𝑝(𝑡)

𝑉𝐼∙𝐵𝑊
, 

where 𝑉𝐼 (L/kg) is the distribution volume of insulin, and 𝐼𝑝 (mU) which is the plasma insulin 

concentration. 

 The gastrointestinal submodel is comprised of two compartments and represents the transport 

of oral carbohydrates. The model equations are as follows, 

𝑄1̇(𝑡) =  − 𝑘𝜏 ∙ 𝑄1(𝑡) + 𝜔(𝑡), 

𝑄2̇(𝑡) =  𝑘𝑎𝑏𝑠 ∙ 𝑄2(𝑡) + 𝑘𝜏 ∙ 𝑄1(𝑡), 

where 𝑄1 (mg) and 𝑄2 (mg) are the first and second compartments of oral glucose transport. 𝑘𝜏 (1/min) 

is the rate constant for oral glucose absorption, and 𝜔 (mg/min) is the rate of meal carbohydrate 

absorption. 

 The subcutaneous insulin kinetic submodel is a three-compartment model that describes the 

insulin pathway from subcutaneous injection to the blood plasma. The model equations are, 

𝐼𝑠̇𝑐1(𝑡) =  −𝑘𝑑 ∙ 𝐼𝑠𝑐1(𝑡) + 𝐽𝑐𝑡𝑟𝑙(𝑡), 

𝐼𝑠̇𝑐1(𝑡) =  −𝑘𝑑 ∙ 𝐼𝑠𝑐2(𝑡) + 𝑘𝑑 ∙ 𝐼𝑠𝑐1(𝑡), 

𝐼𝑠̇𝑐1(𝑡) =  −𝑘𝑐𝑙 ∙ 𝐼𝑝(𝑡) + 𝑘𝑑 ∙ 𝐼𝑠𝑐2(𝑡), 

where 𝐼𝑠𝑐1 (mU) and 𝐼𝑠𝑐2 (mU) are the interstitial insulin compartments. 𝑘𝑑 (1/min) and 𝑘𝑐𝑙 (1/min) are 

the rate constants related to subcutaneous insulin transport. 𝐽𝑐𝑡𝑟𝑙 (mU/min) is the insulin injected and 𝐼𝑃 

(mU) is the plasma insulin concentration. 

Because inputs such as insulin and meals and BG measurements are recorded discretely, the 

SOGMM has a linearized and discretized form. The system is linearized around basal plasma insulin 

concentration, 𝐼𝑏 (mU), and the basal glucose concentration, 𝐺𝑏 (mg/dL). This new linear continuous 

form is represented as,  

𝑥𝑐 = [𝜕𝐺(𝑡), 𝜕𝑋(𝑡), 𝜕𝐼𝑠𝑐1(𝑡), 𝜕𝐼𝑠𝑐2(𝑡), 𝜕𝐼𝑝(𝑡), 𝜕𝐺𝑠𝑐(𝑡), 𝜕𝑄1(𝑡), 𝜕𝑄2(𝑡) ]
𝑇
, 
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𝑥̇𝑐(𝑡) = 𝐴𝑐 ∙ 𝑥𝑐(𝑡) + 𝐵𝑐 ∙ 𝑢𝑐(𝑡) + 𝐺𝑐 ∙ 𝜔(𝑡), 

𝑦𝑐(𝑡) = 𝐶𝑐 ∙ 𝑥𝑐(𝑡), 

where 𝑥𝑐 is the patient’s metabolic state vector. The different states are defined as: 

1. Differential BG concentration, 𝜕𝐺(𝑡) 

2. Differential insulin action in the remote compartment, 𝜕𝑋(𝑡) 

3. Differential interstitial insulin in the first compartment, 𝜕𝐼𝑠𝑐1(𝑡) 

4. Differential interstitial insulin in the second compartment, 𝜕𝐼𝑠𝑐2(𝑡) 

5. Differential plasma insulin, 𝜕𝐼𝑝(𝑡) 

6. Differential interstitial glucose concentration, 𝜕𝐺𝑠𝑐(𝑡) 

7. Differential gut mass in the first compartment, 𝜕𝑄1(𝑡) 

8. Differential gut mass in the second compartment, 𝜕𝑄2(𝑡) 

Because the system is linearized around the operating points related to basal glucose and insulin 

concentration values (i.e., 𝐺𝑏 and 𝐼𝑏) the new states are defined as differential values related to: 

1. Differential insulin input which is relative to the individual’s preprogrammed basal rate profile 

2. Differential subcutaneous glucose which is relative to 𝐺𝑏 

The coefficient matrices for the linear form are, 

𝐴 = 

[
 
 
 
 
 
 
 
 
 
 𝑆𝑔 −𝐺𝑏 0 0 0 0 0

𝑘𝑎𝑏𝑠 ∙ 𝑓

𝐵𝑊 ∙ 𝑉𝐺

0 −𝑝2 0 0
𝑝2 ∙ 𝑆𝐼

𝑉𝐼 ∙ 𝐵𝑊
0 0 0

0 0 −𝑘𝑑 0 0 0 0 0
0 0 𝑘𝑑 −𝑘𝑑 0 0 0 0
0 0 0 𝑘𝑑 −𝑘𝑐𝑙 0 0 0

𝑘𝑠𝑐 0 0 0 0 −𝑘𝑠𝑐 0 0
0 0 0 0 0 0 −𝑘𝜏 0
0 0 0 0 0 0 𝑘𝜏 −𝑘𝑎𝑏𝑠 ]

 
 
 
 
 
 
 
 
 
 

, 

𝐵 = [0 0 1 0 0 0 0 0]𝑇 , 

𝐺 = [0 0 0 0 0 0 1 0]𝑇 , 

𝐶 = [0 0 0 0 0 1 0 0]. 

The linear time-invariant model is made discrete using the zero-hold order method.  
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Personalized Simulation Platforms 

More recently, new simulation platforms based directly on field-collected data, and therefore 

potentially specific to individual subjects or subgroups, have been developed.85,88 The primary 

technological innovation of these platforms is the estimation of an additional input signal designed to 

capture system disturbances unrepresented in traditional insulin-glucose models, like exercise, 

unreported meals, or hormonal changes. This estimation procedure is achieved using a deconvolution 

method that relates CGM readings with insulin and meal records through the SOGMM. The unknown 

input that explains observed data from recorded inputs is called the oral carbohydrate net effect signal 

or simply the “net effect.” This signal can then be used to change insulin or carbohydrate amounts and 

determine how those changes would impact that particular subject on that specific day based on how 

they absorbed insulin and carbohydrates. This highly personalized tool helps impart unmodeled real-

world dynamics into a simulation environment capable of determining the effects of changing 

treatments.  

 

Figure 3 – A diagram of the “net effect” methodology adapted from Patek et al.85 

Figure 3 shows a diagram of the “net effect” methodology. This depiction shows how when 

there is a record of subcutaneous glucose concentrations measured with a CGM and known insulin 

infusions; the unknown disturbance can be estimated. By solving for the unknown inputs using the 
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model, this methodology can be inverted. In this process, the historical inputs, like recorded meals or 

boluses, can be altered, and glucose predictions can be made as a result of the changes. In this way, 

previous situations can be “replayed,” allowing for a simulation of how treatment changes would have 

affected BG values. Figure 4 shows an example of how the net effect simulator was used to replay the 

glucose trace following a meal using a different prandial insulin dose. In this example, the historical data 

is shown in blue, and the simulated data is in orange. It can be seen in this example how when the 

insulin dose was increased and the glucose trace was re-simulated, BG values were lower than the 

original. This tool is useful in determining the effect of a treatment change in a specific real-life situation.  

 

Figure 4 – A net effect re-simulation example comparing historical data shown in blue to simulated data using the net effect 
with a different insulin dose following a meal shown in orange. 

Challenges with Self-Reported Data 

The most widely used models of the insulin-glucose system have traditionally been nonlinear, 

dynamic models.82,85,87,89,90 These models attempt to represent glucose using insulin and consumed 

glucose as inputs and a series of differential equations to represent the digestive process, endogenous 

glucose production, and insulin-dependent and independent glucose uptake in the tissue and muscles.  

Without appropriate inputs (i.e., meal and insulin records), glucose predictions cannot accurately be 

obtained using these models. Additionally, reconstruction of past data using these white-box models 

relies on accurate meal and insulin records, which are often unavailable. In recent years, data-driven 

black-box models have also been developed to represent the insulin-glucose system.91 These are even 
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more reliant on precise data.92 There are a plethora of examples from the machine learning community 

that stress the importance of data quality and the impact of erroneous data on the effectiveness of 

data-driven techniques.93–95 

 Data records collected from patients in an at-home setting are fraught with errors. These issues 

stem from a variety of causes. Individuals record meal amounts at the time of insulin doses, so if they do 

not deliver insulin at the exact time when they begin to eat, this error is reflected in the data. When 

reviewing meal record data, it is difficult to assess if these events were recorded at the proper time and 

can cause cascading errors in models seeking to interpret BG data. Peters et al. showed that in a survey 

of 21,533 people with T1D, 32% admit to delivering insulin after or during a meal.96 Because meal and 

insulin records are most easily obtained by downloading insulin pumps or now connected pens, meal 

events are frequently recorded after they occurred for a significant proportion of the T1D population. 

Self-reported carbohydrate amounts are also a source of inaccuracy. Meade and Rushton 

conducted an experiment where 61 adult participants familiar with carbohydrate counting filled out a 

questionnaire to assess their ability to estimate the number of carbohydrates in everyday foods.97 On 

average, the participants could only guess the carbohydrate amount of 59% of the foods listed. Another 

study by Brazeau et al.’s 2013 showed that when 50 adults were asked to estimate the carbohydrate 

amounts of the meals they had eaten in the last 72 hours, they made errors of 20.9 ± 9.7%.98 

Furthermore, 38% of patients claim to forget to administer insulin for meals at least once a week, 

meaning that those meals would not be reported at all.99 Issues with meal records cause serious 

problems when trying to create new technologies to manage T1D. Without trustworthy mealtimes and 

amounts, the dynamics of the system are unexplainable with white-box or black-box models. These 

issues with data have major implications in model fitting and in the design of data-driven approaches. 

Meal Detection 

Meal detection has long been a focus in the diabetes technology community. Many of the 

papers in this field aim to incorporate meal detection into closed-loop insulin dosing systems to 

eliminate the need for patients to acknowledge meals manually. In all commercially available systems, 

the user estimates the number of carbohydrates he or she is about to eat and delivers insulin using a 

functional insulin therapy calculator. This process is burdensome, especially if someone eats many small 

meals throughout the day, and also it presents an opportunity for a lapse in focus to create a significant 

problem. If someone forgets to take insulin at the time of a meal on accident, BG levels following the 

meal can reach dangerously high levels.100 Automatic meal detection would result in a considerable 
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reduction in the work required of people with T1D to manage their disease and prevent the negative 

effects of forgotten insulin injections. 

Seminal work in CGM-only meal detection was done by Dassau and colleagues.101 In this 

approach, where meals were detected based on a voting algorithm with rules defined by different 

evaluations of glucose rate of change. The Glucose Rate of Increase Detector (GRID) method was able to 

detect meals, where the associated bolus was withheld for an hour, with a great deal of certainty. For 

this specific instance where glucose rose rapidly following a meal, GRID detected more than 90% of 

meals within 30 minutes of the onset of eating. 

This method was refined in a later work by Harvey et al. in 2014.102 The GRID+ method 

eliminated the voting algorithm and used only a filtered glucose rate of change to detect meals. This 

new formulation of the algorithm was able to detect 87.5% of meals in a training dataset of real and 

virtual patients where insulin was given at the time. The mean time to detection was 42 minutes. 

Other research groups have attempted to use insulin-glucose models to determine when and if 

meals occurred using insulin and meal records as well as CGM values. Turksoy et al. used CGM 

measurements as well as a formulation of the Bergman minimal model with the addition of an 

unscented Kalman Filter for state estimation.103 From this, the estimated rate of appearance of glucose 

was used for meal detection. This algorithm was evaluated on nine subjects, and the results indicate 

that the method works with high accuracy. On average, glucose only changed by 16 ± 9.42 mg/dL from 

the mealtime to the detection for 61 detected meals and snacks. This algorithm was developed to be 

integrated into an artificial pancreas controller to dose insulin for meals automatically. 

Weimer has proposed a method of detecting meals that is agnostic to patient-specific 

parameters usually incorporated in other model schemes.104 The physiological parameter-invariant 

(PAIN) detector was based on a minimal insulin-glucose model. This detector does not require patient-

specific customization as some other methods do. This algorithm achieved a near-constant false alarm 

rate across all subjects and was compared to three existing meal detection algorithms using a clinical 

T1D dataset. The PAIN detector achieved 86.9% sensitivity and two false alarms on average per day. It 

also outperformed all three of the other algorithms with regard to false alarm rates. This method has 

the unique characteristic of maintaining low variance in detection and false alarms for all subjects in the 

dataset without patient-specific tuning or training. 
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Many sensor-based methods for meal detection have been applied to a plethora of domains 

other than diabetes. Instead of an approach strictly based on sensor streams generally related to T1D, 

many methodologies use other passive sensing techniques to glean information about people’s eating 

habits. Devices such as smart plates and dining tables have been created to detect how much someone 

is eating.105,106 Others have tried to create methods for detecting when people eat by using surveillance 

video and audio recording.107–115  

Wearables provide the unique benefit of collecting information on a semi-continuous basis and 

monitoring their users in a minimally invasive fashion.116,117 Acoustic sensors, visual sensors, inertia 

sensors, electroglottography (EEG) and electromyography (EMG) based sensors, piezoelectric sensors, 

sensors that combine multiple sources, electrical proximity sensors, and respiratory inductance 

plethysmography sensors have also been used to detect eating. A methodology was created and 

improved upon by Dong et al. to track wrist motion when the user took a bite and was able to detect 

meals with 80% accuracy under laboratory conditions for certain foods.118 Additional studies have been 

done where accelerometers were embedded in a smartwatch or band to detect eating activities.119,120 

Using an EEG sensor, Farooq could detect 89.7% of meal events in females and 90.3% in males.121 Woda 

et al. used EMG to determine the effect of food hardness, bite-size, chewing cycles, and sequence 

duration for various foods and subject behaviors.122,123 

Other researchers have delved into whether or not piezoelectric materials are a viable way to 

detect food consumption. Farooq and Sazonoz utilized piezoelectric film sensors to identify jaw 

movements during chewing.124 By placing two sensors below one ear, they could detect chewing with an 

error rate of 8.09%. Kalantarian et al. used piezoelectric materials to detect movement in the throat 

during swallowing.125 The authors of this work embedded piezoelectric materials in a necklace to detect 

changes in the movement of a person’s throat. This method recognized swallowing with 86% when it 

was tested on ten subjects in a laboratory setting. 

Fontana et al. proposed a method called the Automatic Ingestion Monitor that used 

piezoelectric, accelerometer, and proximity sensors to monitor food intake.126 By using this sensor set, 

their algorithm detected eating by using a combination of signals that collected information regarding 

jaw movement, body motion, and hand gestures. This method was 89.8% accurate in a laboratory 

setting when it was tested on 12 subjects. 
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The physical sensor-based approaches to meal detection yielded good results but were often 

invasive, impractical, or uncomfortable. A system used to detect eating events should take all of these 

ergonomic factors into account. It is paramount that meal detection devices benefit the user and do not 

place an undue burden on them. Passive sensing techniques are much more practical in terms of what 

would be a useful and manageable addition to chronic disease treatment in real life. 

Overview 

The following chapters will address and discuss the challenges presented in the Background. The 

body of this dissertation is organized into three specific aims. Aim 1 describes the design and evaluation 

of an automatic bolus priming system (BPS). This chapter also includes the results of a pilot clinical study 

where the BPS was integrated into a model predictive control (MPC) based automatic insulin dosing 

system and compared to a state-of-the-art artificial pancreas. Aim 2 explains the design of two glycemic 

disturbance detection algorithms. There is also a comparison of these two algorithms provided in this 

chapter. Aim 3 details how historical data was used to create individualized profiles representing 

patterns of disturbances experienced by people with T1D and how these profiles were integrated into a 

multistage model predictive control (MS-MPC) system to anticipate glycemic disturbances such as 

meals. The results of a simulation experiment designed to evaluate the impact of the BPS and the 

anticipatory disturbance profiles on glycemia are also included in this chapter. The final chapter contains 

a discussion of how these aims relate and enhance one another, a summary of the findings, future work, 

additional applications, and concluding remarks. 
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Aim 1 - Real-time Disturbance Detection and Mitigation 

Design of the Real-time Disturbance Detection Algorithm 

Current automatic insulin dosing systems require users to manually input when they are eating 

to deliver a mealtime insulin dose. There are issues with this user-driven approach for many of the same 

reasons mentioned in the Background (i.e., forgotten or late boluses and inaccurate carbohydrate 

estimations). Numerous research groups have tried to advance from hybrid closed-loop artificial 

pancreas systems, which require user input, to fully closed-loop artificial pancreas systems, but none 

have been able to avoid hyperglycemia caused by meals. The dynamics associated with ingested 

carbohydrates and insulin require that boluses are ideally at the time of eating, thus making feedback-

only approaches to this problem suboptimal.  

Our approach to this challenge differed from past attempts in a significant way: we did not try to 

detect meals per se, but instead periods where it was both safe and effective to deliver an insulin dose. 

By detecting glycemic disturbances that could lead to a rise in glucose, we sought to avoid 

hyperglycemia without requiring user interaction. Eating carbohydrates without taking insulin often 

leads to a rapid increase in BG values, but some meals, if they consist mainly of protein or fat or eaten 

contemporaneously with physical activity, may not increase BG. It might not be necessary or safe for a 

person to take insulin with their food in these instances.  

This chapter describes a methodology to detect events in real-time that require insulin 

characterized by large increases in BG and automatically delivers priming doses. A logistic regression-

based algorithm with features that represented changing BG was trained to detect significant glycemic 

disturbances while only using past CGM data to accomplish this goal. The causality of this approach was 

essential so that the disturbance detection algorithm could run in real-time. The BPS was designed to 

evaluate the disturbance probability at the time of each CGM measurement and determine if an insulin 

dose should be delivered to the patient. Insulin doses will be based on the user's average total daily 

insulin (TDI) to account for personalized factors such as insulin sensitivity and will not rely on the 

unknown disturbance magnitude. The system was evaluated to ensure that the BPS insulin boluses were 

delivered only when it was safe to do so. 

Feature Selection 

The features used in the online disturbance detection algorithm were selected to encompass 

how BG changes following the consumption of carbohydrates. Approximations of the average and first 
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and second-order rates of change of glucose values were found by taking the coefficients of a second-

order polynomial that was fit on recent BG values. The polynomial equation,  

𝑦(𝑖)  =  𝑝𝑑,1 + 𝑝𝑑,2 ∙ 𝑖 + 𝑝𝑑,3 ∙ 𝑖2 

was found by using polynomial least-squares fitting for the most recent CGM values. These CGM values 

were from the last 30 minutes of available data. The typical sampling time for a CGM is five minutes, so 

this consisted of seven measurements. The choice to use the last 30 minutes of CGM data will be 

discussed in a later section. The vectors used for the least-squares fitting were, 

𝑐𝑔𝑚𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 = [𝑐𝑔𝑚(𝑡 − 7),… , 𝑐𝑔𝑚(𝑡)], 

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 =

[
 
 
 
 
 
 
𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,1

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,2

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,3

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,4

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,5

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,6

𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
−3
−2
−1
0
1
2
3 ]

 
 
 
 
 
 

. 

The coefficients from the polynomial describing the CGM signal, 𝑝𝑑,1−3 , were found with the equation, 

[

𝑝𝑑,1

𝑝𝑑,2

𝑝𝑑,3

] = (𝑋𝑇 ∙ 𝑋)−1 ∙ 𝑋 ∙ 𝑐𝑔𝑚𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 , 

where,  

 

𝑋 = 

[
 
 
 
 
 
 
 
 
1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,1

2

1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,2 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,2
2

1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,3 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,3
2

1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,4 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,4
2

1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,5 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,5
2

1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,6 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,6
2

1 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,7 𝑡𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,7
2

]
 
 
 
 
 
 
 
 

. 

Figure 5 depicts an example of the function determined using polynomial fitting compared to 

the actual CGM measurements. The second-order polynomial closely fits the CGM values in the period 

of time shortly after a meal. 
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Figure 5 – An example of a second-order polynomial fit on 30 minutes of CGM data using polynomial least-squares. The x-axis 
represents the time of the seven measurements ranging from 30 minutes (t-6) before the current time to the present, t. 

Model Selection 

Because the BPS was a multistage approach, the purpose of the classification algorithm used as 

an input was simple: to provide information that was useful in terms of delivering increasingly large 

insulin doses safely. With this in mind, the actual classification rate was less important than the 

suitability of the information being provided. A classification algorithm needed to be selected that gave 

a range of values as an output, modeled a binary variable, and was easily interpretable. The logistic 

regression classification algorithm fits each of these criteria. 

Logistic regression is one of the most widely used data-driven classification algorithms. Elements 

of this technique were developed throughout the nineteenth and early twentieth centuries.127 The logit 

model used, representing the probability of a discrete binary variable, is generally attributed to Joseph 

Berkson in 1944. The linear equation of the logistic regression determined log-odds, 𝑦, is, 

𝑦 =  𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑛𝑥𝑛. 

Because there is no closed-form solution to determine the coefficient values, 𝛽0−𝑛, are usually 

defined using maximum likelihood estimation on the data available for training.128 The logistic function is 

then used to transform the log odds into a probability, 𝜋, between zero and one. The formula for this 

conversion is, 
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𝜋 =
1

1 + 𝑒−𝑦
. 

Here, 𝜋 represents the probability that the event labeled with the positive class has occurred given the 

values of the features, 𝑥1, … , 𝑥𝑛 

Model Training 

The coefficients, 𝑝𝑑,1−3, found from the least squares-fitting were used as features in the logistic 

regression equation, 

𝑦𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) = 𝛽𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,0 + 𝛽𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,1 ∙ 𝑝𝑑,1 + 𝛽𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,2 ∙ 𝑝𝑑,2 + 𝛽𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒,3 ∙ 𝑝𝑑,3 

This value was then transformed using the sigmoid function to the disturbance probability, 

𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) =  
1

1 + 𝑒−𝑦𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡)
. 

This probability was informative because it provided a relatively interpretable output from the detector. 

𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 was the probability that a sizeable meal-like disturbance occurred in the last 30 minutes 

based on the CGM values observed. 

The coefficients for the logistic regression formula were determined using a dataset generated 

with the UVA/Padova T1D simulator. In silico data was used because there was no clinical data available 

representing the context in which the detector was to be used, where insulin will not be taken for meals 

under fully closed-loop conditions. A dataset was generated where the 100 virtual subjects ate three 

meals and one snack daily without bolusing for a month. In this simulation setup, the virtual patients 

used a hybrid closed-loop artificial pancreas but did not announce meals to the system. The unbolused 

meals caused large and pronounced postprandial excursions. The dataset was labeled so that the five-

minute intervals in the one hour following meals were in the positive class, and all other times were 

labeled as negative. The coefficients of the logistic regression model were determined using this training 

data and are listed in Table 1. 
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Table 1 - The coefficients for the logistic regression classification algorithm determined from the simulation dataset. 

Coefficient Value 

𝜷𝒅𝒊𝒔𝒕𝒖𝒓𝒃𝒂𝒏𝒄𝒆,𝟎 -2.2825 

𝜷𝒅𝒊𝒔𝒕𝒖𝒓𝒃𝒂𝒏𝒄𝒆,𝟏 2.3056 

𝜷𝒅𝒊𝒔𝒕𝒖𝒓𝒃𝒂𝒏𝒄𝒆,𝟐 0.3606 

𝜷𝒅𝒊𝒔𝒕𝒖𝒓𝒃𝒂𝒏𝒄𝒆,𝟑 0.0012 

 

Figure 6 shows the receiver operating characteristic (ROC) curve for the online disturbance 

detection algorithm. The ROC curve shows the rates of true and false positives for each five-minute 

interval for the 25% of the data held out from the training for validation. The area under the curve for 

the ROC was 0.84. These rates are different from the rate at which meals would be detected because, in 

this case, the detector is labeling each sampling time as in the postprandial window or not. If a meal was 

not detected immediately but shortly after the subject ate within the first hour, this would likely result 

in a few false negatives for the five-minute intervals subsequent to the meal and then a series of true 

positives. The classification algorithm was trained in this manner so that the classifier would emphasize 

the characteristics of BG values following eating.  

 

Figure 6 – The ROC curve for the online disturbance detection algorithm generated based on the results from the holdout 
validation data. 
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Figure 7 shows an example of the disturbance probability output generated from one day of 

simulated CGM values in the training dataset. The disturbance probability is shown in blue, and the 

meals given to the virtual subject are in orange. In this example, it can be observed that the disturbance 

probability rises following eating when insulin is not given, and BG is increasing. In this situation, the 

detector's behavior is beneficial for the BPS system because the disturbance probability increases 

quickly after meals and not in situations where giving an insulin dose could be dangerous.  

 

Figure 7 - An example of the disturbance probability detector output for one day of simulated data. The disturbance probability 
is shown in blue, and recorded meal amounts are displayed with orange markers corresponding to the number of carbohydrates 

ingested by the patient. 

The probability value in this example never exceeded 0.2 for changes in BG not related to large 

meals that could be caused by normal glucose variability, CGM sensor noise, or snacks. It would not be 

appropriate to deliver a priming bolus in any of these situations. When the subject ate a small (i.e., 

approximately 20 gram) snack in the afternoon, the disturbance probably did not rise to a value nearly 

as high as it did following meals. It should be noted that this example was generated from simulation 

CGM values which lack much of the noise and variability in BG values found in actual data. The logistic 

regression-based detection algorithm was trained on simulation data because meals were the only 

disturbance that changed BG values, but the safety of the BPS system was evaluated with real data to 

address these concerns that may be present in the context of actual use.  
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Defining the Feature Generation Window 

The window of time selected to generate the features from the CGM data was chosen based on 

two criteria, the delay associated with the detections and the model's sensitivity to false alarms. The 

output of the detector was compared using 30 to 120 minutes of past CGM values to determine the 

appropriate amount of data to use for the polynomial fit. Figure 8 shows an example of how the choice 

of the window of time used for the features affected the disturbance probability signal. The CGM values 

over the course of a day are shown in the top subplot, and the disturbance probability values found 

using 30 to 120 minutes of CGM values for the feature generation are shown in the bottom subplot. 

 

 

 

Figure 8 - An example of the disturbance probability output for a CGM trace using different windows of time for the polynomial 
fitting in the feature generation process. The top subplot shows the CGM values over one day in blue. The bottom subplot shows 

the different disturbance probability values found using 30 to 120 minutes of CGM data. 

The decision to choose 30 minutes as the appropriate amount of time to generate the features 

was determined by observing the detector’s output during periods when glucose rose following eating. 
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In the example shown in Figure 8, it can be seen that when glucose began to rise following the meal 

events, each of the detectors using different windows of time for the polynomial fit had increased 

disturbance probability values. The algorithm using the 30-minute window of CGM values provided a 

disturbance probability signal that was more responsive to abrupt changes in glucose values. This effect 

allowed the BPS system to be reactive to rapid changes in BG, which was essential due to the time 

constants associated with insulin to prevent hyperglycemia. The detector’s responsiveness comes at the 

cost of the potential for false alarms, which was why the strategy employed in the BPS system to 

determine dose amounts and thresholds was selected based on the system's safety regarding the risk of 

hypoglycemia.  

Model Comparison 

Logistic regression is one of the most widely used and also one of the simplest classification 

algorithms available. The choice to use this approach was selected mainly because its output was a 

probability value that could be interpreted as the likelihood of a meal occurring in the last 30 minutes. 

Additionally, because it is a linear combination of coefficients and feature values, each feature's relative 

weight and importance are apparent.  

An experiment was conducted to determine if logistic regression was the appropriate algorithm 

to select and if more complex approaches would not provide significant value. The same features and 

methods used to train the logistic regression model were applied to numerous other classification 

algorithms. The performance of each algorithm was determined based on its classification accuracy and 

is listed in Table 2. 
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Table 2 – The accuracy of classification algorithms for the holdout validation portion (25%) of the simulation dataset used for 
training. 

Algorithm Classification Accuracy 

Logistic Regression 89.8% 

Fine Tree 93.0% 

Medium Tree 92.4% 

Coarse Tree 91.5% 

Fine KNN 89.6% 

Medium KNN 93.3% 

Coarse KNN 93.4% 

Cosine KNN 91.5% 

Cosine KNN 93.4% 

Weighted KNN 92.6% 

Linear Discriminant 89.4% 

Boosted Trees 93.0% 

Bagged Trees 93.2% 

Subspace Discriminant 88.6% 

Subspace KNN 90.3% 

RUSBoosted Trees 90.6% 

 

The results of this evaluation show that some other classifiers did produce better accuracy than 

logistic regression, but only to a marginal degree, and none of the classifiers were more than 3.6% more 

accurate. There are other classifiers available, many not included in this experiment, that perform better 

than logistic regression. However, this accuracy comes at the cost of interpretability, which is important 

from a design and safety perspective. Again, the purpose of the classification algorithm was not to 

determine whether or not each sampling interval was in the postprandial window. The goal was to use a 

methodology that would provide useful information, like the probability of a meal-like disturbance 

having occurred, to inform the priming bolus system. For this purpose, logistic regression was 

determined to be the most straightforward and, therefore, best choice. 
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Determining the Automatic Bolus Priming System Dosages 

Because the BPS was meant to operate without input from the user, meal sizes were unknown 

to the system. It was determined that the doses should be based on the user's TDI so that the automatic 

priming insulin boluses were not dependent on carbohydrate amounts and were individualized. TDI 

provides information regarding the patient's sensitivity to insulin as well as their daily carbohydrate 

intake. The primary design consideration for this system was safety, so the bolus priming amounts were 

chosen based on the amount of hypoglycemia that they caused. It was determined that the BPS would 

be considered acceptably safe if it did not cause more than one additional hypoglycemic event per day. 

An experiment was conducted using the net effect simulation technique to find the percent of TDI and 

probability thresholds for the BPS. In the simulation experiment, historical data was compared to new 

automatic dosing strategies.  

The data used was from the data collection period leading up to a clinical study conducted in 

2019 at UVA (NCT03859401).129 The study participants were all adults, age 18 to 65, who had T1D for 

more than a year, used an insulin pump, and had HbA1c levels of less than or equal to 8.6%. Individuals 

were excluded if they had diabetic ketoacidosis in the preceding 12 months, were pregnant, or had 

significant cardiac conditions. In the four weeks leading up to the participants’ admission, they were 

asked to wear an insulin pump, CGM, and activity tracker. During the data collection period, individuals 

recorded meals using their insulin pump or a smartphone application. Participants were asked to 

exercise moderately between four and seven in the evening four days a week, achieving heart rates of 

110 to 140 beats per minute for at least 30 minutes. Other than the physical activity requirement, they 

were allowed to live normally during this period of time. All subjects used senor augmented pump 

therapy during the data collection period. The demographic information for the 14 participants is shown 

in Table 3. 

Table 3 – The clinical trial subjects’ demographics for the cohort used in the net effect re-simulation experiment.129 

Characteristic Mean ± SD 

Age (years) 43.43 ± 13.17 

Weight (kg) 82.33 ± 15.16 

Height (cm) 168.90 ± 11.76 

TDI (u) 41.59 ± 12.67 

Baseline HbA1c (%) 6.61 ± 1.06 
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These historical clinical data were subjected to various new automatic priming dose strategies 

and evaluated. Single doses equal to percentages of the individuals’ TDI amount were delivered at 

varying disturbance probability thresholds. These values ranged from 3% to 9% of the individual’s TDI 

and probability thresholds from 0.2 to 0.9. Because the primary goal was to determine the safety of this 

approach in terms of false alarms and subsequent hypoglycemia when there were no meals, data were 

excluded in the two hours following recorded meals. 

When the probability threshold was exceeded, an insulin dose determined from the percent TDI 

was delivered. After this dose, BG values were simulated for the next two hours, and the number of 

hypoglycemic events that did not already exist in the record was counted. This procedure was repeated 

at each five-minute interval and for each disturbance probability and TDI amount pairing. Figure 9 shows 

the average number of hypoglycemic events per day for each disturbance probability threshold and TDI 

percent. 

 

Figure 9 - The mean number of hypoglycemic events per day at each probability threshold and TDI amount. 

The thresholds were selected based on the criteria of not allowing more than one additional 

hypoglycemic event per day. At the escalating thresholds for 𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒, the BPS delivers different 

amounts of the patient’s TDI,  
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𝑃𝑇𝐷𝐼(𝑡) =

[
 
 
 

0% 𝑖𝑓 𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) < 0.2

4% 𝑖𝑓 0.2 ≤ 𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) < 0.3

7% 𝑖𝑓 0.3 ≤ 𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) < 0.4

10% 𝑖𝑓 𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) ≥ 0.4

. 

The BPS dose, 𝐽𝐵𝑃𝑆, was then determined based on the user’s TDI and the amount of insulin that was 

previously injected by the BPS system, 𝐼𝑂𝐵𝐵𝑃𝑆. This equation is, 

𝐽𝐵𝑃𝑆(𝑡) = 𝑃𝑇𝐷𝐼(𝑡) ∙ 𝑇𝐷𝐼 − 𝐼𝑂𝐵𝐵𝑃𝑆(𝑡), 

where 𝐼𝑂𝐵𝐵𝑃𝑆 was the amount of insulin on board determined using a six-hour curve from previous BPS 

boluses.130 It was essential to include the insulin on board (IOB) from previous injections so that priming 

doses were not compounded with one another if there was a significant and prolonged glycemic 

disturbance. The IOB curve used in the BPS is depicted in Figure 10. 

 

Figure 10 - The insulin on board curve used for the bolus priming system. 

Clinical Evaluation 

Study Design 

A randomized, crossover clinical trial was conducted at UVA in January of 2021. This study was 

approved by the Institutional Review Board as well as the US FDA and was listed for enrollment on 

ClinicalTrials.gov (NCT04545567). Because adolescents often have the highest rates of missed or late 

boluses and the highest average HbA1c, 21 12 to 20-year-olds were recruited for the five-night hotel-

based camp study. Participants were eligible if they had T1D and had used an insulin pump for more 
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than six months. Exclusion criteria included the use of oral glucose-lowering drugs (e.g., metformin) and 

diabetic ketoacidosis or a severe hypoglycemic event in the last six months.  

All individuals involved in the study used the UVA artificial pancreas study platform, the 

Diabetes Assistant (DiAs), which receives BG values from a Dexcom G6 CGM device and sends 

commands to a Tandem t: ap insulin pump.131 The study team monitored participants remotely using a 

cloud-based web monitoring system, DiAs Web Monitoring.132 The experimental automatic insulin 

dosing controller, known as Rocket, was compared to the extensively tested Unified Safety System 

Virginia (USS Virginia) control algorithm.133–135 Rocket employed an MPC framework where BG was 

predicted based on an individualized insulin-glucose model, and a control action was decided (i.e., series 

of insulin infusions) by optimizing a cost function. This cost function included terms to correct the 

current BG value to the target, penalties for low BG values, and a regularization term to weight changes 

in consecutive insulin injections. When running, Rocket determined the basal infusion rate and if a 

priming bolus should be delivered through BPS based on the current disturbance probability at every 

five-minute interval. Rocket was also integrated into the Safety System and Hyperglycemia Mitigation 

System to prevent hypoglycemia and correct hyperglycemia.136,137 Both study control systems could 

operate in hybrid closed-loop mode as well as fully closed-loop mode. When meal boluses were 

commanded in Rocket, 50% of the amount of insulin typically delivered, based on the subject’s CR, was 

given. 

 

Figure 11 – A diagram of the Rocket camp study design. Screening, enrollment, and randomization were conducted before the 
admission. The hotel admission lasted for six days, and each participant used the Rocket and USS Virginia control systems. 

Figure 11 is a diagram of the study design. Participants were enrolled, screened, and 

randomized before the beginning of the trial. All participants provided at least 14 days of preliminary 

data to identify model parameters in the Rocket controller. The setup was completed on the first day 

after participants arrived. Participants spent days two and three using the controller they were initially 

randomized to and then crossed over at the begging of day four to the other control system. Breakfast, 
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lunch, and dinner were eaten on each day of the study. Breakfast and lunch were chosen by each 

individual based on preference and contained 47 ± 9 grams of carbohydrates. Dinner was not 

announced on days three and five to observe the postprandial response for each participant under the 

different control systems in fully closed-loop mode. Dinner was the same each day and consisted of 35 

to 42 grams of protein, 27 to 41 grams of fat, and 44 to 62 grams of carbohydrates based on what the 

subjects chose. 

The study's primary outcome was the percent time in the 70 to 180 mg/dL range in the six hours 

following dinner. Additionally, the percent time in tight time in range (i.e., 80 to 140 mg/dL), 

hypoglycemia (i.e., <70 mg/dL), hyperglycemia (i.e., >180 mg/dL), and mean BG will be discussed. All 

metrics are presented as the mean ± standard deviation (SD) or the median [minimum to maximum] if 

they were not normally distributed. A paired t-test was used to compare the normally distributed 

results, and a nonparametric Wilcoxon signed-rank test was applied if the data were not normally 

distributed. 

Outcomes 

18 participants completed the study out of the 21 initially enrolled. One participant was 

excluded because of scheduling difficulty, and two participants were excluded because they tested 

positive for SARS-co-V2. Of those who completed the study, nine were male, and nine were female. The 

average age was 15.6 ± 1.6 years. Mean height and weight were 166.6 ± 8.9 cm and 65.2 ± 11.5 kg, 

respectively. The average duration of diabetes was 7.7 ± 3.2 years. Participants had an average baseline 

HbA1c of 7.4 ± 1.5% and a time in the 70 to 180 mg/dL range of 60.0 ± 17.3%. The mean TDI was 59.6 ± 

16.3 units. 

 The BPS delivered an insulin dose after 15 of the 18 unannounced dinners (83.3%). In the two 

hours following eating, these insulin deliveries ranged from 1.32 units to 6 units and averaged 2.37 

units. The BPS delivered an average of 3.29% of the patient’s TDI ranging from 3% to 7%. The first BPS 

bolus was delivered an average of 28 minutes 43 seconds ± 10 minutes 26 seconds after the beginning 

of the meal. Figure 12 shows a picture generated from the data collected during the clinical trial 

illustrating how BPS performed following the unannounced meal. In this example, it can be seen how 

roughly 25 minutes after eating, the BPS delivered an automatic priming bolus equal to 3% of the 

participant's TDI. Even though no manual meal bolus was taken, this individual’s BG level only briefly 

exceeded 180 mg/dL following eating. The BPS never gave boluses due to fluctuations in glucose at any 

point other than the six hours after the unannounced dinner.  
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Figure 12 – The blood glucose values from a representative subject using Rocket after the unannounced dinner. The meal 
consisting of 49 grams of carbohydrates is shown with the orange arrow, and the 1.3 u (3% TDI) BPS bolus is shown with the 
grey arrow. 

Glycemic outcomes in the six hours following the unannounced meal were favorable for the 

Rocket controller in comparison to USS Virginia. The time in range (i.e., 70 to 180 mg/dL) was 53% [40 to 

71%] for USS Virginia and 83% [64 to 93%] for Rocket (p=0.004). The times in tight range (i.e., 80 to 140 

mg/dL) was 27% [22 to 36%] and 49% [41 to 59%] for USS Virginia and Rocket, respectively (p=0.002). 

Mean BG was 166 ± 26 mg/dL for USS Virginia and 141 ± 21 mg/dL for Rocket (p = 0.001). The time 

above range (i.e., >180 mg/dL) was lower for Rocket (17% [1.3 to 34%] vs. 47% [28 to 60%], p = 0.01). In 

the six hours following the unannounced dinner, there was no significant difference in the amount of 

hypoglycemia experienced by either system which was less than 1% for both. 
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Figure 13 - Cloud plots of CGM values following the unannounced dinner for each control system. Rocket is shown in orange and 
USS Virginia in blue. The thick lines represent the mean BG, and the edges of the clouds show the 10th to 90th percentile. The 

green dashed lines show the euglycemic range (i.e., 70 to 180 mg/dL). 

Figure 13 shows cloud plots representing the 10th to 90th percentiles of the CGM values for each 

controller in the six hours following the unannounced dinner under fully closed-loop control. The results 

from Rocket are shown in orange, and the USS Virginia’s results are in blue. The thick lines represent the 

mean values for each treatment. The target range (i.e., 70 to 180 mg/dL) is shown with the horizontal 

green dashed lines. 

Here it can be seen that BG rose at a similar rate for both control systems, but the mean peak 

BG was lower for Rocket. Additionally, the amount of time required for BG values to reenter the 

euglycemic range (i.e., 70 to 180 mg/dL) was less for Rocket than for the USS Virginia. Overall, it is clear 

that the average amount of time spent euglycemia is greater for the subjects when they used the Rocket 

controller. Also, it can be seen how the range of values for Rocket was tighter than it was for USS 

Virginia, indicating less variability among subjects.  
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Figure 14 - Cloud plots of CGM values for Rocket after the announced and unannounced dinner. The unannounced meal is in 
orange and the announced one in blue. The thick lines represent the mean BG, and the edges of the clouds show the 10th to 90th 

percentile. The green dashed lines show the euglycemic range (i.e., 70 to 180 mg/dL).  

Figure 14 Error! Reference source not found.compares the postprandial values for Rocket in h

ybrid closed-loop mode, in blue, where meals were announced, and fully closed-loop, in orange, where 

meals were not. When the meal was not announced to the system and no manual bolus was given, BG 

rose sooner after eating. The peak BG value was also higher in this case. In hybrid closed-loop mode, the 

90th percentile of CGM values never exceeded the hyperglycemic threshold. Additionally, the variability 

of BG values among subjects is less when the meal was announced.   

Obviously, BG values will be lower when the meal size is known and insulin is given at the 

beginning of the meal. What is notable about the fully closed-loop results is that the mean peak BG was 

barely higher than the upper limit of the euglycemic range (i.e., 180 mg/dL). Additionally, the mean BG 

value for all subjects was only higher than that threshold for a very short period of time, roughly 30 

minutes. Finally, the MPC control system brought the BG level to almost the same value in the target 

range (approximately 100 mg/dL) after both the unannounced and announced meal. 

The BPS embedded in Rocket behaved properly during this clinical trial from the perspective of 

safety. There were no boluses delivered except for those following eating, and the boluses triggered by 
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the glycemic disturbances did not lead to any more hypoglycemia than the comparison control system. 

However, it should be noted that both systems had very little hypoglycemia following the unannounced 

dinner. The Rocket system had 83% time in range after eating without a meal bolus, which suggests that 

the BPS could react to eating events where the user of the system did not take insulin and mitigate 

hyperglycemia. A large-scale test of this system under challenging scenarios (e.g., stress, physical 

activity, infusion site occlusion) would provide a greater perspective on the system's limitations and 

safety. It is still unclear if the BPS would be adequate in replacing meal boluses or if it should serve as a 

safeguard against significant and prolonged hyperglycemia following the occasional missed prandial 

insulin dose. Overall, the Rocket control system showed to be safe and effective in this clinical 

evaluation, in some ways outperforming the state-of-the-art publicly available artificial pancreas system. 
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Aim 2 - Retrospective Glycemic Disturbance Detection 

Overview 

Data quality is often a concern in retrospective data analysis, especially when information is self-

reported. In T1D, the most impactful disturbance on glycemia is consumed carbohydrates. Because of 

this, individuals with T1D are asked to record meals as precisely and accurately as possible so that 

insulin levels can be titrated. These self-reported eating records are regularly inaccurate or incomplete. 

Often records of consumed carbohydrates are logged when a mealtime insulin bolus is administered, 

which can often lead to inaccuracies. The errors in this data result from numerous factors, including the 

frequency at which people take insulin after mealtimes or forget altogether. 

Additionally, the rate of glucose appearance in plasma depends on the ratio of macronutrients 

(i.e., carbohydrates, protein, and fat) in the food consumed. People with diabetes rarely record this 

information, but it can be vital in making informed insulin dosing decisions. The problems associated 

with these sources of data cause a litany of problems for event reconstruction, model fitting, and the 

training of machine learning algorithms. 

By taking existing records, fixing incorrect event times, and detecting unreported disturbance 

events, a better understanding of what occurred in the past, which treatments worked well, why they 

may not have, could be leveraged to create new technologies. Having correct data is especially 

important for data-driven approaches because models will be incorrectly trained if data records are 

wrong. Furthermore, in a fully closed-loop insulin dosing system, the timing and magnitude of events 

(e.g., mealtimes and carbohydrate amounts) would be unknown and absent from the data record 

because there is no input from the user regarding these disturbances. In this aim, our approach to 

reconstructing the disturbance record is defined. Again, this approach focused on detecting events 

where insulin was required (i.e., positive glycemic disturbances) and not necessarily meals. The first 

detector described in this chapter that was meant to be used when meal boluses were administered is 

referred to as DSS2, and the second detector that was intended to be used when there were no meal 

boluses is referred to as RCKT+. These abbreviations are based on the projects that the algorithms were 

designed for Decision Support System 2 (DSS2) and Rocket Plus (RCKT+). 
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Retrospective Disturbance Detection Using Bolus Insulin and Glucose Measurements 

Introduction 

If boluses are taken at mealtimes using functional insulin therapy, like sensor-augmented pump 

therapy or hybrid closed-loop therapy, insulin doses may be a valuable indicator of when positive 

glycemic disturbances occurred. Although many people with T1D dose insulin based on an estimation of 

the carbohydrates in the food they just ate, some people take insulin doses concurrently with eating but 

do not record carbohydrates. In this case, both the size and timing of meal events are unknown.  

Connected insulin pens have a memory of insulin injections and are growing increasingly 

prevalent. The users of these devices often have a reliable record of insulin but no record of the 

carbohydrates they consumed. Using insulin bolus and CGM records to reconstruct disturbance events 

could also be helpful for this population of people with T1D. 

A disturbance detection algorithm was developed using bolus insulin and CGM records to 

leverage the information provided by people with T1D who otherwise may not have quality eating 

records. This logistic regression-based detection algorithm was trained on a dataset where the 

participants used sensor-augmented pump therapy. Numerous features were generated at the time of 

each CGM measurement (i.e., every five minutes) that were indicative of significant glycemic 

disturbances. The combination of those features and the selected coefficients determined whether a 

disturbance had occurred close to that time. The ability of this algorithm to classify sampling points as a 

part of a glycemic disturbance was evaluated. Further analysis of this algorithm and a second algorithm 

used to detect disturbances will be detailed later in this chapter.  

Training Data 

 The dataset used for training the algorithm was from the same clinical trial as the experiment to 

determine the priming insulin dose amounts for the BPS (NCT03859401).129 These data were collected 

from 14 subjects using sensor-augmented pump therapy at home. The subjects were asked to exercise 

multiple times per week, but other than that requirement, they behaved normally. A full description of 

the dataset is in Aim 1 in the section titled “Determining the Bolus Priming System Dosages.” 

 Meal records were obtained by downloading the insulin pumps used by the participants, but 

because of the reasons mentioned earlier, it could be assumed that these records contained errors. For 

this dataset, each five-minute interval of the dataset was labeled based on if there was a rise in BG of 

greater than 40 mg/dL in the two hours following. The five-minute intervals where this was true were 
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considered the positive class, and all other data intervals were in the negative class. This labeling 

method was selected because it was not reliant on patient-reported data and selected five-minute 

intervals in the positive class that immediately preceded or included rises in glucose, thus indicating a 

large glycemic disturbance. It should be stressed that in many applications where data reconstruction is 

useful or necessary, it is less critical to detect eating than to detect events caused by glycemic 

disturbances and require insulin doses. This characteristic may or may not be accurate for all eating 

events, such as those where BG does not rise. 

Feature Selection 

 Because the focus of the detector was to determine when it was essential to dose insulin, 

features were generated that would distinguish those events from all other times. When data cannot be 

verified, as is often the case, the only reliable records collected are CGM values and insulin records 

downloaded from the memory stored on an insulin pump or pen. Because these data streams are the 

only verifiable collected data, they were used to generate the features.  

 Glycemic disturbances are often characterized by BG values increasing at a rapid rate. The rise in 

BG results from consumed carbohydrates being processed through the digestive system and appearing 

in plasma blood as glucose. BG values rise even more quickly when carbohydrates are consumed, and 

insulin is not taken before the onset of eating. The rate of change of BG values (i.e., slope) and the 

second-order rate of change (i.e., curvature) could indicate a large glycemic disturbance, and because of 

this, several features were selected initially to capture this effect. 

 If the correct insulin dose is taken when eating, there might not be a considerable rise in BG 

following the meal. Nevertheless, the disturbance detection algorithm needed to capture these events 

because insulin was required in this particular situation. As described in the introduction, the net effect 

is a helpful approach for quantifying such glycemic disturbances. If the model is uninformed by ingested 

carbohydrates and an insulin dose is taken, BG should decrease. If this is not the case, there is a 

corresponding increase in the net effect to account for the glucose-lowering disturbance (i.e., insulin 

injection). To generate the net effect signals that encompassed the effect of meals, the model used to 

determine the disturbance signal was unaware of all recorded meals. When insulin was injected at 

mealtimes, and there were no large increases in BG, there were resultant positive increases and peaks in 

the net effect disturbance signal to explain the data in terms of the model. For these reasons, some 

features in the initial set using the value and rates of change of the net effect were chosen. 
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 The insulin record is an excellent indicator of when people experienced major glycemic 

disturbances as insulin is one of the only ways other than physical activity to reduce BG in these 

circumstances. People will often take insulin for meals without recording carbohydrate amounts. This is 

often the case for people who do not use insulin pumps and instead take manual insulin injections (i.e., 

multiple daily injection therapy). With the increasing prevalence of connected insulin pens, which 

automatically store a digital record of injections and dose amounts, it is increasingly popular to have 

verified insulin records with no recorded meals. Some of the features in the initial set were related to 

insulin bolus amounts which could be obtained from an insulin pump or connected pen.  

 From CGM, net effect disturbance signal, and insulin values, an initial set of 39 features were 

selected. These features included the current value of each metric calculated as well as the maximum 

and mean in a 30-minute window centered at the current five-minute interval. The features were 

calculated for each five-minute interval of the training dataset described. Once the initial model was 

trained, the final set of features was determined based on the effect of each feature in the set on the 

classification accuracy. Eventually, 26 features were chosen for the final version of the logistic regression 

classification model, and new coefficients were determined using the training dataset.  

Feature Generation 

The data used for this disturbance detection algorithm included a vector of BG values, 𝐶𝐺𝑀, net 

effect values, 𝑁𝐸, and bolus amounts, 𝑖. Each of the features was calculated using the data at each five-

minute interval. The net effect values were found using the calculations described by Patek et al.85 A 

description of the feature set is listed in Table 4. 
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Table 4 – A description of features used for the bolus insulin and CGM disturbance detection algorithm. Each feature was 
calculated at each sampling interval, t. 

Description Formula 

First derivative of the CGM values 𝑥1(𝑡) =  
𝑑𝐶𝐺𝑀(𝑡)

𝑑𝑡
 

Second derivative of the CGM values 𝑥2(𝑡) =
𝑑2𝐶𝐺𝑀(𝑡)

𝑑𝑡2
 

Maximum of the first derivative of the CGM values and 

zero 
𝑥3(𝑡) = max (0,

𝑑𝐶𝐺𝑀(𝑡)

𝑑𝑡
) 

Maximum of the second derivative of the CGM values 

and zero 
𝑥4(𝑡) = max (0,

𝑑2𝐶𝐺𝑀(𝑡)

𝑑𝑡2
) 

Maximum of the product of the first and second 

derivative of the CGM values and zero 
𝑥5(𝑡) = max (0,

𝑑𝐶𝐺𝑀(𝑡)

𝑑𝑡
𝑥

𝑑2𝐶𝐺𝑀(𝑡)

𝑑𝑡2
) 

Current insulin bolus amount 𝑥6(𝑡) = 𝑖(𝑡) 

Current CGM value 𝑥7(𝑡) = 𝐶𝐺𝑀(𝑡) 

First derivative of the NE values 𝑥8(𝑡) =  
𝑑𝑁𝐸(𝑡)

𝑑𝑡
 

Second derivative of the NE values 𝑥9(𝑡) =
𝑑2𝑁𝐸(𝑡)

𝑑𝑡2
 

Maximum of the first derivative of the NE values and zero 𝑥10(𝑡) = max (0,
𝑑𝑁𝐸(𝑡)

𝑑𝑡
) 

Maximum of the second derivative of the NE values and 

zero 
𝑥11(𝑡) = max (0,

𝑑2𝑁𝐸(𝑡)

𝑑𝑡2
) 

Maximum of the product of the first and second 

derivative of the NE values and zero 
𝑥12(𝑡) = max (0,

𝑑𝑁𝐸(𝑡)

𝑑𝑡
𝑥

𝑑2𝑁𝐸(𝑡)

𝑑𝑡2
) 

The current NE value 𝑥13(𝑡) = 𝑁𝐸(𝑡) 

 

For every feature calculated, an additional feature was included in the classification algorithm 

representing the maximum value of that feature for the 15 minutes before and after the current 

interval. In total, there were 26 features used in the classification algorithm. 

From these features, an output from the logistic regression, 𝑦𝑑𝑒𝑡𝑒𝑐𝑡,1, was calculated using the 

following formula, 
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𝑦𝑑𝑒𝑡𝑒𝑐𝑡,1(𝑡) = 𝛽0 + ∑𝛽𝑖 ∙ 𝑥𝑖(𝑡)

26

𝑖=1

, 

The value of each of the predictor coefficients determined from the training dataset is given in Table 5. 

Table 5 - The coefficients used in the bolus insulin and CGM logistic regression disturbance detection algorithm. 

Constant Value Constant Value 

𝜷𝟎 -2.57 𝜷𝟏𝟒 -0.88 

𝜷𝟏 -13.46 𝜷𝟏𝟓 15.54 

𝜷𝟐 238.69 𝜷𝟏𝟔 165.06 

𝜷𝟑 -5.93 𝜷𝟏𝟕 3.96 

𝜷𝟒 -361.07 𝜷𝟏𝟖 -233.25 

𝜷𝟓 364.37 𝜷𝟏𝟗 135.57 

𝜷𝟔 0.03 𝜷𝟐𝟎 0.10 

𝜷𝟕 -0.09 𝜷𝟐𝟏 0.07 

𝜷𝟖 1454.94 𝜷𝟐𝟐 -1392.72 

𝜷𝟗 -22857.12 𝜷𝟐𝟑 1296.29 

𝜷𝟏𝟎 109.30 𝜷𝟐𝟒 -94.48 

𝜷𝟏𝟏 45407.29 𝜷𝟐𝟓 917.44 

𝜷𝟏𝟐 -36996.24 𝜷𝟐𝟓 31527.56 

𝜷𝟏𝟑 -2.57 𝜷𝟐𝟔 2.45 

 

The log-odds, 𝑦𝑑𝑒𝑡𝑒𝑐𝑡,1 , was then transformed into the probability of a large glycemic 

disturbance occurring at that particular time denoted as, 𝜋𝑑𝑒𝑡𝑒𝑐𝑡,1. This probability was found using the 

equation, 

𝜋𝑑𝑒𝑡𝑒𝑐𝑡,1(𝑡) =  
1

1 + 𝑒−𝑦𝑑𝑒𝑡𝑒𝑐𝑡,1(𝑡)
. 

 The classification accuracy of the disturbance detection algorithm was evaluated on 25% of the 

data held out from training. At varying thresholds for the disturbance probability, the algorithm 

classified each five-minute interval as part of a glycemic disturbance as determined by how the dataset 

was labeled and evaluated based on its true positive and false positive rates. 
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Figure 15 – The ROC curve for the classification results of the retrospective disturbance detector using CGM, the net effect, and 
bolus amounts on the holdout data. 

Figure 15 shows the ROC curve for the detection algorithm. The area under the curve for the 

detection algorithm is 0.98. An area under the curve of 0.98 demonstrates that the logistic regression 

algorithm was able to classify many of the labeled five-minute intervals in the holdout dataset with a 

favorable tradeoff between false positive and true positive detections. It should be noted that this is a 

very unbalanced dataset, meaning that many more intervals were in the negative class than the positive 

class, and the evaluation of specific disturbance events described later in this chapter may be more 

informative in evaluating the algorithm’s event detection ability. 

Event Time Selection Procedure 

Each five-minute interval was either labeled as being in the positive or negative class using the 

logistic regression classification method. The disturbance classification algorithm selected windows of 

time where a disturbance was likely to have occurred but did not directly choose the time of the event. 

The classification vector, 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛1 , was defined as,  

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛1(𝑡) =  {
1 𝑖𝑓 𝜋𝑑𝑒𝑡𝑒𝑐𝑡,1(𝑡) >  𝜋𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,1

0
, 

Figure 16 shows an example of the output of the disturbance detection algorithm for a 

particular CGM trace. In this example, glucose rose following a suspected eating event. During the 

period of time where BG was rising, the disturbance probability was greater than the threshold, and 
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therefore the output of the detector was one, meaning that there was a large glycemic disturbance that 

occurred during this time frame. Here it can be seen how multiple five-minute intervals could be labeled 

with the positive class. Therefore, one of the intervals during this period of time needed to be selected 

as the event time.  

 

Figure 16 - An example of the disturbance detection output and corresponding BG values. The blue markers indicated CGM 
values, and the orange markers represent the output of the detector. 

The five-minute interval selected to be the time of the disturbance event was chosen based on 

when the maximum second-order difference of the CGM values (i.e., curvature, 
𝑑2𝐶𝐺𝑀

𝑑𝑡2 ), in that window, 

was. This time was determined to be the best placement for the detections because it was thought that 

the maximum curvature would correspond to the beginning of an event, like eating, that would cause 

BG values to rise. Because the features were non-causal, it was possible for the detection time of an 

event to be before it occurred. To stop the same event from causing multiple detections, detections that 

were within one hour were combined. Multiple detections could occur during meals that lasted a long 

duration and involve multiple rises in glucose and insulin boluses or if an individual has a comorbidity 

that affects digestions like gastroparesis. 
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Figure 17 – An example of the CGM values shown in blue and the second derivative of the CGM values shown in orange for a 
period of time where the disturbance probability was greater than the threshold. The gray marker represents the detection time. 

Figure 17 shows an example of the CGM values as well as the corresponding second derivative 

of the CGM values, 
𝑑2𝐶𝐺𝑀

𝑑𝑡2 ,  during a window of time where the disturbance probability was above the 

threshold. In this example, the maximum CGM curvature (shown with the gray marker) was at 6:55 a.m., 

which is the beginning of a glucose excursion caused by eating. The meal in this simulation data example 

occurred at the exact time of the detection. 

Retrospective Disturbance Detection Using Basal Insulin and Glucose Measurements 

 The next generation of automatic insulin dosing systems is likely to be fully closed-loop, 

meaning that there is no information provided to the system by the patient regarding any major 

disturbance and no manual meal bolus. In this case, if there are no meal announcements, there would 

be no record of when the user ate. Thus, meal amounts and the timing of eating events would be 

completely unknown. Even though the user does not input when large glycemic disturbances occur, it is 

still necessary to understand the timing of these events to improve treatment. Knowing the timing of 

glycemic disturbances could allow the system to learn how to better adapt to the user or aid in 

developing new technologies.  

Because of these considerations, only CGM values and automatic doses delivered by the system 

without user input could be used to reconstruct the meal record and not meal boluses. A disturbance 

detection algorithm was designed using only CGM and basal insulin records and was agnostic to 

recorded carbohydrates to meet the requirements of the next generation of insulin dosing systems. 
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Historical Disturbance Estimation 

 Because disturbances were not known to the system, a methodology was used to estimate the 

historical disturbances experienced by the user. These disturbance signals were then used to generate 

features in the detection algorithm. The method for generating these disturbance signals was developed 

by a colleague and is in one of our collaborative works that has been submitted for publication.138  

A model-based approach was used to estimate historical glycemic disturbances for each day of 

data collected to estimate the disturbances. This signal followed the same sampling time as the other 

signals used in the detection methodology, every five minutes. The estimation procedure used a Kalman 

filter with a version of the SOGMM using only insulin and BG information as inputs. The linearization 

operating point was the average basal insulin infusion rate, average CGM value, and steady-state 

solution for the model equations. The measurement and process noise covariance matrices were 

empirically selected so that the daily signatures appropriately represented glycemic disturbances. Figure 

18 shows an example of the disturbance signal, meal and insulin records, and BG values for one day of 

data in the top, middle, and bottom subplots.  

 

Figure 18 - The top subplot shows the glucose trace over one 24-hour period (1440 min.). The middle subplot shows the insulin 
boluses and meals recorded by the patients. The bottom subplot shows the estimated disturbance, 𝑑, over a day.138 
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In this example, it can be seen how the disturbance signature rises to a positive value following 

eating events in a manner that is similar in terms of magnitude and rate of change to CGM values. This 

signal characterized glycemic disturbances well and provided a valuable tool for estimating disturbances 

not known to the model. This estimation was instrumental in situations where meal information was not 

available.  

Disturbance Signal Filtering 

For some individuals, the disturbance generation process led to the creation of signals that 

gradually increased over the day. This effect was the result of the slow dynamics of certain aspects of 

the model. Figure 19 shows an example of how the estimated disturbance signal for a representative 

subject exhibiting this trend slowly drifted upwards over the 24-hour span. Ideally, the disturbance 

signal would be centered at zero and only have positive increases immediately following meals. The 

signal for this day begins slightly below zero and slowly increases. The trendline shows how the average 

value increases throughout the day. 

 

Figure 19 - The estimated disturbance signal for one real subject for a single day. The linear trendline is shown with the dashed 
line, and the equation is shown on the chart area. 

An IIR High Pass filter was applied to the daily disturbance signals to account for this issue in the 

estimation process. A passband frequency of 0.0028 Hz was used to eliminate any low-frequency 

changes in the signal with a cycle of greater than six hours. It was determined that six hours was the 

appropriate amount of time for the filter because anything with a frequency greater than this was likely 
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to cause more acute changes in glucose and should be considered in the disturbance behavior. This filter 

was anti-causal and zero-phase to eliminate phase distortion. Figure 20 shows the disturbance signal for 

the same day of actual patient data as Figure 19 in the filtered and unfiltered form.  

 

Figure 20 - A comparison of the unfiltered and filtered estimated disturbance signal for one day of actual data. The trendlines 
shown with the dashed lines represent the signals of the corresponding colors. The equation for the trendline of the unfiltered 

signal is outlined in blue, and the trendline equation for the filtered signal is outlined in orange. 

The unfiltered signal, in blue, has an upward trend throughout the day, causing an offset in 

values from the zero axis. The filtered orange disturbance signal is much more centered on the axis, and 

the peaks in the signal around what presumably are meals are extenuated. A comparison of the slopes 

of the linear trendlines shows that the unfiltered signal has a positive slope of 3.61, thus indicating a 

positive bias over the day, whereas the slope of the orange signal is 0.22. The difference in the 

trendlines slopes indicates how well this filter worked to eliminate low-frequency noise in the signal 

estimation. The new filtered disturbance signals had more pronounced and distinct peaks in the 

disturbance signal.  

Feature Generation 

As records of meals and the associated boluses would be absent in a fully closed-loop system, 

CGM and insulin data are the only sources of information that could be used to detect meal-like 

glycemic disturbances retrospectively. The disturbance detector was created using features that 

charactered disturbances using the vector of estimated disturbance values, 𝑑, and continuous glucose 

measurements, 𝐶𝐺𝑀, for each day of historical data collected. To account for noisy measurements, the 
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estimated disturbance values were smoothed before features were generated using a moving average 

over an hour centered at the current interval. A description of the features which were calculated for 

each five-minute sample, 𝑡, is listed in Table 6. These features involving polynomial fitting were 

generated using least-squares. These features were chosen based on insights gathered in the design of 

the DSS2 algorithm.  

Table 6 – A description of the features for the CGM and basal insulin-only retrospective disturbance detection algorithm. 

Feature Description 

𝒇𝟏 Intercept term from the second-order polynomial fit on 𝑐1 = 𝐶𝐺𝑀(𝑡 − 6),… , 𝐶𝐺𝑀(𝑡 + 6) 

𝒇𝟐 Slope term from the first-order polynomial fit on 𝑐2 = 𝐶𝐺𝑀(𝑡), … , 𝐶𝐺𝑀(𝑡 + 12) 

𝒇𝟑 Curvature term from the second-order polynomial fit on 𝑐1 = 𝐶𝐺𝑀(𝑡 − 6),… , 𝐶𝐺𝑀(𝑡 + 6) 

𝒇𝟒 𝑓2 ∙ 𝑓3 

𝒇𝟓 Intercept term from the second-order polynomial fit on 𝑑1 = 𝑑(𝑡 − 6),… , 𝑑(𝑡 + 6) 

𝒇𝟔 Slope term from the first-order polynomial fit on 𝑑2 = 𝑑(𝑡), … , 𝑑(𝑡 + 6) 

𝒇𝟕 Curvature term from the second-order polynomial fit on 𝑑1 = 𝑑(𝑡 − 6),… , 𝑑(𝑡 + 6) 

𝒇𝟖 𝑓6 ∙ 𝑓7 

𝒇𝟗 Maximum 𝑑 value in the next hour 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑑2 

 

Disturbance Detection 

Once features were generated for each five-minute interval, 𝑡, the output of a logistic regression 

equation, 𝑦𝑑𝑒𝑡𝑒𝑐𝑡,2, was evaluated. The equation for the logistic regression was,  

𝑦𝑑𝑒𝑡𝑒𝑐𝑡,2(𝑡) = 𝛽0 + ∑𝛽i ∙ 𝑓i(t)

9

𝑖=1

. 

The regression coefficients were found by training a logistic regression classifier on the same 

dataset as was used for the other classification algorithm (NCT03394352).129 The training dataset was 

labeled in the same manner as the other detection algorithm by setting intervals where glucose rose at 

least 40 mg/dL in the next two hours as the positive class and all other times as negative. The values for 

each of the logistic regression coefficients,  𝛽0−9, are given in Table 7.  
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Table 7 - The coefficients used in the basal insulin and CGM logistic regression disturbance detection algorithm. 

Constant Value 

𝜷𝟎 -1.1584 

𝜷𝟏 14.6012 

𝜷𝟐 0.0135 

𝜷𝟑 -0.0111 

𝜷𝟒 -0.4954 

𝜷𝟓 2661.6419 

𝜷𝟔 -0.2154 

𝜷𝟕 -2.4333 

𝜷𝟖 -13551.6432 

𝜷𝟗 2.9627 

 

The output of the logistic regression equation was then transformed into the disturbance 

probability value, 𝜋𝑑𝑒𝑡𝑒𝑐𝑡,2. The equation for this transformation was, 

𝜋𝑑𝑒𝑡𝑒𝑐𝑡,2(𝑡) =  
1

1 + 𝑒−𝑦𝑑𝑒𝑡𝑒𝑐𝑡,2(𝑡)
. 

The classification accuracy was evaluated in the same way as the other detector. 25% of the 

training data was held out, and the classifier was evaluated on its ability to label each five-minute 

interval as in the positive or negative class. Figure 21 shows the ROC curve for this classification 

algorithm. The area under the curve for this detector was 0.92, which is 0.06 lower than the other 

algorithm. 
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Figure 21 – The ROC curve for the classification rate of the retrospective disturbance detection algorithm evaluated on the 
holdout training data. 

Event Time Selection Procedure 

Windows of time where the disturbance probability was above the threshold, 𝜏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,2, were 

then labeled and stored in the detection vector, 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛2. 

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛2(𝑡) =  {
1 𝑖𝑓𝜋𝑑𝑒𝑡𝑒𝑐𝑡,2(t) > 𝜏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,2 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The detection times for RCKT+ were determined by selecting the five-minute interval in the amount of 

time where the disturbance probability was above the threshold where the curvature of the CGM values 

was the greatest. Just as was done in the other detector, DSS2, if detection times were within one hour 

of each other, the first detection time was used, and the subsequent detections in that hour were 

removed.  

Comparison of the Two Detection Approaches 

 Although both algorithms serve the same ostensive purpose, to detect large positive glycemic 

disturbances, each requires different data and has a different application. The first described algorithm, 

DSS2, uses insulin boluses and CGM values and is well suited for data collected from subjects using 

sensor-augmented pump therapy, multiple daily injections with a connected smart insulin pen, or hybrid 

closed-loop. The second detection algorithm described, RCKT+, uses only basal insulin delivery amounts, 

CGM values, and the estimated disturbance found using CGM and basal insulin records.  
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The intention of the experiments described in the following sections is to determine the 

performance of the two algorithms on both simulated and real data collected during a clinical trial. The 

simulation dataset was larger, contained information from more patients, and included some realistic 

physiological sources of glycemic variability. The actual dataset used was collected during a clinical trial 

admission where the study team recorded meal events and insulin doses. This dataset, although smaller, 

contained periods where the participants exercised and sources of glycemic variability and 

measurement noise that are not present in the simulation dataset. Both evaluations provide information 

about the performance of the disturbance detection algorithms under different conditions.  

Evaluation Using Simulation Data 

Experimental Setup 

 An experiment was designed to compare the accuracy of each detection approach under 

somewhat ideal conditions using data produced by the UVA/Padova T1D simulator. Simulation data was 

used because mealtimes were known precisely, and a large amount of data could be generated. 

Additionally, the variability of the in silico subject population allowed the detection algorithm to be 

tested under many different combinations of physiology present in real patient populations represented 

as system parameters.  

 The features required for each detection algorithm were generated, and the classification 

algorithms were both evaluated at each five-minute interval of the dataset. A binary vector defining if 

each interval was above the threshold for the detectors was calculated for a series of values. The 

algorithm thresholds, 𝜏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,1 and 𝜏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,2, ranged between zero and one. Then the detection 

times were determined based on the maximum curvature of the CGM values during the windows of 

time above the threshold. If a detection was within one hour of another detection, the latter detection 

was eliminated. 

 These detections were evaluated against the known mealtimes from the simulation dataset. A 

detection was considered a true positive detection if it was within one hour of an actual meal. False 

positives were any detections not within an hour of a meal. Meals could only be detected once, so if 

there were two detections following a meal, the second would be considered a false alarm. Each 

detector was evaluated for its true positive rate, false positive rate, and the amount of time that the 

detection was from the actual mealtimes.  
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 The data was generated from 100 virtual subjects over 12 days. During this period, the 

simulated subjects used sensor-augmented pump therapy. The virtual participants were administered 

three meals a day, breakfast, lunch, and dinner. Mealtimes and amounts were randomly selected for 

each subject. Breakfast occurred from 6:30 a.m. and 7:30 a.m., lunch was between 12:30 p.m. and 1:30 

p.m., and dinner was from 6:30 p.m. and 7:30 p.m. All meals ranged in amount from 50 and 70 grams of 

carbohydrates. This dataset contained 3,600 meals at varying times and sizes. The simulation considered 

the effect of the dawn phenomenon and intraday variability of the patients’ insulin sensitivity.  

 The detection approaches were evaluated on the true positive and false positive rates at each 

threshold. Additionally, the average amount of time between the detection, 𝑡𝑑𝑒𝑡𝑒𝑐𝑡, and the event, 

𝑡𝑒𝑣𝑒𝑛𝑡, was calculated for each true and false positive rate.  

𝑡𝑖𝑚𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡 =  𝑡𝑑𝑒𝑡𝑒𝑐𝑡 − 𝑡𝑒𝑣𝑒𝑛𝑡 

 Appropriate thresholds were selected for each algorithm using the true and false positive 

results. To get a sense of how the detection algorithms would perform were they to be implemented, 

the detection performance was evaluated as well as the distribution of detection times. These 

distributions gave a sense of the skewness of the algorithms concerning the tendency to detect events 

either before or after the time of occurrence.  

Results 

The ROC curves for both the DSS2 algorithm, shown in blue and the RCKT+ algorithm, shown in 

orange. These curves, relating the true and false positive rates, show that in the simulation data 

experience, both algorithms had high rates of true detections while maintaining low rates of false 

alarms. Both algorithms quickly attained true detection rates of greater than 90% while maintaining 

false positive rates of less than 0.001. It appears that, in general, the RCKT+ algorithm was able to 

achieve higher true positive rates at lower false positive rates than the DSS2 algorithm. Both algorithms 

quickly converged to a true positive rate of more than 90% and stayed consistently at that detection 

rate as the average false positive rate increased.  
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Figure 22 – The ROC curve for the simulation experiment based on the rate at which meals were detected within one hour of the 
actual time. DSS2 is shown in blue, and RCKT+ is shown in orange. 

A threshold was selected for both detectors of 0.1, based on when each detector achieved high 

true positive rates. With the nominal threshold, the average true positive rate for the DSS2 disturbance 

detector was 96.87 ± 13.22%, and the mean false positive rate was 0.21 ± 0.22%. The average true 

positive rate for the RCKT+ detector was 98.79 ± 10.14%, and the false positive rate was 0.70 ± 0.22%. 

The mean time difference between the true detection times and the recorded meal events was 0.04 ± 

6.02 minutes and 0.04 ± 5.94 minutes for the DSS2 and RCKT+ detectors. Figure 23 shows histograms of 

the amount of time between detections and the actual mealtimes. The top subplot shows the 

distribution of the DSS2 detections, and the bottom subplot shows the distribution for RCKT+. 
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Figure 23 – The histogram of meal detection times compared to the actual mealtimes for each detector on the simulation 
dataset. DSS2 is shown in the top subplot, and the distribution of the RCKT+ detections is shown on the bottom. 

 Both disturbance detection algorithms correctly detected more than 96% of meals in the 

simulation dataset with less than a 1% false positive rate, and the amount of time between the 

detections and the actual mealtimes was less than one minute on average. The distributions of the time 

between the detections and the mealtimes show that each algorithm distribution was centered at 

roughly zero and approximated a normal shape. In this distribution, there is no strong bias from either 

detector towards detecting meals before or after their occurrence, which is favorable. A major caveat of 

these results is that the data used was generated using a simulation platform and therefore may not 

include some sources of glycemic variability present in real life. The experimental setup included sources 
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of low-frequency variability (e.g., diurnal insulin sensitivity variation, dawn phenomenon), but the only 

major abrupt disturbances to BG were related to meals. 

Overall, the results of this experiment showed the accuracy of both detection algorithms. The 

DSS2 algorithm performed slightly worse in terms of the true detection rates but had a lower false 

positive rate than RCKT+ at the nominal threshold. This algorithm did require many more features and 

for there to be information collected from the patient regarding manual meal boluses. Although it 

required more features, the DSS2 algorithm could be used on data collected from patients not on insulin 

pump therapy (i.e., multiple daily injections). The RCKT+ algorithm in its current form would not work 

unless a full record of basal insulin was known. Overall, both detection algorithms had exceptionally high 

true positive rates and very low false positive rates when applied to a simulated dataset.  

Ultimately, it is tough to evaluate detection algorithms. There is no true record of when events 

happened in actual data, or the datasets are very small and limited, and in simulation, there is far less 

glycemic variability than what is true in real life. The next section describes the results of an experiment 

conducted on a limited real-life dataset.  

Evaluation Using Clinical Data 

Experimental Setup 

 The same experiment that was conducted with the simulation data was repeated with a real 

dataset. This evaluation was performed because simulation data have much less variability, noise, and 

other sources of entropy that would make it difficult to determine when disturbance events like meals 

occurred. This experiment also provided an opportunity to evaluate how the detection algorithms would 

perform in real life. 

Any data related to meal and insulin events collected outside of a strictly controlled clinical 

environment are likely flawed. For this reason, the data used to evaluate the proposed method were 

actual patient data collected during part A of the Glucose Variability study (GV2a) at UVA, where 

participants meal and insulin information was recorded meticulously under the supervision of the study 

team.139 During this admission study participants were exposed to meal challenges of various sizes and 

daily physical activity. This study was funded through a grant awarded to UVA from the National 

Institutes of Health and was approved by the Institutional Review Board. These data include 

physiological measures such as height and body weight, which affect parameters in the insulin-glucose 

model, and diabetes management-related information such as delivered insulin, meals, basal profiles, 
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CGM measurements, SMBG measurements, carbohydrate to insulin ratios, and BG correction factors. 

Because this was collected in the Clinical Research Unit of the UVA Hospital under a strict protocol, it is 

known that meals and insulin happened precisely when they were recorded. 

This rare high-quality dataset provides the opportunity to use it as a testbed, which is unique 

considering many recent clinical trials have been at home, and mealtimes cannot be verified. The 

admission portion of the GV2a study was conducted in the Fall of 2015 through the Winter of 2016 at 

UVA. During the two-day admission, participants were monitored by the study team as they managed 

their T1D using a decision support system. A subset of 11 patients was selected from the GV2a data 

because they were pump users and had complete data for the admission. The patient demographics for 

this dataset are shown in Table 8. 

Table 8 – The participant demographics for the GV2a dataset. 

Characteristic Mean ± SD 

Age (years) 40.91 ± 11.39 

Weight (kg) 78.19 ± 16.54 

Height (cm) 169.19 ± 10.69 

TDI (u) 45.96 ± 17.85 

Baseline HbA1c (%) 7.71 ± 0.80 

 

Results 

Figure 24 shows the ROC curve for the two detectors, DSS2 and RCKT+, evaluated on the clinical 

dataset. The results for DSS2 are shown in blue, and RCKT+ is shown in orange. 
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Figure 24 - The ROC curve for clinical data experiment based on the rate at which meals were detected within one hour of the 
actual time. DSS2 is shown in blue, and RCKT+ is shown in orange. 

From these results, it is clear that once again, the RCKT+ algorithm outperforms the DSS2 algorithm at 

most combinations of true positive and false positive rates.  

 When the same threshold used in the was simulation dataset was used in this experiment, the 

DSS2 algorithm correctly detected 70.13 ± 19.95% of eating events on average, whereas RCKT+ detected 

78.47 ± 18.43%. The false positive rate for the DSS2 algorithm was 1.26 ± 0.56%, and the false positive 

rate for the RCKT+ algorithm was 1.40 ± 0.61%. The mean amount of time between detections from the 

DSS2 and RCKT+ algorithms was -10.62 ± 27.05 minutes and -10.70 ± 27.69 minutes.  

The distributions of the amount of time between detections and the actual events are shown in 

Figure 25. The results for the DSS2 detector at the nominal threshold value are shown in the top plot, 

and the results from the RCKT+ detector are shown in the bottom plot. 
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Figure 25 – The histogram of meal detection times compared to the actual mealtimes for each detector on the clinical dataset. 
DSS2 is shown in the top subplot, and the distribution of the RCKT+ detections is shown on the bottom. 

 The evaluation of the performance of the detection capability on actual data of the two 

algorithms was noticeably different from the experiment using simulation data. It could easily be seen in 

the ROC curves that both detection algorithms had lower true positive detection rates at the 

corresponding false positive rates when applied to the real data. When the nominal detection threshold 

was chosen for each algorithm, the true positive rates were lower, and the false positive rates were 

higher than in the simulation experiment. The true positive rate for the DSS2 algorithm was 26.74% 

lower in the experiment using the real data than the experiment using the simulation data. For the 

RCKT+ algorithm, the true positive rate was 20.32% lower in the real data experiment. 
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Furthermore, in the clinical experiment, the events were often detected roughly ten minutes 

before the actual time of occurrence. In the simulation experiment, events were almost always detected 

within five minutes of the correct time. For each of the metrics discussed, the SD of the values was 

higher during the real data experiment, indicating greater variation between subjects in terms of 

algorithm performance. 

There is a striking difference between the results of the two experiments, but there are also 

numerous plausible explanations as to why it might be so different. In the simulation experiment, there 

are low-frequency glycemic disturbances such as changes in the insulin sensitivity of the in silico 

individual and also physiologic factors like the dawn effect. There are no other factors that change BG 

values dramatically other than meals. The lack of variability caused by this effect of the simulation 

platform makes it acutely evident from BG values when meals occurred. When the subjects were 

administered food, their BG values rose abruptly, leading to pronounced glycemic excursions. Following 

relatively short postprandial glucose excursions, BG values usually returned to the basal value.  

In the clinical data, the effect of glycemic disturbances is not always as evident. Many factors 

affect how BG changes following meals present in real life, but not in the UVA/Padova simulation 

platform. The participants of the GV2a clinical trial that the actual data were collected from exercised in 

the admission. Physical activity was not integrated into the version of the simulation platform used to 

create the in silico data. The changes in insulin sensitivity associated with physical activity likely affected 

BG levels in the participants during and after the event. This perturbation may have contributed to more 

glycemic variability leading to false alarms or false negatives and increased insulin sensitivity which 

caused less pronounced glycemic excursions.  

Interestingly, the timing of disturbance detections was different in the results of the two 

experiments. When applied to the simulation data, the algorithms detected disturbances on average at 

around the time that these events occurred. The time between the time selected for the detections and 

the actual disturbance times was approximately normal. This distribution is ideal for this application 

because there was little bias in the detection times.  

When applied to real data, the algorithms selected times for the detected events that were 

often before the actual event. This offset is probably the result of the chosen features. When these two 

algorithms were being designed, it was assumed that individuals would frequently give insulin after or 

during meals and not before. Because of this consideration, both algorithms use features that include 
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the maximum value in the window of time that spans into the future. In this particular clinical dataset, 

the study team ensured that all insulin boluses were administered at the beginning of meals. Based on 

surveys of people with T1D, this is unlikely to be the case in an unsupervised environment. 

Ultimately, the performance of a detection algorithm is most important when it is applied to 

actual data. The simulation experiment provides an excellent tool for determining the effectiveness of a 

method in ideal conditions but often lacks the variability experienced in real life. Furthermore, it should 

be noted that the detectors were evaluated on recorded meals and not glycemic disturbances. It is likely 

that many of the meals that were not detected did not cause a large change in glucose values. Because 

there was physical activity during the clinical admission, it is possible that there were no significant rises 

in BG after some meals due to increased insulin sensitivity.  
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Aim 3 – Determination and Implementation of Patterns of Glycemic 

Disturbances in a Fully Closed-Loop Insulin Dosing System 

Introduction 

Due to the nature of the time dynamics of insulin, feedforward control is necessary to prevent 

unwanted deviations from target glucose, specifically hyperglycemia, following large positive glycemic 

disturbances like ingested carbohydrates. Fully closed-loop artificial pancreas systems thus far have not 

been able to handle the challenges with postprandial glucose excursions with feedback control alone. 

This is due to the time constants associated with insulin and ingested carbohydrates which have caused 

feedback-only controllers to inadequately compensate for rises in BG caused by eating carbohydrates. 

For this reason, mealtime insulin has traditionally been taken proactively (i.e., feedforward control), and 

it is currently recommended that people with T1D use functional insulin therapy, which is a manual form 

of feedforward control, to deliver insulin before eating.  

This chapter discusses how regular patterns of behavior derived using data mining were 

leveraged to anticipate glycemic disturbances in a fully closed-loop artificial pancreas system. The data-

driven techniques used allowed for personalized, dynamic accounts of behavior and could be updated as 

behavior changes. Daily disturbance signatures were clustered using unsupervised learning, and these 

regular patterns were transformed into glycemic disturbance profiles weighted based on the probability 

of each and implemented in an MS-MPC. This probability value was updated in real-time using current 

estimates for the disturbance experienced by the individual using the system. The effectiveness of the 

disturbance patterns, derived from actual patient data and the BPS, was evaluated in a large-scale 

simulation experiment using the UVA/Padova T1D simulator. Additionally, the utility of this 

methodology in preventing postprandial hyperglycemia was evaluated and discussed. 

Model Predictive Control 

MPC is a control strategy that is informed by predictions made from a model of the dynamic 

process that is being modulated. MPC differs from some other control strategies (e.g., proportional–

integral–derivative control) because current measurements and future values are considered in the cost 

function that is being minimized. In T1D, MPC has been used to predict future BG using a physiological 

model and titrate insulin appropriately.140 In artificial pancreas systems that use MPC, insulin injections 

are decided at each sampling time based on a series of constraints and what control action would be 

optimal in terms of the cost function. 
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MS-MPC is a control strategy that considers predictions from an ensemble of 𝑁 parallel MPC 

controllers. The MS-MPC methodology was first described by Lucia et al. in 2012 and has been expanded 

in subsequent work.141,142 Each model in the ensemble uses a different disturbance signal as an input. 

The control action is decided from a consensus of the MPC controllers. Figure 26 shows a graphical 

depiction of the MS-MPC strategy.  

 

Figure 26 – A depiction of the multistage model predictive control strategy. 143 

In this example, a control action is chosen at 𝑥0 based on the predictions made from the 𝑁 MPC 

models and the associated inputs 𝑢 and disturbances 𝑤. This control strategy allows for the 

consideration of multiple possible disturbances that the system might experience.  

Our group's simulation and clinical experiments have shown how anticipatory profiles integrated 

into automatic insulin dosing systems can reduce the unwanted effects of glycemic disturbances. 

Simulation experiments have demonstrated that MS-MPC controllers informed by disturbance profiles 

to anticipate moderate exercise’s effects can reduce hypoglycemia.143–145 These results were later 

confirmed in a randomized crossover clinical trial with 15 adult participants.129 There were fewer 

hypoglycemic events (9 vs. 33), and the percent time where BG was less than 70 mg/dL was 1.3% lower 

while the participants used the MS-MPC system compared to a well-tuned standard MPC. The overall 

reduction in hypoglycemia resulted in no significant increase in the amount of time where BG was 

greater than 180 mg/dL.  



68 
 

It was also demonstrated in silico that the capacity of the MS-MPC framework to anticipate 

glycemic disturbances caused by meals.146 In that work, disturbance profiles were generated from a 

representative real subject and then used to perform closed-loop experiments using the 100 adult 

cohort of the University of Virginia/Padova T1D simulator. The results showed an average increase in the 

amount of time in euglycemia (i.e., 70 to 180 mg/dL) of 1.6% when using a hybrid closed-loop approach 

and 16.4% when using a fully closed-loop approach. 

Other research groups have also used a multiple model approach to mitigate disturbances in a 

fully closed-loop insulin dosing system. Cameron's 2012 manuscript describes a methodology for an 

automated insulin dosing system that uses multiple BG prediction models, each informed by different 

disturbances.147 When the system determined that one disturbance was more likely, additional weight 

was given to that model's predictions. Additionally, information was included regarding the likely timing 

of meal disturbances based on normal mealtimes, the time of the last meal, and sleep schedule. Using 

this approach, Cameron et al. were able to reduce the two-hour prediction error by 45% without meal 

detection and 18% with meal detection. The three-hour prediction error was reduced by 60% without 

meal detection and 30% with it. 

Cameron et al. extended these findings in a 2014 clinical trial.148 The multiple model 

probabilistic controller (MMPC) was used by ten patients in an inpatient study where they consumed 

five unannounced meals. For the six patients who used the final version of the controller, the mean 

CGM TIR was 78%. During the admission, there was only one controller-induced hypoglycemia. 

The MMPC was evaluated on ten patients in an inpatient clinical study where the mean TIR was 

142 mg/dL overall and 125 mg/dL overnight.149 A different version of the algorithm that was tested in a 

hotel-based study with 15 subjects achieved an overall mean BG of 152 mg/dL and a mean overnight BG 

of 139 mg/dL. 

An MS-MPC structure was chosen as the closed-loop system controller for this application 

because it allowed for insulin dosing decisions to be made based on the predictions of multiple models, 

each perturbed by a different disturbance signal. These disturbance signals represented the average 

disturbance experienced by the individual on days that were grouped. Elements of the cost function 

were determined from each prediction and were weighted based on an online estimation of the profile’s 

posterior probability.  
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Indicator Signals 

The first step in the process of generating the behavioral patterns was to calculate the historical 

disturbance signals for each day of historical data. The historical disturbance generation procedure was 

done in the same way that is described previously. Once the daily disturbance signals were generated, 

large disturbance events were detected using the RCKT+ detector described in Aim 2. The detection 

procedure was carried out to create a reconstructed record of the disturbance events experienced by 

the individual over the data collection period. Then binary signals, referred to as indicator signals in this 

text, were generated from the disturbance record. These indicator signals were zero at all times except 

for the period following disturbances. Figure 27 shows an example of the indicator signal. In this case, 

the disturbance was at time 𝑡, and the post-disturbance window is of length 𝑛𝑤𝑖𝑛𝑑𝑜𝑤.  

 

Figure 27 – An example of an indicator signal. t shows the time of the disturbance event, and the post-disturbance window is of 
length 𝑛𝑤𝑖𝑛𝑑𝑜𝑤. 

The indicator signals were generated solely for the clustering process used to create the 

disturbance profiles for each individual. It should be noted that these signals notably only include 

information regarding the timing of disturbances and not any information about the magnitude of these 

events. It was decided that it was more important from the perspective of the intended application, a 

fully closed-loop insulin dosing system, to aggregate information related to the timing rather than the 

magnitude of perturbations. This design choice was due to the goal of this approach being to anticipate 

disturbance events. Grouping signals that include the magnitude of the historical disturbances, like the 
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disturbance signature, 𝑑, may cause events that occurred at different times but had overlapping effects 

to be combined. How the length of the post-disturbance windows was determined will be discussed in a 

later section. 

Profile Generation 

Clustering Algorithm 

K-means clustering is one of the most widely used unsupervised learning methods. The 

algorithm originated in a paper authored by Hugo Steinhaus in 1956.150 The standard algorithm used 

today was proposed by Stuart Lloyd in 1957 as a part of his work at Bell Labs, although he did not 

publish this work until 1982.151 Edward W. Forgy published a similar method in 1965. Because both 

researchers were developing the idea simultaneously, it is sometimes referred to as the Lloyd-Forgy 

algorithm. The first know use of the phrase k-means was in a manuscript by James McQueen in 1967.152  

The number of clusters used, 𝑘, is predefined, and the algorithm begins by randomly picking 𝑘 

objects to be the initial cluster centroids. Iteratively pieces of data are assigned to a cluster based on 

which centroid is closest. Then, the cluster centroids are recomputed. This process is repeated until the 

cluster centers stabilize or the max number of iterations is reached.  

The k-means algorithm can be formally described as beginning by defining the set of 𝑛 

observations as, 𝑥1, … , 𝑥𝑛. Each of these observations is of length, 𝑙, and is made up of the different 

features for that observation. K-means then divides the observations into 𝑘 sets, 𝑆 =  𝑆1, … , 𝑆𝑛 by 

minimizing the within-cluster sum of squares. This objective is described as, 

arg min
𝑆

∑ ∑‖𝑥 − 𝜇𝑖‖

𝑥∈𝑆𝑖

𝑘

𝑖=1

, 

where 𝜇𝑖  is the centroid of 𝑆𝑖. 

 K-means was selected as the algorithm to group the data for numerous reasons. This choice was 

made because the concept behind the algorithm is relatively simple to understand, and it was a goal to 

have as much transparency integrated into the black box methods used as possible. K-means is one of 

the most widely employed unsupervised learning algorithms, and there is a multitude of built-in 

functions that were accessible and easy to adapt to the application at hand. The structure of the 

algorithm and the packages normally provided in prebuilt functions made it easy to interchange distance 

measures which was an advantage from the perspective of design flexibility. Although this choice was 
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debated, it was ultimately decided that having a centroid-based clustering algorithm was favorable to a 

density-based clustering algorithm because each piece of information (i.e., day of data) would be 

explicitly assigned to a cluster. To appropriately determine the closeness of the different signals, a 

distance measure was chosen. 

Distance Measure 

The Hamming distance is a measure to evaluate the difference in two binary vectors of 

information of the same length. Richard Hamming initially developed it in 1950.153 Often, the Hamming 

distance is used in information theory to determine the difference between two strings of the same size, 

but it can and has been used for many other applications. The Hamming distance, ℎ, is found using the 

following formula, 

ℎ =  ∑‖𝑎𝑖 − 𝑏𝑖‖

𝑛

𝑖=1

 

where 𝑎 and 𝑏 are binary vectors of length 𝑛. Because the indicator signals could only have two values, 

zero and one, this was chosen as the appropriate distance measure to use for the clustering procedure.  

A handful of other clustering approaches were explored before it was determined that the 

indicator signals and the Hamming distance should be used. Initially, the disturbance signals themselves 

were clustered. A few different distance measures were tested (e.g., dynamic time warping), and 

ultimately none of them produced results as good as using the indicator signals. The profiles were 

judged based on visual inspection of the disturbance profiles. It was intended to have profiles near zero 

at all points of the day except for the time following disturbances where they rose abruptly, roughly 

mimicking the shape of the glucose rate of appearance curve. The unideal nature of the profiles, 

generated using other distance measures and signals, results from the high dimensionality of the signals. 

Additionally, days with disturbance signals of similar average magnitude were being grouped using the 

other approaches. It was favorable for the intended application (i.e., use in an MS-MPC controller) that 

days, where disturbances coincided, were grouped instead of clustering days with similar average 

disturbance magnitudes.  

Cluster Evaluation Metric  

Clustering is an unsupervised learning task, meaning that the data being grouped is unlabeled. 

Therefore the proper classification for each datum is unknown. Additionally, the number of clusters that 

accurately represent the inherent classes of the data is also not known. Each person with T1D has a 
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different number of distinct patterns in the glycemic disturbances he or she experiences. These distinct 

patterns could result from many different factors that affect everyday life, such as work, sleep, school, 

hormones, physical activity, and eating habits. Because it was important for each individual’s data 

correctly, a clustering metric was needed to determine the appropriate number of groups, 𝑘, for each 

individual. 

Several metrics evaluate the intracluster and intercluster variability that are widely used and can 

be useful. Intracluster variability or cohesion is a measure of how different an object is from the other 

objects in its assigned cluster. Intercluster variability or separation represents how different an object is 

from other clusters. Ideally, the cohesion of clustered data would be minimized, and separation would 

be maximized. Metrics that evaluate clusterings, such as the silhouette score, Calinski-Harabasz index, 

and Davies-Bouldin, quantify the intracluster and intercluster variability of data grouped using 

unsupervised learning.154–156 

The silhouette score, 𝑠, is calculated using the formula, 

𝑠 =  
𝑏 − 𝑎

max (𝑎, 𝑏)
, 

where 𝑎 is the mean distance between some datum and all other points in the same class and 𝑏 is the 

mean distance between a sample and all other data points in the next nearest cluster. An advantage of 

the silhouette score is that it is bounded between negative and positive one making it easy to interpret. 

A score of negative one represents poorly clustered data, and a score of one indicates that the data is 

clustered very densely. A score near zero indicates that there are overlapping or uninformative clusters. 

A disadvantage of this metric is that the silhouette score is generally higher for convex clustering than 

density-based clustering methods (e.g., DBSCAN). An additional disadvantage is the high computation 

complexity of determining the silhouette score.  

The Calinski-Harabasz index can be found for a set of data, 𝐸, of size, 𝑛𝐸, which has been split 

into 𝑘 clusters by determining, 𝐶𝐻. 𝐶𝐻 is the ratio of the between and within-cluster dispersion and is 

defined as,  

𝐶𝐻 =  
𝑡𝑟𝑎𝑐𝑒(𝐵𝑘)

𝑡𝑟𝑎𝑐𝑒(𝑊𝑘)
𝑥

𝑛𝐸 − 𝑘

𝑘 − 1
 

where 𝑡𝑟𝑎𝑐𝑒(𝐵𝑘) is the trace of the between-group dispersion matrix and 𝑡𝑟𝑎𝑐𝑒(𝑊𝑘) is the trace of the 

within-cluster dispersion matrix defined by,  
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𝑊𝑘 = ∑ ∑ (𝑥 − 𝑐𝑞)(𝑥 − 𝑐𝑞)
𝑇

𝑥 𝑠𝑒𝑡 𝐶𝑞

𝑘

𝑞=1

, 

and 

𝐵𝑘 = ∑ 𝑛𝑞(𝑐𝑞 − 𝑐𝐸)(𝑐𝑞 − 𝑐𝐸)
𝑇
,

𝑘

𝑞=1

 

where 𝐶𝑞 is the set of points in a given cluster 𝑞. 𝑐𝑞 is the center of cluster 𝑞. 𝑐𝐸 is the center of 𝐸, and 

𝑛𝑞 is the number of points in cluster 𝑞. 

Advantages of the Calinski-Harbasz index are that the score is higher, although unbounded, 

when the clustering is more separate and cohesive, and the metric is fast to compute. This index tends 

to be higher for convex clusters than for density-based clustering methods like the silhouette score. The 

Calinski-Harabasz index also penalizes clustering with more groups. This aspect of the metric can be 

advantageous or not, depending on the application. 

The Davies-Bouldin index is the average similarity between a given cluster 𝐶𝑖 and its most similar 

cluster, 𝐶𝑗. It is found using the equations, 

𝐷𝐵 =  
1

𝑘
∑max

𝑖≠𝑗
𝑅𝑖,𝑗

𝑘

𝑖=1

, 

and 

𝑅𝑖,𝑗 =
𝑠𝑖 + 𝑠𝑗

𝑑𝑖,𝑗
, 

where 𝑘 is the number of clusters. 𝑠𝑖  and 𝑠𝑗 are the average distances between the center of the 

respective clusters, each object in that cluster and 𝑑𝑖,𝑗 is the distance between the center of clusters 𝑖 

and 𝑗. 

 The advantage of the Davis-Bouldin index is that it is relatively easy to compute. A disadvantage 

is that this metric can only be computed using Euclidean distance. Similar to the other metrics discussed, 

the Davis-Bouldin index is also lower for density-based methods. This metric also maximizes cluster 

cohesion, which may be appropriate for some applications, but not all.  
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 An experiment was conducted to determine how the different metrics changed the number of 

clusters chosen. The data used for this experiment was collected during a six-month-long at-home 

clinical trial (NCT03563313).133 The only inclusion criteria were a diagnosis of T1D, using insulin therapy 

for at least one year, and being over 14 years old. The 124 participants used a hybrid closed-loop 

automatic insulin dosing device during this time and otherwise behaved as they usually would. The 

demographics for this study are shown in Table 9. 

Table 9 – A description of the demographics from the large dataset used collected during the Diabetes Closed-Loop Protocol 3 
pivotal trial. 

Characteristic Mean ± SD 

Age (years) 33.09  ±  16.14 

Weight (kg) 76.61 ± 16.44 

Height (cm) 172.42 ± 8.92 

TDI (u) 45.90 ± 24.36 

Baseline HbA1c (%) 7.44 ± 0.96 

 

In this experiment, each patient from a large dataset had their data clustered into 𝑘 = 1,… ,10 

clusters. The number of clusters chosen for that subject was based on what value of 𝑘 produced the 

best value. The distribution of 𝑘 based on which metric was used is shown in Figure 28. 
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Figure 28 – The histogram of the number of clusters selected for the sample population based on the clustering metric chosen. 

The metrics produced different distributions of the number of clusters selected for each subject. 

Because the Calinski-Harabasz index penalizes the number of clusters used to separate the data, most 

subject’s data was split into two, three, or four groups. The Davies-Bouldin index strongly penalizes 

intracluster variability, and thus the subjects’ data were grouped into more clusters. The silhouette 

score produced a more distributed selection of clusters across the subjects. 

Ultimately, it was decided that the Calinski-Harbasz index was the most appropriate metric for 

this application. This decision was a subjective design choice but was determined by the criterion that 

the disturbance profiles should be easy to implement in a mobile platform. For this purpose, it was 

easier to have fewer clusters than more.  

Postprandial Length 

After deciding that the indicator signals were to be used for the clustering process, the amount 

of time used for the post-disturbance window was determined. Windows of one, two, and three hours 

were evaluated. An experiment was conducted to select the proper window length where the subjects 

from a large-scale clinical trial had their data reconstructed and indicator signals generated using the 

different window lengths for each of the days in the six-month data collection period. These signals 
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were then clustered, and the Calinski-Harabasz score was determined for each subjects’ groupings. 

Higher Calinski-Harabasz scores indicate that the clustering more accurately represents the variability 

inherent to the dataset than lower values.  

 

Figure 29 – The distribution of the Calinski-Harabasz scores for the dataset using the different disturbance windows. 

In this distribution, it can be seen that there is a positive relationship between the length of the 

disturbance window and the Calinski-Harabasz scores. This is explained because if the disturbance 

windows are longer, there will be many more similarities between signals grouped together, even if the 

disturbance events happened at different times on those days. It was determined that a two-hour 

window would most appropriately capture the events while separating disturbances that happen at 

disparate times.  

Generation of Disturbance Profiles 

Once major glycemic disturbances were detected, daily indicator signals were defined to group 

similar days into clusters (equal to one in the two hours following disturbance detections and zero 

otherwise). Using k-means with the hamming distance measure, these signals were clustered with 𝑘 =

 1, … ,5.151,153 The number of clusters, 𝑘, for each individual was based on which produced the highest 

Calinski-Harabasz score, maximizing cluster separation and cohesion. Once days of data were grouped, 
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the profile trace, 𝜔, for each cluster, 𝑖, at each five-minute interval of the day, 𝑗, was determined from 

the average of each day in the cluster’s disturbance signal in that five-minute interval, 𝑑𝑚,𝑗.  

𝜔𝑖,𝑗 =
1

𝑛𝑑𝑎𝑦𝑠,𝑖
∙ ∑ 𝑑𝑚,𝑗

𝑛𝑑𝑎𝑦𝑠,𝑖

𝑚=1

𝑓𝑜𝑟 𝑖 = 1,… , 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑗 = 1,… ,288 

with  𝑛𝑑𝑎𝑦𝑠,𝑖 as the number of days grouped into cluster 𝑖. These profiles were then smoothed using a 

centered moving average over an hour. This represented the average disturbance experienced by that 

individual on the days in that cluster at each point of the day. The profiles were saturated at zero so that 

only positive disturbances were considered. 

The values were then multiplied by a weighting function shown in Figure 30 to deemphasize 

profiles overnight, allowing for the profile probabilities to return to their prior value at the beginning of 

each day.  

 

Figure 30 – The activation function for anticipatory disturbance profiles. 

The prior probability of each cluster, 𝜋𝑝𝑟𝑖𝑜𝑟,𝑖, was found by taking the proportion of days of data 

that were assigned to that given cluster. 

𝜋𝑝𝑟𝑖𝑜𝑟,𝑖 =
𝑛𝑑𝑎𝑦𝑠,𝑖

𝑛𝑑𝑎𝑦𝑠,𝑡𝑜𝑡𝑎𝑙
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where 𝑛𝑑𝑎𝑦𝑠,𝑖  was the number of days of data in cluster 𝑖 and 𝑛𝑑𝑎𝑦𝑠,𝑡𝑜𝑡𝑎𝑙 represented the total number 

of days considered. These prior probability values serve as a starting point so that the initial weight of 

each profile in the MS-MPC is related to historical data. 

Figure 31 shows an example of one subject’s profiles. Here it can be seen that this individual’s 

disturbance profiles are elevated following typical times for breakfast (6 a.m. to 8 a.m.), lunch (12 p.m. 

to 2 p.m.), and dinner (6 p.m. to 8 p.m.). The associated prior probabilities for the profiles indicate that 

this person eats earlier on 31% of days, and on 46% of the days of data used, the subject ate later. On 

23% of days, he or she had less of a discernable pattern of eating determined from the detected 

disturbances. 

 

Figure 31 - A representative subject's disturbance profiles. The prior probabilities for each profile are in the legend. 

Online Update of Profile Probabilities 

In the MS-MPC cost function, the probability value of each profile, 𝜋𝑖, was updated in real-time 

based on the current disturbance estimate, 𝑑̂, which was found using the same technique that was 

applied to the retrospective data. This probability was updated in the system using the current value for 

the estimated disturbance using a methodology defined by Patek.157 This process allowed each profile’s 

probabilities to be shifted dynamically following the disturbance currently being experienced by the 

user. By updating the probability of each profile based on current estimates of the disturbance being 

experienced by the user of the system, the weight of each model’s predictions could be modulated to 

more accurately reflect what was currently occurring and what disturbances should be anticipated. The 
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online update process better allowed the controller to respond in both a reactive and anticipatory 

manner. 

A series of calculations were computed at each five-minute interval to update the profile 

posterior probabilities. The matrices used to update the probability values were defined or initialized to 

begin the process. These matrices were, 

𝐴𝑢𝑝𝑑𝑎𝑡𝑒 = [
1 5
0 1

] , 𝐶𝑢𝑝𝑑𝑎𝑡𝑒 = [1 0],  𝐺𝑢𝑝𝑑𝑎𝑡𝑒 = [
0
0
] , 𝑎𝑛𝑑 𝑃𝑢𝑝𝑑𝑎𝑡𝑒 = [

1000 0
0 1000

]. 

The measurement noise, 𝑉, for the disturbance estimation was determined to be 17.3061 

mg/dL/min based on the variance of the estimated disturbance signal when there are no meals in the 

large clinical dataset described above, and 𝑊 was heuristically set to 1000. At each iteration, 𝑡, the 

posterior probability of each profile, 𝜋𝑖, was updated based on current measurements of the 

disturbance, 𝑑̂, and the estimated variance. The process of updating the matrix was calculated as 

follows, 

𝑃̆ = 𝐴𝑢𝑝𝑑𝑎𝑡𝑒 ∙ 𝑃𝑢𝑝𝑑𝑎𝑡𝑒 ∙ 𝐴𝑢𝑝𝑑𝑎𝑡𝑒
𝑇 +  𝐺𝑢𝑝𝑑𝑎𝑡𝑒 ∙ 𝑊 ∙ 𝐺𝑢𝑝𝑑𝑎𝑡𝑒

𝑇 , 

𝑆 = 𝐶𝑢𝑝𝑑𝑎𝑡𝑒 ∙ 𝑃̆ ∙ 𝐶𝑢𝑝𝑑𝑎𝑡𝑒
𝑇 + 𝑉, 

𝐿 = 𝑃̆𝑣𝐶𝑢𝑝𝑑𝑎𝑡𝑒
𝑇 ∙ 𝑆−1, 

𝑃𝑢𝑝𝑑𝑎𝑡𝑒 = (𝐼 − 𝐿 ∙ 𝐶𝑢𝑝𝑑𝑎𝑡𝑒) ∙ 𝑃̆. 

Once these matrices were updated, the state estimations, 𝑥𝑖, and probability values, 𝜋𝑖, for each profile 

could be computed. The state estimate, 𝑥𝑖(𝑡), was found using, 

𝑥𝑖(𝑡) = 𝑑𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑖(𝑡) + 𝐿 ∙ (𝑑̂(𝑡) − 𝐶 ∙ 𝑑𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑖(𝑡)), 

where 𝑑𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑖  was the value of profile, 𝑖, at the current five-minute interval of the day, 𝑡. Then the 

measurement estimate for the current profile, 𝑦̂𝑖(𝑡), was calculated as, 

𝑦̂𝑖(𝑡) = 𝐶 ∙ 𝑥𝑖(𝑡). 

The estimated SD for a given profile, 𝜎𝑖, was then determined using, 

𝜎𝑖(𝑡) = √𝐶 ∙ 𝑃̆ ∙ 𝐶𝑇 + 𝑉. 
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The posterior probability value of each profile, 𝜋𝑖(𝑡), was then found using an application of Bayes’ 

Rule. 

𝜋𝑖(𝑡) =
𝑁(𝑑̂(𝑡); 𝑦̂𝑖(𝑡), 𝜎𝑖(𝑡))𝜋𝑖(𝑡 − 1)

∑ 𝑁(𝑑̂(𝑡); 𝑦̂𝑎(𝑡), 𝜎𝑎(𝑡))𝜋𝑎(𝑡 − 1)
𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠

𝑎=1

 

where 𝑁(𝑑̂(𝑡); 𝑦̂𝑖(𝑡), 𝜎𝑖(𝑡)) was the conditional density of the current estimate, 𝑦̂𝑖.  

 

Figure 32 – An example of how the posterior probability values changed for a single day. The top subplot shows the estimated 
disturbance in yellow compared to the disturbance profiles in orange and blue. The bottom subplot shows the posterior 

probability of each profile in the respective colors. 

Figure 32 shows an example of how the posterior probability values for the profiles changed 

over the course of a representative day. In the top subplot, the yellow trace represents a series of 

disturbance estimates that would be determined online in actual use. The orange and blue traces are 

the values of the disturbance profiles for this particular subject. The bottom subplot shows the posterior 

probability values of each profile. The posterior probabilities for each are shown in the same color as the 

profiles above.  

In this example, it can be seen that overnight the profile probabilities remain at their prior value 

because each profile has the same value, zero. The probability of the blue profile begins to supplant the 

orange profile’s probability value around mid-morning. Then as the day goes on and the estimated 

disturbance begins to match the blue profile more closely, the probability for the blue profile increases. 
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This example was created by clustering the indicator signals for a subject and then picking a 

day’s disturbance signal at random. Because this was done after the profiles were generated, it was 

known what profile this particular day should have been associated with. In this case, the correct profile 

was the blue profile, which ultimately has a higher probability. The average probability value for the 

blue profile during this day was 62.5%. 

Overnight Probability Adjustment 

An overnight mode for the online estimation of the disturbance profile probabilities reset the 

posterior probability back to the prior value. The purpose of overnight mode was to adjust the posterior 

probabilities of the profiles based on the disturbance estimates collected only during the current day 

and were not influenced by previous estimates. From 11 p.m. to 1 a.m., the probabilities devolved 

linearly from the value before the beginning of night mode, 𝜋𝑛𝑖𝑔ℎ𝑡, to the prior. A line equation was 

calculated from the current probability to the prior for each of the profiles over the subsequent 24 

intervals (i.e., two hours). 

𝑙𝑑,𝑖(𝑛) =
𝜋𝑝𝑟𝑖𝑜𝑟,𝑖 − 𝜋𝑛𝑖𝑔ℎ𝑡

24
∙ 𝑛 + 𝜋𝑛𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑛 = 1,… ,24 

For the, 𝑛, intervals after the beginning of night mode, 

𝜋𝑖(𝑡) = 𝑙𝑑,𝑖(𝑛). 

This adjustment forced the posterior probabilities of each profile, 𝜋𝑖, to return to the prior value, 

𝜋𝑝𝑟𝑖𝑜𝑟,𝑝, two hours after the beginning of overnight mode. 
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Figure 33 - An example of how the overnight mode resets the profile probabilities back to their prior value. The top subplot 
shows the disturbance estimate in purple and the profiles in orange, yellow, and blue. The bottom subplot shows the profile 

posterior probabilities in the respective colors. 

Figure 33 shows an example of how the overnight mode works. In this figure, the top subplot 

shows the disturbance profiles in orange, yellow, and blue and the estimated disturbance in purple over 

two days. The bottom subplot shows the posterior probability values for the profiles in the respective 

colors. 

Here it can be seen that between 11 p.m. and 1 a.m., each of the profiles’ probability values 

goes from what it was to the prior value of each. This allows for the posterior probabilities to reset 

overnight instead of changing based on information that may not be relevant for the current day. In this 

example, the disturbance signal was rightfully assigned to the yellow cluster in the first 24 hours and 

then to the blue profile in the second 24 hours.  

Controller Tuning and Detuning 

It was important for the design of the control system that the disturbance currently being 

experienced by the user was prioritized over the anticipatory profiles. The controller tuning and 

detuning procedure is fully described in Corbett et al.138 The goal of this framework was to anticipate 

future perturbations and respond to what is occurring in the present. All the profile probabilities were 
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scaled using the probability of the current disturbance estimate, 𝜌0 to allow for the control system to 

react to disturbances in real-time. This value was calculated by, 

𝛾1 =
ln 81

𝑑ℎ𝑚𝑎𝑥−𝑑ℎ𝑚𝑖𝑛
, 𝛾2 =

ln81

𝜋𝑚𝑎𝑥−𝜋𝑚𝑖𝑛
, 

𝑎1 =
1

8
(𝑒−𝛾1∙𝑑ℎ𝑚𝑖𝑛 − 9𝑒−𝛾1∙𝑑ℎ𝑚𝑎𝑥), 

𝑎2 =
1

8
(𝑒−𝛾2∙𝜋𝑚𝑖𝑛 − 9𝑒−𝛾2∙𝜋𝑚𝑎𝑥), 

𝜌0(t) = min (
𝑎1

𝑎1+𝑒−𝛾1∙𝑑̂(𝑡)
+

𝑎2

𝑎2+𝑒−𝛾2∙𝜋𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) , 0.99), 

where, 

[𝑑ℎ𝑚𝑖𝑛, 𝑑ℎ𝑚𝑎𝑥]  ⊂ [0, 10], [𝜋𝑚𝑖𝑛, 𝜋𝑚𝑎𝑥]  ⊂ [0, 10], 

 

𝛾1 =
log(81)

𝑑ℎ𝑚𝑎𝑥 −  𝑑ℎ𝑚𝑖𝑛
, 𝛾2 =

log(81)

𝜋𝑚𝑎𝑥 − 𝜋𝑚𝑖𝑛
, 

 

The adjusted probabilities, 𝜋𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑖, were found by multiplying the profile probabilities by 1 − 𝜌0. 

𝜋𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑖(𝑡) = 𝜋𝑖(𝑡)  ∙ (1 − 𝜌0(t)) 

Simulation Experiment 

 Both the BPS described in Aim Two and the disturbance profiles representing patterns in 

behavior were designed to be implemented in a fully closed-loop automatic insulin dosing system using 

an MS-MPC framework. An experiment was designed using both actual data and the UVA/Padova T1D 

simulator to determine the effect of each separately and in combination with one another. The design 

of this experiment and its results are described in the following sections. 

Experimental Setup 

Data 

Data collected during the unsupervised at-home portion of a large-scale pivotal trial conducted 

at UVA (NCT03563313) was used to evaluate this method.133 This data is from 124 adult and adolescent 

participants with T1D over six months, during which they used a hybrid closed-loop automatic insulin 
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dosing system with meal announcements. 100 clinical subjects’ data were randomly selected and paired 

to an in silico subject in the UVA/Padova T1D simulator platform. The first five months of the collected 

data from the real subjects were used to create meal profile clusters. These profiles were multiplied by 

five to evoke a noticeable difference between treatments. Seven days with at least one recorded meal 

were randomly selected from the remaining month of collected data. This week of meal records was 

scaled by the body weight of a matched subject in the simulation cohort and then used as the meal 

protocol of the simulation experiment. The simulation setup included intraday insulin sensitivity 

variability and the real eating records allowed for more realistic behaviors in the simulation which 

represented actual patterns of eating behavior. 

Control Strategy 

This experimental configuration was then tested with the four configurations of the control 

system: MPC, MS-MPC, MPC+BPS, MS-MPC+BPS. The modular control strategy is depicted in Figure 34 

below. These four configurations included different elements of what was described in the previous 

sections related to the BPS and the MS-MPC using the disturbance profiles. The MPC used was a 

standard well-tuned controller. This controller setup also included modules native to the University of 

Virginia mobile platform used for clinical trials, DiAs. These modules included a safety system, an 

autocorrection system, and a state estimation system. 
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Figure 34 – A schematic of the control strategies tested which are the meal naive approach (MPC in green) to the meal 
anticipating with priming boluses (MS-MPC+BPS in a combination of green, yellow, and orange). BG readings are shown as 

𝑦(𝑘), disturbance profile values as 𝜔𝑛, profile posterior probabilities as 𝜋𝑛, online disturbance estimate as 𝑅𝑎̂, and 𝑢 as the 
commanded insulin injections. 

Treatment Comparison 

Treatments were compared overall and during the four hours after meals using the relevant 

metrics described by Maahs et al.’s criteria for evaluating automatic insulin dosing systems.158 Statistical 

significance was not reported because the assumptions of such tests are not particularly informative in a 

simulation environment.159 The simulation experiment results suggest that using the anticipatory 

profiles in the MS-MPC and the BPS reduced BG values overall.  

On average, when delivered, the BPS boluses were 27.64 ± 29.70 minutes after the actual 

mealtime. 4% of the patients' TDI was delivered after 64.11% of meals, 7% was delivered after 36.72%, 

and 10% was delivered after 22.18%. The timing of BPS doses was similar in this experiment to when it 

was evaluated in the clinical experiment, with boluses being delivered on average approximately 30 

minutes after the meal began. Unlike the clinical experiment, roughly 35% of meals did not have an 
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automatic bolus in the two hours afterward. This may be attributed to the dynamics of the simulator 

and how the in silico subjects responded to unannounced ingested carbohydrates. 

The primary outcome, the time when BG was between 70 to 180 mg/dL (i.e., time in range) over 

the course of the whole experiment, improved from 72 ± 17.7% with MPC only to 73.4 ± 17.4% with 

anticipation and 75.5 ± 17.1% with the BPS. The maximum effect was seen with the combination of 

priming bolus and anticipation with time in range reaching 77.2 ± 16.7%, or 5.2% greater than MPC 

alone (see Figure 35). 

 

Figure 35 – The time in range values for each prandial control module: While MPC achieves time in range above the consensus 
target (i.e., 70%) shown with the red dashed line, the disturbance patterns, in yellow, and the BPS, in orange, both improve 

glycemic control, the effect is further improved when combined which is shown in striped yellow and orange. 

The mean BG for the MS-MPC+BPS was the lowest (155.14 ± 31.88 mg/dL). The other controller 

configurations had higher mean BG values of 165.49 ± 33.49, 161.61 ± 33.60, and 159.65 ± 33.20 mg/dL 

for the MPC, MS-MPC, and MPC+BPS, respectively. This trend in lower BG values was represented 

similarly in the time below ranges (i.e., <50, <60, and <70 mg/dL), time in tight range (i.e., 70 to 140 

mg/dL), and time above ranges (i.e., >180, >250, and >300 mg/dL). The BPS and anticipatory profiles also 

reduced the SD of BG values and caused the system to deliver more insulin overall. The overall results of 

the experiment are listed in Table 10. 
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Table 10 – The artificial pancreas evaluation metric mean ± standard deviation values from simulation experiments overall. 

Controller MPC MS-MPC MPC+BPS MS-MPC+BPS 

<50 mg/dL (%) 0.03 ± 0.21 0.07 ± 0.40 0.02 ± 0.15 0.14 ± 0.54 

<60 mg/dL (%) 0.06 ± 0.41 0.23 ± 0.85 0.10 ± 0.45 0.33 ± 1.01 

<70 mg/dL (%) 0.14 ± 0.64 0.47 ± 1.37 0.24 ± 0.81 0.65 ± 1.58 

70-140 mg/dL (%) 49.16 ± 17.94 50.35 ± 19.25 51.92 ± 17.61 53.81 ± 18.89 

70-180 mg/dL (%) 72.02 ± 17.67 73.37 ± 17.38 75.50 ± 17.07 77.17 ± 16.73 

>180 mg/dL (%) 27.85 ± 17.47 26.16 ± 17.25 24.27 ± 16.84 22.18 ±16.45 

>250 mg/dL (%) 9.92 ± 11.51 9.31 ± 11.25 7.66 ± 10.71 7.02 ± 10.28 

>300 mg/dL (%) 4.81 ± 8.29 4.52 ± 8.03 3.74 ± 7.86 3.43 ± 7.36 

Mean (mg/dL) 165.49 ± 33.49 161.61 ± 33.60 159.65 ± 33.20 155.14 ± 31.88 

Standard Deviation (mg/dL) 53.90 ± 33.49 53.62 ± 32.72 49.51 ± 34.32 48.91 ± 32.82 

CV (%) 30.46 ± 12.09 31.12 ± 11.89 28.85 ± 12.01 29.44 ± 11.88 

Total Daily insulin (u) 36.72 ± 17.33 37.65 ± 17.57 38.09 ± 18.04 39.20 ± 18.34 

 

In the four hours following meals, the effect of the anticipatory profiles and BPS was more 

evident. During this period, the time in range was 60.73 ± 25.39% for the MS-MPC+BPS. The mean time 

between 70 to 180 mg/dL was 3.78%, 5.9%, and 8.94% less for the MPC+BPS, MS-MPC, and MPC 

configurations. Postprandial mean BG was also 4.51 to 10.35 mg/dL lower for the MS-MPC+BPS than for 

the other controller setups. The amount of time where BG was less than 70 mg/dL for all of the 

controller setups was less than 1% during this timeframe. Table 11 lists the results during the 

postprandial period. 
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Table 11 – The artificial pancreas evaluation metric means and standard deviation values from simulation experiments during 
the four hours after meals. 

Controller MPC MS-MPC MPC+BPS MS-MPC+BPS 

<50 mg/dL (%) 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.01 0.03 ± 0.15 

<60 mg/dL (%) 0.01 ± 0.08 0.03 ± 0.16 0.01 ± 0.06 0.08 ± 0.33 

<70 mg/dL (%) 0.03 ± 0.17 0.08 ± 0.33 0.06 ± 0.32 0.17 ± 0.53 

70-140 mg/dL (%) 23.02 ± 18.78 27.79 ± 22.09 25.67 ± 18.92 31.24 ± 22.28 

70-180 mg/dL (%) 51.79 ± 26.12 54.83 ± 26.00 56.95 ± 25.83 60.73 ± 25.39 

>180 mg/dL (%) 48.18 ± 26.09 45.09 ± 25.96 42.99 ± 25.81 39.10 ± 25.32 

>250 mg/dL (%) 17.87 ± 19.85 16.61 ± 19.28 13.77 ± 18.46 12.46 ± 17.91 

>300 mg/dL (%) 8.68 ± 14.73 8.13 ± 14.34 6.69 ± 13.77 6.19 ± 13.16 

Mean (mg/dL) 197.20 ± 54.44 191.11 ± 54.17 188.59 ± 54.36 181.72 ± 52.27 

Standard Deviation (mg/dL) 53.87 ± 30.73 54.59 ± 30.37 49.67 ± 32.03 50.00 ± 30.96 

CV (%) 25.69 ± 9.09 26.97 ± 8.95 24.61 ± 8.96 25.83 ± 8.76 

Insulin Delivered (u) 3.52 ± 1.92 3.61 ± 1.98 3.67 ± 2.07 3.79 ± 2.13 

 

Discussion 

This simulation, which encompasses realistic eating behaviors in T1D, indicates that mean BG 

values were lowest for the MS-MPC+BPS, followed by the MPC+BPS, the MS-MPC, and the MPC overall 

and after eating. This relationship was maintained in terms of the percent time where BG was in the 

euglycemic ranges (i.e., 70 to 140 mg/dL and 70 to 180 mg/dL) and the hypoglycemic ranges (i.e., <50, 

<60, and <70 mg/dL). It was reversed in the amount of time where BG was in the hyperglycemic ranges 

(i.e., >180, >250, and >300 mg/dL). This relationship shows that both the anticipatory profiles and the 

BPS had the effect of lowering BG values over the course of the study. Overall, the MPC+BPS had a 5.84 

mg/dL lower mean BG and a percent time where BG was between 70 and 180 mg/dL that was 3.38% 

higher than the MPC. The MS-MPC case resulted in a 1.35% greater amount of time where BG was 

between 70 and 180 mg/dL compared to the MPC, where no disturbance profiles were used. The 

MPC+BPS and MS-MPC+BPS cases had a difference of 1.67% in the amount of time where BG was 70 to 

180 mg/dL. This difference indicates a synergetic interaction between BPS and the anticipatory 

disturbance profiles. 
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Across the four configurations, there was no meaningful change in the amount of hypoglycemia 

overall. Comparing the MPC and MS-MPC+BPS shows that the modules may be responsible for 

increasing the time when the user was in the hypoglycemic range by less than ten minutes while 

increasing the time in euglycemia by 5% overall, which is clinically relevant.  

The most insulin was used when both the BPS and profiles were active (i.e., MS-MPC+BPS). This 

amount was less when only BPS was used (i.e., MPC+BPS), then even less when just the profiles were 

used (i.e., MS-MPC), and the least when the standard MPC. Interestingly, the MS-MPC case had the 

highest average CV, followed by MPC, MS-MPC+BPS, and MPC+BPS.  

The postprandial time when BG was between 70 to 180 mg/dL was increased by nearly 10% 

when the anticipatory profiles and BPS were used compared to the standard MPC. Additionally, there 

was an increase in the 70 to 140 mg/dL range, but this amount was slightly smaller. This difference 

resulted from a reduction in the amount of time in hyperglycemia (i.e., >180 mg/dL) and a reduction in 

the mean BG of roughly 16 mg/dL. Combining the MS-MPC structure and BPS had its greatest effect 

during the postprandial period by lowering BG values without increasing hypoglycemia.  

A limitation of this work is that this is a simulation study and does not include some variability 

inherent in free-living conditions (e.g., stress, hormonal changes). An additional and significant limitation 

is that there was no physical activity which could cause both a risk for hypoglycemia and hyperglycemia 

in the simulation. Because the system does not know future actions like a person might, physical activity 

could be dangerous if increased automatic insulin delivery preceded it. This issue should be addressed in 

future versions by incorporating our past methodologies that consider inputs related to negative 

disturbances in the prediction model. Other improvements could involve using activity sensors to detect 

eating and exercise events. Model personalization could also improve the generation of the disturbance 

estimation procedure. 

This experiment showed that in a simulation environment, both the BPS and the disturbance 

profiles positively impacted the amount of time that BG values are in the euglycemic range while also 

decreasing hyperglycemia. The modules were the most impactful during the four hours following eating. 

Both modules improved the amount of time when BG was in the euglycemic range and did even better 

in combination. The reduction in mean BG values attributed to the BPS and disturbances profiles 

increased hypoglycemia, but only to a degree that is not clinically meaningful. The BPS and disturbance 

profiles seem to impact the variability of glucose, although the cause of this is unclear. Future work 
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should determine how this system is impacted by situations that may create risk for hypoglycemia and 

hyperglycemia.   

Determining the Signature Factor 

 Once it was decided that the disturbance profiles combined with the BPS and MS-MPC control 

system effectively lowered BG values overall and especially following meals, another design 

consideration had to be determined. The magnitude of the profiles was primarily a result of the filtering 

procedure and how the clusters were formed and was not wholly representative of the values in the 

daily disturbance signatures.  

The magnitude of the disturbances was largely dampened by the filtering and averaging. The 

filtering lowered the magnitude by eliminating all of the increases or decreases related to low-frequency 

changes in the disturbance. Figure 36 shows an example of the disturbance profiles for a representative 

subject generated using the unfiltered disturbance signatures, shown in the top plot, and the filtered 

signatures are shown in the bottom subplot. 

 

Figure 36 - A comparison between the profiles generated with the unfiltered and filtered disturbance signals. 

It can be seen that in this example, the unfiltered signatures produce profiles that have a 

magnitude that is at the peaks four times greater than the profiles made with the filtered signals. 

Additionally, there is a slow increase of the profile values over the course of the day when the profiles 
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were generated using the unfiltered signals. The disturbance profiles created with the filtered signals 

have no noticeable increase over the course of the day and have much more distinct peaks that are 

roughly at the same time as less distinct bumps in the unfiltered profiles. The process of finding the 

profile trace also decreased the value of the signals in comparison to what the estimates would be 

because the average was found across the value of each day’s signals in the cluster.  

 Because the signature magnitude was a concern, it was decided that the profiles should be 

modified by multiplying them by a factor to produce signatures that were of a similar value to the daily 

disturbance estimate signatures. To determine the “signature factor,” the experiment described in the 

previous section was repeated, this time with the profiles multiplied by a factor. Once the new profiles 

were generated, the week of simulation data from the original experiment was evaluated using the MS-

MPC+BPS setup. Table 12 shows the results for the experiment using signature factors of one, three, 

five, ten, and twenty on the profiles generated using the filtered disturbance signals. Table 13 shows the 

results for the profiles generated using the unfiltered signals multiplied by one, three, and five. All of the 

results for time in range are presented as a percent. Mean, SD, coefficient of variation (CV) are in mg/dL, 

and TDI is in units. 

Table 12 - The artificial pancreas evaluation metric mean ± standard deviation values from simulation experiments redone with 
different signature factors applied to the filtered signals overall. 

Factor 1 3 5 10 20 

<50 0.04 ± 0.23 0.05 ± 0.23 0.06 ± 0.25 0.14 ± 0.46 0.3 ± 0.92 

<60 0.12 ± 0.44 0.13 ± 0.45 0.16 ± 0.5 0.31 ± 0.8 0.62 ± 0.62 

<70 0.25 ± 0.74 0.27 ± 0.76 0.33 ± 0.89 0.65 ± 1.42 1.24 ± 2.14 

70-140 49.13 ± 15.52 50.31 ± 15.88 51.37 ± 16.06 53.1 ± 16.54 55.26 ± 55.26 

70-180 76.28 ± 15.75 76.88 ± 15.69 77.36 ± 15.66 78.04 ± 15.72 78.63 ± 15.84 

>180 23.47 ± 15.4 22.86 ± 15.31 22.31 ± 15.22 21.31 ± 15.12 20.13 ± 14.99 

>250 6.97 ± 9.78 6.85 ± 9.7 6.73 ± 9.62 6.47 ± 9.39 6.17 ± 9.21 

>300 3.19 ± 6.94 3.17 ± 6.88 3.11 ± 6.83 3 ± 6.67 2.9 ± 6.56 

Mean 159.79 ± 27.13 158.59 ± 27.02 157.41 ± 26.96 154.97 ± 26.85 151.69 ± 26.94 

SD 46.65 ± 31.24 46.6 ± 31.28 46.59 ± 31.26 46.73 ± 31.09 47.23 ± 30.32 

CV 27.4 ± 12.12 27.56 ± 12.19 27.77 ± 12.25 28.32 ± 12.33 29.32 ± 12.23 

TDI 37.47 ± 18.05 37.84 ± 18.17 38.19 ± 18.28 38.91 ± 18.52 39.92 ± 18.86 
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Table 13 - The artificial pancreas evaluation metric mean ± standard deviation values from simulation experiments redone with 
different signature factors applied to the unfiltered signals overall. 

Factor 1 3 5 

<50 0.1 ± 0.41 0.55 ± 1.48 0.89 ± 2 

<60 0.22 ± 0.22 1.05 ± 1.05 1.68 ± 1.68 

<70 0.45 ± 1.18 1.84 ± 2.97 2.85 ± 3.61 

70-140 53.36 ± 53.36 56.99 ± 56.99 57.98 ± 57.98 

70-180 78.07 ± 15.73 79.02 ± 15.72 78.93 ± 15.53 

>180 21.48 ± 15.21 19.14 ± 14.94 18.21 ± 14.81 

>250 6.42 ± 9.47 5.81 ± 9 5.61 ± 8.93 

>300 3.02 ± 6.67 2.77 ± 6.36 2.71 ± 6.38 

Mean 154.95 ± 27.15 148.23 ± 27.87 145.13 ± 28.65 

SD 46.64 ± 30.88 47.66 ± 29.82 48.57 ± 29.83 

CV 28.25 ± 12.14 30.35 ± 11.84 31.64 ± 11.7 

TDI 38.84 ± 18.41 40.88 ± 19.05 41.93 ± 19.31 

 

 As the signature factor increased, there was an increase in insulin injected, variability in terms of 

SD and CV, the amount of percent time spent in range (i.e., 70 to 140 mg/dL and 70 to 180 mg/dL), and 

the percent time where the participants were hypoglycemic (i.e., <50, <60, and <70 mg/dL) for both the 

filtered and unfiltered profiles, overall. The amount of hypoglycemia that occurred was of primary 

concern. A signature factor of twenty for the filtered profiles resulted in a smaller amount of time where 

BG was less than 70 mg/dL than a factor of five for the unfiltered profiles, which was used in the original 

experiment. For the unfiltered profiles, it seems that a factor of three produced the best results in terms 

of the tradeoff between time in euglycemia and time in hypoglycemia.  
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Table 14 - The artificial pancreas evaluation metric means and standard deviation values from simulation experiments redone 
with different signature factors applied to the filtered signals during the four hours after meals. 

Factor 1 3 5 10 20 

<50 0 ± 0.03 0 ± 0.03 0.01 ± 0.05 0.02 ± 0.08 0.05 ± 0.2 

<60 0.01 ± 0.01 0.02 ± 0.02 0.02 ± 0.02 0.05 ± 0.05 0.15 ± 0.15 

<70 0.05 ± 0.24 0.06 ± 0.24 0.07 ± 0.27 0.16 ± 0.49 0.42 ± 0.93 

70-140 22.72 ± 22.72 24.25 ± 24.25 25.76 ± 25.76 28.43 ± 28.43 32.04 ± 32.04 

70-180 57.12 ± 24.43 58.29 ± 24.36 59.32 ± 24.28 61.24 ± 24.08 63.29 ± 24.07 

>180 42.83 ± 24.39 41.66 ± 24.32 40.61 ± 24.24 38.6 ± 23.99 36.29 ± 23.95 

>250 12.66 ± 17.18 12.43 ± 17.08 12.18 ± 16.96 11.69 ± 16.56 11.13 ± 16.29 

>300 5.88 ± 12.66 5.84 ± 12.58 5.72 ± 12.5 5.55 ± 12.25 5.37 ± 12.12 

Mean 187.62 ± 46.45 186.05 ± 46.34 184.5 ± 46.28 181.42 ± 45.94 177.53 ± 45.85 

SD 47.27 ± 29.29 47.4 ± 29.47 47.55 ± 29.49 47.98 ± 29.64 48.61 ± 28.73 

CV 23.63 ± 8.92 23.89 ± 8.96 24.17 ± 9 24.82 ± 9.09 25.82 ± 9.02 

TDI 3.55 ± 2.01 3.61 ± 2.03 3.66 ± 2.05 3.77 ± 2.09 3.91 ± 2.17 
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Table 15 - The artificial pancreas evaluation metric means and standard deviation values from simulation experiments redone 
with different signature factors applied to the unfiltered signals during the four hours after meals. 

Factor 1 3 5 

<50 0.02 ± 0.1 0.13 ± 0.51 0.26 ± 0.79 

<60 0.04 ± 0.04 0.33 ± 0.33 0.7 ± 0.7 

<70 0.13 ± 0.45 0.77 ± 1.64 1.34 ± 2.22 

70-140 28.89 ± 28.89 35.35 ± 35.35 37.39 ± 37.39 

70-180 60.91 ± 24.15 64.97 ± 23.73 66.22 ± 23.35 

>180 38.96 ± 24.05 34.27 ± 23.71 32.44 ± 23.51 

>250 11.6 ± 16.78 10.47 ± 16.08 10.08 ± 15.85 

>300 5.58 ± 12.29 5.11 ± 11.72 4.99 ± 11.69 

Mean 181.32 ± 46.36 173.1 ± 46.89 169.62 ± 47.92 

SD 47.82 ± 29.27 49.14 ± 28.35 50.14 ± 28.45 

CV 24.76 ± 8.93 26.88 ± 8.75 28.08 ± 8.67 

TDI 3.72 ± 2.07 3.94 ± 2.15 4.05 ± 2.19 
 

Table 14 shows the results for the filtered signals during the four hours following meals. Table 

15 includes the same information but for the profiles generated using the unfiltered signals. It can be 

seen how when the signature factor was increased, the amount of hypoglycemia, euglycemia, total 

insulin delivered, and glycemic variability for the filtered signals also increased. This increase resulted in 

a decrease in hyperglycemia. Again, when the signature factor increased beyond three for the unfiltered 

profiles, the amount of time in euglycemia actually decreased as the percent time where the subjects 

were in the hypoglycemic range increased.  

Comparing the two profiling techniques indicates that the profiles generated using the filtered 

signals may need to be multiplied by a factor of 10 to 20 to produce an acceptable level of glycemic 

control in terms of the tradeoff between hypoglycemia, euglycemia, and hyperglycemia. The unfiltered 

signatures produced an amount of euglycemia (roughly 79%) overall and during the postprandial 

window (approximately 65%), which is excellent considering that there were no mealtime insulin doses. 

It is apparent that the filtering process is necessary to eliminate the tendency for some subjects to have 

profiles that increased steadily throughout the day. The filtered disturbance profiles had much better 



95 
 

characteristics regarding how they were close to zero for most of the day and peaked rapidly following 

disturbance events. This attribute is ideal from a control perspective because it allows the control 

system to be informed by the disturbances in a way similar to how glucose appears in plasma after 

eating.  
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Conclusion 

Summary of Findings 

 The primary goal of this dissertation research was to reconstruct a historical record of 

disturbances and determine an appropriate way of dosing insulin to mitigate hyperglycemia without 

input from the user of the system with T1D. People with T1D currently spend a considerable amount of 

time trying to determine how to titrate insulin. The work involved in this process is both time-consuming 

and a physical and mental burden, which has consequences in terms of quality of life, time 

management, mental health, and the development of diabetes-related complications. Mitigating 

positive glycemic disturbances, often caused by ingested carbohydrates, is challenging due to the 

pharmacodynamics of insulin and how glucose appears in plasma blood. The three aims of this 

dissertation summarized below serve to achieve tasks that would help mitigate these disturbances and 

achieve better glycemic control overall for people with T1D. 

Aim 1 - Real-time Disturbance Detection and Mitigation 

In Aim 1, a methodology was developed to detect disturbances in real-time and deliver 

automatic insulin boluses based on the TDI of the individual. This approach for mitigating hyperglycemia 

was designed to focus on safety, specifically with an emphasis on hypoglycemia. The results of an 

analysis where historical data was re-simulated using the net effect showed that at each TDI amount 

and its paired disturbance probability threshold, no more than one hypoglycemic event was caused per 

day due to the automatic bolusing system. 

If sufficiently effective, this automatic method of dosing insulin could potentially eliminate the 

need for manual mealtime insulin doses. The results of a pilot study conducted at UVA in January 2021 

where this system, the BPS, was used in an MPC-based artificial pancreas demonstrated how this 

approach performed when real people were using it. During the study, the BPS administered automatic 

boluses for more than 80% of meals. Additionally, there were no automatic boluses that occurred at any 

point other than the two hours after a meal, and there were no hypoglycemic events caused by the BPS. 

The BPS boluses were delivered roughly 30 minutes on average after the beginning of the meal. The use 

of the BPS integrated into an MPC resulted in a time in range that was 30% higher than the state-of-the-

art USS Virginia control system. Despite this increase in euglycemia compared to the legacy artificial 

pancreas system, there was no significant increase in the amount of hypoglycemia experienced by the 
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participants. Both systems had a percent time where BG was less than 70 mg/dL of less than 1%, which 

equates to less than 15 minutes per day. 

Although not observed in the clinical trial, a weakness of the BPS is that it can be sensitive to 

noisy CGM measurements because of how the disturbance probability is being determined. The 

disturbance probability used to determine the insulin doses was found using only the last 30 minutes of 

CGM data. Artifacts in the CGM data could lead to errant BPS boluses when it is not necessary. This issue 

is a serious safety concern considering that up to 10% of the system user’s TDI can be delivered through 

the BPS. An insulin dose of this quantity could result in severe hypoglycemia. 

Future research should be conducted to determine how the process of estimating the 

disturbance probability could be made more robust. A particular concern is the frequency of which 

these artifacts occur at night due to the wearer of the CGM compressing the sensor in their sleep. This 

artifact causes CGM readings to be artificially lower as the sensor is compressed and then rise as the 

pressure is released. This effect can happen anytime but often occurs when people are asleep and lying 

on the CGM sensor. Because BG values go down and then abruptly rise, the BPS disturbance probability 

value can exceed the threshold for an insulin dose if this effect is pronounced enough. A profile could be 

constructed that modulates how much insulin should be given at different points in the day to address 

this concern. This profile could be designed so that the percentage of TDI delivered is more during the 

daytime when disturbances (e.g., meals) are more likely to occur, and reduced at night when acute 

positive disturbances are less likely. 

The profiles could potentially be determined using the historical disturbance profiles that are 

described in Aim 3. These inferred signals would provide a good representation of when the 

disturbances occurred in the past and could be utilized to determine a weighting function for the 

amount of TDI that the BPS can deliver. At the very least, the disturbance information could provide a 

sense of when the person is unlikely to eat, like when they are normally asleep. Alternatively, the user 

could input his or her sleep schedule manually.  

Aim 2 - Retrospective Glycemic Disturbance Detection 

Aim 2 describes the design and performance of two glycemic disturbance detection algorithms. 

The first algorithm, DSS2, was designed to be used on data that includes mealtime insulin doses. These 

data could be collected from people who use sensor-augmented pump therapy, multiple daily injection 

therapy with a connected insulin pen, or hybrid closed-loop therapy. The DSS2 algorithm used features 
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derived from historical CGM and insulin records as well as the calculated net effect values. This logistic 

regression-based algorithm was trained to classify windows of time as part of a glycemic disturbance.  

The second disturbance detection algorithm, RCKT+, was explicitly designed to be used for data 

collected from users of a fully closed-loop insulin dosing system, where mealtime insulin boluses are not 

present. This algorithm used features determined from past CGM data as well as information from 

historical daily disturbance signals. Like the first algorithm, RCKT+ was trained to determine whether or 

not each sampling interval was a part of positive glycemic disturbance or not.  

The two algorithms were compared in terms of false positives, true positives, and the amount of 

time between disturbances (i.e., meals) and detections using simulation-generated and actual clinical 

trial data. On both the clinical and simulation data, RCKT+ outperformed DSS2 in terms of the true 

positive rate achieved at each respective false positive rate. When a set threshold was chosen, both 

algorithms had detection times within one minute of the mealtime for the simulation data. There was a 

negligible difference in the SD between detection times and the actual event times for this dataset. 

When applied to the real dataset, both algorithms detected events at an average of roughly ten minutes 

before the real-time and at considerably lower true positive rates. This distribution was left-skewed and 

indicated that the design of the features which are non-causal might cause events to be detected before 

when they occurred.  

Another factor that may cause this effect is how each algorithm was trained. The data used to 

determine the logistic regression coefficients was labeled based on if a 40 mg/dL rise in glucose 

occurred in the two hours after that point in time. It was assumed that due to the time constants of 

glucose appearing in blood plasma, there would be a delay between rises in glucose and ingested 

carbohydrates. Additionally, the timing of detection events was based on when the maximum curvature 

of CGM values occurred in the period of time where the probability of the retrospective disturbance 

detection algorithms was above a threshold. These assumptions impacted how the start time of 

disturbance events was chosen and may have led to events being detected earlier than the actual time.  

Both detection algorithms performed well on the simulation dataset and less so when applied to 

the real dataset. The decrease in performance was likely due to the increase in the sources of variability 

that affect glucose values in the actual dataset. During the admission where the data was collected, the 

participants ate frequently and exercised, which provided a challenging context for both detection 

algorithms. Additionally, both algorithms were trained to detect large positive glycemic disturbances 
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rather than meals and were evaluated on the meal record. It is likely that some if not many of the meals 

that were not detected had no significant rise in BG following them due to increased insulin sensitivity 

after exercise. The DSS2 algorithm required more features than the RCKT+ algorithm and had a worse 

tradeoff between false positives and true positives but served a different purpose. This algorithm was 

meant to be conservative in terms of false alarms and is the only one that could be applied to data 

collected from people undergoing multiple daily injection therapy. Conversely, the DSS2 algorithm could 

not be applied in its current form to fully closed-loop data where mealtime insulin boluses are not 

present.  

Aim 3 - Determination and Implementation of Patterns of Glycemic Disturbances in a Fully 

Closed-Loop Insulin Dosing System 

 Aim 3 describes how behavioral patterns were quantified, grouped, translated into profiles 

representing patterns of glycemic disturbances, and implemented in a fully closed-loop automatic 

insulin dosing system. This process used information gleaned from historical data to anticipate large 

positive glycemic disturbances and mitigate hyperglycemia. The patterns were derived using data-driven 

methods to reflect the perturbations regularly experienced by a particular individual. Ultimately, these 

profiles were designed to be integrated into an automatic insulin dosing system that does not require 

meal announcements from the user to help minimize hyperglycemia. 

 The first step in generating the profiles was to recreate the historical disturbance record from 

passively collected data (i.e., records from downloaded CGM and insulin pumps). Disturbances were 

detected from the data using the RCKT+ algorithm described in Aim 2. Once the disturbance record was 

reconstructed, binary signals were generated for clustering. These signals were zero at all times except 

for the two hours following detected disturbances, where they were equal to one. The indicator signals 

were then clustered using k-means. Each cluster's profile trace was found using the historical 

disturbance signals for each day of data in the cluster. The prior probability of each profile was based on 

the proportion of days that were included in the cluster.  

The profiles were integrated into an MS-MPC framework so that a consensus control action 

could be made reflecting the potential impact of each perturbation described in the profiles on BG. The 

posterior probability of each profile and its respective weight in the controller cost function was 

determined based on current estimates of the disturbance experienced by the individual. The profiles 

were reset back to their prior values overnight to allow each day to be treated independently.  
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The results of an experiment comparing different elements of the control system were also 

presented in Aim 3. In this experiment, five consecutive months of data collected from actual patients 

using a hybrid closed-loop system was used to create personalized disturbance profiles. The 100 

subjects in the UVA/Padova T1D simulator cohort were paired to the real subjects’ profiles. Then, seven 

days with recorded meals from the remaining one month of collected data were used as the meal 

protocol for a simulation. The meal record for the real subjects was scaled based on the body weight of 

their paired virtual subject. This scenario was run for each subject using four different controller 

configurations: MPC, MS-MPC, MPC+BPS, MS-MPC+BPS. The experiment showed that both the BPS and 

the anticipatory profiles integrated into the MS-MPC increased time in range, decreased hyperglycemia, 

and minimally increased hypoglycemia. Between the standard MPC and the MS-MPC+BPS, there was a 

5.15% increase in time in the euglycemic range and a 5.67% reduction in the amount of time in 

hyperglycemia. This effect indicates that the anticipatory disturbance profiles combined with the BPS 

impacted glycemic control in a clinically meaningful way. 

The experiment that was conducted demonstrated that both the BPS and the anticipatory 

disturbance profile lowered mean glucose and reduced hyperglycemia in a simulation environment. This 

effect was especially evident when both were combined in the MS-MPC+BPS setup. In the four 

controller setups tested, there was no meaningful increase in hypoglycemia; each only led to an amount 

of hypoglycemia of fewer than 15 minutes per day, and the controller that delivered the most insulin 

(i.e., MS-MPC) led to an increase in the time range of 5%. Although, it is unclear how protective the MS-

MPC+BPC system would be towards physical activity. The effect of physical activity on the MS-MPC and 

BPS system components is untested because it is not currently integrated into the simulation platform.  

Additional exploration is needed to verify a number of design choices made related to the 

disturbance profiles. How the patterns are characterized is of particular interest. The dataset used was 

not labeled, and therefore it is not clear when the disturbance events, often meals, occurred. Further 

analysis with a large dataset including verified meal data would provide insight into how effective and 

accurate the disturbance detection and profile generation process is. Because the process that defines 

the profiles is unsupervised and unlabeled, data with distinct patterns like that collected from shift 

workers or those with regular schedules would be informative to determine if the patterns in the 

disturbance signals could be differentiated from each other.  

There are also questions regarding the implementation of the disturbance profiles into the MS-

MPC framework that need to be explored. It is unclear if the magnitude of the signals is appropriate for 
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the internal models used in the controller. The signals are dampened because they are taken from the 

aggregate value of the disturbances experienced by the individual whom they are meant to model and 

filtered. Some exploration was conducted to determine the multiplicative signature factor, but more 

research should be done to determine the correct multiplier. 

Aspects of the procedure to update the profiles’ posterior probabilities were also chosen 

subjectively. The process and measurement noise covariance values were chosen based on experiments 

using data that may not represent the population as a whole. A further exploration into the values of the 

disturbance signal at times when the perturbation is influenced by noise and not an actual disturbance 

could be fruitful. In its current form, changing the profiles’ posterior probabilities requires a 

considerable amount of information and can be slow to respond when the current disturbance signal 

represents one profile and then changes to match the value of another profile more closely.  

Finally, more research should be conducted about how this approach would be adapted over 

time as behavior evolves. There is a need to allow this process to be dynamic and robust, allowing for 

the profiles and the respective noise-related variables to change as more information related to 

behavior is learned and behavior changes. The data-driven nature of the process that recognizes 

patterns in behavior allows it to adapt and become more tailored to the individual over time. This aspect 

is a strength because it creates the opportunity for the method to have a large impact on the control 

action being taken by the automatic insulin dosing system if there is consistent behavior and a more 

tentative approach if the user of the system is less consistent in his or her actions.  

Discussion 

Each of the components described in the aims is distinct but can work together in a meaningful 

and beneficial manner. The BPS described in Aim 1 could be integrated into any closed-loop system that 

was tuned to accommodate the priming boluses. A worry is that if a control system were too aggressive 

to rapidly changing BG values caused by meals where insulin was not taken proactively, actions taken by 

the BPS could result in hypoglycemia. This concern would have to be accounted for, but otherwise, the 

BPS does not rely on a specific control framework to operate safely.  

The glycemic disturbance detection algorithms were designed specifically to create the 

disturbance profiles but could also be used for other applications. Often, meal records are incomplete 

and incorrect. A disturbance detection algorithm could help to augment records collected by patients 

for numerous purposes. One such example is model personalization. There is a growing interest in 
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personalized medicine, and an example of that in the field of diabetes technology is personalizing the 

internal insulin-glucose model used to make predictions in the artificial pancreas control system. To 

personalize the model, parameters need to be identified. Some of these parameters include time 

constants related to meals, so knowing the timing of meals and identifying postprandial glycemic 

excursions is critical. A disturbance detection algorithm, like the ones described, would improve this 

process by adding events to the meal record that were not recorded or recorded incorrectly by the 

patient. 

An additional component of this process that would be incredibly useful is a disturbance size 

estimation algorithm. The algorithms provided did not include any disturbance or meal size estimation, 

which is a critical part of the information necessary to improve the model fitting process. For the 

application presented, creating disturbance profiles, it was unnecessary to place an exact value on the 

disturbances, but if a discrete record of events were being reconstructed, this would be. Further work 

on these algorithms could use the estimated disturbance signals to estimate the perturbation size in an 

understandable way, like through an estimate of the equivalent amount of carbohydrates.  

It would be possible to create the disturbance profiles without the meal reconstruction record. 

The disturbance detection algorithm was used to create the indicator signals used for the clustering 

procedure. If a meal record were adequately complete, it would be possible to generate these signals 

using that account. Additionally, it may be helpful and potentially better to extract features from the 

disturbance signals themselves and use those to group the signatures. This approach may create a more 

direct way of grouping days of data where the timing and magnitude of disturbances are similar. 

An interesting interplay could be leveraged between the disturbance profiles and the real-time 

and retrospective disturbance detection algorithms. If established patterns of glycemic disturbances 

were determined, this information could potentially inform the disturbance detection algorithms in a 

meaningful and valuable way. During periods where a disturbance was more likely, determined by the 

profiles, the BPS’ disturbance probability threshold could be lower. At other times, when disturbances 

were less likely (i.e., overnight), the detection threshold could be raised. The modulation of the 

thresholds would make the detection of disturbances correctly more likely and reduce the risk for false 

alarms, especially when false alarms would be dangerous, like overnight.  

The retrospective algorithms could also benefit the information engrained in the disturbance 

profiles, similar to how this could be used in the causal algorithm. The retrospective algorithms could be 
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altered to include features that characterize if a disturbance is likely or unlikely at that time based on 

the established patterns of behavior for that individual.  

It is possible that information from the causal (i.e., real-time) and non-causal (i.e., retrospective) 

algorithms could be used to help improve both. Per the application of the BPS, the system delivers 

insulin boluses when it is necessary. Because both algorithms aim to detect these events, information 

could be learned from these particular instances to better characterize when insulin deliveries are 

necessary. The retrospective algorithms could be retrained or reimagined to detect these events from 

this information better. 

Although the BPS can work independently, it is unclear if that aspect of the control system alone 

can provide adequate glucose control following unannounced meals. The addition of the anticipatory 

profiles would further improve overall glucose control. These modules together may sufficiently mitigate 

hyperglycemia in a fully closed-loop system.  

 It seems like the disturbance profiles are best utilized in the MS-MPC framework, but it is 

feasible that this information could be utilized in a control structure that is not using multiple models. 

The MS-MPC framework allows for multiple BG predictions, each based on a different perturbance, to 

be considered in the cost function of the algorithm. This control framework very easily takes the 

information encompassed in the disturbance profiles into consideration. A possible way that the 

disturbance profiles could be used in another type of control system is to tune the controller 

aggressivity. By monitoring the current disturbance and relating that information to the patterns of 

known behavior encompassed in the profiles, the controller's sensitivity could be modulated during 

periods of time where a disturbance was likely to be occurring or occur in the immediate future. This 

change in aggressivity could be helpful for numerous control algorithms and allow the system to react to 

disturbances better. 

Future Work 

 Each of the processes defined in the aims needs to be evaluated in a real-life context where 

there are greater sources of error and variability than what is included in the simulation environment. 

The retrospective disturbance reconstruction appears to have a low false positive rate and acceptable 

true positive rate when applied to real data, but it is unclear if the consequence of not detecting roughly 

20% of eating events will have on the intended applications. The BPS worked very well in the clinical 

experiment where it was evaluated, but it is unknown if issues with CGM sensors or physical activity, 
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both of which are present and frequent in real life, will cause the users to experience an unacceptable 

amount of hypoglycemia. The simulation experiment demonstrated that the disturbance profiles 

increased the amount of time BG values were in the euglycemic range without increasing hypoglycemia 

to a large degree, but the effects of exercise and changes of behavior are untested.  

 A large-scale clinical trial would have to be conducted to determine all of the effects of what is 

described above and other factors that would impact the system that are unanticipated. Because the 

BPS and anticipatory profiles both increase the amount of insulin being delivered without knowing the 

situation that the user is currently or about to be in, both have an element of risk associated with them. 

Furthermore, it is unclear how the profiles would be adapted over time and for whom this approach 

would work well or not. A clinical trial lasting over an extended period of time could highlight both the 

strengths and the weaknesses of these methods.  

Another possible approach is to expose the system to these challenges in a controlled 

environment to elucidate the effects. By conducting multiple smaller pilot studies, the effect of different 

types of disturbances, such as physical activity, on the system as a whole could be individually studied. 

Isolating individual challenges to the system could provide more insight into how the algorithm could be 

improved but still would artificially impose a protocol on the participants, unlike a large-scale free-living 

trial. 

Other Applications 

The techniques described below are developed towards rejecting the glycemic disturbances 

caused by eating, but there are other applications where these techniques could be applied. A logical 

extension of this method would be to apply this technique, not to meal-related disturbances but those 

caused by various forms of physical activity. Some aspects of this work have been applied to exercise 

and have successfully prevented hypoglycemia.144 Additionally, there are applications in the world of 

finance where disturbance detection and pattern recognition could be valuable. For instance, if a time 

series of an individual stock's price is considered, it would be useful to recognize past events, the 

respective effect on that equity's valuation, and determine which course of action (i.e., buy or sell) will 

result in the highest profit or mitigate the most loss.   

Conclusion 

A complete account of the disturbances to the insulin-glucose system, such as meals, is 

important for managing BG in people with T1D and developing new technology. Records provided by 
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patients are often fraught with errors due to either misestimations of disturbance magnitudes (i.e., 

carbohydrate counts), delayed announcements, or unacknowledged events. Additionally, there are 

many real-time glycemic management issues related to having people titrate insulin manually. 

To aid in the management of glycemia automatically and in real-time, a strategy was developed 

to detect glycemic disturbances and mitigate their unwanted effects by dosing insulin without input 

from the user of the system. To address the issue of erroneous disturbance records, often reported as 

meals, two algorithms were developed to detect significant positive disturbances retrospectively. These 

algorithms could be used for data collected under numerous therapies, including multiple daily 

injections, sensor-augmented pump therapy, hybrid closed-loop, and fully closed-loop. 

Furthermore, historical meal records were reconstructed to recognize patterns in eating 

behavior. Those patterns were then utilized to anticipate meal disturbances in an artificial pancreas 

framework. When combined, these techniques reduced hyperglycemia and increased the amount of 

time the individuals’ BG values were in the euglycemic range significantly while not leading to a large 

number of hypoglycemic events. 

 The process of managing glucose excursions caused by large disturbances like meals is time-

consuming, affects the quality of life, can result in an increased risk of complications, and is overall not 

ideal for glycemic management. If a system successfully managed the challenges associated with 

disturbances without input from the user, this could greatly increase the quality of life and management 

for people with T1D. The work presented in this dissertation made steps towards that goal, but there is 

more work to be done before a fully closed-loop system is safe and efficacious.  
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