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Abstract 

Organoids have great power to model diseases and treatment response while capturing patient-to-patient 

heterogeneities. Characterizing the behavior of organoids requires automated and unbiased segmentation 

methods to quantify their size and shape. Organoid segmentations also provide a means to identify 

biological states, such as cell death, at the individual organoid level. These features evaluate the 

effectiveness of treatments that act by different mechanisms. It is important that methods for organoid 

analysis are built with human factors in mind, as there is no value in a perfectly accurate program that is 

impossible to use. Previously, our lab created OrganoSeg as a user-friendly platform to segment organoids. 

OrganoSeg is a popular tool, but is limited to population-level morphological analysis and struggles with 

certain formats of organoid images. Alternative options for organoid analysis exhibit deficiencies in 

usability, accuracy, or functional capacity.  Here, we introduce OrganoSeg2 to accurately collect organoid 

data related to biomedical research settings. OrganoSeg2 provides a graphical user interface that segments, 

tracks, and quantifies fluorescence of individual organoids, without requiring training data or prior coding 

knowledge. We find that OrganoSeg2 significantly improves segmentation accuracy from its predecessor, 

and is highly generalizable to different organoid types in comparison to alternative segmentation platforms. 

We applied OrganoSeg2 to collect individual-organoid fluorescence data and identify variable patterns of 

organoid death in response to radiotherapy, within and between cases of patient-derived organoids of breast 

cancer. OrganoSeg2 successfully addresses deficiencies in organoid segmentation technology and presents 

a versatile tool for studying disease with organoids. 
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Introduction 

Organoids are 3-dimensional structures derived from stem 

cells or adult tissue that self-organize and mimic the 

behavior of biological tissues1. Organoids capture 

biological complexity and diversity without the constraints 

of in vivo experimentation2. More specifically, patient-

derived organoids capture patient heterogeneities and 

recapitulate patient phenotypes in terms of molecular 

composition3,4 and response to treatment5. One way to 

assess these phenotypes is by quantifying organoid 

morphology. For example, area is an indicator of disease 

progression for tumor organoids, while morphological 

features such as circularity or intensity are indicators of 

distinct biological states6,7. Interpreting these 

morphological readouts is valuable for planning effective 

treatment or screening for molecular targets across 

diseases6,8.  

The large-scale collection of morphological data from 

organoid cultures offers insight into diseases and better 

treatment regimens for patients. Collecting such data 

requires organoid segmentation - identifying and outlining 

the region of organoids within an image. A single culture 

may contain several hundred organoids, and manually 

segmenting these images would introduce time burdens and 

low replicability that would interfere with research or 

therapeutic potential. Automated segmentation enables 

efficient and unbiased collection of data9. Thus, it is 

important to have a platform for biomedical researchers to 
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segment organoids accurately and efficiently and collect 

morphological data. 

Several platforms for biological image analysis existed 

before their use in organoid research, serving to segment 

cells or other 2-dimensional image features9,10. However, 

organoids grow in a 3-dimensional hydrogel with different 

focal planes, presenting barriers to segmentation of 

organoid data. Our lab previously developed OrganoSeg11 

to address this problem. OrganoSeg uses conventional 

image processing techniques geared towards brightfield 

organoid images. Upon publication, OrganoSeg 

demonstrated better organoid detection and segmentation 

than image analysis platforms ImageJ, CellProfiler, and 

MorphoLibJ11. Those results indicate the benefit of an 

organoid specific segmentation platform, arising from the 

multi-windowed adaptive thresholding technique employed 

by OrganoSeg. OrganoSeg remains a popular tool, having 

been cited over 100 times in the past 5 years and used as a 

part of studies of treatment response12 and disease 

modeling13.  

Alternative platforms for organoid segmentation have since 

developed, eliciting comparisons of OrganoSeg with said 

alternatives14–16. Many of the alternatives use machine 

learning techniques17, claiming higher accuracy and 

generalizability. They also suggest that conventional image 

processing techniques are not suitable as they require 

parameter tuning for each image or set of images18,19. 

However, machine learning platforms present multiple 

barriers. Firstly, machine learning requires large amounts of 

training data to be successful. For certain scales of 

experiments, it is not practical or feasible to manually 

segment sufficient images for training data. Secondly, 

machine learning platforms are difficult to use for 

researchers with minimal coding experience. Tuning 

training algorithms is challenging given their black-box 

nature. Additionally, most of these programs require use of 

a command-line interface. OrganoSeg requires no training 

data and is in the format of a graphical user interface (GUI), 

which users simply load images into for segmentation. 

Although machine learning presents advantages, it is crucial 

to maintain an accessible means for organoid segmentation. 

To address deficiencies of the original OrganoSeg, our lab 

developed OrganoSeg2, an updated GUI using the same 

base algorithm and interface (Supplementary Figure 1). 

OrganoSeg2 has increasing GUI and workflow flexibility 

for users, including options to resize image panels, perform 

in-app brightness adjustments, and work on multiple sets of 

images at once. OrganoSeg2 improves efficiency by 

lowering the runtime for segmentation, data exporting, and 

image display, and by introducing options for post-

segmentation tuning that attempt to gather accurate 

organoid data in a more streamlined manner. In addition to 

improvements to usability, OrganoSeg2 has an updated 

segmentation algorithm that improves on edge recognition 

in organoid images with uneven lighting or focus. Finally, 

certain constant parameters in were made customizable to 

increase user control over segmentation for heterogenous 

image sets. Here, we show that the improved GUI is 

comparable to alternative segmentation programs and 

capable of collecting organoid morphological data in a wide 

array of research settings.  

In addition to changes to the segmentation process, 

OrganoSeg2 includes new options for downstream analysis 

using individual organoid tracking and fluorescence 

quantification. In its original state, individual organoid data 

is not connected between images, and therefore any 

longitudinal data collected can only be assessed at the 

population level. Individual organoid tracking increases the 

statistical power of results and highlights sub-population 

trends. Additionally, OrganoSeg was not able to report any 

molecular information on organoids, but with fluorescence 

quantification, morphological and molecular information 

can be linked. These extended capabilities had not 

previously been tested in a research setting, but we 

hypothesized that they would be informative in monitoring 

breast cancer organoids throughout exposure to irradiation. 

Our lab previously used OrganoSeg to quantify breast 

cancer organoid growth in response to treatment with drugs 

such as tamoxifen20. Tamoxifen exhibits cytostatic 

mechanisms, making organoid size an important readout21. 

However, radiation treatment is primarily cytotoxic, 

meaning that cell death is more relevant22. Using fluorescent 

markers for caspase activation and thus cell death, 

OrganoSeg2 collects this information longitudinally. 

 

Results 

Validation of Segmentation Accuracy 

Edge Correction Improves Perimeter Recognition in 

OrganoSeg2 

Since the changes to the OrganoSeg algorithm focused on 

edge detection, we compared OrganoSeg and OrganoSeg2 

in their recognition of spheroid perimeters. We used 

spheroid images for which OrganoSeg was previously 

validated to have high call rate and area segmentation 
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accuracy compared to traditional cell segmentation 

platforms, but exhibited some failures in edge detection 

(Figure 1a). These failures occur when glare causes the 

organoid surface to be brighter than the background. 

OrganoSeg2’s algorithm accounts for this glare using 

background-adjusted gradient thresholding, so that changes 

at the organoid edge are detected whether they are bright or 

dark. Using edge correction, OrganoSeg2 showed a 

significant improvement in the colocalization of the 

segmented perimeter with the manually traced perimeters 

(Figure 1b). By improving perimeter recognition, 

OrganoSeg2 enables greater representation of 

morphological features such as area, circularity, 

eccentricity, and solidity, which convey descriptive 

phenotypic information about organoids/spheroids.  

Edge correction also facilitated the segmentation of more 

complicated breast cancer organoid cultures. Wells 

containing hundreds of organoids are highly informative, 

but also present complications due to crowded/overlapping 

organoids, different focal planes, and varying brightness 

levels. Using OrganoSeg’s original options, the primary 

parameter controlling sensitivity is the intensity threshold. 

Varying this parameter alone, it is difficult or impossible to 

find a threshold which segments organoid edges accurately 

while avoiding oversegmentation (i.e., non-organoid 

artifacts or out-of-focus organoids which are 

morphologically inaccurate). Applying a higher intensity 

threshold in combination with edge correction alleviates 

this problem (Figure 1c). The high intensity threshold 

improves specificity to eliminate incorrect organoid 

identifications, and edge correction then increases 

sensitivity of edge detection, only for the organoids which 

pass the intensity threshold. Edge correction successfully 

reduced the amount of post-segmentation fine-tuning 

needed to analyze breast cancer organoid cultures. 

OrganoSeg2 outperforms alternative segmentation 

platforms across organoid types 

We compared the segmentation accuracy of OrganoSeg2 to 

OrgaExtractor23, OrganoID18, and OrganoLabeler16 (Figure 

2). Comparisons were made using the datasets which these 

platforms were originally tested on, including colon, lung, 

pancreas, brain, and embryoid organoids. This diverse set 

of organoid images was used to test generalizability and to 

identify the strengths and weaknesses of OrganoSeg2 

relative to the other platforms. OrganoSeg2 and 

OrganoLabeler required parameter tuning for each image 

set, as well as for subsets of the pancreatic ductal 

adenocarcinoma (PDAC) organoids, representing one 

notable concern for platforms which use conventional 

image processing techniques. However, the default models 

for machine learning platforms OrgaExtractor and 

OrganoID performed poorly in most cases. Whether or not 

machine learning was used, the dissimilar set of images 

introduced pre-processing burdens for all platforms. 

 To quantify segmentation quality, we first calculated the 

intersection-over-union for whole-image segmentations. 

This metric describes how well the segmenter recognizes 

pixels as belonging to an organoid, and is m  inimally 

affected by differences in organoid splitting. OrganoSeg2 

only had significantly lower segmentation quality in 1/22 

comparisons for whole-images and was significantly better 

than other segmenters in 15/22 comparisons, respectively 

(Figure 2a). The only comparison in which OrganoSeg2 

was outperformed was when OrgaExtractor segmented 

colon organoids, its internal dataset. In the colon organoid 

images, OrganoSeg2 appears to identify many regions 

which are not part of the manual segmentation. However, 

manual inspection suggests that many of these regions are 

in fact organoids and are recognized by multiple segmenters 

(Figure 2b). These initial results suggest that OrganoSeg2 is 

not only an appealing option due to its usability, but its 

strong organoid recognition abilities relative to other 

platforms. 

Figure 1. OrganoSeg2 improves edge recognition. a) Perimeter 

segmentation from OrganoSeg and OrganoSeg2 were compared to 

manual segmentation. Red regions of segmentation lie outside of 

manually segmented target region. Number is Mander’s 

Colocalization Coefficient (MCC) b) CDF plot of distribution of 

MCCs from OrganoSeg and OrganoSeg2 perimeters. Colored dots 

correspond to representative spheroids in a. c) Representative image 

of poor segmentation with changing intensity threshold alone, and 

improvement with edge correction. Red arrows show over 

segmentation and yellow arrows show under segmentation 
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Figure 2. OrganoSeg2 compares favorably to alternative segmentation platforms. a) Boxplots of intersection-over-union (IOU) of whole-

image segmentations for each segmenter across five organoid image types. ns – not significant, nd – no data, *P<0.05, **P<0.01, ***P<0.001, 

red asterisks indicate OrganoSeg2 was outperformed.  b) Representative overlay images and segmentation masks with data aggregated from all 

segmenters. Yellow outline shows OrganoSeg2 segmentation. Bottom: Blue regions were identified by segmenters and manual segmentation, 

red regions were identified by segmenters but not manual segmentation. Increasing brightness indicates more segmenters identified this region, 

as indicated by the inset. c) Bar charts showing rates of true positive (positive y-axis) and false positive (negative y-axis) organoids, based on 

manual segmentation. Values are scaled to the total number of organoids in the manual segmentation for each group, indicated above the 

charts. d) Boxplots of IOU for individual organoid segmentations. 
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We also compared segmenting platforms for individual 

organoid segmentation quality, as the primary goal of each 

of these platforms is to accurately represent individual 

organoid morphology. These measurements also ignore 

thoroughness of labeling in manual segmentations, only 

focusing on the quality of organoids that appear in both 

manual and automated segmentations. We first matched 

organoids with sufficient overlap between manual and 

automated segmentation, denoting these as true positives 

(TP). Across all conditions, OrganoSeg2 correctly 

identified the most or nearly (within 15%) the most 

organoids. (Figure 2c). We then quantified IOU for each of 

the TP organoids, and OrganoSeg2 outperformed other 

segmenters in 13/21 comparisons, and was only 

outperformed in 3/21 (Figure 2d). Only one segmenter 

outperformed OrganoSeg2 on an external dataset 

(OrganoID segmenting embryoid bodies). Additionally, no 

segmenter outperformed OrganoSeg2 in both whole-image 

and individual-organoid comparisons. The weakest part of 

OrganoSeg2’s performance was its high relative 

recognition of “false positives” compared to segmenters 

using their internal data sets. (Figure 2c). However, some of 

these false positives are due to inconsistencies in manual 

segmentation. Others are legitimate, such as well-edges or 

out-of-focus objects, which OrgaoSeg2 cannot distinguish 

as non-organoids. That said, these images were compared 

without any manual post-segmentation tuning. Using 

OrganoSeg2’s improved post-segmentation tools, many of 

these false positives are easily removed manually by the 

user. In all, OrganoSeg2 is a generalizable option for 

collecting large quantities of organoid morphological data. 

Application to Longitudinal Fluorescence Tracking 

We sought to test OrganoSeg2’s extended capabilities for 

downstream analysis by monitoring cell death in breast 

cancer organoids over the course of irradiation treatment. 5 

cases of patient-derived organoids were cultured for 14 

days, with exposure to 0 Gy, 1 Gy, or 6 Gy of radiation for 

5 days. We monitored cell-death using two stains, Nucview 

488 Caspase-3 and Saguaro LIVE-Dead stain, in separate 

cultures. We also introduced dilute DAPI into live cultures 

on day 14 to observe endpoint cell death based on 

compromised plasma membrane integrity and see if there 

was concordance between DAPI and the other fluorescent 

markers. The goal of this experiment was to see if organoid 

cultures responded differently to varying levels of 

irradiation, and if the data collected by OrganoSeg2 could 

be used to glean patient-to-patient heterogeneities in 

response to irradiation therapy. 

To observe the development of cell death at the individual 

organoid level and pair observations between DAPI and the 

other fluorescent markers, we longitudinally tracked 

organoid cultures. Organoids were segmented using 

updated parameters and edge correction, registered, and 

matched by Euclidean distance. On average 80-95% of 

organoids were matched between consecutive images. 

Cumulatively, over 60% of the organoids that were 

introduced at some point in the 14-day culture were 

accounted for on the last day (Figure 3a). To ensure that 

these matchings were accurate, we added a manual 

verification option to the OrganoSeg2 tracking window, so 

that users could mark organoid traces as good or bad while 

seeing all segmentation results at once (Supplementary 

Figure 2). Organoid segmentation was sometimes faulty 

(e.g., poor edge recognition or organoid splitting), but the 

segmentation captured the correct organoid and would still 

be useful for fluorescence analysis. Therefore, we only 

removed organoid traces which contained obvious artifacts 

or distinct organoids. After removing traces via manual 

verification, the variance in organoid retention increased 

mildly but was minimally affected on average (Figure 3b).  

 

After tracking, we quantified the cell-death fluorescence 

intensity of each organoid, seeking a two-state distribution 

of alive and dead organoids (Figure 4a). Fluorescent dye 

was added on the first day of irradiation (day 5), but the 

correlation of individual organoid fluorescent intensities 

between days 5 and 6 was drastically lower than all other 

pairs of consecutive days, so only days 6-14 were 

considered for fluorescence analysis (Supplementary Figure 

3a). Initial quantification of fluorescence intensity over time 

showed noticeable fluorescent drift for both the Nucview 

and Saguaro stains, indicating that raw fluorescence data 

would not be suitable (Supplementary Figure 3b). 

Figure 3. OrganoSeg2 tracks the majority of organoids across two-

week organoid cultures a) Retention rate of organoids from day-to-

day (orange) and across all organoids introduced by a given time point 

(blue). b) Retention rates after manual removing poor organoid traces. 
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Additionally, most images had no clear two-state 

distribution of organoids, so applying a cutoff based on the 

in-app visualizations would be insufficient (Supplementary 

Figure 3c). We first addressed the fluorescent drift by 

shifting each image’s data based on its 20th percentile 

organoid fluorescence (Figure 4b). This shift resulted in a 

steady progression in fluorescence intensity over time for 

Nucview. The Saguaro stain generally exhibited fading, 

except on day 12 when dye was refed, indicating that it may 

not be a strong option for continuous fluorescence 

monitoring.  We decided to progress with longitudinal 

fluorescence quantification using only Nucview. 

Individual images did not have enough organoids for a two-

state distribution to emerge, but using the normalized 

fluorescence data, we aggregated data across days and 

conditions to find case-wide cutoffs. All cases exhibited a  

right-tailed distribution, but none were strongly bimodal 

(Supplementary Figure 4). We fit data with a Gaussian 

mixture model, where the lower, and generally larger, 

distribution represents the alive organoids. We used the 

95th percentile of this distribution, and although this may 

sacrifice an overlapping portion of the dead organoid 

distribution, we estimated that this would provide enough 

dead organoids with only a few overlapping alive 

organoids. We successfully fit each case to a two-state 

distribution, defined case-wide cutoffs, and calculated the 

percent positivity for each case and condition (Figure 4c-d, 

Supplementary Figure 4). As expected, the average percent 

positivity increased with an increasing dose of irradiation, 

but these results were not significant given the limited 

sample size. However, heterogeneous behavior was 

observed between cases. For example, cases 149 and 157 

showed large jumps from 0 Gy to 1 Gy but not 1 Gy to 6 

Gy, while case 155 unexpectedly decreased at 1Gy before a 

large jump at 6 Gy. These results demonstrate the tolerance 

of our pipeline to different underlying distributions of 

fluorescence intensity, as well as its ability to assess 

variable treatment responses. 

To supplement population-level fluorescence analysis, 

organoid tracking enabled comparisons of image-to-image 

fluorescence for individual organoids, which was useful for 

correcting, validating, and expanding on the results 

observed by Nucview. Firstly, we defined individual 

organoid traces of fluorescence positivity. In general, most 

organoids stayed positive for multiple days, but some went 

from positive to negative. We used organoid tracking to 

determine that this was due to fading dye (Figure 5a) and 

set an irreversible cutoff so that once an organoid was 

positive, it was considered dead for the remaining images. 

We then recalculated the percentage of death by case and 

condition, and found that fading dye had different effects on 

a case-by-case basis (Supplementary Figure 5) Secondly, 

the cultures containing Nucview also had DAPI 

measurements on the last day. Using the same pipeline as 

before, we defined case-by-case cutoffs and identified 

positive organoids for these endpoints. We then paired 

Figure 4. OrganoSeg2 facilitates longitudinal fluorescence analysis of breast cancer organoids. a) Individual organoid tracking (top) and 

fluorescence analysis (middle and bottom) as they are displayed in OrganoSeg2. b) Representative raw fluorescence data processed with a 20th 

percentile shift to account for differences between images. c) Representative aggregated data fit using a gaussian mixture model to determine a 

case-by-case cutoff. d) Total percentages of dead organoids by case and condition.  
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DAPI data to the corresponding Nucview data. Out of 1374 

organoids, 570 were Nucview positive at some point, 469 

were DAPI positive, and 321 were positive by both (Figure 

5b). This result is highly significant by a hypergeometric 

test (P ≈ 0), indicating strong concordance between these 

two markers. Thus, individual organoid tracking enabled 

inspection of fluorescent data which adds confidence to the 

performance of our pipeline. Finally, organoid tracking 

provides a dynamic picture of the progression of organoid 

death. For example, case 157 and 161 have similar 

population levels of death, but case 161 appears to have 

minimal death after day 12 while case 157 has steadily 

increasing death at this point. Using individual organoid 

tracking, we were able to perform a more detailed analysis 

of fluorescence data. 

Discussion 

The improved OrganoSeg2 algorithm enhances 

segmentation results in direct comparisons and in 

applications to downstream analysis 

 

We demonstrated that OrganoSeg2’s use of edge correction 

and expanded parameter options creates segmentation 

results which are not only comparable, but better than other 

segmenters. As previously stated, a common critique of 

conventional techniques such as OrganoSeg is that 

parameter tuning is required to operate on different images 

or sets. However, these results indicate that for a given 

organoid image type, the same parameters provide high 

levels of accuracy. The only set which was subdivided into 

different parameters was the PDAC organoids, as they 

included a variety of image formats. Given images of 

similar formats, as would be expected from an experimental 

procedure, a uniform set of parameters is sufficient.  

 

The high level of segmentation accuracy from OrganoSeg2 

has downstream benefits in addition to capturing organoid 

morphology better. In the original breast cancer organoid 

experiments with OrganoSeg, a low intensity threshold was 

used to avoid incompletely segmented organoids. However, 

when these parameters were used for this experiment, it was 

clear that there were too many artifactual segmentations for 

tracking to be effectively applied. Applying a more 

stringent threshold has the side effect of removing some 

organoids from the analysis. However, the images we were 

working with had over a hundred organoids in most cases. 

Stricter parameters still captured a large quantity of these 

organoids and represent their development overtime more 

accurately, creating a higher quality data set. 

 

Increasing the algorithmic complexity and number of 

parameters has an effect on usability. The parameters may 

be capable of creating better segmentations, but they are 

pointless if the user is unable to understand them enough to 

implement them. For example, OrganoLabeler uses 

parameters such as “factor,” “clip limit,” and “tile grid 

size.”  Documentation says these parameters relate to 

contrast adjustment and histogram equalization but provide 

no indication as to how adjusting the parameters may affect 

segmentation results. After experimenting with different 

levels, these parameters did not seem to have a linear effect 

Figure 5. Individual organoid tracking provides a more detailed analysis of fluorescence results. a) Subset of individual organoid traces 

showing a switch in positivity (top) and corresponding images which display a clearly fluorescent organoid that faded and regained positivity 

(bottom) b) All organoid traces across cases and conditions show correspondence between Nucview and DAPI c) Two cases of organoid traces 

showing different patterns in the progression of organoid death. 
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on segmentation sensitivity, making it difficult to adjust 

appropriately. Another issue arises when parameters 

interact with each other in a way that makes it difficult to 

discern their individual effects (i.e., multivariate processes). 

OrganoID, although primarily relying on machine learning, 

has the option to set parameters related to edge detection 

using Canny detection24. Canny detection requires setting a 

low and high threshold, and balancing these thresholds to 

get the desired result may take tedious combinatorial 

parameter tuning. With OrganoSeg2’s parameters, the goal 

is to have each responsible for a distinct effect. For example, 

intensity threshold and edge threshold both increase 

sensitivity, but one affects the number of identified 

organoids while the other affects the extent of these 

organoids. Of course, these effects cannot be completely 

isolated, for example, the organoids identified by the 

intensity threshold are responsible for defining the 

boundaries between organoids which are preserved during 

edge correction. Still, restricting these parameters to 

separate processes and documenting their effects will help 

minimize complications.  

 

Longitudinal fluorescence tracking demonstrates utility of 

OrganoSeg2 to recognize heterogeneities in response to 

radiotherapy 

 

Using OrganoSeg2, we were able to create a pipeline for 

assessing organoid response to irradiation which 

demonstrated agreement with expected results and between 

two separate measures of organoid death. Given the limited 

sample size, we were not able to draw significant 

conclusions about the response to variable doses of 

irradiation, but the results generally show the expected trend 

of higher organoid death at higher doses. We also see that 

different cases of organoids may have varying levels of 

resistance, as certain cases see a jump in organoid death 

with any irradiation at all, while others require high doses 

of irradiation. Pairing a second fluorescent marker added 

confidence to these observations, since DAPI strongly 

agreed with Nucview in identifying dead organoids. In 

general, these results demonstrate the value of organoids to 

capture patient-to-patient heterogeneities that affect 

response to treatment, as well as the potential of 

OrganoSeg2 to accurately represent these heterogeneities.    

 

The cell-death analysis was not done entirely in 

OrganoSeg2, but our pipeline should be easily adaptable for 

others using OrganoSeg2 for fluorescence analysis. Given 

the image-to-image variations in fluorescence and the 

necessity of aggregating all data for each case, we had to 

work with exported data rather than directly in the 

OrganoSeg2 GUI. Still, the pipeline of normalizing 

fluorescence between images and identifying a two-state 

distribution should be generalizable to most fluorescent data 

sources. By attaching our scripts for downstream analysis 

with OrganoSeg2, users will have a streamlined process to 

quantify their fluorescent data. 

 

Limitations and Future Work 

 

The machine learning platforms were largely ineffective 

without appropriate training data, so we attempted to train 

them to the best of our abilities. We obtained OrganoID 

models which were trained until convergence for each 

external dataset, but the results were generally loose around 

organoid boundaries (Supplementary Figure 6). This was 

likely a result of limited training data, given that 

OrganoID’s default model was trained on 2000 images. 

These 2000 images were replicates of 50 original images 

which underwent a variety of transformations, so it would 

be informative to attempt training using a similar 

augmented dataset using the images from OrgaExtractor 

and OrganoLabeler. For OrgaExtractor, training was 

computationally expensive so only 10 epochs were 

executed for each training set. The results improved after 

training but were inconsistent between images. We will 

further assess OrgaExtractor quality by training until 

convergence using high-powered computing. Even so, the 

performance of these platforms on their internal datasets 

was not consistently better than OrganoSeg2, and we 

believe that this trend will hold if trained to the full extent 

on other datasets. This observation also underscores the 

amount of manual labor required to get these automated 

segmentation platforms operating to their full extent, 

making the parameter tuning required by OrganoSeg 

comparatively negligible. 

 

The initial aims of this project included expanding the 

segmentation capabilities of OrganoSeg2 further, with an 

emphasis on improved splitting. Ultimately, this aim did not 

reach past qualitative stages of assessing different filters 

(e.g. Laplacian of Gaussian) on organoid aggregates. It 

would be beneficial to continue improving the OrganoSeg2 

algorithm as this is a limitation that could be truly inhibiting 

in more challenging formats. That said, even the machine 

learning platforms appear to struggle with separating 

organoid aggregates. OrgaExtractor does not appear to have 

a mechanism for this, leaving somewhat jagged edges when 

two organoids are close.  OrganoID identifies edge 

detection as an area of low confidence18 and leaves several 

organoid aggregates together in the colon and lung images 

(Supplementary Figure 6). Given that machine learning is 
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not overwhelmingly preferable in this regard, it is worth 

developing conventional image processing techniques for 

organoid splitting. 

 

We have only scratched the surface of what information 

may be obtained from the longitudinal fluorescence 

tracking. Future analyses will pair fluorescent and 

morphological data to see if certain organoid shape features 

correspond to early cell death. Using the individual 

organoid tracking, we may be able to observe if 

morphological changes occur before or after observed cell 

death on an individual organoid basis. If morphological 

changes precede cell death, we may be able to identify 

structural mechanisms which promote organoid death. With 

further experimentation, it is also possible to pair 

fluorescent markers for death with markers for proteins of 

interest. If the pipeline is successfully translated for 

multiple fluorescent markers, we would be able to identify 

if subpopulations of live and dead organoids have 

differential expression of these proteins, and how their 

expression develops over time. Since the Saguaro LIVE-

Dead stain proved ineffective in our current application, we 

were unable to assess the translation of our pipeline to a 

second longitudinal fluorescent dataset. However, the 

underlying principle of searching for two distributions of 

organoids remains the same, and the transformations 

applied to the data were not based on any assumptions tied 

specifically to Nucview. Therefore, we expect that this 

pipeline will translate well to other fluorescent reporters. 

 

Materials and Methods 

Graphical User Interface Construction 

The OrganoSeg2 GUI was built using MATLAB App 

Designer. Code for the main segmentation and metrics 

selection scenes were adapted from OrganoSeg made by 

Borten et al.11 New windows were constructed for the 

brightness adjustments, individual organoid tracking, and 

fluorescence analysis features.  

Segmentation Algorithm 

The same adaptive thresholding algorithm from OrganoSeg 

was used to create the initial segments. Internal default 

parameters for image reconstruction, segmentation closing, 

border clearing, and aggregate splitting were changed to 

customizable parameters. 

If edge correction is selected, this portion of the algorithm 

is applied after adaptive thresholding and post-

segmentation processing, but before organoid splitting. The 

magnitude of the image gradient is taken using imgradient. 

If the user selects “Gradient Only” for edge correction, this 

gradient intensity at each pixel is compared to the user-

defined edge threshold multiplied by the background 

intensity (taken using imfilter and fspecial with an average 

filter, neighborhood size = 500x500). Pixels which pass this 

threshold are added to the initial segmentation, and post-

segmentation processing is applied again to fill holes and 

smooth the segmentation. If the user selects “Gradient 

Preserve Boundary,” a background marker is created using 

a watershed transformation on the distance transformed 

initial segmentation. The same process is then applied as in 

“Gradient Only”, except the pixels which lie on the 

background marker (dilated with imdilate, neighborhood 

size = 3x3) are set to zero so that separate organoids are not 

joined. If the user selects “Gradient + Watershed”, the 

background marker is made as described in “Gradient 

Preserve Boundary”, and the foreground marker is an 

eroded version of the initial segmentation (imerode, 

neighborhood size = 3x3). These markers are then used to 

perform marker-controlled watershed segmentation25.  

Selection of alternative segmentation platforms  

A literature review was performed to find alternative 

segmentation platforms which were designed with 

organoids in mind and had similar capabilities for 

segmentation to OrganoSeg2. 16 platforms were identified 

which were either created specifically for organoids or 

explicitly tested on them in a proof-of-concept. Of these, 

four were excluded because they only output a bounding 

box of organoids as opposed to a direct outline of organoids, 

and are therefore limited in the morphological data they 

provide. Three more were excluded as they are designed for 

single-organoid images, requiring external programs to 

identify individual organoids in images of organoid cultures 

with multiple organoids. Three more were excluded as the 

software to run the program was not available. Of the six 

remaining, OrganoID, OrgaExtractor, and OrganoLabeler 

were chosen as three which had clear instructions, 

approachable implementations (i.e., options to execute 

without using a command line interface), and represented a 

mix of machine learning and conventional image processing 

techniques.  

Edge Detection Comparison 

OrgaoSeg2 was compared to OrganoSeg using spheroid 

images from the original OrganoSeg publication. For each 

spheroid, a target region around the spheroid perimeter was 
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defined using bwperim and imdilate (neighborhood size 

5x5). For each spheroid in the manual segmentation, a 

spheroid in the automated segmentation was assigned to it 

if the intersection of pixels for the two spheroids was greater 

than 50% of the total pixels in each segmented object 

individually. Then, the MCC for each spheroid was 

calculated based on the fraction of perimeter pixels from the 

automated segmentation that overlapped with the target 

region. The distribution of MCCs was assessed using a 

Kolmogorov-Smirnov test. 

Segmentation for Comparative Effectiveness Evaluation  

Datasets of organoid images and manual segmentations 

were taken from the respective publications for each of the 

selected alternative platforms. The source and respective 

organoid type(s) are as follows: OrgaExtractor - Colon, 

OrganoID - PDAC and Lung, OrganoLabeler - Brain and 

Embryoid Body (EB).  Images were grouped by organoid 

type for parameter-tuning and training. Colon and 

Lung+PDAC images were already grouped into training, 

validation, and testing groups, so the testing set of images 

were used for the comparison. The Brain and Embryoid 

images were not originally separated, so they were split into 

training/validation/testing sets of 111/12/10 and 139/16/10 

respectively, with testing images selected to represent a 

diverse set of phenotypes.  

OrganoSeg2 and OrganoLabeler require parameter-tuning, 

so separate parameter sets were selected for each group of 

organoids in an attempt to optimize segmentation accuracy. 

The PDAC organoids consisted of both phase-contrast and 

brightfield images, and also different levels of 

magnification. These images were separated into subgroups 

for parameter definition as it would be impractical to try and 

segment such different images with the same settings. 

Parameters for each image set are described in 

Supplementary Table 1. OrganoID also has optional 

parameters, which were adjusted for external images when 

necessary. Splitting was applied to all segmentations when 

given the option. 

OrganoID and OrgaExtractor have pre-trained models using 

their respective datasets. Segmentation on external datasets 

with these pretrained models was inaccurate in most cases. 

New models were trained for each training set (Brain and 

Embryoid for both, Colon for OrganoID, and Lung+PDAC 

for OrgaExtractor). OrganoID was trained using default 

settings for 100 epochs, but all three models converged 

before 100 epochs. OrgaExtractor was only trained for 10 

epochs due to computational constraints. Additionally, a 

subset of 50 images out of the 2000 from the OrganoID 

training dataset were used due to computational constraints.  

Segmentation and training were performed as described in 

each platform’s documentation, if possible. The 

OrganoLabeler code was modified to accommodate 16-bit 

unsigned integer images. The OrgaExtractor training code 

was modified to accommodate images smaller than 

512x512 pixels. Code for each was modified so that inputs 

and outputs were handled similarly for each platform. 

Images which had a dimension size that was not a multiple 

of 8 caused errors when segmenting with OrgaExtractor. 

OrgaExtractor code was modified to resize images to 

alleviate the error, and was also modified to address other 

errors that arose during training. 

Quantification of Segmentation Accuracy 

Segmentation results were quantified in MATLAB by 

calculating the intersection-over-union (IOU) of whole-

image segmentations and individual organoid 

segmentations. All segmentation outputs were converted to 

logical arrays and smoothed using imopen (neighborhood 

size = 5x5, used to remove artifacts in manual 

segmentations that likely arose from image size rescaling). 

For consistency across platforms, all segmentation outputs 

also had their borders cleared and all objects removed which 

were smaller than the smallest object in the corresponding 

manual segmentation (except in the case of brain organoids, 

as these each had one centrally located organoid which in 

some cases was unintentionally removed from 

segmentations with these adjustments). Segmentation 

outputs from OrgaExtractor which were resized during 

segmentation were scaled to their original size. 

To calculate individual-organoid IOUs, organoids in the 

manual and automated segmentations were split into objects 

using bwconncomp. For each organoid object in the manual 

segmentation, an organoid in the automated segmentation 

was assigned to it if the intersection of pixels for the two 

organoids was greater than 50% of the total pixels in each 

segmented object individually. For each automated 

segmentation, “true positives” were counted as the number 

of organoids that were successfully matched to the manual 

segmentation, while all other organoid objects were counted 

as “false positives”. P-values were calculated using a two-

sample, two-tailed t-test for each segmenter in comparison 

to OrganoSeg2, for each organoid type.  
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Organoid Cultures 

Breast cancer organoids were acquired and maintained in 

14-day zero-passage cultures as described by Przanowska et 

al20. Starting on either day 5 or 6, organoids were treated 

with 0 Gy, 1 Gy, or 6 Gy of irradiation each day for 5 days. 

Cultures were fed with fluorescent reporters for cell death 

(Nucview 488 Caspase-3 or Saguaro LIVE-Dead stain) on 

the first and last day of irradiation. Brightfield and 

fluorescence microscopy images were taken either once or 

twice before irradiation, once on each day of irradiation, and 

twice after irradiation. On day 14, cultures were fed with 

DAPI and imaged. Five separate cases were conducted 

(cases 149, 155, 157, 160, and 161). 

Longitudinal Tracking and Fluorescence Quantification 

Organoid images were segmented with OrganoSeg2. The 

time course of images for each well were loaded into the 

tracking window in OrganoSeg2 and registered using the 

imregdemons algorithm in MATLAB, which was applied to 

the binary segmentation masks. For each pair of organoids 

across consecutive images, Euclidean distance is calculated, 

and the pairs with the smallest distance are matched, up to 

a user-defined maximum distance (50 pixels in this case). 

Organoid traces were manually inspected and excluded if 

they did not track the same organoid. 

The images were then loaded into the fluorescence window 

in OrganoSeg2, and corresponding fluorescence images in 

blue, green, and red channels were loaded and assigned to 

the corresponding brightfield image. The brightfield 

segmentation mask was used to calculate a representative 

pixel intensity for each organoid (95th percentile for all 

cases except Case 155 DAPI, for which an 80th percentile 

was used since there were high levels of dead cellular 

debris).  

Fluorescence Data Analysis 

Fluorescence data for each organoid in each image was 

exported and normalized by subtracting the 20th percentile 

value on a per-image basis. For each case, a histogram of 

fluorescence data across all conditions was made (bin size 

= 5 for Nucview, bin size = 10 for DAPI), and a gaussian-

mixture model was defined to match the frequency counts 

in the histogram. Gaussian-mixture fitting was done using 

the nlinfit function in MATLAB with a proportional error 

model. The 95th percentile of the lower distribution was 

used to define the case-wide cutoff for fluorescence 

positivity. Fluorescence positivity was then tracked by 

individual organoid, and once an organoid was observed to 

be positive, it was marked as positive for the rest of the 

images as the Nucview dye visibly faded over time. 

Organoids which were identified in less than half of the 

relevant images were removed from individual organoid 

traces.  
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Supplementary Information 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: OrganoSeg2 provides a more flexible and efficient GUI than OrganoSeg. a) OrganoSeg2 GUI with user-

focused changes labeled. b) Runtimes for OrganoSeg(2) processes across 50 images  
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Supplementary Figure 2: Incorporation of manual verification into organoid tracking timeline. Examples of incorrect 

segmentation/tracking result, marked with “x” (top), accurate organoid tracking with faulty longitudinal morphological readout 

due to organoids joining (middle), and an almost perfectly correct segmentation, marked with “c” (bottom). Users are able to 

classify organoid traces according to these categories and export only desired categories. We used all traces except those marked 

with “x”. 
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Supplementary Figure 3: Fluorescence analysis required post-processing to account for image to image variation. a) 

Correlation plots of individual organoid fluorescence between images. b) Histograms of fluorescence intensity across images for 

one case and condition. c) CDF plots before (top) and after (bottom) a per-image 20th percentile shift. a-c) Data is shown for both 

Saguaro Live-DEAD (left) and Nucview 488 Caspase-3 (right) 
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Supplementary Figure 4: Gaussian-mixture models fit to all cases despite a variety of underlying fluorescence 

distributions 

Supplementary Figure 5: Population level cell death by case and condition after setting irreversible cutoff for each organoid 



 

18 

 

 

 

 

 

 

 

 

Supplementary Figure 6: Representative segmentations for all segmenting platforms and organoid types. Rows are 

different segmenters and columns are different organoid types. Blanks cells are for trained machine learning platforms 

using their internal dataset, since their default models were already trained on the dataset and do not require a trained 

entry. 
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OrganoSeg2 OrganoLabeler 

OrganoID 

- Default 

Model 

OrganoID 

- Trained 

Model 

Colon 

I: 1 

S: 200 

EC: Yes, 

GW 

WS: 100 

OOF: Yes 

MC: 0.5 

CI: 120 

IR: 10 

RE: false 

CB: false 

F: 1 

B: 25 

CL: 55 

TG: 20 

S: 100 

Default T: 0.9999 

 

 

 

 

 

 

 

 

 

Lung 

I: 1 

S: 100 

EC: Yes, 

GW 

WS: 300 

OOF: Yes 

MC: 0.7 

IR: 10 

CB: false 

F: 1.5 

B: 75 

CL: 100 

TG: 50 

S: 100 

Default NA 

 

 

 

 

 

 

 

 

PDAC 

(Images 

1,9,10) 

I: 3 

S: 300 

EC: Yes, 

GO 

ET: 0.1 

WS: 100 

OOF: No 

MC: 0.4 

CB: false 

II: true 

F: -1 

B: 25 

CL: 150 

TG: 30 

S: 100 

Default NA 

 

 

 

 

 

 

 

 

 

PDAC 

(Image 

3) 

I: 3 

S: 300 

EC: Yes, 

GO 

ET: 0.1 

WS: 100 

OOF: No 

MC: 0.4 

CB: false 

RE: false 

II: true 

F: -1 

B: 35 

CL: 500 

TG: 5 

S: 100 

Default NA 
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PDAC 

(Image 

7) 

I: 2 

S: 500 

EC: Yes, 

GO 

ET: 0.5 

WS: 100 

OOF: Yes 

MC: 0.4 

CB: false 

II: true 

F: -0.2 

B: 25 

CL: 100 

TG: 10 

S: 100 

Default NA 

 

 

 

 

 

 

 

  

PDAC 

(Images 

2,4,8) 

I: 3 

S: 500 

EC: Yes, 

GO 

ET: 0.3 

WS: 200 

OOF: Yes 

MC: 0.4 

WSS: 50 

CB: false 

F: 1.5 

B: 35 

CL: 100 

TG: 10 

S: 100 

Default NA 

 

 

 

 

 

 

 

  

PDAC 

(Images 

5, 6) 

I: 3 

S: 200 

EC: Yes, 

GO 

ET: 0.15 

WS: 200 

OOF: Yes 

MC: 0.4 

WSS: 50 

CB: false 

F: 2 

B: 15 

CL: 500 

TG: 10 

S: 100 

Default NA 

 

 

 

 

 

 

 

  

Brain 

I: 0.9 

S: 3000 

EC: Yes, 

GW 

WS: 100 

OOF: Yes 

F: 5 

B: 95 

CL: 55 

TG: 1 

S: 1 

EL: 

0.0005 

EH: 

0.01 

S: 1000 

ES: 2 

T: 

0.0005 

T: 

0.9999 

 

 

 

 

 

EB 

I: 1 

S: 20 

EC: No 

WS: 200 

OOF: Yes 

IR: 1 

CB: false 

F: 0.1 

B: 15 

CL: 100 

TG: 10 

S: 10 

EL: 0.4 
T: 

0.9999 

 

 

 

 

 

 

 
 

Supplementary Table 1: Segmentation Parameters used in 

segmentation accuracy comparison 


