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Abstract

Transcription factors (TFs) define and drive cellular identity and state. The coordinate activities

of TFs dynamically regulate gene expression physiologically during development and in response

to environmental cues. However, transcription is dysregulated in many disease states, including

malignancies. Thus it is critical to study the mechanisms by which TFs regulate transcription

of their target genes. This dissertation sets out to do so for the TF TRPS1 in a cell line

model of luminal breast cancer. Chapter 1 serves as an introduction to breast cancer, the key

TFs TRPS1 and estrogen receptor alpha (ER), and the main experimental approach, targeted

protein degradation (TPD) to study TF function. Chapter 2 details the methods we use to

analyze the data from nascent transcriptional profiling experiments. These methods are most

specific to the precision nuclear run-on assay we use, but there are many parallels with the other

genome-wide sequencing assays used in the rest of this dissertation. In Chapter 3, we use TPD to

demonstrate that acute TRPS1 depletion redistributes ER binding genome-wide, both activating

and repressing transcription of genes related to cancer cell fitness. In Chapter 4, we follow up

on an initial observation made in the cell lines we generated, that acute TRPS1 depletion in

three independent clones activates cholesterol biosynthesis gene transcription. In Chapter 5, I

list my contributions to two other published works. Finally, Chapter 6 serves as a discussion of

the conclusions drawn from this dissertation and the future directions of this work.
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Chapter 1

Introduction

1.1 Breast cancer

1.1.1 Epidemiology

Breast cancer is one of the most common forms of cancer in the United States, with over 300,000

cases diagnosed and over 40,000 associated deaths each year. This represents a lifetime risk

of about 1 in 8 for a diagnosis of breast cancer and about 1 in 40 for death due to breast

cancer for women in the United States [1]. Globally, breast cancer is the most common form of

cancer among women, with over 2.2 million new cases and over 600,000 deaths each year [2].

Though this disease can affect individuals of any sex and gender, the vast majority of breast

cancer patients are female. Breast cancer incidence increases with age, with over 80% of invasive

breast cancers in the United States diagnosed in patients over the age of 50 [1]. There are racial

disparities in breast cancer outcomes in the United States — White, non-Hispanic individuals

have the highest incidence, but Black individuals have the highest mortality rates [1].

1.1.2 Genetics

A small proportion of breast cancers can be attributed to a heritable mutation in a single gene

[3]. Germline mutations in BRCA1 or BRCA2 decrease the homology-directed repair of DNA

damage and lead to increased incidence of breast, ovarian, and fallopian tube cancers [4–6]. Rarer

mutations increase the risk of breast cancer as a part of a broader syndrome, including PTEN

mutation in Cowden Syndrome, TP53 mutation in Li-Fraumeni Syndrome, CDH1 mutation in

Hereditary Diffuse Gastric Cancer, and STK11 mutation in Peutz-Jeghers Syndrome [3, 7–10].

However, most breast cancers are sporadic in nature. There are few recurrent somatic

mutations in breast cancers, with the most common being TP53, PIK3CA, and GATA3 [11].

TP53, the most frequently mutated gene in cancer, encodes the tumor suppressor P53 that
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promotes DNA repair or apoptosis in response to DNA damage [12]. PIK3CA encodes PI3K,

an intracellular kinase that canonically responds to growth factors to activate the AKT-mTOR

pathway and promote cell growth and proliferation [13]. GATA3 encodes for a transcription

factor (TF) in the same family as TRPS1, the star of this dissertation.

1.1.3 Tumor classification

Far from a monolithic disease, breast cancer has been divided into distinct molecular subtypes

based on immunohistochemistry (IHC) or transcriptional patterns, and these inform prognosis

and treatment [14, 15].

IHC was the original method to classify breast tumors and is still used today [16].

Generally, tumor sections are stained to assess for the expression of estrogen receptor alpha (ER),

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Tumors are

classified as ER-positive and/or PR-positive if over 1% of the cells express the corresponding

receptor [16]. Over 70% of breast cancer cases are ER-positive [17]. For patients with these

tumors, hormonal therapies inhibiting ER activity such as the selective ER modulator tamoxifen

are first-line therapeutic options [18].

Similarly, tumors are classified as HER2-positive if over 10% of the cells exhibit circum-

ferential membrane staining [19]. As ERBB2, the gene encoding HER2, is often genetically

amplified in HER2-positive tumors, HER2-positivity can alternatively be determined via in situ

hybridization if there are more than six signals per cell [19]. For patients with these tumors,

HER2-targeting therapies such as the monoclonal antibody trastuzumab improve outcomes [20].

Tumors lacking signal for any of the above three receptors are termed triple-negative

breast cancer (TNBC) and generally carry the worst prognosis among breast cancers [21].

Additional IHC markers, such as cytokeratin 5/6 and epidermal growth factor receptor have been

used to further stratify these TNBC tumors [22].
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A newer method to classify breast tumors is through gene expression patterns. Multiple

gene sets and platforms exist for profiling transcript abundance exist, including PAM50, Onco-

typeDx, and MammaPrint [23–26]. Based on the PAM50 classification, the five predominant

intrinsic subtypes of breast tumors are Luminal A, Luminal B, HER2-enriched, Basal-like, and

Normal-like, sometimes referred to as Claudin-low [23, 27]. The Luminal A subtype generally

corresponds to IHC status as ER-positive, PR-positive, and low proliferation index as measured

by Ki67 staining and generally carries the best prognosis among breast cancers [28].

1.1.4 ER in breast cancer

The work presented in this dissertation will focus on ER-positive breast cancer using a breast

cancer cell line representing the Luminal A molecular subtype of breast cancer.

High lifetime exposure to endogenous estrogen is a strong risk factor for breast cancer

incidence [29]. ER is transcription factor (TF) in the nuclear hormone receptor family that is

activated by estrogens such as 17-beta-estradiol, a steroid hormone produced in the ovaries

and peripheral adipose tissue. In cells that express ER, estrogen binds and activates ER.

Upon activation, ER homodimerizes and binds to its cognate DNA motif on DNA and recruits

coactivators like steroid receptor coactivator-1 (SRC-1), CBP, and P300 [30–33]. DNA-bound

ER increases transcription of genes related to cell growth and proliferation [34–37]. Estrogen

signaling through ER is a major driver of cell growth both physiologically in the breast and

pathophysiologically in breast cancer.

Accordingly, most medical therapies for ER-positive breast cancer are targeted to decrease

the activity of ER. This can be accomplished with endocrine therapy that decreases endogenous

estrogen production, inhibits coactivator interaction with ER, or degrades ER [38–41]. While

these treatments are initially effective, unfortunately 30% of tumors relapse and become resistant

to endocrine therapy [42]. Around 90% of relapsed tumors maintain ER-positivity, and many

patients respond to second line therapies targeting ER, indicating that ER activity remains an
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important driver of tumor growth [43–46]. Thus, new treatments targeting proteins that act

downstream of ER or that regulate ER signaling are needed.

1.1.5 TRPS1 in breast cancer

TRPS1 was first described as the gene mutated in cases of tricho-rhino-phalangeal syndrome, an

autosomal dominant disorder characterized by developmental abnormalities of the hair, nose,

and fingers [47]. TRPS1 is crucial for the proper development of several tissues, including hair,

bone, and kidney [48, 49]. As with many developmentally important genes co-opted during the

process of cancer initiation and progression, TRPS1 is commonly over-expressed or amplified in

breast tumors, both relative to normal tissue and relative to other tumor types [50–54].

TRPS1 over-expression has been shown to increase the colony formation ability of a

non-transformed mammary epithelial cell line [55]. In addition, in multiple xenograft mouse

models, TRPS1 loss inhibits tumor progression [56–58]. On the other hand, TRPS1 appears

to act as a tumor suppressor in genetically engineered mouse models. TRPS1 was a hit in a

transposon mutagenesis screen in a PTEN-null mouse model of TNBC and in another transposon

mutagenesis screen in a CDH1-null mouse model of invasive lobular carcinoma [53, 59].

Like GATA3 referenced above, TRPS1 is in the GATA-family of TFs, which share a

conserved GATA-like zinc finger that recognizes (A/T)GATA(A/G) motifs on DNA [60]. Unlike

GATA3 and the rest of the members of this family, TRPS1 also has two carboxy-terminal

Ikaros-like zinc fingers [61]. These zinc fingers recruit corepressor complexes, including the

Nucleosome Remodeling and Deacetylase (NuRD) and corepressor for RE1 silencing transcription

factor (CoREST) complexes, to directly repress transcription of TRPS1 target genes [53, 57, 58,

61–63].

TRPS1 knockdown has been shown to influence the activity of other TFs, as well as other

cellular processes. TRPS1 was a hit in an unbiased screen to identify repressors of YAP1 activity

in a luminal breast cancer cell line, and TRPS1 knockdown led to a genome-wide activation of

YAP target genes [57]. Paradoxically, TRPS1 knockdown has been reported to lead to both a
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genome-wide repression of ER target genes as well as a genome-wide increase in ER binding

[53]. In addition, TRPS1 knockdown in a TNBC cell line led to failures of mitotic progression

and chromosome segregation [56]. Consistent with this effect, TRPS1 knockout mouse embryo

chondrocytes displayed hyperacetylated histones during mitosis and chromosome segregation

defects [64]. Several studies have noted an increase in epithelial to mesenchymal transition and

genome instability upon TRPS1 knockdown [65–68].

In sum, extended TRPS1 depletion appears to have pleiotropic effects on many aspects

of breast cancer cell and tumor biology. We set out to study the most upstream effects of TRPS1

perturbation, the primary and direct effects of TRPS1 on transcription. To do so, we needed a

strategy to rapidly perturb TRPS1 activity. We used targeted protein degradation (TPD), for

reasons we describe in the next section.

1.2 Targeted protein degradation to study transcription

The study of transcription has been aided in recent years by the ability to rapidly perturb TFs

and other chromatin associated factors using TPD strategies. In this section, we will provide an

introduction to this topic, in the hope that the reader will consider adopting these strategies to

study their favorite TFs.

1.2.1 Rationale and alternative strategies

To study the function of a gene, various methods have been developed to activate or inactivate

its function in the cell. Ideally, a perturbation is rapid, specific, and broadly applicable to any

target gene. Traditionally, genetic and chemical approaches have been used, which each have

strengths and limitations.

Genetic perturbations

Classically, genetic knockouts and RNA interference (RNAi)-based approaches target the DNA or

RNA encoding a gene of interest for knockout or knockdown, respectively. For example, clustered
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regularly interspaced palindromic repeats (CRISPR)-based methods use a short guide RNA to

target a nuclease like CRISPR associated protein 9 (Cas9) to the 5′-end of the DNA encoding a

gene. This creates a double-stranded break, which is repaired in an error-prone fashion, leading

to frameshift mutations and effective gene knockout [69–71]. Small interfering RNA or short

hairpin RNA can be transfected or transduced into cells to target RNA encoding a gene. This

leads to degradation of the RNA via the RNA-induced silencing complex and knockdown of gene

expression [72–76]. By using nucleic acids to bind specifically to the DNA or RNA encoding a

gene, genetic perturbations can be both specific for the target gene and generalizable to most

any gene.

However, these methods tend to take days to affect gene expression, which can lead to

undesireable effects. TFs generally regulate transcription of many primary target genes, some of

which regulate transcription of secondary effect genes. If a genetic perturbation takes several

days to take effect, the resulting transcriptional changes from baseline will include not only

the primary effects, but secondary effects and beyond. Furthermore, many lineage specific TFs

are essential for cell viability and proliferation [77]. Measuring transcription after extended TF

knockdown or knockout will represent a new cellular state, with many genes changing beyond

the direct TF target genes.

Chemical perturbations

An orthogonal method to perturb TF activity is through the use of small molecule chemical

compounds. A few TFs, such as the estrogen receptor (ER), have natural ligands [78–80].

Transcription-associated kinases, like CDK9, are targetable with enzymatic inhibitors [81, 82].

Transcriptional cofactors with hydrophobic pockets that can be bound with chemical probes,

including BRD4, can be inhibited or targeted for proteasomal degradation through the use of

TPD [83–85]. This strategy forms the basis for the techniques that are the main focus of this

overview. TPD uses heterobifunctional small molecules, with one moiety targeting a protein of

interest and another targeting an E3 ubiquitin ligase complex, connected by a flexible linker [86].
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Upon addition of the compound, the target protein is brought into physical proximity with the E3

ubiquitin ligase complex and is polyubiquitinated and shuttled to the proteasome for degradation.

These chemical perturbations are rapid, limited only by the diffusion of the small molecules into

the cell and to their targets [86]. However, the number of TFs with known natural or synthetic

ligands is limited, leaving many endogenous TFs untargetable via this approach.

1.2.2 Chemical genetic systems

Thankfully, the field of chemical genetics provides tools to genetically modify genes of interest

to render them susceptible to chemical perturbation [87]. By combining the specificity and

generalizability of genetic manipulation with the temporal acuity of chemical perturbations,

chemical genetics can provide an ideal avenue to study TFs. Many systems have been described,

with the most widely used being the auxin-inducble degron (AID) and the degradation tag

(dTAG) systems [88, 89].

AID

Auxin is a plant hormone that targets proteins for inducible degradation [90, 91]. Two components

of the AID system has been coopted from plants — The AID tag, the IAA17 gene from plants,

is fused to a target gene, and the E3 ubiquitin ligase TIR1 is heterologously expressed [88,

92, 93]. Upon the treatment with auxin, the fusion protein is brought into proximity with a

TIR1-containing E3 ubiquitin ligase complex. Two limitations of this method are the requirement

for an additional genetic manipulation to express TIR1 and a basal level of chronic knockdown

in the absence of auxin [94]. The latter limitation has been addressed by several iterations of the

AID system including mini-AID and ARF-AID [94–101].

dTAG

The dTAG system uses a similar strategy [89]. A mutant of the prolyl isomerase 12-kiloDalton

FK506-binding protein (FKBP12) is fused to a target protein. This mutant allows for a bump-

and-hole strategy such that a ligand for wildtype FKBP12 is modified with a sterically bulky
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moiety, and the mutant FKBP12 contains a pocket for this moiety [102]. In this way, the modified

ligand binds specifically to the fusion mutant FKBP12 protein and not the endogenous wildtype

FKBP12. Several compounds can be used to induce proximity between the fusion protein and

an endogenous E3 ubiquitin ligase. dTAG-13 contains a derivative of thalidomide that binds to

cereblon (CRBN), and dTAGV-1 uses a ligand for von Hippel-Lindau (VHL) [89, 103–105].

Other

A previous iteration of FKBP12-based tagging used a cryptic degron that can be exposed

upon the addition of an FKBP12 ligand [106]. Another thalidomide-induced neosubstrate of

CRBN, Sal-like protein 4, can be fused to a target protein and degraded upon the addition of

5-hydroxythalidomide [107]. The small molecule–assisted shutoff (SMASh) tag excises itself at

baseline but can be retained to degrade the tagged protein upon the addition of HCV protease

inhibitors [108]. The generic HaloTag can be functionalized for multiple purposes, such as

imaging and TPD [109–113]. Finally, as an example of a non-TPD form of chemical genetics,

light-inducible nuclear export system (LEXY)-tagged proteins can be rapidly exported from the

nucleus under optogenetic control [114].

1.2.3 Examples from the literature

Here we present examples of how the use of TPD has extended our understanding of the

mechanisms of transcriptional regulation by specific sets of chromatin-associated factors.

BET family proteins

The bromodomain and extra-terminal domain (BET) family of proteins that recognize acetylated

histones are popular targets in the field of chemical biology, beginning with the chemical probe

JQ1 [83]. Many E3 ligases have been coopted for TPD, and BET proteins are often the first

targets for proof of principle reporting [84, 115, 116]. With the plethora of data generated

from these tool compounds, we have been able to gain new insights into BET protein function

in transcriptional regulation. The distribution of BET protein binding across the genome is
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asymmetric, with a disproportionate amount of protein occupying a small fraction of the binding

sites, often referred to as ”super enhancers” [117]. Treatment with BET bromodomain inhibitors

like JQ1 predominantly affects transcription of genes controlled by these super enhancers [83].

In contrast, BET protein degradation with the potent degrader dBET6 led to a profound loss

of transcriptional elongation genome-wide [85]. The P-TEFb complex, consisting of the cyclin-

dependent kinase CDK9 and the cyclin CCNT1, regulates the release of RNA polymerase II (Pol

II) into productive elongation [118]. The prototypical BET protein, BRD4, physically interacts

with P-TEFb and had previously been thought to contribute to P-TEFb recruitment to DNA

[119–121]. However, genome-wide depletion of BET proteins had no effect on CDK9 occupancy

at promoters or enhancers or nuclear levels of CCNT1, suggesting that BET proteins regulate

P-TEFb activity via a mechanism distinct from recruitment to DNA [85].

While JQ1 inhibits and dBET6 degrades the entire family of BET proteins, individual

members can be specifically targeted using inducible degron tags to differentiate their functions.

In doing so, we have learned that the genome-wide effects on elongation are specific to BRD4

depletion [122]. Furthermore, the decrease in Pol II occupancy at enhancer regions observed

with dBET6 treatment was recapitulated specifically by BRD2 depletion and not by depletion of

BRD3 or BRD4 [122]. Finally, while BET bromodomain inhibitors specifically target the ability of

BET proteins to recognize acetylated lysines, TPD acutely depletes the entire protein and allows

for the assessment of non-bromodomain-dependent functions of the BET family. Indeed, BRD4

depletion and complementation with deletion mutants revealed that BRD4 is able to stimulate

transcriptional elongation via its carboxy-terminal region that interacts with P-TEFb without the

requirement for its bromodomains [123].

Chromatin architectural proteins

The eukaryotic genome is highly organized in three-dimensional space. The first use of the

genome-wide chromosome conformation capture technology Hi-C revealed an example of this

organization at the broadest scale, with two main compartments, active and inactive, segregating
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in their contact frequencies [124]. On a megabase scale, the genome is divided into topologically

associated domains (TADs), alternating regions of the chromosome with contact frequencies

much higher within the region than with neighboring regions [125]. The TF CCCTC-binding

factor (CTCF) often demarcates the boundaries of these TADs. The motor protein cohesin is

also found at these boundaries and has been shown to extrude DNA until it reaches an impasse

like a stably-bound CTCF protein [126]. At the kilobase scale, there can be points of contact

between two distal regions of chromatin, such as an enhancer and a promoter, that are thought

to represent looping [127]. As with TADs, these loops are often bordered by CTCF and cohesin

binding sites.

It is difficult to test whether CTCF is causally related to this genome organization, as

its knockout in mice is embryonically lethal, and its expression is essential for cell proliferation

[128, 129]. However, the rapid depletion of CTCF with the AID system in multiple cell lines

demonstrated that CTCF is required for looping and the maintenance of TADs but dispensable

for the segregation of the active and inactive compartments of the genome and even transcription

of most genes [130, 131]. Furthermore, as with BRD4 above, complementation experiments

performed by inducing exogenous expression of wildtype or mutant CTCF while depleting

endogenous CTCF allowed for the characterization of mutations in zinc fingers outside of the

core DNA binding zinc finger array [132]. Of technical significance, a detailed study of acute

CTCF degradation using both sequencing and imaging readouts showed that the kinetics of

CTCF depletion differ across the genome, reinforcing the importance of choosing a reasonable

time point after inducing degradation [133].

As with CTCF, acute depletion of cohesin reduces looping genome-wide, a result that

is rapidly reversible upon re-expression of cohesin, but has only a minor effect on transcription

[134]. Together, these studies and others of the chromatin architectural proteins CTCF and

cohesin call into question the functional significance of TADS and loops for transcription of most

genes. However, one report using acute depletion of the cohesin release factor WAPL produced

a model in which cohesin release tends to occur distally to lineage-specific genes and that this
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cohesin turnover maintains the correct cohesin dynamics required for the promoter-enhancer

contacts to regulate transcription of these lineage-specific genes [135]. Furthermore, depletion of

individual subunits of the multiprotein cohesin complex have distinct effects, suggesting cohesin

may perform distinct roles across its binding sites [136].

Yin Yang 1 (YY1) is a TF similar to CTCF in that it homodimerizes and promotes

enhancer-promoter looping [137, 138]. Named in part for its activating and repressive effects on

transcription after chronic knockdown, YY1 was recently perturbed more acutely using TPD

[139]. In this study, YY1 depletion greatly reduced enhancer-promoter looping. In addition, and

in contrast to CTCF and cohesin depletion, there were large changes to nascent transcription,

with both activation and repression of primary response genes. The repression is more easily

explained by the loss of activating promoter-enhancer contacts. The authors do not perform

much follow-up analysis on the activated genes but attribute this activation to the profound

changes in genome architecture inappropriately positioning of transcriptional regulators.

Sequence-specific TFs

The proto-oncogene MYC is over-expressed in the majority of human cancers [140]. When bound

to canonical E-boxes with its binding partner MAX, MYC regulates many genes that drive cell

growth and proliferation. MYC target genes have been queried using multiple methods, including

inducible over-expression coupled with nascent RNA profiling, genome-wide binding assays, and

expression correlation [141]. These target genes vary across cell types, but a common core set of

genes are involved in nucleolar function and ribosomal biogenesis [141]. There are conflicting

reports on whether MYC acts as an activator at specific genes, an amplifier of all genes, or a

direct repressor at some genes [142–146]. The acute depletion of an AID-tagged MYC within

30 minutes, coupled with nascent RNA sequencing, allowed for the identification of primary

MYC-responsive genes [147]. 98% of these genes were repressed, indicating that the direct effect

of MYC regulation is transcriptional activation of a fraction of the expressed genes in a cell [147].

OCT4 is one of the four ”Yamanaka” factors, the expression of which is sufficient to
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reprogram differentiated fibroblasts into induced pluripotent stem cells [148]. However, the genes

OCT4 regulates in pluripotent stem cells are difficult to identify, as the half-life of its protein and

mRNA are much too long for traditional knockdown methods to isolate the primary effects of

depletion [149]. A recent study compared extended knockdown to rapid depletion with TPD and

found that only the latter was able to identify that the primary effect of OCT4 on transcription

is the activation of pluripotency factors and that the delayed activation of trophoblast-associated

genes is a secondary effect of OCT4 depletion [149].

A key takeaway from these and other studies is that these TFs directly activate tran-

scription of their target genes. The growing list of TFs that can be acutely perturbed provides

evidence that TFs do not activate some direct targets and repress others. Another theme is

that, in contrast to extended knockdown, acute depletion of most sequence-specific TFs affects

transcription of a limited number of primary response genes [150–152].

1.2.4 Tagging considerations and strategies

There are several choices to make when generating a strategy for tagging a TF for TPD. Here we

provide an overview of some of the key choices and our recommendations for how to approach

them.

Exogenous or endogenous expression

The fusion protein can be expressed exogenously, for example by lentiviral transduction before or

after knockout of the endogenous gene [153]. However, this involves the cells to go through

a period of over- or under-expression of the TF. In addition, the exogenously expressed gene

is constitutively expressed and not under the transcriptional regulation of its endogenous locus.

These differences can lead to chronic changes in the abundance, localization, or interactions of the

protein independent from the acute perturbation we plan to induce [154]. Thus, if possible, we

recommend tagging at the endogenous locus. We use CRISPR-Cas9 to induce a double-stranded

break at a targeted DNA sequence and provide a repair template for the insertion of the tag [94].
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Copy number

When endogenously tagging your TF of interest, it is easier to use a cell line without DNA copy

number gain of the gene. Based on our experience, we would not recommend using a cancer cell

line with a gene copy number of four, as is the case for TRPS1 in many luminal breast cancer cell

lines. In addition to the efficiency decreasing exponentially with additional alleles, an effect that

can be mitigated by scaling up the initial transfection, there is also the possibility of a threshold

of DNA breaks within each cell being surpassed, leading to cell cycle arrest or apoptosis [155].

When choosing a cell line, the Cancer Cell Line Encyclopedia hosted on the Cancer Dependency

Map project website lists absolute copy number for each gene [77, 156]. However, many cancer

cell lines display chromosomal instability, so the risk remains that the cells used in a tagging

endeavor may harbor additional copies at the outset or acquire them during clonal isolation.

Much of the choice of cell type is driven by the expression of the lineage-specific TF under study.

When studying general transcriptional regulatory mechanisms, though, one useful cell line is the

chronic myelogenous leukemia cell line HAP1 or relatives thereof, which are haploid for most

genes in the genome [157–161].

Cas9-expression

Using a cell line that constitutively or inducibly expresses Cas9 can be helpful because it reduces

the necessary genetic material to be transfected. If no such cell line exists but you will be doing

substantial genome editing, it may save time to first generate such a clone [162]. The drawbacks

are that this step takes time and forces the cells through an additional bottleneck that may skew

the downstream results.

Amino- or carboxy-terminal tagging

Though the described inducible degron tags are small, tagging proteins can have unpredictable

consequences on their function [163]. If feasible, we would recommend targeting both termini in

parallel. If there is a critical protein domain near one terminus, targeting the other terminus may
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be more likely to succeed, though there is a flexible linker that can potentially separate the tag

and avoid catastrophic interference. Of note, one welcome outcome of targeting the 5′-end of

the gene when endogenously tagging is the potential for a knockout of any untagged alleles.

Repair templates

One form of repair template is an additional plasmid with long homology arms [119]. This

strategy is helpful for large insertions. We have used this strategy to insert TIR1 into a safe

harbor locus [94]. A drawback of this approach is the amount of genetic material that needs to

be transfected when using an additional plasmid.

We have had success with a polymerase chain reaction (PCR) product with 50 base pair

homology arms [94]. This can be generated from a generic plasmid template with the tag and

selection marker. The specificity comes from the PCR primers used. Importantly, these should

be ordered with phosphorothioate modifications at the 5′-ends to improve resistance to cellullar

exonucleases [164, 165].

A third option is the CRIS-PITCh system, which uses microhomology regions (5-25 base

pairs) flanking the insert [89, 166]. The insert is transfected as a part of a plasmid and is excised

as linear DNA via Cas9 once in the cell. A new plasmid needs to be generated for each repair

template, in contrast to the PCR product method above. However, once generated the plasmid

is easier to amplify and does not require PCR and gel purification.

Clone isolation

When isolating single-cell-derived clones, three common strategies are manual colony picking after

cell divisions have occurred, limiting dilution of cells shortly after transfection, and fluorescence-

activated cell sorting (FACS) [167–169]. Colony picking is more labor intensive, but limiting

dilution uses more plates, as there are many empty wells. FACS uses specialized equipment and

exposes cells to potential contamination but rapidly isolates single cells into individual wells.

Performed shortly after transfection, the GFP from the Cas9-expressing plasmid can be used to



Chapter 1 15

enrich for transfected cells. Performed at a later time point, FACS can also be used to isolate

clones expressing fluorescent markers indicating genomic integration.

Screening clones

When screening clones, integration can be assayed via PCR or Western blot. PCR is faster and

reveals whether DNA has been inserted, but a Western blot measures the functional outcome at

the protein expression level. We recommend screening by Western blot and performing follow-up

analysis of the DNA to determine the sequence of each allele.

1.2.5 Best practices

Here we present practical advice on how best to use cell lines with TFs tagged for TPD.

Compare basal expression

As mentioned above, the ideal perturbation of a TF only occurs upon acute induction of

degradation. Before the experiment, the tagged cells ideally should have expressed the TF at

endogenous levels throughout the tagging process. When presenting acute TF depletion in a

Western blot, it is informative for the reader to compare the basal expression to that of parental

cells. Depletion from 10% of parental expression to 0% is different than depletion from 100%

to 0%, though both would look similar on a Western blot without the reference point of the

parental cells. As referenced above, several iterations of the AID system have been developed to

reduce basal degradation. A beautiful example of a Western blot establishing the expression of

several different tagged proteins across multiple clones can be found in Figure 1B of [122].

Avoid the ”Hook effect”

Heterobifunctional molecules like dTAG-13 are subject to the ”Hook effect”, in which the dose

response curve is not monotonic [84, 170, 171]. At high concentrations of compound, both

the E3 ubiquitin ligase and the tagged target TF become saturated with low ternary complex

formation and decreased degradation rate. As such, it is helpful to initially test a range of doses
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at an extended time point, such as 48 hours, to choose a concentration in the center of the range

of maximal effect. After this dose has been chosen, a time course experiment can be performed

to determine how rapidly the TF can be depleted. Of note, ”molecular glue” molecules like

auxin cannot bind independently to each of their two targets and so are not subject to the Hook

effect [172]. However, it may be wise to use the minimal dose necessary to achieve maximal

degradation, as auxin can activate the aryl hydrocarbon receptor as an off-target effect [152].

Intriguingly, a recent report using artificial topological nanostructures allows for multivalent

interactions between the proteins of interest and E3 ubiquitin ligases to counteract this ”Hook

effect” [173].

Measure nascent RNA

Acute TF depletion is best coupled with a rapidly-responsive readout of transcriptional activity.

Changes in messenger RNA (mRNA) abundance lag behind changes in transcriptional rate, as

they also depend on RNA turnover rates. Waiting until a time point late enough to detect

significant changes in mRNA abundance by mRNA sequencing (RNA-seq) limits the benefit

of rapid degradation in isolating the primary effects of TF depletion. Instead, nascent RNA

sequencing methods, such as precision run-on sequencing (PRO-seq) or transient transcriptome

sequencing (TT-seq) [174, 175], detect rapid changes in transcription rate.

1.2.6 Conclusion

We are in an exciting time for the study of TFs. Nuclear hormone receptors are well-studied

via rapid activation, and transcription-associated kinases can be acutely inhibited with small

molecules. More recently, the mechanisms of general transcription factors and architectural

proteins have been elucidated via TPD. However, many hundreds of lineage-specific TFs remain

to be studied! We hope that the reader comes away from this section ready to start tagging

their favorite TFs.
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Chapter 2

Processing and evaluating the quality of genome-wide

nascent transcription profiling libraries

2.1 Preface

This chapter is adapted from a manuscript under review at Methods in Molecular Biology.

Thomas G. Scott, André L. Martins, Michael J. Guertin

2.2 Author contributions

All authors contributed to the conceptualization of the project and to the methodology. TGS

performed the experiments and analyzed the data. TGS and MJG wrote the original draft of the

manuscript. All authors reviewed and edited the manuscript.
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Processing and evaluating the quality of genome-wide
nascent transcription profiling libraries
Thomas G. Scotta, André L. Martinsb, Michael J. Guertinb,c

aDepartment of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville,

Virginia, United States of America
bCenter for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut,

United States of America
cDepartment of Genetics and Genome Sciences, University of Connecticut, Farmington, Con-

necticut, United States of America

2.3 Abstract

Precision run-on assays (PRO-seq) quantify nascent RNA at single nucleotide resolution with

strand specificity. Here we deconstruct a recently published genomic nascent RNA processing

pipeline (PEPPRO) into its components and link the analyses to the underlying molecular biology.

PRO-seq experiments are evolving and variations can be found throughout the literature. The

analyses are presented as individual code chunks with comprehensive details so that users can

modify the framework to accommodate different protocols. We present the framework to quantify

the following quality control metrics: library complexity, nascent RNA purity, nuclear run-on

efficiency, alignment rate, sequencing depth, and RNA degradation.

2.4 Introduction

Genomic nascent RNA profiling assays, such as precision genomic run-on (PRO-seq) [176], quan-

tify the precise position and direction of transcriptionally engaged RNA polymerases. Quantifying

nascent RNA complements conventional RNA-seq by directly measuring active transcription.

Steady-state RNA levels are influenced by RNA stability, so we can leverage the discordance
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between RNA-seq and PRO-seq expression to estimate genome-wide RNA half-lives [177]. Bidi-

rectional transcripts are a hallmark of enhancers and promoters. We can detect these short and

unstable transcripts with PRO-seq to directly infer regulatory element activity as an orthogonal

approach to chromatin accessibility assays [178, 179]. Similarly to regulatory elements, gene

isoforms can vary between cell types and conditions. We can use RNA-seq to define splice

variants and PRO-seq to identify differing primary transcript boundaries [180] and transcription

start sites [181]. Additionally, PRO-seq sensitively detects immediate changes in transcription

without the need for mature RNAs to accumulate or degrade. Lastly, nascent RNA profiling

determines RNA polymerase density within all genomic features, such as promoter-proximal

regions, gene bodies, and enhancers [152, 182, 183]. Changes in RNA polymerase distribution

within these regions can inform on how various treatments and stimuli regulate steps in the

transcription cycle [37, 152, 184]. Here, we describe quality control metrics that are used to

determine if PRO-seq libraries are worth proceeding with these or other downstream analyses.

New genomic nascent RNA-seq methodologies [147, 175, 179, 185, 186] necessitate flexible

analysis workflows and standardized quality control metrics [187]. We present the workflow as

deconstructed code that can be adapted to fit a diversity of protocols and experimental details.

2.5 Software and Hardware Requirements

Many processes, downloads, and software installations are reused throughout the analyses. Users

should periodically check for updated annotations and new software releases.

2.5.1 Dependencies, Software, and Scripts

We present specialized software and scripts herein, but much of the workflow depends upon more

general software. These general bioinformatic software tools are well-maintained and documented,

so we provide short descriptions and the links below.

• bedtools: a comprehensive suite of tools that efficiently perform a wide range of operations

on genomic intervals. [188]
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• bowtie2: aligns sequencing reads to reference sequences. [189]

• cutadapt: removes a defined sequence, such as adapter sequence, from sequencing reads.

[190]

• fastq_pair: outputs only sequencing reads that have a matched paired end read. [191]

• FLASH: merges paired end reads by detecting overlapping sequence. [192]

• fqdedup: removes duplicated sequences from FASTQ files. [193]

• samtools: a suite of tools for parsing and interfacing with high throughput sequencing

data files. [194]

• seqOutBias: software that parses files and outputs desired formats with the option to

correct enzymatic sequence biases. [195]

• seqtk: a multifunctional toolkit for processing sequence files, including trimming a defined

number of bases from the ends of reads and reverse complementing sequencing reads.

[196]

• sratoolkit: a suite of tools that interface with data deposited into the Sequence Read

Archive.

• wget: retrieves files from a wide range of internet protocols.

• R packages:

– lattice: graphics plotting package. [197]

– DESeq2: statistical package for quantifying differences in counts-based genomics data.

[198]

In addition, we developed the following software and R scripts to facilitate data analysis

and graphical output. Below, we use wget to retrieve the software and scripts. The command

chmod +x changes the permissions of the files to executable.

github=https://raw.githubusercontent.com/guertinlab
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wget ${github}/fqComplexity/main/fqComplexity

wget ${github}/fqComplexity/main/complexity_pro.R

wget ${github}/Nascent_RNA_Methods/main/insert_size.R

wget ${github}/Nascent_RNA_Methods/main/pause_index.R

wget ${github}/Nascent_RNA_Methods/main/exon_intron_ratio.R

wget ${github}/Nascent_RNA_Methods/main/plot_all_metrics.R

wget ${github}/Nascent_RNA_Methods/main/differential_expression.R

wget ${github}/Nascent_RNA_Methods/main/PRO_normalization

wget ${github}/Nascent_RNA_Methods/main/normalization_factor.R

wget ${github}/Nascent_RNA_Methods/main/normalize_bedGraph.py

chmod +x insert_size.R

chmod +x fqComplexity

chmod +x complexity_pro.R

chmod +x pause_index.R

chmod +x exon_intron_ratio.R

chmod +x plot_all_metrics.R

chmod +x differential_expression.R

chmod +x normalize_bedGraph.py

chmod +x normalization_factor.R

chmod +x PRO_normalization

Next, move the software dependencies and R scripts to a directory within the $PATH

variable.

2.5.2 Hardware

This workflow requires a single-core computer, 8GB of RAM, and 200GB hard drive space.

However, more RAM and multiple cores will greatly reduce compute time.
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2.6 Genome and Annotation Downloads and Processing

2.6.1 Reference Genomes

PRO-seq experiments have been performed in a variety of organisms, including yeast [199],

Drosophila [176, 183], and humans [200]. Analysis of the data requires alignment to a reference

genome annotation. The first step is to use wget to retrieve the reference genome. Many

websites host the assembly data in FASTA format, such as the human genome build 38 shown

below retrieved from the UCSC genome browser server [201]. The gunzip command unzips the

reference genome file, and bowtie2-build indexes the file to allow for efficient alignment. The

code also retrieves, unzips, and builds the human rDNA reference genome [202] so that we can

calculate rDNA alignment rates as a metric for nascent RNA purity.

wget https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz

gunzip hg38.fa.gz

bowtie2-build hg38.fa hg38

wget https://github.com/databio/ref_decoy/raw/master/human_rDNA.fa.gz

gunzip human_rDNA.fa.gz

bowtie2-build human_rDNA.fa human_rDNA

# Compute mappability for the given read length and the k-mer that corresponds to

# each possible read alignment position.

# This is the most time-consuming step of the seqOutBias command but can be

# completed once before processing the sequencing data

seqOutBias seqtable hg38.fa --read-size=62

2.6.2 Reference Gene Annotation

The quality control metrics outlined herein require the counting of sequence reads that align to

three genomic features: exons, introns, and promoter-proximal pause regions. Gene annotations

are available from many sources, and we outline retrieval and parsing of GTF files from Ensembl
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[203]. The Ensembl website (http://www.ensembl.org/index.html) contains the information

for the latest release, which at the time of writing this manuscript is release 104 for hg38.

After retrieving and unzipping the file, we parse out all exon 1 annotations. These coordinates

include all annotated transcription start sites that correspond to different gene isoforms. Ensembl

chromosome numbers do not include the preceding ”chr”, so the first sed command appends ”chr”

to the chromosome name for downstream compatibility with the reference genome chromosome

names. The output is then piped to awk, which prints the following fields: chromosome

coordinates in columns 1-3, Ensembl transcript ID (ENST), gene name, and strand. Subsequent

sed commands drop the semicolon and quote characters from the gene and Ensembl IDs

while editing the mitochondrial chromosome to match the reference genome, ”chrM” replacing

”chrMT.” Finally, we sort the exon output by the first column (chromosome), then the second

column (starting position), in ascending order. The gene annotations are processed similarly,

except the Ensembl gene ID (ENSG) replaces ENST in column 4, and we sort the file by the

fifth column (gene name).

release=104

file=Homo_sapiens.GRCh38.${release}.chr.gtf.gz

wget http://ftp.ensembl.org/pub/release-${release}/gtf/homo_sapiens/${file}

gunzip $file

# extract all exon 1 annotations

grep 'exon_number "1"' Homo_sapiens.GRCh38.${release}.chr.gtf | \

sed 's/^/chr/' | \

awk '{OFS="\t";} {print $1,$4,$5,$14,$20,$7}' | \

sed 's/";//g' | \

sed 's/"//g' | sed 's/chrMT/chrM/g' | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.tss.bed

# extract all exons
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grep 'exon_number' Homo_sapiens.GRCh38.${release}.chr.gtf | \

sed 's/^/chr/' | \

awk '{OFS="\t";} {print $1,$4,$5,$14,$20,$7}' | \

sed 's/";//g' | \

sed 's/"//g' | sed 's/chrMT/chrM/g' | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.all.exons.bed

# extract all complete gene annotations, sorted for use with join

awk '$3 == "gene"' Homo_sapiens.GRCh38.${release}.chr.gtf | \

sed 's/^/chr/' | \

awk '{OFS="\t";} {print $1,$4,$5,$10,$14,$7}' | \

sed 's/";//g' | \

sed 's/"//g' | sed 's/chrMT/chrM/g' | \

sort -k5,5 > Homo_sapiens.GRCh38.${release}.bed

# extract all complete gene annotations, sorted for use with bedtools map

awk '$3 == "gene"' Homo_sapiens.GRCh38.${release}.chr.gtf | \

sed 's/^/chr/' | \

awk '{OFS="\t";} {print $1,$4,$5,$10,$14,$7}' | \

sed 's/";//g' | \

sed 's/"//g' | sed 's/chrMT/chrM/g' | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}_sorted.bed

The following operations output: 1) a set of exons that excludes all instances of first

exons, 2) all potential pause regions for each gene, and 3) all introns. There are many exon 1

gene annotations depending on gene isoforms, and the upstream most annotated TSS is not

necessarily the most prominently transcribed isoform. We define the pause window for a gene

as position 20 - 120 downstream of the most prominent TSS. The most prominent TSS is

determined by calculating the density in this 20 - 120 window for all annotated TSSs for each

gene and choosing the TSS upstream of the most RNA-polymerase-dense region for each gene.

In order to define these windows, we use mergeBed to collapse all overlapping exon
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intervals and then subtractBed to exclude all first exon coordinates from the merged exon file.

Since mergeBed drops the gene name, we use intersectBed to reassign gene names to all

remaining exons. The awk command defines the 100 base pause region window downstream of

all transcription start sites based on the gene strand. Lastly, we subtract the exons from the full

gene coordinates to produce the intron annotations.

# merge exon intervals that overlap each other

mergeBed -s -c 6 -o distinct -i Homo_sapiens.GRCh38.${release}.all.exons.bed | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$2,$4}' |

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.all.exons.merged.bed

# remove all first exons

# (so pause region is excluded from exon / intron density ratio)

subtractBed -s -a Homo_sapiens.GRCh38.${release}.all.exons.merged.bed \

-b Homo_sapiens.GRCh38.${release}.tss.bed | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.no.first.exons.bed

# extract gene names of exons

intersectBed -s -wb -a Homo_sapiens.GRCh38.${release}.no.first.exons.bed \

-b Homo_sapiens.GRCh38.${release}.bed | \

awk '{OFS="\t";} {print $1,$2,$3,$11,$4,$4}' | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.no.first.exons.named.bed

# extract the pause region from the first exons,

# position 20 - 120 downstream of the TSS

awk '{OFS="\t";} $6 == "+" {print $1,$2+20,$2 + 120,$4,$5,$6} \

$6 == "-" {print $1,$3 - 120,$3 - 20,$4,$5,$6}' \

Homo_sapiens.GRCh38.${release}.tss.bed | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.pause.bed

# define and name all introns

subtractBed -s -a Homo_sapiens.GRCh38.${release}.bed \
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-b Homo_sapiens.GRCh38.${release}.all.exons.merged.bed | \

sort -k1,1 -k2,2n > Homo_sapiens.GRCh38.${release}.introns.bed

2.7 Processing PRO-seq Data

2.7.1 Initialize Variables

In order to automate the processing and naming of output files, we conform to a strict naming

convention for the FASTQ files: cellType_conditions_replicate_pairedend.fastq.gz. For example,

a gzipped paired end 1 (PE1) file from the first replicate of treating T47D cells with DMSO

would be: T47D_DMSO_rep1_PE1.fastq.gz.

We first initialize six variables:

• $directory: location of the sequencing files

• $filename: name of the gzipped paired end 1 FASTQ file.

• $annotation_prefix: Ensembl gene annotation GTF prefix; this is the user-defined prefix

from above.

• $UMI_length: length of the UMI on the 5´ end of the paired end 1 read.

• $read_size: read length minus UMI length.

• $cores: number of cores for parallel processing.

• $genome: absolute or relative path to the genome FASTA file.

• $genome_index: the basename (including the path) of the genome index files from

bowtie2-build.

• $prealign_rdna_index: the basename (including the path) of the prealign rDNA index

files from bowtie2-build.

• $tallymer and $table: outputs of the seqOutBias command above for a given genome

and read length.
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directory=/Users/genomicslab/sequencing_run1

filename=T47D_DMSO_rep1_PE1.fastq

annotation_prefix=Homo_sapiens.GRCh38.104

UMI_length=8

read_size=62

cores=6

genome=hg38.fa

genome_index=hg38

prealign_rdna_index=human_rDNA

tallymer=hg38.tal_${read_size}.gtTxt.gz

table=hg38_${read_size}.4.2.2.tbl

2.7.2 Preprocessing

Make a working directory, download the files from GEO accession GSE184378, and save the

basename as a variable.

mkdir -p $directory

cd $directory

fasterq-dump SRR15944159

mv SRR15944159_1.fastq T47D_DMSO_rep1_PE1.fastq

mv SRR15944159_2.fastq T47D_DMSO_rep1_PE2.fastq

filename=T47D_DMSO_rep1_PE1.fastq

name=$(echo $filename | awk -F"_PE1.fastq" '{print $1}')

echo $name

2.7.3 Processing Reads

Here we describe processing and analysis of paired end PRO-seq libraries with unique molecular

identifiers ligated to the 3′ end of the nascent RNA. The user may need to modify or omit

specific steps in order to accommodate their library preparation protocol.
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The first processing step is to remove adapter sequences and simultaneously discard

reads that have insert sizes of one base. If the adapters ligate directly to one another, the UMI is

treated as an insert to cutadapt and the effective insert length is equal to the UMI length. The

option -m $((UMI_length+2)) provides a one base buffer and discards reads with a length of

less than the UMI length + 2.

The fraction of reads that represent adapter/adapter ligation products is a useful metric

to help determine the raw read depth needed to achieve a specified aligned read depth. FASTQ

files contain four lines per sequence entry, so we calculate the raw sequencing depth by first

using wc -l to count the number of lines in the original FASTQ file and using awk 'print

$1/4' to divide by 4. We perform the same operation on the file containing reads with 0 or

1 base insertions. Finally, we use $(echo "scale=2 ; $PE1_w_Adapter / $PE1_total" |

bc) to divide the adapter/adapter ligation product value by the total and round to the nearest

hundredth.

The proportion of reads that are adapter/adapter ligation products varies widely depending

upon whether a size selection was performed in the library preparation. We recently excluded

the size selection step from the PRO-seq protocol to reduce bias against small RNA inserts

[152, 187]. If no size selection is performed, the adapter/adapter ligation fraction can be quite

high resulting in low effective sequencing depth. In a later section we provide a formula for

determining the required raw sequencing depth to result in a desired number of concordant

aligned reads. We typically recommend further sequencing if all other QC metrics indicate that

the data is high quality. However, if more than 80% of the reads are adapter/adapter ligation

products, the user should balance the cost of performing another experiment with sequencing

uninformative adapter sequences.

The fraction of adapter/adapter reads and this 0.80 threshold is printed to

$name_QC_metrics.txt. We continue to append all metrics and thresholds to this file and plot

the data at the end of the workflow.

cutadapt --cores=$cores -m $((UMI_length+2)) -O 1 -a TGGAATTCTCGGGTGCCAAGG \
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${name}_PE1.fastq -o ${name}_PE1_noadap.fastq \

--too-short-output ${name}_PE1_short.fastq > ${name}_PE1_cutadapt.txt

cutadapt --cores=$cores -m $((UMI_length+10)) -O 1 -a GATCGTCGGACTGTAGAACTCTGAAC \

${name}_PE2.fastq -o ${name}_PE2_noadap.fastq \

--too-short-output ${name}_PE2_short.fastq > ${name}_PE2_cutadapt.txt

PE1_total=$(wc -l ${name}_PE1.fastq | awk '{print $1/4}')

PE1_w_Adapter=$(wc -l ${name}_PE1_short.fastq | awk '{print $1/4}')

AAligation=$(echo "scale=2 ; $PE1_w_Adapter / $PE1_total" | bc)

echo -e "value\texperiment\tthreshold\tmetric" > ${name}_QC_metrics.txt

echo -e "$AAligation\t$name\t0.80\tAdapter/Adapter" >> ${name}_QC_metrics.txt

The next step removes reads that are shorter than 10 bases.

seqtk seq -L $((UMI_length+10)) ${name}_PE1_noadap.fastq \

> ${name}_PE1_noadap_trimmed.fastq

A proportion of short nascent RNAs from different cells are identical because their

5´ end corresponds to a transcription start site, and their 3´ end is located within a focused

promoter-proximal pause region [176]. Therefore, we cannot filter potential PCR duplicates

based on whether two independent pairs of reads have identical paired end read alignments. We

rely on the presence of the UMI to remove PCR duplicates from the PE1 FASTQ file. We use

fastq_pair to deduplicate the PE2 read by pairing with the deduplicated PE1 file. In theory,

counting the number of reads and providing this number as a table size for fastq_pair should

make it run more quickly, but we have found, at least recently, that it takes much longer. If this

is the case, remove the -t option.

# remove PCR duplicates

fqdedup -i ${name}_PE1_noadap_trimmed.fastq -o ${name}_PE1_dedup.fastq

# this variable is a near-optimal table size value for fastq_pair:

PE1_noAdapter=$(wc -l ${name}_PE1_dedup.fastq | awk '{print $1/4}')
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# pair FASTQ files

fastq_pair -t $PE1_noAdapter ${name}_PE1_dedup.fastq ${name}_PE2_noadap.fastq

2.7.4 RNA Degradation Ratio Score

An abundance of short inserts within a library indicates that RNA degradation occurred. We

measure RNA degradation by searching for overlap between paired-end reads with flash and

plotting the resultant histogram output with insert_size.R (Figure 1). RNA starts to protrude

from the RNA Polymerase II exit channel at approximately 20 bases in length, so 20 bases of

the nascent RNA are protected from degradation during the run-on. Libraries with a substantial

amount of degradation after the run-on step are enriched for species in the range 10 - 20. We

empirically found that there are fewer reads within the range 10 - 20 than within the range 30 - 40

for high-quality libraries [187]. A degradation ratio of less than 1 indicates a high-quality library.

This metric becomes unreliable if the protocol includes size selection to remove adapter/adapter

ligation products. Size selection inevitably removes some small RNAs and inflates this ratio.

flash -q --compress-prog=gzip --suffix=gz ${name}_PE1_dedup.fastq.paired.fq \

${name}_PE2_noadap.fastq.paired.fq -o ${name}

insert_size.R ${name}.hist ${UMI_length}

2.7.5 Processing for Alignment

The final processing step reverse complements and removes the UMI from both paired-end reads.

seqtk trimfq -b ${UMI_length} ${name}_PE1_dedup.fastq | seqtk seq -r - \

> ${name}_PE1_processed.fastq

seqtk trimfq -e ${UMI_length} ${name}_PE2_noadap.fastq | seqtk seq -r - \

> ${name}_PE2_processed.fastq
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Figure 2.1: Library insert size is a measure of RNA degradation. The plot illustrates the
frequency (y-axis) of insert size lengths (x-axis) for the PRO-seq library. The ratio of read counts
in the 10 - 20 base range (blue region) to read counts in the 30 - 40 range (red region) is the
degradation ratio. High-quality PRO-seq libraries have degradation ratios less than 1.

2.7.6 Remove Reads Aligning to rDNA

While between 70 - 80% of stable RNA is rRNA, generally less than 20% of the nascent

RNA arises from rRNA. By first aligning to the rDNA, we can later estimate nascent RNA

purity. Any reads that map non-uniquely to both rDNA and non-rDNA regions in the genome

result in artifactual spikes at regions in the genome that share homology with the rDNA locus.

Before aligning to the genome, we first align reads to rDNA and use samtools fastq and

the -f 0x4 flag to specify that only unmapped reads are included in the FASTQ output.

We recommend the following site to help understand the meaning of samtools flags: https:

//broadinstitute.github.io/picard/explain-flags.html.

bowtie2 -p $((cores-2)) -x $prealign_rdna_index -U ${name}_PE1_processed.fastq \

2>${name}_bowtie2_rDNA.log | samtools sort -n - | samtools fastq -f 0x4 - \

> ${name}_PE1.rDNA.fastq

https://broadinstitute.github.io/picard/explain-flags.html
https://broadinstitute.github.io/picard/explain-flags.html
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# This removes PE2-aligned reads with an rDNA-aligned mate

reads=$(wc -l ${name}_PE1.rDNA.fastq | awk '{print $1/4}')

fastq_pair -t $reads ${name}_PE1.rDNA.fastq ${name}_PE2_processed.fastq

2.7.7 Genome Alignment

The last processing step for individual libraries is to align to the genome. We invoke the --rf

flag to account for the fact that we reverse complemented both reads. The samtools commands

convert the file to a compressed binary BAM format and sort the reads.

bowtie2 -p $((cores-2)) --maxins 1000 -x $genome_index --rf \

-1 ${name}_PE1.rDNA.fastq.paired.fq \

-2 ${name}_PE2_processed.fastq.paired.fq 2>${name}_bowtie2.log \

| samtools view -b - | samtools sort - -o ${name}.bam

2.7.8 rDNA Alignment Rate

In order to calculate the rDNA alignment rate, we first count the total number of rDNA-aligned

reads. Next, we use samtools view -c -f 0x42 to count the PE1 reads that concordantly

align to hg38 and not to rDNA. Lastly, we calculate the fraction of aligned reads that map to

the rDNA locus and print it to the QC metrics file.

#calculate the total number of rDNA-aligned reads

PE1_prior_rDNA=$(wc -l ${name}_PE1_processed.fastq | awk '{print $1/4}')

PE1_post_rDNA=$(wc -l ${name}_PE1.rDNA.fastq | awk '{print $1/4}')

total_rDNA=$(echo "$(($PE1_prior_rDNA-$PE1_post_rDNA))")

#calculate the total that concordantly align to hg38 and/or rDNA

concordant_pe1=$(samtools view -c -f 0x42 ${name}.bam)

total=$(echo "$(($concordant_pe1+$total_rDNA))")

#rDNA alignment rate
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rDNA_alignment=$(echo "scale=2 ; $total_rDNA / $total" | bc)

echo -e "$rDNA_alignment\t$name\t0.20\trDNA Alignment Rate" \

>> ${name}_QC_metrics.txt

2.7.9 Mappability rate

The majority of reads should map concordantly to the genome. We expect an alignment rate

above 80% for high quality libraries. As described above, we use samtools and wc -l to count

concordantly aligned reads in the BAM alignment file and the pre-alignment FASTQ files and then

divide these values to calculate the alignment rate. We found that low alignment rates typically

arise from either poor quality sequencing or microorganism contamination of reagents/buffers.

We recommend using FastQC to determine if the poor alignment is due to a problem with

the FASTQ base quality scores [204]. If the user suspects that the poor alignment is due to

xenogeneic DNA contamination, we recommend using BLAST to query unaligned sequences to

genome databases [205]. The user can leverage the sequences to design PCR primers for the

contaminating species and test reagents to identify the source.

map_pe1=$(samtools view -c -f 0x42 ${name}.bam)

pre_alignment=$(wc -l ${name}_PE1.rDNA.fastq.paired.fq | awk '{print $1/4}')

alignment_rate=$(echo "scale=2 ; $map_pe1 / $pre_alignment" | bc)

echo -e "$alignment_rate\t$name\t0.80\tAlignment Rate" >> ${name}_QC_metrics.txt

2.7.10 Complexity and Theoretical Read Depth

The proportion of PCR duplicates in a library affects how many additional raw sequencing

reads are required to achieve a target number of concordantly aligned reads. We developed

fqComplexity to serve two purposes:

1) Calculate the number of reads that are non-PCR duplicates as a metric for complexity.

2) Provide a formula and constants to calculate the theoretical read depth that will result in a
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concordantly aligned reads using the following
equation and parameters:
read_depth = b1 * ln( b2 / (b2 − Concordant_Aligned) )
b1 =  1.52e+08
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Figure 2.2: Library complexity captures information about PCR over-amplification and
read depth requirements for a sample. A) We subsample the pre-processed FASTQ file to
the indicated read depths (x-axis) and plot this value against the number of unique subsampled
reads (y-axis). The plot includes an asymptotic regression model curve and prints the estimated
number of unique reads at a read depth of 10 million. B) We use the fraction of raw PE1 reads
that do not contain adapter ligation products or small inserts, the fraction of deduplicated reads
that align concordantly to the non-rDNA genome, and the data from panel A to derive the
theoretical read depth equation and parameters.

user-defined number of concordant aligned reads.

The proportion of reads that are PCR duplicates is related to read depth. At very

low read depth, nearly all reads are unique; at very high read depth, the observed fraction of

duplicates approaches the true PCR duplicate rate of the library. We calculate the PCR duplicate

rate using the processed FASTQ file without adapter/adapter ligation products or small inserts.

The FASTQ file is randomly subsampled to read depths of 10%, 20%, 30%, ..., 100%, and

the intermediate files are deduplicated. We print the total and deduplicated counts for each

subsample to the $name_complexity.log file. The R script fits an asymptotic regression model

and plots the model and data (Figure 2.2A). We recommend that at least 75% of reads are

unique at a read depth of 10 million.

fqComplexity -i ${name}_PE1_noadap_trimmed.fastq
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Sequencing depth requirements vary depending upon downstream applications and the

size/gene density of the genome. We recommend three replicates and over 10 million concordantly

aligned reads per replicate for differential expression analysis with human cells. Data-driven

approaches to define gene annotations or identify regulatory elements require higher sequencing

depth. We need two factors to calculate the raw read depth necessary to achieve a specified

target concordantly aligned depth. The first value is the fraction of raw PE1 reads that do not

contain adapter/adapter ligation products or small inserts: $factorX. The second value is the

fraction of deduplicated reads that align concordantly to the non-rDNA genome: $factorY.

Finally, we run fqComplexity and specify the -x and -y options to fit an asymptotic regression

model to the factor-scaled log file. fqComplexity searches for and reuses the previous log file to

avoid unnecessarily repeating subsampling and deduplication. We use the equation and constants

printed in the PDF output (Figure 2.2B) to determine the practicality of increasing depth using

the same libraries.

PE1_total=$(wc -l ${name}_PE1.fastq | awk '{print $1/4}')

PE1_noadap_trimmed=$(wc -l ${name}_PE1_noadap_trimmed.fastq | awk '{print $1/4}')

factorX=$(echo "scale=2 ; $PE1_noadap_trimmed / $PE1_total" | bc)

echo fraction of reads that are not adapter/adapter ligation products \

or below 10 base inserts

echo $factorX

# calculate PE1 deduplicated reads

PE1_dedup=$(wc -l ${name}_PE1_dedup.fastq | awk '{print $1/4}')

# divide

factorY=$(echo "scale=2 ; $concordant_pe1 / $PE1_dedup" | bc)

# re-run with factors
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fqComplexity -i ${name}_PE1_noadap_trimmed.fastq -x $factorX -y $factorY

2.7.11 Run-on Efficiency

RNA polymerases that are associated with gene bodies efficiently incorporate nucleotides during

the run-on reaction under most conditions, but promoter-proximal paused RNA polymerase

requires high salt or detergent to run-on efficiently [182, 206]. Therefore, the pause index, or the

density of signal in the promoter-proximal pause region divided by density in the gene body, is an

indirect measure of run-on efficiency. Since pause windows are user-defined and variable, pause

indices can differ substantially based on how they are calculated.

To determine the coverage of PRO-seq signal in genomic intervals, it is convenient to

convert the genomic signal to a BED6 file format. Although we are not correcting enzymatic

sequence bias in this workflow, we use seqOutBias with the --no-scale option to convert the

BAM file. We include the --tail-edge option to realign the end of the read so that the exact

position of RNA Polymerase is specified in the BED6 output file. The --out-split-pairends

option separates all the paired-end reads, and --stranded prints strand information in column

6.

#convert to bigWig and BED6

seqOutBias scale $table ${name}.bam --no-scale --stranded \

--bed-stranded-positive --bw=$name.bigWig --bed=$name.bed \

--out-split-pairends --only-paired --tail-edge \

--read-size=$read_size --tallymer=$tallymer

#Remove chromosomes not in the gene annotation file and sort for use in mapBed

grep -v "random" ${name}_not_scaled_PE1.bed | grep -v "chrUn" | \

grep -v "chrEBV" | sort -k1,1 -k2,2n > ${name}_tmp.txt

mv ${name}_tmp.txt ${name}_not_scaled_PE1.bed

#count reads in pause region

mapBed -null "0" -s -a $annotation_prefix.pause.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | sort -k5,5 -k7,7nr | \
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sort -k5,5 -u > ${name}_pause.bed

#discard anything with chr and strand inconsistencies

join -1 5 -2 5 ${name}_pause.bed $annotation_prefix.bed | \

awk '{OFS="\t";} $2==$8 && $6==$12 \

{print $2, $3, $4, $1, $6, $7, $9, $10}' | \

awk '{OFS="\t";} $5 == "+" {print $1,$2+480,$8,$4,$6,$5} \

$5 == "-" {print $1,$7,$2 - 380,$4,$6,$5}' | \

awk '{OFS="\t";} $3>$2 {print $1,$2,$3,$4,$5,$6}' | \

sort -k1,1 -k2,2n > ${name}_pause_counts_body_coordinates.bed

#column ten is Pause index

mapBed -null "0" -s -a ${name}_pause_counts_body_coordinates.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$5,$6,$7,$5/100,$7/($3 - $2)}' | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$5,$6,$7,$8,$9,$8/$9}' \

> ${name}_pause_body.bed

We use an R script to calculate pause indices and plot the distribution of log10 pause

index values as a PDF (Figure 2.3).

pause_index.R ${name}_pause_body.bed

2.7.12 Estimate Nascent RNA Purity with Exon/Intron Density Ratio

Exon and intron densities within each gene are comparable in nascent RNA-seq data. In contrast,

RNA-seq primarily measures mature transcripts, and exon density far exceeds intron density. We

can infer mature RNA contamination in PRO-seq libraries if we detect a high exon density to

intron density ratio. We exclude contributions from the first exon because pausing occurs in this

region and artificially inflates the exon density. The distribution of log10 exon density to intron

density ratios is output as a PDF (Figure 2.4). This metric complements rDNA alignment rate

to determine nascent RNA purity.
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Figure 2.3: Pause index is a measure of nuclear run-on efficiency. The plot illustrates the
distribution of log10 pause indices and includes a threshold line at a raw pause index of 10. A
median pause index below 10 indicates that the library may be of poor quality.

mapBed -null "0" -s -a $annotation_prefix.introns.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

awk '{OFS="\t";} {print $1,$2,$3,$5,$5,$6,$7,($3 - $2)}' \

> ${name}_intron_counts.bed

mapBed -null "0" -s -a $annotation_prefix.no.first.exons.named.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$4,$6,$7,($3 - $2)}' \

> ${name}_exon_counts.bed

exon_intron_ratio.R ${name}_exon_counts.bed ${name}_intron_counts.bed

2.7.13 Remove intermediate files and zip raw sequencing files

Calculating these quality control metrics necessitates many intermediate files. Many files are

unused output from various processing steps or only used briefly. FASTQ files are large and

rarely used in downstream analyses, so the following code chunk removes intermediate FASTQ

files and compresses the original files.
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Figure 2.4: Exon density to intron density ratio is a measure of nascent RNA purity.
The plot illustrates the distribution of log10 exon density to intron density ratios and includes a
threshold line at a raw ratio of 2. A median ratio below 2 indicates mature RNA contamination
is low.

rm ${name}_PE1_short.fastq

rm ${name}_PE2_short.fastq

rm ${name}_PE1_noadap.fastq

rm ${name}_PE2_noadap.fastq

rm ${name}_PE1_noadap_trimmed.fastq

rm ${name}_PE1_dedup.fastq

rm ${name}_PE1_processed.fastq

rm ${name}_PE2_processed.fastq

rm ${name}_PE1_dedup.fastq.paired.fq

rm ${name}_PE2_noadap.fastq.paired.fq

rm ${name}_PE1_dedup.fastq.single.fq

rm ${name}_PE2_noadap.fastq.single.fq

rm ${name}_PE1.rDNA.fastq.paired.fq

rm ${name}_PE1.rDNA.fastq.single.fq

rm ${name}_PE2_processed.fastq.paired.fq

rm ${name}_PE2_processed.fastq.single.fq

rm ${name}.extendedFrags.fastq.gz

rm ${name}.notCombined_1.fastq.gz
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rm ${name}.notCombined_2.fastq.gz

gzip ${name}_PE1.fastq

gzip ${name}_PE2.fastq

2.7.14 Pipeline Automation

We present the deconstructed workflow above because it is helpful to run through the code

chunks individually to gain further understanding of each step. A more complete understanding

of the processes allows the user to modify steps based on PRO-seq protocol variations. However,

automation of routine processing and analysis is more practical once a workflow is established.

Below, we provide a shell script loop that will process each set of paired end files in series. This

loop can be adapted to perform all processing in parallel using a job scheduler and submission of

a batch script for each set of paired end input files.

#initialize variables

directory=/Users/genomicslab/sequencing_run1_series

annotation_prefix=Homo_sapiens.GRCh38.104

UMI_length=8

read_size=62

cores=10

genome=hg38.fa

genome_index=hg38

prealign_rdna_index=human_rDNA

tallymer=hg38.tal_${read_size}.gtTxt.gz

table=hg38_${read_size}.4.2.2.tbl

mkdir -p $directory

cd $directory

for i in {59..62}

do

fasterq-dump SRR159441${i}
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done

mv SRR15944159_1.fastq T47D_Starved_DMSO_rep1_PE1.fastq

mv SRR15944159_2.fastq T47D_Starved_DMSO_rep1_PE2.fastq

mv SRR15944160_1.fastq T47D_Starved_DMSO_rep2_PE1.fastq

mv SRR15944160_2.fastq T47D_Starved_DMSO_rep2_PE2.fastq

mv SRR15944161_1.fastq T47D_Starved_Estrogen_rep1_PE1.fastq

mv SRR15944161_2.fastq T47D_Starved_Estrogen_rep1_PE2.fastq

mv SRR15944162_1.fastq T47D_Starved_Estrogen_rep2_PE1.fastq

mv SRR15944162_2.fastq T47D_Starved_Estrogen_rep2_PE2.fastq

for i in {65..72}

do

fasterq-dump SRR273143${i}

done

mv SRR27314365_1.fastq T47D_Complete_Tamoxifen_rep2_PE1.fastq

mv SRR27314365_2.fastq T47D_Complete_Tamoxifen_rep2_PE2.fastq

mv SRR27314366_1.fastq T47D_Complete_Tamoxifen_rep1_PE1.fastq

mv SRR27314366_2.fastq T47D_Complete_Tamoxifen_rep1_PE2.fastq

mv SRR27314367_1.fastq T47D_Complete_Raloxifene_rep2_PE1.fastq

mv SRR27314367_2.fastq T47D_Complete_Raloxifene_rep2_PE2.fastq

mv SRR27314368_1.fastq T47D_Complete_Raloxifene_rep1_PE1.fastq

mv SRR27314368_2.fastq T47D_Complete_Raloxifene_rep1_PE2.fastq

mv SRR27314369_1.fastq T47D_Complete_Fulvestrant_rep2_PE1.fastq

mv SRR27314369_2.fastq T47D_Complete_Fulvestrant_rep2_PE2.fastq

mv SRR27314370_1.fastq T47D_Complete_Fulvestrant_rep1_PE1.fastq

mv SRR27314370_2.fastq T47D_Complete_Fulvestrant_rep1_PE2.fastq

mv SRR27314371_1.fastq T47D_Complete_DMSO_rep2_PE1.fastq

mv SRR27314371_2.fastq T47D_Complete_DMSO_rep2_PE2.fastq

mv SRR27314372_1.fastq T47D_Complete_DMSO_rep1_PE1.fastq
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mv SRR27314372_2.fastq T47D_Complete_DMSO_rep1_PE2.fastq

for filename in *PE1.fastq

do

name=$(echo $filename | awk -F"_PE1.fastq" '{print $1}')

echo $name

echo 'removing dual adapter ligations and calculating'

echo 'the fraction of adapter/adapters in' $name

cutadapt --cores=$cores -m $((UMI_length+2)) -O 1 -a TGGAATTCTCGGGTGCCAAGG \

${name}_PE1.fastq -o ${name}_PE1_noadap.fastq --too-short-output \

${name}_PE1_short.fastq > ${name}_PE1_cutadapt.txt

cutadapt --cores=$cores -m $((UMI_length+10)) -O 1 \

-a GATCGTCGGACTGTAGAACTCTGAAC ${name}_PE2.fastq \

-o ${name}_PE2_noadap.fastq --too-short-output \

${name}_PE2_short.fastq > ${name}_PE2_cutadapt.txt

PE1_total=$(wc -l ${name}_PE1.fastq | awk '{print $1/4}')

PE1_w_Adapter=$(wc -l ${name}_PE1_short.fastq | awk '{print $1/4}')

AAligation=$(echo "scale=2 ; $PE1_w_Adapter / $PE1_total" | bc)

echo -e "value\texperiment\tthreshold\tmetric" > ${name}_QC_metrics.txt

echo -e "$AAligation\t$name\t0.80\tAdapter/Adapter" >> ${name}_QC_metrics.txt

echo 'removing short RNA insertions in' $name

seqtk seq -L $((UMI_length+10)) ${name}_PE1_noadap.fastq \

> ${name}_PE1_noadap_trimmed.fastq

echo 'removing PCR duplicates from' $name

fqdedup -i ${name}_PE1_noadap_trimmed.fastq -o ${name}_PE1_dedup.fastq

PE1_noAdapter=$(wc -l ${name}_PE1_dedup.fastq | awk '{print $1/4}')

fastq_pair -t $PE1_noAdapter ${name}_PE1_dedup.fastq ${name}_PE2_noadap.fastq

echo 'calculating and plotting RNA insert sizes from' $name

flash -q --compress-prog=gzip --suffix=gz ${name}_PE1_dedup.fastq.paired.fq \

${name}_PE2_noadap.fastq.paired.fq -o ${name}

insert_size.R ${name}.hist ${UMI_length}
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echo 'trimming off the UMI from' $name

seqtk trimfq -b ${UMI_length} ${name}_PE1_dedup.fastq | \

seqtk seq -r - > ${name}_PE1_processed.fastq

seqtk trimfq -e ${UMI_length} ${name}_PE2_noadap.fastq | \

seqtk seq -r - > ${name}_PE2_processed.fastq

echo 'aligning' $name 'to rDNA and removing aligned reads'

bowtie2 -p $((cores-2)) -x $prealign_rdna_index \

-U ${name}_PE1_processed.fastq 2>${name}_bowtie2_rDNA.log | \

samtools sort -n - | samtools fastq -f 0x4 - \

> ${name}_PE1.rDNA.fastq

reads=$(wc -l ${name}_PE1.rDNA.fastq | awk '{print $1/4}')

fastq_pair -t $reads ${name}_PE1.rDNA.fastq ${name}_PE2_processed.fastq

echo 'aligning' $name 'to the genome'

bowtie2 -p $((cores-2)) --maxins 1000 -x $genome_index --rf \

-1 ${name}_PE1.rDNA.fastq.paired.fq \

-2 ${name}_PE2_processed.fastq.paired.fq 2>${name}_bowtie2.log | \

samtools view -b - | samtools sort - -o ${name}.bam

PE1_prior_rDNA=$(wc -l ${name}_PE1_processed.fastq | awk '{print $1/4}')

PE1_post_rDNA=$(wc -l ${name}_PE1.rDNA.fastq | awk '{print $1/4}')

total_rDNA=$(echo "$(($PE1_prior_rDNA-$PE1_post_rDNA))")

concordant_pe1=$(samtools view -c -f 0x42 ${name}.bam)

total=$(echo "$(($concordant_pe1+$total_rDNA))")

rDNA_alignment=$(echo "scale=2 ; $total_rDNA / $total" | bc)

echo -e "$rDNA_alignment\t$name\t0.10\trDNA Alignment Rate" \

>> ${name}_QC_metrics.txt

map_pe1=$(samtools view -c -f 0x42 ${name}.bam)

pre_alignment=$(wc -l ${name}_PE1.rDNA.fastq.paired.fq | \

awk '{print $1/4}')

alignment_rate=$(echo "scale=2 ; $map_pe1 / $pre_alignment" | bc)

echo -e "$alignment_rate\t$name\t0.80\tAlignment Rate" \

>> ${name}_QC_metrics.txt
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echo 'plotting and calculating complexity for' $name

fqComplexity -i ${name}_PE1_noadap_trimmed.fastq

echo 'calculating and plotting theoretical sequencing depth'

echo 'to achieve a defined number of concordantly aligned reads for' $name

PE1_total=$(wc -l ${name}_PE1.fastq | awk '{print $1/4}')

PE1_noadap_trimmed=$(wc -l ${name}_PE1_noadap_trimmed.fastq | \

awk '{print $1/4}')

factorX=$(echo "scale=2 ; $PE1_noadap_trimmed / $PE1_total" | bc)

echo 'fraction of reads that are not adapter/adapter ligation products'

echo 'or below 10 base inserts'

echo $factorX

PE1_dedup=$(wc -l ${name}_PE1_dedup.fastq | awk '{print $1/4}')

factorY=$(echo "scale=2 ; $concordant_pe1 / $PE1_dedup" | bc)

fqComplexity -i ${name}_PE1_noadap_trimmed.fastq -x $factorX -y $factorY

echo 'Separating paired end reads and creating genomic BED and bigWig'

echo 'intensity files for' $name

seqOutBias scale $table ${name}.bam --no-scale --stranded \

--bed-stranded-positive --bw=$name.bigWig --bed=$name.bed \

--out-split-pairends --only-paired \

--tail-edge --read-size=$read_size --tallymer=$tallymer

grep -v "random" ${name}_not_scaled_PE1.bed | grep -v "chrUn" | \

grep -v "chrEBV" | sort -k1,1 -k2,2n > ${name}_tmp.txt

mv ${name}_tmp.txt ${name}_not_scaled_PE1.bed

mapBed -null "0" -s -a $annotation_prefix.pause.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

sort -k5,5 -k7,7nr | sort -k5,5 -u > ${name}_pause.bed

join -1 5 -2 5 ${name}_pause.bed $annotation_prefix.bed | \

awk '{OFS="\t";} $2==$8 && $6==$12 \

{print $2, $3, $4, $1, $6, $7, $9, $10}' | \

awk '{OFS="\t";} $5 == "+" {print $1,$2+480,$8,$4,$6,$5} \

$5 == "-" {print $1,$7,$2 - 380,$4,$6,$5}' | \
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awk '{OFS="\t";} $3>$2 {print $1,$2,$3,$4,$5,$6}' \

| sort -k1,1 -k2,2n > ${name}_pause_counts_body_coordinates.bed

mapBed -null "0" -s -a ${name}_pause_counts_body_coordinates.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$5,$6,$7,$5/100,$7/($3 - $2)}' | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$5,$6,$7,$8,$9,$8/$9}' \

> ${name}_pause_body.bed

pause_index.R ${name}_pause_body.bed

echo 'Calculating exon density / intron density'

echo 'as a metric for nascent RNA purity for' $name

mapBed -null "0" -s -a $annotation_prefix.introns.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

awk '{OFS="\t";} {print $1,$2,$3,$5,$5,$6,$7,($3 - $2)}' \

> ${name}_intron_counts.bed

mapBed -null "0" -s -a $annotation_prefix.no.first.exons.named.bed \

-b ${name}_not_scaled_PE1.bed | awk '$7>0' | \

awk '{OFS="\t";} {print $1,$2,$3,$4,$4,$6,$7,($3 - $2)}' \

> ${name}_exon_counts.bed

exon_intron_ratio.R ${name}_exon_counts.bed ${name}_intron_counts.bed

rm ${name}_PE1_short.fastq

rm ${name}_PE2_short.fastq

rm ${name}_PE1_noadap.fastq

rm ${name}_PE2_noadap.fastq

rm ${name}_PE1_noadap_trimmed.fastq

rm ${name}_PE1_dedup.fastq

rm ${name}_PE1_processed.fastq

rm ${name}_PE2_processed.fastq

rm ${name}_PE1_dedup.fastq.paired.fq

rm ${name}_PE2_noadap.fastq.paired.fq

rm ${name}_PE1_dedup.fastq.single.fq

rm ${name}_PE2_noadap.fastq.single.fq
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rm ${name}_PE1.rDNA.fastq.paired.fq

rm ${name}_PE1.rDNA.fastq.single.fq

rm ${name}_PE2_processed.fastq.paired.fq

rm ${name}_PE2_processed.fastq.single.fq

rm ${name}.extendedFrags.fastq.gz

rm ${name}.notCombined_1.fastq.gz

rm ${name}.notCombined_2.fastq.gz

done

2.7.15 Plot all QC metrics

Individual plots for each quality control metric provide valuable information about the data,

but each plot can be summarized as a single informative value. We empirically determined

thresholds for each value that constitute acceptable libraries. These thresholds are not absolute

and should only be used as guidelines. Below, we concatenate all the summarized metrics for the

experiments and plot the results (Figure 2.5) and thresholds. The user can quickly glance at the

plot to determine whether the quality control values fall within the acceptable range, which is

shaded light green. If values are within the dark pink region, then we recommend looking back

at the more detailed quality control plots to diagnose possible issues with the libraries. The user

can change the term ”Estrogen_treatment_PRO” to a description of their own experiment to

name the output file.

cat *_QC_metrics.txt | awk '!x[$0]++' > project_QC_metrics.txt

plot_all_metrics.R project_QC_metrics.txt Estrogen_treatment_PRO

2.8 Differential Expression with DESeq2

Differential expression analysis is a common first step after routine RNA-seq and PRO-seq data

processing. Below we present the bedtools command to count reads within gene annotations,

and we provide an R script for differential expression analysis with DESeq2. The script also plots
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Figure 2.5: A summary plot illustrates all quality control metrics and their respective
recommended thresholds. If all quality control values fall within the shaded light green range,
then the libraries are likely of high quality. If values are within the dark pink region, then we
recommend looking back at the more detailed quality control plots in Figures 2.1-2.4 to diagnose
possible issues with the libraries.
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the fold change between conditions and mean expression level for each gene. For simplicity, we

use the most upstream transcription start site and most downstream transcription termination

site for annotations, but there are more accurate methods to define primary transcripts [180,

181]. The R script requires three ordered arguments:

1) A file with the signal counts for each gene in every even row. 2) The prefix for the

baseline experimental condition for which to compare (often termed ”untreated”). 3) Prefix

name for the output PDF plot (Figure 2.6).
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Figure 2.6: Differential expression analysis quantifies transcriptomic changes upon
treating T47D cells with estrogen for an hour. Genes in red are classified as activated and
repressed based on a false discovery rate of 0.05.

for filename in *_not_scaled_PE1.bed

do

name=$(echo $filename | awk -F"_not_scaled_PE1.bed" '{print $1}')

echo -e "\t${name}" > ${name}_gene_counts.txt

mapBed -null "0" -s -a ${annotation_prefix}_sorted.bed -b $filename | \

awk '{OFS="\t";} {print $4,$7}' >> ${name}_gene_counts.txt
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done

paste -d'\t' *_gene_counts.txt > Estrogen_treatment_PRO_gene_counts.txt

differential_expression.R \

Estrogen_treatment_PRO_gene_counts.txt T47D_Starved_DMSO Estrogen_treatment

2.9 ER antagonists affect the same genes as ER agonists

The data used in the above analysis were generated from the luminal breast cancer cell line T47D.

Cells were either grown in hormone-starved medium and acutely treated with the estrogen receptor

(ER) agonist 17-beta-estradiol (estrogen) or grown in complete medium and acutely treated with

the ER antagonists fulvestrant, raloxifene, or tamoxifen. The purpose of the experiment was to

differentiate acute ER agonism from acute ER antagonism.

As ER is a defining feature of ER-positive breast cancer cells and a necessary TF for

these cells’ growth and proliferation, there have been multiple studies to identify the downstream

effectors of ER signaling, or ER target genes [207]. One feature of ER that makes this endeavor

easier is the ability to rapidly induce ER from an inactive state. After hormone starving cells by

growing them in charcoal-stripped media for several days, ER activity can be rapidly induced via

the addition of estrogen to the media. After this step, changes in transcription were originally

measured using tiled microarrays or RNA sequencing [207]. These measurements of RNA levels

required time points of many hours to days after the initial perturbation, in order for activated

transcripts to accumulate over baseline and repressed transcripts to be degraded.

However, changes in transcription at these time points reflect not only the primary

effects of the perturbation but also secondary effects and beyond. For example, if ER activates

transcription of another TF, then, once its gene product is transcribed and translated, this TF

will regulate additional genes, some of which are ER-independent. A study using cycloheximide

to inhibit translation and mitigate these secondary effects estimated that less than 30% of

estrogen-responsive genes are direct ER targets [208]. Additionally, various studies have identified
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widely divergent sets of ER target genes, with estimates of the number of estrogen-responsive

genes ranging from 100-1500 [209, 210]. To avoid these complications, a key step forward was

the use of global run-on and sequencing (GRO-seq) to identify ER target genes [37]. GRO-seq

directly measures the location of transcriptionally engaged RNA polymerases to determine the

effects of a perturbation on nascent transcription, thus allowing for measurements at time points

on the order of 30 minutes [211].

Still, all of these studies have measured ER activity after rapid induction from an inactive

state. This hormone-starved context is different from the physiological context in which ER

normally functions in patient tumors, with fluctuating but ever present levels of estrogen and

other hormones. We hypothesized that ER regulates distinct sets of genes initially versus at

steady state. This is the case for another rapidly inducible TF, HSF1, the binding sites for

which differ between oncogenically transformed cells with constitutive HSF1 activation and the

non-transformed progenitor cells after HSF1 activation with heat shock [212]. In the case of

ER, differences could be caused by differential expression of chromatin associated proteins in

hormone starved versus complete media.

Thus we performed the above experiment to compare the estrogen-activated genes to

the antagonist-repressed genes. When comparing the antagonists, we found that the effect

sizes were largest for fulvestrant and smallest for tamoxifen. Furthermore, the directions were in

the opposite direction and of smaller magnitude than the effects of estrogen. These high level

patterns can be observed in the principle component analysis plot (Figure 2.7).

To our surprise, we found no genes that were significantly repressed by the ER antagonists

that were not also significantly activated by estrogen. We did, however, find that not all estrogen-

activated genes were significantly antagonist-repressed. We wanted to determine whether this

was a qualitative difference, in which ER antagonists only repress a subset of estrogen-activated

genes, or a quantitative difference, in which ER antagonists repress all estrogen-activated genes

with a smaller effect size than the estrogen effect. To do so, we plotted the distribution of

effect sizes in the fulvestrant treatment for all estrogen-activated genes (Figure 2.8). We found
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that almost all estrogen-activated genes demonstrated a decrease in nascent transcription upon

fulvestrant treatment, even though not all these genes were significantly fulvestrant-repressed.

These data do not support our initial hypothesis that acute ER antagonism from a high activity

state would differ from acute ER agonism from a low activity state.

2.10 Conclusions

We provide standardized metrics and detailed plots that indicate whether libraries are of sufficiently

high quality to warrant downstream analysis. The presented analyses provide information about

RNA degradation, nascent RNA purity, alignment rate, library complexity, and nuclear run-on

efficiency. We deconstruct each analysis and explain the biological rationale of each metric. All

code and scripts are presented so that researchers can use this framework to develop their own

workflows and pipelines, or as Captain Barbossa succinctly stated: ”The code is more of what

you’d call guidelines than actual rules.”

2.11 Methods

2.11.1 Cell culture

T47D cells (RRID:CVCL_0553) (ATCC) were cultured in RPMI 1640 medium (Gibco) supple-

mented with 10% fetal bovine serum (Gemini).

2.11.2 Cell treatments

4 replicates were performed from cells treated and collected at different times in the same day.

For the hormone starved samples, 2*106 cells per sample were plated in 10cm dishes 4 days

before harvest. The following day, the medium was replaced with phenol red free RPMI 1640

medium (Gibco) supplemented with 10% charcoal-stripped/dextran-treated fetal bovine serum

(Cytiva). For the hormone replete samples, 3*106 cells per sample were plated in 10cm dishes 1

day before harvest. On the day of the harvest, the hormone starved cells were treated with 0.1%
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DMSO or 1nM estrogen (Sigma) in DMSO for 1 hour. The hormone replete cells were treated

with 0.1% DMSO or 100nM fulvestrant (Sigma), raloxifene hydrochloride (Sigma), or tamoxifen

(Sigma) in DMSO for 1 hour.

2.11.3 Cell permeabilization for PRO-seq

Cell permeabilization was performed as previously described [213], with modifications. At the

time of harvest, cells were scraped in 10mL ice cold PBS and washed in 5mL buffer W (10mM Tris-

HCl pH 7.5, 10mM KCl, 150mM sucrose, 5mM MgCltextsubscript2, 0.5mM CaCltextsubscript2,

0.5mM DTT, 0.004U/mL SUPERaseIN RNase inhibitor (Invitrogen), Complete protease inhibitors

(Roche)). Cells were permeabilized by incubating with buffer P (10 mM Tris-HCl pH 7.5, KCl 10

mM, 250 mM sucrose , 5 mM MgCltextsubscript2, 1 mM EGTA, 0.05% Tween-20, 0.1% NP40,

0.5 mM DTT, 0.004 units/mL SUPERaseIN RNase inhibitor (Invitrogen), Complete protease

inhibitors (Roche)) for 3 minutes on ice. Cells were washed with 10 mL buffer W before being

transferred into 1.5mL tubes using wide bore pipette tips. Finally, cells were resuspended in 50µL

buffer F (50mM Tris-HCl pH 8, 5mM MgCltextsubscript2, 0.1mM EDTA, 50% Glycerol, 0.5

mM DTT). Cells were snap frozen in liquid nitrogen and stored at -80°C. During these steps,

the first two replicates of each condition were lost due to aggressive aspiration instead of careful

decanting.

2.11.4 PRO-seq library preparation

PRO-seq libraries were prepared as previously described [152], with modifications. RNA

extraction after the run-on reaction was performed with 500µL Trizol LS (Thermo Fisher)

followed by 130µL chloroform (Sigma). The equivalent of 1µL of 50µM for each adapter was

used. A random eight base unique molecular identifier (UMI) was included at the 5′ end of

the adapter ligated to the 3′ end of the nascent RNA. For the reverse transcription reaction,

RP1 was used at 100µM and dNTP mix was used at 10mM each. Libraries were amplified by

PCR for a total of 10 cycles in 50µL reactions with Phusion polymerase (New England Biolabs).
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No PAGE purification was performed to ensure that our libraries were not biased against short

nascent RNA insertions.

2.12 Data Access

Raw sequencing files and processed bigWig files are available from GEO accession record

GSE184378.
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Figure 2.8: ER antagonists affect the same genes as ER agonists. Histogram of fold
changes upon one hour of fulvestrant treatment in T47D cells grown in complete media. Genes
used in this plot are significantly activated genes upon one hour of estrogen treatment in T47D
cells grown in hormone-starved media.
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Chapter 3

TRPS1 modulates chromatin accessibility to regulate

estrogen receptor alpha (ER) binding and ER target

gene expression in luminal breast cancer cells

3.1 Preface

This chapter is adapted from a manuscript under review at PLOS Genetics after revision.

Thomas G. Scott, Kizhakke Mattada Sathyan, Daniel Gioeli, Michael J. Guertin

3.2 Author contributions

All authors contributed to the conceptualization of the project. SKM contributed to the

methodology. TGS performed the experiments, analyzed the data, and wrote the original draft

of the manuscript. All authors reviewed and edited the manuscript.
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3.3 Abstract

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus

are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive

to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within

a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how

TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1

from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates

transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly

regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the

genome. ER redistribution leads to both repression and activation of dozens of ER target genes.

Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets

and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a

gene expression signature defined by primary TRPS1-regulated genes, is associated with worse
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breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1

modulates the genomic distribution of ER, both activating and repressing transcription of genes

related to cancer cell fitness.

3.4 Author Summary

Breast cancer is the most common cancer among women. The majority of cases are luminal,

which tend to be estrogen receptor alpha (ER)-positive. ER is well-studied among transcription

factors (TFs) because it is ligand-activated. This allows for the rapid induction of ER activity and

the identification of primary estrogen-responsive genes. Most TFs have not been so extensively

characterized, because their activity is not so rapidly perturbable. TRPS1 is an atypical GATA

family TF that is associated with corepressor complexes and transcriptional repression. Here, we

use an inducible degron tag system to rapidly deplete endogenously-tagged TRPS1 in luminal

breast cancer cells within 30 minutes. We find that TRPS1 directly decreases local chromatin

accessibility. This decreases ER binding intensity at TRPS1-proximal ER binding sites. As an

indirect effect, ER binding intensity distal to TRPS1 increases in intensity. These effects on ER

binding are associated with changes in ER target gene transcription, repressing or activating

these genes in concordance with the effect on ER binding intensity. Our work is consistent with

a model in which TFs either exclusively activate or exclusively repress transcription of their direct

target genes, with indirect primary response genes changing due to the redistribution of limiting

activating TFs or coactivators.

3.5 Introduction

Breast cancer is the most frequently diagnosed cancer in women, with an estimated lifetime risk of

about 1 in 8 for women in the United States [1]. Far from a monolithic disease, breast tumors can

be classified into subtypes based on gene expression, histology, and immunohistochemistry [14,

15]. The most common subtype is luminal breast cancer, which is typically estrogen receptor

alpha (ER)-positive [41].
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High lifetime exposure to endogenous estrogen is a strong risk factor for breast cancer

incidence [29]. Estrogen is a potent hormone that binds to ER, a ligand-activated transcription

factor (TF), which then homodimerizes, binds to reverse palindromic pairs of AGGTCA motifs

on DNA, and recruits cofactors to activate hundreds of genes that promote cell growth and

proliferation [36, 37]. In additional to surgery, radiation, and traditional chemotherapy, endocrine

therapies that inhibit endogenous estrogen production or binding to ER provide a significant

survival benefit to luminal breast cancer patients [39–41]. However, patients with advanced

disease frequently develop resistance to these therapies, though many endocrine therapy-resistant

luminal tumors still remain dependent on ER activity [46]. Thus, there is a need to identify

additional factors that regulate ER activity or genomic binding and contribute to breast tumor

progression.

TRPS1 is a member of the GATA-family of TFs that bind to (A/T)GATA(A/G) motifs on

DNA [60]. In contrast to the other six members of the GATA family that activate transcription,

TRPS1 directly represses transcription of target genes via its unique IKZF1-like zinc fingers [61].

TRPS1 has been shown to interact with multiple corepressors and lysine deacetylases, including

members of the NuRD and coREST complexes, to regulate transcription [53, 57, 58, 62, 63].

TRPS1 was first described as the gene mutated in cases of tricho-rhino-phalangeal

syndrome, an autosomal dominant disorder characterized by developmental abnormalities of the

hair, nose, and fingers [47]. TRPS1 is crucial for the proper development of several tissues,

including hair, bone, and kidney [48, 49]. As with many developmentally important genes co-

opted during the process of cancer initiation and progression, TRPS1 is commonly over-expressed

in breast tumors, both relative to normal tissue and relative to other tumor types [52, 54].

The transcriptional program that TRPS1 regulates in breast cancer is not fully understood.

Knockdown of TRPS1 in various breast cancer cell lines has been shown to increase markers

of epithelial to mesenchymal transition and genome instability [65–68]. Additionally, TRPS1

binding sites on chromatin overlap with those of YAP1 and ER, though this is coupled with a

genome-wide activation of YAP1 target genes but repression of ER target genes [53, 57].
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A key feature of these previous studies is the use of extended knockdown kinetics with

traditional RNA interference methods. Days after knockdown, the resultant effects represent not

only the primary TRPS1-responsive genes but also secondary and compensatory effects. As such,

we do not know which genes TRPS1 directly regulates and whether these genes are important

for breast cancer cell growth and proliferation.

In this study, we set out to directly assay the primary effects of TRPS1 on chromatin

accessibility, ER binding, and transcription in luminal breast cancer cells. To do so, we acutely

depleted TRPS1 protein levels using an inducible degron tag inserted into the endogenous TRPS1

locus. By performing sensitive genome-wide assays minutes to hours after TRPS1 depletion,

we demonstrated that TRPS1 changes chromatin structure, which allows ER to redistribute in

the genome. Along with this redistribution, we propose that TRPS1 both directly represses and

indirectly activates dozens of ER target genes at baseline. Furthermore, we defined a signature

of primary TRPS1-regulated genes that predicts breast cancer patient prognosis.

3.6 Results

3.6.1 TRPS1 is associated with breast cancer incidence and promotes breast

cancer cell number accumulation

A recent genome-wide association study (GWAS) identified 32 novel single nucleotide poly-

morphisms (SNPs) associated with breast cancer susceptibility [214]. When we queried the

NHGRI EBI GWAS Catalog to find published associations with genetic variants within the TRPS1

genomic locus, we found one of the lead SNPs from this study [215]. Furthermore, in the authors’

subtype-specific analysis of the results, the association with this variant was strongest for luminal

breast cancers relative to other subtypes [214].

We used LocusZoom to plot the data within this locus (Figure 3.1A). A plot of these data

indicates that two sets of SNPs have low linkage disequilibrium with one another, indicating that

they are inherited independently and each confer risk. One set of variants is within an intronic



Chapter 3 61

A B

hg19 Chromosome 8 (Mb)
116.00 116.50 117.00 117.50

-lo
g 10

 p
-v

al
ue

0

2

4

6

8

10

12

R
ec

om
bi

na
tio

n 
R

at
e

(c
M

/M
b)

0

20

40

60

80

100
LD (r²)

0
0.2
0.4
0.6
0.8
1

GWAS Catalog hits for Breast Cancer
TRPS1

Lead SNP

MCF7

KPL1

ZR751

T47D EFM19

HCC1428

CAMA1

SUM52PE

MFM223

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5
ESR1 knockout score

TR
P

S
1 

kn
oc

ko
ut

 s
co

re

−1.0

−0.5

0.0

0.5

All other cancer Luminal breast cancer

Cell line class

TR
P

S
1 

kn
oc

ko
ut

 s
co

re

C

Figure 3.1: TRPS1 is associated with breast cancer incidence and promotes breast
cancer cell fitness. A) LocusZoom plot of the TRPS1 genomic locus depicting the location
and significance of SNPs associated with breast cancer susceptibility. TRPS1 is the closest
gene to two sets of genetic variants in low linkage disequilibrium with one another. Data from
[214], generated with summary statistics downloaded from the NHGRI-EBI GWAS Catalog, using
LocusZoom [215, 216]. B) Scatter plot of TRPS1 and ESR1 knockout scores for each gene
tested. Scores are normalized such that knockout of a gene with a score of 0 has no effect on
cell number, and knockout of a gene with a score of -1 has an effect equal to that of knocking
out one of a set of universally essential genes. Luminal breast cancer cell lines are colored in red.
The data are from the Cancer Dependency Map project [77]. C) Violin and box and whisker
plots of TRPS1 knockout scores from (B) for luminal breast cancer cell lines versus all other
cancer cell lines. Wilcoxon rank sum test p-value of 3.2*10-5.
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region of the TRPS1 gene, and one is about 400 kilobases upstream from the transcription

start site (TSS) of the TRPS1 gene. There are often many genes in close proximity to the lead

SNP in a GWAS, making it difficult to predict which gene mediates the effect on the associated

phenotype. However, in this case the nearest gene is almost a megabase upstream from TRPS1,

suggesting that TRPS1 contributes to the breast cancer susceptibility associated with one or

both of these sets of genetic variants.

Based on this result, we hypothesized that perturbation of TRPS1 in luminal breast

cancer cell lines would affect cell fitness. Using data from the Cancer Dependency Map project,

we found that sensitivity to TRPS1 knockout correlated with sensitivity to knockout of ESR1, the

gene encoding ER (Figure 3.1B) [77]. Furthermore, while TRPS1 knockout led to an increase in

cell number for most cancer cell lines, luminal breast cancer cell lines were significantly enriched

for TRPS1 dependency (Figure 3.1C).

Taken together, these data indicate that TRPS1 influences breast cancer incidence and

is required for maximal breast cancer cell fitness. Next we sought to determine how TRPS1

regulates its target genes to mediate these breast cancer patient and cellular outcomes.

3.6.2 Endogenously degron-tagged TRPS1 is rapidly degraded in T47D cells

To rapidly deplete TRPS1 and isolate primary TRPS1-regulated genes, we employed the dTAG

system for targeted protein degradation [89, 103]. We inserted an inducible degron tag into

the endogenous TRPS1 locus in the luminal breast cancer cell line T47D. We generated three

independent clones that express the tagged TRPS1 protein that can be degraded by the addition

of the small molecules dTAG-13 and dTAGV-1 at 50nM each (dTAG) (Figure 3.2A). Of note, we

depleted around 50% of TRPS1 from whole cell lysates in 10 minutes of treatment with dTAG,

as determined by quantitative western blot, with less than 10% detected as soon as 20 minutes

and as late as 48 hours after treatment (Figure 3.2B).

To ensure this treatment depleted TRPS1 from chromatin, we performed chromatin

immunoprecipitation with sequencing (ChIP-seq) using an anti-HA antibody to recognize the
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Figure 3.2: Endogenously degron-tagged TRPS1 is rapidly degraded in T47D cells. A)
Quantitative Western blot with a serial dilution of the parental T47D cells followed by three
independent dTAG-TRPS1 clones treated with DMSO or dTAG-13 and dTAGV-1 at 50nM each
(dTAG) for 2 hours. Membranes were probed with anti-TRPS1 or anti-ACTB antibodies. B)
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the dTAG condition relative to the DMSO condition. All points are colored blue to indicate they
are significantly decreased at an FDR of 0.1.

2xHA tag within the degron tag. Our ChIP-seq libraries were of high quality, as measured

using the quality control metrics of fraction of reads in peaks (Figure 3.3) and the peak calling-

independent strand cross-correlation (Figure 3.4), generated using the ChIPQC R package [217].

We called peaks using MACS2 [218], using all DMSO samples together and all dTAG samples

as the control. We observed a genome-wide decrease in TRPS1 binding intensity, with over

80 percent of TRPS1 depleted from chromatin after 30 minutes of dTAG treatment (Figure

3.2C,D).

3.6.3 TRPS1 directly represses regulatory element activity

With this system in hand, we set out to test the effects of TRPS1 depletion on regulatory

element (RE) (i.e., enhancer or promoter) activity. To capture the dynamics of chromatin

accessibility after TRPS1 depletion, we conducted a time course analysis using the Assay for

Transposase-Accessible Chromatin with sequencing (ATAC-seq). The time points included dTAG

treatments at 30 minutes, 1 hour, 2 hours, 4 hours, and 24 hours, while a DMSO treatment

served as the vehicle control, assigned as the zero minute time point. Our ATAC-seq libraries



Chapter 3 64

0

2

4

6

ER_D
MSO_re

p1

ER_D
MSO_re

p2

ER_D
MSO_re

p3

ER_D
MSO_re

p4

ER_d
TA

G_re
p1

ER_d
TA

G_re
p2

ER_d
TA

G_re
p3

ER_d
TA

G_re
p4

HA_D
MSO_re

p1

HA_D
MSO_re

p2

HA_D
MSO_re

p3

HA_D
MSO_re

p4

HA_d
TA

G_re
p1

HA_d
TA

G_re
p2

HA_d
TA

G_re
p3

HA_d
TA

G_re
p4

FR
iP

 (%
)

Condition

DMSO

dTAG

Target

ER

TRPS1

Figure 3.3: Fraction of reads in peaks (FRiP) for ChIP-seq libraries. FRiP scores for each
library, calculated using the ChIPQC R package [217].



Chapter 3 65

HA

DMSO

HA

dTAG

ER

DMSO

ER

dTAG

0 100 200 300 0 100 200 300

0.000

0.001

0.002

0.003

0.000

0.001

0.002

0.003

Shift_Size

C
ro

ss
-c

or
re

la
tio

n 
sc

or
e

Replicate
1

2

3

4

C
ro

ss
-c

or
re

la
tio

n 
sc

or
e

Figure 3.4: Strand cross-correlation (CC) plots for ChIP-seq libraries. CC values for each
library, calculated using the ChIPQC R package [217].



Chapter 3 66

0 200 400 600 800

0
2

4
6

8
12

0hour_rep1

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

0hour_rep2

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

0hour_rep3

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

0hour_rep4

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

0.5hour_rep1

Fragment length (bp)
N

or
m

al
iz

ed
 re

ad
 d

en
si

ty
 x

 1
0−3

0 200 400 600 800

0
2

4
6

8
12

0.5hour_rep2

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

0.5hour_rep3

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

0.5hour_rep4

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

1hour_rep1

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

1hour_rep2

Fragment length (bp)
N

or
m

al
iz

ed
 re

ad
 d

en
si

ty
 x

 1
0−3

0 200 400 600 800

0
2

4
6

8
12

1hour_rep3

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

1hour_rep4

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

2hour_rep1

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

2hour_rep2

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

2hour_rep3

Fragment length (bp)
N

or
m

al
iz

ed
 re

ad
 d

en
si

ty
 x

 1
0−3

0 200 400 600 800

0
2

4
6

8
12

2hour_rep4

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

4hour_rep1

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

4hour_rep2

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

4hour_rep3

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

4hour_rep4

Fragment length (bp)
N

or
m

al
iz

ed
 re

ad
 d

en
si

ty
 x

 1
0−3

0 200 400 600 800

0
2

4
6

8
12

24hour_rep1

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

24hour_rep2

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

24hour_rep3

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

0 200 400 600 800

0
2

4
6

8
12

24hour_rep4

Fragment length (bp)

N
or

m
al

iz
ed

 re
ad

 d
en

si
ty

 x
 1

0−3

Figure 3.5: Fragment size distribution plots for ATAC-seq libraries. A plot for each library
was generated using the ATACseqQC R package [219].

were of high quality, as determined by plotting the distribution of fragment sizes (Figure 3.5)

and the enrichment of signal around TSS’s (Figure 3.6), generated using the ATACseqQC R

package [219]. We generated a consensus peak set using MACS2 [218] for all samples together.

At the earliest time point after degradation, our best estimate of the primary effects of TRPS1

depletion, we identify 472 peaks that increased in intensity and 36 that decreased in intensity, at

a false discovery rate (FDR) of 0.1. (Figure 3.7A). We hypothesized that the increased peaks

result from loss of a direct TRPS1 reduction of chromatin accessibility, with the decreased peaks

an indirect effect of the redistribution of limiting cofactors.

To test this hypothesis, we performed de novo motif identification in the increased and

decreased peaks. We identified a GATA motif in the increased peaks but not the decreased

peaks (Figure 3.7B). To explicitly calculate the motif prevalence in each class of peaks, we found

individual motif occurrences genome-wide and intersected the peaks with these motif instances.
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Figure 3.6: Plots of signal enrichment around TSS’s for ATAC-seq libraries. A plot for
each library was generated using the ATACseqQC R package [219].
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Figure 3.7: TRPS1 directly represses regulatory element activity. A) MA plot of ATAC-seq
peaks, with fold change values representing accessibility in the 30 minute dTAG-13 and dTAGV-1
at 50nM each (dTAG) treatment condition relative to the DMSO condition. B) De novo motif
identified in increased peaks from (A) (below), matched to the TRPS1 motif (above). C) Bar
charts of prevalence of a representative GATA motif in increased, unchanged, and decreased peaks
from (A). Chi-square test p-value < 2.2*10-16. D) Bar charts of prevalence of a representative
ER half-site in increased, unchanged, and decreased peaks from (A). Chi-square test p-value
4.5*10-15. E) Heat map with hierarchical clustering of chromatin accessibility in ATAC-seq peaks
that are significantly changed over the time course at an FDR of 0.1. F) Heat map of prevalence
of the representative GATA motif in increased, unchanged, and decreased peaks, as in (C), for
each time point relative to the DMSO condition. G) Density plot for composite PRO-seq signal
across all TRPS1 ChIP-seq peaks, separated by strand and treatment condition.
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We found a significant enrichment of a representative GATA motif in the increased peaks over

the unchanged and decreased peaks (Figure 3.7C).

To identify additional TFs that might be contributing to changes in chromatin accessibility,

we analyzed motif enrichment in both increased peaks relative to unchanged peaks as well as

decreased peaks relative to unchanged peaks. To our surprise, we identified nuclear receptor

motifs in both classes of peaks. To follow up this analysis, we again calculated motif prevalence

in each class of peaks for a representative ER half-site. For this motif, we found a significant

enrichment in both increased and decreased peaks relative to unchanged peaks (Figure 3.7D).

We predicted that the enrichment of the GATA motif within increased peaks would wane

over time. To test this prediction, we turned to our time course data. We identified ATAC-seq

peaks that were significantly changed over the time course at an FDR of 0.1, using a likelihood

ratio test within DESeq2 [198] to identify peaks for which including a variable for the time point

increased the predictive power of the model over one without this information. We performed

hierarchical clustering of these peaks and found that the replicates for each time point clustered

together and that the majority of dynamic peaks changed gradually over the time course, with

additional clusters displaying different kinetics (Figure 3.7E). We called increased, unchanged,

and decreased peaks as in Figure 3.7A for each time point relative to the control condition. We

then calculated GATA motif prevalence in each set of peaks as in Figure 3.7C. As we expected,

the GATA motif prevalence in the increased peaks decreased over time, but the majority of

increased peaks at 24 hours still contained a GATA motif (Figure 3.7F). This is consistent with

the primary effects of TRPS1 depletion driving a large proportion of the changes in chromatin

accessibility even as late as 24 hours after TRPS1 depletion.

As an orthogonal readout of RE activity, we measured bidirectional transcription around

TRPS1 binding sites using precision run-on with sequencing (PRO-seq). Our libraries were of

high quality using several quality control metrics (Figure 3.8) [220]. Using a window centered on

each summit of TRPS1 ChIP-seq intensity, we observed an increase in bidirectional transcription

30 minutes after TRPS1 depletion (Figure 3.7G).
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Since composite profiles have limitations, we chose to look more closely at each TRPS1

peak and determine if increasing bidirectional transcription is a reproducible trend. We counted

PRO reads in the window around the TRPS1 peak summits shown in Figure 3.7G and used

DESeq2 to identify differentially transcribed regions. We normalized our counts based on the

size factors generated from the DESeq2 analysis of the reads in genes from Figure 3.11. As

read counts in small putative regulatory elements tend to be fewer than in large genes, it is

not surprising that only 9 of these regions have individually statistically significantly higher

bidirectional transcription and none with significantly lower transcription, at a false discovery

rate of 0.1 (Figure 3.9). However, we did find a TRPS1 cistrome-wide increase in PRO signal,

with over 62% of these regions increasing in bidirectional transcription upon TRPS1 depletion.

We performed ANOVA on a linear model predicting the logarithm of the normalized PRO reads

for each region based on the DMSO or 30 minute dTAG treatment condition across the four

replicates, and the p-value for the F-test was < 2.2*10-16.

The biological interpretation is consistent with our other results that indicate a role of

TRPS1 in chromatin compaction. We would not necessarily expect an increase in bidirectional

transcription at each TRPS1 peak upon TRPS1 degradation, but the increase in chromatin ac-

cessibility could facilitate downstream factors that promote transcription initiation. As chromatin

accessibility and bidirectional transcription can affect one another, we next isolated ATAC-seq

peaks without bidirectional transcription, as identified using dREG [178]. As we saw in Figure

3.7A, chromatin accessibility predominantly increased upon TRPS1 depletion (Figure 3.10).

Along with our accessibility data and motif analysis, these data indicate that TRPS1 directly

represses RE activity primarily via its effect on chromatin accessibility.

3.6.4 TRPS1 directly represses transcription of target genes

Downstream from the changes in RE activity, we measured changes in nascent transcription

within genes with PRO-seq over the same time course of TRPS1 depletion as in the ATAC-seq

experiment. As with our ATAC-seq time course analysis, we identified genes that were significantly
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Figure 3.8: Quality control metrics for PRO-seq libraries. Quality control metrics are
defined as in [220]. Each metric is a row, and each sample is a column. The green region for
each metric is the goal for a high quality library.

changed over the time course at an FDR of 0.1, using a likelihood ratio test within DESeq2

[198] to identify genes for which including a variable for the time point increased the predictive

power of the model over one without this information. We identified 1,425 dynamic genes

over the time course and performed hierarchical clustering to classify the genes based on their

expression kinetics (Figure 3.11A,B). Over-representation analysis (ORA) of the activated genes

identified several enriched Hallmark gene sets [221], most prominently cholesterol homeostasis

genes (Figure 3.11C). ORA on the repressed genes revealed that the two estrogen response gene

sets were the most significantly enriched of the Hallmark gene sets.

We hypothesized that TRPS1 regulates these gene sets by distinct mechanisms. Specifi-

cally, we predicted that TRPS1 directly represses the dTAG-activated genes by repressing the

activity of REs proximal to these genes. To test this prediction, we measured the distance from

the TSS of each gene to the nearest TRPS1 ChIP-seq peak overlapping an increased ATAC-seq

peak. By constructing a cumulative distribution function, we found that the activated genes are

significantly closer to these activated REs (Figure 3.11E).

In contrast to the genes activated by TRPS1 depletion, we predicted that the effects
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in bidirectional transcription, the ANOVA F-test p-value was < 2.2*10-16.
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Figure 3.10: Change in chromatin accessibility at ATAC-seq peaks without bidirectional
transcription. MA plot of ATAC-seq peaks, with fold change values representing accessibility in
the 30 minute dTAG-13 and dTAGV -1 at 50nM each (dTAG) treatment condition relative to
the DMSO condition, as in Figure 3.7.

on the genes repressed by TRPS1 depletion are indirect and distal to TRPS1 binding. To test

whether TRPS1 directly activates a subset of REs to activate transcription of proximal genes,

we measured the distance from the TSS of each gene to the nearest TRPS1 ChIP-seq peak

overlapping a decreased ATAC-seq peak. There are few examples of this class of RE, so the

distances were much farther, and there was no significant enrichment of repressed genes proximal

to these peaks (Figure 3.11F). These data suggest that, while TRPS1 positively and negatively

regulates hundreds of primary response genes, TRPS1 only represses transcription of its direct

target genes.

3.6.5 TRPS1 redistributes ER binding to modulate ER target gene transcription

Based on the correlation between cancer cell line sensitivity to TRPS1 knockout and ESR1

knockout (Figure 3.1B), the enrichment of an ER binding motif in both increased and decreased

ATAC-seq peaks (Figure 3.7D), and the over-representation of estrogen response gene sets in the

genes repressed by TRPS1 depletion (Figure 3.11D), we focused on ER target genes to explore a
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Figure 3.11: TRPS1 directly represses transcription of target genes. A) Kinetic traces of
the two major clusters of activated genes over the time course. B) Kinetic traces of the two major
clusters of repressed genes over the time course. C) Over-representation analysis of the activated
genes from (A). D) Over-representation analysis of the repressed genes from (B). E) Cumulative
distribution function plot of the distance from the TSS of each gene to the nearest TRPS1
ChIP-seq peak overlapping an increased ATAC-seq peak, by gene class. Kolmogorov–Smirnov test
between activated and unchanged genes: p-value = 0.011. F) Cumulative distribution function
plot of the distance from the TSS of each gene to the nearest TRPS1 ChIP-seq peak overlapping
an decreased ATAC-seq peak, by gene class. KS test between repressed and unchanged genes:
p-value > 0.1.
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Figure 3.12: Acute estrogen treatment identifies direct ER target genes in T47D cells.
MA plot of PRO signal, with fold change values representing transcription in the 90 minute
estrogen treatment condition relative to the DMSO condition. Each point represents a gene,
and black points represent the estrogen-activated genes that we use in Figure 3.13.

possible mechanism by which TRPS1 indirectly activates transcription. We first defined direct

ER target genes using our previously-generated PRO-seq data from parental T47D cells that were

hormone starved for three days and then acutely stimulated with estrogen or a DMSO vehicle

control for 90 minutes (Figure 3.12) [220]. We exclusively focused on estrogen-activated genes

because ER directly activates these genes [37, 222, 223]. 65 ER target genes were activated,

and 58 were repressed by acute TRPS1 depletion (Figure 3.13A). To test the robustness of this

change in ER target gene transcription, we additionally performed PRO-seq in each of the three

independent TRPS1-dTAG clones generated from the parental T47D cells. Indeed, the genes

we identified as TRPS1-regulated ER target genes in the one clone used for the time course

experiment tend to be regulated in the same direction upon TRPS1 degradation across these

three clones, suggesting that this effect is robust across the cell lines in which we can acutely

deplete TRPS1 (Figure 3.14).
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Figure 3.13: TRPS1 redistributes ER binding to modulate ER target gene transcription.
A) Kinetic traces of activated and repressed ER target genes over the time course. B) Violin
and box and whisker plots for ER binding intensity fold change upon TRPS1 depletion at ER
ChIP-seq peaks within 100kb of the TSS of each gene, grouped by gene class defined by change
in expression upon TRPS1 depletion. (In (B) and (C), *** represents a significant one-sample
t-test p-value < 10-3. N.S. represents a non-significant p-value > 0.1.) C) Violin and box and
whisker plots for ER binding intensity fold change upon TRPS1 depletion at ER ChIP-seq peaks,
grouped by summit-to-summit distance to the nearest TRPS1 ChIP-seq peak. D) Model of
TRPS1-mediated ER redistribution and modulation of ER target gene transcription. Transparent
boxes indicate reduced binding intensity or attenuated transcription. Above, at baseline, TRPS1
directly decreases ER binding intensity proximal to TRPS1, attenuating ER activation of proximal
ER target genes. Distal to TRPS1, ER binding intensity is not directly affected by TRPS1, and
ER fully activates proximal ER target genes. Below, after TRPS1 depletion, ER binding proximal
to TRPS1 increases in intensity, augmenting ER activation of proximal ER target genes. Distal
to TRPS1, ER binding intensity is indirectly decreased, as limiting ER molecules are redistributed
to TRPS1-proximal regulatory elements, attenuating ER activation of proximal ER target genes.
E) ChIP, ATAC, and PRO density around an example increased ER binding site near an activated
ER target gene. At this TRPS1-proximal ER binding site, upon dTAG treatment, TRPS1 binding
intensity decreases, ER binding intensity increases, chromatin accessibility increases, and gene
expression increases. F) ChIP, ATAC, and PRO density around an example decreased ER binding
site near an repressed ER target gene. At this TRPS1-distal ER binding site, upon dTAG
treatment, ER binding intensity decreases, chromatin accessibility decreases, and gene expression
decreases. In (F) and (G), dTAG refers to dTAG-13 and dTAGV-1 at 50nM each.

We hypothesized that these changes in ER target gene transcription are mediated by

changes in the genomic distribution of ER binding. We performed ER ChIP-seq to test the

prediction that ER binding intensity proximal to dynamic ER target genes would change in

concordance with the change in gene transcription. As before, our ChIP-seq libraries were of

high quality (Figures 3.3,3.4. We called peaks using MACS2 [218], using all ER samples together

and all IgG samples as the control. Consistent with our hypothesis, we found that ER ChIP-seq

peaks within a 100 kilobase (kb) window around the TSS of activated genes tended to increase

in intensity, and ER ChIP-seq peaks within a 100kb window around the TSS of repressed genes

tended to decrease in intensity (Figure 3.13B).

We further hypothesized that only the increased ER binding sites represent a direct

effect of TRPS1 activity. Consistent with this hypothesis, we found that ER binding proximal

to TRPS1 tends to increase in intensity, and ER binding distal to TRPS1 tends to decrease

in intensity (Figure 3.13C). Together, these data suggest a model in which TRPS1 depletion
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Figure 3.14: The effect of TRPS1 depletion on ER target gene transcription is consistent
across three independent clones. Fold changes in normalized PRO signal across three
independent clones for ER target genes that are (A) activated or (B) repressed upon TRPS1
depletion, as defined in Figure 3.13A.
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redistributes ER binding from TRPS1-distal sites to TRPS1-proximal sites and modulates ER

target gene transcription proximal to the dynamic ER binding sites (Figure 3.13D). To illustrate

this phenomenon, we provide an example of a TRPS1-proximal, increased ER peak near an

activated ER target gene in (Figure 3.13E), and a TRPS1-distal, decreased ER peak near a

repressed ER target gene in (Figure 3.13F).

3.6.6 TRPS1 activity is associated with breast cancer patient outcomes

We next sought to connect the primary TRPS1-responsive genes with downstream cellular and

patient-related outcomes. We defined a new steady state of transcription with the 24 hour time

point after TRPS1 depletion. We ranked genes based on their shrunken fold change in PRO

signal (Figure 3.15A). Using this ranking, we performed gene set enrichment analysis with the

Hallmark gene sets and found multiple cell-cycle-related gene sets to be negatively enriched,

including E2F Targets (Figure 3.15B) [224, 225]. Consistent with this, we observed a significant

decrease in cell number doubling rate of T47D dTAG-TRPS1 cells upon TRPS1 depletion (Figure

3.15C). Importantly, the isogenic parental T47D cells do not display a cell number defect with

dTAG treatment, so we attribute this effect to TRPS1 depletion and not a non-specific effect of

the compounds (Bidirectional transcription at TRPS1 peaks increases upon TRPS1 depletion).

Finally, we calculated a TRPS1 activity score by adapting methods developed by [228,

229]. We used our PRO-seq data to determine a primary TRPS1 regulon based on the differentially

expressed genes 30 minutes after TRPS1 depletion. We classified breast cancer patients from

the METABRIC cohort as having high TRPS1 activity if both a) TRPS1-repressed genes are

negatively enriched and b) TRPS1-activated genes are positively enriched, relative to all other

patients in the cohort (example patient in (Figure 3.15D)) [226, 227]. Similarly, we classified

patients as having low TRPS1 activity if both a) TRPS1-repressed genes are positively enriched

and b) TRPS1-activated genes are negatively enriched. We classified the remaining patients as

having intermediate TRPS1 activity. We ranked patients based on their TRPS1 activity and

found no association with other clinical covariates (Figure 3.15E). When we stratified patients
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Figure 3.15: TRPS1 activity is associated with breast cancer patient outcomes. A) MA
plot of PRO signal in each gene, with shrunken log fold change values representing transcription
in the 30 minute dTAG-13 and dTAGV-1 at 50nM each (dTAG) treatment condition relative
to the DMSO condition. B) Mountain plot of the Hallmark E2F Targets gene set, using genes
ranked by shrunken fold change from (A). A negative enrichment score indicates an enrichment
of the gene set among repressed genes. Adjusted p-value 2.5*10-19. C) Cell number over time
of dTAG-TRPS1 cells treated with dTAG or DMSO. Analysis of variance for the coefficient
corresponding to the difference in doubling rates between the conditions in a linear model of the
logarithm of cell number versus time: p-value 1.1*10-5. D) Differential enrichment score (dES)
calculation for an example patient with the highest TRPS1 activity. Above, genes ranked by
scaled expression in this patient relative to all other patients in the METABRIC cohort [226, 227].
Below, gene set enrichment analysis of TRPS1-repressed and TRPS1-activated genes defined by
response after 30 minutes of TRPS1 depletion. E) Patients from the METABRIC cohort, ranked
by dES as calculated in (D), with classifications of the tumors on the right. F) Kaplan-Meier
curves for patients in the METABRIC cohort, stratified by TRPS1 activity as in (E). Logrank
p-value 4.99*10-4.
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Figure 3.16: T47D cells do not display a cell number defect with dTAG treatment. Cell
number over time of parental T47D cells treated with dTAG or DMSO, as in Figure 3.15C.

by TRPS1 activity, we found high TRPS1 activity to be significantly associated with shorter

survival time (Logrank p-value 4.99*10-4) (Figure 3.15F). When we first separated tumors by

ER-positivity or by intrinsic subtype, we found that this association was specific for ER-positive

tumors and Luminal A tumors (Figure 3.17). We also performed this analysis using genes

differentially expressed after 24 hours of TRPS1 depletion (Figure 3.18). However, by this time

cell cycle genes dominate, and we speculate that the association with breast cancer patient

survival is due to these genes [230]. We believe using the primary response genes offers a unique

measure of TRPS1 activity not achievable using previous surrogates.

3.7 Discussion

In this study, we used rapidly inducible targeted protein degradation to systematically determine

the primary effects of acute TRPS1 depletion on chromatin accessibility, ER binding, and nascent



Chapter 3 82

A

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

ER-positive

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

ER-negative

B

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

Luminal A

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

Luminal B

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

Basal-like

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

Normal-like

S
ur

vi
va

l p
ro

ba
bi

lit
y

Months
0 68 137 205 274

0.0

0.2

0.4

0.6

0.8

1.0

High TRPS1 activty
Intermediate TRPS1 activity
Low TRPS1 activity

HER2-enriched

Figure 3.17: TRPS1 activity is associated with breast cancer patient outcomes specifically
for ER-positive and Luminal A tumors. A) Kaplan-Meier curves for patients in the METABRIC
cohort, stratified by TRPS1 activity as in Figure 3.15F, separated by ER-posivity. Logrank p-value
3.83*10-6 for ER-positive tumors and not significant for ER-negative tumors. B) Kaplan-Meier
curves for patients in the METABRIC cohort, stratified by TRPS1 activity as in Figure 3.15F,
separated by intrinsic subtype. Logrank p-value 4.23*10-4 for Luminal A tumors and not
significant for the other subtypes.
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Figure 3.18: Genes differentially expressed after 24 hours of TRPS1 depletion are
associated with breast cancer patient outcomes. Kaplan-Meier curves for patients in the
METABRIC cohort, stratified by TRPS1 activity as in Figure 3.15F, but using genes differentially
expressed after 24 hours of TRPS1 depletion. Logrank p-value 2.09*10-13.

transcription in a luminal breast cancer cell line. We focused on TRPS1 based on two orthogonal,

genome-wide, unbiased assays that implicated TRPS1 in the processes of breast tumor incidence

and breast cancer cell number accumulation.

First, we used the summary statistics from a recent GWAS to plot two sets of common

genetic variants in the TRPS1 locus associated with breast cancer incidence [214]. These genetic

variants were independently identified as significantly associated with breast cancer incidence in

a previous GWAS [231], but Zhang et al. determined that the association was strongest among

luminal breast tumors. Second, we analyzed data from the Cancer Dependency Map project

and found that sensitivity to TRPS1 knockout was correlated with sensitivity to ESR1 knockout

and significantly enriched among luminal breast cancer cell lines [77]. Both of these unbiased

screens indicate that TRPS1 contributes to luminal breast cancer cell fitness and led us to the

hypothesis that TRPS1 influences ER activity or genomic binding.

As TFs regulate the transcription of many other chromatin-associated factors that

themselves regulate RE activity, TF binding, and transcription, we sought to isolate the primary

effects of TRPS1 depletion. To do so, we used the dTAG inducible degron tag system to acutely

deplete endogenous TRPS1 protein abundance within minutes of induction [89]. This is in
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contrast to traditional RNA interference or gene knockout methods, which can take days to

deplete the target of interest.

Minutes to hours after TRPS1 depletion, we performed several sensitive, genome-wide

assays. ATAC-seq and ChIP-seq can be performed at any time point after a perturbation, as

they measure chromatin accessibility and chromatin-associated factor binding, which can change

with rapid kinetics. In contrast, changes in messenger RNA abundance accumulate more slowly,

with kinetics that depend not only on the rate of nascent transcription but also on the ratio

of abundance to synthesis and degradation rates. In contrast, nascent transcriptional profiling

measures the immediate change in RNA synthesis rates after a perturbation. Here we use

PRO-seq coupled with acute TRPS1 depletion to identify primary TRPS1-responsive genes.

With our cell lines and assays in hand, we first measured changes in chromatin accessibility

upon TRPS1 depletion. Consistent with previous studies linking TRPS1 to corepressor complexes,

we found that the predominant effect of TRPS1 depletion is an increase in chromatin accessibility

and bidirectional transcription at REs [53, 57, 58, 62, 63]. We observed decreasing enrichment

of the GATA motif prevalence in increased peaks over time, indicating that our shortest time

point was the most specific for isolating the primary effects of TRPS1 depletion. Intriguingly, we

identified a significant enrichment of ER half-site motifs in increased as well as decreased ATAC

peaks, suggesting that ER binding intensity was changing in a site-specific manner.

We next measured changes in nascent transcription minutes to hours after TRPS1

depletion and clustered the gene responses. Activated genes were enriched for cholesterol

homeostasis genes. Of note, several recent GWAS have identified SNPs in the TRPS1 locus

associated with blood cholesterol levels [232–234]. However, as of yet, no mechanistic follow-up

studies into the role of TRPS1 in cholesterol biology have been performed. After TRPS1

depletion, repressed genes were enriched for estrogen response gene sets. Consistent with our

previous data, activated genes were closer to increased TRPS1-bound ATAC peaks, suggesting

TRPS1 directly represses these target genes at steady state. On the other hand, repressed genes

were not closer to decreased TRPS1-bound ATAC peaks, suggesting a distinct mechanism of
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transcriptional regulation of this gene class.

We hypothesized that at steady state TRPS1 directly represses and indirectly activates its

primary response genes. Using ER target genes and ER genomic binding as a case study, we found

evidence supporting a model of acute ER redistribution. ER binding sites proximal to TRPS1

tended to increase in intensity upon TRPS1 knockdown, with distal ER binding sites tending

to decrease in intensity. Furthermore, genes activated upon TRPS1 depletion were surrounded

by ER binding sites that increased in intensity, and repressed genes were near decreased ER

binding sites. Taken together, we propose a model in which TRPS1 directly decreases chromatin

accessibility at steady state. Upon acute TRPS1 depletion, TRPS1-proximal REs increase in

accessibility, an effect which we propose allows ER to redistribute from TRPS1-distal REs. In

this proposed model, subsets of ER target genes are activated or repressed by TRPS1 depletion

via distinct mechanisms.

First described in the 1980s, the concept of coactivator ”squelching” has been debated as

a mechanism of indirect activity distal from a TF’s genomic binding sites [235, 236]. Squelching

has been proposed as a mechanism by which nuclear receptors like ER acutely repress transcription

of a subset of primary response genes by competing for limiting coactivators [223, 237–239].

Here we propose not the redistribution of coactivators by an activating TF, but a redistribution

of activating TFs themselves via a rapid increase in local chromatin accessibility after the acute

depletion of a repressive TF.

Our findings of both increased and decreased ER genomic binding and target gene

transcription are distinct from previous studies of the effects of TRPS1 on TF binding and

activity. Elster et al. used an unbiased screen to identify TRPS1 as a repressor of Yes-associated

protein (YAP1) activity in another luminal breast cancer cell line, MCF7 [57]. After TRPS1

knockdown, the authors observed a genome-wide activation of YAP1 target genes. We did not

find a YAP1 gene signature among dynamic genes in our PRO-seq data, though we did observe

an enrichment of TEA/ATTS domain (TEAD) motifs in increased ATAC peaks, suggesting

differences between the cells used in each study and perhaps their baseline YAP1-TEAD activity.
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While we would predict that our acute redistribution model is generalizable to other TFs and

sets of TRPS1-regulated genes beyond ER and its target genes, it remains possible that TRPS1

modulates the genomic binding intensity of additional TFs in a unidirectional manner via a

distinct mechanism.

Serandour et al. knocked down TRPS1 in MCF7 cells and reported both a genome-wide

repression of ER target genes as well as a genome-wide increase in ER binding [53]. We did

not perform ChIP-seq at a comparable time point to their days-long knockdown, so we cannot

directly compare our ER binding data. Our latest PRO-seq time point was 24 hours after TRPS1

depletion, at which time we do not observe a genome-wide repression of ER target genes. This

could once again be attributable to a difference in cell lines. However, we would also speculate

that the unidirectional and nonconcordant changes in ER binding and target gene expression at

later time points could be due to non-primary effects of extended TRPS1 knockdown.

Finally, we used PRO-seq data from both late and early time points to identify genes that

represent cells at a new steady state after TRPS1 depletion, as well as primary TRPS1-responsive

genes. After 24 hours of TRPS1 depletion, repressed genes were enriched for cell cycle related

genes, consistent with a decrease in cell number doubling rate. Unique to this study, we used

primary TRPS1-responsive genes to define a TRPS1 activity score, adapting a method based on

predicted TF target genes [228, 229]. Using this method, we were able to stratify breast cancer

patients into groups with differing survival probabilities.

Using TRPS1 activity score to classify patients may provide additional insight into the

transcriptional program within a patient’s tumor that might not be immediately apparent based

on previous surrogates for TRPS1 activity. For example, TRPS1 is frequently amplified in breast

tumors, and this amplification is associated with worse prognosis [50, 53]. However, TRPS1

is often co-amplified along with the rest of the chromosomal segment 8q23–q24, where the

proto-oncogene MYC resides, making it difficult to discern whether TRPS1 amplification is a

driver of breast cancer progression [240].

In contrast, higher TRPS1 expression has been associated with better breast cancer
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patient outcomes, though its expression is highly correlated with ER and GATA3, both favorable

prognostic indicators [52, 241]. As relative TF expression and activity across patients are not

always identical, our data uses primary TRPS1-responsive genes as a measure of TRPS1 activity.

Our TRPS1 activity score is not correlated with ER-positivity and effectively stratifies patients.

Though our patient outcome analysis, as with all similar analyses, describes an association and

does not necessarily imply a causative relationship, the direction is consistent with the effect

on cell number observed in this study as well as the Cancer Dependency Map, suggesting that

TRPS1 drives breast cancer cell number accumulation.

Altogether, we provide a systematic study of the primary effects of rapid TRPS1 depletion

in luminal breast cancer cells. We propose a model in which TRPS1 depletion leads to deconden-

sation of local chromatin structure, allowing for the acute redistribution of ER, both activating

and repressing subsets of ER target genes. This TRPS1-regulated transcription appears to be

relevant for cancer cell fitness, as TRPS1 depletion decreases cell number doubling rate, and

high TRPS1 activity is associated with worse breast cancer patient outcomes. These methods of

inducible targeted protein degradation coupled with genomic chromatin assays and nascent RNA

transcriptional profiling should in principle be applicable to the study of any TF, allowing us to

better understand the mechanisms behind the phenotypes associated with additional GWAS hits.

3.8 Methods

3.8.1 GWAS and DepMap data visualization

Summary statistics from [214] were downloaded from the NHGRI-EBI GWAS Catalog [215].

SNPs in the TRPS1 locus were plotted using LocusZoom [216]. Knockout scores and luminal

breast cancer identifiers were downloaded from the Cancer Dependency Map project [77] and

plotted using the statistical programming language R [242].
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3.8.2 Cell culture

T47D cells (RRID:CVCL_0553) (ATCC) were cultured in RPMI 1640 medium (Gibco) supple-

mented with 10% fetal bovine serum (Gemini) and 10µg/ml insulin from bovine pancreas (Sigma,

made as a 1000x solution in 1% aqueous glacial acetic acid).

3.8.3 Plasmid generation for gene editing

DNA for transfection was prepared as previously described [94, 152]. A CRISPR sgRNA

(TTATCTTTGCAGATATGGTC) targeting the 5′ end of the TRPS1 coding sequences was

designed using Benchling. The sgRNA was cloned into hSpCas9 plasmid PX458 (Addgene

#48138) as previously described [243], using the following primers:

5′-CACCGTTATCTTTGCAGATATGGTC-3′

and

5′-AAACGACCATATCTGCAAAGATAAC-3′ .

A plasmid harboring a synthetic HygR-P2A-2xHA-FKBP_F36V insert was generated with Cold

Fusion (System Biosciences), starting with the HygR-P2A-AID cassete in pMGS58 (Addgene

#135311) [152] and the Puro-P2A-2xHA-FKBP_F36V casette in (Addgene #91793) [89]. The

linear donor was generated by PCR using primers (IDT) that contain 50-nucleotide homology

tails and gel-purified. The primers contained 5′ phosphorothioate modifications to increase PCR

product stability in the cell [244]. The primers used for making PCR donor fragments were:

5′-G*T*AACTTTCAGATAACACTGTATCTGCCTTTTCCCTTTATCTTTGCAGATATGAAAA

AGCCTGAACTCACCG-3′

and

5′-T*T*CACTTGCAACGTTTCTCAGAGGGGGGTTCTTTTTCCGGACACCTGAACCTGAAC

CTCCAGATCCACCAGATCTTTCCAGTTTTAGAAGCTCCACATCG-3′

with asterisks representing the phosphorothioate modifications.
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3.8.4 dTAG-TRPS1 clone generation

Clones were generated as previously described [94, 152], with modifications. An initial round

of cloning was performed using puromycin selection, but upon genomic DNA sequencing this

clone did not appear to have a dTAG insertion event within TRPS1. Nevertheless, this clone

was used for a second round of cloning using hygromycin selection. 3*106 cells were plated

in 10cm plates. The next day, cells were cotransfected with 15µg of CRISPR/Cas9-sgRNA

plasmid and 1.85µg of linear donor PCR product using Lipofectamine 3000 (Thermo Fisher

Scientific) in Optimem (Gibco). One day after transfection, the media was replaced. Starting

four days after transfection, cells were selected for two weeks with 200µg/mL of Hygromycin B

(Invitrogen) with 20% conditioned media, replaced twice per week. Colonies were then grown in

20% conditioned media, replaced twice per week, until they were large enough to be picked and

passaged to a 24-well plate. Clones were expanded and frozen at 8 passages after transfection.

Integration was tested with Western blotting, PCR, and Sanger sequencing. In each of the

three clones, two to three of the four genomic copies of TRPS1 are knocked out, and only

tagged TRPS1 protein is expressed. Details about each of the determined alleles are available at

https://guertinlab.github.io/TRPS1_ER_analysis/Vignette.html#allele-sequencing.

3.8.5 Western blotting

8*105 cells per sample were plated in each well of a 6-well plate. Cells were treated with

DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO at various time points and collected

simultaneously. At the time of harvest, cells were scraped and lysed in RIPA buffer (1% Nonidet

P-40, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 2mM EDTA, 150mM NaCl,

10mM sodium phosphate, 50mM NaF, 50mM Tris pH 7.5), with 100µM benzamidine, 5µg/mL

aprotinin, 5µg/mL leupeptin, 1µg/mL pepstatin, 1mM phenylmethylsulfonyl fluoride, and 2mM

sodium orthovanadate added fresh. Lysates were sonicated in a Biorupter UCD-200 (Diagenode)

on high for 30 seconds on and 30 seconds off for 5 cycles, and clarified by centrifugation at

14,000rpm for 15 min in 4°C. Protein concentration was measured by BCA assay and diluted

https://guertinlab.github.io/TRPS1_ER_analysis/Vignette.html#allele-sequencing
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to the same concentration. 10× Laemmli buffer was added to a final concentration of 1x, and

2-mercaptoethanol was added to a final concentration of 1%. Samples were boiled at 95°C

for 10 minutes, and 30µg of each was loaded into a 10% polyacrylamide gel. Samples were

separated by gel electrophoresis and transferred to nitrocellulose membranes. Membranes were

incubated in blocking buffer (3% bovine serum albumin, 1X Tris buffered saline) for 1 hour at

room temperature with rocking. Primary antibodies (anti-TRPS1, Cell Signaling #17936S, and

anti-ACTB, Cell Signaling #3700S) were diluted 1:1,000 in primary buffer (3% bovine serum

albumin, 0.1% sodium azide, 0.1% Tween-20, 1X Tris buffered saline) at 4°C with rocking

overnight. Fluorescent secondary antibodies were diluted 1:10,000 in secondary buffer (5% bovine

serum albumin, 0.1% sodium azide, 0.1% Tween-20, 1X Tris buffered saline) and incubated for 1

hour at room temperature with rocking, and fluorescence was measured (Odyssey, Licor).

3.8.6 ChIP-seq library preparation

2.4*107 cells per sample were plated across 3 15cm dishes 2 days before harvest. Cells were

treated with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO for 30 minutes and

collected simultaneously. At the time of harvest, cells were fixed with 1% formaldehyde (Sigma)

for 10 minutes at 37°C and quenched with 125mM Glycine (Fisher) for 10 minutes at 37°C. Plates

were moved to ice, and cells were washed and scraped into ice cold PBS containing Complete

EDTA-free Protease Inhibitor Cocktail (Roche). Cells were pelleted in aliquots of 3.6*107 cells,

snap frozen in liquid nitrogen, and stored at -80°C. Pellets were thawed, and cells were lysed in

1mL Cell Lysis Buffer (85mM KCl, 0.5%NP40, 5mM PIPES pH 8.0), with protease inhibitor

cocktail added fresh, for 10 minutes with rotation at 4°C. Nuclei were pelleted at 3300g at 4°C

for 5 minutes and resuspended in 500µL ChIP lysis buffer (0.5% SDS, 10mM EDTA, 50mM

Tris-HCl pH 8.1), with protease inhibitor cocktail added fresh, for 10 minutes with rotation at

4°C. Lysates were moved to 15ml polystyrene conical tubes (Falcon) and sonicated in a Biorupter

UCD-200 (Diagenode) on high for 30 seconds on and 30 seconds off for 4 sets of 5 cycles. Before

each set, ice in the water bath was replaced, and samples were gently vortexed to mix. Sonicated

lysates were then move to 1.5ml tubes and clarified by centrifugation at 14,000rpm for 15 min in
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4°C. 500µL of the supernatant was diluted into 6.5mL Dilution Buffer (0.01% SDS, 1.1% Triton

X-100, 1.2mM EDTA, 167mM NaCl, 16.6mM Tris-HCl pH 8.0), with protease inhibitor cocktail

added fresh ( 1*106 cells in 200µL). 1ml ( 5*106 cells) was aliquoted into each of 3 tubes with

antibody (1.25 µg anti-HA, Cell Signaling #3724S, 2.5µg anti-ER, Millipore #06-935, or 2.5µg

IgG control, Cell Signaling #2729S), and incubated with end-over-end rotation at 4°C overnight.

50µL Protein A/G Magnetic Beads (Pierce) per sample were washed with bead washing

buffer (PBS with 0.1% BSA and 2mM EDTA) and then incubated with samples for 2 hours

with rotation at 4°C. The samples were washed once each with low salt immune complex buffer

(0.1% SDS, 1% Triton x-100, 2mM EDTA, 150mM NaCl, 20mM Tris HCl pH 8.0), high salt

immune complex buffer (0.1% SDS, 1% Triton x-100, 2mM EDTA, 500mM NaCl, 20mM Tris

Hcl pH8.0), LiCl immune complex buffer (0.25M LiCl, 1% NP-40, 1% deoxycholate, 1mM EDTA,

10mM Tris-HCl pH8.0), and 1xTE (10mM Tris-HCl, 1mM EDTA pH8.0). Immune complexes

were eluted in elution solution, (1% SDS, 0.1M sodium bicarbonate) in a thermomixer for 30

min at 65°C at 1,200rpm. Crosslinks were reversed and proteins were digested with the addition

of 200mM NaCl and 2ul Proteinase K in a thermocycler at 65°C for 16 hours. DNA was purified

with a Qiaquick PCR cleanup (Qiagen), and libraries were prepared with a NEBNext Ultra II

Library Prep Kit (New England Biolabs).

3.8.7 ChIP-seq analysis

Adapters were removed using cutadapt [190]. Reads were aligned to the hg38 genome assembly

with bowtie2 [189]. Duplicate reads were removed, and the remaining reads were sorted into

BAM files and converted to bed format for counting with samtools [194]. Reads were also

converted to bigWig format with deeptools [245]. Peaks were called with MACS2 [218]. Reads

were counted in peaks using bedtools, and differentially bound peaks were identified with

DESeq2 [188, 198]. Heatmaps were generated with deeptools. Peak proximity to and overlap

with other features were calculated with bedtools.
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3.8.8 ATAC-seq library preparation

ATAC-seq libraries were prepared as previously described [246], with modifications. 4 replicates

were performed from cells treated and collected at different times in the same day. 4*105 cells per

sample were plated in each well of a 6-well plate 2 days before harvest. Cells were treated with

DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO at various time points and collected

simultaneously. At the time of harvest, cells were moved to ice and scraped in 1mL ice cold PBS,

and 100µL ( ∼5 x 104 cells) were transferred to 1.5 mL tubes. Cells were centrifuged at 500

x g for 5 minutes at 4°C, and the pellets were resuspended in 50 µL cold lysis buffer (10mM

Tris-HCl, 10mM NaCl, 3mM MgCl2, 0.1% NP-40, 0.1% Tween-20, 0.01% Digitonin, adjusted to

pH 7.4) and incubated on ice for 3 minutes. Samples were washed with 1 mL cold wash buffer

(10mM Tris-HCl, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20). Cells were centrifuged at 500 x g

for 10 minutes at 4°C, and pellets were resuspended in the transposition reaction mix (25 µL

2X TD buffer (Illumina), 2.5 µL TDE1 Tn5 transposase (Illumina), 16.5 µL PBS, 0.5 µL 1%

Digitonin, 0.5 µL 10% Tween-20, 5 µL nuclease-free water) and incubated in a thermomixer at

37°C and 100rpm for 30 minutes. DNA was extracted with the DNA Clean and Concentrator-5

Kit (Zymo Research). Sequencing adapters were attached to the transposed DNA fragments

using NEBNext Ultra II Q5 PCR mix (New England Biolabs), and libraries were amplified with 8

cycles of PCR. PEG-mediated size fractionation [247] was performed on the libraries by mixing

SPRIselect beads (Beckman) with each sample at a 0.5:1 ratio, then placing the reaction vessels

on a magnetic stand. The right side selected sample was transferred to a new reaction vessel, and

more beads were added for a final ratio of 1.8:1. The final size-selected sample was eluted into

nuclease-free water. This size selection protocol was repeated to further remove large fragments.

3.8.9 ATAC-seq analysis

Adapters were removed using cutadapt [190]. Reads aligning to the mitochondrial genome with

bowtie2 [189] were removed. The remaining reads were aligned to the hg38 genome assembly

with bowtie2. Duplicate reads were removed, and the remaining reads were sorted into BAM
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files with samtools [194]. Reads were converted to bed format with seqOutBias and bigWig

format with deeptools [195, 245]. Accessibility peaks were called with MACS2 [218]. Reads were

counted in peaks using bedtools, and differentially accessible peaks were identified with DESeq2

[188, 198]. de novo motif identification was performed on dynamic peaks with MEME, and TOMTOM

was used to match motifs to the HOMER, Jaspar, and Uniprobe TF binding motif databases

[248–251]. AME was used to identify motifs enriched in increased or decreased peaks relative to

unchanged peaks [252]. FIMO and bedtools were used to assess motif enrichment around peak

summits [253]. Dynamic peaks were clustered into response groups using DEGreport [254].

3.8.10 PRO-seq library preparation

Cell permeabilization was performed as previously described [213], with modifications. 4 replicates

were performed from cells treated and collected at different times in the same day. For the time

course experiment, 8*106 dTAG-TRPS1 Clone 28 cells per sample were plated in 15cm dishes

2 days before harvest. Cells were treated with DMSO or 50nM dTAG-13 and 50nM dTAGV-1

in DMSO at various time points and collected simultaneously. For the three clone experiment,

4*106 cells per sample were plated in 10cm dishes 1 day before harvest. Cells were treated with

DMSO or 100nM dTAG-13 in DMSO for 90 minutes and collected simultaneously.

At the time of harvest, cells were scraped in 10mL ice cold PBS and washed in 5mL

buffer W (10mM Tris-HCl pH 7.5, 10mM KCl, 150mM sucrose, 5mM MgCl2, 0.5mM CaCl2,

0.5mM DTT, 0.004U/mL SUPERaseIN RNase inhibitor (Invitrogen), Complete protease inhibitors

(Roche)). Cells were permeabilized by incubating with buffer P (10 mM Tris-HCl pH 7.5, KCl

10 mM, 250 mM sucrose , 5 mM MgCl2, 1 mM EGTA, 0.05% Tween-20, 0.1% NP40, 0.5 mM

DTT, 0.004 units/mL SUPERaseIN RNase inhibitor (Invitrogen), Complete protease inhibitors

(Roche)) for 3 minutes on ice. Cells were washed with 10 mL buffer W before being transferred

into 1.5mL tubes using wide bore pipette tips. Finally, cells were resuspended in 50µL buffer F

(50mM Tris-HCl pH 8, 5mM MgCl2, 0.1mM EDTA, 50% Glycerol, 0.5 mM DTT). Cells were

snap frozen in liquid nitrogen and stored at -80°C.
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PRO-seq libraries were prepared as previously described [255], with modifications. RNA

extraction after the run-on reaction was performed with 500µL Trizol LS (Thermo Fisher) followed

by 130µL chloroform (Sigma). The equivalent of 1µL of 50µM for each adapter was used. A

random eight base unique molecular identifier (UMI) was included at the 5′ end of the adapter

ligated to the 3′ end of the nascent RNA. 37°C incubations were performed with rotation with

1.5mL tubes placed in 50mL conical tubes in a hybridization oven. For the reverse transcription

reaction, RP1 was used at 100µM and dNTP mix was used at 10mM each. Libraries were

amplified by PCR for a total of 8 cycles in 100µL reactions with Phusion polymerase (New

England Biolabs). No PAGE purification was performed to ensure that our libraries were not

biased against short nascent RNA insertions.

3.8.11 PRO-seq analysis

Adapters were removed using cutadapt [190]. Libraries were deduplicated using fqdedup and

the 3′ UMIs [193]. UMIs were removed, and reads were reverse complemented with the seqtk.

Reads aligning to the rDNA genome with bowtie2 [189] were removed. The remaining reads were

aligned, sorted, and convert to bed and bigWig files with bowtie2, samtools, seqOutBias, and

deeptools, respectively [194, 195, 245]. Composite profiles around TRPS1 peaks were generated

with deeptools. Reads were counted in genes using bedtools, and differentially expressed

genes were identified with DESeq2 [188, 198]. Dynamic genes were clustered into response

groups using DEGreport [254]. Over-representation analysis was performed with enrichr [256],

and gene set enrichment analysis was performed with fgsea [257], both using the Hallmark gene

sets [221].

3.8.12 Genome browser visualization

Genome browser [258] images were taken from the following session: https://genome.ucsc.edu/

s/tgscott/dTAG_TRPS1_ChIP_PRO_ATAC.

https://genome.ucsc.edu/s/tgscott/dTAG_TRPS1_ChIP_PRO_ATAC
https://genome.ucsc.edu/s/tgscott/dTAG_TRPS1_ChIP_PRO_ATAC
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3.8.13 Cell number enumeration

1.25*104 cells per sample were plated in a 24-well plate. The next day (day 0), cells were treated

with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO. Media was replaced, maintaining

the treatment condition, every 2 days. Cells were enumerated using a hemocytometer. 2 technical

replicates were used on day 0, 2 for each treatment on day 3, and 3 for each treatment on

days 7, 10, 14. The technical replicates were merged, and the experiment was performed in

4 biological replicates from different cell passages. The data were imported into R [242] for

visualization and statistical analysis. A linear model was fit for the log-transformed cell number

and the time. A second linear model was fit that included an interaction term between the time

and the treatment condition, representing the effect of treatment on the doubling rate. Analysis

of variance was performed on the two models to test for the significance of the interaction term.

3.8.14 TRPS1 activity score and patient outcome stratification

Primary TRPS1-regulated genes were defined based on the 30 minute time point using DESeq2

[198]. This TRPS1 regulon was then used in RTN [228, 229] to define a TRPS1 activity score for

each patient within the METABRIC cohort [226, 227].

3.9 Data Access

All analysis details and code are available at https://guertinlab.github.io/TRPS1_ER_analysis/

Vignette.html. Raw sequencing files and processed counts and bigWig files are available from

GEO SuperSeries accession record GSE236176, with SubSeries accession records GSE236175

(ATAC-seq), GSE236174 (ChIP-seq), and GSE236172 (time course PRO-seq), and GSE251772

(three clone PRO-seq).
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4.3 Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide. Inhibition of cholesterol

biosynthesis reduces morbidity and mortality due to CVD. Multiple genome-wide association

studies (GWAS) have identified associations between common genetic variants and blood

cholesterol traits in the human population. We still lack a mechanistic understanding of how

most GWAS hits influence their associated traits. TRPS1 is an atypical GATA family transcription

factor associated with corepressor complexes and transcriptional repression of its target genes.

We previously generated clones in the luminal breast cancer cell line T47D in which can rapidly

degrade TRPS1 endogenously fused with an inducible degron tag. Following up on an observation

from one of the clones, here we show that acute TRPS1 depletion in three independent clones

activates cholesterol biosynthesis gene transcription. We queried GWAS data to demonstrate

that common genetic variants in the TRPS1 locus are associated with blood cholesterol traits.

Unexpectedly, we do not observe a change in steady state cholesterol biosynthesis gene mRNA,

lipid droplet, or cholesterol abundance after 48 hours of TRPS1 depletion.
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4.4 Introduction

Cardiovascular disease (CVD) affects over 6% of the global population and is the leading cause

of death worldwide [259]. Blood cholesterol traits, including low-density lipoprotein (LDL)

and high-density lipoprotein (HDL) cholesterol levels have long been known to be risk factors

for CVD [260, 261]. Accordingly, cholesterol-lowering medications such as statins decrease

morbidity and mortality due to CVD [262]. The mechanism of action of statins is the inhibition

of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in cholesterol

biosynthesis [263]. Additional therapeutic targets, such as proprotein convertase subtilisin/kexin

type 9 (PCSK9) have been identified by studying rare familial cases of hypercholesterolemia [264,

265].

Multiple genome-wide association studies (GWAS) have identified associations between

hundreds of clusters of common genetic variants and blood cholesterol traits in the human

population [266–269]. These GWAS hits can be used to generate polygenic risk scores to predict

cholesterol traits without additional study [270]. However, additional experiments are needed

to improve our understanding of the underlying biology regulating cholesterol homeostasis in

human physiology.

TRPS1 is a member of the GATA family of transcription factors [60]. Unique among this

family, TRPS1 represses transcription of its target genes via its carboxy-terminal IKZF1-like zinc

fingers [61]. TRPS1 interacts with corepressors, including members of the NuRD and coREST

complexes, to regulate transcription of its target genes [53, 57, 58, 62, 63].

We previously generated three independent clones from the luminal breast cancer cell line

T47D in which we endogenously tagged TRPS1 with the dTAG inducible degron tag (Chapter 3).

In these cells, we can rapidly degrade TRPS1 by the addition of the small molecule dTAG-13 and

dTAGV-1 [89]. When we depleted TRPS1, we noticed that cholesterol biosynthesis genes were

over-represented among the activated genes. Here we follow up this observation with additional

experiments to test whether TRPS1 regulates additional measures of cholesterol biosynthesis.
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4.5 Results

4.5.1 TRPS1 represses cholesterol biosynthesis gene transcription

We first set out to validate our previous observations from one clone in all three clones. We

performed precision run-on with sequencing (PRO-seq) to measure nascent transcription after

90 minutes of TRPS1 depletion in four replicates of each of the three clones [174]. We used

DESeq2 to identify differentially expressed genes [198]. 224 genes were significantly activated,

and 116 genes were repressed, at a false discovery rate (FDR) of 0.1 (Figure 4.1A). We performed

over-representation analysis on the activated genes using the Reactome database of gene sets

[256, 271, 272] (Figure 4.1B). The most significantly over-represented gene set was Cholesterol

Biosynthesis. We specifically queried the significantly activated genes within this gene set and

found seven to be activated in each of the three clones upon TRPS1 depletion (Figure 4.1C).
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Figure 4.1: TRPS1 represses cholesterol biosynthesis gene transcription. A) MA plot
of PRO-seq signal in genes, with shrunken fold change values representing transcription in the
100nM dTAG-13 (TRPS1-depleted) condition relative to the DMSO condition. Red points
represent significantly activated genes, and blue points represent significantly repressed genes
at an FDR of 0.1. B) Over-representation analysis of the activated genes from (A), using the
Reactome database of gene sets. C) Heatmap of PRO signal in the seven significantly activated
genes in the Cholesterol Biosynthesis gene set, with fold change values representing transcription
in the 100nM dTAG-13 condition relative to the DMSO condition.

4.5.2 TRPS1 is associated with blood cholesterol traits

To assess the relevance of TRPS1 to cholesterol regulation in humans, we searched for pub-

licly available GWAS data as orthogonal evidence of the importance of TRPS1 to cholesterol
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homeostasis in humans. When we queried the NHGRI EBI GWAS Catalog to find published

associations with genetic variants within the TRPS1 genomic locus, we found several significant

single nucleotide polymorphisms (SNPs) associated with blood cholesterol traits [215]. To further

investigate these SNPs, we downloaded summary statistics from the UK Biobank [266].

We used LocusZoom to plot the data within this locus (Figure 4.2A) [216]. A plot of

these data indicates that SNPs within the TRPS1 gene that are associated with HDL and LDL

cholesterol levels in the blood (Figure 4.2A,B). Furthermore, another cluster of SNPs upstream

from TRPS1 are associated with cholesteryl esters to total lipids ratio in small HDL (Figure 4.2C).

We used data from the Genotype-Tissue Expression (GTEx) project, which identified expression

quantitative trait loci (eQTL) within this region, and analyzed it with eQTpLot [273–275]. We

found that the SNPs that were the most significant in the GWAS were the most significant in the

eQTL study. The directions of effect were incongruous, meaning SNPs associated with higher

TRPS1 expression were associated with lower values of the cholesterol trait (Figure 4.2C,D,E).

To further test the hypothesis that the same putative causual SNP associated with

TRPS1 expression is also associated with the GWAS cholesterol trait, we performed Bayesian

colocalization analysis. This method produces posterior probabilities for five hypotheses. H0: No

association with either trait. H1: Association with trait 1 but not with trait 2. H2: Association

with trait 2 but not with trait 1. H3: Association with trait 1 and trait 2, with two independent

SNPs. H4: Association with trait 1 and trait 2, with one shared SNP [276]. Starting with

standard priors, including P12, the probability that one SNP is associated with both traits, as

10-6, we found the posterior probability for H4 to be 0.9.

Finally, we searched COLOCdb, a publicly available resource of colocalization analyses

with GWAS and QTL studies [277]. We found that SNPs associated with HDL cholesterol

colocalized with SNPs associated with methylation levels, chromatin accessibility levels, and

histone acetylation levels within the TRPS1 locus, each with posterior probabilities for H4 >

0.85. Collectively, these analyses suggest that TRPS1 influences cholesterol biology in the human

population.
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Figure 4.2: TRPS1 is associated with blood cholesterol traits. A) LocusZoom plot of the
TRPS1 genomic locus depicting the location and significance of SNPs associated with HDL
cholesterol levels. B) LocusZoom plot of the TRPS1 genomic locus depicting the location
and significance of SNPs associated with LDL cholesterol levels. C) eQTpLot of the TRPS1
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Figure 4.3: Lipidomics normalization method affects results. Volcano plot of lipid species
abundance in dTAG-TRPS1 Clone 28 cells after treatment with DMSO or 50nM dTAG-13 and
50nM dTAGV-1 in DMSO (dTAG) for 24 hours, normalized using A) probabilistic quotient
normalization (PQN) or B) internal standard normalization (ISTD).

4.5.3 Lipidomics normalization method affects results

Based on these observations, we hypothesized that the abundance of cholesterol and other lipid

species in our dTAG-TRPS1 Clone 28 cells would increase upon TRPS1 depletion. To test this

hypothesis, we performed an unbiased lipidomics experiment in which cells were treated with

DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO (dTAG) for 24 hours. We provided snap-

frozen cell pellets to the Biomolecular Analysis Facility, and they performed ultra-performance

liquid chromatography (UPLC) and mass spectrometry (MS) on the extracted lipids from these

cell pellets. When these data were normalized using probabilistic quotient normalization (PQN),

which assumes there is no lipidome-wide change in lipid species abundance, it appeared that

very few lipid species were significantly changing in abundance (Figure 4.3A). However, when we

used the spiked-in heavy internal standards, there appeared to be a lipidome-wide increase in

lipid species abundance (Figure 4.3B).
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4.5.4 TRPS1 depletion does not consistently affect mRNA expression of

cholesterol biosynthesis genes

If TRPS1-mediated repression of cholesterol biosynthesis gene transcription decreases cholesterol

biosynthesis rate, we would hypothesize that 48 hours of TRPS1 depletion would increase steady

state mRNA abundance for these cholesterol biosynthesis genes. To test this hypothesis, we

performed reverse transcription quantitative polymerase chain reaction (RT-qPCR) for each

of the above genes, as well as TRPS1 as a positive control and GAPDH as a loading control,

in each of the three dTAG-TRPS1 clones (Figure 4.4). We grew cells in medium depleted of

lipids to increase the endogenous rate of cholesterol biosynthesis. TRPS1 mRNA expression

increased upon TRPS1 depletion, consistent with the PRO-seq data and representing a negative

feedback loop in which TRPS1 represses the transcription of its own gene. In contrast with this

positive control, mRNA abundance for each of the tested cholesterol biosynthesis genes were

not significantly changed upon TRPS1 depletion. These data suggest that the initial increase

in nascent transcription of these cholesterol biosynthesis genes does not produce a sustained

increase in steady state mRNA abundance of these genes.

4.5.5 TRPS1 depletion does not consistently affect lipid droplet abundance

We hypothesized that an increase in cholesterol biosynthesis would lead to an increase in lipid

droplet abundance after 48 hours of TRPS1 depletion. We stained cells with BODIPY to label

neutral lipids and DAPI to label nuclei and performed fluorescent microscopy. We used Fiji to

quantify lipid droplet area and enumerate nuclei [278]. Across four biological replicates, using

the parental T47D cell line as a negative control, TRPS1 depletion did not consistently affect

lipid droplet abundance in the dTAG-TRPS1 clone 28 (Figure 4.5).

4.5.6 TRPS1 depletion does not consistently affect cholesterol abundance

We next sought to more directly assay whether TRPS1 depletion affects the abundance of

cholesterol in these cells. To do so, we used a luminescent readout in a 96-well plate-based
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Figure 4.4: TRPS1 depletion does not consistently affect mRNA expression of choles-
terol biosynthesis genes. RT-qPCR of cholesterol biosynthesis genes, normalized to GAPDH
expression. TRPS1 mRNA is used as a positive control for TRPS1 protein depletion. Cells were
treated with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO (dTAG) for 48 hours.
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Figure 4.6: TRPS1 depletion does not consistently affect cholesterol abundance. Quan-
tification of cholesterol abundance in each of the three dTAG-TRPS1 clones after treatment with
DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO (dTAG) for 48 hours.

format. We grew cells in medium depleted of lipids to increase the endogenous rate of cholesterol

biosynthesis. Upon 48 hours of TRPS1 depletion, we found no consistent change in cholesterol

abundance across the three dTAG-TRPS1 clones.

4.5.7 Cholesterol biosynthesis gene transcription is only transiently activated

Based on these negative results, we analyzed the kinetic PRO-seq data we generated after the

initial 90 minute TRPS1 depletion experiment from Figure 4.1. We identified genes that were

significantly changed over the time course at an FDR of 0.1, using a likelihood ratio test within

DESeq2 to identify genes for which including a variable for the time point increased the predictive

power of the model over one without this information. Focusing on the Reactome Cholesterol

Biosynthesis gene set, we plotted the kinetics of normalized PRO signal for the 16 differentially

expressed genes. We found that transcription of each gene was maximal at 2-4 hours after

TRPS1 depletion and returned to baseline at our latest time point of 24 hours (Figure 4.7).
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Figure 4.7: Cholesterol biosynthesis gene transcription is only transiently activated.
Kinetic traces of dynamic cholesterol biosynthesis gene transcription.

4.5.8 TRPS1 depletion does not significantly affect cholesterol abundance at

earlier time points

Based on this finding, we chose to measure cholesterol abundance at earlier time points after

TRPS1 depletion. We performed the same cholesterol assay after growing cells in medium

depleted of lipids for 48 hours and treating with 50nM dTAG-13 and 50nM dTAGV-1 in DMSO

(dTAG) for various amounts of time. We still found no significant change in cholesterol abundance

at any time point, though the measured concentrations were increased after 8 hours of TRPS1

depletion for each of the three clones.

Finally, we turned to control treatments to assess the dynamic range of the assay under

our culture conditions. Atorvastatin is a clinically used cholesterol-lowering medication that

inhibits HMGCR, the rate-limiting enzyme in the cholesterol biosynthesis pathway, and the

enzymatic product of HMGCR is mevalonate [279, 280]. Thus we would expect atorvastatin

treatment to decrease cholesterol abundance relative to its DMSO vehicle control and mevalonate
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Figure 4.8: TRPS1 depletion does not significantly affect cholesterol abundance at
earlier time points. Quantification of cholesterol abundance in each of the three dTAG-TRPS1
clones after treatment with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO (dTAG)
over a time course of 48 hours.

treatment to increase cholesterol abundance relative to its ethanol vehicle control. However,

we only observed a 30% decrease in cholesterol abundance upon atorvastatin treatment and

an unexpected decrease in cholesterol abundance upon mevalonate treatment (Figure 4.9).

Therefore we do not have high confidence that this assay under our culture conditions is equipped

to detect a small increase in cholesterol abundance.

4.6 Discussion

Here we use an inducible degron tag system to measure the early nascent transcriptional changes

upon acute depletion of the TF TRPS1 in three independent clones of the luminal breast cancer

cell line T47D. We present data demonstrating that 90 minutes of TRPS1 depletion significantly

activates transcription of seven cholesterol biosynthesis genes, a proportion of this gene set

that is significantly over-represented among all activated genes. In a follow-up kinetic PRO-seq

experiment, we found that 16 cholesterol biosynthesis genes were dynamic over the time course,
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Figure 4.9: Cholesterol assay controls do not demonstrate the expected effects. Quantifi-
cation of cholesterol abundance in each of the three dTAG-TRPS1 clones after treatment with
DMSO, atorvastatin, ethanol, or mevalonate for 48 hours.

with expression changes that tended not to increase at the earliest time point of 30 minutes, to

peak at 2-4 hours, and to return to baseline by the latest time point of 24 hours.

We also present an analysis of publicly available GWAS and eQTL data to suggest that

TRPS1 regulates blood cholesterol levels in the human population. First, we found that the

levels of two common forms of cholesterol, HDL and LDL, are associated with common genetic

variants within the TRPS1 transcriptional unit. Second, we found that the SNPs associated

with a more specific cholesterol trait, the ratio of cholesteryl esters to total lipids in small HDL,

colocalize with SNPs associated with TRPS1 expression in an eQTL study. These data support

our hypothesis that one or more of these common genetic variants regulates these cholesterol

traits and that this effect is mediated through an effect on TRPS1 expression.

We do not find evidence of eQTL colocalization with the more proximal SNPs associated

with HDL and LDL cholesterol. We speculate that could be attributed to a dearth of significant

eQTLs for TRPS1 in the GTEx data we analyzed. The tissue with the most significant eQTLs

was pancreas. It is possible that the causal SNP for the HDL or LDL traits affects binding of a
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TF that is less expressed in the pancreas tissue studied than in the relevant cell type where the

SNP mediates its effect. Increasing samples size of eQTL datasets will eventually give us more

power to detect significant associations.

We next performed several follow-up experiments to test our hypothesis that TRPS1

regulates cholesterol biosynthesis in our breast cancer cell lines. We first measured mRNA

levels of the genes with activated nascent transcription by RT-qPCR. After 48 hours of TRPS1

depletion, we did not detect a consistent trend in steady state mRNA expression of these genes.

We next used fluorescent microscopy to measure lipid droplets, as these can be a depot for

neutral lipids like esterified cholesterol. We did not observe a consistent difference in lipid droplet

abundance 48 hours after TRPS1 depletion. Finally, we measured cholesterol abundance with a

fluorescent, plate-based assay. Once again, we did not find a significant change in cholesterol

abundance.

There are several possibilities that could explain these negative results. Of course, steady

state cholesterol biosynthesis mRNA levels and cholesterol abundance in these cells might not

change in response to TRPS1 depletion. This could be due to feedback mechanisms that strictly

maintain cholesterol homeostasis. In fact, in our kinetic PRO-seq experiment, we do see a

return to baseline of nascent transcription of these cholesterol biosynthesis genes, which occurs

at some point between 4 and 24 hours after TRPS1 depletion. We do not lack confidence in

the robustness of the nascent transcriptional data, as we observed the over-representation of

cholesterol biosynthesis genes in two separate experiments and three independent clones.

However, even if steady state cholesterol biosynthesis mRNA levels and cholesterol

abundance do change, we might not be equipped to detect the small effect sizes. PRO-seq is a

sensitive assay, and the fold changes we observed were quite small. Similarly, GWAS data are

generated from many thousands of participants to provide statistical power to detect small effect

sizes. In our hands, RT-qPCR and lipid droplet staining may be too noisy to detect a weak signal.

In our microscopy assay, we found significant field-to-field variability in lipid droplet abundance. If

we were to perform this experiment again, capturing many more fields per sample may be helpful.
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Finally, the cholesterol assay did not appear so noisy, but the controls indicated a limited dynamic

range. Even in lipid-depleted medium, which should increase endogenous cholesterol biosynthesis,

treating with atorvastatin, which should significantly inhibit the rate-limiting enzyme in the

pathway, only reduced cholesterol abundance by 30% after 48 hours. Furthermore, mevalonate,

the product of this enzymatic reaction and a precursor to cholesterol, did not increase cholesterol

abundance in our assay. For these reasons, this assay should be further optimized to increase the

dynamic range in our cell culture conditions.

In sum, we provide evidence that TRPS1 represses nascent transcription of many

cholesterol biosynthesis enzymes and that the TRPS1 genomic locus is associated with several

cholesterol traits in the human population. We would predict that intermediate measures of the

cholesterol biosynthesis gene transcripts, proteins, or enzymatic products would be increased

upon TRPS1 depletion, though we do not observe this result in the three assays we performed.

4.7 Methods

4.7.1 Cell culture

T47D cells (RRID:CVCL_0553) (ATCC) were cultured in RPMI 1640 medium (Gibco) sup-

plemented with 10% fetal bovine serum (Gemini) and 10µg/ml insulin from bovine pancreas

(Sigma, made as a 1000x solution in 1% aqueous glacial acetic acid). dTAG-TRPS1 clones were

previously generated in (Chapter 3).

4.7.2 Cell treatments for PRO-seq

4 replicates were performed from cells treated and collected at different times in the same day.

4*106 cells per sample were plated in 10cm dishes overnight. For each replicate, cells were

treated with DMSO or 100nM dTAG-13 in DMSO for 90 minutes and collected simultaneously.
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4.7.3 Cell permeabilization for PRO-seq

Cell permeabilization was performed as previously described [213], with modifications. At the time

of harvest, cells were scraped in 10mL ice cold PBS and washed in 5mL buffer W (10mM Tris-HCl

pH 7.5, 10mM KCl, 150mM sucrose, 5mM MgCl2, 0.5mM CaCl2, 0.5mM DTT, 0.004U/mL

SUPERaseIN RNase inhibitor (Invitrogen), Complete protease inhibitors (Roche)). Cells were

permeabilized by incubating with buffer P (10 mM Tris-HCl pH 7.5, KCl 10 mM, 250 mM sucrose

, 5 mM MgCl2, 1 mM EGTA, 0.05% Tween-20, 0.1% NP40, 0.5 mM DTT, 0.004 units/mL

SUPERaseIN RNase inhibitor (Invitrogen), Complete protease inhibitors (Roche)) for 3 minutes

on ice. Cells were washed with 10 mL buffer W before being transferred into 1.5mL tubes using

wide bore pipette tips. Finally, cells were resuspended in 50µL buffer F (50mM Tris-HCl pH

8, 5mM MgCl2, 0.1mM EDTA, 50% Glycerol, 0.5 mM DTT). Cells were snap frozen in liquid

nitrogen and stored at -80°C.

4.7.4 PRO-seq library preparation

PRO-seq libraries were prepared as previously described [255], with modifications. RNA extraction

after the run-on reaction was performed with 500µL Trizol LS (Thermo Fisher) followed by 130µL

chloroform (Sigma). The equivalent of 1µL of 50µM for each adapter was used. A random eight

base unique molecular identifier (UMI) was included at the 5′-end of the adapter ligated to the

3′-end of the nascent RNA. 37°C incubations were performed with rotation with 1.5mL tubes

placed in 50mL conical tubes in a hybridization oven. For the reverse transcription reaction,

RP1 was used at 100µM and dNTP mix was used at 10mM each. Libraries were amplified by

PCR for a total of 8 cycles in 100µL reactions with Phusion polymerase (New England Biolabs).

No PAGE purification was performed to ensure that our libraries were not biased against short

nascent RNA insertions.



Chapter 4 114

4.7.5 PRO-seq analysis

Adapters were removed using cutadapt [190]. Libraries were deduplicated using fqdedup and

the 3′ UMIs [193]. UMIs were removed, and reads were reverse complemented with the seqtk.

Reads aligning to the rDNA genome with bowtie2 [189] were removed. The remaining reads

were aligned, sorted, and convert to bed and bigWig files with bowtie2, samtools, seqOutBias,

and deeptools, respectively [194, 195, 245]. Reads were counted in genes using bedtools,

and differentially expressed genes were identified with DESeq2 [188, 198]. Over-representation

analysis was performed with clusterProfiler, using the Reactome gene sets [256, 271, 272].

4.7.6 GWAS and eQTL data visualization and analysis

Summary statistics were downloaded from [266]. SNPs in the TRPS1 locus were plotted using

LocusZoom [216]. eQTL data were downloaded from [273]. Colocalization visualization was

performed with [275], and Bayesian analysis was performed with [276].

4.7.7 Lipidomics

5 replicates were performed from cells treated and collected at different times in the same day.

8*106 cells per sample were plated in 15cm dishes overnight. For each replicate, cells were

treated with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO for 24 hours and collected

simultaneously. For each replicate, the plates were moved onto ice, the media was aspirated,

and cells were washed with 10ml PBS, scraped, and moved to a 50ml conical tube. The cells

were centrifuged at 500g for 5 minutes, resuspended in 1ml PBS, and moved to 1.5ml Protein

LoBind Tube (Eppendorf). The cells were centrifuged at 2500g for 1 minute, and the pellets

were snap froze in liquid nitrogen, and stored at -80°C.

The following steps were performed by staff at the Biomolecular Analysis Facility, who

provided this protocol:

To each tube, 750µL of -20°C cold chloroform:methanol (2:1) mixture was added and

vortexed. Cells were broken in a bead beater with steel balls for 3 minutes at an intensity of 5.
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Tubes were shaken vigorously for 30 minutes at 4°C in a temperature controlled thermal shaker.

Further 400µL of water was added, shaken vigorously, and the top aqueous methanolic phase

was recovered as metabolite mixture and transferred in Eppendorf tubes. The lower phase was

saved for lipid extraction.

To each tube, 500µL of chloroform phase, 500µL of cold Chloroform:methanol (2:1)

mixture was added, vortexed and shaken vigorously for 30 minutes at 4°C in temperature

controlled thermal shaker. Further 200µL of water was added, shaken vigorously and lower

organic phase was recovered as lipid mixture. A second extraction was performed by adding

500µL of chloroform and 200µL water. The lower organic phase was recovered as lipid extract,

stored in glass bottles at -80°C.

10µL of Avanti Splash Lipidomix was added to each sample as internal standard, and

then samples were dried under gentle stream of N2 using a Recti-Vap Evaporator (Thermo Fisher

Scientific) at 40°C. The dried lipid extract was reconstituted in 110µL of methanol:isoproponal

(1:1). Approx. 100µL was recovered. Samples were transferred to borosilicate glass inserts kept

inside a screw-capped glass autosampler vials (Agilent).

MS data was acquired on Thermo Orbitrap IDX MS connected to Vanquish UPLC system.

Lipid extract was separated using Ascentis Express C18 (Sigma-Aldrich®, 2.1 x 100 mm, 2.7 µm)

operated at 55°C and a flow rate of 260 µL/min Mobile phase A was 60:40 acetonitrile/water

and mobile phase B was 90:10 isopropyl alcohol/acetonitrile; both A and B contained 10 mM

ammonium formate and 0.1% formic acid.

Mass scan range: 250-2000 at a resolution of 120,000 with a scan range of 1.5 sec. Data

dependent MS2 scans were obtained with an Orbitrap resolution of 15,000 and stepped collision

HCD energy of 25,30,35 was used. AcquireX workflow was employed for lipid characterization by

additional targeted product ion (m/z 184.0733) or neutral loss (fatty acid + NH4) fragmentation

CID MS2 and MS3 experiment were performed to provide characterization of PC and TG lipids.

Data analysis was performed on MS-DIAL v4.8. Search type was set to Product search
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(for identification of spectra obtained in MS2 measurement). Precursor tolerance was set at 5.0

ppm and product tolerance was set at 5 ppm with a relative intensity cutoff of 1% was used to

remove unwanted noise. MS1 tolerance was set to 0.01 Da and MS2 set to 0.025 Da. For peak

picking mass slice width was set 0.1. For peak alignment maximum retention time tolerance

was set at 0.2 min, MS1 tolerance set to 0.015. Peaks were identified by searching the MS2

spectra in MS-DIAL LipidBlast database (http://prime.psc.riken.jp/compms/msdial/download/

lipidblast/LipidMsmsBinaryDB-VS68-FiehnO.lbm2) using a mass tolerance of 0.01 Da for MS1

and 0.05 Da for MSMS with identification score cutoff of 60%. After the search and alignment,

peak data was exported out as .txt file. Normalization was performed, and volcano plots were

generated using the lipidr package in R [242, 281].

4.7.8 RT-qPCR

4*105 cells per well for each of the three clones were plated in 6-well plates overnight. Cells were

treated with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO for 48 hours. RNA was

isolated with TRIzol (Thermo Fisher Scientific). RNA concentrations were determined using a

NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Fisher Scientific). cDNA was synthesized

using Sensifast cDNA synthesis kit (Bioline). qPCR was performed using iTaq Universal SYBR

Green Supermix (Biorad). Primer sequences:

GAPDH-F: ACAGTTGCCATGTAGACCCC; GAPDH-R: TGGTTGAGCACAGGGTACTT;

TRPS1-F: TCCCTGTTACGGAGGCGTAG; TRPS1-R: CGCGTTGCATACATATCCGC;

HMGCR-F: CCGCGACTGCGTTAACTGG; HMGCR-R: ACAGAATCCTTGGATCCTCCAGA;

HMGCS1-F: TTGTGCCCGAAGGAGGAAAC; HMGCS1-R: GCATGGTGAAAGAGCTGTGTG;

LSS-F: GCGTTATTTGCAGAGTGCCC; LSS-R: CCCCAGCAATGTTTTCCTGC;

MSMO1-F: AGTTCATCATGAGTTTCAGGCTCC; MSMO1-R: ATGGTCACCCATGCCCAAAG;

MVK -F: CTCTGGGTTGTGGGAGTTGG; MVK -R: TACAGCCAGTGCTACCTTGC;

SC5D-F: CTCGCAGCACGGCTTTTCTC; SC5D-R: GATCCATCACTTAGCCCCTGC.

The relative standard curve method was used to determine transcriptional fold changes [282,

283]. RNA starting quantities were determined using a standard curve and normalized to the

http://prime.psc.riken.jp/compms/msdial/download/lipidblast/LipidMsmsBinaryDB-VS68-FiehnO.lbm2
http://prime.psc.riken.jp/compms/msdial/download/lipidblast/LipidMsmsBinaryDB-VS68-FiehnO.lbm2
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reference gene GAPDH.

4.7.9 Lipid droplet staining

4 replicates were performed from cells of different passages on different days. 4*105 cells per

well for each of the parental T47D cells and the dTAG-TRPS1 Clone 28 cells were plated on

uncoated cover slips in 6-well plates overnight. Cells were treated with DMSO or 50nM dTAG-13

and 50nM dTAGV-1 in DMSO for 48 hours. The wells were washed twice with PBS, fixed with a

4% formaldehyde (Sigma) solution in PBS for 10 minutes, washed twice with PBS, stained with

a 1:1000 solution of (1mM BODIPY dye (Invitrogen) in DMSO) in PBS for 30 minutes protected

from light, washed twice with PBS, and mounted onto slides with DAPI-containing mounting

medium (Vector Labs). The samples were imaged using a confocal fluorescent microscope (Zeiss).

Images were analyzed with Fiji [278]. Briefly, images were thresholded and converted to binary.

A watershed was applied to separate particles, and particles were analyzed for number, average

size, and total area. Total lipid droplet area divided by nuclei number were plotted in R [242].

4.7.10 Cholesterol assay

Replicates were performed from cells of different passages on different days. 4*105 cells per

well for each of the dTAG-TRPS1 clones were plated in 6-well plates overnight. For Figure 4.6,

cells were treated with DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO for 48 hours.

For Figure 4.9, one replicate from Figure 4.6 also had control wells with 10µM atorvastatin

(Sigma), ethanol, or 100µM mevalonolactone (Sigma). For Figure 4.8, cells were treated with

DMSO or 50nM dTAG-13 and 50nM dTAGV-1 in DMSO at the indicated time points and

collected simultaneously. Cholesterol was measured using the Cholesterol-Glo assay (Promega).

Cells were washed twice with PBS, lysed for 30 minutes at 37°C, and incubated with detection

reagent for 1 hour protected from light. Fluorescence was measured using a plate reader (Biotek).

Fluorescence was converted to cholesterol concentration using a standard curve of cholesterol in

the same plate and plotted in R [242].
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4.8 Data Access

All analysis details and code are available at https://tgscott400.github.io/TRPS1_cholesterol_

analysis/Vignette.html. Raw PRO-seq reads and processed counts and bigWig files are available

from GEO accession record GSE251772.
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Chapter 5

Contributions to other projects

5.1 ARF-AID: a rapidly inducible protein degradation system that

preserves basal endogenous protein levels

Kizhakke Mattada Sathyan, Thomas G. Scott, Michael J. Guertin.

Current Protocols in Molecular Biology. 2020.

5.1.1 Abstract

Inducible degron systems are widely used to specifically and rapidly deplete proteins of interest

in cell lines and organisms. An advantage of inducible degradation is that the biological

system under study remains intact and functional until perturbation, a feature that necessitates

that the endogenous levels of the protein are maintained. However, endogenous tagging of

genes with auxin-inducible degrons (AID) can result in chronic, auxin-independent proteasome-

mediated degradation. The ARF-AID (auxin-response factor–auxin-inducible degron) system is

a re-engineered auxin-inducible protein degradation system. The additional expression of the

ARF-PB1 domain prevents chronic, auxin-independent degradation of AID-tagged proteins while

preserving rapid auxin-induced degradation of tagged proteins. Here, we describe the protocol for

engineering human cell lines to implement the ARF-AID system for specific and inducible protein

degradation. These methods are adaptable and can be extended from cell lines to organisms.

5.1.2 Contribution

I wrote portions of the original draft of the manuscript on CRISPR guide RNA design, genomic

DNA primer design, and homology-directed repair template design and edited the manuscript.
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5.2 The androgen receptor does not directly regulate the tran-

scription of DNA damage response genes

Sylwia Hasterok*, Thomas G. Scott*, Devin G. Roller, Adam Spencer, Arun B. Dutta, Kizhakke

M. Sathyan, Daniel E. Frigo, Michael J. Guertin, Daniel Gioeli

*S. Hasterok and T.G. Scott contributed equally to this article.

Molecular Cancer Research. 2023.

5.2.1 Abstract

The clinical success of combined androgen deprivation therapy (ADT) and radiotherapy (RT)

in prostate cancer created interest in understanding the mechanistic links between androgen

receptor (AR) signaling and the DNA damage response (DDR). Convergent data have led to a

model where AR both regulates, and is regulated by, the DDR. Integral to this model is that the

AR regulates the transcription of DDR genes both at a steady state and in response to ionizing

radiation (IR). In this study, we sought to determine which immediate transcriptional changes

are induced by IR in an AR-dependent manner. Using PRO-seq to quantify changes in nascent

RNA transcription in response to IR, the AR antagonist enzalutamide, or the combination of

the two, we find that enzalutamide treatment significantly decreased expression of canonical

AR target genes but had no effect on DDR gene sets in prostate cancer cells. Surprisingly, we

also found that the AR is not a primary regulator of DDR genes either in response to IR or at a

steady state in asynchronously growing prostate cancer cells.

5.2.2 Contribution

I analyzed the PRO-seq data, generated figure panels, and reviewed and edited the manuscript.
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Chapter 6

Discussion

6.1 Concordance between initial and steady-state ER activity

6.1.1 Conclusions

In Chapter 2, contrary to our hypothesis, we found that acute antagonism of ER from an active

state recapitulated the effect that acute agonism of the estrogen receptor (ER) from an inactive

state had on nascent transcription, just in the opposite direction and with a smaller magnitude.

We had hypothesized that, though there may be some overlap in the gene sets, ER would regulate

distinct sets of genes when initially activated than when at a steady state of activation. We

predicted that the differential expression of transcription factors (TFs) and cofactors as a part of

the primary response to estrogen would feed back to modulate ER binding and ability to recruit

coactivators to specific loci. We based this hypothesis in part on the results presented in Figure

3B in [37].

Indeed, much of the nascent transcriptional response to estrogen is transient. However,

our results suggest that the delayed repression of the estrogen-activated genes that return to

baseline expression over time is not primarily due to a reduction in ER activation of specific

genes but rather due to a separate repression that overpowers the ER activation. There does

appear to be a general reduction in ER activation of its target genes, as the effect sizes for ER

antagonism are smaller than those for ER agonism. This aspect of our results is expected, as

estrogen treatment downregulates ESR1 mRNA expression [284–286].

In addition to this negative feedback, we also predicted that ER would gain the ability to

directly activate secondary effect genes that it was not able to activate under the hormone-starved

condition. However, this does not appear to be true, suggesting that ER binding and direct

activation of target genes is unaffected by the steady-state condition in which it is acting, at

least for the two we tested, complete medium and hormone-starved medium. This robustness is
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remarkable in the face of many differentially expressed TFs and cofactors and a difference in cell

state from non-proliferating to proliferating. This is consistent with the kinetics of ER binding

over the first 90 minutes of estrogen treatment, as determined using a quantitative measure with

high temporal resolution, which showed relatively constant binding intensity genome-wide [287].

We would predict that this trend would continue at longer time points, with a genome-wide

decrease in binding over time as ER expression is downregulated, but without a redistribution of

ER binding.

To illustrate the dynamics of estrogen-activated genes, we performed hierarchical clus-

tering as in Figure 3.13A and found that most ER target genes conform to one of three major

patterns (Figure 6.1). Over 80% of the estrogen-activated genes are more lowly expressed in

complete medium than upon acute ER activation in hormone-starved medium. This is consistent

with the previously reported transient activation of most ER target genes [37]. Within this class

of genes, Group 5 in our data are more severely repressed to around the baseline levels observed

in the hormone-starved condition, and Group 1 are more moderately repressed to intermediate

levels. The other class of genes are actually further activated in complete media, though this

cannot be attributable to further ER activation of these genes, as ER antagonist treatment

does not repress their expression close to the baseline levels observed in the hormone-starved

condition.

Based on our above interpretation of the data, we hypothesize that one or more TFs

change in activity as a result of a primary transcriptional effect of estrogen treatment and that

this change in activity represses the transiently activated ER target genes and further activates

the other ER target genes. Furthermore, we would predict that this modulation must be via

distinct regulatory elements (REs) from the ER binding sites that mediate the initial estrogen

activation. In this way, these genes are still ER target genes that are repressed by ER antagonist

treatment.
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Figure 6.1: ER target genes follow one of three expression patterns across media
conditions and ER activity modulation. Kinetic traces of estrogen-activated genes across the
media and drug treatment conditions.

6.1.2 Future directions

Which TFs mediate the modulation of ER target gene expression?

To identify these differentially active TFs, we performed assay for transposase-accessible chromatin

with sequencing (ATAC-seq) under the same conditions in which we performed precision run-on

sequencing (PRO-seq). We performed an initial analysis of these data before switching focus to

our newly-generated dTAG-TRPS1 clones and formed hypotheses that could be further explored.

Specifically, we identified differentially accessible ATAC-seq peaks between the complete medium

and hormone-starved medium conditions and performed de novo motif identification within these

peaks. Within the peaks with decreased accessibility in complete media, we identified the TEAD

family motif. Within the peaks with increased accessibility in complete media, we identified the

ER motif, the SP/KLF family motif, the forkhead-box family motif, and the RUNX family motif.

Among these motifs, the ER motif serves as a positive control, as ER is active in complete

medium and inactive in hormone-starved media. Forkhead-box motifs are often found near ER

binding sites, and the forkhead-box family member FOXA1 increases chromatin accessibility
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TF expression in complete versus hormone starved media
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Figure 6.2: TEAD and RUNX family TFs change in expression between media conditions.
MA plot of genes, with fold change values representing nascent transcription in the complete
medium condition relative to the hormone-starved medium condition.

and ER binding intensity, at least locally [288–290]. However, this motif does not significantly

differ in abundance between increased and decreased peaks in our ATAC-seq data, nor is FOXA1

differentially expressed between complete and hormone-starved media. When performing this

analysis, we included unchanged peaks as well, but these are not matched to the dynamic peaks

based on accessibility and are in general less accessible regions. In future, we would use the R

package MatchIt to pair a control unchanged peak with each activated peak [291]. In this way

we can more carefully identify potential examples of TF redistribution, as we did with ER in

Chapter 3.

In contrast, the TEAD family motif and the RUNX family motif are specifically enriched

in decreased and increased ATAC-seq peaks, respectively. Furthermore, the expression of

individual family members change in the expected directions (Figure 6.2). Specifically, TEAD1 is

significantly repressed, and RUNX1 is most significantly activated, with RUNX2 less so.
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Does TEAD1 activate ER target genes in the absence of estrogen?

The TEA/ATTS domain (TEAD) family of TFs, TEAD1-4, are most well known as the DNA-

binding factors of the Hippo signaling pathway which recruit the coactivators Yes-associated

protein (YAP1) and Transcriptional Activator with PDZ binding domain (TAZ) to activate their

target genes, though more recent work has revealed Hippo pathway-independent regulation of

TEAD activity [292, 293]. Based on our data, we hypothesize that TEAD1 positively regulates

transcription of a portion of the transiently-activated ER target genes in the hormone-starved

condition. In complete medium, TEAD1 is repressed, leading to an attenuation in expression of

these genes, dampening the ER-mediated activation.

This hypothesis generates several predictions that could be tested in future experiments.

First, we would confirm that TEAD1 protein abundance is decreased upon hormone starvation.

If so, we would determine whether TEAD1 activates a portion of ER target genes, in particular

those that are transiently activated by estrogen. As covered in Chapter 1, this could be done

with genetic, chemical, or chemical genetic perturbation. As the first two are available and

more easily applied to multiple cell lines, we would start with those. RNA interference (RNAi)

could be used to knock down TEAD1 expression in hormone-starved medium, and ER target

gene expression could be measured with messenger RNA (mRNA) sequencing (RNA-seq). A

repression of ER target gene expression would indicate that TEAD1 positively regulates these

genes, but the delayed time point would not discriminate between primary and secondary effects.

To address this point, a more acute perturbation could be achieved with chemical inhibitors of

TEAD/YAP1 interaction, those these inhibitors would miss any YAP1-independent effects of

TEAD1 [294–297].

If our hypothesis is correct, then it would be interesting to study the therapeutic

implication of TEAD1 activity modulation in luminal breast cancer. From data in the Cancer

Dependency Map project, TEAD1 knockout does not tend to affect luminal breast cancer

cell number [77]. However, these experiments were done in complete medium, in which we

predict TEAD1 expression is diminished. In a predicted higher TEAD1 activity setting such
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as hormone-starved medium or ER antagonist treatment, we would hypothesize that TEAD1

inhibition, predicted to further repress ER target genes, would further decrease proliferation.

Does over-activation of ER target genes upon TRPS1 depletion contribute to the cell

number defect?

An alternative, not mutually exclusive, hypothesis would be that the transient nature of the

estrogen activation of this set of genes benefits cell fitness and that the activation of TEAD1

in complete medium would lead to over-activation of these ER target genes and a decrease in

proliferation. Intriguingly, in Chapter 3, we found an enrichment of TEAD motifs in ATAC-seq

peaks that increased in accessibility upon TRPS1 depletion. We hypothesize that TRPS1

depletion increases TEAD1 binding to DNA, compensating for the decrease in TEAD1 expression,

and contributing to the activation of a subset of ER target genes.

Consistent with this hypothesis, our definition of ER target genes based on the PRO-seq

data generated in Chapter 2, of which approximately equal numbers were activated or repressed

upon TRPS1 depletion, differed from the Hallmark estrogen response gene sets, which were

specifically enriched among the genes that were repressed upon TRPS1 depletion. We would

predict that the ER target genes activated by TRPS1 depletion would be enriched for the genes

that are only transiently activated by estrogen over those that are sustained. In future, we would

analyze the data from Chapter 2 as well as the time course data from [37] to test this prediction.

Unfortunately, we were not able to find an antibody that could immunoprecipitate

TEAD1 in our hands. We also were unable to generate many reads of high quality chromatin

immunoprecipitation with sequencing (ChIP-seq) data for YAP1 to fully address this question.

However, our preliminary data suggest that there is a genome-wide increase in YAP1 binding

intensity upon TRPS1 depletion (Figure 6.3). These data were normalized to read depth, but

additional read depth and the use of the quantitative parallel factor ChIP-seq may be helpful to

more convincingly demonstrate a genome-wide increase [298]. If this hypothesis is correct, we

would predict that TEAD1 knockdown or inhibition would rescue the decrease in cell number
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Figure 6.3: YAP1 binding intensity is increased genome-wide upon acute TRPS1
depletion. MA plot of YAP1 binding intensity, with fold change values representing read
depth-normalized ChIP-seq reads upon TRPS1 depletion relative to the control condition.

doubling rate upon TRPS1 depletion. Furthermore, if YAP1 activity is not maximal upon TRPS1

depletion, further augmentation of YAP1 activity via inhibition of its upstream inhibitory kinases,

mammalian sterile 20-like kinases 1 and 2 (MST1/2), should further decrease cell number

doubling rate [299].

Two recent publications connect YAP1 and TEAD with ER and TRPS1. The first

identified TRPS1 as a repressor of YAP1-activated transcription in an unbiased screen in the

luminal breast cancer cell line MCF-7 [57]. The authors do not test whether TRPS1 depletion

increases YAP1 chromatin binding but do find that it increases expression of YAP1-activated

genes. Though we do not identify a YAP1 signature among the genes activated upon TRPS1

depletion in our own data, these published results are consistent with our hypothesis that TRPS1

decreases TEAD1 binding intensity genome-wide.

The second publication found that knockdown of a different TEAD family member,

TEAD4, in hormone-depleted medium, reduced ER occupancy on chromatin and ER target gene

expression upon acute estrogen treatment in the same MCF-7 cell line [101]. The authors do
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not test whether TEAD4 knockdown represses these genes in the absence of estrogen or further

reduces cell proliferation. Separately, the authors found that YAP1 activation in complete medium

reduces cell number doubling rates of both MCF-7 and T47D cells. This is consistent with our

hypothesis that increased TEAD1 activity in complete medium over-activates ER target genes

that are normally only transiently activated in response to estrogen and that this over-activation

reduces cell fitness. However, YAP1 activation also repressed ER protein expression, which

is sufficient to reduce cell fitness without our additional mechanism. YAP1-mediated ESR1

transcriptional repression has been previously reported as a secondary effect of the YAP1-activated

corepressor VGLL3 [300, 301]. It would be interesting to test whether increased TEAD1 binding

intensity at specific sites, not including REs controlling ESR1, induced upon TRPS1 depletion

also contributes to the effect on cell number.

Do RUNX family members augment activation of ER target genes?

In our analysis of the ATAC-seq data generated in complete and hormone-starved coniditions,

the RUNX family motif was specifically enriched in peaks that increased in intensity in complete

medium, and RUNX1 was the most significantly activated RUNX family member in complete

medium. The runt-related (RUNX) family of TFs, RUNX1-3, heterodimerize with core-binding

factor subunit beta (CBFB) to activate transcription of target genes [302]. They are most

well-characterized as tumor suppressors in the hematopoetic niche, but RUNX1 and CBFB are

also recurrently mutated in luminal breast cancer [11]. We hypothesize that RUNX1 further

activates a subset of ER target genes as a secondary effect of estrogen. As with TEAD1 above,

we can test this with genetic and chemical perturbations, specifically with RUNX1 RNAi-mediated

knockdown or with compounds that reduce RUNX binding to DNA [303–305].

We might also predict that RUNX inhibition would decrease cell fitness by repressing

a subset of ER target genes that are normally continuously expressed downstream from ER

activation. However, we do not observe an effect of knockout of any individual RUNX family

member or even of CBFB in the Cancer Dependency Map project data [77]. RUNX1 knockout
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in the mouse mammary epithelium leads to a decrease in ER-positive mature luminal cells, but

RUNX1 knockdown increases proliferation of the luminal breast cancer cell line MCF-7, as well

as three-dimensional culture of the basal-like mammary epithelial cell line MCF10A [306–308].

Do KLF family members repress ER target genes in the absence of hormone?

The final motif enriched in ATAC-seq peaks that increased in intensity in complete medium was

the SP/KLF family motif. Sp1-like (SP) proteins and Krüppel-like factors (KLFs) are a large

and diverse set of TFs that bind to similar DNA sequences but have varied activator or repressor

domains [309]. Of these family members, KLF3, KLF7, KLF8, and KLF12 are significantly

repressed in complete medium. Of these four, KLF3, KLF8, and KLF12 recruit corepressors in

the c-terminal binding protein (CtBP) family, and KLF7 has a putative acidic activator domain

that has been inactivated over the course of evolution [310–312]. Thus we hypothesize that these

TFs repress ER target genes in hormone-starved medium and that this repression is alleviated as

a secondary effect of estrogen treatment via the transcriptional repression of these KLF genes.

This hypothesis is more difficult to test than those for the TEAD and RUNX family TFs for two

reasons. Four TFs in the family are transcriptionally affected, making a genetic perturbation

more challenging, and we are unaware of any chemical activators of KLF proteins.

Does ER consistently regulate ESR1 expression across luminal breast cancer cell lines?

The last observation we will mention from this set of experiments is the transcriptional activation

of the ESR1 gene upon acute estrogen treatment and in complete medium, compared with the

hormone-starved condition. This is contrary to our expectation from MCF-7 cells that ESR1

mRNA and ER protein abundance are decreased upon estrogen treatment [284–286]. In future

we would test the effect of estrogen treatment on ER protein expression across a panel of luminal

breast cancer cell lines. If the effect is not consistent, this could have therapeutic implications.

For example, in patients with luminal breast cancer treated with hormonal therapy to inhibit

ER activity, ER protein downregulation or upregulation could lead to alternative mechanisms
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of therapy resistance. Specifically, ER downregulation could facilitate the transition to an ER-

negative, ER-independent, and estrogen-independent state, and upregulation could allow for the

accumulation of mutations in growth factors or ESR1 itself, rendering ER estrogen-independent

[44, 313, 314].

6.2 Concordance between chromatin accessibility, ER binding in-

tensity, and ER target gene expression

6.2.1 Conclusions

In Chapter 3, we claim that TRPS1 modulates chromatin accessibility to regulate ER binding

and ER target gene expression. This is a simple explanation of our data and the one we are

inclined to believe. Local chromatin accessibility, in addition to the presence and strength of the

ER motif in the DNA, is known to influence ER binding, but ER binding itself also increases local

chromatin accessibility [315, 316]. We have not ruled out the possibility that TRPS1 primarily

decreases ER binding intensity, with changes in chromatin accessibility at these sites merely a

consequence of the loss of ER-recruited coactivators. This possibility could in theory be due to

direct competition for DNA binding, though TRPS1 and ER recognize distinct motifs, and we

did not observe a conserved close spacing between TRPS1 and ER ChIP-seq peak summits or a

longer hybrid motif. Alternatively, the corepressors TRPS1 recruits to chromatin may modify

non-histone substrates like ER itself, acetylation of which has been shown to increase the DNA

binding of ER [317]. In addition, we have correlated much of the change in ER target gene

expression to the change in local ER binding intensity. However, we have not ruled out the

possibility that TRPS1 regulates these genes independently from its effects on ER binding. To

further test the model we put forth, we propose the following experiments.
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6.2.2 Future directions

Is decreased chromatin accessibility necessary for the TRPS1-dependent decrease in ER

binding intensity?

It is difficult to experimentally disentangle changes in chromatin accessibility from changes in

ER binding intensity. It would require creating a separation-of-function mutant that decreased

ER binding intensity via recruitment of certain corepressors yet failed to decrease chromatin

accessibility via recruitment of different corepressors. However, the resolution of the protein-

interacting interfaces on TRPS1 is quite low, so we would propose generating a panel of

small deletions in the carboxy-terminal region of TRPS1. These mutants could be used in

co-immunoprecipitation experiments for various corepressive complexes. If slightly different

residues are responsible for recruiting different complexes, then we could test whether different

corepressors are responsible for the effects of TRPS1 on chromatin accessibility and ER binding

intensity.

Are the changes in ER target gene expression due to modulation of ER activity?

To more directly address this question, we can perturb ER function to measure ER activation of

these TRPS1-dependent ER target genes. As in Chapter 2, we can either acutely antagonize ER

in complete medium or acutely stimulate ER in hormone-starved medium. Complete medium

would better match the context of our previous observations, as the rest of the experiments in

Chapter 3 were done in this condition. The potential drawback based on our results in Chapter

2 would be a smaller effect size than we might see in the hormone-starved condition. In either

case, we can perform PRO-seq in four conditions — with and without TRPS1 activity, and with

and without ER activity. Then we can focus on the TRPS1-dependent ER target genes and

determine whether the effect size of ER activity on each gene is dependent on TRPS1 activity.

Specifically, we predict that the TRPS1-repressed ER target genes will be less responsive to ER

activity modulation upon TRPS1 depletion, and that the TRPS1-activated ER target genes will

be more responsive to ER activity modulation upon TRPS1 depletion.
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6.3 TF redistribution as a general model

6.3.1 Conclusions

In the model of coactivator ”squelching”, a TF that directly activates target genes can indirectly

repress distal genes by recruiting coactivators that are limiting in the cell and competing with

other activating TFs that are less able to directly activate their target genes [223, 235–239, 318].

Our ER redistribution model is conceptually ”squelching” of a TF, as opposed to coactivators.

One unknown factor is whether the protein expression and nuclear distribution of ER influences the

propensity for an increase in ER binding intensity at many loci, for example at TRPS1-proximal

sites, to decrease ER binding intensity elsewhere, for example at TRPS1-distal sites.

In an alternative model of ER-mediated repression, this activating TF can also directly

repress its target genes, recruiting corepressors instead of coactivators at a subset of ER target

genes [285, 319–321]. The context specificity, determining which cofactors are recruited by the

same TF at different loci, required for such a model has generally not been elucidated. These

studies of direct ER-mediated repression have been done at individual loci, and it is difficult to

prove or disprove that a specific ER binding site proximal to an estrogen-repressed gene causes

direct ER-mediated repression of that gene. Our strategy is to turn to genome-wide assays to

identify general mechanisms of transcriptional regulation. Of course there is the possibility that

there are exceptions at individual genes. In our own data, we find that estrogen-activated genes

tend to be closer to ER binding sites but that estrogen-repressed genes are as a class no closer

to ER binding sites than are estrogen-unresponsive genes, matched for expression levels (Figure

6.4). A simple explanation is that ER directly activates its target genes proximal to ER binding

sites and does not directly regulate the estrogen-repressed genes. This is similar to our analysis

of TRPS1 proximity to TRPS1-dependent genes (Figure 3.11E,F).
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Figure 6.4: Estrogen-activated genes are closer to ER binding sites. Cumulative distribution
function plot of proximity to ER ChIP-seq peak summits for genes grouped into classes based on
their response to estrogen.

6.3.2 Future directions

Does liganded ER protein abundance influence a redistribution model?

In our TRPS1-mediated ER redistribution model, liganded ER protein is limiting and not acutely

replaced on chromatin. We might be able to test this assumption by titrating estrogen in

hormone-depleted medium to acutely stimulate an increasing fraction of ER molecules. In

contrast to other nuclear receptors, ER is generally already localized to the nucleus in the absence

of ligand, and it is difficult to determine based purely on fractionation studies what proportion

of ER molecules are bound to DNA [286]. However, a ChIP assay may provide a measure of

ER binding enrichment upon stimulation with varying concentrations of estrogen. With a set of

concentrations that elicit a range of ER binding intensities, we can acutely deplete TRPS1. We

would expect TRPS1-proximal ER binding intensity to increase as before, and the TRPS1-distal

ER binding intensity to decrease most drastically in low-estrogen conditions. With increasing

liganded ER protein abundance, we would expect the potential for a pool of liganded ER protein

not bound to DNA that could fuel a genome-wide increase in ER binding. However, this may
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not be the case if most additional liganded ER protein binds to DNA, perhaps at lower affinity

ER motifs.

Can we uncouple estrogen-induced transcriptional activation from repression?

To further test a model in which acute ER stimulation leads to the immediate repression of

primary response genes via a squelching mechanism, we could change the location of ER binding

genome-wide. Previous work has determined specific residues within the ”P-box” of the ER DNA

binding domain determine the specificity of ER binding to ER motifs as opposed to glucocorticoid

receptor (GR) motifs [322, 323]. We have generated HA-tagged expression constructs for wildtype

ESR1 as well as a mutant ESR1. We can transfect each construct into cells lacking ER protein

expression, for example HEK293T cells, though we would prefer to have physiologically-relevant

expression levels of the exogenous ER. Alternatively, we could edit the endogenous ESR1 locus

in a cell line that expresses ER but does not require it for proliferation, such as the ovarian

carcinoma cell line SKOV3 [324]. Once we can express both wildtype and mutant ER, we can

starve the cells of hormone and acutely treat with estrogen. We would predict that the wildtype

ER protein would bind to ER motifs and that the mutant ER protein would bind elsewhere in the

genome, to GR motifs. Importantly, the squelching model would predict that the repressed genes

would largely overlap between the two ER protein conditions, as the location of ER binding will

not affect the repression due to a redistribution of limiting coactivators.

6.4 Discordance between TRPS1 activity score and TRPS1 ex-

pression

6.4.1 Conclusions

In Chapter 3, we propose the use of a score as a readout of TRPS1 activity in breast tumor

transcriptomic data and demonstrate that higher TRPS1 activity is associated with worse patient

outcome, specifically for patients with tumors of the Luminal A subtype. This score is based
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on the primary response genes that are activated or repressed immediately upon acute TRPS1

depletion. At first glance, a simpler measurement of TPRS1 activity might be TRPS1 expression.

However, these measures are complicated by two additional observations. First, TRPS1 is often

co-amplified with the proto-oncogene MYC, amplification of which is independently associated

with worse outcomes for patients [240]. Second, TRPS1 expression is also correlated with ESR1

and GATA3 expression, which are themselves associated with better outcomes for patients [52,

241]. We would predict that our TRPS1 activity score would correlate with TRPS1 expression,

and yet these two measures of TRPS1 activity are associated with outcomes in the opposite

direction. Based on this, we predict that TRPS1 activity is regulated by additional factors beyond

simply TRPS1 expression.

6.4.2 Future directions

Are other TRPS1 splice isoforms expressed in breast cancer cells?

When the TRPS1 gene was first cloned, two splice isoforms were noted in the RT-PCR products,

one which could in theory produce a protein with 13 additional amino acids in frame just

upstream from the start codon [47]. The authors noted that the translation initiation signal

differed significantly from the consensus Kozak sequence and predicted that this protein isoform

would be less likely to be expressed. Intruiguingly, the authors also found two predominant

isoforms via Northern blot in several human fetal tissues, including brain, lung, and kidney. The

shorter of the two corresponds to the size of the product of an internal polyadenylation and

cleavage site that produced the complementary DNA (cDNA) for an evolutionarily conserved

expressed sequence tag clone in their database search. This shorter transcript would be predicted

to form a truncated TRPS1 protein lacking its nuclear localization sequences, GATA-like DNA-

binding zinc finger, and carboxy-terminal Ikaros-like corepressor-recruiting zinc fingers. However,

there would be no stop codon, so it is unclear if this would lead to expression of a truncated

protein. If this shorter isoform were expressed, we would predict that it would have no activity in

transcriptional regulation via the mechanisms we have previously discussed. In this way, TRPS1
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expression level would differ from our TRPS1 activity score.

We do not see evidence of this protein isoform in our immunoblots. If it were, using

an antibody against the HA tag or against TRPS1, we would expect to see a lower molecular

weight band that is depleted by dTAG treatment. However, it remains possible that there are

circumstances under which this isoform is expressed in tumors. To address this possibility, we

could re-analyze the publicly available RNA-seq data from breast cancer patient tumors and

isolate reads from the 3′-end of the full-length transcript. If expression of this part of the mRNA

correlated with our TRPS1 activity score, this would suggest that a portion of TRPS1 expression

does not produce a protein product with activity in the way we have described. This would then

generate two additional questions — does the truncated protein have an independent function,

and what regulates this alternative polyadenylation and cleavage? The first question could

be addressed by exogenous expression of the truncated cDNA, potentially coupled with rapid

depletion. As this protein product may not directly regulate transcription, we would at this point

be searching for a phenotype, for example an effect on cell proliferation.

Is TRPS1 post-translationally regulated?

Our approach to the second question would also address the broader question of whether TRPS1

is post-translationally regulated, such as through post-translational modifications or subcellular

localization. Our first choice for prioritizing potential protein interaction partners would be to

analyze published data from a recent proximity ligation experiment [57]. Beyond the corepressor

complexes, we would look for peptides corresponding to kinases or phosphatases as a starting

point. Indeed, in the curated phosphoproteomic database PhosphoSitePlus, there are many

reported peptides corresponding to phosphorylated residues on TRPS1 from publicly available

data [325–328]. If we were interested in a set of post-translational modifications, we could

express mutants of TRPS1 that mimic or prevent phosphorylation. With these mutants, we

would assess sub-cellular localization as well as transcriptional activity. In this way, we could

determine how post-translational regulation of TRPS1 could uncouple TRPS1 expression and
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TRPS1 activity in transcriptional regulation of the genes we identified as TRPS1-dependent.

6.5 Functional follow-up of GWAS hits

6.5.1 Conclusions

Genome-wide association studies (GWAS), which use powerful methods to identify genetic

associations in an unbiased manner. However, only a small fraction of GWAS hits have currently

been studied functionally. Recent GWAS have identified common genetic variants in the TRPS1

locus that are associated with breast cancer incidence and blood cholesterol traits [214, 266].

In this dissertation, we perform experimental follow-up to better understand the mechanisms

by which TRPS1 contributes to these phenotypes. We used the GWAS hits as a starting point,

assuming that these single nucleotide polymorphisms (SNPs) causally affect the phenotypes

and that this effect is mediated via a cis-regulatory effect on TRPS1 expression. For the blood

cholesterol traits, we were able to support this assumption with expression quantitative trait

loci (eQTL) data. In pancreas tissue, the SNPs associated with lower levels of a specific blood

cholesterol trait are associated with higher TRPS1 expression. This result not only supports our

hypothesis that the SNPs regulate blood cholesterol levels via an effect on TRPS1 expression

but also is consistent with the direction of effect we see in our PRO-seq data, in which TRPS1

depletion increases cholesterol biosynthesis gene transcription.

However, for the trait of breast cancer incidence, we were not able to find evidence

of colocalization between the SNPs associated with TRPS1 expression and those associated

with the phenotype. This does not rule out the possibility that these SNPs affect breast cancer

incidence via changes in TRPS1 expression. When a SNP in a non-coding region of the genome

causally regulates expression of a gene in cis via the binding in trans of a TF, that TF must

be active in the tissue under study for an eQTL to be identified. While breast is a tissue type

represented in the Genotype-Tissue Expression (GTEx) project data we used for eQTL analysis,

it is possible that normal breast tissue is not the context in which the relevant SNP acts and

that only later in tumorigenesis is the relevant TF active.
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6.5.2 Future directions

Is there an association between the breast cancer associated SNPs and TRPS1 expression

in breast tumor tissue?

To address this hypothesis, we can analyze the publicly available data from the same METABRIC

cohort that we used for our survival analysis or in TCGA breast cancer data [11, 226, 227]. Both

of these datasets contain transcriptional data as well as genetic variant calling. An eQTL analysis

has been previously performed on these datasets [329]. There are many challenges to using

tumor data, including complex genetic changes and heterogeneity in tumor purity. However,

we can use the summary statistics from this study to test for colocalization between the SNPs

associated with breast cancer incidence and those associated with TRPS1 expression in breast

cancer tumor data. Furthermore, we can isolate tumors based on their intrinsic subtypes to test

whether there is evidence for colocalization specifically within Luminal A tumors.

6.6 Discordance between nascent transcription and downstream

assays

6.6.1 Conclusions

In Chapter 4, we performed several downstream assays to follow up on our initial observation

that nascent transcription of cholesterol biosynthesis genes was activated upon TRPS1 depletion.

This is a result that was consistent across three independent clones, as well as for the one

clone used for multiple time points in Chapter 3. Along with the GWAS results associating

TRPS1 with blood cholesterol traits, we have evidence to support the hypothesis that TRPS1

regulates cholesterol biosynthesis. However, our effect sizes are small for all our genome-wide

sequencing-based data. Lipid droplet staining, RT-qPCR, and the cholesterol assays were quite

variable in our hands. Amid this noise, we do not have much power to detect small signals. If

cholesterol abundance is changing, it would help to generate a large effect size. Unfortunately,

in our three clones in which we tagged TRPS1 with dTAG, two to three of the four TRPS1
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alleles are knockouts based on cloning and sequencing PCR products of genomic DNA. We have

not definitively identified all the alleles yet, but at best we have tagged one to two of the four

TRPS1 alleles in each clone. TRPS1 protein expression of each clone is lower than that of the

parental T47D cells.

6.6.2 Future directions

Can we endogenously tag all TRPS1 alleles in a cell line with high TRPS1 expression?

To increase the effect size of TRPS1 depletion, it would help to have TRPS1 expression be higher

at baseline. While it would be possible to simply exogenously over-express TRPS1, we would be

concerned about the physiologic relevance of excessive TRPS1 protein abundance that might

lead to differential protein-protein interactions and sub-cellular or even sub-nuclear and genomic

localization. Our ideal clone would have endogenous TRPS1 tagged at all the alleles. Most

breast cancer cell lines have more than two copies of TRPS1, based on data from the Cancer

Dependency Map project [77]. Of these, MCF-7 and CAMA-1 cells have three copies and would

be our next best choice. In addition, we would experiment with fluorescent selection for genetic

insertion and use three different markers, green, blue, and red fluorescent proteins instead of

antibiotic resistance markers [330]. In this way, we can use flow cytometry to isolate cells that

have three insertion events for follow-up tagging confirmation. We have previously attempted to

transfect multiple repair templates with different antibiotic resistance markers but were unable

to isolate any clones that survived even double selection. One other technical note is our use of

an ultraviolet lamp when isolating repair template PCR product from agarose gel. In previous

successful rounds of tagging, we had used a blue light lamp that allows for visualization of SYBR

Safe-stained gels. However, it is possible that excessive ultraviolet exposure damaged our repair

templates to a degree incompatible with use in homology-directed repair. For this reason and

for technical ease of plasmid amplification and purification over PCR product gel isolation, we

would use the CRIS-PITCh system discussed in Chapter 1 in our next round of tagging [166].

With these changes, it may be possible to endogenously tag all TRPS1 alleles and increase the
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resultant effect sizes of TRPS1 depletion.

Does TRPS1 regulate blood cholesterol traits in vivo?

TRPS1 is expressed during development in multiple organ systems, and mice lacking the GATA-

like DNA-binding zinc finger of TRPS1 die shortly after birth [48, 61, 331]. However, an inducible

knockout mouse has never been generated for TRPS1. This would involve generating a TRPS1

allele flanked by loxP sites and crossing these mice with those with whole body expression of a

tamoxifen-inducible Cre recombinase [332]. After generating homozygous animals, we can allow

for proper TRPS1 expression during development and then induce a knockout in adulthood and

measure blood cholesterol levels at later time points. Importantly, generating and phenotyping

this mouse would provide insight into the suitability of TRPS1 as a therapeutic target in breast

cancer.

6.7 Data Access

All analysis details and code are available at https://tgscott400.github.io/ER_antagonist_

analysis/Vignette.html. Raw sequencing files and processed counts and bigWig files are available

from GEO accession records GSE251785 (PRO-seq), GSE251793 (ATAC-seq), and GSE236174

(ChIP-seq).

https://tgscott400.github.io/ER_antagonist_analysis/Vignette.html
https://tgscott400.github.io/ER_antagonist_analysis/Vignette.html
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